

 CIENTIFIG

 CIENTIFIG}

Second Stage of Locomotive Erection : Cylinders, Frames and Boiler in Place.

Front View of the $\mathbf{2 0 , 0 0 0}$ th Baldwin Locomotive Showing Arrangement of the Four Cylinders and Two Piston Valves.

Planing the Bearings for the Frame Rails.

The Boiler Shop.

Hydraulic Press for Flanging Boiler Plates, Etc.

Fourth Stage of Locomotive Erection: the Boiler and Cylinders Lagged with Magnesia. THE BUILDING OF AMERICAN LOCOMOTIVES-II.-[See page 121.]

SCIENTIFIC AMERICAN

 ESTABLISHED 1845

 ESTABLISHED 1845}

MUNN \& CO.,
Editors and Proprietors

Published Weekly at
 No. 361 Broadway, New York

tervis to setbschbers
 the sitentifin ambricas mbluchtons.

NEW YORK, SATURDAY, AUGUST 23, 1902.

dynamite cruiser fiasco

The announcement from Washington that the Secre tary of the Navy is likely soon to order the disman tling of the once-famous dynamite cruiser "Vesuvius" will cause no surprise to students of naval matters who have kept in touch with the latest history of the much-vaunted "dynamite" gun. It was at a time when the pneumatic guns of Zalinsky for throwing guncotton in large quantities were at the very height of their premature reputation, that Congress, in spite of the recommendations of the naval experts to the contrary, ordered the construction of a fast cruiser which was to be armed entirely with pneumatic dynamite guns. At the same time large appropriations were made for the emplacement of batteries of the same type of gun at various commanding positions on the United States seaboard, such as Sandy Hook, the entrance to San Francisco harbor and the entrance to the Sound. If, as is likely, the dynamite guns of the "Vesuvius" and the costly, complicated apparatus for working them are removed from that vessel and sold for old junk, there will be a precedent for such action in the recent fate of the dynamite guns at Sandy Hook which, costing originally hundreds of thousands of dollars, were sold for the paltry sum of $\$ 20,000$. Those who were responsible for the construction of the "Vesuvius," and who still have faith in the annihilat ing powers of the dynamite gun, cannot complain that their theories have not received every encouragement to demonstrate their practical value. The "Vesuvius" was sent to Santiago for the avowed purpose of blowing the Santiago forts into submission; but although she threw a few tons, more or less, of guncotton upon the Cuban coast. it has yet to be proved that any material damage was done to the Spanish fortifications. It is to be hoped that in the dismantling of this vessel, we shall hear the last of this ill-advised ex ploitation of a costly fad.

THE INSPECTION OF THE BROOKLYN BRIDGE.

It is gratifying to note that under the present admin istration the shameful neglect of the Brooklyn Bridge, which occurred under Tammany rule, has given place to a very thorough and systematic care of this, the most monumental engineering work in America. One immediate result of the appointment of a thoroughly qualified engineer as Commissioner of Bridges is, that the structure is now inspected and kept in repair with the same business-like methods that characterize the maintenance of a first-class railroad. In his recent report, Commissioner Lindenthal states that there is now a careful and systematic inspection of the bridge made each working day by a gang of men, acting under the supervision of the assistant engineer in charge, who keeps a daily record of what is done. A force of riggers, riveters, carpenters and painters is constantly employed in making repairs and general improvements. It will be remembered that some eighteen months ago, when several of the suspender rods broke at the middle of the span, the bridge came very near to experiencing a colossal disaster. The public will be glad to know that these rods and their connections (always a faulty feature in the construction of the bridge), are receiving special attention. Every suspender rod, and each stirrup rod of the wire-rope suspenders, is subjected to minute inspection. This involves the removal of the rods one at a time; and if there is the slightest sign of corrosion and rust, the rod is either repaired ór replaced by new material. The hinged bearings of the short suspender rods are now kept oiled and thoroughly lubricated. Moreover, a number of tests have been made on full-sized rods which have been removed from the structure, and we are informed that, in every instance when the rods were tested to destruction, it was found that they developed from ten to twelve times greater strength than the maximum load which the rod would be required to
sustain in the bridge. This result, by the way, fully bears out the conclusions reached by the Scifntific Amprical when we inspected the hinged bearings and broken rods at the time of their failure. We pointed out that these members were amply sufficient for their work, provided only that the hinged bearings were protected from rust and kept in a well-lubricated condition.

THE ARMSTRONG ORLING WIRELESS TELEGRAPH.

Some time ago we described in the Scievtific Amer an the wireless telegraphic: and telephonic apparatus devised by Messrs. Armstrong and Orling of London. This invention has now been perfected sufficiently to be placed on the market, and two factories are being erected, one in Buckinghamshire, England, and the second in France
Since our description was published one or two important improvements and alterations have been made At that time, the inventors were experimenting with new receivers and transmitters of greater sensitiveness, since the ones they were using were only efficient for a distance of about 2 miles, but by continued investigations they have increased the efficiency to 20 miles.
When telegraphing over a greater distance the inventors intended, as described in our previous article, to place automatic relays at intervals of 20 miles which would receive and re-transmit the impulses with regenerated potential. Now, however, they have devised an alternative and apparently superior process, similar to that of Marconi, i. e., by high poles, from the upper extremities of which the electrical impulses are trans mitted. The one advantage of the Armstrong-Orling system, however, is that the poles do not need to be so lofty, nor is it necessary to increase the height as the distance from station to station increases. This is due to the high efficiency of their capillary relay, the mechanism and principle of which we also fully explained. This relay has been submitted to comparative tests with the Siemens' relay, which is used by Marconi, and the results have been very startling in char acter. A Siemens' relay with a current of 8 volts was affected at a maximum distance of 1,600 miles; the Armstrong-Orling relay recorded electrical impulses of only 0.1 volt potential at a distance of 12,990 miles.
It will be recollected that Marconi failed to validate many of his inventions in the European countries. The reason for this has since been proved to be due to the fact that Armstrong and Orling were exploiting in the same field, and had protected their in ventions before Marconi began his investigations. Nothing has been heard of the Armstrong-Orling in vention until lately, owing to the fact that the inventors were sufficiently wealthy to pursue their investigations without seeking any extraneous financial assistance. Consequently they have not placed their apparatus upon the market until the invention has been sufficiently advanced and perfected to render it practic ble and of commercial utility

ELECTRIC TRACTION ON ENGLISH SUBURBAN ROADS. Owing to the severe competition with which the Eng lish trunk railroads are threatened in their suburban traffic around the big cities by electric street railroads and deep level electric tubes, one or two of the big railoads are preparing plans for the electrification of their suburban tracks to meet the competition. The Lanca shire and Yorkshire Railroad, which serves several busy cities, such as Liverpool and Manchester, have prepared elaborate plans for the conversion to electricity of many of their short tracks. The first experiment with this system is to be made upon a branch line running from Manchester to Liverpool through residental dis tricts. The population is more dense in this area han in any other part of England except London. Between Liverpool and Southport there is already a fifteen minute service, and around Manchester some branches have trains nearly as often. With electric traction a four or five minute service or less would be inaugurated; and by having motors fitted to each car, the train could be made leng or short according to the exigences of the traffic at different hours of the day. When the Mono Railroad between Liverpool and Man chester is completed, by which the journey of $361 / 2$ mile is to be accomplished in twentyminutes, the electrification of this section of the main track of the Lancashire and Yorkshire Railroad will probably be completed in order to meet the mono-rail competition. The journey with steam traction occupies at present forty minutes. The North Eastern Railroad, another large concern serving the busy portions of Northeast England, are going to convert to electricity at once a number of their branch tracks, commencing with the Newcastle to Tynemouth, the Gosforth to Ponteland, and the Quayside branches. The North Eastern will be the first great English railroad to adopt electric haulage, though the other trunk railroads are contemplating a similar conversion upon an elaborate scale. At the present moment there is a great movement in Great Britain toward the adoption of electric traction upon an extensive scale.

THE GREATEST OF battleships

We wish to call particular attention to the magnificent United States battleship, of which we present an illustration elsewhere in this issue. It may be stated, we think without fear of contradiction, that the design which has been drawn up by the Navy Department of the "Connecticut" and "Louisiana" represents by considerable odds the most effective fighting craft, both for offence and defence that exists anywhere in the world to-day, either afloat, on the building ways, or on paper. Seeing that the first duty of a battleship is to fight-to work the greatest possible amount of injury to the enemy in the shortest possible time-it is evident that in this respect the measure of the efficiency of the ship will be the weight, number, and disposition of her guns. From revolutionary times to the present day America has realized this cardinal fact, as proved by the num ber and weight of the guns with which her war vessels have always been armed. It was to their crushing superiority in sun fire that the American ships in the sea fights of the war of 1812 owed their brilliant and oft-repeated victories; and it is a gratifying fact that, when it came to the question of the creation of an entirely new navy, our naval constructors never lost sight of the advantage of carrying a more numerous and powerful armament than your oppo nent. Witness the tremendous battery of the "Ore gon" and her sisters with their four 13 -inch and eight 8 -inch guns in the main battery; or note the eight 8 -inch guns carried by the "Brooklyn," a main battery the like of which is not to be found in any othe cruiser of her displacement in foreign navies. The same chararteristic is seen in the "Kearsarge" and in the admirable designs of the "Alabama" and "Maine" classes.

Now the "Connecticut" and "Louisiana," which with the great British battleships "Edward VII.," "Commonweaith," and "Dominion," are the five largest warships in the world, mounts a battery which is so heavy as to place these vessels practically in a class by themselves. Each carries four 12 -inch, eight 8 inch, twelve 7 -inch and twenty 3 -inch guns. The next most powerfully armed vessel is probably the "King Edward ViI." She also carries four 12 -inch, but in stead of the eight 8 -inch she is armed with four 9.2 inch guns. This, of course, is a much more powerful weapon than the 8 -inch gun, but the rapidity of fire from the eight 8 -inch, that is to say, the number of shots delivered in a certain time, will be so much greater that there will be far more likelihood of getting in an effective blow. It is the broadside bat tery of twelve 7 -inch guns, however, that renders the "Connecticut" so much more powerful than the "King Edward VII.," which carries only ten 6 -inch against the greater number of 7 -inch. An increase of an inch in caliber, when you get to the size of a 6 -inch, means a great increase in power. Furthermore, the "Connecticut" will carry twenty of the 3 -inch guns, as against ten or twelve oit the same caliber carried by the lates British battleship. The "King Edward VII." will have about the same amount of armor protection as the "Connecticut" and haif a knot greater speed. Outside of the latest British design there is no foreign war vessel that can compare in size, battery and pro tective qualities with our latest designs. The "Connecticut" is to be constructed at the government navy yard, Brooklyn, a fact which is a guarantee that the workmanship will be of the very highest quality throughout.

fessenden wireless telegraph patents ALLOWED.

The last issue of the Patent Office Gazette contains thirteen patents on wireless telegraphy apparatus which have been granted to R. H. Fessenden, who is an expert of the Weather Bureau at Washington. Among the patents are included a device for signalling by magnetic waves, a current-actuated wave-responsive device, and also a conductor for wireless telegraphy apparatus. This is the apparatus to which reference was made recently in the Scientific American as having been employed by Mr. Fessenden in competitive tests of the wireless system which were made on the Carolina coast some little time ago. It was stated at the time that the results secured by Mr. Fessenden's device were superior to those of any other systems included in the tests.

The tallest steel chimney in the city of New York was recently torn down. The stack, which was 18 feet in circumference, consisted of thirty sections, each weighing a ton. In taking down the chimney, the workmen rigged up a scaffold about 10 feet from the top. Perched upon this support they punched out the rivets that held the adjacent sections together, and lowered the two sections, weighing two tons, by ropes connected with windlasses. The scaffold was then lowered to the next two sections, where the disjointing work was continued. The removal of the chimney was effected at a cost of about $\$ 2,000$.

THE PASSING OF AMERICAN PLAGUES

Ancient Egypt in all her tribulations had no more isastrous plagues of flies or lice than were the grea insect scourges which visited different sections of the United States in the past, and the gradual passing o these plagues before the work of science marks a new era in our agricultural and industrial life. The story of the terrible scourges form dramatic and picturesque background for the history of the great West, and they are intimately wrapped up and interwoven with the struggles and discouraging hardships of a race of pioneers who lived their tragic lives to conquer an empire for future generations to enjoy. Counties and States equal to half of continental Europe were visited by the plagues of locusts, chinch bugs and grasshop pers, and their entire vegetation laid as bare and waste as if swept by fire
Some recent statistics have been compiled by the Washington agricultural experts which tend to show that back in 1867 the total annual loss to the farm crops of this country from insect ravages amounted in round numbers from $\$ 200,000,000$ to $\$ 300,000,000$. One well-informed expert places the losses even higher, or about $\$ 330,000,000$. These losses were sustained in different parts of the country and included insects which attacked the grain, corn, fruits and animals of the farming States, Some years the breaking loose of hordes of well-known insects of grain or fruits would totally destroy the crops and cause such general distress and poverty that starvation seemed to threaten the inhabitants of en tire counties and States.
The great locust plagues were among the earliest of the West and Northwest, and those who remember these terrible visitations will never forget the conditions under which farmers were forced to live for months at a time. Men became frightened and paralyzed with fear; prayers were offered up in churches and public places to remove the awful plague, and even executive proclamations were issued by the Gov ernors of the afflicted States calling for general sup plication for divine aid in removing the visitation. In 1877 the Governor of Minnesota issued such a proclamation, appointing the 26 th day of April as a day for prayer throughout the State for this purpose In 1873 considerable damage was done to the gras and grain crops by the locusts which appeared in southwestern Minnesota, and by the following season they had spread so that they caused general alarm. Millions of the creatures appeared, and they swept across the country destroying every green thing in their way. So great was the destruction to the crop that an appeal was made to the Legislature the follow ing winter, but nothing was done to check the scourge and in 1875 the swarms had multiplied tenfold

During that summer, and the two succeeding ones, the scourge spread with alarming rapidity throughou the State, and into adjoining States, until there was such a succession of crop destructions that the in habitants were reduced to starvation. Efforts were made then to destroy the plague and to invent some means of checking its further spread. Coal oil wa distributed throughout the infected districts to destroy the insects, but this primitive and clumsy method seemed to have little sensible effect in diminishing their numbers.
Farmers and their families spent their summers in destroying locusts. In the Dakotas and Iowa their numbers became so great that people were in despair It was impossible to raise crops. If they were raise the swarms of locusts would destroy them before they could reach maturity. By the spring of 1875 and 1876 the great Northwest had nearly reached the limit of patience. Bankruptcy stared the whole northwestern group of States in the face. In the autumn of 1876 the Governors of Minnesota, Missouri, Kansas, Ne braska, Dakota and Iowa met at Omaha to discuss the plague and devise some means of averting the ruin that was paralyzing their fertile land. Eminent en tomologists met with the Governors in this conference, but all that science could suggest had been tried, and the conference broke up without anything more definite being reached than the calling of a general day of prayer.
A strange coincidence, or, as some will have it, divine answer to the public prayers, followed the 26 th day of April set aside for this purpose. A few warm days brought the locusts from their winter hiding places in great numbers, and then a cold wave sud denly developed in the Northwest, and the unhatched arvæ and young locusts were almost totally destroyed by the frost which spread over the whole afflicted sections.
It was estimated that billions and billions of eggs of the locusts and their young larvæ were destroyed by this cold wave, coming, as it did, right after a few days of balmy spring weather. It was the only thing that saved the Northwest from bankruptcy and from a period of depression that would have lasted to this day. The millions of dollars lost through crop destruction had caused many to emigrate from their
homes, leaving their farms in many instances just as they were, and fleeing from the plague as did the ancient Egyptians. The awful screech and noise made by the locusts maddened and crazed men, women and children, and the days became horrible night mares which have never since been equalled.
The locust plague passed years ago, and for twentyfive years there have been only occasional reminders of it in visitations of the insects in a few isolated sections. There has been no general spread of it as in 1873-76. Under modern methods of checking in sect development it would be impossible for the lo custs ever again to multiply in such vast numbers There are great locust plagues occasionally in South Africa and South America, and they spread as thickly over the country as they did in the Northwest a quar ter of a century ago; but it is not likely that anothe such visitation will ever appear in this country.
Another great plague, which visited the West fiftee and twenty years ago, and which occasionally develops into huge proportions to-day, is that caused by the chinch bug, which has until quite recently been called the "costliest insect in America." This famous bug has caused a hundred million dollars' worth of dam age to crops in a single year. As far back as 1850 the bugs appeared in such numbers that the grain crops of a single State, Illinois, were damaged to the extent of four million dollars. It had appeared previous to this in Indiana and Wisconsin, causing con siderable injury to the crops. Periodically it appeared then in great numbers in widely separated regions In 1863 to 1865 it caused great damage, but in 1871 it caused a total loss of over $\$ 70,000,000$ to the farmers. But even this was merely a slight indication of what it might do in time. In 1874 it broke loose in Iowa, Missouri, Illinois, Kansas, Nebraska, Wis consin and Indiana, and caused total losses of about $\$ 100,000,000$. After that season the ravages decreased a little, but reached another great climax in 1887, when the bugs caused fully $\$ 60,000,000$ worth of injury to the grain crops. As late as 1896 a chinch bug plague appeared in the West, and caused considerable dam age. Altogether the successive plagues of this tiny insect have caused losses to the farmers of the country amounting to over $\$ 330,000,000$. Such an immense total is sufficient to make this insect occupy a prom inent place in the natural history of the great North west. No other insect of either hemisphere has probably caused quite such immense damage, although the Rocky Mountain locust or Western grasshopper stands prominently among the most disastrous of our insects In 1874 the losses incurred by the ravages of the lo cust were estimated at $\$ 100,000,000$.
The chinch bug, unlike the grasshopper or locust has not yet lost its power for evil, and its reappear ance in great numbers may be looked for almost any year; but it would be met by far more destructive agencies than in the past, and all the resources of science would be enlisted in the fight against it.
The chinch bug is a pretty small insect to cause so much trouble, and it is hardly discernible to the naked cye, but each female lays about 500 eggs in a season and the newly hatched insects are very active. The avorite diet of the insects is grain, grass, sorghum broom corn and Indian corn. Most of the damage has been done in the West to such crops as wheat barley, rye and corn. The insect has remarkable im munity from attacks by ordinary enemies, a disagree able odor emanating from it which protects it from many predatory insects which would otherwise keep down its numbers. There are a few natural enemie to the chinch bug, and entomologists have made a study of different insects and diseases which tend to destroy the creature. Efforts have been made to spread parasitic diseases among the chinch bugs to estroy them. The effectiveness of these different ethods is not entirely satisfactory and science is still laboring to find some means of counteracting another plague of chinch bugs should it break out in the great grain growing regions of the West. There is at pres nt no absolute assurance that another chinch bu plague may not visit this country in the near future The chief guard against any such dire visitation is found in the close watch kept upon the insects in different parts of the country. As soon as there is a slight outbreak in one section of the West, attention is called to that region, and every effort is made to destroy the eggs and larvæ of the insects before they have had the opportunity to multiply in great num bers. The passing of all these plagues is due chiefly o this eternal watchfulness kept upon the creature and to the immediate steps taken to destroy the eggs and larvæ at an early stage. In this way no great swarms are ever permitted to get the ascendency.
In the South the greatest insect plagues have bee those which attacked the staple farm crop of that section. Cotton's worst enemy has been the cotton cater pillar or cotton worm, and the boll worm. The former caused annual losses to the cotton industry in the South of some $\$ 15,000,000$, and twice in the memor of man the damage amounted to over $\$ 30,000,000$ in a single season. The cotton caterpillar has always
been with the planters in the South, and periodic visitations occur.

ROBERT BACH M'MASTER.

It is with sincere regret that we record the death in this city on the 13 th instant of Mr. Robert Bach McMaster. For several years, and up to the time of his decease, he was connected with the Patent Depart ment of the Scientific American as an associate at torney in conducting the business pertaining to inter ference proceedings before the Patent Office, as wel as other law matters connected with trade-marks and copyrights. In this work he early gained the reputa tion of a careful, painstaking, industrious and honest lawyer, winning the esteem and friendship of all who became acquainted with him.
Mr. McMaster was born in Brooklyn, N. Y., in 1847 and was the grandson of Robert Bach, well known in that borough in the early years of the last century His education was received in the public schools of this city and in the College of the City of New York from which he graduated with honors in 1868.

After studying law in Columbia Law School and be ing admitted to the bar he turned his attention to the further study of law relating to railroad corporations, and in 1872 "McMaster's New York Railroad Laws, prepared and compiled most carefully, was published and was highly regarded as a work of superior value He also published notes on "The Business Corporation Act of 1875.'
Subsequently he made patent law his specialty and rose steadily to an honorable place at the patent bar One of the most noted cases as associate attorney with Mr. William McAdoo, that Mr. McMaster carried to a successful issue, was the Rahtjen Paint Composi tion Trade-mark case, which was appealed to the United States Supreme Court.

The case established the doctrine that where a trade mark applied in the United States to an article pat ented in England, but not in the United States, the trade-mark became public in the United States when the English patent expired

His ability as an attorney, his sterling integrity, open-handedness and sweetness of character won for him a lasting place in the affections of a host of friends.

There survive him a brother, Prof. John McMaster, of the University of Pennsylvania, author of "McMaster's History of the People of the United States,' and a sister, Mrs. Mary McMaster Metcalf.

In Washington, where he was frequently called to conduct important cases, he enjoyed the esteem and confidence of his many acquaintances in the Patent Office, displaying unusual ability in the management of evidence for the best interests of his clients and em ployers. He discharged every trust with zeal and ability.

His presence will be greatly missed, but the memory of his whole-souled, honest, unselfish character will be cherished most by those who knew him best.

SCIENCE NOTES.

The South Kensington Museum, London, has been presented with the famous Walsingham collection of micro-lepidoptera, consisting of 200,000 specimens, and upon the collection of which Lord Walsingham has veen engaged for thirty years. The Walsingham col lection is the largest and the most important in exist ence. It includes among others the famous Zeller collection, and also those formed by Hofmann and Christoph. The specimens embrace many of the originals selected as standard types by various authoritie who have written on the subject.
The time-honored rule that moss grows on the north side of a tree, a rule which forms part of every woods man's catechism, and which he would no more dispute than one of the Ten Commandments, has received a few sharp blows from Henry Kraemer, of Philadel phia. An investigation which he has conducted shows that on 10 per cent of the trees which he examined moss grew on the west side; 10 per cent on the northwest side; 20 per cent on the northeast side; 35 per cent on the east side; and 15 per cent on the southeas side. What becomes of the old rule after such icono clastic investigation?
Four years ago the Belgian Government offered a reward of $\$ 10,000$ for the discovery of a paste for matches, not containing white phosphorous, in order to mitigate the evil influences which the present manufacture of matches exercise upon the employees. The arbitrators, however, although they have tested severa so-called harmless mixtures, have not yet discovered one that fulfills the required conditions, since all the mixtures so far submitted have been defective in in flammability, igniting on all surfaces, or, in igniting, ejecting inflammable matter containing poisonous substances. The matter is of supreme importance to Belgium because match making is one of the staple indus tries of the country, but the mortality in the manufactories is very high, the prevalent complaint being phosphorus poisoning.

وOME RECENT ARCHEOLOGICAL DISCOVERIES IN MEXICO CITY. by thomas r. dawley, je
The unearthing of the remains of an Aztec temple in the city of Mexico last winter promises to shed much additional light upon the ancient capital of the Azters. The discovery was made in the heart of the city, only two squares east of the great plaza, or Zocolo, and constitutes one of the most important archæological discoveries made in years. In addition to the temple, several huge monoliths, stone idols, incense gum, spear heads and other interesting objects were brought to light.

Some years ago the eminent archæologist Señor Batres, of Mexico, projected a map of the city of Tenochtitlan as it existed in the year 1519, when first seen by the Spaniards. This map represented the city as an island intersected with canals running nearly at right angles, corresponding to the streets of the present city. He located on the map the various temples and public edifices of the Aztecs, all of which, of course, had been destroyed by the conquerors. Back of the great temple, or Teocalli, which occupied the present site of the cathedral and major portion of the plaza, he located a temple called Coateocalli, meaning the house of many gods. He gave as his authority for locating this temple, Padre Duran, who wrote that the temple existed on the site orcupied by the property of the Acevedos. Searching the archives, Batres found among the records in reference to an ordinance regarding the supply of water, under date of October 27 , 1710, that the property referred to was on the corner of Relox and Cordobanes streets, and consequently gave that as the locality of the temple of many gods, but as the corner was occupied by a fine old buiiding, it was not supposed for a moment that any remains of the ancient temple could possibly be in existence
Last winter the work of renovating, or practically rebuilding the old palace occupying this corner was undertaken, for the purpose of furnishing suitable

THE TIGER, OR OCELOTL

quarters for the Department of Justice. Captain Diaz, the son of President Diaz, was given charge of the work, and it is due chiefly to nim that the discoveries were made. While the workmen were leveling off the patio, or central courtyard of the edifice, previous to putting down a new pavement, they came in contact with a hard solid foundation which proved to be a flight of stone steps going down into the earth. They would probably have covered them up again, and leveled off the projecting one at the desired height, had not young Diaz happened along just in time.
Diaz ordered the men to keep on digging, cautioning them to use their tools carefully, and following a line

HEAD OF OCELOTL.
parallel with the steps, a trench was opened the entire length of the patio. At the further end of the trench, scarcely two feet below the surface the men struck what appeared to be a round, polished rock, around which they carefully worked, pulling the dirt

EXCAVATING THE TEMPLE

out with their hands, till they had disclosed a monolith weighing several tons, representing a tiger recumbent, or ocelotl, ready to spring. A rude cierrick was rigge. 1 up, the sculptured rock hoisted out of the hole and it was weighed and measured.
Further excavating brought to light another rock sculptured to represent a serpent's head, which cor responds with two others previously discovered, and which were the corner pieces of the great wall inclosing the great Teocalli, within which are said- to have dwelt seven thousand Aztec priests. Besides the great pyramid rising in the center, upon which they made their human sacrifices to the war god, there were seventy-eigint chapels devoted to the worship of special deities. After the two huge monoliths were removed from the excavation, the digging proceeded, and the dirt care fully removed, every object found was cleaned and put aside for the inspection and study of Señor Batres. The foot of the steps was finally reached at a depth of thirteen feet below the level of the present city of Mexico, where they rested on a solid base, or foundation of masonry, which was without question the level of the old city of Tenochtitlan; consequently the present city of Mexico must be some 13 feet above the level of the original city, which presents an interesting problem to the archæologist.
At the foot of the steps many of the smaller objects were found, such as idols, remains of idols, incense gum, spear heads and ornaments, just as they had been thrown down by the Spanish conquerors. The stumps of two trees growing at the foot of the temple were also uncovered. These trees had evidently taken roo after the destruction of the temple. They were iount at irregular distances from the steps, and had the appearance of having grown spontaneously, just as the trees are growing at the present day out of the ruined walls of Palenque, and other aboriginal cities. The recumbent tiger or ocelotll, weighs four tons It measures 2 meters, 30 centimeters long, 1 meter 5 centimeters wide, and 94 centimeters in height. Its mouth is open, showing huge teeth and a part of its tongue, and great round eyes give it a ferocious look. It is well modeled, with the tail properly curved around on one side as the animal is often seen in life. On each side of the head is a mane resembling somewhat the pendant part of the head-dress on the Egyptian Sphinx. On its under side are vestiges of painting showing that it was originally painted with red and yellow to carry out more perfectly the idea or imitation of the American tiger. Cut in its back is a cylindrical cavity about eighteen inches in diam eter and five in depth. The sides and bottom of this cavity are sculptured with representations of Aztec figures, or warriors.
The serpent's head, identical with the other two already discovered, represents the serpent with its mouth open and the upper lip rolled up over its forehead, disclosing the upper jaw with great tusks projecting down over the under lip. It is supposed that there were four of these heads, one in each corner of the great wall, and the design corresponds to similar heads graven on the Aztec Calendar stone. On the under surface of the heads, Batres has deciphered a hieroglyphic which he calls tres acatl. the date of the foundation of the Great Teocalli
Among the other relics unearthed was a curious little idol cut out of a dark porous stone, about 10
inches in height. The workmanship is rather crude, but decidedly interesting, representing a head with scarcely any body, perhaps in a sitting posture with arms folded. The incense gum upon being removed from the earth which had surrounded it for centuries resembled pieces of bone, but when, by the simple application of a lighted match, it burned and gave off the proper perfume, it was proved to be incense.
A number of stones were fashioned in the shape of skulls, or death heads, with projections at the back as though they had been inserted into a wall. Some of them were painted white, which gave them a more horrible aspect. A very interesting relic was a piece of baked clay, a part of a foot of a colossal statute. The toes were perfectly modeled, showing the edge of the leather sandal beneath, and the knots of the thongs holding it over the instep as worn at the present day by the native Indians. Other smaller pieces of this same statue were found, and in handling them one could imagine the great war chief in full regalia guarding the portals of the temple when set upon by the Spaniards and hurled down the steps to the bottom.
All the objects found are to be preserved in the National Museum, and it is proposed by Captain Diaz to leave the patio with the excavation open, showing the remains of the temple. The very interesting question now arises, how is it that the present city is 13 feet above the old one, as shown by the excavation.
We know that when Cortez first saw the Aztec city he compared it to Venice on account of its being composed of islands, and having canais for its streets. With the destruction of the city, the temples and public edifices were toppled over, filling up the canals It would seem that the Spaniards would have taken this material to build their new city, but it is evident that they did not. In building the new city they

SMALL STONE IDOL.
brought building material from elsewhere and built on top of the old.
Another fact demonstrated by the discovery of the temple is that the reconstruction of the city began in a very feeble manner, for the stumps of trees growing at the base of the steps show that the ruins of the temple must have remained just as the Spaniards de stroyed it a long time, thus giving the two trees ample time to sprout between the crevices and grow before they were eventually buried by the debris, upon which the palace of the Acevedos was built, more than a century, or a century and a half later.
The great cathedral was not commenced till a cen tury after the destruction of the city by Cortez, and like the palace of the Acevedos, it must have been built upon the ruins of the Great Teocalli. We can therefore conceive Tenochtitlan a ruined city for upward of a century, with its demoralized remnant of a once proud race wandering about the ruins till finally the site was accepted for the Capital and the

stone skulls with small idol on the top.
reconstruction commenced in earnest. The value and quantity of relics which are buried beneath these structures can only be conjectured.

Improved picture projecting apparatus.

Heretofore magic lanterns have been devised either for projecting transparent pictures only, or for projecting opaque pictures only. Some transparency projectors, however, have been provided with an attach-

improved picture projecting apparatus.
ment whereby the same may be converted into a projector for opaque pictures. While this is suitable for certain classes of exhibition it nevertheless falls short of the requirements when it is desired to exhibit transparent and opaque pictures interchangeably; for transparent and opaque pictures interchangeably; for
considerable time is consumed, and trouble involved, considerable time is consumed, and trouble involved,
in making proper adjustments necessary to effect the change from one class of picture to the other. Moreover, certain specially interesting pictures or objectsviz., those partly transparent and partly opaque-cannot be projected by such lanterns. With these conditions in mind Mr. George W. Smith, of Evanston, Ill., has recently produced and patented an apparatus which will project any class of picture or object without requiring any special adjustment. The invention is apquiring any special adjustment. The invention is ap-
plicable to any kind of magic lantern, but more plicable to any kind of magic lantern, but more
particularly to the form commonly known as the megascope.
As shown in our illustration, the invention comprises a lantern box, at the rear of which is hinged a reflection chamber having vertical walls arranged obliquely with respect to the front wall of the box. A light, A, for example a Welsbach light, is located at one side of the lantern box at one focus of an ellipsoidal reflector, the picture or object to be projected being inserted the picture or object to be projected being inserted
at the other focus. On the opposite side an opening at the other focus. On the opposite side an opening
is formed in the reflector for the admission of the is formed in the reflector for the admission of the
objective tube. Rays from light, A, pass through a objective tube. Rays from light, A, pass through a
condensing lens, B, to one of the oblique walls of the reflector chamber. Reflectors, C and D, are provided on these walls and they act to reflect the rays back through a condensing lens, E. A transparent lantern slide, F, when placed before the lens, E, intercepts the rays and permits the proper gradations of light and shadow to be projected by lens, G. onto the screen. Such is the effect when a transparent slide is used. Such is the effect when a transparent slide is used.
When an opaque slide is to be projected, the direct When an opaque slide is to be projected, the direct
rays from lamp, A, and also the indirect rays conrays from lamp, A, and also the indirect rays con-
centrated by the ellipsoidal reflector, illuminate the front of the slide, and the proper image is thus re-
flected through lens, G, to the screen. If the slide be partly opaque and partly transparent or translucent, the lantern will operate simultaneously as a megascope and sciopticon combined, thus, without any change, producing unique effects in a very simple, inexpensive and yet satisfactory manner.

The lantern should be very useful for scientific purposes for the reason that the same object may be projected by reflected light alone or by transmitted light alone, or by both simultaneously without removing the slide or changing the adjustment of the projector.

MOVING LARGE TREES

An Iowa inventor has devised a very effective machine for lifting and moving heavy and cumbersome objects. The machine, which we illustrate herewith, though primarily designed for lifting rocks and bowlders, has nevertheless been found equally useful for raising and transplanting large trees. A descripfor raising and transplanting large trees. A descrip-
tion of this tree-lifter should prove of great interest tion of this tree-lifter should prove of great interest
to landscape gardeners, for it provides them with an to landscape gardeners, for it provides them with an
easy and comparatively inexpensive means for transplanting and setting out large trees without injuring them. Our engraving shows the machine handling a tree 1 foot in diameter and 30 feet long. This, however, does not illustrate the full capacity of the lifter for it has easily transplanted trees as large as 20 inches in diameter. The frame of the machine is V shaped, the rear wheels of which support the outer ends of the frame while the apex rests on the front truck. Thus it is possible to back the machine up to the tree which it is desired to move so that the two arms of the frame will straddle the trunk. When the machine has been backed sufficiently to bring the hoisting drum into contact with the trunk, the front truck is swung around at right angles to the rear wheels so as to give a firm anchorage for the machine when the hoisting mechanism is operated. The horses are now detached from the machine and are hitched to the hoisting gear. are hitched to the hoisting gear. A connecting rod is fastened across the rear extremities of the V -shaped frame, and serves the double purpose of increasing the rigidity of the machine and of supporting the trunk when the tree is drawn out of the ground. A padded roller on this connection serves to prevent injury to the trunk. A bar-chain is now placed around the roots of the is now placed around the roots of the
tree, which have been previously cut loose from the surrounding earth. This chain is attached to the liftingdrum and the tree is slowly drawn up until the roots clear the ground. At the same time the trunk gradually sinks back until it is supported by the padded roller. The power for thus raising the tree is supplied by the team, which, as stated above, is hitched to the hoisting mechanism. The tree is locked in this position by a ratchet wheel and is now ready for transportation.
It is evident, of course, that a large hole has been left in the place which the roots of the tree occupied, a hole probably larger than can be safely straddled by the rear wheels. It is interesting, therefore, to note the novel method by which the machine is moved away from this cavity without its wheels sinking therein. Instead of being pulled directly forward the front wheels of the machine are first circled around the hole on the outer rear wheel as a center, until the machine occupies a position approximately at right angles to its original position, when, the hole having been cleared, the tree can be transported to any desirable locality. It is evident that by this method any hole can safely be avoided whose diameter does not exceed the distance between either of the rear wheels and the inner wheel of the front truck when turned at right angles. With the machine shown a hole of 14 feet diameter may thus be circled. When replanting a tree the same method must be pursued to avoid the cavity into which the roots are to be planted. When the hole has been sufficiently circled to bring the
roots directly over the center, the tree is slowly lowered under control of a friction brake. In our illustration the operator of the machine may be seen grasping the lever of this friction brake. As soon as the roots have been lowered into the cavity, the machine is drawn forward, thus gradually raising the tree into an upright position. Guy ropes are then fastened to secure the tree in place, after which the rear connection is swung open and the machine is drawn off.
The frame of this tree-lifter is very strongly constructed of Washington fir, white oak and hickory with very heavy iron iracings. It has a direct lifting capacity of over 50,000 pounds, and it will, therefore, readily be seen that the machine would prove serviceable for moving heavy objects of all descriptions.

solid rubber tire setting machine.

Solid rubber tires are ordinarily secured to carriage wheels by a steel tape or a pair of wires which run longitudinally through the tire, near its under surface. At present the wires seem to meet with more favor than the steel tape, and the reason for this lies probably in the fact that the tape first used was not heavy enough for the purpose, and soon broke or rusted away. Heavier tape is now used with better results; but a prejudice once formed is hard to over come and wired tires still hold the lead. Aside from

SOLID RUBBER TIRE SETTING MACHINE.
this prejudice there may be some good reasons for the preference of wire over steel tape. To admit the tape, the tire must have an opening which is much longer, in cross-section, than the sum of the diameters of the two wire openings. The tire is thus greatly weakened, and the more so when we consider the act that, and the more so when we consider the ve that the tape offers more of a cutting edge though its edges be rounded, because the diam eter of the wires is greater than the thickness of the tape.
In Fig. 1 we show a section of a wheel rim with a wire-strung tire in place. The channel rim, which is secured to the felloes of the wheel, has a flange along each side, between which the tire is set and held by the two wires. The manner of stretching these wire and splicing their ends together, so as to form end less rings, is very interesting. A number of different machines have been designed for this purpose, among he simplest of which is the mechanism here illus trated. In Fig 2 we have the machine for setting and splicing the wires together, after which the rubber must be straightened out and set by the device shown in Fig. 4. Both mechanisms are very compact and take up almost no room, because they can be fastened to the side of the wall, or against a post or column of the repair shop.
The wire-setting device consists of two clamps, one clamp. A. being stationary. The other clamp, B, is movable, being mounted on the tightening screw, D, by which it can be made to travel along the tracks on the main frame. A bracket projects out from the frame a short distance below the two clamps, and on this the wheel is hung, the felloe resting in an ad justable support which is raised sufficiently to bring
the rim of the wheel against the bottom of the clamps Clamp B is first drawn away from clamp A, to its extreme position, and then the tire, which has been previously strung with a pair of wires, is loosely fitted into the channel rim, its two ends being held back by the clamps, but the wires projecting through their jaws.

The wire ends which project through the clamp, A are gripped by its jaws, but the other ends projecting between the jaws of clamp B pass freely through clamp A, and are wound around the drum, C. A block is placed in each clamp between the wires to hold them in their proper positions. The block in clamp A, however, is thinned down at its upper end so that the wires which extend to the drum, C, will not be gripped when the jaws are closed. These wires are now wound up tightly on the drum, C, and secured by closing the jaws, B. To attain the necessary tension the tightening screw, D, is operated. A powerful pres sure is thus brought to bear on clamp B, which stretches the wires to their utmost. This done, all superfluous wire is cut away, and the overlapping ends filed on a taper to make a smooth joint. As bestos is then packed under the wires, and particularly against the clamps, so as to prevent the intense heat, necessary in brazing, from harming the rubber tire The wires are now brazed together in the usual way and our first and most important operation is com pleted.
The wire rings, it will be found, have been drawn so tight that the rubber cannot, with ordinary means be drawn over the splice, and this brings us to the second operation, which is illustrated in Fig. 4. The wheel is supported by a vise, which grips the rim near one end of the rubber tire, and a clamp, G, is secured to the other end. A U-shaped lever, J, strad dles the wheel rim and is hinged to the vise. Pivoted to each leg of the lever, J. near the vise, is a ratche bar, H. which has notches along its lower edge. These ratchet bars are adapted to hook over pins on each side of the clamp, G. Now, by drawing back the lever, J the end of the tire which is held by the clamp is drawn, little by little, up against the end secured in the vise. Any unevenness or bunching of the tire is then in a similar manner straightened out, after which the wheel is ready for service.
The process for tape-strung tires is the same ex cept, of course, that no separating block is necessary in the clamps, A and B. Inserting the tape into the tires is, however, rather difficult, because the tape is sure to bind along its edges. It has been found neces sary to attach a force pump at one end of the tire opening, which is operated while the tape is inserted from the other end. The air pressure inflates the opening and permits a freer passage for the tape.
Car tracks, and particularly their switches, cause most of the damage to carriage tires. A terrible wrenching strain is received when the vehicle is suddenly swung out of a car track. Sometimes the rub ber is so badly torn that it is necessary to patch it with a section of new tire. This is easily done, as shown in Fig. 3, the new section, E, being inserted in the old tire, F^{\prime}, and all made secure by the retaining wires.

ELECTRICAL RESONANCE AND ITS RELATION TO

 SYNTONIC WIRELESS TELEGRAPHY-I.The recent transference of the Pupin electrical re sonance patents to the Marconi Company has created more than a passing interest in the application of resonance principles to syntonic wireless telegraphy.
In wireless telegraphy practice it is well known that an electric circuit having definite values of in ductance, capacity and resistance will respond to cur rents of high frequency set up in a circuit of the same dimensions.

This phenomenon is termed electrical resonance taking its name from the similarity of the action produced and the means by which it is accomplished to the resonance in acoustics where the sound wave cause a sympathetic vibration in a suitable medium. As a familiar illustration of acoustic resonance, let two tuning forks of the same size, pitch and form be placed a given distance apart so that the waves set in motion by the vibrations of the first fork will impinge on the second, when a vibratory reaction will take place and it will then respond to the fundamental tone and a second train of waves will be emitted.
The co-efficients of an electric circuit are its induct ance, its electro-static capacity and its resistance, and upon these three factors the size of the circuit de pends. Inductance is the effect of a current flowing in a straight conductor or a coiled wire on itself; the in ductance of a wire is virtually electric inertia, since current does not start or stop instantly but re quires the element of time to do either. Capacity is the quantity of electricity which must be impressed upon a circuit in order to increase its potential, or raise its pressure to a given value. The capacity of an electric circuit may be compared to that of a
gas tank, the quantity of gas the tank may contain depends on the pressure with which the gas is forced in as well as on the size of the vessel; likewise the higher the electromotive force or pressure of the cur rent and the smaller the capacity of the circuit, the smaller the quantity of electricity required to charge it to a given potential. The resistance of the conductor is the reciprocal of the electrical conductivity, or the ratio between the electromotive force of a cir cuit and the current it carries forward. The resist ance of a circuit may be taken to be the sum of the opposition offered to the flow of the current.

The effects of these co-efficients vary considerably according to the nature of the current employed in

the circuit; thus the low-potential alternating cur rents employed for commercial purposes heat the con ductor if it is of small cross-section, and radiate heat waves, in virtue of the resistance; but the inductance offers no great impedence to the current. Oppositely disposed, a current of high frequency will oscillate to and fro, with little regard to the resistance of the circuit, though the inertia of the current is greatly affected by the inductance, tending to slow down or damp the oscillations; these high frequency currents also possess the characteristic feature of dissipating nearly all their energy in the form of electro-magnetic waves.

ELECTRO-MAGNETIC THEORY.

The electro-magnetic theory of light was invented by Michael Faraday, who was enabled, after a series of

laborious and difficult experiments, to demonstrate by fhysical methods that light, electricity and magnetism were allied to each other in a definite way. This he did by placing a cube of heavy glass of his own manufacture in the field of a powerful electro-magnet in such a way that when a pencil of light was passed through the glass the line of wave propagation wa parallel to the lines of magnetic force.* Before the electro-magnet was excited an analyzer, similar to those used in polariscopes, was arranged to intercept all the waves of light. When the magnetic field was pro duced by the rotational current of electricity the light waves were twisted or turned through an angle sufficiently to permit them to filter through the analyzer. Proof was thus established that light and magnetism are closely related. Of electricity and magnetism the

same is equally true and more easily proven; for in stance, when a current passes through a coil of wire it assumes all the characteristics of a magnet exhibiting the same curved lines of force, attraction for magnets of the opposite sign and repulsion for those of the same sign, and other phenomena of a like nature This classical experiment and the researches of Fara day on the dielectric stresses in insulating mediums under electric strain led James Clerk-Maxwell to subsequently deduce by a delicate synthesis of Legrange's co-ordinate system* the mathematical evidence that undulatory motion in dielectrics is due to transverse vibrations of the ether or polarizations, and these polarizations are produced by changes of electric charges rapidly shearing the ether; the more rapid the movement of the electric charge, or period of oscillation, the greater will be the dissipation of

* Dr. Bruce Jones. Life and Letters of Faraday.
+ Maxwell's Electricity and Maguetism.
energy in the development of the waves. The electric charge of an atom weighing one micromii in diameter may oscillate 434 trillion times per second propagating waves 271 ten-millionths of an inch in length, producing the sensation of red light, or the charge may vibrate with a frequency of 740 trillion times per second and send out trin of 165 tem-million of an inch in length, giving the color value of violet light; or the charge may vibrate between the limits of 271 and 740 trillion times per second, the varying wave lengths resulting in orange, yellow, green, blue or indigo light. Having determined that light-waves are electro-magnetic disturbances in the ether, caused by oscillating charges of electricity, it was not difficult to imagine a larger charge moving at a much slower rate in its reversals than atomic charges, and therefore emitting longer waves. Maxwell came to this conclusion, but to explain all the phenomena of wave emission and propagation by one ether he assumed that the velocity of transmission was in every case identical. By calculation and direct experiment this has been ascertained to be 186,500 miles per second.

Wave length as shown by a spectrum in Maxwell's time was not as extensive as it is to-day. Added to the visible spectrum discovered by Newton were bandshowing waves shorter than the visible violet, and these were termed ultra-violet, and at the opposite end of the spectrum were band-indicating waves longer than the visible red; these waves were emitted by heat and were termed radiant heat or infra-red waves. That there were shorter waves than the ultra-violet and again others longer than the infra-red were postulated, but yet remained to be demonstrated.

waves

The present method for producing light waves by combustion is empirical and very wasteful, and the range of available wave length \bar{s} is limited by the tenmillionths of an inch. In 1888 the mathematically predicted electro-magnetic waves of Maxwell were ob served by Hennrich Hertz, of Karlsruhe, Germany, who at the same time discovered the necessary apparatus for their production. The method for the production of the electric waves, employing the terminology of Hertz, is that of oscillating an electric charge of a mass instead of an atom. Prior to 1888 Prof. Fitzgerald described the conditions by which electric oscillations in masses could be set up; this was to "utilize the al ternating currents surging in a circuit when an accumulator was discharged through a small resistance." This is the enly method known where a longer wave than that produced by atomic vibration is desired, but Fitzgerald was unable to construct a physical apparatus to fulfill these requirements, yet the method as well as the apparatus is exceedingly simple, consisting of a Leyden jar charged by a frictional machine or electrophones and then discharged through a wire of small resistance by means of a spark-gap. When this action takes place the positive and negative charges of the Leyden jar or accumulator oscillate to and fro through the circuit formed by the wire and the spark in the air-gap, which has then a very small resistance, or mathematically expressed, the oscillations will take place if $\mathrm{R}<\sqrt{\overline{4} \overline{\mathrm{~L}}}$, where K is the capacity of the circult in Faraday, R the resistance in ohms and L the inductance in heneries. Fig. 1 shows in rectangular co-ordinates the curves described by an oscillatory discharge. The number of oscillations per second, or frequency, is determined by the equation

$$
2^{n} n=\sqrt{\frac{1}{\mathrm{KL}}-\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}}
$$

If the resistance of the circuit is large there will be no oscillations, but the discharge will represent a smooth curve as in Fig. 2 or by the formula $\mathrm{R}>\sqrt{\frac{\overline{4 L}}{\mathrm{~K}}}$ Thus the oscillations of a pint Leyden may number 18 million per second emitting waves 16 meters in length. The Leyden jar arrangement gave a few oscillations at each discharge and then required recharging. Hertz greatly improved upon this by employing a Ruhm korff coil and an oscillator system shown in Fig. 3, A, to keep up the potential. Here a direct current was passed through the primary of the inducting coil, a, and automatically interrupted; this set up low-fre quency, but high-potential currents in the secondary coil, b, the terminals of which were connected to the oscillator, c. The oscillator system and the currents set up in it must be regarded as absolutely distinct from the secondary coil and the currents induced in it by the primary; the oscillator and secondary coil are connected, but the purpose of the secondary currents is to charge the oscillator system automatically, and the high-frequency, high-potential currents set up by the disruptive discharge cannot flow into the secondary coil, in virtue of its great inductance. The oscillator Hertz employed consisted of two brass balls, a centi meter in diameter and separated from each other by an air-gap a few millimeters in length; these spark balls were attached to two brass rods ending in metal
spheres 30 centimeters in diameter. When the two arms of the oscillator system, c. were charged to a sufficient potential the air-gap, d, was disrupted and a series of sparks filled the gap during the period of the oscillation of the electric charge. This set up in the surrounding medium stationary electric waves, also discovered by Hertz; these waves Hertz detected and measured by means of a circlet of wire having a minute spark-gap between its terminals, as shown in Fig. 3, B. The action of these waves in other circuit had been observed before Hertz, but the effects were attributed to electro-magnetic induction.

These are the fundamental principles underlying wireless telegraphy and upon which the whole art of syntonic methods is based; the working out of these laws constitutes the applied science of electrical resonance and in the following paper its relation to syn tonic wireless telegraphy will be discussed.
(To be continued.)
THE BUILDING OF AMERICAN LOCOMOTIVES.-II
In our issue of June 7 we pointed out that amons the many great industries of America, none have more strongly marked national characteristics than the loco motive industry, and we traced the history of American locomotive building as illustrated by the growth of the Amerrican locomotive in the Baldwin Works from "Old Ironsides" of 1832 to No. 20,000 , of 1902. The present article is devoted to a description of the great establishment in which an average of 1,500 locomotives a year is constructed, and from which they are shipped to almost every country in the world.
The Foundry.-The locomotive castings are made in a large foundry, measuring 80×400 feet. The most important castings are those of the cylinders and wheels, in addition to which there are the numerous less important fittings that enter into the make-up of a locomotive. The raw material consists of new pig iron and old stock, the latter including any good gray iron, such as old locomotive cylinders, grate bars, axle boxes, etc. The materials are melted down in three 50 -ton cupolas, the output of which varies from 100 to 150 tons pe day. The furnace mixture is in the proportions of 2,000 pounds of pig, 2,000 pounds of scrap, 1,750 pounds of coke and 50 pounds of marble. The foundry is served by seven jib cranes and two overhead traveling cranes.

The Cylinder Shop.-The cylinder castings are cleaned and taken to a large shop devoted especially to the finishing of cylinders. One of the most interesting machines in this department is a special boring mill, designed for boring and facing the castings for the four-cylinder compound locomotives, of which this firm is making an ever-increasing number. Each casting consists of a high and low pressure cylinder, and a cylinder for the piston valve, together with half of the saddle. The mill is arranged so that the three cylinders may be simultaneously bored and faced, with a great gain of time and the certainty of accuracy of the finished work.

Whal-Lathe Shop.-The wheel castings, which are cast in one piece, the rim being formed segmentally to allow for cooling strains, are taken to a special wheellathe shop, where the rims are turned, and the hubs are bored and faced. The wheels are forced onto the axies by hydraulic pressure and the tires are shrunk on The axle ends are turned to an even size, and the hole in the wheel hub is bored less in diameter, by an allowance of three one-thousandths of an inch for each inch in the diameter of the axle. The two pieces are then put in a hydraulic press and the axle is thrust into the hub with a pressure which commences at 10 tons and finishes at as high as 125 tons. The tires are maintained o^{n} the rims by the initial tension set up when they are shrunk into place; but the tires of express engines are further secured by a retaining ring The Forge.--One of the most interesting depart ments is the forge, where raw material in the shape of wrought iron scrap, such as bolts, rivet heads, etc., is piled up in small rectangular heap on boards, and raised to a melting heat in the furnace, from which it is taken out and hammered by steam hammers into slabs. The slabs are then put together in couples, heated and welded, the process being repeated until full-sized billets are formed measuring 8×8 inches by 3 feet in length. The object of this heating and reheating is to secure that thorough working of the material which is essential to the production of the highest grade of wrought iron and steel. A feature in the forge is the large battery of overhead boilers which is carried above the furnaces, the waste heat from the latter serving to raise sufficient steam to supply the whole forge shop.
Coneretivg-rol Room.-A marked feature of this great establishment is the attention that has been paid to the question of labor-saving, both as regards the machines employed and the broader question of general shop management. Evidence of this is seen in the devoting of separate buildings, or of separate floors in buildings, as the case may be, to the construction of particular parts. Thus, we have already referred in
this article to the wheel-lathe shop, the cylinder shop etc. In fact, almost every detail of the locomotive of importance is machined and finished in its own par ticular room. One of the most interesting of these departments is the connecting rod room, where the rough forgings for the side and main rods are milled, planed, finished milled, and polished. The connecting rods are forged of mild steel. They are first centered in a lathe, then scribed out by templates, planed down to proper width; the ends milled to shape, and where they are of the new I-section, the recesses are worked out by milling the two ends, and planing out the in tervening material. The brasses are forced in place by hydraulic pressure.
Texders.-The construction of the tenders is carried on in a separate building, one floor of which is devoted to the construction of the trucks and frames of the tenders; another floor to the laying out of the plates and the shearing and punching of the same, while on another floor the tenders are erected.
The Boller Shop.-Unquestionably the boiler is today the portion of the locomotive which is receiving the most attention from locomotive designers. It is well understood that the efficiency of the locomotive depends upon the ability of the boiler to produce abundance of dry steam of the desired pressure when the engine is being worked to its fullest capacity Steel plate is used exclusively in the Baldwin boilers, and it is received at the works in sheets of various thicknesses and sizes, some of which are as much as 20 feet long. The sheets are first marked out by stan dard gages, although in cases where they have to be flanged, the flanging is done previous to the template work. The rivet holes are then punched or drilled, as required by the specification; the holes of the boilers of foreign locomotives being invariably drilled, while American specifications usually call for punched holes The boiler shop is replete with a large assortment of drills and punches, which are driven by several electric motors. Flanging as far as possible is done by hydraulic presses, one of which is shown in the accom panying illustrations. This machine is operated by two accumulators with a maximum capacity of 365 tons The plate is heated in the furnace and the flanging is done between two suitable forms, one clamped to the lower, and the other to the upper table. Dome rings, smokeboxes, tube sheets, etc., are all formed up on this machine with great accuracy and speed. After flanging, the plates are returned to the boiler shop, where the edges are planed where necessary, or chipped with a chisel. The plates for the barrel are trimmed in a shearing press, their edges are planed, and they are then rolled to the proper curvature in the bending rolls The boiler is now assembled for the riveting machines which, in these works, are operated by hydraulic power. The riveting dies are carried at the upper ends of two massive upright jaws which, in the larger machines, are tall enough to allow the boilers to be let down by overhead cranes, with the line of rivets between the jaws. The riveting commences at the top and is carried down to the bottom of the boiler by simply iifting the latter by the overhead traveler.

Erecting Silop.-The erecting shop is a fine building 160 feet wide and 337 feet long. It is divided longitudinally into two bays, each of which is served by two electric traveling cranes of 50 and 100 tons ca pacity. Three of our first page illustrations are taken in this shop, and they represent various stages in the erection of some of the extremely powerful freight engines which this firm is now turning out, the last of which, built for the Santa Fé Railroad, is considerably the heaviest locomotive in the world. Limitations of space forbid any detailed account of the method of erection, but briefly stated, it is as foilows:
First the cylinders are set up at the height above the rails which they will occupy when the locomotive is compieted, and the attached saddle is prepared for the setting of the smokebox. The engine frames are then erected and lined up. Next the complete boiler is lifted by one of the overhead cranes and placed in position, the boiler being bolted to the saddle. The tubes are then inserted and expanded. Then the driv ing wheels are put in place, or rather the boiier and frames are raised by the overhead cranes and lowered down upon the wheels, the journal boxes and the axles being guided in between the pedestals. At this poin the engine has the appearance shown in the upper left-hand cut on the front page. Meanwhile the various boiler fittings have been put in place and con nected up. The next step is the water test in which hydraulic pressure is applied at about 266 pounds to the square inch, the working pressure being 200 pound to the square inch. Then the water is removed from the boiler and it is tested with steam at 10 per cen in excess of the working steam pressure. The con necting rods, link motion, etc., are assembled, the valves are set and the eccentrics keyed to the main axle. Meanwhile the boiler is being lagged, the same pro tection being placed over the cylinders. By this time the locomotive presents the apparathee shown in the large cut at the bottom of the front page. The sheet iron jacketing is then placed over the boiler and cylin-
ders. Then follows the engine test, the boiler being connected to a stationary steam plant and the engine run under steam. After the painting and various finishing touches the locomotive is ready for shipment

The Testing Roon.-Before closing, a word should be said with regard to the testing department, the work of which may be said to lie at the very foundation of the excellence which characterizes the output of this establishment. All material that enters the works is subjected to both a chemical and physical test. Every delivery of plates is numbered, as is also every plate in each boiler. When a set of plates is being shipped, say from a mill at Pittsburg, a piece is previously cut from every plate and expressed to the Baldwin testing department, where it is tested. The rejected test pieces are sent to the shipping clerk, and as the plate shipment comes in, the corresponding plate is returned to the makers. The boiler plate is of open hearth steel, of a tensile strength of 60,000 pounds to the square inch, and it must show an elongation of 25 per cent in 8 inches. By the careful system adopted of numbering every plate in every boiler and keeping a record of the test on each batch of plates, it is pessibie, in case of a boiler explosion, to refer to the test and obtain full data regarding the plate.

It is interesting to notice, in closing, the great increase in weight and cost of locomotives that has taken place during the past twelve years. In 1890 the aver age weight of a locomotive was 100,000 pounds, and its average cost $\$ 8,000$. In 1902, the average weight is $1.50,000$ pounds, and the average cost $\$ 12,000$. the in1.0 in increase in having kept pace very closely with the labor and materials have risen very considerably in cost.

Imitation Meteorites

Genuine meteorites are curiosities highly prized by museums and scientific collectors. Prof. St. Meunier oi the Natural History Museum of Berlin, paid as much as $\$ 5$ per gramme for a meteorite. It is, there fore, conceivable that sharp practices should be re sorted to by dealers in scientific curiosities. A band of meteorite counterfeiters was recently captured and considerable evidence obtained of very curious and ingenious methods for seducing the gullible collector The members of this band were Corsicans. It was their practice to obtain natural rock resembling me teorites as closely as possible and then to burn them in order to produce the black crust which is one of the earmarks of every genuine meteorite. The pieces of rcck were coated with lampblack, dissolved in molten sulphur. It seems, however, that this method was so crude that the deception was easily discovered, and the men were forthwith arrested.

Paris is said to lead the world in the culture of city trees. The success of the French capital is due not so much to an admirable soil climate as to a well organized system of caring for the trees.

In large nurseries young trees are grown and prepared for the Parisian streets. The culture of the soil is elaborate. From the very beginning the trees are pruned and staked to compel a straight growth. By frequent transplanting the roots become so hardened that they are enabled to withstand injury due to transportation. When a tree is sufficiently large it is set out in the streets with the same care that was lavished upon it in the nursery. Often the cost of planting a single tree is $\$ 50$. Whenever a storm de stroys the city trees the nursery can be immediately drawn upon for another supply.

The Current supplement.

The current Supplenient, No. 1390, opens with an interesting article on the Ruins of St. Mark's Cam panile, giving some of the reasons of its fall. In a long and very complete article M. H. Dastre discusses the rôle of mosquitoes in the dissem ination of diseases. Another article of interest, is that of Mr. Otis Mason, upon the Harpoon-Foremost Among Savage Inventions, the first paper of which appears in this issue. The subject of Electrolytic Production of Metals, with Special Reference to Cop per and Nickel, is exhaustively treated by William Koehler, of Cleveland, Ohio. Among other articles of interest is one treating of Horned Lightning Arrost ers with Iron Framing; also a description of the Siemens and Halske Process for Purifying Drinking Water by Ozone. The usual Trade Notes and Recipes and Suggestions by United States Consuls are given.

Our attention has been called to a typographical error in the article on "A New Artificial Fuel," which appeared on page 92 of our issue of August 9. The statement is made that the calorific value of syn thetical coal is represented by " 1,300 degrees British thermal units." This should read " 13,500 British thermal units."

how golf clubs are made in large quantities.

 by day allen willeyThe increased love of out-door exercise in America is respunsible for several new industries which have already become so important as to give employment to a large force of workmen and represent the extensive in vestment of capital.
One of the industries which has had its inception in the United States only within the last few years is the making of golf clubs and balls. It is unnecessary to refer to the remarkable popularity of the game, and to-day one can find "golf courses" all the way from the Atlantic to the Pa cific. Organizations devoted to the pastime have been formed in every community of significance in the country, and the army of players is composed of residents of every State in the Union. During the two or three years following the in trounction of the sport, players depended principally on the British factories for the contents of their bags, and the cost of the imported outfit de-
terred many from enjoying a day on the course. American enterprise, however, was quick to note the opportunities to manufacture and sell this class of sporting goods, and some of the larger companies making bicycles, tennis racquets, roquet sets and base-ball clubs added a golf department. So extensive has the industry become that in the West as well as the East are plants employing over five hundred hands each, whose entire product is the golf club. It forms one of the principal industries of a town in Massachustetts, where one factory turns out a thousand clubs daily in the busy season. In spite of its apparently simple construction the golf club passes through an elaborate series of processes before it is ready for the market. It consists of two main parts, the shaft and head. As th former is usually of wood, materia is selected with a view not only to its hardness, but toughness; the best quality of hickory is preferred for the purpose, each tree being carefully examined in the forest before it is cut down. The wood comes to the factory sawed into

Roughing out a Wooden Head with a Saw.
of the requisite length. A simple form of turning lathe is used to round off or turn the shafts, but as yet no power device has been invented which will complete the shape, anci considerable labor is required with hand tools to work it down to the exact dimensions;

Hammering Steel Heads in the Blacksmith-Shop.
this operation necessitates long experience and a good eye to insure the proper tapering of the shaft. So particular is the manufacturer that sometimes 50 per cent of the sawed shafts may be rejected on account of some slight defect before unnoticed.
The next process is to join the shaft to the headanother operation requiring much skill, as a perfect fit must be insured to withstand the strain at the joint. Dogwood and persimmon are most extensively used for the wooden head. They come to the headmaker in blanks from the saw. A machine specially designed for the purpose cuts them down to a rough

Rounding a Shaft on a Lathe,

Finishing the Shafts with File and Sandpaper.
artisans of the old country have come to the United states to ply their trade, tempted by the higher scale of wages. One enterprising corporation has a colony of Scots at its New England factory. It is an interesting fact that the best workmen are players themselves, and skill in handling the clubs has given them a knowledge of the proper shape and "lay" of the clubs which they could not otherwise obtain.

THE BATTLESHIPS "CONNECTICUT"AND " LOUISIANA."

The two battleships for which Congress made provision by act of Congress of July 1 last, will be, when finished, the finest of their class in any navy. Steadily, season by season, the size of these great fighting machines has grown. To-day we have reached a displacement of 18,000 tons full laden, and there is no assurance that the next of the type won' that the next of the type won' be stin larger twelve month hence. Four million, two hundred and tweive thousand dollars seems a pretty large sum to pay for the hull and machinery of a fighting ship-especially when the guns, armor, miscellaneous equipment, and stores complete, when ready for sea will demand quite a couple of million demand quite a couple of million more. But the peace of the na tion calls for these safeguards and the welfare of every one of our rich ports demands this protection in time of war: it is treasure spent the better to guard still greater wealth.
Before a line of the present vessels was drawn the Board on Construction thoroughly dis-
cussed their essential features and, incidentally, settled for a long time to come many much-debated questions which had provoked differences of opinion for years back. Sheathing and coppering were disapproved; the extent and thickness of armor protection were in creased; the batteries were improved and better sheltered; torpedoes were relegated to other classes of vessels; the application of electrical motive force was considerably widened; and the coaling facilities (th bugbear of most vessels) were amplified vastly, while the ammunition supply, by the introduction of a very novel feature, was increased to a degree considerably in extent of possible rates of fire. The advantage of this, apart from a bountiful feed to the gun station, is the speed with which a ready supply can be brought up to the firing position within a short while

The general dimensions and features of the ships are: Length on load water-line 450 feet; breadth extreme at load water-line, 76 feet 10 inches; displacement on trial, not more than 16,000 tons; mean draft to bot tom of keel at trial displacement, 24 feet 6 inches;

Putting on the Grip.

Winding the Joint of the Head and Shatt.

THE MAKING OF A GOLF STICK.

cellular subdivisioning of the double bottom and the inner body. Some forty-odd of the water-tight doors and five of the armor gratings are to be closed by power from a central emergency station. These doors can be independently opened and closed by powerthe pressure of a button starting the work, and their action is sufficiently slow not to catch anyone in transit. The advantage of the system is obvious in case of accident. The freeboard, at the line of the main deck, is nearly 18 feet, and runs uniformly from bow to stern. This insures good sea-keeping qualities, the ability to work the main battery in any kind of fighting weather, and airy and commodious quarters for officers and enlisted men, besides plenty of room for the stowage of hammocks where they can be kept dry and well-aired-a feature vital to the health of the crew. The arrangement of the forward uppei bridge is somewhat novel, affording a very wide field of observation, while the glazed bronze housing or screen at the center will completely shelter the people at the wheel from driving spray. There will also be
a bronze chart house on the lower bridge deck (nonmagnetic) in which the standard binnacle will be kept free from the influence of steel work. The conning tower on these ships, which will be 9 inches thick, is tower on these ships, which will be 9 inches thick, is
located immediately below the upper bridge, a deck higher than neretofore. This insures a wider field of observation for the commanding officer in action. The armored tube from this tower to the protective deck is 6 inches thick. A signal tower, 6 inches in thickness, of steel, is located aft on the superstructure deck just abaft the mainmast
The hull is primarily protected by a broad water-line belt of armor 9 feet 3 inches wide throughout the range of maximum thickness and 8 feet wide thence to the bow and to the stern. Amidships, for a distance of 92 feet, this belt will be 11 inches thick. Thence forward and aft, respectively, for a distance of 93 feet, it will taper from 9 to 7 inches. The next run of 37 feet will range from 7 to 5 inches. For 34 feet fol lowing this the armor will be 5 inches thick, and thence to the bow and to the stern it will diminish to 4 inches. The sides immediately above the water-line belt as high as the gun deck and for a fore-and-aft distance of 28 feet will have armor 6 inches thick, while the space occupied by the 7 -inch guns on the gun deck will be protected by 7 inches of armor for a distance of 236 feet. Athwartship bulkheads at the ends of the thickest side armor will be 6 inches thick, and athwartship bulkheads at the ends of the lighter side and casemate armor will be respectively 6 and 7 inches thick. The protective deck, which extends from bow to stern, will be an inch and a half thick on the fiat over the engines and boiler spaces; on the slopes forward and aft it will be 5 inches thick A coffer dam 30 inches thick will be worked from en to end of the ships between the protective and the berth decks; and on the berth deck, forward and abaft the transverse armor respectively, there will be an other coffer dam of the same thickness, but only feet in height. The protection thus afforded the ends of the ships is pretty thorough.

The armament will be: Main battery-Four 12 -inch, eight 8 -inch, twelve 7 -inch breech-loading rifles. Sec ondary battery-Twenty 3 -inch, 14 -pounder rapid-fire guns, twelve 3 -pounder semi-automatic guns, six $1-$ pounder automatic guns, two 1-pounder semi-automatic guns, two 3 -inch field pieces, two machine guns of .30 caliber, six automatic guns of .30 caliber

The 12 -inch guns will be mounted in two elliptical balanced turrets, of the barbette type, with slanting fa-es. These turrets will have face plates 12 inches
 Armament : Four 12-1nch, elght 8 -iuch, twelve 7 -inch, twenty 3 -inch, twelve 3 -pounders, eighteen 1 -pounders and automatics. Complement : 801.
thick, the rest of the armor being 8 inches thick, with top plates of $21 / 2$ inches. The barbettes, which wil rise from the protective deck to about 4 feet above the main deck, will be generaily 10 inches thick, except to the rear of the transverse bulkheads, where it will be $71 / 2$ inches thick. These turrets will turn through arcs of 270 degrees, and be under complete electrical control, as will also be their hoists and their loading and training mechanisms. The 8 -inch guns, also mounted in pairs, will be placed in four turrets of the same type, on the main deck, at the corners of the superstructure. The 8 -inch turrets will have front plates of $61 / 2$ inches, and a general thickness elsewhere of 6 inches. Their barbettes will be 6 inches thick where exposed and 4 inches thick at the rear. The tubes leading below to the protective deck will range trom $33 / 4$ to 3 inches thick for the lower half. The top plates will be 2 inches thick. These turrets, also under eiectrical control, will swing throngh arcs of 120 de grees. The 7 -inch guns will be mounted in two broadsides on the gun deck and protected by continuous armor 7 inches thick and stout shields 3 inches thick. The guns will be on pedestal mounts, and the re-enter ing ports will admit of stowing the guns within the? line of the side armor, the advantages of which are plain in rough weather and while lying at a dock The ares of fire of these pieces will be 135 degrees, and the forward and the after gun on each broadside will be able to fire directly ahead and directly astern, respectively, thus giving a bow or stern fire of two 12 s , four 8 s and two 7 s from the main battery. The 14 -pounders will be variously distributed. There will be one on each bow forward on the gun deck, two on each quarter aft on the same deck, three in a bunch amidships on the main deck, and the rest on the ham mock berthing fore and aft on the superstructure deck. Where mounted on the main deck and the gun decks, they will be protected by local armor, 2 inches thick, of nickel steel. The 7 -inch guns are separated one from the other by splinter bulkheads of nickel steel 2 inches thick.
The 3 -pounders are mounted on the tops of the tur rets and on the superstructure deck and bridges, while the smaller pieces are placed in the fighting tops. All of these guns have wide arcs of fire and are placed where they can best do their prime work of repelling torpedo-boats, both surface and submarine, and of attacking an enemy's light armor and unprotected part. and open gun-stations.
The ammunition and shell rooms are so arranged that about one-half the total supply will be carried at each enil of the ship. The allowance is a very libera ne, amounting to nearly 600 tons. The ammunition tor the 7 -inch and smaller rapid-fire guns will be conveyed by hoists directiy from the ammunition rooms or passages to the deck on which required, or as nea that as possible. These hoists will be driven at a constant speed by an electric motor and will be ar ranged to deliver seven pieces per hoist a minute The 7 -inch guns will have a hoist apiece. For the 3 -inch there will be fourteen hoists, and for the 3 and 1 -pounders there will be combined hoists. To suppiy the -inch hoists there will be four ammunition coll veyors, operated electrically, fitted in the passages and running directly from the handling rooms to the base of the hoists. These conveyor's are really traveling sidewalks, and all the men have to do is to pass thern from the door to the moving platform, and the platorm delivers them wherever needed. This is an es sentially novel feature, and will completely revolu tionize the rate of delivery heretofore attained any where. The turret guns have regular ammunition hoists operatet by electricity and leading directly from the handling
he turrets
A comparison between the batteries of these ships and the British battleship "Commonwealth," rates of fire and muzzle energies being duly considered, show the "Connecticut" and "Louisiana" to be distinctly su perior.
The propelling engines will be vertical, twin-screw 4-cylinder, triple-expansion engines, having cylinders of $32.5,53,61,61$ inches in diameter, with a common stroke of 4 feet, and a speed of 120 turns a minute at 18 knots. These engines will be in two separate watertight compartments. Steam at a working pressure of 250 pounds will be supplied by twelve water-tube boilers of the Babcock \& Wilcox pattern, and they will have a total grate surface of not less than 1,100 square feet and a total heating surface of 46,750 square feet. Forced draught will be on the closed ash-pit plan with a pressure of 1 inch of water. The three funnels will be 100 feet above the keel line. Feed-water will be carried in the double bottom. The refrigerating plant will be equal to the cooling effect of a daily output of three tons of ice. This plant will be of the.dense-air type and will have leads to the magazines for use in case of a dangerous rise of temperature therein. The evaporating plant, of not less than four units, will lave a daily output of 16,500 gallons of fresh water, and the distilling apparatus will have a diurnal capacity of 10,000 of drinking water. All of the ven-
tilating blowers will be driven by electricity-those for forced draught by steam. There will be a laundry a mechanical bread-mixer and a special bakery plant apart from the regular ship's galleys.
The electrical generating plant will consist of eight 100 -kilowatt steam-driven generating sets, ail to be of 125 volts pressure at the terminals. There will be siy electrically driven generators for supplying power to turret turning motors. The ship will carry six searchlights of 30 -inch pattern, and there will be no fewer than 1,100 electric light fixtures otherwise, besides truck-lights, signal lamps and a number of diving lamps. There will be six portable ventilating sets of $1 / 4$ horse power and forty-five $1-12$ horse power desk and bracket fans, and eight 1-6 horse power bracket fans. These, with the thirty-three large blowers, will be able to keep up a pretty comfortable circulation of fresh air. All boat cranes, anchor cranes, deck winches, ash hoists and tools in the machine shop will be driven by electricity

Wood will be reduced to a minimum, and all of it with the exceptions of decks exposed to weather and some few articles of furniture, will be fireproofed. As bestos sheathing and mill board will cover the outer hull plating in living spaces; and metal ceiling will be fitted to the outer hull in all living quarters not sheatned with non-conducting material. Quarters will be provided for an admiral, his chief of staff, the com-

A WATER-WHEEL DRIVEN BY A FLOWING WELL.
manding officer, nineteen wardroom officers, ninetee junior officers and ten warrant officers.
The ships will carry twenty boats, including two 36 -foot steam cutters and a fine 50 -foot picket launch, which will be especially useful for shore communica ion and in going from ship to ship in rough weathe and also in convoying landing parties.
The coaling arrangements will be quite unique. They will consist of six electrically-driven deck winches and a dozen booms-six on each side, together with all necessary fixed chutes, etc. The booms will be so placed that three can be worked to a barge, and it will be possible to coal from four barges at a time -two on each side. Some of the working gear will be automatic. It is not possible to tell now just what the rate of coaling will be but it is manifestly sure to be much more rapid than any present system
The nation is to be congratulated upon the promise of these ships; and Chief Constructor F. T. Bowles ha marked the first ships designed under his administra tion of the Bureau of Construction and Repair with a stamp of distinct advance over anything yet turned out by the department, and every contributive burea has lent its best efforts within its province.

POWER FROM AN ARTESIAN WELL.

Our engraving shows perhaps the only power water wheel in America driven by an artesian well. It is at St. Augustine, Florida, and supplies power to a woodworking shop. The wheel is 16 feet in diameter, the well $61 / 2$ inches and 240 feet deep. Since the well doe not supply power enough, however, a second well has been driven nearby to reinforce the present one. The new well is 8 inches in diameter. The contractor first drove an 8 -inch iron tube about 150 feet through the sand, when he struck bedrock. On drilling into this some 50 feet, water overflowed in considerable quantity, but it was not until he penetrated quite through the rock strata (about 100 feet thick) that the well gave a normal volume of water

The Navy Department has decided for experimental purposes to equip the torpedo boat "Rogers" for the use of oil fuel

Engineering Notes.

It is said that by June, 1903, the Tehuantepec Rail road, across the isthmus of that name in Mexico, will compete with the Panama route and the American overland lines for a share of the shipments between the Atlantic seaboard and the Pacific coast.
The aggregate tonnage of launches on the Clyde dur ing. the month of May constituted a record which has only been twice before exceeded in the whole history of Clyde shipbuilding. Twenty-three steamers were launched, of a total of 54,960 tons; three large saiiing ships, totaling 5,676 tons; two steam yachts, of a total of 465 tons, and six sailing yachts of an aggregate of 135 tons. The shipbuilding industry on the Clyde is remarkably prosperous at the present time, and not withstanding the above abnormal output of new vessels the berths are filled up with fresh orders amounting to about 50,000 tons.
The British government has been requested to sanction the construction of an important railroad from Berbera, on the North Somali coast, to a spot adjoining Harrar, just inside the Abyssinian frontier, to provide rapid communication between the latter country and the sea. Thie distance is about 220 miles. The rail road is to be a lightly built one, and will cost $\$ 3,750,000$ to construct, unless the promoters follow a route over the formidable Harrar escarpment. On this outlay the government is asked to guarantee a return of 3 per cent-a relatively small sum. The Emperor Menelik favors the construction of the line, which would tap the trade of a most wealthy district and afford an easy and direct route for the conveyance of British manu facturers into Abyssinia, in which country there is a heavy demand for such goods.
Owing to the extensive and frequent bucklings that have recently occurred upon several of the torpedo boats of the British navy, the English Admiralty propose carrying out a series of severe experiments to ascertain the amount of "hogging" and "sagging" strains the torpedo boat will withstand. The inability of this type of craft to stand the varying strains im posed upon them by wave action, especially in rough seas, is attributed to structural weakness. The Ad miralty are preparing one of the drydocks at Ports mouth specially for the tests, which are to be carried out on the torpedo destroyer "Wolf." The vessel will first be "sagged" by being suspended by the head and the stern only from two platforms, one at each end, all support being removed from beneath the middle portion of the ship. She will be "hogged" by being balanced in the center of her length across a pile of timber, so that the full weight of the vessel is thrown fore and aft. By means of these experiments the Admiralty anticipate obtaining reliable and conclu sive evidence as to whether, as is generally contended by marine experts, a destroyer's hull is so weak that her back will break when she is lifted by the sea fore and aft in such a manner that there is a wave hollow beneath her center, or when a wave lifts her amidships, leaving stem and stern unsupported.
Engineering says that the Cunard Steamship Com pany is with characteristic caution considering the question of 24 -knot ocean liners in all its bearings. Hitherto the company has merely asked three firms, Vickers Sons \& Maxim, of Barrow; the Fairfield Ship building Company, of the Clyde, and Messrs. Brown to submit three alternative designs for a vessel 700 feet long and with speeds of 24,23 and 18 knots an hour, along with an estimate of the first cost and information regarding crew and coal expenditure. In this way the company raised the whole question of whether the game was worth the candle. The "Campania" and "Lucania," of 12,500 tons burden, to make 22 knots speed developed 28,000 indicated horse power. To make 23 knots would necessitate a larger and more costly ship, besides an additional 8,000 indicated horse power; while to make 24 knots it is estimated that a ship would require 48,000 indicated horse power. It would thus come about that to add two nautical miles to the hourly speed would mean an additional 290 tons of coal to be consumed daily. This would mean a consumption of 750 tons per day, or 1.3 tons per mile steamed. Engineering points out that an 18 -knot steamship would consume less than half this amount of coal per day, whiie the expenditure in wages and engineering would be corre spondingly lessened. It remarks, futhermore, that such a vessel could profitably carry a large cargo, a her machinery would require only half the weight and space of the swifter vessels. It does not pay to take a cargo at a high speed. On the other hand, there is the opportunity of securing higher passenge rates Many Americans insist on traveling on fast ships. There is also the factor of larger Admiralty subventions made justifiable by the ships being an addition to the resources of the country in time of war. It is stated that in consequence of the efforts of the American syndicate controlling the Dominion Line of steamers to capture the Boston trade the Cunard Line has decided to build a new ship to strengthen its traffic with that port.

MOTOR-PACED RACE ON a cycle whirl. Encouraged by the success which attended the presentation of the first cycle whirl, in which cyclists competed with each other on a circular track small enough to be placed on an ordinary theater stage, it occurred to one of the leading ex ponents of bicycle rac ing that a cycle whir constructed for motor paced racing would be equally popular. Of course this involved a much higher rate of speed, greater strains on the structure, and a considerably greater risk. The circular track of the first cycle whirl had a pitch of somewhere in the neighborhood of 45 degrees; but with the higher speeds necessary with motor cycles it was necessary to raise the pitch from 45 de grees to 60 degrees, and the new track, which looks for all the world as will be noticed from the engraving, like a
circular fence, was built with the slats inclined only 30 degrees from the vertical
In determining the proper pitch of one of these whirls, the elements to be taken into account are the speed, the curvature and the resulting centrifugal force. When the motors with the racing contestants are speeding at a rate of from twenty to thirty miles an hour around a track, the centrifugal force tending to throw the weight to the out side of the circle has to be counteracted by inclining the rider and his wheel at such an angle to the inside of the circle that the pull of gravity downward shall, as closely as possible, equilibriate the pull of centrifugal force to the outside of the circle. The resultant of the equilibrium will be a force acting normally to the surface of the track. Theoretically it would be possible to run a wheel at sev-enty-five or a hundred miles an hour around a track of the size shown in our illustration. Of course, the track in this case would have to be almost perpendicular, and the wheels would have to be built up of exceptional strength; for it will be readily understood that the resultant of gravity and centrifugal force acting normally to the track through the wheels, would exert a pressure on the track much greater than that which is due to the weight of the rider and his wheel when he is traveling on level ground. In the so-called race which is herewith illustrated, the woman rider invariably won the event. All that she had to do in passing her opponent was to run down to the lower edge. of the track, where, of course, she was covering much less distance in eack lap than her opponent who was riding on a circle of larger diameter. Great care had to be taken in the selection of the material and in the construction of the track. It was strongly braced with iron and securely bolted at every

Copyrigat Intix by Barnett Bros.

MOTOR-PACED RACE ON A CYCLE WHIRL

Inclination of track only 30 degrees from the vertical.
intersection of the slats with the circular frame Judging from the speed that was accomplished, the track must have presented less friction than one would suspect. The effect produced when the four riders were moving at full speed was most interesting. They appeared at times to be standing out almost

BURNING OIL GUSHER, JENNINGS, LA
Struck by lightning July 15 ; extinguished July 22 by streams of steam and water from a dozcon boilers.
horizontally from the slats; and the whole exhibition was an ex cellent object lesson in practical mechanics

BURNING OIL GUSHER in LOUISIANA.

There is all the dif ference in the world between the burning of an oil tank, an incident which is familiar the world over, by reason of the many photo igraphic reproductions of such a sight and the stupendous conflagra tions shown in our ac companying illustra tion of a burning oil gusher. The rapidity of the combustion of a burning oil tank is lim ited by reason of the fact that combustion can take place only on the surface of the oil and even then it is gov erned by the amount of oxygen that can rush in from the surround ing atmosphere to feer the fire. It is a slow process that takes many hours to com plete. In the case of a lurning oil gusher however, the oil has been thrown into the air to height of a hundred feet or more and at the rate of from 50,000 to 150,000 gallons per day. As it rises the resistance of the atmosphere causes the oil to break into a far-spreading spray, and this sub division enables the oxygen of the air to mingle with he burning mass and pro duce the enormous conflit gration shown in our engrav ing. This gu her was struck by lightning on July 15 and ignited. The fire burned with extraordinary fierce ness for seven days and nights. It was only extin guished after streams of steam and water from no less than a clozen boilers which had been gathered at the well, were concentrated on the fire.

Prof. Bohuslav Brauner contributes to a recent number of the Journal of the Russian Physical and Chemical Society a paper on the position of the rare earths in Mendeléeff's periodic system of elements After mentioning his ex perimental and theoretical work concerning the elements lanthanum, cerium praseodymium, neodymium, thorium, etc., the author discusses the position of these elements in the periodic system, and the four different ways in which it may be attempted to place them in it. With Mr. Steele, of Melbourne, he comes to the conclusion that this group of elements repre sents a sort of node in the periodic system, between cerium and an unknown element which has the atomic weight of 180 . This interperiodic group is a continuation of the eighth series, which ends with the platinum elements; gold appears in such case as the first member of the ninth series, and not of the eleventh. In the twelfth series the first members are, probably, radium, thorium and uranum. 'thes addition seems, in Mendeleeff's opinion, to deserve serious attention.
recently patented inventions. Agricultural Implements.
RAKE.-A. S. Elliott, Mechanisville, Iowa. This rake is specially adapted for use in
gathering cut stalks, which lay in windrows, gathering cut stalks, which lay in windrows,
into shocks, preparatory to burning or otherise disposing of the stalks. The inventio head in which the teeth are clamped against wossible endwise or lateral displacement.
Cl'LTIVATOR.-W. F. Cahoon, Sumrall, Iiss. The cultivator embodies an improved ion with the frame in such manner connec an be adjusted to throw to or from the lant, as may be desired. The teeth may be adjusted independently of each other and the soil before it is shoved up to the plant.

Apparatus for Special Purposes

STEAM-HEATING SYSTEM.-W. E. Roys Richmond IIill. N. Y. This is a gravity steamheating system and it is so arranged that the om any radiator in the system to insure roper heating of rooms to a predetermined de water of condensation to the steam generato
arParatus for defechating Liquids ... R. Hatrox, Santo Domingo city. Santo huids, such as cane juices, and the construe tion is of such character that the work done will be automatic. thorough and continuous, Means are also provided for regulating and
maintaining a uniformity of heat while the work is in progress. and also to regulate the alkalization of the liquid.
SOOT-CLEANER FOR sTEAM-boIleRS ichelberger has designed an improved soot leaner for steam-boilers, whereby the deposit of carbon or soot on the interior surfaces of
the boiler will be removed by the pressure of gaseous fluids, such as steam or air, and the an ash-pit or any other place.
AR-COOLING URYING
AIR-COOLING, DRYING AND PURIFYING arfaratus.- W. L. Moore. Washington or cooling. drying and purifying the air in buildings and other places, and for keeping meats, produce or anything that requires low temperature. The air is passed through metal pipes which are surrounded by melting ice and hloride of sodium. chlorid of calcium, or other and as the air passes through these pipes, it is nd aused to lose more of its heat and finally by gravity to be discharged through the bottom of the apparatus
RETORT FOR WOOD DISTILLATION.W. B. Chapman. Boyne City, Mich. The retort and the setting for the same are adapted for usse more particularly in wood distillation. for
the production of wood-alcohol, charcoal and other by prodicts. The retort consists of corsuitable points along its metal anchorer at suitable points along its length, which buckling or curving sidewise. more or less, all destructive strains
rernace for retorts.-W. b. Chapmax. Boyne City, Mich. The invention relates to a novel form of furnace and furnace setting for retorts, especially such as are used in the distillation of wood to produce wood-a lcohol. The construction enables the use of solid fuel, ing is obtained at much less cost and the furing is obtained at much less cost and the furcannot be obtained.
I'ILP-ShPARATOR. - J. K. Mclaughlin (1) the manufacture of wood pulp by the sul phid process and provides an improved separator for pulp mills which is arranged to insure a quick and th
from the acid.

Electrical Apparatu

Circuit-closer.-D. F. Mulkey. Soddy. Tenn. This improved circuit-closer is particulayly adapted for burglar alarm systems in
banks, hotels, residences. etc. The circuitupon it, or it may be operated by the opening upon it, or it may be operated by the opening
of a door or window. COMPOSITION FOR LSE IN SECONDARY yatt Street. Clerkenwell, London, England Mr. Oppermann is the inventor of improve ments in secondary batteries which increase the efficiency and durability of the battery by rendering the active material harder and less liable to disintegration and insuring more so as to avoid buckling of the plates.

> Enginerring Improvements. $\underset{\text { Romb, Oroville, Wash. This current-motor }}{ }$ is adapted to convert the energy of a flowing stream into reciprocating or rotary motion for
driving a pump or other mechanism. The motor can be used in shallow streams as well as in streams of considerable depth, and all whereby they may be easily adjusted by the Whereby ther
mechanic.

nUt-Lock.-Frank Hart, Newcastle, P

 This improved nut-lock is applicable to classes of machinery wherein it is desiredlock a nut from turning. The device consist of a washer having flanges adapted to engage the side faces of the nut and anchor
which prevent the washer from turning. HAND DOWELING-GAGE - J
New York, N. Y. This gage is particularly useful in building frames of doors, window and the like, and insures the boring of hole with extreme rapidity and absolute accuracy The instrument may be readily adjusted to work of all sizes, and may, therefore, be foun COUPLING FOR CABLES, ROPES, ETC. T. Darling, Marietta, Ohio. The inventio rovides a simple construction for couplin plied or removed. In well-drilling machinery the operating engine is often located remote from the scene of operations and an intermediate cable is employed. The attachment of lengths to several parts or the union of lengths of the cable must be performed his may be done with M. Darling's impreve this may
coupling.

Machines and Mechanical Devices.

Mortising-machine.-C. J. Seaquest Silverlake, Wash. Mr. Seaquest in this in vention provides a handy tool for woodwork is of simple construction and may be actuated by hand in a very easy manner to accurately form mortises in woodwork
altomatic grain weigiler.-. A. and J. H. Mcleod. Marietta, Kans. The grain
weigher belongs to that class in which the grain is received in a stationary hopper and discharged therefrom into a movable weighing hopper so connected with the graduated weighing machine as to tilt the same when duly
filled, whereupon the gate of the hopper is opened to allow discharge of its contents. The mprovements lie in the receiving hopper and weighing hopper and means for cutting off the discharge of grain into the latter. new construction is also provided in the gates of the weighing hopper and in the means for recording the weight of the grain.
COMBINED CORN COOKING AND CAN , aston, MACHAN. - L. S. Caston, Md. Mr. Fleckenstein has provided
by this invention an improved machine by this invention an improved machine for
cooking corn and canning the same. This machine is distinguished by its simplicity of construction. economy of manufacture and ease and efficiency of operation.
MACHINE FOR CUTTING VEGETABLE ROOTS.-H. Weeb, Ashton, Mich. The chief or distinguishing feature of this improved ap-
, aratus for cutting vegetable roots lies in paratus for cutting vegetable roots lies in
the employment of a hollow, rotary drum, having an eccentric portion and a series of in a peculiar manner, whereby great advanare attained.
MaChine for handling vehicles.G. E. and J. S. Miers, St. Joseph, Mo. These inventors employ two trucks of peculiar con-
struction and two inclined rails for said trucks whereby the wheels of a vehicle may be raised from the ground by merely backing the vehicle onto the trucks. The vehicle is automatically released from the trucks in pull-
ing it off the same, and the trucks are left in position for jacking up another without re quiring any special manipulation.
PHOTOGRAPHIC SHCTTER.-W. F. Fol Mer, New York, N. Y. Through an especia automatically diminishes as it reaches the sky line, giving the foreground greater exposure rately controlled from the interior of the box and means are provided for setting the ex scale upon the focusing glass.

Railvay Improvements

Rail-joint.-C. C. Osenbaugh and R. L Gibson, Remington, Penn. These inventors
provide an improved joint for joining railway provide an improved joint for joining railway
rails, bridge trusses and the like. The joint out the use of bolts and nuts, and will permit wut the use of bolts and nuts, and will permit
the expansion and contraction of the rails without danger of buckling.

Vehicles and Their Accessories.
Winerl.-A. A. Vembi., 179 George Street Glasgow. Scotland. The invention applies to wheels adapted for carriages of various de
scriptions and cycles, but may also be used for scriptions and cycles. but may also be used for
other purposes. It is more especially other purposes. It is more especially an
improvement in that class of wheels in which some form of spring is interposed between the center or hub, and the spokes that extend the rim or felle.s.
gion. Ind Thin.-I. W. Simmons. Bloom justed to protect the occupant of a velicle from stormy weather, and is so arrangery that
it may be fastencd back, when not reguired for nse. in such a manner as not to interfere
with the lowering of the top. The curtain
will also yield to the movenents will also yield to the movemen
when the vehicle is in mation

Miscellaneous Inventions.
Stove.-W. Heuermann, Sedalia, Mo. Th ingention provides improved means for forc-
ing the circulation of the products of combustion in order to secure the maximum heating in a novel construction and combination parts.
Stovepipe-holder.-J. S. Rhodes. East Las Vegas. New Mexico Ty. The stovepipe holder is adjustable in its parts so as to adapt ion to stovepipes of different diameters, and also enable its hooked engagement with chim ney walls of different thicknesses. whereby to lamp and hold the pipe in an aperture in the chimney wall and
folntain-pen.--it. C. pane. Bethel. n. and continuous flow of ink to the pen point and will automatically drain the pen point of all ink when the pen is held with the point upward. When the cap is screwed on, no leakge can take place, even though the pen be he carried point downward
composition for cleaning and pre SERVING Metals.-W. C. Oberwalder, New York, N. Y. By means of this invention silver or other metals may not only be thoroughly other accumulations adhering thereto. but the effectively prevented.
WHEELBARROW
Hosken, Covington, Ky. The wheelbarrow adapted for use in carrying articles of diffe ent sizes such as milk cans, barrels. stoves, et The handles are adjustable toward and from ach other for the purpose of accommodating hem to the different sizes of articles to be вотт
Tork, N. Y. The nipple comprises a non-col apsible mouthpiece, so that the opening ir duct through it cannot become closed by bottle. The mouthpiece is oval in cross-sertion. adapting it for the child's mouth. and it is given a proper degree of elasticity
FOLDABLE STOOL.- 1 '. R. Anton. Topeka,
Kan. By this invention Mr. Anton provides stool of novel construction which will afford a strong, light and comfortable seat when adasted for use and which may be folded into
very compact package for storage or trans portation
STiRhip-stieai--L. P. Wellatan, West New York, N. J. stirrup-straps as usually
employed are made of leather, and in use the strap is doubled and hung on the saddle with the buckle end, forming a thick, unsightly bunch. The purpose of this invention is to overcome this fault by providing single straps, preferably made of metal in hinged sections. The lower portion of this strap holds the an angle to the side of the animal.
SaCK-race structure-J. J. Wegner, Brooklyn. N. Y. This invention provides new amusement in which cars appearing to
carry sacks are adapted to travel up and carry sacks are adapted to travel up and
down undulating tracks. The sack sections, which contain passengers, are pivotally mounted in the cars and are spring-controlled in two opposite directions, enabling the occu-
pants by enegetic movements of their bodies pants by enegetic movements of their bodies
to add to the velocity of the cars to a greater to add to the velocity of the cars to a greater or less extent. This, if two adjacent tracks are provided, will permit parties traveling on
one track to race with others moving upo one track to race
an adjoining track.
FUNEL
FCNNEL.-J. de St. Legier, Hicksville, that the straining member may be quickly and conveniently secured in a straining position in the body of the funnel, and as readily se
cured when desired in a position which will cured when desired in a position which will
leave unobstructed communication between the leave unobstructed communica
body and neck of the funnel.
SMOKL-CONSLMER.-W. T. Keogh. New
York, N. Y. This smoke-consumer belongs to the type in which steam is used. The con
struction is ve:y simple and efficient and doe not contain any part which will readily be burned out. The smoke-consumer has also the advantage that it can be readily applied to machinery now in operation with compara
tively few structural changes, tively few structural changes.
meastring idevicte- Chastian Chris Thasix. Lscanaba, Mich. This device is more
particularly designed for use of opticians and eye specialists to fit spectacles and eyeglasse by obtaining accurately the necessary measure ments such as pupilary distance. temple dis
tance. height or depth of the nose angle of the nosepiece. length of the temple, and width at the base of the nose-thus insuring prope fitting of the eyeglasses or spectacles to a Sthetciler. - ${ }^{2}$. X. Aigner. Jersey City, N. J. This sectional stretcher is so conbeneath a patient and the patient laid upon bed without being turned or unduly jarred
when the stretcher is removed. The construc tion is very simple, and the stretcher may be Note.- Copies of any of these patents will be Pruished by Mumn \& Co. for ten rents each.
Please state the name of the patentee, title of Please state the name of the patente

Business and Personal WUants.

Marine Iron Works. Chicago. Catalogue fre

Thnuwry No. 3032.- For the manufacturers of the
J. S. Mundy, Newark, N. J.

Inquiry No. 3033.-For makers of Edison's pat
ont steel. tal Polish. Indianapolis. Sa Inquiry No. 3034.-For makers of aluminium to Water wheels. Alcott \& Co.. Mt. Holly, N. J. Inquiry Nob 3035.-For machinery for making
spools and bobbins for factories. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St., Inqu
rchatdise vending slot machines. Gene
Inquiry No. 3037.-For machinery for making Sawmill machinery and outits man
Lane Mfg. Co.. Box 13, Montpelier, vt.
Inguiry No. 3038.-For an attachment for a sta-
tionary boiler to use crude or other oils as fuel instead
of coal.
Die work, experımental work and novelt ies manlu
tured. American Hardware Mfg. Co.,ottawa, Ill.
Inquiry No. 3039.-For an oil burner for cooking
and heating purposes.
We design and build special and automatic machinery
for all purposes. The Amstutz-Osborn Company, Cleve-
Inquiry
mixing and botiling medicine.
Special and Automatic Machines built to drawings on
contract. The Garvin Machine Co., 149 Varick, cor.
Inquiry No. 3041.-For makers of burners for
crude perroleum to be fitted to a small, horizontal
steam boiler. tham bor.
IDEAS Leveloped.-Designing, draughting machine
work for inventors and Hudson Street, New York
Inquiry No. 3042.-For makers of small brass or
iron castings, such as curtain fixtures, etc.
Tools for sheet metal stamping, metal patterns, gear
cutting and light machine work. Racine Machine and cutting and light machine work. Racine Machine and
Inquiry No. 3043.-For fiat coil sprıngs, such as
are in spring tape measuras or small clocks.
Patenteed inventors will hear of sometbing to their
interest by addressing the Universal Inventors' Union, 846 Ninth A venue, New York.
Inquiry No. 3044.-For cioth such as is used for
tape measures.
Manufacturers of patent articles, dies, stamping
ools. light machinery. Quadriga Manufacturing Com pany, 18 South Canal Street, Chicago.
Inquiry No. $\mathbf{3 0 4 5}$.-For stamped sheet metal
goods, sueh as match boxes, etc. The celeirated "Hornsby-A kroyd" Pateut Safety Oil Engine is built by the De La Vergne Refrigerating Ma-
chine Company. Foot of East 138 s th Street, New York. Inquiry No. 3046.-For parties to manufacture
a soap-bolding device.
The best book for electriciaus and beginuers in elec-
tricity is " Experimental Science," by Geo. M. Hopkins. By mail, $\$ 4$. Munn \& Co., publishers. 361 Broadway, N.Y Inquiry No. 3047.-For a dish-washing machine
for asmall household.
wantein.-Second-hand screw cutting lathe. Second hand electric motor, half horse power, alternating cur-
rent. 104 volts, 60 cycles. W. A. Cornell, Pleasantville Station, N. Y.
Inquiry No. 3048.-For manufacturers of paper-
making machinery.
Foreman boiler Maker Wanted. - First-class
man wanted for a modern shop building marine and man wanted for a modern shop building marine and
stationary boilers, and doing boiler and iron ship re p:irs. Appitcants will please state age, experience,
nationaity, and give names of previous employers. This is a good position Inquiry No. 3
Inquiry No. 3049.-For manufacturers of wood-
ngraving machines. Send for new and complete catalogue of Scientittc
and other Books for sale by Munn \&Co., 361 Broad way Free on application.
Inquiry No. 3050.-For the address af the Rich
ard Machine and Tool Co. Wanted -Capital to develop an invention in mitinin rate. Immense field for business. A fortune to th Inquiry No. 3051.- For dealers in copper tubing Inquiry No. 305s.-For dealers in small meta
tubing, also makers of rubber corks. Iuquiry No. 3053.-For makers of presses for
ressing and punching paper to be used on flower bou-
uets. Inquiry No. 30554.-For small wheels of special
dimensions for
fevolving-top tables. Inquiry No. 30.5.5.-For a spring motur similar to
clockwork to run a sewing machine or a small boat. Inquiry No. 3056.-For machinery for calcimin
ing in several colors.
Inquiry No. $\mathbf{3 0 . 5 \%}$. For parties to manufacture
brass articles, such as nuts, bolts, etc.
Inquiry No. 30.38.-For dealers in machinery and
Inquiry No. 30.59.-For ice-making machinery.
Inquiry
oda water.
Inquiry No. 3061.-For makers of whams.
Inquiry No. 3062.-For parties that make models
for small machines and apparatus.
Inguiry No. 3063.- For manu facturers of shont.
ing galleries, mechanical or otherwise.
Tanuiry No. 3064.-For parties to manufacture
wooden novelties.
Tonin.

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending August 12，1902，
AND EACH BEARINGTHAT DATE． ［See note at end of list about copies of these patents．］

 Advertising device，W．D．Butt．．．．．．．．．．．．．
Advertising match
ter，combined，box and cigar tip

 Bottle stopper，A．Bumer．
Bottle stopper，
Box Solint，B．A．Lenwerin
B．

 Clock，electric，H．Gillette．
Clothes drainer，H．Blenki
Clutch，frrition，E．Huber．
Coaster brake，
Coating one one metal with aner．．．

 Crate，R．DeWright．Schrok．
Crate，Poiding
Cream separator，J．Selther．

： 7.060^{2068}

706,76 706,55 706,90 706,58 70,80

706,911 706,51 706,91 706,6 706,69 706

706,683
706,763
708,628

7，044
6,921
06,953

畜譬U！

706，872 $\left\lvert\, \begin{aligned} & \text { Knitting } \\ & \text { circular，J．J．F．} \\ & \text { machine } \\ & \text { Bard．．．．．．．．．．．．．．．．．．．．}\end{aligned}\right.$

706，811	
706,937	Kn
7068	

circular，J．F．Bard Knitting machine stop Label with metal fasteni

706，509

sis
sis

．
didineO

in－
$\cdots 706$
ard 706
家：：：：
706,711
706,733

, molid$\ldots . . .$.
Sette
Van Als：

Sining manching tanho Fotat Hoghand

TRADE MARKS

 aniest Enichir Bainimb

 in Bown IIt Heleinike

 mulus tor rheumatism and oner simiil

LABELS

PRINTS.

Canadian patents, may now bo otatineo by the in in

The Perfection of Pipe Threading

A. Mrioner

...Upright Drills.
 W. F. \& JOHN BARNES CO. 1999 Ruby Stabished 18 Roz

Löbel.L's Jahresberichte über die
Veranderungen und Fortschritte im
im Militärwesen. XXVIII. Jahrgang. Mitwirkung zahlreicher Offiziere herausgegeben von v. Pelet-Nareonne, Generalleutnant z. D. Mit Obersten Bildniss des verstorbenen im Text. Berlin: E. S. Mittler \& Sohn.
The last annual volume of von Lübell's Jal the tate coars as a frontispiece a portrat these famous annual military reports. Of par
icular importance among the many subject discussed in the volume are the military oper
ations of the allied forces in the Far East The first part of the report is devoted to the vear of the armies of Europe and the United
vates. The second part of the book is devoted to the discussion of military subject
among which may be mentioned cavalry an mfantry tactics, field ordnance, scouting ser
ice, etc. Make, Test and Repair Them. By
F. E. Powell. Fully illustrated. London: Dawbarn \& Ward, Ltd.
Pp. 76. This little book is intended for those who
ve sufficient elementary knowledge of ele have sufficient elementary knowledge of elec
rical engineering. and who wish to try their
and hand at the designing and building of sma dynamos or motors. The work ought to pre-
sent no difficulty to the amateur of average intelligence who takes a lively interest in the sub
ject and has some slight grasp of draftsman ship in addition to constructive talent
 Price 50 cents.
M. Néculéa's monograph is devoted to discussion of the phenomena of double electri
refraction, which was first discovered by Ker
in 187.. The particular phenomenon which
. M. Néculéa describes must be distinguished
m.
from the phenomenon of double electric raction, with which Mr. Kerr also acquainte nomenon the present work has nothing what
ever to do. So far as the first is concerned its existence has been considered doubtful. fo
the conditions under which it has been studie in the experiments made by Kerr. Roentgen.
Quincke and Brongersna never seemed sufficiently conclusive to many scientists to decid direct effect. due to dielectric causes, or simply
a secondary effect resulting from the heatin of solid or liquid dielectrics. In the opinio
of the author. Kerr's phenomenon has a mos decided existence-an existence which he has
proven by a very earnest and thorough dis cussion. An excellent bibliography accom-

Workshop Wrinkles for Decorators Painters. Etc. Edited by William Norman Brown. London: Scott
Greenwood \& Co. New York: D Greenwood \& Co. New York: D
Van Nostrand Company. 1901. 16 mo Pp. xv-127. Price $\$ 1$.
This is a little book that should be of servic where often a certain job must be done in hurr. and no one knows exactly how to do it
The subjects treated are "Decorating," "Paint."
Iraper Hanging." "Waterproofing," "Varnishng." etc. Since the information is arrange
alphabetically under heads. it can be easily re The Story of Creation. By Gibson C Andrews. Greenville, Va. 1900 Pp. 232.
 Vincent. Translated by M. J. Salter London: Scott. Greenwood \& Co
1901. New York: D. Van Nostrand 1901. New York: D. Van Nostran Price $\$ 2$.
Although Prof. Camille Vincent's little treat methods for the preparation of ammonia an mmonium salts from various waste and ra products. it should be of service in the ad
m) vaslr English form with which Mr. Salte has provided us. Ammonia is of considerable use in the industrial arts and of late its ap
plication in agriculture and refrigeration has increased in importance to such an extent that hemical manufacturers have been induced producing it in a comparatively pure condi-
tion on a large scale. Although the book is admirably printed. its illustrations might b better. Eviden
French edition.

 Truscott Boat Mfg. Co.s

Fed-Water PURIFIER HOPPES MFG. CO., 25 Larch St.. Springfield, Ohio

The "Best" Light
 THE "BEST" LIGHT C

Scientific American Building Montbly

JANUARY--JUNE, 1902.
The Thirty-Third Volume of this beautifully illustrated

ald features.

 antels, tet. are aspecially helpf pland and suggestive. rom speeially taken photographs and are not ob-
rinable else theren
cmpanied with full sets of of the ho houses are ac-
TALKS WITH ARCHITECTS.

EDITORIAL ARTICLES

 Buase and "the Trerrace, "The Art of Home-

DEPARTMENTS

The Departments of the Monthly cover a wide
range of topics and summarize the latest adivance

The SCIENTIFIC AMERICAN BUILDING Monthly is
national magazine of architecture conducted with
 Price, Express Paid. \$2.00

EARN MORE

Special Discounts Now. a
the consolidated schools, 156 Fifth Ave., N. y
LEARN PROOFREADING, If You poen

DIVIDENDS $=$

 References.
ROANOKE INVESTMENT CO.
525 Marquette Ruilding. Chicago.

COOD INCOMES M ${ }^{\text {A }}$ DE 25\% to 30% C mmission.
BESTAND MOST 33 C 1-lb. Lrade-mark red bags
Good Coffees 12c. and 15 c
Good Teas, 30 c . and 35 c . The Great American Tea Co
$31 \& 33$ Vesey St., New York.

MORAN FLEXIBLE JOINT

 RUBBER STAMP MAKING. - THIS

 ume tor aimitioa
"This book should. be one of the most popular of the
literary season."-.N.
Thristian Her Id.
 Union , certainly destined to great popularity."- Louis"It bears the earmarks of a book that will have a
trementous
passes."-Pittsbir and beadec.ome more popular as time passes. - Pittssurg Leader.
The
press." Mostrains are
Montreal Stare press. . predict fo
Ala., Advertiser.
THE NUT SHELL PUBLISHING CO:
$\underset{\text { Dept. A }}{\text { THE }} \boldsymbol{7 8}$ Fifth Avenue, New York.

 \section*{}
 \section*{}

MANTS TO CORRESPONDENTS.
Names and Address must accompany all intters
nur ith

will use 37,300 watts, or 37.3 kilowatt hours.
This at ten cents per kilowatt hour will cost

were supplied at 920 volts, the amperes woul
be halved, but the watts would be the sam
and the bill and the bill calculated would be the sam The real bill as found from a meter might
very different from this. The motor does not very different from this. The motor does not
un at best efficiency unless it runs at full
load. If it is not using 5 horse power it takes more than the proportionate part of 5
horse power to drive it: how much, it is not possible to say in general terms.
(8665) E. A. asks: During a rainstorm a click, and sometimes a very brief
ring of a telephone bell is frequently audible. and is always coincident with a heavy stroke of lightning. It seems very evident that the
click of the bell is due to the lightning being ning cause the bell to click: A. The ringing ning occurs in its vicinity is explained by induction. The electric discharge affects t
wire in the same manner as the discharge a battery current through the wire would do
The magnet attracts the armature. and the bell rings. It is a frequent occurr
both telegraph and telephone lines.
(8666) J. D. A. writes: On several
(8666) J. D. A. writes: On several
occasions I have read in the answers to ques-
tions of your valuable paper, that lightning i
noticed that this theory is advanced in most
of the electrical books that have come to my
hands. Though it is undeniable that there
hands. Though it is undeniable that there
must be some disturbance. yet such theory
does not seem to me entirely satisfactory, for
it is open to the question. What is the nature
of such disturbance? I am of the opinion
(and the more I study the subject the more I (and the more I study the subject the more I
adhere to it) that lightning is caused by the
\qquad
phere: the condensation being caused by the
atmospheric pressure. and taking place when ever said pressure becomes greater than the
expansive force of said vapors. Is not thi expansive force of said vapors. Is not this
possible? I would like to know your opinion on this theory. either through the columns
your paper or otherwise. A. While the con densation of water vapor in the air may of the water drops in the air. it is not easy to
see how the pressure of the air can be any different from the pressure of the vapor of water in the same place in the air, unless t
law of Newton is untrue. that action and action are equal. The production of a flash theory, and we shall have to wait for more
knowledge than we have to explain this phe
(8667) S. M. D. asks: Is there any limit to the distance that a certain amount of electricity will travel over wire, that is, will
a weak battery send electricity as far as a strong battery? A. There is a limit of distance to which a small amount of electric
current can affect an instrument so that it can be perceived. This is at a less distance than strong current can affect the same instru-
ment. In this sense a weak current cannot travel as far as a strong one over a wire.
A weak battery cannot produce the same effect through a mile of wire as a strong battery can ; but if we had more delicate instruments we might still detect the weak current much farther than we can at present. It is not so
much the defect of the current as of the in much the defect of the current as of the in-

WireCloth, WireLath, Electrically-Welded Wire Fabrics
and Perforated Metal of all CLINTON WIRE CLOTH COMPANY, CLINTON, MASS.

Bicycles Below Gost

 "Stherian;",
Newdorf," Road Racer, $\mathbf{\$ 1 1 . 7 5}$
 We SHIP ON A PPROYAIT
 Do ot 500 good 2 nd-hand wheels $\$ 3$ to $\$ 8$.
for our tree cataloguycle withil you have written MEAD CYOLE CO. Dept.59W, Chicago

THE
RIDEAU
LAKES.

The Rideau River, lakes and canal, a unique region. comparatively unknown, but
affording the most novel experience of any trip in America. An inland waterway between the St. Lawrence River at Kingston
and the Ottawa River at Ottawa; every and the Ottawa River at Ottawa; every
mile affords a new experience. It is brietly mile affords a new experience. It is brietly
described in No. 34 of the "Four-Track described in No. 34 of the "Four-Track
Series," "To Ottawa, Ont., via the Rideau Lakes and River.

Copy will be mailed free on receipt.
of a 2 -cent stamp by George H.
Daniels Geral

REGEALD ICE MACHINES

TATE COMMISSION IN LUNACY
NOTICE TO CONTRACTORS
Sealed proposals for a Telephone System for the 4 New
Colony of the Manhattan State Hospital, Central Islip,

will receive and open all proposols.
Drawings and
specifications ma

THIS BEATS NEW JERSEY Charters procured under South Dakota laws for a few
donars. Write for corporation laws blanks by-laws
and f ims to PHLIP LAWVENCE, late Ass't Secretary

The Franklin Model Shop.
thing in metal work for sinventors; any
complete working model. Apeee to a
to
 PARSELLL \& WEED,

MATCH Factory Mantinery. Wr, E. Wiuthas
 THE STEAM TURBINE; THE STEAM

 ELECTRIC KNOWLEDGE Send 10 oemfa and

SIXTEENTH REVISED AND ENLARGED EDITION OF 1901

* The Scientific American *

Price, $\$ 5.00$ in Cloth. $\$ \mathbf{\$ 6 . 0 0}$ in Sheep. $\$ 6.50$ in Half Morocco. Post Free.
This work has been revised and enlarged
900 NEW FORMULAS.
The work is so arranged as to be of use not only to the specialist, but to the general reader. It should have a place in every home and workshop. A circular containing full TABLE OF CONTENTS will be sent on application.
Those who already have the Cyclopedia may obtain the 1901 APPENDIX.
Price, bound in cloth, $\$$ r.oo, postpaid.
MUNN \& CO., Publishers, 36I BROADWAY, NEW YORK CITY.

CHARTER ENGINE Widid

IGNITER
 GAS and GASOLIN ENGINES
 QUEES

 MATCH FACTORY.-DESCRIPTION

PAINI tat PlEASES

by its permanent beauty and wonderful
durability, as well as itt ${ }^{\text {dita }}$ preserving " pro-
perties on wood or metal is
Dixon's Silica-Graphite Paint
Lasts four times as long as other paints
and always looks well, as it never fades. Non-poisonous, no bad odor, causes nacoenic.
or cramps in workmen. Color cards free. JOSEPH DIXON CRUCIBLE CO.

DICKERMAN'S DURABLE

tick it continually to millions. Every Elgin watch has the word "Elgin", engraved on the works. Send for
free booklet about watches ELGIN NATIONAL WATCH CO.

Che Rushmobile

BRECHT AUTOMOBILE CO., $=$ ST. LOUIS, MO
 Orient Motor Cycle.
 WALTHAM MFG. CO., Waltham, Mas

Carlisle \& Finch Co., 233 E. Clifton Av., Cincinnati, 0

Queen Transits and Levels

 Engineers' and Draftsmen's Supplies QUEEN \& CO., Optical and Scientific 59 Fifth Ave., New York. 1010 Chestnut St., Phila POTTERS " SPRING" BRAKE BLOCKS
Adapts the whole length of shoe to wree

是

 No up-to-date manufacturer ca AT THE PAN-AMERICAN EXPOSITION AT THE PAN-AN ERICAN EXPOSITIO
Faneuil Wend for Catalog. Tompany, BRIGHTON, BOSTON, MASS., U.S.A

SIffl Dump Cars

IT WILL PAY YOU TO KNOW US

BUFFALO cheaper. Buoklet free.

High-Class Mining, Oil and Industrial Stock HE WEENTS WANTED

Free Tuition in the Kodak Correspondence School of Photography to every owner of a Kodak or Brownie Camera who purchases a one dollar copy,
of " Picture Taking and Picture Making." EASTMAN KODAK CO.

Che Cypewriter Exchange

Coittec (lắars -MADE AT KEY WEST:-

These Cigars are manufactured un the most favorable climatic conditions	
bacco. If we had to pay the in	
money. Send for booklet and particulars. CORTEZ CIGAR CO., KEY WEST.	
GERE GASOLINE EN	
ITTIT CABNO ODEN BO	

Howard Two and Four Cycle

AUTOMOBILE

 MOTORS Write for Cat.Grant Ferris Co. Troy, N. Y.

PRESIDENT SUSPENDER

Lifts the weight from the shoulders; the strain from the buttons. Free-
dom. The genuine has "Presiم备 dent" on the buckles. Fully guaranteed. Trimming's cannot rust. Made heavy or lighteverywhere, or
mailed, postpaid. Say light or dark, wide or narrow.

Holidaygoods in
indvidual
Iift
 cards-instruct-
ive, entertaining A. EDGARTON MFE C. A. EDGARTON MFG
ComPAN,
Box 222 C, Shirles, Mas GARDNHRDSSOGK
 NieW ElyII AID WariftIS

the new england watch co.

Scientific American.

 MUNN \& Con ${ }^{361} 1$ broadway, New York

