

The Center Pontoon of the Bermuda Dock Raised for Painting.

The Algiers Floating Dock, with Foot-Bridges Opened and End Pontoon Raised.

H. M. S. "Sans Pareil" (10,470 Tons) Lifted by the Bermuda Dock.

The "Illinois", in the New Floating Drydock at Algiers, La.
THE GREAT FLOATING DOCKS OF BERMUDA AND ALGIERS, LA.-[See page 88.]

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN \& CO
Editors and Proprietors

No. 361 Broadway, New York

 he scientific american publications.
 Money order. or by bank draft or check,
MUNN d Co., Bbj Broadway. New York.

NEW YORK, SATURDAY, AUGUST 9, 1902.

Thice editor is allways glid to receive for examination illustrated

a great engineering feat completed.

With the laying, on the first day of the present monti, of the last coping stone of the great dam across the River Nile at Assouan the ancient land of the Pharaohs sees the completion of a national work, which is not only the greatest of its kind in existence, but in its beneficent results will probably out rank any scheme carried out in Egypt, either in ancient or modern times. The completion of this dam and a similar structure at Assoiut will provide in the Nile valley a vast reservoir capable of supplying over a billion cubic yards of water every year. The surplus waters of the river will be stored during the flood season, and then drawn upon for the irrigation of wide tracts of land which for many centuries pait have lain waste for want of water. As a result of the new system of irrigation, there are extensive tracts of land which henceforth will bear two crops a year where formerly they bore but one; while the area devoted to sugar cultivation will be greatly increased. The Assouan dam itself is one of the greatest engineering works in existence. It is no less than $11 / 4$ miles in length and it is pierced by 180 sluice gates 25 feet in height and 7 feet in width, by means of which the regulation of the waters will be secured. The total cost of the two dams will be about $\$ 25,000,000$, and the work has already proved itself to be an important economic feature in the life of the Egyptian people, for no less than 14,000 natives have found continuous employment during the progress of the work. The inauguration and rapid development of this great scheme have been due entirely to the enterprise of a western race, entirely alien to the Egyptian people; and there is something peculiarly fitting in the fact that Egypt, which contributed so largely in its earlier days to the world's arts and sciences, should in these later times be thus richly endowed by the highly-developed engineering skill of our modern civilization.

the halifax route to europe.

It was an inevitable outcome of the powerful ship ping combine which has recently been brought about among the steamship companies plying between the United States and Europe that some attempt should be made to develop a rival combination with facilities that wouid enable it successfully to compete for the transatlantic trade. Inasmuch as the strength of the position held by the combine lies in the fact that it has the great railroad systems of the United States at the back of it, it was evident from the first that any competing interests must also have behind them a transcontinental road. Such a road exists in the great Canadian Pacific system, which provides a through transcontinental service from Vancouver on the Pacific to Halifax on the Atlantic. The latter port of call has a distinct advantage over the port of New York in the fact that it is over a day's steaming by the fastest liners nearer to Europe, and that it is readily accessible from deep water at all states of the tide.
In view of these facts it is not a matter of surprise that the Canadian government should have recently approached the British Parliament with the sugges tion that a line of steamers should be establisher between Halifax and Liverpool, and that a subsidy of rom three to four million dollars should be pro vided jointly by the Canadian and British govern ments. The proposal has provoked a natural enthusiasm in Canada, and it seems probable, at the present writing, that it will receive the favorable consideration of the English government. If Halifax be selected as the terminal port, passengers and mails selected as the terminal port, passengers and mails
will reach the United States about one day earlier will reach the United States about one day earlier
than they do by the fastest ships of the German line than they do by the fastest ships of the German line
at the present time. The speed of the proposed fleet at the present time. The speed of the proposed fleet
of steamers has not been definitely determined upon, but it will not be less than twenty and may be as high as twenty-three knots an hour, the probabilities pointing to a sustained sea speed of twenty knots for
the faster hoats. To the averase transatlantic passen ger the proposed line should prove particularly at tractive, since the competition thus established will serve to preserve passenger rates at their present figure and check that tendency on the part of the steamship combine to raise the rates, which, as we have lately pointed out in these columns, is giving uncomtortable proof of its activity.

THE MARCONI DISCLAIMER

To the man who is at all familiar with British and American patent practice, the comments which have appeared in the newspapers on the announcement that Marconi has amended his British patent application in order that Marquis Solari might receive due credit for a certain contrivance, must appear decidedly unjust to the inventor to whom, more than to any other, the practical success of wireless teleg raphy is due. Marconi has been placed in an ap parently awkward position simply by reason of the peculiar rules that govern patents in Great Britain.
Probably one of Marconi's claims covered Solari' uevice; and in order that he might not invalidate patent in which other devices were described, Mar coni filed the necessary disclaimer. In the United States, where the filing of a disclaimer is optional, the patent would ;robably have passed to issue with out any gratuitous newspaper criticism. Its validity would have been passed upon by the federal courts in a patent infringement suit; and even if it then transpired that a device covered in one of the claims had been invented by another the remaining claims would still be valid and their infringement would be enjoined by a Court of Equity
From the meager accounts which have been received it does not very clearly appear what is the nature of Solari's invention. Even if Solari is the inventor of the mercury-coherer, used in combination with a telephone, which is said to have been employed in transatlantic signaling, it still remains to be proved that the entire system which Marconi uses is the result of another's work. Moreover, he announced that the coherer has been abandoned for transatlanti telegraphy. Marconi has so far shown himself an indefatigable and modest scientific investigator, who has spared neither time nor money in practically applying the discoveries of Heinrich Hertz. Although it is true that Branly invented the coherer, that Po poff first used the tall mast, and that many of the important elements of the usual wireless telegraphy apparatus had been invented before Marconi was heralded as the inventor of a new form of long distance communication, nevertheless the fact remains that to him and to him alone the scientific success of space telegraphy is due; and to him perhaps will its eventual commercial success be credited.
It is not difficult to find a parallel to the battle which Marconi is now waging for recognition of his rights as an inventor. No one would now dispute the title of Morse to the telegraph, and yet the elements of the invention had been devised long before by Prof. Joseph Henry and others. Many an experi menter had labored long in endeavoring to produce an apparatus by means of which it would be possible to converse through long distances. Still, to Prof Alexander Graham Bell justly belongs the credit of having furnished us with the telephone that bears his name. Given a number of old devices, an inventor ingenious and broad-minded enough to see their possibilities, and persistent enough to combine them into an apparatus capable of performing new functions, and a horde of claimants for the honor of having invented the apparatus evolved will forthwith arise. Such is evidently the usual experience of the successful inventor. Despite the persistent and bitter attacks of Sylvanus Thompson, and the cool disregard of German scientists for the work of Marconi, it seems reasonably certain that he will eventually receive his full meed of credit. A patent infringement suit is generally a thing to be avoided but in Marconi's case it is almost to be welcomed for only after a painstaking analysis by a United States Court will it be possible to appreciate fully how great has been the contribution of Marconi to wireless telegraphy.

FUTURE TRANSIT FACILITIES OF NEW YORK CITY
The series of weekly discussions of municipal af fairs by Mayor Low of this city have shown that he possesses a very thorough grasp of the municipal problems of America's greatest city. A striking in stance of this is afforded by his last utterances on the subject of the future transit facilities of New York city, in which he carefully reviews the whole field and indicates in what direction the present various transit system must be enlarged, what connections must be made between them, and what new lines must be opened to accommodate a freight and passen ger traffic whose growth is without parallel in any of the great cities of the world.
In reading over the nine pages of Mayor Low' typewritten statement we agree with him in his esti-
mate of the transit situation, with the single exception of his indorsement of the possible abolition of the terminal loop below Forty-second Street station. We cannot but think that the New York Central Company's first design, embracing an electrically-operated term inal loop for suburban traffic, is the best possibie solu tion of the problem at that point.
The paper discusses the whole subject broadly under three heads: Inter-borough communication between Manhattan Island and Long Island; communication with Manhattan Island from the north; and the improvement of the city's commercial facilities by the development of the water front of Manhattan Island
Under the head of inter-borough communication the Brooklyn Bridge naturally receives the first at tention, and the keynote to the problem is sounded when the Mayor affirms that all bridges, and the Brooklyn Bridge in particular, should be treated as thoroughfares. '"They must not only arrive; they must lead somewhere." If our readers will refer to the early accounts of the new East River Bridge, or the Williamsburg Bridge, as it is now called, published in the Scientific American, they will find that we strongly advocated the treatment of the new bridge as a thoroughfare, and not as a mere shor length of railroad connecting two terminal points Unfortunately, the present Brooklyn Bridge was built on the latter plan, its traffic to be carried by a system of shuttle trains; but the inexorable demands of traffic have practically, as Mayor Low shows in his address, converted the Brooklyn structure into a great railroad thoroughfare. Such it is to-day, such it will ever remain; and, therefore, in view of the fact that the present suspended roadway is loaded up to it safe limits, the proper thing to do is to rebuild the roadway, bringing its carrying capacity up to the strength of the cables and towers, which can sustain much greater dead and live loads than they do at present. The Brooklyn Bridge should be connected directly with the downtown financial districts to the south, with the Hudson River ferries to the west, and with the Williamsburg Bridge to the north. Of thes connections a subway road between the Brooklyn and Williamsburg bridges is rightly considered to be the most urgently needed, and should be the first to be constructed. The northern connection is very im Fortant, not only as increasing the value of the Brooklyn Bridge, but as bringing the new Williams burg Bridge, which will probably be opened by the autumn of 1903, in touch with the City Hall, thereby rendering that bridge, in its turn, a railroad thor oughfare. The new suspension bridge No. 3, which will be known as Manhattan Bridge, is to extend in Manhattan Island to the neighborhood of Canal Street and the Bowery, and we agree with the Mayor that the railroads of this bridge should be extended acros the city so as to make connections with the west side elevated systems, as well as with those upon the east side. But we think that such connection should be carried underground and not by an elevated structure The new Biackwell's Island Bridge terminates at Seventh Avenue and will inevitably make connection with the elevated road, the natural agent for using the Blackwell's Island Bridge being the Manhattan Ele vated Railroad, just as the natural agent for using as railroad thoroughfares, the Brooklyn Bridge, the Williamsburg Bridge and the Manhattan Bridge is the Brooklyn Rapid Transit system. The Brooklyn Rapid Transit Company is also the natural agent for using the second Brooklyn tunnel, which shou!d be located so far as practicable to meet the views of that corporation; provided, of course, that the company will do its part in developing such thor oughfare traffic.

In the Mayor's opinion it lies with the New York Central \& Hudson River Railroad to solve the problem of giving adequate connection between Manhattan Island and the suburban country to the north of it, and he states that he is authorized by the president of the New York Central Railroad to say that that road is ready to enter into a stipulation with the city (provided the city will approve the changes that they now wish to make at the Grand Central Station) to substitute electricity for steam, not only for their suburban, but also for their through traffic, and that they will sign a contract for the erection of powe houses adequate for both of these purposes imme diately after the approval by the city of their terminal plans. The company furthermore pledges itself to co-operate with the city in developing at some point or points in the Borough of the Bronx a union station or stations, at which passengers can change from their suburban and through trains to the Subway and to the various elevated roads running to the south. The Mayor thinks that such a union station and transfer system would obviate the necessity for the underground loop station at Forty-second Street; but it seems to us that while a large part of the suburban travel on the New York Central would be transferred at such a union station, there would stil be a large proportion of the suburban travelers who would wish to continue directly to Forty-second Street
without change of cars. This number will steadily increase with the increasing growth of the northern districts, and, therefore, we think that the arguments in favor of a terminal loop would remain practically unaffected by the provision of a union station in the Bronx.

Finally, the Mayor suggests that in view of the splendid system of piers already constructed by the Dcck Department, and the extensive additions which are about to be made, and, also, in view of the fact that adjoining the piers there will be a water front street, 250 feet in width, extending ultimately from Cortlandt Street to Thirty-eighth Street, an elevated railroad might easily be carried from the lower part of the island to a connection with the New York Central at Thirtieth Street, and that a connection would naturally, if this road were built, be made with the proposed Pennsylvania Railroad tunnel beneath Manhattan Island. With such a road constructed, every transatlantic steamship pier on the western side of Manhattan Island would be directly connected with the New York Central and the Pennsylvania Railroad systems. We agree with the Mayor that such a road, if built by the city, would ultimately prove to be a very fruitful source of revenue.
The improvements above outlined are conceived in the broad spirit and with the far-sighted outlook which has characterized all of the proceedings of that most admirable body, the Rapid Transit Commission and we would urge the point that, so far as the city's debt limit will allow, the necessary legislation for these improvements should be immediately secured and the work put in hand. If there is one lesson more than another that the history of New York City's Rapid Transit teaches it is that it is best to be beforehand rather than behindhand in providing transit facilities. The city's traffic grows at such a phenomenal rate that the possibility of providing more facilities than are necessary is exceedingly remote.

SIMPLON TUNNEL.

The Bulletin of the Societe des Ingéneurs Civils con tains an account of the recent work on the Simplon Tunnel, as brought out in the last quarterly report for the state of the work on the 31st of December last. It is on the southern side that the work has been interrupted by the great outflow of water from the subterranean reservoirs. On the north side but little water was encountered, but on the south side no less than twelve springs were found. The enormous pressure which some of these springs showed on their first appearance is no doubt due to the presence of a subterranean basin existing in the fissures of the gneiss and limestone, but especially the latter. It is easy to imagine the formidable disturbance which the piercing of the tunnel brings about in opening a water passage at a level of 2,000 feet below the surface of a basin which up to the present has been in a state of complete stability, traversed only by the currents of an inplete stability, traversed only by the currents of an in-
ternal circulation. A basin of this kind produces an ternal circulation. A basin of this kind produces an
output which increases with the number of openings. output which increases with the number of openings.
and this output will remain practically constant from the moment when no new openings are made. This is the case at present, and since the beginning of November the quantity of water has been nearly constant at 250 to 270 gallons per second. But the diminution of certain springs which has occurred recently shows what is likely to arrive for the others, owing to the lowering of the basin level. As soon as the subter ranean reservoir becomes emptied there will no doubt ranean reservoir becomes emptied
be a rapid decrease in the volume of water, and the affluent water will then come out directly by the open ings. The approach of this period is indicated by the increased cooling of the water. The affluents come neither from the Avino or the Cairasca lakes, as has been proved by the coloration test which was made on the 3d of December, but the reservoir is supplied from the water collected by the Leggiolo and the valley of the Alpe di Valle. This surface receives enough rain water and snow to feed a spring of 1,500 gallons per minute and it is noteworthy that a group of springs of this capacity existed at the Alpe Membro, on the right bank of the Cairasca, at 4,000 feet altitude. This spring, which still flowed abundantly up to the 29th of October last, had completely dried up before the 20th of November, thus proving the existence of a subterranean reservoir whose overflow was at an altitude of 4,000 feet at least. The influence thus exaltitude of 4,000 feet at least. The influence thus ex-
erted upon the spring by the piercing of the tunnel erted upon the spring by the piercing of the tunnel
shows the enormous extent of the subterranean water shows the enormous extent of the subterranean water
system, as the tunnel is at a horizontal distance of $11 / 4$ miles from the spring and over 2,000 feet below its level. The formation of the underground canals is no doubt due to the disintegration produced by the water. The water-circulation, which is supposed to pass from the surface of the water down to ywhaps a thousand feet below the level of the tunnel, is caused by the subterranean heat, which makes the hot water mount subterranean heat, which makes the hot water moun
to the surface, the action of then. This explains the difference of temperature in the different streams coming but a short distance from each other.

There must be currents of hot water mounting and currents of cold water descending. The differences in the density of the water is explained by its passage through layers which are alternately calcareous or gypsum-like. As to the general cooling of the water which manifests itself as the flow continues, this seems to be due to the rapid lowering of the basin, which is a relatively stable body, and is being replaced by supplies of colder water coming directly from the surface When the reservoir becomes completely emptied, these springs will no doubt give the outflow its minimum temperature.

It is expected that the exhaustion of the reservoir will coincide with a rapid decrease in the volume of outflow. If the Membro spring, above mentioned, is the only system which served as an outlet for the reser voir, this volume will then be between 25 and 40 ga! lons per second. If other springs, such as those of Prese de Gebbo, are suppressed in turn, which is at least probable, we must expect a permanent flow of 85 gallons per second. In any case, it seems certain that the volume of water now flowing in the two galleries of the tunnel is exceptional and will last only until the basin is emptied. Prof. Schardt, the geologist of the Simplon Tunnel, treats the same question in a conference held before the Société Vaudoise de Sciences Naturelles at Lausanne, and gives some interesting figures. He remarks that this deplorable outflow of water coincided with the approach of the limestone, and that, contrary to what usually happens, the temperature of these springs has fallen with the advance ment of the tunnel, and that the new springs which are found increase in coldness. Moreover, the same springs continue to become colder, and fall as low as 11.5 deg . C., when the normal temperature of the water should be from 36 to 37 degrees. Besides, the water showed, simultaneously with these modifications of temperature, a general increase in density which has reached from 30 to 75 degrees hydrotimetric (one such degree corresponds to the presence of a centigramme of limestone or 0.014 gramme of sulphate of lime per liter). The greatest outflow of water occurred in the limestone between the 260 th and 265 th mile points of the tunnel. From the 1st of October to date (19th of February) there has flowed out of the mountain more than 350 million cubic feet of water. The average outflow he gives as 210 gallons per second, which gives in round numbers 108,000 cubic feet per hour, or nearly $2,600,000$ per 24 hours. This volume of water would suffice largely to supply a city of 150,000 to 200,000 inhabitants. Taking account of the difference of level of the basin and the tunnel, this average output if 210 gallons per second falling from that height would represent a work of 7,700 horse power.

As to the work of piercing the tunnel, the advance of the northern side during the month of February was 524 feet, which brings the length of the gallery to 20,700 feet. Here the tunnel passed through the gneiss and crystalline schist in which the mean rate of cutting was 18 feet per day. The length of the southeast gallery is 13,660 feet, which has not varied, so that the total length now pierced reaches 34,360 so that the tota which is 55 per cent of the total length of the $\mathrm{f} \in e \mathrm{e}$, which is 55 per cent of the total length of the
tunnel, or 60,834 feet. To show how the work is prog. ressing, the tunnel company made a communication to the Secolo, of Milan, contradicting the unfavorable reports received by the Italian press as to the state of the work. The following figures show the annual advancement:

					Annual		
feet.							Total.
:---							
feet.							

The last six months will be devoted to finishing the excavations, building revetment walls, etc. The tun nel will have a total length of 60,530 feet. According to the programme, approved by the concessionary company of the Jura-Simplon, the tunnel should now be at the 35,770 point, while 34,380 feet have been pierced the difference, or 1,350 feet, is but slight and is less than a month's work. Since there is a margin of some months in the last half year it cannot be said that the programme is not being carried out. Two years remain to finish the work and cut 26,500 feet, which comes to 36.4 feet per day for the two galleries. This is quite possible, given the nature of the rock according to the official geological profile, which cannot be inexact except in details. On the Brigue side, where the work goes on regularly according to the plans, the advance is always 18 feet per day. The same progress will be made on the Italian side as soon as the present difficulties are overcome.
According to the data furnished by the last monthly report which has been received since writing the above, the progress made during the month of March has been 543 feet on the north side of the tunnel and 40 feet on the south, or in all 583 feet, which brings the total cutting to 34,940 feet. On the southern side the work had already passed through the loose mica schists
which formed a bad portion extending over 60 feet. In this part were placed 43 metalic frames since the 18th of January, including 17 in the month of March. On the 17th of March was blown the first mine pierced in the front of the southern attack, after a period of four months of hand cutting. It. was expected to recommence the mechanical drilling about the middle of April. According to this report the streams of water, although they are quite abundant (representing a mean of 200 gallons per second) do not at present hinder the work.

SCIENCE NOTES

A communication by M. Berthelot in Comptes Rendus shows that the Chaldeans and Babylonians were possessed of considerable metallurgical skill. A Babylonian statuette was found to consist of a copper alloy containing 79.5 per cent of copper, 1.25 per cent of tin, and 0.8 per cent of iron. A statuette from Chaldea, estimated to be 2200 years old, was composed of nearly pure copper containing only a slight proportion of iron, whereas another Chaldean statuette, some 400 years older, consisted mainly of an alloy of four parts of copper with one part of lead and a trace of sulphur.

Some interesting experiments for the purpose of obtaining data regarding the earth's rotation have been carried out by the two emiment French scientists, MM Berbet and Camille Flammarion, with the Foucault pendulum on exhibition in the Panthéon, Paris. This pendulum is the largest ever made. It consists of a ball of lead weighing 56 pounds, attached to the end of a specially-made fine piano-string approximately 210 feet in length-the longest piano-wire ever drawn. The oscillation lasts eight seconds in either directionsixteen seconds in all-and the pendulum apparently displaces itself in the opposite direction to the move ment of the earth's rotation. The pendulum affords one of the most comprehensive lessons in astronomy that has ever been given to the public.
In speaking on the interference of sound recently before the Royal Institution of London, Lord Ray leigh described some of his experiments with fog horns made for Trinity House. Fog-horns with elliptic cones instead of circular cones were tried, the major axis being about four times longer than the minor. The experiments showed that the sound was best spread in a horizontal direction when the long axis was exactly vertical. It appears to be doubtful whether the phenomenon of the silent area is really due to interference between waves of sound reach ing the spot directly and those reflected from the sea If the effect were due mainly to interference in this way it ought to be possible to recover the sound by the listener's changing his altitude above the sea surface, but Lord Rayleigh has on several occasions tried this on board the "Irene" and has not recovered the sound.

A new detonator has been devised by a Berlin in ventor for firing explosives, consisting of pulverized aluminium mixed with detonating and oxygen-yielding substances. The aluminium is used in the shape of powder as an ingredient in detonating compositions, and especially of those mixtures for filling detonating or percussion caps for starting the detonation of explosives. The detonation composition varies according to the explosives employed, but in each instance it is essential to utilize the thermic properties of aluminium, which produces a very high temperature when burnt with oxygen-yielding substances, in consequence of which the mechanical energy developed is much higher than that obtainable with the compositions con taining no aluminium. Owing to this peculiar property, a small quantity of aluminium composition is sufficient for detonating explosives, on which the compositions hitherto used free from aluminium have little or no effect.
Two French explorers, M. Pierre de Jecquer and M. Watlin, have been carrying out some interesting excavations for archæological purposes in Persia, and have made several valuable discoveries. At Susa they unearthed a large black marble column, covered from head to foot with cuneiform inscriptions, which should throw much light on the history of that ancient capital According to the terms the explorers have made with the Persian government, they are not compelled to examine their treasures at Susa, but are permitted to transport them to France. Originally the concession permitted them only to share equally with the Persian government, but they were molested and attacked by the natives at Susa, and by way of compensation they obtained the right to take everything they require fron Susa. In other parts of Persia the Shah claims his share. Generally the explorers work four or five months at Susa, and then before the winter in Susinna becomes intolerable, they migrate to the northern parts of the country, where there are ample ficids for exploration. In this way they are gradually unfolding the history of past ages, and at the same time adding considerably to the present incomplete know!edge of Persian geography.

A UNIQUE RAILWAY.

Probably the shortest paying street railway in the world, and certainly one where more rides can be obtained for a dollar than anywhere else in America is the "Angel's Flight" in Los Angeles, California.

Generai View of the Railway and Observatory Tower.
Formerly the pretty residence portion of the city, "Olive Heights," could only be reached either by a long detour or climbing a great number of very steep steps. One of Los Angeles' citizens conceived the idea that a railway up the steep incline could be made to pay, and within a few weeks he had his road in operation.

The road is 350 feet in length between terminal points, and rises one hundred feet in this distance; it is built on the three-rail, automatic, turnout sys tem. The two cars, "Olivet" and "Sinai," are attached to the ends of a double cable, which is wound over a drum operated by a ten horse power electric motor at top of the hill. As one car goes up, the other descends, the two cars counterbalancing each other, and thus effecting a great saving in power
Entering the lower station, the first thing we notice is the "bill of fare." "One ride 5 c ., 3 rides 10 c ., 10 rides 25 c., 100 rides $\$ 1.00$." The cars will hold ten people seated, which is the limit; a number of signs announce, that no standing is allowed, as a sudden jar might throw the passenger out and down the steep incline. Another sign instructs the passenger to press the button when he is ready to start, and on his doing so the car starts. During the ascent a beautiful view i s obtained oî Los Angeles. Arriving at the top, one steps from the car into the ticket office, where he pays his fare, and passes into a small building, open at the sides and filled with comfortable seats, from which the view may be enjoyed, and where a sign informs the passenger that he has reached "Angel's Rest." Here is a pretty little terraced park with flowers and a fountain. Then by climbing the stairs of the large iron observation tower to the "Angel's View," 156 feet above the street below, another excellent view is had of Los Angeles, the surrounding towns, and the Pa cific ocean.
It was estimated that the patronage of the people living on the Heights would pay the expenses of the
road with one-cent fares, and that the tourist and curiosity seeker, in their anxiety to ride on so unique a road and obtain the view from the tall tower (which, by the way, costs 5 cents extra), would furnish the profit. As the cars can make a trip every minute, and the one man in the power house can run the cars, collect the fares and perform the duties of all the several officials necessary on an ordinary ailway, the expenses are light, and the enter prise bids fair to be as much of a success from financial standpoint as it is from a mechanical one.

The Price of Progress in Agriculture.

By b. F. w. тнокPE
Special development of plant and animal life to their highest degree of excellence and productiveness brings an increased liability to disease and derangement. The very effort of producing an abnormal yield of milk in the dairy animal, of flesh and bulk in the beef and draft breeds, or those intensive qualities of nerve, bone and muscle combining to make possible the twominute racer, is at the expense of a part of the inherent vitality of the animal in question. The same principle holds true in the plant world. The most highly improved and prolific varieties of fruits, grains and other vegetable products have reached their positions of excellence, as a rule, with a certain loss in vigor in some direc tion. In short, there is apt to be a weakening in resistance power against exposure and disease in both plants and animals when any particular function is worked beyond its natural capacity Thus have utility breeding and hot-house meth ods of improvement created a greater necessity for protective remedies against pests and dis eases, as well as a greater need of vigilance in their application in the realms of both animate and inalimate In addition the above annimed ate abo mentioned tory devoted to agriculture and the rapid in crease and extension of commerce serves to pro mote and distribute the husbandman's hindrance in a constantly increasing ratio. It is not the writer's intention to here enter into detailed consideration of these forces of opposition which the modern farmer has to intelligently meet and conquer, or at least effectually hold in check to insure compensation for his toil. Rather the idea is to emphasize the need of keeping wel abreast of the higher levels of thought and im provement which do not remain stationary for a single year, or season even. The National and State stations of experiment and investigation from Maine to California, north, south and cen tral, have at all times scores of scientific and statistical grists feeding into their experimental hoppers from which all grades of intellectual food-stuffs are issuing. These bulletin brainrations composed of figures, facts and fiction later pass through the sifters, blowers, cleaners, graders and retorts, comprising the agricultural press, farm organizations and individual farm experiments, where by the aid of "quiz" column question box, discussion, essay and editorial comment the practical is eliminated from the theoretical. It has been mainly by such helps that the reading and thinking farmers have been enabled to make such strides in both method and quality of production as to cause the admiration and astonishment of the civilized world. Those farmers who have heretofore expressed contempt for "book farming ideas" have
been doing some quiet thinking while critically observing the effects produced by adaptive fertilizing, utility breeding, in tensive tillage, disease and pest controlling remedies and other of the lengthening list of science-founded helps. The fact is dawn ing on many such former skeptics that a few dollars judiciously expended for farm publications and books treating on special and general lines of their work, with a reasonable amount of time devoted to study and discussion, may be profitable, not only in direct financial. returns, but in the increased respect felt by themselves and others for their occupation. The progress attained in agriculture, practically in the past half century, though so marked
and far-reaching in effect, is but the beginning of the triumphs which are to follow in this most important and fundamental of industries. Nearly all the inventions and discoveries which have revolutionized the industrial world are found to bring additional profit and power to the farmer as he becomes qualified to take advantage of nature's unlocked secrets. The farmer must realize the full importance of the fact that his vocation is pre-eminently the one where practical adaptation must be combined with exact compliance to fixed natural laws, or, in other words, agricultural science. These necessary laws are not very numerous or difficult to get a working knowledge of, but must be comprehended sufficiently to make their importance understood. The progress already attained and now steadily going forward must ere long make the farmer's lot in reality what is has always been in possibility, among the most attractive and noble of pursuits

Oil Fuel for Torpedo Boats.

One of the objections to the use of oil as a fuel for vessels has been the heat of combustion, which, it is claimed, is too intense for the endurance of the men in the boiler-room. In order to determine whether this objection is of sufficient weight, the United States Naval Department is about to make an experiment with the torpedo boat "Rodgers." The crew is to be engaged for five days in a test, which will be conducted by the members of the Board on Oil Fuel and which will show conclusively whether petroleum can be successfully used on this type of craft

A New Time-Fuse.

It is reported that a new time-fuse for armor-piercing

View Showing the Two Cars Passing at the Automatic Turnout.
shells has been successfully tested by the Ordnance Department, under the direction of its Chief, Brig.-Gen William Crozier. The chief merit of the fuse is to be found in the fact that it does not detonate the shell until the plate has been penetrated. It is said that a shell fitted with this fuse and fired from a 12 -inch gun penetrated 14 inches of Krupp armor before detonation. The importance of these results will be appreciated when it is considered that the thickest Krupp armor so far made is but twelve inches.
The tests were conducted with the army 12 -inch rifle, which is heavier than the navy weapon of the same caliber. No doubt good results can be obtained with the navy gun.

Further News of the "Belleisle" Tests.

In spite of the great secrecy preserved by the British officials, additional information has leaked out of the results obtained during the recent tests made with the old battleship "Belleisle." If all accounts are to be believed, the result was a decided triumph for the conning tower, which, though covered with old com pound armor, withstood the attacks of 9.2 -inch guns. A rat imprisoned in the tower for the purpose of deter. mining the effect of lyddite fumes and the concussion of shot and shell was found to be uninjured. How destructive was the lyddite was shown by the total destruction of two torpedo nets.

LAUNCH OF THE FIRST SEVEN-MASTED STEEL

 SCHOONER.The recent launching at the yards of the Fore River Ship and Engine Building Company of the sevenmasted steel schooner "T. A. Lawson" was an event of more than common significance in the shipping world. The fore-and-aft trading schooner is a distinctly American craft. The history of its development from the original twosticker up to the multi-masted vessels is full of interest. It is only of late years that the many-masted type has received any extensive development; but so successful have the four, five and six-masted schooners been, that it was only a question of time when a sevenmasted craft should be constructed, for in this matter of shipbuilding, as in so many other in so many other forms of construction charac-
teristic of our modern industrial life, it holds true that the bigger the unit, the less the cost of operation, and the larger the profits.

The largest schooner previous to the launch of the "Lawson" was a six-masted vessel which measured 330 feet in length, 48 feet in beam and 22 feet depth of hold, with a maximum carrying capacity of 5500 tons of cargo. That vessel, like all of her predecessors, was built of wood. The ship recently launched, however, is a great advance on her predecessors in every respect. In the first place she is built throughout of steel, with a cellular double bottom and three complete steel-plated decks. The lower masts throughout the vessel are also built of steel. The total length of the ship over all is 395 feet, beam 50 feet, and molded ship over all is 395 feet, beam 50 feet, and molded
depth 34 feet 5 inches. She has a dead weight depth 34 feet 5 inches. She has a dead weight
cargo capacity of 7500 tons and her displacement at her maximum draft is 10,000 tons. The sail plan is drawn on a generous scale. The main masts are all 135 feet in length from the mast step to the top of the upper band, and they are all of a uniform diameter throughout of 32 inches. The topmasts are of one length, being 58 feet in leng'h over all and taperin, from 18 inches to 10 incies in diameter. The total sail area of the lower sails and top sails is 40,617 square feet. The sails will be handled largely by steam power, the plant including a 9×10 doublecylinder ship engine, and five 6×8 hoisting engines, with two vertical boilers, one in the forward and one in the after house and in the after house. As a result of the installation
of steam power for hoistof steam power for hoist-
ing the anchors and handling the same, the number of hands necessary to work this huge vessel will be reduced to nineteen men. The total cost is $\$ 250,000$ The craft was designed by The craft was designed by
B. B. Crowninshield, of B. B.
Boston.

Test of the $10-$ Inch Coast

Defence Gun.
It will be remembered that in last week's Scien tific American was chronicled the test made at Fort Monroe with an 8 -inch gun. On July 28 at Sandy Hook a 10 -inch gun on a barbette carriage was fired for rapidity and endurance observations. The first ten shots were fired in exactly
stauncher packing, a very essential point. In many places goods are carried by natives or Indians, either on their backs or suspended from a pole which rests across the shoulders of two men. In this manner quite a considerable weight is often carried. I have seen cases weighing 400 pounds carried through the streets by two men; on one occasion I saw four men carry an upright piano. This. however, only holds good in the smaller cities; in the larger ones transportation is chiefly by wagons. It is into the interior, however, that most of the imports find their way, and as the continent is vast in size, the area of South America being equal to two and one-third times that of the United States, long distances must be covered, the method of transportation being as a rule to pack goods on the backs of burros. When we find horses they are o very small st. ture, excepting in

LLAMAS USED IN TRANSPORTING GOODS FROM AND INTO BOLIVIA.

BURROS USED IN TRANSPORTING GOODS THROUGH PERU AND BOLIVIA.

final ten rounds were fired by a base-ball and foot-ball detachment, whose training was such that the ten shots were fired in ten minutes and fifty-nine and twofifth seconds. The firing of the entire thirty rounds took only forty-six minutes.

HINTS FOR AMERICANS-TRANSPORTATION IN SOUTH AMERICA

After an extended tour through South America, the writer is convinced that one important reason why American goods are so seldom seen is because we will not adapt ourselves to the transportation facilities on that vast and populous continent. In all but one or two of the many large ports of South America steamers anchor off shore and all merchandise is transferred to the small docks by means of lighters. This necessitates an extra handling of goods, and therefore
and mals have a limited carrying capacity. Roads being scarce, goods must be packed on the backs of these diminutive animals, and packages should not weigh more than 150 pounds, and even that is strenuously objected to in many localities.
In some sections of the continent, especially along the west coast, I found the modes of transportation strangely interesting and picturesque. These conditions vary in the different localities. Arriving at Mollendo, a port of southern Peru, through which pass practically all imports and exports of Bolivia, I found it was a most difficult problem to bring goods ashore on account of the rough waters, merchandise and passengers alike being hoisted onto the small dock by means of a steam crane. From here starts the great Arequipa and Puno Railroad, which has its terminus 317 miles away at Puno, on Lake Titicaca, whence merchandise is trans shipped via steamer to Chililaya, in Bolivia, a country which has no sea port, having lost the province of Antofagasta some years ago. From here all goods are transported on the backs of burros, the typical donkey, for Bolivia is the home of this valuable pack animal. The burro will carry some 300 pounds on his back and travel day after day with but very little food or water. In the higher alti tudes, and Bolivia is one of the highest inhabited countries on the globe, La Paz , the capital being some 12,000 feet above sea level we find that graceful and invaluable pack animal the llama, which will travel farther and with even less food than the burro, but will not carry more than 150 pounds. The llama resembles a camel, kneeling in camel fashion to receive its load, and it will not arise if more than 150 pounds are placed on his back; moreover, the weight must be evenly dis tributed over his back and sides.
Much complaint is made by the South Americans about the marking of cases. They should be marked in Spanish, the official lan guage of all South Ameri can countries except Brazil, where Portuguese is
sooken. The contents of the case, giving the exact weight, net, tare, and gross, should be plainly marked To these matters the English and German merchant, who control the South American trade, pay strict at tention, and this is one of the reasons why they re ceive the preference.
Americans will not lay any strong hold upon the great South American trade so long as the existing conditions in those countries are not made the subject of more careful study. Their credit system does not appeal to us, for it is a long time credit, six months on the average, but European houses vie with each other in the persistent effort to control the rapidly-growing markets of South America. Commercially it is a land of present importance and great future promise. Two cities on the east coast have each a population of one million; on the west coast there are also many cities densely populated.

The objections to the credit system could be over come, but we must first learn to pack our merchandise in small, light and strong cases, suitable to the conditions exacted by the unavoidable circumstances of primitive transportation. Although it is true that many railroads exist, and that several of consequence are in course of construction, this vast continent contains millions of inhabitants who depend absolutely on the burro and llama for transportation.

THE GREAT FLOATING DOCKS OF BERMUDA AND ALGIERS, LA.

Particular interest attaches just now to the question of dry docks, on account of the fact that the "Illinois," the latest of our battleships to be put in commission, is now in drydock abroad, for the repair of serious damage done to her hull by running aground while she was on the European station. It was this fine vessel that was chosen to represent the United States at the great naval review at Spithead, which was organized as part of the ceremonies attendant on the coronation of King Edward VII. After the postponement of the review, the "Illinois" had the misfortune to run aground on rocky bottom and tear open the forward part of her hull, thereby flooding one of the forward compartments and rendering extensive repairs in drydock necessary.
This sudden crippling of our finest battleship will naturally direct renewed attention to the two great floating drydocks which have recently been constructed and placed in service. One of these, constructed for Bermuda, was built by Messrs C. S. Swan \& Huster, of Wallsend-on-Tyne; another, which is now at Algiers, La., was built by the Maryland Steel Company at Sparrow Point. Both of these were designed by Messrs. Clark \& Standfield, London. Although the Bermuda duck is actually the largest, the Algiers dock is the more powerful. It may be interesting here to insti tute a comparison between these two and also the old floating dock, which was towed out to Bermuda in 1869 , and which is to-day one of the largest floating docks in the world.

	New Bermuda Dock.	Algiers	Old Bermuda
Length of dock	545 feet	525	381
Length of end pontoon	120 feet		
Length of middle pontoons..	.. 300 feet		
Width between fenders......	.. 100 feet		84
Width of pontoons..	96 feet		
Height of vertical walls......	.. 53 feet 3 in .		
Length of vertical walls......	.. 435 feet		
Thickness of wall........	13 feet 1 in .		
Total width of structure..	126 feet	100 feet	123 feet 9 in .
Lifting power up to deck			
level..	15,500 tons	18,000 tons	8,000 tons
Extreme lifting power.	17,500 tons	20,000 tons	10,000 tons
Weight of hull....	6,500 tons	5,850	

Extreme lifting power..
When it became evident that a new dock must be made at Bermuda the Admiralty were anxious to get an ordinary graving dock made. Borings were made, but everywhere the geological formation proved unsuitable for the purpose. The old dock was rendered obsolete, not from decay, but because ships have increased so greatly in weight and in dimensions.
The simplest definition of a graving dock (by which we mean the sunken or excavated type) is a hole dug out in the foreshore below high tide level, with its seaend closed by a caisson or gate. The vessel is floated into the excavation, the ends closed by a gate, and the water then pumped out. Similarly a floating dock may be defined as a box built of wood or steel, which is allowed to fill with water so that it sinks. The vessel to be docked is drawn over it, the water in it pumped out, and by its buoyancy it lifts the vessel out of the water.
The modern floating dock is "self-docking." This means that it is capable of taking itself to pieces and lifting any one part out of the water when necessary for cleaning or repair. This is a very necessary condition in a hot climate, where floating structures are exceedingly liable to have their bottoms incrusted with marine organisms and slime.
The new Bermuda floating lock consists mainly of five chief parts, comprising three pontoons and two side walls. The three pontoons form the bottom of the dock and are placed between the side walls; they form the
main lifting portion of the dock. The two side walls are chiefly designed to give stability and to afford control over the dock in sinking it to take the ship on board; they also do some of the lifting work. The center pontoon is 300 feet long and is rectangular in shape; the two end pontoons are each 120 feet long and have each 70 feet of the length rectangular in plan, the outer portions being beveled off in a way that will facilitate towing. The side walls are each 435 feet long and 53 feet 3 inches high. For the purpose of admitting light and air under the bottom of a vessel when docked there are two large openings in each of the side walls. The ends of the side walls are beveled off to carry out the lines of the end pontoons. The vertical side walls are firmly attached to the pontoon bottom, being fastened by double fish-plates and tapered pins, to take which there are steel lugs built into the structure, both of the walls and pontoons.
The new Bermuda dock is both longer and heavier than any floating dock that has ever before been built. It is 545 feet long, and its clear width between rubbingfenders is 100 feet. As the side walls are a little over 13 feet across, the total width of the structure is somewhat above 126 feet. The lifting power up to the floating deck level is 15,500 tons; but by using the shallow pound this can be increased to 17,500 tons. The weight of the hull is 6,500 tons. The sides or walls are high enough to enable a vessel of 32 feet draught to be berthed on the keel block, the latter being 3 feet 6 inches high.

The new dock is capable both of docking itself and also of docking a battleship or cruiser. Each of the side walls can be lifted separately out of the water, and each of the pontoons can be lifted separately, so that any portion of the dock can be examined, cleaned, repaired or painted as occasion requires.
For the docking of a vessel the dock is sunk to a certain depth by taking in water ballast; the ship is then floated over, and, the water being pumped out, the vessel is lifted out of the water, thus allowing of repairs being made in her under portions. The three pontoons are divided into 40 pumping divisions, and of these 32 are water-tight. The side walls have also 8 water tight compartments in each. All these divisions are provided with a separate pipe each, with a valve. All the pipes on each side lead directly into the main drain of their respective side. There are four 18 -inch centrifugal pumps in each wall, and any one pump can empty all the compartments in its half of the dock. If the whole of the pumping machinery on one side wer to break down, the other half could still empty the dock, though, of course, at a slow pace. The pumps are driven each by a separate compound condensing engine directly attached.
Although the new Bermuda dock exceeds the Algiers structure in length by 20 feet and in weight by 650 tons, the latter has greater lifting capacity. It recently lifted the United States battleship "Illinois," a vessel of 11,565 tons displacement. Up to positive level it will raise 18,000 tons, and if the "pound"' be utilized the capacity could be increased to 20,000 tons.
The battleship "Sans Pareil" was selected to test the new dock. This battleship is a sister ship to the illfated "Victoria," rammed by the "Camperdown" in the Mediterrean in June, 1893. She is 340 feet long and 70 feet wide. Her armor is 18 inches, tapering to 16 , and she carries ten $161 / 4110$-ton guns in one heavily armored turret well forward. These guns are the largest carried in any fleet. The "Sans Pareil" entered the dock about 12 o'clock, and she was then drawing about 27 feet 4 inches.
At a little after 2 o'clock the pumps were started and they were kept at work until the battleship was lifted out of the water and the pontoon deck was high and dry. The lifting of the "Sans Pareil" took about an hour, and the port guardship at Sheerness was then towed back to her moorings. During the docking care had to be taken that both sides of the dock rose equally, and on this occasion all fortunately went well.
The new Algiers floating dock recently successfully lifted the United States battleship "Illinois," of 11,565 tons displacement, and a word may be said here as to the different methods employed for docking vessels in the British and American navies. The American plan is to attach to the bottom of the ship exterior longitudinals or stout side keels. Rows of blocks are placed for these in the dock, as well as the usual blocks for the central keel. The vessel then sits upright on level blocks and requires no shoring except for centering. The British method is to poise the ship on her keel and prop it up by a large number of raking struts and bilge shores. The former plan certainly saves time, and it is stated that the docking keels have no appreciable effect on the speed of the ship with which they are built. Those who are against the American plan argue that as a ship passes very little of her time in dry dock it is better that such a weight should be at rest in one drydock than that hundreds of ships should have to transport the buriden all over the world.
In certain quarters there has been, and is perhaps still, a prejudice against floating docks, but the successful docking of the "Sans Pareil" and the "Illinois" in
the two new great docks should do much to convince critics that the floating dock is capable of performing any work that may be required of it. It would perhaps surprise many people to hear what an amount of sea these docks can stand. Floating docks have been moored in the open Pacific for a number of years, and we learn that they have succeeded in dealing with vessels in quite a respectable swell. The two floating docks of this type have often been at work in bad weather when the graving docks in the vicinity have been unworkable
London, Eng.

British Trade

Notwithstanding the heavy competition which Great Britain is experiencing in the shipbuilding industry according to the recent issued official statement of navigation and shipbuilding, the United Kingdom is easily holding its own in this ramification of trade. During 1901775,681 tons of vessels were built in British yards, being an increase of 40,000 tons over the tonnage for the previous year. The total tonnage of British merchant shipping in 1.901 was $9,524,496$ tons, or 130,000 tons in excess of what it was in 1900 . Vessels totaling over 200,000 tons were built for foreign buyers. A very comprehensive estimation of the extent of British shipping may be gathered from the fact that during 1901 more than one-half of the total imports were brought on British vessels, and two thirds of the exports were carried on vessels flying the English flag.

Wreck of the World's Largest Locomotive. the Santa Fé Railway to haul freight over the Step Raton Mountain Road, was wrecked on July 29. In company with two other engines the giant locomotive was taking a very long train over the mountains. Three times the train broke in two. When the last break came the long train started to back down the steep grade and the giant locomotive was unable to hold it. The brakemen, after having tightened every available brake, were finally compelled to jump for their lives. After a mad downward plunge of three miles the train jumped the rails on a bridge, 50 feet high', near Seymour. The engine and all the cars plunged down the cañon. The engine is the largest freight engine in the world.

The Krupps and the St. Louis Exposition.
News comes from Berlin that the Krupps have refused to exhibit at the St. Louis Exposition because the United States did not purchase the great gun which they sent to Chicago in 1893. Whether any reliance is to be placed upon this piece of information cannot at present be determined. At all events it cannot be denied that since it is against the policy of this country to confer decorations, many exhibitors will have noth ing to show for their trouble. It is suggested that Emperor William recognize the best German exhibitor by bestowing orders upon them. No doubt this would overcome a difficulty which may hamper the officials of the exposition.

The Current Supplement.

The current Supplement is opened by a well-illustrated article on the French sardine industry. The passage of the Panama Canal Bill has been of interest not only to Americans, but also to Europeans. For that reason a discussion of the canal from the English point of view is timely. An article written from such a point of view will be found in the Supplement. Dr. Marcus Benjamin has prepared a digest of the public lectures read at the American Association for the Advancement of Science. "Counterfeiting and Coun-terfeiting-Protecting" is the title of a paper which tells much thrat is probably new to the general public. Mr. Howard Crosby Butler writes on the "Sculpture of Northern Central Syria." His paper is illustrated by photographs. Two natural history articles, the one on "The Dragon-Fly's Flight and the Means of Its Accomplishment," and the other on "The Nesting Season of Birds of Prey," are both entertaining and valuable. Just now the claims of rival inventors in the field of wireless telegraphy are attracting much attention in the daily press. Consequently a very exhaustive and very fully illustrated paper on the " Pa ternity of Wireless Telegraphy" is of rare interest The miscellaneous notes and consular information will be found in their usual places.

A portable garbage crematory, the invention of Morgan J. Cragin, of Chicago, was recently tested at a New York apartment house. One of the features of the apparatus is the employment of a grate constructed of hollow piping, by means of which it is possible to combine the disposal of the garbage with the heating of water. In this manner it is possible to use garbage as a fuel.

Sir John Aird announces that the last coping stone of the Nile Dam at Assouan was laid on July 30.

Electrical Notes.

It is announced that a company has been formed with a nominal capital of $£ 175,000$ for the purpose of operating the Armstrong-Orling system of wireless telegraphy. Factories are to be erected in Bucking. hamshire and in France. The step is the outcome of experiments made in Hughenden in the autumn of 1901, when electrical impulses were sent through the ground without wires and without poles. It will be remembered that the Scientific Anebicar described very fully how, during the experiments, a torpedo was moved at will to the right or left by pressing a releasing lever of a small transmitter.

Osmium has the highest melting point of any metal, viz., about 2600 deg. C., and it can, therefore, be used at a higher temperature than carbon in an incandescent lamp, making the efficiency correspondingly higher. The lamp is the invention of Dr. Auer von Welsbach, and the Auer Company, who are making it, will shortly be letting out lamps on hire. Owing to the rarity of osmium, it is found worth while to emthe rarity of osmium, it is found worth while to em-
ploy the metal remaining in the filaments after they have burned out. The chief difficulty appears to be the low resistivity of osmium. Owing to this, up to the present lamps of 25,35 and 50 volts only have been produced, and the smallest candlepower of a 35 -volt lamp has so far been 40 . The lecturer described experiments made with a 20 -volt lamp at different pressures. At 20.5 volts the lamp gave 22 candle power, and required 1.48 watts per candle. At 25 volts the efficiency rose to 0.99 watts per candle and the candle power to 46 . At 30 volts the figures were 0.654 watts per candle and 99 candle power; at 35 volts 0.487 watts per candle and 171 candle power; at 40 volts 0.38 watts per candle and 275 candle power; and at 50 volts 0.32 watts per candle and 460 candle power. At this pressure the lamp burned out. A life test was made on another lamp at its normal pressure. This lamp required 1.5 watts per candle at the commencement, dropped gradually to 1.36 and 1.32 watts per candle, and finished at 1.4 watts per candle after 1100 houm3. During this time the candle power, which started at 14.8 , rose gradually to 16.8 after 250 hours, and then dropped to 15 candle power after 1000 hours' use.
One of the most important substitutions of electric for steam traction in Italy has been carried out by the Mediterranean Railroad Company upon a system of lines starting from Milan. The main branch goes from Milan to Gallarate, 25 miles, and thence start three separate branches which supply the Lago Maggiore region and have their termini at Arcna, Laveno and Porte Ceresio, with lengths of 16,19 and 20 miles. The Milan-Gallarate line passes through a densel y populated region and the traffic is constant throughout the year, while the three branches supply the tourist traffic, which is considerable in the summer and auturin. In order to meet the competition of the local tramway lines the company was obliged to change its system. Since the new system was inaugurated last October the passenger traffic has increased 50 per cent. The direct-current system is used for the motors, and the trains have a speed of 50 miles an hour. The energy is supplied by a hydraulic and a steam plant on the Tessin, which generate 3 -phase current at 12,000 volts, and this is fed to the line by sub-stations at 650 volts. The third-rail contact system is used. The hydraulic plant, at Tor navento, is under construction. Meanwhile the road is fed from the steam plant. A fall of 25 feet is obtained here by a branch canal, which delivers 140 cubic yards per second, representing 11,000 horse power. The dam upon the Tessin is constructed upon the Poirée movable system, with 179 sections. The canal, which is over 40 feet wide and 12 feet deep, is navigable. The station has eight large turbines, which drive the alternators, and two smaller ones for the exciters. The main turbines generate 1200 horse power and the dynamos 742 kilowatts. The steam plant will be used as a reserve when the hydraulic station is finished; it has eight boilers and three horizontal Corliss engines of 1400 horse power, which drive triphase alternators. The latter give 13,000 volts at 25 reversals. From the station the current is transmitted by two main lines at high tension, and these supply the five sub-stations for the road, where the current is transformed to 420 volts direct current by sets of rotary converters. The third rail, carrying the current, is supported along the road every 12 feet upon earthenware insulators protected by a cast-iron cap which receives the rail flange. The rolling stock consists of 20 motor cars and 20 trailers, of 55 feet length, having two firstcars and 20 trailers, of 55 feet length, having two first-
class compartments containing 24 passengers. and two class compartments containing 24 passengers, and two
third-class containing 39. The cars have a vestibule at each end, in which is also the motorman's cab. The motor cars will hold in all 75 passengers, and the trailers 90 ; the former have four Thomson-Houston motors per car, which take current from the side rail by four sliding contacts. The express trains make a speed of 55 miles an hour, and the ordinary trains $\mathbf{2} 0$. The road started last November with 38 trains per day, but since January 42 trains have been running.

Engineering Notes.
Considerabie prominence has lately been given in the press of the world to the fact that not a passen ger on the English railroads was killed during the year 1901. It may prove of interest to know that on the Mexican National Narrow Gage Road, from Corpus Christi through Laredo to the city of Mexico, with its branches amounting to more than 1,200 miles of operated road, for more than twenty years no passenger has been killed. This, in the face of the fact that this road climbs more mountains, turns more curves than any road in the United States.
According to Engineering News, a special trolley car for conveying fire engines is in use at Springfield, Mass. The engine is carried on a platform only nine and one-half inches above the top of the rail, mounted on a truck at each end. The front truck is detached and the front end of the platform lowered to the ground when the engine is to be loaded on the car. Platforms over each truck afford space for firemen and equipment. The length of the car over all is 30 feet $101 / 2$ inches, and its net weight is 14,000 pounds. The Springfield Fire Department has loaded an engine on one of these cars in two and one-quarter minutes from the time the car was in position to its being ready to start, and has unloaded an engine and attached the horses to it in one and one-quarter minutes.
Niost of the roads reaching the recently developed oil fields in the Southwest are actively engaged in making the necessary changes, or have preliminary arrange ments under way, whereby oil will be used as locomotive fuel on the equipment operating locally in this territory. There is economy in the use of oil in comparison with coal in this district, where the cost of coal is above and the quality below the average, but just how much is as yet undetermined from reliable information. Conservative estimates, says the Railway Age, place the saving at from 15 to 20 per cent. This reduction is not based on the relative cost of actually producing one horse power by use of coal or oil as fuel, but involves the comparative cost of the handling of both, and it is from this source that the greater proportion of the economy must be looked for, as in some instances the actual cost of the amount of oil used for fuel has exceeded the cost of coal in performing similar service. This may possibly have been due to improper combustion, but it illustrates the fact due to improper combustion, but it illustrates the fact appliances for using oil to effect an economical consumption.
The production of pig iron in the first half of 1902 was $8,808,574$ gross tons, against $7,674,613$ tons in the same period of 1901 and $8.203,741$ tons in the second half of 1901. The production of pig iron in the United States for the first half of 1902 was more than a million tons greater than the production of either Great Britain or Germany during the whole year of 1901, the total production of these countries being $7,761,830$ and $7,736,663$ gross tons during that period. The production of Bessemer pig iron during the first haif of 1902 was $5,105,932$ gross tons, against $4,582,187$ tons during the same period of 1901 . The production of basic pig iron during the first half of 1902 was $1,053,274$ gross tons, against 645,105 tons in the same period of 1901. Charcoal pig iron production for the first six months of 1902 was 186-098 gross tons, against 194,231 tons in the same period of 1901. The stocks of pig iron unsold in the hands of manu facturers on June 30, 1902, amounted to 29,861 tons against 70,647 tons on December 31, 1901, and 372,560 tons on June 30, 1901. The total number of furnaces in blast June 30, 1902, was 286, against 259 at the same period of 1901.
Mr. Charles Rous-Marten recently read a paper be fore the English Society of Engineers, in which he stated that a large proportion of English locomotives are 20 years old, and that some are even 30 and 40 years old. British locomotives only 20 years old, he remarked, were regarded as comparatively modern. While the longevity of these engines certainly spoke well for the material of which they were built, it could not be denied that they were out of date and unfit for modern railway purposes. The loads of the older engines were limited to five-sixths of that hauled by modern machines; in other words, six engines with six separate trains were required to perform the work of five improved machines on roads already congested. Furthermore, the cost of labor and working expenses were increased. In comparing English with American practice, Mr. Rous-Marten stated that our engines were not expected or even desired to last more than 10 or 15 years at the most, and that they were then displaced by new engines fitted with modern improvements and possessing a large margin of power. Al though he deemed the extreme longevity of English locomotives distinctly undesirable, he also questioned the wisdom of using inferior material and workmanship which, it must be confessed, is often characteristic of the American locomotive.

A Substitute for Coal-Burning Appar
To the Editor of Sciextific american
Since the coal strike has promised to interfere with the domestic supply of coal for the winter, I have scanned your columns each week for advertisement of hydrocarbon burners, suitable for ranges and the ordinary house-heating steam boiler, but in vain. Do you not think the present a fine opportunity for manufacturers of the above apparatus, in all tis branches thereof, to push the sale of such article; And, doubtless, many who could successfully use oil for fuel would not return to coal. In my house. a frame dwelling in a nearby Jersey town, I have a range connected to a hot-water tank, water-back or boiler, etc., and a cast iron "pot" form of steam boiler supplying eleven radiators. As prudence in tryin; a new burning agent would dictate, beginning early to investigate the subject, I appeal to you to help me to get in touch with manufacturers of oil burners for ranges and small steam heating plants
F. T. Camp,

Asst. to Supts. Construction L. S. S. New York City, July 31, 1902.

Gravitation as a Canse of Volcanic Action.

To the Editor of Scientific American:
In relation to the action of the sun and moon on intensifying volcanic disturbances, it seems quite possible that a volcano on the point of eruption would be more liable to burst forth with the combined action or gravitational pull of the sun and moon acting in conjunction on a part of the earth that stood squaro before the sun. The action, if any, must be due to the gravitational pull or tidal effect on the lignid interior of the earth.
The electrical disturbances being of a serombar nature, no doubt caused by the heat from the volus. the planetary influence or their positions are insignificant as compared with the attraction of the sin and moon. With the possible exception of the planet Venus its gravitational pull, although slight, if added to that of the sun and moon while in conjunction might be the means of opening one of nature's safety valves. As for comparison pass a large magnet over the safety valve of a steam boiler that is on the point of blowing off and note the effect.
On referring to the almanac we find the sun and moon May 7 in conjunction almost directly overhead of the island of Martinique, and allowing a few hours tidal lag of the liquid interior we find the greatest effect at about the time Mont Pelée blew up. Similar effect at about the time Mont Pelee blew up. Similar
conditions are again due on the 3d of August. And conditions are again due on the 3d of August. And
if the pressure has not been greatly reduced by the last eruption we may look for increased activity at about that date.
A. H. Bariser.

Watertown, N. Y.
The Telephone as a surgical Instroment.
According to a London medical journal, several Londion hospital surgeons are now using the telephone, whenever they have occasion to probe for bullets, or other metallic objects embedded in the body of a person. The receiver of the telephone is placed on the head of the operator, and the patient is placed in the usual manner, in contact with a plate; the general medium employed being a wet sponge or some paper saturated with a saline solution, which is spread over the plate. The latter is connected with a telephone by wire, and the probe after it has been introduced into the body vibrates as soon as the foreign metallic substance comes in contact with it. The probe is also con nected with the telephone by a wire, and thus no such blunder is possible as sometimes happens when an or dinary battery is used. When a telephone is used in this way, the plate acts as one pole and the probe as the other. Needles, bullets, grains of shot, and pieces of steel and copper have been easily located by use of this simple method. The only instances when the telephone does not work satisfactorily are when the objects to be located are of the same metal as the probe. French and German surgeons have been following these experiments in London, with the intention of introducing the same method into the hospitals of Berlin and Paris.

Abandonment of the oiled Roadbed.

After having oiled their roadbed for three years for the purpose of preventing dust, the Boston \& Albany road has decided to abandon the practice. The oilsoaked sand and fine cinders have been removed and in their place broken stone is now used. The reason for the change is to be found in the bitter complaints which have been received by the railway company. A particle of the oil-laden sand sticks to whatever it strikes. Women have protested against the spattering of oily dirt. That oil is certainly a most effective dustpreventer was graphically shown some time ago in the olumns of the Brievtific Avificiay by the compare tive illustrations of oiled and unoiled roadbeds.

THE NEW MARCONI WIRELESS TELEGRAPH STATION

 AT CAPE BRETONIt will be remembered that immediately after the first successful transmission of signals across the ocean by the Marconi wireless system, the work of construct ing three stations, two in America and one in England, for the regular transmission of commercial messages, was put in hand. The European station is situated at Poldhu, Cornwall. On this side of the ocean the station used in the original experimental work was erected on a lofty point at the entrance to St. Johns Harbor Newfoundland, but on account of the opposition of the Anglo-American Telegraph Company, which holds a monopoly of transatlantic telegraphic rights in Newfoundland, Marconi abandoned that site and selected two new locations, one on the easterly coast of Cape Breton, Nova Scotia, and the other at Cape Cod, Massa chusetts. The station at Glace Bay, Cape Breton, of which we present a group of illustrations, is located on a promontory of land, whose surface lies about 70 feet above mean high water. The plant consists of four huge towers for carrying the vertical wires, and a group of one-story buildings arranged at the base of the towers, in which are contained the powerful elec trical plant which has been specially constructed for the station
The present article is devoted to a description of the four great towers, which take the place of the familiar single mast that is used where transmission is to be conducted over moderate distances. It will be under stood that for the regular transmission of commercia messages over distances measured by the thousand miles a vastly greater capacity is necessary, both in the generation and the reception of the Hertzian waves, than suffices for the ordinary messages over from 50 to 100 miles, of which we have heard so much of late. Hence the truly gigantic proportions of the aerial system which is herewith illustrated. The necessary height for the vertical wires has been at tained by the erection of four braced wooden towers, each 215 feet high, at the four corners of a square which measures about 200 feet on a side. Each tower consists of four legs, built up of 3×12-inch plank, the legs being braced together on each face of the tower by 3×9-inch braces. The planking of which the legs are built is latd up so as to break joints as much as possible and secure the approximate strength of a solid 12×12-inch stick. The legs are spaced 30 feet from center to center at the base and 9 feet from center to center at the top platforms. The foundation of each tcwer consists of a mass of concrete formed in a hollow square, in which are embedded the 12×12-inch sills and the first panels of the lateral bracing. In section this concrete mass is 6 feet in width by 8 feet in depth, the external dimensions of the foundation being 36×36 feet and the internal dimensions 24×24 feet.
The experience had with previous attempts to carry a set of lofty aerial wires, more particularly that at Cape Cod, which was wrecked in a heavy gale, proves that the weakest feature in those structures was the system of guy-ropes with which they were held in position. The fall of the Cape Cod structure was due to the parting of the extreme weather guy-ropes, the method of tying the towers adopted having been such that practically the whole strain fell upon a few stays In the present case the towers are tied in such a way that the stress on each tower will be transmitted directly to its own set of cables, every one of which will be doing useful work. The wires are carried from three points on the towers (the lower and upper third and the summit), all wires having an inclination of 45 degrees. The ropes are all made of the best plow steel, the majority of them being $21 / 2$ inches, and a few 3 inches. The method of carrying the aerial wires upon the structure is as follows: Four 3 -inch cables are strung from platform to platform at the top of the towers, as shown in the accompanying diagram, and from these cables depend 150 aerial wires. These are drawn together and united in the center of the tower into a single cable, which descends vertically to enter the transmitting and receiving house below. The average length of the aerial wires before they meet in the common central cable is about 140 feet.
During a recent visit of a member of the staff of the Scientific American to the Cape Breton station Mr. Vyvyan, the engineer in charge of the station, stated that Marconi has ceased to use the coherer
and has substituted a receiver of much greater relia bility and capacity. It was always difficult to secure an absolutely reliable coherer of the old type, since out of a hundred of these little instruments thirty or forty might be good, thirty would be poor and thirty would

ONE OF THE 215-F00T TOWERS, SHOWING DETAILS OF CONSTRUCTION
be absolutely unusable. The new method of receiving adopted by Marconi has a capacity should it be required of several hundred words a minute. This improve ment, taken with the great power and capacity of the plant, render it practically certain that, when in the

DIAGRAM SHOWING METHOD OF STRINGING THE 150 AERIAL WIRES AT THE MARCONI CAPE BRETON STATION.
course of a few weeks the station is opened, it will prove to be capable of dealing with any class of commercial messages that may be required. Mr. Vyvyan further stated that it would be possible to send and receive messages to and from San Francisco, the earth

the new marconi wireless telegraph station at glace bay, cape breton
resistance being very much less than is popularly sup posed. The power of the new installation was far greater than would be demanded for transmission to Europe, and it is probable that before the close of the present year messages will be sent direct from Cape Breton or Cape Cod to Cape Town, South Africa.

The Edison Portland Cement Plant.
Thomas A. Edison's improved process of manufacturing cement was put to practical use last week, says the Orange Journal, when active operations were begun in the Edison Portland Cement Company's new plant at New Village, near Stewartsville, Pa. Mr. Edison and directors and stockholders of the new company were present when the ponderous machinery was started for the first time. More than 300 men will be employed at the start, and as this force will be gradually increased the industry will mean much to Stewartsville and vicinity.

After conceiving the idea of improving upon the old process and discovering an inexhaustible deposit of cement rock at Stewartsville, Mr. Edison formed a company. This was more than two years ago, and since that time about sixty-six men have been at work constructing the twenty-seven buildings and installing the machinery. The plant, which is one of the largest of its kind in the United States, covers a space half a mile long, and one-quarter of a mile wide. It has thus far cost over a million and a half dollars. The machinery is built for a capacity of 10,000 barrels per day; but the buildings were made to accommodate half that amount at the start, and if the business proves successful the plant will be increased to its fullest capacity in a few years. There are twenty seven buildings and the roasting-house is separate from the others. All the others are connected by a deep tunnel half a mile long, fifteen feet wide and twenty-five feet deep. The stock-house contains two 600 -foot corridors, one above the other, and.connected by big flues. There the cement rock will be roasted and prepared for the refining process. From that building starts the tunnel mentioned. The raw material will be conveyed by means of an electric railroad through the tunnel from the stockhouse to the crusher, and thence to the dryer. The tunnel is made of solid rock walls and paved with concrete. The dryer is a simple stone shaft twenty feet square and forty feet high. Inside are a series of drying pans.

The crusher is located in a building four stories high, the two sides being of solid masonry, ten feet thick at the bottom and five at the top. The floors are of steel construction. The machinery is capable of crushing 25,000 barrels of cement rock every twenty four hours. The rollers have a pressure of 100,000 pounds to the square inch. In order to get results Mr. Edison made use of a discovery by means of which, with the aid of pulleys worked in connection with air compressors, he could get the great pressure directly upon the steel rollers with less than 1000 pounds pressure on the bearings. All the cement rock will be transported through the tunnel as it is moved from one building to another. The raw material is received at the roasting-house and there the cement rock will be roasted and prepared for the secret refining process invented by Edison, and which is expected to revolutıonize the cement industry. Before the product is again handled by hand it will automatically travel several miles through the many buildings. One hundred and twenty-five motors are used in the plant. When the last stage of the process is reached the cement will flow into barrels, in a building through which several railroad tracks pass, thus permitting the barrels to be loaded as fast as filled. All the buildings are of steel, covered with corrugated iron and painted black.

The agricultural dis tricts of Gujarat, British India, are experiencing a plague of rats. The rodents have consumed the crops of sowed grains, and have caused much suffering among the inhabitants. In some places the people have dug out the accumulated stores of grain from the rat-holes, and found as much as ten pounds col lected in one burrow. So acute has the crisis become that the government offers large rewards for the extermination of the pest. But the object of the government has hitherto been largely defeated ow ing to the superstitions of the natives, who per ist in their original theory that the unusual numbers of rats represented souls
of the departed in the late famine, and refused to make any attempt to exterminate them. This curious apprehension, however, has now to a great extent been overcome and now many thousands of rats have been killed in various sub-divisions, but it is an open question whether anything but the next heavy downpour of rain will bring about any appreciable decrease in numbers. The method adopted by the natives in destroying rats for the reward is somewhat surprising, although simple and apparently efficacious. At night a party goes out with \& lantern and armed with bows and arrows. The rats are said to be attracted by the light, and the sportsmen, armed with bows, shoot them as they cowe within range. It is no difficult matter to discover the animals, since the ground is honey combed with their burrows, and they teem in their thousards.

Dispensing With Platinum.

The piece of platinum foil which forms part of the outfit of every beginner in chemistry, and of most working chemists, has become so expensive of late that acceptable substitutes are worth considering. Very pure silver is actually superior to platinum for most of the uses to which such pieces of foil are usually put. It must be very pure; the thick sheets used as anodes by electroplaters are pure enough, and of a convenient thickness. Or, any chemist can easily purify his silver and then get a jeweler to meit and roll it.

When used for evaporating solutions to dryness the silver is liable to be attacked by oxidizing acids, but this action can be prevented by the addition of ammonia, which is generally unobjectionable. For fusions, however, the silver is altogether preferable. Being unaffected by alkalies, it can be used with caustic soda, instead of the carbonate, and thus a lower temperature suffices; manganese and chromium fusions are readily performed. The silver is so cheap (a piece an inch square and a sixteenth thick should cost about twenty cents) that thicker, and hence stronger and more durable pieces can be used; with

VARIED MODERN USES OF THE AUTOMOBILE.
Apart from its employment as a vehicle of pleasure, the automobile is rapidly entering the sphere of usefulness in the most varied classes of work. The advantages of these machines are being increasingly appreciated and it. is only a matter of time when the public will largely discard the horse for labor purposes and purposes and adopt the motor vehicle in its place. A most striking example of this competition with the horse will be seen in the accompanying illustration, which shows an automobile drawing a field cultivator. The automobile as shown is provided with wheels especially adapted for trav eling over a rough field. The front tires are very broad so as to prevent the wheels from sinking into the soft earth; the rear or driving wheels have tread projections, which insure a good hold and prevent them from slipping. This automobile takes the place of a trac tion engine, and can be attached to any farming machine desired. Aside from its agricultural uses the vehicle may be jacked up and its wheels replaced by rubber-tired wheels, when it will be found a useful and

the automobile as used for field cultivation.
such heavy pieces a strip an eighth of an inch wide may be cut so as to project as a handle, and the assay is thus freed from liability of contamination by material from the tweezers which hold the foil in the flame-generally a great nuisance with platinum.
The platinum wires, also, which are used to hold salts in a flame for spectroscope work, may be re placed by iron-with advantage, for the iron may readily be thrown away if they get mixed or in crusted.-W. P. White, University of Wisconsin.

The Largest Known Tree.

In last week's Scientific American mention was made, in the article on lumbering in California, of what was considered the largest tree in the world. News now comes from Fresno of the discovery of a tree which probably exceeds in size any that has so far been known. This newly-found tree, measured six feet from the ground, is 154 feet and 8 inches in cir cumference, from which it follows that it is about 50 feet in diameter. Fortunately the tree stands on the Government Reserve, and will therefore be spared the attack of the insatiable ax.

The Ardennes Automobile Content.
The great Ardennes automobile race was won by an Englishman, Mir. Jarrot, who covered the distance of 318 miles in five hours and fifty-three minutes, or at the rate of 57 miles an hour. The course, more than fifty miles in circumference, had to be circled six times. There were many accidents, but none resulted fatally. Americans will be pleased to learn that Mr W. K. Vanderbilt, Jr., in a Mors car, finished third. M. Gabriel finished second.
comfortable conveyance for all purposes. In contrast with this peaceful use to which the automobile is put it will be interesting to note the motor built for war service in South Africa. These machines, here illustrated, were recently awarded first prize in a com. petition instituted by the British War Office. The Thornycroft Standard, which is essentially a motor truck, is capable of carrying three tons and drawing, further, two tons on a trailing vehicle. It is fitted

With a patent central-fire water-tube boiler especially arranged for cleaning the internal surfaces-a most important feature, when, as is frequently the case, hard water only can be obtained. This motor, however, differs from the ordinary type only in the wheels,

THE AUTOMOBILE AS APPLIED TO RAILROADING.
which are built of solid steel and are somewhat larger in diameter with wider tires. The second vehicle is of an experimental type, especially adapted for use cn rough roads and uneven ground, the steering axle being capable of unusually great angle of tilt, while the driving and steering wheels are of a large diameter. The boiler and engine are situated directly over the driving axle, the carrying platform being provided at the fore part of the vehicle. This arrangement gives the wagon great power to get out of holes in soft ground, etc., and enables it to exert its full power as a tractor when it is not itself laden. The boiler and engine are of the same pattern as the Standard motor. It is supplied with a winding drum, and a hundred yards of steel wire. A spring draw-gear is also provided, fitted with the standard military draw hook. The boiler is arranged so that the fire bars can be easily replaced by the liquid fuel burners, which are either of the spraying or vaporizing type, according to the nature of the oil which may be available. A condenser is provided, but it is so arranged that it can be short-circuited or removed without interfering with other parts of the machinery.
Steam vehicles are also being used for passenger service in large cities. We illustrate a steam propelled service in large cities. We illustrate a steam propelled
omnibus of the Turgan-Foy type which is now in use in France. The boiler is placed in front, and the engines, which are horizontal, rest upon the truck-frame under the conductor's bench. Two compound engines are used, and each drives one of the rear wheels directly by chain gearing and the differential is suppressed, giving a decided advantage. The boiler has about 12 square yards of heating surface, with a feedwater heater in the stack and a special superheater in the fire-box, giving a great vaporization and a consider able economy of water. The boiler and its accessories and valves is light, weighing only 1400 pounds. The engines have cylinder diameter of 3.6 and 7 inches, with 6.2 -inch stroke, and 600 revolutions per minute. Each will give 20 horse power. A good test of a Turgan-Foy hauling wagon was made at the late military maneuvers in the eastern part of France, where it

TURGAN-FOY STEAM CARRIAGE FOR PASSENGER SERVICE IN CITIES.
did excellent service during 21 days with scarcely a stop. The military commission, directed by Com mandant Ferrus, had an interesting series of trials made, and it was shown that the tractor, carrying itself a load of 2 tons, could easily draw 5 artillery wagons forming a train 90 feet long, at the rate of 6 miles an hour. These wagons weighed 4 tons in all, which with the 2 tons carried, gave a total of 6 tons During the trials it was found easy to start the tractor on grades of $71 / 2$ per cent.
The automobile for railroad inspection represents another very novel use to which these machines are put. This automobile, which is of De Dion make will carry two or three persons along a railroad for in spection purposes, or in roads that have but small traffic it will be found useful for postal services. The frame, which is of steel tubes, is exceedingly simple. At each of the two extremities there are two handles for lifting it and putting it on or taking it off the rails. This operation may be performed by one person. The motor, which is of $31 / 2$ horse power, is of the same type as that of the Nouse's voiturettes. It is provided with the firm's new carbureter.

The transmission is effected by gearings, with the interposition of a friction clutch fixed upon the driving axle and controlled by a lever placed to the right upon the frame and within easy reach of the hand. After the apparatus has been thrown into gear, the starting is effected by means of pedals. The four wheels, which are of the same size, are 24 inches in diameter. They are of aluminium shod with iron, and are provided with six spokes. Two lever brakes, one of them of great energy, act respectively upon each of the hubs, and can be operated, according to circumstances, by one or two persons. Their power is such that it is possible totally to block the wheels which then slide a distance that varies with the speed at which the vehicle is running. The driver is seated in the same way as upon an ordinary tricycle His hands rest upon a stationary handle bar designed to serve simply as a support, since the steering gear is done away with, as is also the differential, which is absolutely useless in view of the wide radii of the curves of the railway tracks.

The front of the apparatus is provided with a very comfortable seat capable of accommodating two per sons, or with a large box. The total weight of the apparatus is 660 pounds. It can be furnished with var ious gearings to permit of varying the speed from 24 to 36 miles an hour. The experiments made upon the Valmondois Line have given very satisfactory results - We are indebted to our English and French correspondents for some of the above information.

A New Artificial Fuel.

It is gradually dawning upon engineers the world over that the world's coal supply is not likely to last for ever, and that the time is not very far distant when artificial fuel must be resorted to. At the present time the need of an efficient artificial fuel has been brought home to us, not becaus of any fear of the world's suppls of coal giving out, but because of the prohibitive prices of anthra cite, due to the strike of the coal miners. Inventors innumerable have drawn upon their chemical knowledge in the endeavor to pro duce a fuel which could compets with coal in efficiency, if not in price. Not so many years ago prize was offered for a method o solidifying petroleum, or reduc ing petroleum to such form that it could be carried about readily and used for fuel in fire-boxes

The research thus stimulated resulted in the patenting of several fuels, among which was one invented by Mr. G. M. Randall and introduced by the Randall Syn thetical Coal Company, of Boston, Mass. The fuel in question is a combination of peat and petroleum
The peat is raised from the bog by a clam-shell digger or diredger. It is then conveyed to a disintegrator which separates all coarse material such as roots. From this disintegrator it is conveyed to a press where it is reduced from 80 per cent of water to 40 per cent. After leaving the press it passe through another disintegrator. Lime is then added which tends further to dry the peat. The resulting mixture is conveyed to a drier, which is a steel cylinder, varying in length according to the capacity re-
quired. Petroleum in which bituminous pitch is dissolved is then added in a pug-mill or mixing-mill. After the thorough mixture to which the oll, lime and peat are subjected in this mill, the final briquetting process is all that is necessary to produce the finnished product
The addition of lime results in almost a total com bustion of smoke. During the burning of the fuel acetylene gas is formed. The intensity of the flame is such that it insures almost complete combustion of gases, which, under ordinary circumstances, escape in the form of thick black smoke.
The calorific value of the synthetical coal made by this process is represented by 1300 degrees British thermal units. The very best anthracite coal has

the automobile as applied to road transportation
value of only 14,000 degrees thermal units, while bitu minous coal has a calorific value of 12,500 degrees British thermal units. It will therefore be seen that this particular synthetical coal in efficiency compares favorably with the best fuels at present in existence. In cost the comparison is equally favorable.

Messrs. Thornycroft, the well-known shipbuilders of Chiswick, London, have been carrying out elaborate experiments with a new oil engine, the invention of a Swiss engineer named Berthan, the patents of which they have purchased outright. The motor is specially adapted for small craft. In the ordinary oil engine the machinery has to be set in motion by outside means, generally by the application of manual power In the Berthan engine reservoirs are placed beneath the seats of the launch, and while the engine is at work a proportion of the gas or vapor generated passes into them, where it is stored ready to start the engine the next time the boat is required. Another notable feature is the reversing gear. At present the system of reversing, where oil motors are used, is not to reverse the engine, but to shift the power from a

SPECIAL THORNYCROFT MOTOR BUILT FOR WAR SERVICE IN SOUTH AFRICA out all the currents will thoroughly flush has heretofore had no suitable outlet. The following dimensions will help us to form a clearer idea of the magnitude of the work. The canal will be over two miles in length and 400 feet wide at the top. Each bank will slope inwardly and downwardly, thus leav ing the bottom 300 feet wide. The average depth of the cut will be about 25 feet and the work will involve the cut will be about 25 feet, and the work will involve $1,400,000$ cubic $y a r d s$ of earth and stone The contract was awarded by the government to the Atlantic Gulf and Pacific Company. Eighteen months were allowed in which to complete the task, but, at the present rate at which the work is progressing, it is confidently expected that the canal will be completed within fifteen months. Operations were commenced early last September and have been pushed forward night and day ever since a large force of men ar employed, supplem by and a large dredge. About 100,000 cubic yards are removed each month. The excavated earth and stone are hauled away by trains and dumped on marshy tide flats, and on this made ground very extensive railroad shops are soon to be built. After the steam shovels have completed the work of excavation, the canal will be opened and the water allowed to flow in, when some general dredging will be done to deepen the canal a little and to level of the bottom. At extreme low tid he canal will be 8 feet deep; at high tide, 16 feet. This latte depth will admit of the passage of all ordinary-sized steam and sailing vessels. The total cost of the improvement to the govern ment will be about $\$ 600,000$. It is hoped that the new canal will be thrown open for the free passag of all vessels by the first of next year.

A shipping curiosity has been broken up at Teneriffe, Canar Islands, in the Italian ship "Anita", of Genoa, which was the ldest vessel in the world. The "Anita" resembled Christopher
cogwheel on the crankshaft to one beveled anothe way, and by this means to alter the direction of th screw. In the Berthan engine a simple movement of a handle is all that is necessary, as this operation causes the propelling vapor to enter another set of valves, and in ten seconds the engine is working full speed in the opposite direction. The new oil motor occupies half the space of the steam engine. Power can be developed in ten minutes, as compared with half an hour which is required in the case of steam.

Congress has appropriated $\$ 15,000$ for the purchase of additional buffalo for the Yellowstone Park. There are now in the Park about twenty buffalo. Originally there were twenty-two, but two escaped.

Columbus' ship, the "Santa Maria," and was built i when her last voyage at the Teneriffe. The "Anita" was of tremendously stout build, and had weathered countless storms and torna oes in all parts of the world She was also the slow est ship afloat, taking 205 days on one voyage from Baltimore, Md., to Rio de Janeiro.

Estimated Number of Draft Animals.

A French authority estimates the number of horses in the world at $74,600,000$, and the number of mules and asses at $12,100,000$. Despite the inroads of the utomobile, there is an unusual demand for draft ani mals and the prices are high.

A PNEUMATIC WATER SUPPLY SYSTEM.

 The problem of water supply is often very serious in buildings which are isolated and have not the facilities for connecting with a general water-distributing system such as is provided for a town or city. Those who are thus situated will be interested to examine the recent invention of Mr. Edward D. Deeter, of Milford, Ind. As shown in our illustration, the invention provides a peculiarly constructed pump, adapted for elevating water from a well, and forcing it into a sealed tank against the air confined therein, so that the pressure of the air will force the water from the tank into a system of water pipes for the supply of one or more buildings. The construction of the pump is such that it will pump air with the water into the receiving tank, thus maintaining a suitable pressure for the service pipes. The construction further permits adjustment of the mechanism for the exact graduation of the amount of air pumped, or an arrest of the air-pumping operation, as may be found necessary. Fig. 1 shows the pumping section, while Fig. 2 shows the relative position of the tank in the building to be supplied. The pump is situated at the top of the lift pipe, from which water is forced through a pipe at right angies thereto, and is conducted into the tank. A clack-valve covers the top of the lift pipe and prevents regurgitation of the water lifted into the cylinder. A hollow plunger-rod extends into the cylinder and is provided at its lower end with a cup-shaped packing-ring, which engages the inner side-wall of the cylinder and a disk valve which, on upward motion of the plunger, is adapted to close the openings in the base-plate of the plunger-head. The lower end of the hollow plunger-rod is closed by a plug which serves to hold the base-plate in position. The central passage extending through this block is closed by a valve under spring tension. The stem of this valve extends upward and is engaged near the top by a tappet-lever hinged to and passing through the wall of the hollow plunger-rod. An upright post secured to the upper end of the cylinder is provided with an opening at its upper end which affords a bearing for the plunger-rod.The operation of the main plunger is similar to that of the ordinary pump. On the upward stroke water is drawn past the clack-valve into the main cylinder, and on the downward stroke it is forced past the disk-valve into that portion of the cylinder above the plunger head. On the next succeeding stroke the water is forced into the receiving tank. An ordinary check valve prevents a return flow of the water. As previ ously stated the pump is designed to supply air pres sure to the tank so that the water may be forced to the upper story of a high building. The air is fed into the pump in the following manner: When the plunger-rod is traveling upward, at a predetermined point the outer end of the tappet-lever mentioned above encounters a spring-limb secured to the guide-post, and is thereby thrown down, its inner end lifting the valve from its seat in the plunger-rod plug. The lever is secured in this position by a pair of spring clamping-arms situated directly below, and is thus held until released by a V-shaped pressure-block at the top of the guide-post which spreads the spring-arms apart. Air is thus ad mitted to the cylinder at each stroke, in quantities which can be regulated by the position of the springlimb on the guide-rod, and from the cylinder the air is pumped with the water into the receiving tank. To stop the pumping of air it is necessary merely to raise the spring-limb to its highest position, where it cannot engage the tappet-lever
Though the pump, as stated above, is designed for use in furnishing a water supply for buildings not con nected with the general water-supply system, it wil readily be seen that the invention would be useful in connection with a general water supply for the elevation of the water to a greater height than could be otherwise reached. The pump will also be found useful

a pNEUMATIC WATER SUPPLY SYSTEM.
for the transmission of power, for pneumatically-operated guns, pneumatic or hydraulic drills, and, in fact for almost any operations which employ pneumatic or hydraulic pressure.

IMPROVEMENTS IN SPINNING SPINDLES.

Some recent improvements in spinning spindles have been made by Mr. William Gihon, of Chicopee, Mass. One improved construction is such that the spindle carrying the bobbin or spool is free to turn upon a support and is held from slipping from its proper position while in action, and yet is capable of being quickly and conveniently disengaged from its support when desired, without the manipulation or removal of fastening devices. The bearings and lower portion of

improvements in spinning spindles

the spindle are designed to turn in a lubricating bath and a special form of support forms the lower bearing, which support may be quickly shifted to present a fresh surface to the spindle point in case of wear These improvements are all embodied in the construc tion illustrated in Fig. 1. The main support of the spindle is a hollow tube provided near its upper end with an angular feed pipe through which oil is poured into the interior chamber. The lower end of the main support is closed by a plug screwed therein, the flanged portion of the plug being provided with a washer to prevent leakage of the oil. The shank of a tubular bearing-section fits into the bore of the plug. This tubular bearing-section is provided with openings in oppposite sides through which a pin of semi-circular or polygonal cross-section is loosely passed. The plug and bearing-section are shown assembled in Fig. 2, the bear ing-section being broken away to show the pin. The pin forms a support for the end of the spindle and is capable of sidewise adjustment, so that when worn it may be shifted sidewise to present a fresh bearins surface. The upper end of the spindle is provided with an exterior spiral thread, and in the interior is a bushing which fits the spindle loosely and is set in such manner as to prevent turning in the bore of the base. This gives what is termed a "ring-bearing" for the spindie. The spindle is provided at its central por tion with an exterior conical enlargement. Immedi ately below this enlargement is a whirl attached to the spindle. This whirl fits loosely over the top of the main support or base and is held in position by a lug which fits into a groove on the base immediately below the spiral thread. Whenever it is desired to remove the spindle, it needs simply to be drawn upward and turned, whereupon the lug will travel up the spiral thread. In order to prevent the oil from feeding up ward, a spiral groove is formed on the lower end o the spindle, which leads the oil down to the lowe bearing. At the upper end of the spindle is a sleev loosely mounted which prevents the spool or bobbin from wobbling. In order to further assure a smooth traveling, the upper end of the spindle is passed through an opening made in the inner partition at the upper end of the spool.
Another construction is shown in Fig. 3. Here it will be seen that the spindle is provided with self-adjusting ball-bearings. The body of the spinclle consists of a casing closed at the bottom and open at the top. An exterior collar at the top of the casing forms a bearing adapted to rest upon the support to which the casing is
threaded. An annular depression is found in this collar to give vertical and guided movement to the whirl on the spindle. A sleeve portion extends upward from this whirl and is provided with longitudinal slots, so as to securely hold any spool carried on the spring portion thus formed. The spindle passes through the whirl and extends in the casing to a point near the bottom. A spiral spring encircles the spindle, pressing between the whirl and the upper conebearing, which latter is adjustably secured to the spindle by a set screw. The spring serves as a cushion for the cone. In connection with the cone a ball-race is provided, having suitable pockets for the balls, which are held in place by an inner sleeve. A second cone is fastened face upward to the lower end of the spindle. This also has longitudinal adjustment, but less movement than the upper cone. The ball-race for this bearing is provided with an upwardly extending sleeve which telescopes with a sleeve on the upper ball-race. The sleeves are permitted longitudinal motion, which is limited by a slot in the lower sleeve through which a pin on the upper sleeve passes. A coil-spring between these ball-races serves as a cushion for both bearings. A set screw passes through the main casing and fits into a slot of the lower ball-race sleeve to hold the parts in position. The object of providing the spring cushions is to permit raising of the spindle and whirl a required distance, should the bobbin or spool cling to the whirl, without detriment to the various parts of the device, and without permitting the parts to leave the casing. The casing, it will be observed, forms a well in which oil may be placed; thus the spindle is made self-lubricating. It is clearly evident that this construction will permit easy running and prevent breaking of the yarn Further, the spool may be removed without disconnect ing any parts of the device or interfering with any of its mechanism.

BOTTLE-WASHING BRUSH

A frequent objection to the bottle-washing brushes of the class having a curved, tubular body is that it is impossible to insert the brush into a bottle having a small opening. The inventor of the brush here illustrated has so constructed the device that it may be easily inserted into the bottle, no matter how narrow the mouth may be. The body portion of the brush consists of two tubular sections, one being curved so that the rubber brush secured thereto will engage and conform to the shape of the inner surface of the bottle. The tubes are split along their under surfaces to receive the edge of the brush material between the two ribs formed thereon, as shown in cross section in Fig. 3. A ferrule is fastened to each end of the tube sections by screws passing thereto, and these screws form supports to which the ends of a helical spring are secured, whereby the two sections are flexibly connected with each other. To hold the sections in alignment two straps are employed, which are mounted at one end to swing on the screws which hold one of the ferrules to its respective tube section, and have slots at the opposite ends through which the screws of the other ferrule pass. To prevent a lateral movement of one of the sections relative to the other, one of the ferrules is provided with a projection designed to engage a notch in the other ferrule. The back portion of the brush is provided with perforations through which water may pass to the interior of the bottle, and at the extreme end of the brush is a swinging section which is adapted for washing the bottom of the bottle. In inserting the brush into the bottle, the two sections will assume substantially the positions indicated in Fig. 2, and when fully inserted, the spring wiil cause the sections to assume their normal position, as indicated in Fig. 1. The outer end of the tube is designed to be con nected with a water-supply in a buttle-washing machine, and the bottle is to be rotated relatively to the brush in the usual manner. A patent for this inven tion has recently been granted to Mr. Robert Hoern ing, Brooklyn, N. Y.

BOTTLE-WASHING DEVICE

RECENTLY PATENTED INVENTIONS. Agricultural lmplements.
Wind-Stacker. - w. H. McWilliams, Watonga, Okla. Ter. This invention provides a wind-stacking attachment to threshing machines in which a suction fan is situated at
the upper portion of the rear part of the body , a per p the bod carry up straw. The location of the fan is carry up straw. Traw will be stacked while
such that the strassing through the casing in which the fan
pasin passing through the casing in which the fan
revolves, to a stacking tube, and the grain revolves, to a stacking tube, and the grain
which is heavier than the straw will drop which is heavier than the straw will drop
from the conveyer to a conductor and be difrom the conveyer to
rected to the riddles.
CORN-HARVESTER.-H. R. and A. W Spaht, of Pattonsburg, and G. Spaht, of
King City, Mo. This machine is arranged t be drawn between two adjacent rows of corn so as to sever the cornstalks disposed upon both sides. The tendency of the stalks when
severed is to pile centrally between two bow and to accumulate in groups resting upon the racks: by pulling the lever the racks are dumped. As a few stalks may be cut during the interval while the racks are being dumped,
these stalks are thrown forward upon auxiliary these stalks are thrown forward upon auxiliar
racks. The restoration of the main racks their normal position causes the dumping the auxiliary racks, so that the practical effect is that the few stalks accumulated in the
auxiliary racks are dumped in the main racks immediately after the main racks have dumpe their load upon the ground.

Apparatus for Special Purposes.

Filter.-W. R. Powell, Wheeling, W. Va This filter belongs to that class in which a
natural or artificial porous block is employed as a filtering medium. Novel details of con struction adapt this device for efficient servic and afford a means for periodic cleansing of
the filtering medium automatically and thor oughly as occasion may require
ore-Sampler.-S. E. Bretherton, Den ver, Colo. In ore samplers now in use it is consuming much time and labor and makin the sample too fine for blast furnace smelting Mr. Bretherton here provides an apparatus that has not only the advantage of being
adapted to take a fair sample of comparatively coarse ore as it comes from the crushers, but
due to its simplicity of construction and due to its simplicity of construction and the
facility with which it may be kept clean, it has many other decided advantages over ore sam plers now in use.
TEMPERATURE - EXCHANGING APPA Ratus.-Joseph Desmaroux, 4ter Rue des Plantes, Paris, France. This improved temperature changing apparatus permits two
fluids or liquids to change their temperature completely, and the apparatus is chiefly de signed to bring back to the normal temperature
water which has been brought to an elevated temperature for the purpose of destroying all the germs it may contain. In reducing the temperature of the sterilized water, arrange ment is made to impart this heat to wate which is to be sterilized.
drying-kiln.-A. Carey, Cairo, Ill. This anention relates to a kiln designed especially prises, broady speaking, a number of carriers moving horizontally through the kiln and drawing the veneer in at one end and dis vided with hot-air-circulating devices.

Electrical Apparatus.

voltage-regulator.-T. M. Pusey Kennett Square, Pa. Mr. Pusey has provide an improved regulator for dynamos and gen erators, whereby the voltage is automatically regulated and a practically even circuit cur
ent is provided for lamps or other purposes A balance beam on the device is so arranged under the control of a solenoid, that when the current falls or increases it will operate a motor which throws the switch arm of
rheostat sufficiently to readjust the voltage. electric Lamp.-Hevry wapd beecher, Jr., Port Townsend, Wash. The object of thi invention is to provide an electric incandes cent lamp which will permit of the variation
of the amount of light afforded. Heretofore of the amount of light afforded. Heretofore
turning-plug switches have been employed which embodied a commutator with a variable amount of resistance, more or less of which was thrown into the circuit. This invention, however, is an improvement in another class in which a lamp with two or more filaments of different sizes and radiating power is so arranged that by a mere turning of the glass
globe the current may be directed to either globe the curren
or both filaments.
automatic melectrical signaling apparatus for railiways.-J. E. SpagLondon. England. This invention provides a electrically operated multiple-switch. adapted to control the passage in the signal-circuits of electrical currents having the tension in use on the railway for traction purposes. The
switch is permitted to move from normal position by an electro-magnetically operated witch releasing device, the being under the control of a train-op device being under the contro of a train-opthe entry of a train on any section has for effect to first cause the signal at the com
mencement of that section to be put to danger
and then the signal at the commencement
the preceding section to be put to safety.

Engineering Improvements.
ROTARY ENGINE.-F. A. Palle, Ne York, \mathbf{N}. Y. The engine is provided with a chis shaft carries a piston provided in it peripheral face with cut-out portions having egmental walls on which the piston-head it. The piston-heads are mounted to swing in and out on the piston as the latter rothes in the cylinder, and at the same time
the space between the piston and the rim o he cylinder is closed by the corresponding piston-head having connection with the bloc
sliding on the inner face of the cylinder rim.
DRAFT DEVICE AND SPARK-ARRESTER -George B. Rat, Sheldon, Ia. The inventio park-arresters, particularly for locomotive en ines, and provides an improved spark ar ester by means of which the draft will be
qualized through all of the boiler tubes, the cinders be thoroughly broken up, arrestin he sparks and preventing them from passin
of the smoke stack until extinguished.

Hardware.

rock-drill ChUCK.-M. Mchale, Pho nix, and J. Tranner, Eholt, Canada. The in-
vention relates to chucks for rock-drills and vention relates to chucks for rock-drills an nto and from which a drill may be easily and quickly removed and inserted, and which, while the drill in a very firm and satisfactory man ner, thus insuring a great saving over chuck commonly used, both in fiist cost and in th umerous repairs which become necessary whe more complicated devices are used.

Machines and Mechanical Devices.
MACHINE FOR FINISHING BARRELS. elates to a machine for chamfering, crozin and howeling barrels, and for trimming the ends of a barrel preparatory for the insertion of the heads. The machine consists, in, comhereon, and a ring arranged to turn in the carriage. The ring receives the end of a ba el, while cam-shaped dogs mounted in the ring engage the barrel and hold it firmly
therein. Means are provided for turning this ing and presenting the end of the barre against tools which perform the required work EXERCISING-MACHINE. - J. C. Korth nd A. Ganzenaluller, New York, N. cisers in which elastic cords are employed in connection with handles and a support. The sed as the ordinary travelers' exerciser and rovides means whereby the exerciser may may be arranged to bring into action many prominent and minor muscles which could not be benefited by machines of the ordinary
VALVE MECHANISM FOR COIN-CONTROLLED GAS-VENDING MACHINES.-W J. Strong, Brooklyn, N. Y. The invention re
lates to coin-controlled gas-vending machines and its object is to provide a new and imroved valve mechanism which is simple an urable in construction, automatic in operation nd arranged to prevent tampering the the proper coin is introduced into the coin

PILL-MAKING MACIINE-J. N Dews Portsmouth, Va. By a novel and simple con struction this machine is designed to cut sections to provide the number of pills pre only facilitates the division of the roll into equal parts, but also enables this result bein secured with great accuracy.
CALENDAR-Clock.-J•hn I. Peatrikld, Arlington, Mass. Mr. Peatfield has provided n automatic calendar which is practically
perpetual, requiring no manual setting egulating except in the winding of its motor at intervals of a year or more. It is so ar ranged that it may be controlled by an or inary clock mechanism for changing the date iturther provides a simple mechanism for making the changes from month to month and the dates from the short months to the first day of the next month.
Mail-bag Catchier--C. C. Mcllyar, Cambridge, Ohio. The invention relates to means for receiving and delivering mail-bags object of the invention is to provide a simple device for this purpose which embodies novel details of construction, rendering the same s adapted to simultaneously receive and de iver mail-bags or pouches while the mail-car is in motion.

Vehicles and Their Accessories.

AUTOMOBILE.-S. S. Conant, Edgerton, such that the stub axles of the fore whee are rotatab'e horizontally around vertical axes,
and also slidable vertically thereon, so that
the wheels may all be turned simultaneously,
the two forward wheels turning in opposite dithe two forward wheels turning in opposite d the tracks of the forward ones. The inven tion also includes a novel arrangement of springs for supporting the body of the spring
COUPLING FOR WAGONS.-W. S. Chapimpro Kippen, Idaho. This invention is an mprovement in that class of couplings be wagon, which permit the rear hounds of the and the rear axle on the reach, the san ofing effected by means of a clamp, in place pin passing through the reach, whereby the
latter is weakened.

Miscellaneous Inventions.

Heating-stove.-C. Matthews, Colum bia, Mo. This heating stove is more particuother like material. A special construction is provided, whereby not only increased heatin surface is afforded, due to peculiarly-arranged ability of parts, whenever any part is burned out, the same can be removed and replace by any person.
TROUSERS-FORMER. - I. ANDERSO mproved trousers-shaper, which is simple an durable in construction and adapted to be olded into a comparatively small space whe hape and sme trouser-former is arranged wrinkled trousers.
DEVICE FOR TEACHING ARITHMETIC -J. J. Terrazas, Mexico City, Mexico. This of which operations of adding and subtracting may be readily performed in a mechanical way thereby lessening the mental labor and chances of errors. The appliance enables the teacher
to give the pupils a concrete and readily into give the pupils a concrete and readily in-
telligible representation of the relative value telligible representa
of various numbers.
artificial tooth.-T. Steele, Red Bank, N. J. Mr. Steele has invented an imvenient and secure attachment of permit con backing to a front made of porcelain or othe suitable material. The construction allows mmediate repair in case part of the tooth broken or damaged.
nechtie-fastener. - J. A. Clinton Brooklyn, N. Y. In this invention the neck collar-button the in the shirt and collar, the necktie is placed position and its fastening devices snapped the necktie it needs merely to be To remove the ne
ward.
CARRIER.-J. G. Cofman, Comptche, Cal. arrer will be found useful for persons for holding wood in a neat pile to the house, or other place, or for binding, carrying or elevating fodder, hay, straw and other light materials. The construction of the carrier is be cheaply manufactured.
manufactured
FURNITURE FOR FORMING PAPER-BO F. Schley, Brooklyn, N. Y. This furniture for forming paper-box blanks may be set up without the use of corner pieces and may be quickly assembled and placed in any desired position, two pieces wherever brought in con-well-defined sharp corner. The invention vides a novel means for automatically forcing a blank when made and scored from engag ment with the knives or score-blades.
GUN-CLEANER.-G. H. Garrisen, Bucoda, Wash. This gun-cleaner belongs to that class justed to guns of or cleaning-pad may be admeans is provided for spreading the pad and for securing the pad material to the cleanerrod. The pad is formed of layers of wire-
cloth firmly pressed together so as to withcloth firmly
stand wear.
PRISM-GLASS FOR SKYLIGHTS.-G. E has invented a novel construction and improved form of prism panel or plate and supports therefor. These supports and plates are arranged to be quickly and expeditiously conight construction.
barrel--O. P. Hallock, Mattituck, N. Y. This barrel is an improved receptable for kinds. The improved barrel is composed of taves connected by flexible wire fastenings and is distinguished from other barrels of the same class by a novel construction and peculiar arrangement of parts.
PaRALLLEL-RULER.-J. Sternfeld, New
York, N. Y. This drawing instrument is easily manipulated and may be readily adjusted to able the user to draw parallel lines spaced at desired distances. The ruler is particularly between the lines may be quickly adjusted to suit the user.
SWinging Gate.-Supplina Hamilton, an extremely simple construction which dispenses to a large extent with metallic parts.
It may be made, erected, and repaired by any
unskilled person, thus placing it within reach of farmers of moderate means An improved
means is provided for releasing the latches previous to starting the gates on their swing. ing movements. The gate-swinging devices and latch-lifting devices may be simultaneously
operated by a single pull of the proper cable wire.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. Please state the name of the patentee, title of

Business and Personal KUants.

wili tind inguiries for certain classes of articles Wilm ind inquiries for certain classes of articles
numbered in consecutive order. If you manu-
facture these goods write us at once and we will
send you the name and address of the party desir-
ing the nnformation. In every case it is neces.
sary to give the number or the inquiry.

Marine Iron Works. Chicago. Catalogue free. Inquiry No. 2958 . - For makers

 Autos.-Duryea Power Co., Reading, Pa. Ingurr No 29.90 - For hyrraulic rams for lifting water wheels. Alcott \& Co.. Mt. Holly, N. J. Inquiry No. 2961.-For overhead trams for trans-
porting sugar cane across rivers.

For bridge erecting engines. J. S. Mundy, Newark, N.J Steam Steam road locomotive
H. H. Shank, Newark, Del
 Sawmill machinery and outhts manufactured by the
Lane Mfg. Coo. Box 13, Montrelere, vt.
 Die work, experimental work and novelties manufacInnuiry No. 2965.-For makers of sheet alumiWe design and build special and automatic machinery for all purposes. The Amstutz-Osborn Company, Cleve-
land, Ohio.
Inquiry No. 2966.-For dealers in motors and
generators. Special and Automatic Machines built to drawings on nring Streets Garvin Machine Co., 149 Varick, cor.
Inquiry No. 2967
cooled gasoline motor.
Ideas Developed.-Designing, draughting machine work for inventors and others. Charles E. Hadley, 584 Inquiry No. 2968.-For dealers in very thin sheet WANTED.-A partner in competing for the bonus
offered by New Zealand for a new gold-saving device. P. McEntee, Montgomery, Minn.
 Manufacturers of patent articles, dies, stamping,
tools, light machinery. Quadriga Manufacturing Company, 18 South Canal Street, Chicago.
Inquiry No. 2970.-For makers of thin sheet
steel. The celebrated "Hornsby-Akroyd" Patent Safety Oil Engine is Cung Foot of East 138th Street, New York Inquiry No. 2971.-For makers of hot water
heaters for dwelling houses. The best book for electricians and beginners in elecBy mail, क4. Munn \& Co., publishers. 361 Broadway, N.Y. Inquiry No. 297.2.-For
We wish to dispose of a valuable patent on a method ers without waste. Full particulars to Address Novelty Tufting Machine Co., No. 263 DearIngu
Inquiry No. 2973.-For dealers in small engine
castings.
Woonworking Machinerv.-The advertiser, who has invented and designed for others a line that has brought large returns, is looking for capital agans
experience and know how. None but mutually satisfactory arrangements desired or expected. Address
Inquiry No. $\mathbf{N 9 7 4}$.- For a spring motor of $\mathbf{1 - 1 6} \mathrm{h}$.
por running a static machine. Q8P Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broadway New York. Free on application.
Inquiry No. 297 .5.-For a foundry and machine
shop capable of handing an iron plate $36 \times 48 \times 3 / 4$ in. Inquiry No. 2976.-For dealers in hollow alumi-
nium ware, such askitchen utensils, etc.

Inquiry No. 2978.-For dealers in lightning rods.
Inquiry No. 2979.- For a one-piece. steam-jackInguiry No. 2980.-For manu facturers of rubber
novelties to make half-soles of special designs.
chines and brine coils. - For makers of small ice ma-
Jnquiry No. 2982.-For manufacturers of spring
motors.
Inquiny No. 2983.-For a fuel oil burner for a
small boiler.
Inquiry No. 2984.-For codar pen'older
for use inthe manufacture of special penholder. (Inquiry No. 2985.-For makers of col'apsible Innuiry No. 2986.-For makers of hygroscopic

lain for enameling cast iron sinks.

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending July 29, 1902, AND EACH BEARINGTHATDATE. LSee note at end of list about copies of these patents.		
		Paving mixture or composition, asphaitic, ${ }^{\text {on }}$, 05,803
	.	
	Gold and silver from their solutions, appar-atus for precipitating, A. James....... 705,589Gold, silver, or other ores, cyanid process	
	ner nosope for obtaining ariticial horizons,	
		Roller attachment, elevating, A. H. Cent-
		Rolliug
	Impressions, device for making, D. L. . Falar-	
 		Sewing machine guide, Geieriach \& Mioore.: 700
	Inter sime	
	Lantern, A. T. Bishop.................. 705	Sole
		Sticter
	\& Broomhead ${ }_{\text {mech................................705,980 }}$	
705,857		
		Sugar reining apparatus, Jo Robin-Langiois Suspenders and trousers comuection, R. T.
	Metals from their ores, etc., in electricaily heated furnaces, reduction of R. \mathbf{C}.	
	Metalle strap,	
	Reeves ${ }^{\text {a }}$...............s........	
		Ontay

THE FRANKLIN DYNAMO

 Ohe TANDEM Gas Engine

Fardware specialtics RACT MANUFACTURER Difficult Parts or
so Finished Articles UNION MFG. \& SPECIALTY CO.,
$506-508$ Genesee St, Buffal,$~$

515HOPPES SEPARATORS HOPPES NIL ELIMINATORS

Feed-Water Heater and Purifier Larch Street,
Ghe Eck Electrical Machinery

A BOON IN BRAKE BLOCESS.
 Cutting Diess FOR PAPERR, CLOTH. Has, tor use with
or under a press.
 The "Best" Light
 lamp warrantea. Agents Wanted Everywhere.

THE OBER LATHES

有
Fiedge, Hatchet, Hammer, Auger,
Fiile, Knife and Chisel Handles,
Whiffetrees, Yokes, Spokes, Porch
Spindeseses, Stair Bes, sianteres, Porch
and Chle
and Chair Legs and other irregular

[^0]

THE WORLD'S GREATEST Prowec ME MEHANICAL TOYS IRVING'S WIZARD TOP

 DIXON'S AMERICAN CRAPHITE PENCILS

Send 16 cents for samples.
Worth double the money:
JOSEPH DIXON CRUNCIBLE CO.

MORAN FLEXIBLE JOINT
 First Book of Qualitative Chemistry.
For Studies of Water Solution and
Mass Action. By Albert B. Prescott, Ph.D., and Eugene C. Sullivan,
Ph.D. Eleventh Edition. New York D. Van Nostrand Company. 1902
12 mo. Pp. $148 . \quad$ Price $\$ 1.50$. This little book first made its appearance in
1879 for classes taking a short course in form the work is intended to accquaint the be
ginner with chemical change in the light the present studies of water solution. The
author's have kept steadily before them the character of the chemical elements which he handles and with the nature of chemical
change. The book should prove an excellent
laboratory

Die Eisenkonstruktionen $\begin{gathered}\text { Der Inge- } \\ \text { nieur-Hochbauten. VI. } \\ \text { (Schluss) }\end{gathered}$ Lieferung. Fortsetzung und Schluss des IV. Abschnittes. Freitragende Wellblechdächer - Eiserne FachVerwendung
Sachverzeichnis. Leipzig: Verlag $\begin{array}{llll}\text { von Wilhelm Engelmann. } & \text { New } \\ \text { York: G. E. } & \text { Stechert. } 1902 \text {. } & \text { Pp. }\end{array}$ $385-518$. Price $\$ 2.50$.
This is the last installment of a book which framed structures and which is particularly
adapted for the high schools. Most of the books which have
been used for such purposes are either antiquated or are simply architectural works not written from the engineering standpoint.
installments as they have appeared have been eviewed in this column. Of the many en gineering works which have come before us for
a long time, we know of none which surpasses trustworthiness of explanation.
might be called practical applications of inter
ference phenomena.
La Géométrie Non Euclidienne. Par P La Géométrie Non Euclidienne. Par P.
Barbarin. C. Naud. 1901. No. 15.
Pp. 79. Price 50 cents.
m. Barbarin has prepared a work which
should be dear to the heart of every modern
mathematician. After a discussion of Euc-
lidian theories, he introduces us to a chapter on distance as a fundamental notion, describing
in detail the work of De Tilly and Cauchy

the answering of these objections.
Theory of Steel-Concrete Arches and
of VaUled Structures. By William Cain. Second, revised edition. New
York: D. Van Nostrand Company. York: D. Van Nostrand Company
1902. 16 mo . Price 50 cents.
This is the second edition of an admirable
ittle monograph on steel-concrete arches and

 1902. Pp. 140 .
El Problema Politíco. Jose Cascales
Munoz. Madrid. Munoz. Madrid: Libería de Vict
riana Suárez. 1902. Pp. xlv, 215.
 MErcial Stipremacy." and Tha
"Universal Commercial Reciprocity Treaties and Tabiff Revision Ary
Prematcre." By George J. Seabury The United Stat Pp. 16. cufture has sent us a monograph on the field
operations of the Division of Soils, which1 i
the second report on the subject. The mono graph is accompanied by admirable maps.

ELECTRIG WONDERS at little COST

GAS ENGINE DETATLS:-A VALUA-

OD INCOMES MهDE

DOUGLAS, LACEY \& CO.

:-s:

Scientific American Building montbly

EDITORIAL ARTICLES.
 DEPARTMENTS.

The Departments of the Monthly cover a wide
range of topics and summarize the tatest advance

The SCinNTIFIC AMERICAN BUILDING MONTHLY is
 abounds with practical suggestions and its illustrations
corer awide rance of subjects selected with s.rupulous
care and printed in the most artistic manner. MUNN \& CO., Publishers, 361 Broadway, New York

ELECTRICAL ENGINEERING

 TAUGHT BY MAIL. ELET,

EARN MORE

in your own business or another. Enyine herino

THE Consolidate schools 156 Fith
LEARN PROCFREADING.

BOOK-
 KEEPING
 TAUGHT
 FREE

Howard Two and Four Cycle

AND
AUTO.
NOBILE

Grant Ferris Co

CONTROL OF FIRE.-VALUABLE PA

ARTESIAN

 ame. Portable Horse Poloee
and Mounted Steam Drilling
Machines for 100 to 120 feet
Write us stating exactly what
What

A TRUSGOTT BOAT Simple, Safe, Reliable, Speedy.

Ruit either cabinea or open in inges from 16 to ono fee
Truscott Boat Mfg. Co.,

PATENTS

 COPYRIGHTSS \&c. quickiy aseertaing a sketch and description maynvention is probably pation free Whether an
patentabe. Communica

Scientific American.

MuNi \& Co.

and Queries.

treats on similar subjects as stepianek's pic-
torial telegraphy: 2. We can send you six
numbers of the Scrextric Anerican Supple-
MENT containing articles upon the transmission

(8660) A. L. V. asks: 1. Will you $\begin{aligned} & \text { kindly explain the action of the inductor } \\ & \text { alternator, of the type tho thaving a large } \\ & \text { cylinder at one end: A. The toothed proo } \\ & \text { jections upon the moving portion are called } \\ & \text { then }\end{aligned}$

 the inductors. The surrounding frame haprojections of the same shape and size, whic

the making of primary current is suppressed,
not being able to leap the gap. 'The X-ray

ways complete through the primaries of the
transformers, more power is required whe
more lamps are put in use on the secondar

Bicycles Below Gost

WireCloth, Wire Lath, Electrically-Welded Wire Fabrics
and Perforated Metal of all

Wearing Points

are the best
"SELLING POINTS"

Remington
TYPEWRITER outsells every othe writing machine
WYCEOFF, SEAMANS \& BENEDICT 327 Broadway or New York

Miniature Incandescent Telephone
 A FOLDING CAMERA. - WORKING

ELECTRIC KNOWLEDGE Send Di cents and

MATCH Factory Mn achincry. W. E. Wutuh

 MODELS $\begin{gathered}\text { Inventions developed. Special Machinery. } \\ \text { E. V. BAILLARD, Fox Eldg., Franklin Square, New York. }\end{gathered}$

JUST PUBLISMED

Practical Pointers For Patentees

THE SALE OF PATENTS.

 An Eluciation of the Best Methods Emplosed by theMost Successful Inventorsin Handilig Their Inventions.
 T

 alone, and its onlv object is to give him such practical
information and advice as will enable him tointeligent-
if hande his patent successfull, economically and
proftaly hit

MUNN \& CO.
Publishers, 361 Broadway, New York.

reachless angle iron frame

RRECHT AUTOMOBILE Co., ST. LOUIS, Mo., U. S. A.

AUTOMOBILISTS
 owning steam rehi-
cleshave loong waited
for just
as the for just such a
as the
Reason Automatic
Air Pump. It keeps just the
right arir pressure in
the fuel tank, and

GAS ENGINE IGNITERS Automobile engines. Will
save their cost many times
over in one year.

\section*{| 108 |
| :---: |
| FH |}

The Watch

 of the Period With ordinary care and usage-anywhereat any time-

THE (II)

Through heat and cold, or ja
The Elgin Watch will never fail in its faithful performance of perfect timekeeping. Guaranteed against original defect. Every Elgin Watch has "Elgin" engraved on the works. Booklet free . ELGIN NATIONAL WATCH CO., Elgin, Illinois.
 20-Mile Spe
20 per cent.

KODAK

for the pocket-almost for the vest pocket, at six dollars. Makes pictures $15 / 8 \times 21 / 2$ inches, loads in daylight, has a fine men= iscus lens, brilliant finder, automatic shutter-in fact, has the "Kodak quality" all the way through.

 Do., 6 exposures. - . . .
EASTMAN KODAK CO. Catalogyte free at the
dealecrsor by mail. \quad Rochester, N. Y. Stoonooo in prizes for Koodak and Brovunic Pictures.

CHARTER ENGINE

Cortes cacairs
 -MADE AT KEY WEST;-

\{ These Cigars are manufactured under \} the most favorable climatic conditions and from the mildest blends of Havana tobacco. If we had to pay the imported cigar tax our brands would cost double the money. Send for booklet and particulars.
CORTEZ CIGAR CO., KEY WEST,

Every bend of the
body is a free one.

PRESIDENT Suspenders

work in harmony with every movement, give ease and comfort in all posion buckles. Trimmings cannot
rust. Made heavy or light-also for rust. Nade heavy or light-also for
youths. 50 everywhere or mailed
postpaid.
Say light or dark-wide or postpaid. Say light or dark-wide or
narrow.
Holiday goods in individual gift cards, instructive, entertaining cards, ins tructive, entertaining

BABBITT METALS.-SIX IMPORTANT

STEWARD'S WONDER

Che Cypewriter Excbange

The main point is this:-If you pay more than $\$ 2.50$ for a good GoodMUCH! Ask your retailer for Shoes bearing this trade-mark.

GOODYEAR

The JAMES MEANS SHOE for men has. bee

 yourt. N. - James means company, Brockton, Mass.
Dent

[^0]: The Ober Mfg. Co., 10 Bell St., Chagrin Falls, Oircular A. U.S A

