

Levuka-Former Capital of the Fiji Islands.

Native Warrior.

Interior of Hut.

A Native Catamaran, Fiji Islands.

SCIENTIFIC AMERICAN
 ESTABLISHED 1845

MUNN \& CO.,
Editors and Proprietors

No. 361 Broadway, New York

terms te subscribers

NEW YORK, SATURDAY, JUNE 28, 1902.

The Editor is always glad to receive for examination illustrated
articles on subjects of timelt interest. the the photorraphs are
sharp the antices shot tand the facts

the senate panama canal bill

It is gratifying to note that the international cana question is finally to be settled in a way that we have contended was the only practical one, that is in favor of the short Panama route-a route also favored by the Isthmian Canal Commission. The Senate on the 19th instant passed the Panama Canal bill by a vote of 67 in favor to 6 against.
The radical change in sentiment as here illustrated, in connparison with the Hepburn Nicaragua House bill, may be largely accounted for by the masterly way in which the Canal Commission placed the result of its investigations before Congress, sufficient to convince many men of a practical turn of mind of the several advantages of the Panama route. In addition to this the recent terrible disaster at St. Pierre, Martinique, caused by the tremendous volcanic eruption of Mont Pelée, fixed in the minds of many the futility of constructing a canal in a region having a record for volcanic disturbances and earthquakes.
Thus when the merits of the Panama Canal became fully known and the possibility of its acquirement for a reasonable sum and the probability of securing the desired right of way on equitabie terms, there was an irresistible sentiment created in its favor which is reflected in the nearly unanimous vote of the Senate. In the debate preceding the vote the shortness of the Panama Canal as compared with the Nicaragua was emphasized as one of the important points of its ad-vantage- 49 miles, as against 183 . The depth is to be 35 feet. The principal provisions of the Senate bill are:

1. That the President is to acquire for the United States, at a cost not exceeding $\$ 40,000,000$, all of the rights, privileges, franchises, concessions, grants of land, rights of way, unfinished work, plants, and other property owned by the New Panama Canal Company of France on the Isthmus of Panama and all its maps, plans, drawings, records on the Isthmus of Panama and in Paris, including all the capital stock, not less, however, than $6 \dot{8}, 862$ shares of the Panama Railroad Company, owned by or held for the use of said canal company, provided a satisfactory title to all of said property can be obtained.
2. That the President is to acquire from the Republic of Colombia exclusive and perpetual control of a strip of land not less than six miles wide from the Caribbean Sea to the Pacific Ocean, and the right to use and dispose of the waters thereon, and to excavate, construct, and perpetually to maintain, operate, and protect thereon a canal of such depth and capacity as will afford convenient passage of ships of the greatest tonnage and draught now in use, from the sea to the ocean; this control to include the right perpetually to maintain and operate the Panama Railroad, if the ownership thereof, or a controlling interest therein, shall have been acquired by the United States; also jurisdiction over the strip and the ports at the ends thereof, to make the necessary police and sanitary rules and regulations, and to establish judicial tribunals to enforce the same. The President also may acquire such additional territory and rights from Colombia if deemed necessary.
3. $\$ 40,000,000$ is appropriated to pay for the property of the New Panama Canal Company and a sufficient amount to pay Colombia for the territory acquired from that country for building the canal. The President is then, through the Isthmian Canal Commission, authorized by the act to proceed with the construction of the canal, utilizing as far as practicable the work already done. The canal is to be supplied with all necessary locks and other appliances. Provision is made for the construction of safe and commodious harbors at the termini of the canal, and for such works of defense as may be necessary for the safety and protection of the canal and harbors.
4. In the event that the President is unable to se-

Panama Canal Company and the control of the neces sary territory from Colombia, and after first having obtained for the United States exclusive and perpetual control by treaty of the necessary territory from Costa Rica and Nicaragua, he is then to have authority to begin the construction of the canal over the Nicaragua route on the same general conditions as apply to the Panama Canal. An appropriation is provided for compensation, through a treaty, to Costa Rica and Nicaragua for rights and concessions they are to grant.
5. An appropriation of $\$ 10,000,000$ is made to begin the project, and by a further provision all appropria tions are not to exceed in the aggregate the additional sum of $\$ 135,000,000$ if the Panama route be adopted, or $\$ 180,000,000$ should the Nicaragua route be selected.
6. In any agreement made with Colombia, Nicaragua or Costa Rica the President is authorized to guarantee them the use of the canal and harbors, upon such terms as may be arranged, for all vessels owned by those countries or by their citizens.
7. An Isthmian Canal Commission of seven members is created, to be nominated by the President and confirmed by the Senate. They are to have charge of construction of the canal and are to be subject to the direction and control of the Executive. Four of the seven are to be skilled in the science of engineering, one is to be an officer of the army, and one other an officer of the navy. Authority is given for the employment of engineers from the army and civil life and other necessary persons. The commission is to make reports to the President and to give Congress such information as may be required.
8. Outside of the $\$ 10,000,000$ appropriated authority is given for the issue of $\$ 130,000,0002$ per cent 20 year gold bonds exempt from taxation in denominations of $\$ 20$, or a multiple of that sum, to be sold at par and open to popular subscription, the proceeds to be used on the construction work as required.
The provisions above stated appear to give the President ample authority to proceed with this great work in a common-sense, business-like way, while much will depend upon the character of the Commission whom he appoints as to whether the vast expenditures necessary for construction will be reasonable and economical or extravagant. As the personnel of the Commission must be confirmed by the Senate, it is to be presumed only the best men will be selected
The assurance that a canal is positively to be constructed on a practical and economical basis with funds provided in part by popular subscription will create a national enthusiastic interest in it and insure its success. Its commercial advantages to this and foreign countries cannot be over-estimated. We trust that the differences between the House of Representa tives and the Senate may be satisfactorily adjusted by the usual conference committee in the hope that by the next celebration of Independence Day the wishes of the country in respect to this great undertaking may be carried out.

THREE PHASE TRACTION IN AMERICA.

The announcement that the Whitney syndicate has joined hands with Ganz \& Co., of Buda-Pesth, is fraught with more promise for the future of electric traction in the United States than many of us may be willing to admit. For years the Buda-Pesth firm has been identified with the growth of electrical trac tion in Europe. Not only did it install the first underground trolley, but it developed the three-phase system for roads of standard gage.
The number of electrical roads in this country of standard dimensions can be counted on the fingers of one hand. Probably, without exception, all of them use the direct current. In Europe, on the other hand, the foremost electrical engineers have adopted the alternating current, with results that have been most gratifying from the standpoint of economy and efficiency.
Readers of the Scientific American will recall the article we published some time ago on the Valtellina road, in Italy. That road was converted from steam to electrical traction by the Buda-Pesth firm. After having been in continuous operation for over one year and a half, the company was able to announce that the three-phase electrical equipment had cut down the operating expenses fifteen per cent. Unfortunately the Valtellina line had hardly been opened, when the London underground contracts were let. In the bitter fight in which Mr. Yerkes and the American ad vocates of the direct current finally triumphed, the merits of the three-phase system were ably and strong ly put forth by its adherents. The Board of Directors of the London Underground, after a careful investiga tion, decided in favor of the three-phase system. But the strenuous protests of the Americans resulted in the submission of the controversy to a board of arbitrators, who rather weakly decided that the Buda Pesth plan was too new.
It may be that the London controversy, however, brought home to the Whitney syndicate the merits of
three-phase traction. At all events, it is encouraging to find that American engineers are willing to try a system of which as yet they know next to nothing, and which has been offered to them as a vast improvement on their own; and it speaks well for the Buda-Pesth firm if sagacious American men of wealth are willing to invest millions in a plan which originated in Europe and developed there to its present importance

TWO REMARKABLE RAILWAY RUNS FROM NEW YORK

 TO CHICAGO.Probably no more praiseworthy feat is recorded in the annals of American railroading than the perform ance of the trains sent by the New York Central and Pennsylvania Railroads over the roads between New York and Chicago. At a speed which sometimes ex ceeded 80 miles an hour, and which averaged some 50 miles an hour including all stops, these trains, traveling east and west, covered the respective distances of 980 and 912 miles three minutes ahead of the schedule time of 20 hours.
With these two remarkable records, American railroads hold the record for fast, long runs. On the Orleans \& Midi Railroad, the Sud express travels 486 miles from Paris to Bayonne in 8 hours 59 minutes, averaging 54.13 miles an hour. That is probably the fastest train in the world for the distance. But the length of track is little more than half that traversed on the shortest route between New York and Chicago Other famous European runs that deserve mention are those made in England by the East Coast express and the West Coast express. The former runs to Edin burgh, and the latter to Glasgow from London. Both travel at an average speed of 50 miles an hour; but the distance covered is only about 400 miles.

It is difficult to award the palm to either of these new American trains. The New York Central's express covered a longer distance at a higher average speed than the Pennsylvania train. On fhe other hand, the Pennsylvania train, although its route was shorter and its average speed not more than $451 / 2$ miles an hour, encountered heavy grades in crossing the Alleghany Mountains. The officials of both roads claim that the journey from New York to Chicago could easily be covered in 18 hours.

GOVERNMENT IRRIGATION.

One of the best measures that has become a law in the beginning of this twentieth century is the scheme providing for the irrigation of the thousands of square miles of arid lands located in our Western States and Territories under government supervision, embodied in the bill recently passed and signed by the President and known as the Irrigation Bill.
The bill is based on the idea that the proceeds of sales of public lands shall be assigned from year to year to the building of irrigation works under contracts approved by the Secretary of the Interior, but only when there is sufficient money on hand to insure the completion of the work.
According to Mr. Newlands, the Representative from Nevada who has promoted the legislation on this subject, this bill is very complete and comprehensive in its scope and automatic (so to speak) in its plan of action.
It is estimated that during the next thirty years at least $\$ 150,000,000$ from the proceeds of the sale of lands will be available without further appropriations for public irrigation works.
The bill makes the present receipts from public lands, including those of the last fiscal year, stated to amount now to some $\$ 6,000,000$, immediately available and the average annual sum of $\$ 3,000,000$ (likely to be constantly increased) can be used each year for a steady continuation and enlargement of any work for which contracts are made.
The plan further provides against the acquirement of large tracts of land by individuals or companies by limiting the area to be owned by one person to 160 acres, subject to the provisions of the national homestead law, including its limitations, charges and conditions.

At least half of the arid land so acquired must be improved by irrigation and the owner must reside on or near the land.

After a plan of irrigation of a tract of land owned by several parties has been completed at government expense and the works are in order, the owners will be required to pay back to the government in not less than ten annual installments the estimated cost of the construction of the works, the money so paid to be returned to the general reclamation fund. Eight hours is fixed as a day's work, and Chinese labor is forbidden.

The public arid and semiarid lands mentioned are in the Territories and States of Arizona, California, Colorado, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, North Dakota, Oklahoma, Oregon, South Dakota, Utah, Washington and Wyoming.
The effect of the bill should be to encourage the settlement of the great wastes in a few of the States and greatly to increase their agricultural products. The

Bepartment of the Interior is not limited to any par ticular plan of securing the requisite supply of wate for irrigation purposes, but must conform to the State laws bearing on this subject in providing for any given plan. The law is certain to make valuable land now considered valueless, and promote Western agri culture in a way to insure lasting benefit to the country.

THE HEAVENS IN JULY.

The summer evening skies, though not perhaps equal to those of winter, present at this season a noble spectacle. To identify the principal constellations, we may begin with the two brightest stars in sight-Vega and Arcturus. The former of these is nearly overhead at 9 o'clock in the evening in the middle of July, while the latter is some distance to the westward. Starting from Arcturus toward Vega, we first reach the little circlet of stars which is known as the Northern Crown. Next comes a keystone-shaped figure which marks the constellation Hercules. Following the same line beyond Vega, we come to Cygnus-a fine cross of stars in the Milky Way. The bright stars rising in the east below this belong to Pegasus.

In the Milky Way, to the right of Cygnus, the bright Altair shows the position of the constellation of the Eagle. Below this is Sagittarius. Its most noteworthy feature is a little inverted "dipper," known as the Milk Dipper, because it lies in the Milky Way.
Scorpio, the finest of the zodiacal constellations, is due south. The brilliant red star Antares, at the creature's heart, and the long curving line of the tail, streaming down to the horizon and then bending upward again, make this one of the easiest star groups to recognize when once learned. Above it are the large but rather formless constellations of Ophiuchus and Serpens. The conspicuous isolated star in the southwest ig sprea, the brightest one in Virgo. Leo is setting, a little north of west. Ursa Major is well up on the left of the pole, the Great Dipper being the highest part of the constellation. The Little Dipper is right above the pole-star. Half-way between its bowl and Vega is the head of Draco, whose long coils may easily be traced through the space between the Great and Little Bears. In the Milky Way, low down on the right of the pole, is Cassiopeia.

$$
\begin{aligned}
& \text { Cassiopela. } \\
& \text { THE PLANETS. }
\end{aligned}
$$

Mercury is morning star throughout July. On the 15 th he is farthest west of the sun, and about this time he can be seen a little north of east, about an hour before sunrise. By the end of the month he disappears again in the sun's rays.

Venus is morning star in Taurus and Gemini, rising about two hours earlier than the sun.

Mars is also morning star, though far away and faint. On August 1st he is in conjunction with Venus, being about $11 / 4 \mathrm{deg}$. north of her-not quite so close as he was last fall. As the moon is close by at the time, there will be something worth looking at in the eastern sky that morning.

Jupiter is approaching opposition, and is conspicuous in the southeast in the latter part of the evening. On the 15 th he rises at about 9 o'clock, and is due south at half-past 1 .
Saturn is in Sagittarius, and is in opposition on the 17th. It is interesting to note that at this time the earth passes directly between Saturn and the sun, so that as seen from the planet it would appear to transit across his disk. It may help us to realize how small a body the earth is, in comparison with even the solar system, when we find that it would appear to an observer on Saturn as a black dot barely two seconds of arc in diameter-too small to be seen at all without a good-sized telescope.

Uranus is in Ophiuchus, well placed for evening observation. Neptune is morning star, too near the sun to be well seen.

The asteroid Vesta, as we mentioned last month, comes to opposition on the 14th. It is in Sagittarius, and is moving parallel to a line drawn from Saturn to the middle of the bowl of the Milk Dipper, but about a degree below this line. On July 1st it is about 1 deg. southwest of Saturn, and on the 31st it is $3-5$ ths of the way toward the Milk Dipper. It is of the 6th magnitude, and is consequently just visible to the naked eye under favorable conditions. Without a very good star-map it will be necessary to sketch the stars visible in this region with a field-glass and pick out the asteroid by its motion.
Vesta is the brightest-though the third in order of discovery-of the hundreds of small planets between Mars and Jupiter. It revolves about the sun at an average distance of $220,000,000$ miles, and takes about three years and eight months to complete its journey. At the present opposition it is nearer than usual, being $203,000,000$ miles from the sun, and $109,000,000$ miles from us. While it is ordinarily just too faint to be seen by the naked eye, this unusual nearness carries it just within the limit.
In the most powerful telescope Vesta, like a few others of the brighter asteroids, shows a perceptible
disk. According to Prof. Barnard's measures, it is about 200 miles in diameter, so that it is decidedly a world in miniature.
On so small a body the force of gravity is much less than on the sarth. A man, if he could exist on the surface of Vesta, would weigh about 1-50th of what he does here, and his capabilities would be correspondingly increased. This would have some inter esting consequences. An athlete, for example, could easily jump to a height of 300 feet or so, coming down with no more jar than after a six-foot leap on earth. A batted ball, which here rises to a height of a hundred feet, and drops into the fielder's hands after a flight of five seconds or so, would on Vesta, if struck as hard a blow, rise a mile high, stay in the air more than four minutes, and drop nearly four miles away. A cannon-ball, fired at the usual speed, would fly clean off into space, and never come back at all.
Clearly life on such a planet would be rather remarkable. However, as it is almost certain that the asteroids have no atmosphere, such calculations as we have just been making really belong to the realm of idle speculation.
the moon.
New moon occurs on the morning of the 5th, first quarter on that of the 12 th, full moon near noon on the 20th, and last quarter on the night of the 27 th . The moon is nearest us on the 4th, and farthest off on the 16 th. She is in conjunction with Venus on the 2d, Mars on the 3d, Mercury and Neptune on the 4th, Uranus on the 17th, Saturn on the 20th, Jupiter on the 21st, and Mars and Venus once more on the morning of August 1st.

FORCED AND SHRINK FITS.
 by c. d. Kina

Forced and shrink fits have long been used by engine, ordnance and machinery builders, the forced fits being obtained by driving with a heavy weight or by hydraulic and screw presses. While it was once the custom to taper the holes and shafts in forced fits, it is now conceded to be much better to have them perfectly cylindrical throughout.
If we wish to shrink a sleeve or ring of metal onto a shaft or tube, we bore the hole a trifle smaller than the diameter of the shaft to go in it-1-80 inch per foot of diameter of shaft is a common practice, then by heating the sleeve, we expand it, hole and all being increased in diameter until it will slip onto the shaft. When it cools it is in a state of tension, and the shaft inside of it is compressed, the amount of tension or compression depending upon the difference in the diameters of the two pieces. If we attempt to pull the sleeve off the shaft, it is found that we require a large amount of force to do it. Both sleeve and shaft were brought to a smooth finish apparently, where they were to fit together, but upon careful examination with a miscroscope, we find numerous irregularities on those surfaces that are to come together. The irregularities are mostly annular groovings formed by the lathe tools and files. Now when we shrink the sleeve on, in cooling, the little projections on one piece will sink into the depressions in the other and vice versa. Thus the sleeve is firmly locked upon the shaft. Reasoning from the above analysis we con clude that the surfaces in contact should be finished rather roughly to the touch, so that the irregularities and minute groovings of one piece may hold more firmly on those of the other.
It has been found in the crank-pin fits for locomotives, that if the pin and hole are finished to very smooth and true surfaces, the pin will be pressed in by a force of six tons per inch of diameter, but when they are rougher the force may have to be increased to as much as nine tons for each inch of diameter. This leads us to conclude, that it will be more difficult to withdraw a rough piece than a smooth one, and consequently more difficult for it to work loose, although the tension in the crank and the pressure on the pin may be nearly the same as when the pin was smooth, which is a most desirable feature. Inasmuch as heating and cooling tend to change the form of pieces, and if they are of cast iron, is apt to crack them, we prefer the forced fit where practicable, but the turning of the fits must be done accurately, and they must be truly round. They must also be of uniform diameter throughout, and not tapered in the least. Both the commencement of the hole, and the end of the piece to go in it, should be slightly rounded so as to start in readily. When one piece is forced into another as described above, the little projections have a tendency to be rubbed backward on one piece, and in a forward direction on the other, forming, we could say, little ratchet teeth. If we provide a shoulder or collar on one of the pieces for the other to stop against, we have the pieces pretty effectively locked against working loose.

A point in the manufacture of chainless bicycles, came recently to the attention of the writer, regarding the fastening of the gears to the crank shafts and rear hubs. The shafts and rear wheel hubs are
threaded externally with right hand threads. The gears are threaded internally with threads which fit so tightly that considerable force is required to turn them onto the shafts and hubs. A fixture is made purposely for this work with a chuck to hold the hub or shaft and a "crab" to hold the gear. A very long crank is used to get sufficient power to turn the gears into position. The force in back pedaling, it is found can never be sufficient to turn them off even to the slightest amount.

The minute irregularities of the external threads on the hub coming in contact with other irregularities in the internal threads of the gear, form, as it were, a ratchet with innumerable pawls preventing it from turning backward.

ENGINEERING NOTES.

Texas oil is to be used by the great Minneapolis flour mills instead of coal. From the experiments made it would seem that the use of oil is entirely practicable. A street railway company of Minneapolis and St. Paul is also conducting tests with Beaumont oil.
A marine engineer of Rochester, England, has patented a new system for steering twin-screw steamships. His device consists of a special throttle valve attached to each set of engines, the valves being connected by means of bell cranks and linkwork to a tiller. When the tiller is resting centrally an equal supply of steam enters each engine, but directly the tiller is deviated from its central position in either direction, the throttle valve fitted to one set of engines reduces the supply of steam, so that the propeller actuated by that particular engine revolves more slowly, the rotatory motion of the screw diminishing according to the degree to which the tiller is moved over.
The great scheme of the late Mr. Cecil Rhodes, the Cape to Cairo railway, is being pushed forward with all possible celerity. The road has been surveyed as far as the Zambesi River, which is to be crossed by a great steel bridge, having one span of 500 feet, at the Victoria Falls. The whole section from Bulawayo to the Zambesi, 275 miles in length, is to be opened next year. Locomotives for contractors' purposes are now running on it for a short distance north of the present terminus, and a railway exploration party has been dispatched over the railway route beyond Victoria Falls as far as Lake Tanganyika. For forty miles north of Bulawayo the embankment of track is more or less complete, bridging work on the Victoria Falls section is in progress, and about five miles of the line are finished. The work of connecting the Bulawayo and Salisbury sections is also progressing rapidly, and rails are already laid from Salisbury to Sebakwe, a distance of sixty miles. From the Bulawayo end of this line the railroad has reached the Arguza River, so that when this gap is filled and the line completed, as it is hoped it will be by the end of the present year, trains will be able to run from Cape Town to Beira via Bulawayo, Salisbury and Umtali.
Salt mining constitutes one of the staple industries of the little European country, Roumania. There are four mines in all. The most peculiar feature in connection with this industry is that the mineral is mined in three of the principal mines by convicts condemned to life and lengthy sentences of penal servitude. The reason for this is that crime in Roumania is practically unknown, and there is no death penalty. Under these circumstances the compusory mining of the convicts is beneficial both to the government and the laborers. In the case of the mine in which convict labor is not employed, the quarrying is performed by peasants, the work being assisted as far as possible by the most up-to-date mechanical time and labor-saving appliances, for the employment of which skilled labor is essential. In all there are about one thousand convicts at work in the three mines. The laborers are not provided with any mechanical apparatus whatever, the whole of the work being performed by hand, each convict having to quarry a specific quantity of salt daily. The mines are controlled by a state official, whose position is similar to that of governor of a prison. The mines are thoroughly well ventilated, and illumined with electric light, so that the lot of the convicts is somewhat alleviated, though to those who are serving life sentences it represents a living grave. The mines are worked in galleries, and the pure white crystal presents a weird and peculiar aspect, especially in reflecting the fitful electric light. The main shaft terminates at the bottom in a huge apartment with a dome-shaped roof, and from which all the working galleries radiate. The mine contains a chapel and numerous other apartments, all cut out of the salt by the prisoners. The director keeps a record of the name of each convict who enters the mines, his conduct and the efficiency and quantity of his work. Periodically the King of Roumania visits the mines and examines the official record, and in those instances where the results war rant, such action, he extends a free pardon to the pris oner, or at any rate reduces the length of his sentence, so that good conduct and efficient work is an incentive to a royal pardon.

chevallier eleotrio target.

Capt. Charles Chevallier, of the French army, collaborating with M. Eugène Cadet, has invented a most ingenious target which is so constructed that the hits are registered by an annunciator. By means of this device, the marksman simply by referring to the annunciator can ascertain at a glance what his success

back of the dummy target with cover removed.
has been without walking several hundred yards to the target.
The target 1 tself consists of two sets of metal panels of segmental form, arranged in different vertical planes. One series of segments overlaps to a certain extent the next series of segments, in order that an entirely full surface may be presented to the marksman. Behind each series of segments lies a fixed disk, serving as a guide and support for rods secured to the segments. Coiled springs are placed between the segments and the disk, in order to return the segments after they have been driven in by a projectile.
Opposite each rod, secured to the segments, an electric contact device is placed, which, as shown in our detailed views, consists of a screw, h, mutilated for about 7-16 of an inch. In its normal position, an insulated plate, k, having threads of a corresponding pitch to those of the screw, lies opposite the neck thus formed in the screw, and is therefore out of contact with the screw. The vertical screw, h, turns in a fixed nut or support, i. The upper part of the screw, h, is fitted with a crosspiece, j, provided with counterweights at its ends so as to form a balance member. The plate, k, constitutes one terminal of the circuit, the wires, P, being secured to the other terminal. The wires, P, are equal in number to the segments of the target and are assembled together in a cable leading to an annunciator of ordinary construction, placed near the marksman.
When a projectile strikes one of the segments, one or more of the springs, coiled about the rods, e, are compressed, and the corresponding rod or rods, e, are
driven in through the perforations of the disk, d, and strike the counterweights of the balance member, j. The impulse thus given to the balance member, j, causes the screw, h, to turn and rise. The lower threaded part of the screw is then engaged in the screw threads of the plate, k, and the circuit is completed. When the circuit is completed the annunciator near the marksman indicates the exact spot of the target which has been struck.
Instead of disks, portions representing the human figure can be used.
This electric target has been successfully used in the armies of France, Spain, Roumania and Portugal.

Heavy Engines Money Savers.

All new orders from the big railway companies are for monster freight engines these days, and not a few are of the compound type.
The Union Pacific, Oregon Short Line, Rio Grande system, Burlington, Illinois Central, Northern Pa cific, Pennsylvania, New York Central, Rock Island, Colorado Midland, Colorado \& Southern, Missouri Pacific, the Erie road and others, have large orders in for locomotives and all of them include great freight-haul ing machinery. For the past year or two a particular study has been made of the power problem, and while there is some difference of opinion among master mechanics and enginemen upon some points, yet there is unanimity with reference to some general facts, and among these latter is the preference for heavy engines as money savers. A. W. Sullivan, assistant second vice-president of the Illinois Central, has paid great at tention to this phase of railway operation, and his conclusions are entitled to much weight. He refers to the difficulties in the system of double heading, which constitute offsets to the economy of the plan in other respects. Among these are delays on the road, the con sequent overtime, the damage that is done to cars in

ELECTRIC CONTACT DEVICE OF THE TARGET.

"sawing" trains at meeting points where the siding is not long enough to clear the main line, the difficulties of handling the train over hilly portions of the road, and the uncertainty of trains' moving on orders to make meeting points on short time.
Precisely the same conditions apply to the movement of trains with very large engines, contends Mr. Sullivan, who claims that the Illinois Central at one time had the two largest locomotives in existence. They were simple engines, with cylinders 23×30; they carried 210 pounds of steam, had 82 -inch boilers, long fire-boxes. One was a consolidation, the other a 12 wheeler. It was sought to find out what this size of engine could do in the way of ultimate pulling capacity, so the order was given to start with a train of 1,500 tons on a run out of Chicago of about fifty miles, in the middle of which was the ruling grade of that district, about 24 feet to the mile; and each day the engine made the trip, increasing the train load by 500 tons until the

the target and the annonciator set dp in the field.
train got to 3,500 tons, or 82 loaded cars. The engine hauled the train easily; the trouble was to handle the engine. This was about two years ago. When the engine arrived at the station at the summit of the grade, it had to cross over to the other track to let an important passenger train pass it, necessitating a short back-up movement to enter the crossover track.

SIDE VIEW OF THE DUMMY TARGET.

In making this back and forward movement the train broke in two eight or nine different times, on one occasion shearing the twelve 1 -inch drawbar pocket boltsso great was the power of the engine. Two hours and three-quarters were consumed in crossing over and getting back, and the train that it was intended to let by without causing any delay was delayed an hour and a half.
"We came to the conclusion," says Mr. Sullivan, "that it was quite possible to get an engine that was large enough to handle a bigger train than was practicable, as a transportation proposition, to move over the road.
"These large engines have now been in service nearly two years. We give them each trains of 1,800 tons on portions of the road where mogul engines of 19×26 inch cylinders handled trains of 900 tons. Each of the big engines takes a double train. The total expense of moving 10,000 tons one mile with the big engines is $\$ 1.86$, as against $\$ 2.02$ with the mogul. By reducing the train to a tonnage that could be handled readily, we have been able to operate the large engines successfully, having them take their turn in the service just as it comes-one day with a heavy coal train, next day with a stock train or with a banana train, making speeds anywhere up to forty-five or fifty miles an hour, and doing that without any trouble. We think that such an engine is, if anything, larger than economical locomotive practice demands, and we nave purchased no more of them. We find that a mogul engine with 20 x 28 -inch cylinders, carrying 200 pounds steam pressure. will take the same train over the road just as well as the engine with 23×34-inch cylinders. In other words, the 80 -ton engine will do the work just as well as the engine which weighs 110 tons, and either of them will do better than a double-header."

ILBOTRIOAL DIES TARGTY.

THE TRACTOR IN LUMBERING OPERATIONS.

The success which has attended the use of steam power in farming operations on the Pacific coast, has resulted in the use of the traction engine in lumbering and other industries where extensive horse power is required. The roads in the hill country of California, Oregon and Washington, where are located the principal lumber camps, are in a very crude condition, most of them having no paved surface, while the grades are extremely steep in many instances. Much of the formation is of a red clay, which in wet weather is turned into liquid mud, through which an ordinary wagon can scarcely be forced, although three or four horses or mules may be attached to it. Loose stones falling from the hillsides increase the difficulty of travel over these mountain highways, so that where animal power is used, double and treble the ordinary number of teams are required to "freight" lumber or other material from the woods to the mills or the railroad stations.

For the purpose of substituting steam power for animals, the Holt Brothers, of Stockton, the inventors of the farm tractor, have designed a very powerful engine, which accomplishes remarkable results where it has been placed in service. The sizes range from 40 to 60 horse power, and the plan of construction followed is similar to that of the farm engine which has already been described in the Scientific American. The driving wheels, however, have narrower tires, although they range from 18 to 24 inches in width, with corrugated or roughened surface, in order to give them more traction upon the highways. Power is communicated to the driving wheels by roller chains on each side of the truck, which revolve about an axle which is driven by two sprocket wheels, also connected by roller chains with the engine. The tractor is guided or steered by a smaller front wheel, which is connected with a hand-wheel by a sprocket chain, so that the motorman can turn it in any direction desired, merely by using the strength of one hand. Most of the engines are provided with a steel drum upon the forward end of the truck frame. Upon this is reeled a wire rope or heavy manila cable kept for
the purpose of hauling when the tractor may be detached from the cars of logs or naterial to be transported.
On a level surface, the motor will readily pull a train of trucks loaded with lumber weighing from 200 to 250 tons, without difficulty. On the highway it can attain a speed of from 8 to 10 miles an hour if desired. It is used, however, in the forests, where no highways exist for transporting logs from the

General View of the Freighting Engine.

stump lots to the mills or the railroad stations. In this case, the logs are usually chained together, sometimes mounted upon rollers, and then attached to the tractor, which pulls them to their destination by the most convenient route. Such is the strength exerted that it can actually be forced through bushes and over young trees five and six feet in height; while being able to turn in a circle of 150 feet, it can be guided in and out among the trees. It will haul in this way a dozen large trunks, a single one of which would require the strength of ten or twelve horses or mules to move ordinarily.

The ordinary highways have such steep ascents, that frequently the tractor can reach the summit only by being separated from the trucks or cars which it is
drawing. To haul.its load to the top of the hill is the object of the drum and cable. The latter is unwound, fastened to the cars or trucks at the bottom, and the tractor converted into a stationary engine, exerting all its power upon the rope. In this way trips can be made over routes which are literally impassable for wagons. Another great difficulty encountered, especially in California, is sand. This is partly overcome also by the broadness of the tires, which prevent the engine, in spite of its weight, from sinking into the surface of the road to such an extent as to become stalled.
The type of tractor used especially in lumbering and mining operations is what is termed the freighting engine, and weighs from 14 to 21 tons when equipped and ready for service. It will consume about 225 pounds of coal an hour when working at its full capacity, or about one ton daily, while its consumption of water is about 300 gallons an hour. Since the use of oil in industries on the Pacific coast has extended into Oregon and Washington, some of the tractors have been fitted with apparatus for burning oil in place of coal. It for burning oil in place of coal. It
is calculated that one will utilize about 28 gallons of the ordinary oil hourly when in service. The boilers furnished are of two types-corru-gated-flue and water-leg. In freighting outfits a smaller force of hands is required than in farming operations with the tractor. The larger types have an engineer and fireman, if coal is used. The latter may also act as "trainman," coupling and uncoupling the cars and trucks when necessary, so that really only two men are required to transport the material. The photographs which show the tractor hauling lumber on the level, also ascending steep grades and going over sandy roads, include a view showing the manner in which it is employed in duty on the farm. As a substitute for horse drills, in planting seed, the motor has been very successful, accomplishing from twenty to thirty times as much at a time as two or three teams of the heaviest draft horses. In fact, calculations made of the economy of operating with the tractor show that it will plow and harrow, seed and harvest a certain area at about onesixth of what it costs when men and horses are

The Freighting Engine with a Small Load.

Hauling a Load up a Heavy Grade.

The Freighting Engine in the Field.

The Freighting Engine Descending a Hill.

THE TRACTOR IN LOMBERING OPERATIONS.
used. Lumbermen who have tested it for freighting purposes estimate that the cost is about onethird of the sum expended when teams are employed. In these estimates the fuel and water and repairs are all carefully estimated and deducted.

FIJI AND THE FIJIANS
 A traveler's ons in the paradise of the pacific.
 bi sidney diokinson, m.A., f.r.g.s., boston.

Few travelers, comparatively, have penetrated the mysterious regions of the Southern Seas. Many have, indeed, wandered as far as the Hawaiian Islands, and returned enraptured with the mingled beauty and grandeur of these, our new possessions-but even there the traveler stands merely upon the threshold of the Sub-Tropical Wonderland.

Far below his horizon roll immeasurable leagues of iridescent seas; his ear cannot hear the roar of distant surf upon the coral reefs; the melting skies, the amethystine mountains, the vales "with verdure clad," lie far beyond his ken. There is perpetual summer; beauty that never fades; a year whose cycle knows no blight of frost or shroud of snow; flowers that bloom in never-fading generations; days of unbroken sunshine; nights in whose violet depths strange constellations glisten, and irom whose bosom subtle perfumes emanate and intoxicate the air. Here nature wears her native and immaculate garb-virgin as she appeared on creation's morning, when the Spirit moved upon the waters, and from the womb of primeval Night brought forth these Islands of Eternal Day. Audacious the tongue that attempts to utter, the pen to record, the brush to paint the wonders of these hanpy archipel-agoes-yet will I try to lift a corner of the veil that hides their beauties, confident of indulgence if I fail in my endeavor to describe the indescribable. Most interesting, perhaps, of all these lands of the Southern Seas in natural charm, strange and somber history, and present importance as illustrating the work of civilization in that part of the globe, are the Fiji Islands. Upon the chart of the world they appear as mere pin-pricks amid the vast expanses of ocean that surround them-a small galaxy among the thousand systems that form that Milky Way of the Pacific known to geographers as "Oceanica." A vast continent, ages ago, may have existed here, and, subsiding slowly, have left its loftiest peaks and table-lands to stand above the waves as monuments to mark its place of burial. Cyclopean remains upon certain of the groups, whose builder no man knows, and present languages and customs seem to refer to some mighty and longburied past. The glamor of mystery that broods about those seas is fascinating-all the more so that their secrets seem likely to be pre served inviolate until eternity solves the riddles of time.

The Fiji group, lying south of the equator at about the dis tance that the Hawaiian Isl ands lie north of it, covers five degrees of latitude and three of longitude. Forty of the islands are of considerable size, while some two hundred more are of decreasing importance, the tale dwindling to barren and uninhabited rocks hardly large enough to be christened These islands lie in an irregu lar oval- 300 miles in longest, and 120 miles in shortest dia meter, around the Koro Sea, and, like our own West Indies, are composed of two groups, known as the "Greater" and "Lesser Fijis."
"Fiji" is a corruption of the native "Viti," which appears in the name of the largest land of the group-"Viti Levu," or "Big Fiji"-which contains an area of 4112 square miles; "Vanua Levu," or "Big Land," coming next with 2432 square miles. Roughly speaking, the total land area of the Fiji Isl ands about equals that of the State of Connecticut, and the
population is estimated at a quarter of a million Travel to this land of the whilom cannibals is to-day commonplace matter. Steamers from San Francisc make regular calls, and at least two lines from tralia convey the voyager in luxurious comfort. My own approach to Fiji from Melbourne was by the "Taviuni" of the New Zealand Union Line-a boat which was then making her first trip after steaming from her birthplace in Scotland to Melbourne around the Cape of Good Hope-a trifle of 12,000 mileswithout once stopping her engines. As to one's treat ment by the sea-that is a matter of luck and tem perament. The Pacific has its whims, and, despite its
ng, like Honolulu, under precipitous hills, sprinkled with the white bungalows of the European residents. There is a strange sense of unreality in coming, in our present fashion, to the Land of the Cannibals, and the air of peace and serenity which broods over the beautiful harbor and town afford a striking contrast to the conditions that one has imagined after reading Fijian history. The former things, however, have passed away, and the stranger may now wander pretty freely over the islands, without fortifying himself with the hope that Sydney Smith urged upon his departing missionary friend-"that he would disagree with the man who ate him."

As we approach the shore, a floiilla of boats puts out to meet uscatamarans made of cocoanut logs hollowed out, pointed at each end, and rendered stable by wide outriggers. Natives, clad only in loin cloths, or sulus, of calico or snowy tappa cloth, paddle these craft rapidly toward us, and swarm aboard to sell their cargoes of fruit and curios-somewhat to the consternation of our lady passengers who precipitately flee to the cabin at sight of these brawny savages; but soon return, for it is not in feminine breasts to resist the fascinations of the bargain counter.

These Fijians are a stalwart race; very tall and muscular, for the most part, their skins soft as velvet from anointings of cocoanut oil, their countenances strong and in most cases pleasing; rather than forbidding. A thing that at once impresses the visitor is the varied and striking manner in which both men and women-the former especially -arrange their hair. Here a man is seen 'whose pate seems covered with a thick coating of whitewash; there another, whose locks, radiat ing in every direction from his skull as if they were electrified, could hardly be inserted in a bushel basket. The former state is but a preliminary to the second. The natives plaster their hair with a kind of paste made of powdered coral mixed with water, which, after hardening and then being broken up, stiffens the hair and bleaches it from its-natural black to odd shades of red and dull yellow-thus producing strange effects in cominination with the dark-brown skins of the people. Each form of head dressing has its meaning -the chiefs wear one, famous warriors another, men of counsel a third, yet all with variations at the caprice of individuals, which give great picturesqueness to a native gathering. Married men are distinguished from bachelors by the cut of their hair; the latter are of little account in Fiji, and by the way, are barbered, to announce to a scornful population their independent and degraded condition

Both sexes are attired in the airy and simple manner which residence in a climate. where the sun is hot, and the rainfall from eight to twelve feet a year, would naturally suggest. An elaborate female costume is shown in the picture of a chief's daughter, who is arrayed as to her trunk with a necklace of "trade" beads, and from her waist downward with a mantle of beautifully decorated "tappa" cloth, of creamy white ground relieved by designs of dull reds and browns. This "tappa" cloth is a characteristic product of Fiji, and is made from the inner bark of the paper-mulberry tree, which is macerated in water and the pulp beaten out upon hard ground with heavy wooden mallets, making a sort of vegetable felt of varying thickness -some as heavy as a blanket, others as light and thin as gossamer. The average female dress, however, is less elabor-ate-consisting simply of a fringe of cocoanut husk or hibiscus fiber dyed black and hanging from the waist to the knees. This adapts itself to every movement of the wearer, and is at once a sensible and decent dress.
The interior of a native house illustrates another use of the omnipresent "lappa" in wall
 fiJi and the fijians.
hangings and decorative coverings of beams. Piles of the cloth spread upon the floor, make delightfully cool and elastic beds, and upon the rafters are placed huge rolls of the finer textures, which by their number and total of yards represent the family wealth. When a woman of means marries she displays her social position by winding about herself all the "tappa" cloth her family can muster-so that a bride from the Fiji "Four Hundred" resembles a cotton bale with her head sticking out of the middle, and has to be carried to the altar by half a dozen muscular male relatives. At short intervals along the shore, and in the cleared spaces of the tropical jungle, are the homes of the natives-some isolated, others collected into considerable villages, but all swarming with the brown children of the sun. These houses are always wide open, and one can enter at will, the people and the visitor seeming to take an equal enjoyment in the curious appearance that each presents to the other. A Fijian house is perfectly adapted to the climate, and affords protection alike against the torrid rays of the sun and the frequent tropical deluges of rain. It is made by driving stout posts into the ground, across which are laid beams fastened to the supports by ropes of cocoanut fiber, and from this framework rafters are run up to a central ridge-pole. Roof and sides are covered with a thatch of grass and reeds, sometimes two or three feet thick, the whole structure being elevated on rough blocks of coral, thus affording freedom from the dampness of the ground. In ancient times the four corner supports of chiefs' houses were set in holes wherein captured enemies had been buried alive, while a chaste and agreeable decoration of the front would be a row of stones indicating the number of captives the chief had eaten during his career. Thus, the tales of stones of a famous chief, counted by a missionary in 1849, was 872 -for which the chief apologized, saying there should have been more, but he had been indolent of late, and had neglected to post up his ledger

A country like Fiji, with its copious rainfall, is naturally full of watercourses, and the mountainous character of the land gives opportunity for numerous waterfalls, which are among the most charming features of the islands. Nothing can be more beautiful than these silvery. cascades, set, as they are, in a dense jungle of flowering trees, variegated shrubs and mottled crotons, or in ravines where enormous orangecolored spiders swing in webs that glitter like diamonds from the spray of the falls, and where the flight of the "orange" and "rainbow" doves, and crimson and green parakeets, gives movement and .shifting color to the scene. The natives are a cleanly folk, and spend much time in the water of the inland streams or in the sea within the coral reefs, where the sand is of dazzling whiteness and the water shows every shade of the opal, turquoise and sapphire.
Along the edge of the sea, extending for miles on both sides of Levuka, runs a smooth and level path, which, built up on the wall of coral rock that rises a few feet above the water, leads by gentle curves around projecting promontories into avenues of palmtrees, and picturesque glades where sleepy villages drowse under the rustle and shade of the cocoanuts, and in hearing of the perpetual symphony of the waves. From this path the eye extends to the encircling coral reef, against which the ponderous waves of the Pacific burst in clouds of foam. The heavenly blue of the water inside the reef forms a beautiful contrast with the purplish-indigo expanse. without, and the drowisy air is made drowsier still by the incessant reverberant roar of the distant breakers. This sound is heard nowhere else in the voice of the sea. It has no intervals, but resembles the continuous passage of a heavily loaded railroad train, the hollow, semi-elastic structure of the coral giving it a metallic, ringing quality that is as noticeable as it is difficult to describe.

If you will launch a boat at noon, when the vertical sun lights up every detail in the bottom of the shallow lagoon, you may introduce yourself to a strange and lovely spectacle. You float over fairy grottoes, looking into which, through translucent fathoms, you see coral in every tint of blue, green, pink and creamy brownthe recollection of which will give you ever after a distaste for its bleached and ghastly skeletons in cabinet or on bric-a-brac table. Through its finest of branches float armies of fish the color of topazes and rubies, and of quaint or monstrous forms; enormous purple and crimson starfish sprawl upon snowy sands, while around them the hideous (but edibly delicious) sea-slug-the famous bêche-de-mer-glides in writhing progression, and sea-urchins expand and contract their iridescent spines. Now and then you drift over spaces dusky with depth, through which enormous congereels pass with wavering fins, and green turtles flap like. strange, unwieldy birds-while rainbow-hued shells incrust everything in wanton profusion, and add to the beauties of fish, coral and swaying weed to produce a scene of exquisite loveliness, which lingers in the recollection like an enchanted dream.

A view of Fiji would be incomplete without some illustration of the old cannibal practices which, until
less than fifty years ago, made the country a section of hell transplanted to earth. Instances of this era are found most numerously at Mbau, the old heathen capital, and headquarters of the late King Thakombau (to give the English pronunciation of his name), who, as the last ruler of Fiji, ceded his country to Great Britain for a pension of $£ 1500$ a year and other con siderations, and whose war-club, sent to the Queen as mark of fealty, holds worthy place at Windsor beside the umbrella of King Koffee of Dahomey-reminders to the world of two as thorough scoundrels as ever cumbered it. Before his conversion to Christianity the city of Mbau was covered with trees forming sanctuaries like the groves of Baal, and as one of his first acts on reformation was to cut these down, Mbau now lacks many interesting arboreal growths. Chief of these was the famous "Mbau Larder"-an enormous tree upon whose spreading branches tough victims were hung to acquire that "gamey" fiavor which Fijians like in "long pig" (as they facetiously term the human bakemeat) and Englishmen in pheasants and grouse. The Wesleyan Mission House to-day fronts the ground where banquets were served and victims prepared for the oven. A huge stone stood at one end, upon which the subject's brains were knocked out as a preliminary; to-day it is in the church at Mbau, and is used as a baptismal font for native converts, its top having been hollowed out.
I met an aged man at Mbau who gave me much interesting information. on cannibalism. His father he said, had been a famous trencherman in the good old days, and although he denied that he himself had ever eaten the flesh of his kind, yet in the course of his description he fingered my arms and pinched my legs and poked me in the ribs in a manner which legs and poked me in the ribs in a manner which
seemed to me not altogether platonic. Fijian flesh, he seemed to me not altogether platonic. Fijian flesh, he
stated, was superior to that of white men, who tasted of the salt they ate with almost everything-while a tough old sailor was practically a waste of raw ma terial from the tobacco and grog with which a life before the mast has a tendency to flavor the human system. Interrogated as to choice cuts, he gave the palm to the head-the brains and eyes being particu larly desirable, and the cheeks, especially in young subjects, submitting to baking very kindly indeed The upper part of the arm, too, and the calf and upper portion of the leg, were not to be despised-but, said this epicure, as for the rest of the body, "throw him away." In the afternoon this interesting savage came around for me to get my gun and go into the bush with him, where he would "show me plenty parrots." After the enthusiasm of his morning description, however, I thought it prudent to decline.
A quaint feature of Fijian life is "kava" drinkingthe beverage being made from the root of the angone shrub, which, being macerated and mixed with water ferments and forms a mild intoxicant. It tastes like soap-suds and ginger-ale mixed, and the relish for it has to be acquired. It is drunk with solemnities at meetings of chiefs and at conferences generally, and its absorption is governed by strict ruıes of etiquette It must not be sipped, but swallowed at a gulp, as a Western cowboy assimilates his whisky, and it is a fine touch, and an instance of savoir faire after drinking to "skitter". the cocoanut-shell cup in which the beverage is served along the ground to the presiding genius at the supplying bowl. In native circles the root is chewed by women and expectorated in the bowl to be mixed with the water. This is said to give a peculiar and agreeable flavor, but the less robust white residents reduce the root by a grater.
The "Meke-Mekes," or descriptive songs and dances of the Fijians, are wonderfully impressive. The illustration shows a party of girls giving the "Wave" Meke, describing the movement of the sea on the reefs The hands sweep the ground slowly, with waving mo tions of the fingers, to show the ripples crisping in the wind. Then the bodies sway in unison to show the roll of the ocean-other movements of rising and falling figures show the leap and fall of the breakers. Action grows more violent and confused, the performers rise to their knees, then to their feet; at last, with a spring and a clapping of hands, the wave is described overleaping the barrier of the reef, and as it falls into the still lagoon the dancers drop to the ground in unison with a long cry in diminishing cadence, and the "Meke" is over.

Delicious is the life in the tropic seas, dreamy as the lotus that typifies it-not to be understood by resi dents in our colder and ruder North, but delicious even in the aftertaste to him who has experienced it Even I, who have sparingly partaken of this divine food, cannot forget its flavor; forevermore will ris before me, in smoky London, perchance, or in bustling New York, visions of the slumbering palms in the moonlight at Levuka, and my ears hear the murmur of the surf and the plaintive Mekes of Fiji.

Professor J. H. Sears, Curator of Mineralogy and Geology at the Peabody Academy of Science, in Salem, Mass., has unearthed in newly opened claybanks in Danvers fossils of the mollusk Portlandia lucina.
©orrespondence.
Coal or Oil-An Early Suggestion from the Founder -An Eariy Suggestion fromthe
To the Editor of the Scientific American:
In the summer of ' 79 or ' 80 I was crossing the ocean on the steamship "Arizona." The managing director, Mr. William H. Guion, was on board. Among the many interesting conversations with him was one upon the possible use, at some future date, of oil in the place of coal. The discussion came up on account of the vast amount of black smoke that almost constantly poured from the funnels of the steamship. The enormous amount of waste which he told me occurred from this unconsumed carbon was almost incredible. He then declared that the time would come when oil would be used in the place of coal, and gave as an interesting fact, or opinion, that the saving in freight room by the use of oil, in one trip between England and Australia, would be worth $£ 6,000(\$ 30,000)$. Mr. Guion was a very practical, energetic, progressive man, and his line furnished the first of the ocean greyhounds. Hi , remark was truly prophetic.

New York, June 17, 1902.

Prizes for Photographs

The Bausch \& Lomb Optical Company, Rochester, N. Y., announce a photographic competition open to amateur and professional photographers, residents of foreign countries, as well as the United States, the object being to bring together as large and representative a collection of photographs as possible, in order that the present development of the photographic art and the progress in lens and shutter construction which has been made during the past quarter century may be made evident. It is during the last quarter century that the greatest progress in photography has been made. In order to enhance the interest of photographic work, the awards have been divided into a number of classes, such as landscape, portrait, genre, instantaneons, architectural, interior, etc. Several special awards for telephoto and other work have been provided, also a special award for users of the Bausch \& Lomb rectilinear lenses on various makes of hand cameras, kodaks, etc.

The Current Supplement.

A fully illustrated article on the American cut-glass industry opens the current Supplement. Next comes a dissertation by Dr. E. Fischer on temperature experiments with butterflies. Dr. Fischer has proved the remarkable fact that by breeding certain European butterfiies at low temperatures species are obtained which probably existed in the glacial period, and that by breeding these same European butterflies at high temperatures species which never existed before are produced. The Peterson boat-launching apparatus is made the subject of an illustrated description. The compressed air cars used in France are fully described. The results of the Interstate Commerce Commission's report on safety appliances for trainmen are also published. Mr. Guglielmo Marconi in an entertaining way tells something of the practicability of wireless telegraphy. Prof. Pedersen, Valdemar Poulsen's assistant, has made an important improvement in multiplexing the telegraphone. The improvement is fully described. The wonderful Mexican istle plant and the many uses to which it can be put are fully set forth in an account illustrated by a series of very handsome pictures. The usual minor articles are also published.

An Odd Method of Heating Cars.

The Northwestern Railway Company of England has equipped some of its trains with a system of heating to which the much-abused term "unique" may well be applied. Two concentric cylinders are employed, the annular space between which communicates with a steam-pipe extending from the locomotive-boiler. The inner cylinder contains acetate of soda-a compound remarkable for its property of liquefying when heated, and of cooling very slowly. The radiator; thus constituted are incased in asbestos-lined boxes having hinged doors. By opening or closing the door of a box the heat is turned on or off.

The United States Shipbuilding Company has alosorbed the Bethlehem Steel Company, with the result that ons of the most completely equipped and selfcontained shipbuilding plants in the world has been formed. The new company is thus able to make every part of a ship, including armor plate and guns. The plant of the Bethlehem Steel Company, which is at South Bethlehem, Pa., covers an area of one and onequarter miles long by one-quarter of a mile wide, of which about thirty acres are under cover. The works are particularly well equipped for the manufacture of armor plate and gun forgings.

THE PACKING INDUSTRY OF CHICAGO.

by day allen willey
The industry of killing and packing beef, pork and mutton has reached such proportions at Chicago-the greatest center of this industry in the world-that the most modern processes have been introduced for the purpose of economizing both time and labor, as well as utilizing all of the products of the carcass. The Union Stock Yards, where are located some of the largest packing plants, are the most extensive in the world, having accommodations for nearly 125,000 hogs, 20,000 cattle and 15,000 sheep. Yearly $3,000,000$ cattle and $5,000,000$ hogs are slaughtered and converted into packing-house products in what is known as "Packing Town," which really forms a section of the yards. A further estimate of the extent of the industry can be gained when it is stated that the space devoted to pens alone comprises 200 acres, while the yards are traversed by 150 miles of railroad track and 20 miles of streets and the troughs from which the live stock are fed and watered aggregate 75 miles in length.
As far as possible, machinery has been employed, with the result that one of the large com panies treats 7,000 hogs in a day, where by hand less than 10 per cent of this number can be disposed of. While the killing itself is still done by manual labor, the butcher has every appliance to further his work. The drove of hogs, for example, is passed from the yards into specially-shaped pens, thence forced, single file, into a compartment where a large metal wheel revolves slowly but continuously. An attendant seizes each of the animals by one of the hind feet and fastens it to the wheel by a short chain. As it is lifted into the air, the butcher with a thrust of the knife opens the throat; the work occupies but a second. The blood from the carcass flows into a trough, which passes it on to vats, where it is kept until utilized in the manufacture of fertilizer. The carcass revolves on the wheel until it reaches a point where it is automatically removed and fastened to a trolley system which conveys it into the scrapingroom. Here it passes through a machine, provided with revolving blades, which removes most of the bristles, preserving them so that they can be later made into brushes. The carcass is then passed into a vat or tank of boiling water, which softens the balance of the bristles so that they can be easily removed by hand. From this apartment it is conveyed by machinery into the chill-room, where it remains for 24 hours before being cut into sections.

The carcass, freed from blood and bristles, is now ready for the cleaver, who separates it into the hams and sides for bacon, and removes the fat, which is to be converted into lard and other products. The cutting is done so dexterously that a few minutes suffice for one man to separate the hog into the several portions. Then the hams and baconsare placed in reservoirs filled with a pickling composition, of which each company has its own formula. The other portions for provisions are placed in the salt-room, where they remain from forty to sixty days. The same length of time is required also for the hams and bacon. Following the pickling and salting processes comes the smoking, which is done in compartments where thousands of pieces can be cured at the same time.

The lard is extracted, or tried, in immense kettles heated by steam, and while in the liquid state it is forced through pipes into the packing-room, the pails and other receptacles being filled by merely opening valves connected with the pipes. It is then allowed to cool and is ready for shipment. The pork sausage is also largely a machine product, the meat being chopped into fine particles by rapidly revolving blades, and then forced into skins made of the intestines of the hog, these intestinal skins being, of course, first thoroughly cleaned by machinery. A part of this
machinery, which is operated by compressed air, will fill several feet of sausage skin in a few seconds. The links are made by merely tying the skin with strings in sections a few inches in length. Before it is sent to market, sausage is usually hung in the storehouse for a few days to "season."
Except for fastening the hog to the wheel, the killing process, the cutting into pieces, and fastening the packages, the animal passes through the packing-house

Wrapping Butterine

with scarcely a touch of the hand. Sheep are treated in a somewhat similar manner, except that the carcasses are not made into so many products. When slaughtered they are swung from the fioor by chains fastened to the hind feet. The throat is opened by the single thrust of the knife, and the body is conveyed mechanically into the chill-room. It is usually kept in this department forty-eight hours, when the hide is re moved, and it is cut into halves or quarters as desired. Formerly the skins were sold with the wool on, but the packers have invented a process by which the wool

Filling Lard Palls.
can be easily stripped from the hide. The wool is then cleaned thoroughly in hot water, dried and packed in bales to be shipped direct to the cloth manufacturer the hide being sold to the tanner. The mutton intended for shipment is usually placed in the refrigerating department, which may contain 10,000 pieces at one time. Here it can be kept for an indefinite period, as the air is maintained at an even temperature by a refrigeration system which extends to all portions of the department. When the time arrives for shipment the refrigerator cars can be run into the refrigerator
compartments, and the meat transferred without exposing it to the warm air. In the modern method of killing cattle the stunning process is still retained. As the beeves are driven into the gangways in single file, men upon elevated platforms knock them senseless by a blow between the horns with a heavy hammer quite similar in shape to the implement used in spiking railroad ties. As the animal falls a door in the side of the gangway is opened, allowing the carcass to slide to the floor below, where it is slaughtered. Here the transferring machine is attached to the body, and as fast as an animal is killed it starts on its journey through the several departments. First comes the chill-room, then the compartment where it is skinned. While one man is removing the hide, another cuts off the head and removes the tongue, and another the feet. Next it is halved or quartered in the cleaving-room, and cleaved ready for shipment to the centers of consumption, either in this country or abroad. The carcasses are usually left in halves, being transferred to the cold storage department. where, like the sheep, they may be kept an indefinite period.
The beef affords a much greater variety of products than either the sheep or the hog, although, as already stated, every portion of the animals is put to some use in the modern process. The fat, boiled in large kettles, is resolved into oleo and stearine, oleo, or oil of the beef, forming the basis of butterine and oleomargarine. This and stearine are utilized in some of the soaps which are now manufactured. The blood is converted into fertilizer, and also into buttons of a cheap grade, which are now manufactured in Packing Town, within a short distance of the slaughter-houses. The hoofs, of course, are converted into glue. In the fertilizer' compound, practically all of the offal of the beef can now be utilized.
Within three or four years the manufacture of soaps and liquid foods has been undertaken on a very large scale in connection with the Chicago packing industry. Scores of products which have beef for the basis are distilled, refined and placed in bottles and jars in plants adjacent to the packing houses. The principal concerns of Chicago manufacture their own cans for liquid and solid products, and own the factories for making boxes and barrels, while one company operates a mill for making bagging for hams. As 100,000 packages may be filled in a week with liquid and solid food, the economy of this plan is apparent. Even in the preparing of what is known as canned corned beef the tins are filled with the cooked meat by machinery, the contents of each package being molded so that they fit to a nicety. After filling and soldering, the pack. age is placed in boiling water, then a hole is made in the top to allow the gas to escape, and it is resoldered, keeping the contents in good condition for a period of years in any climate.
The trolley system is being used not only in the abattoirs for transferring the carcasses, but for the general transfer of packages and cars from one point to another. The electric motor hauls everything, from a truck to a railroad car. The method used for transferring the carcasses usually consists of an overhead bar or rail, along which the trolley is moved, taking its current from wiring or a feedbar. To the trolley are attached short chains ending in hooks, so that the animals can be easily fastened to it. The "hog-killing wheel," as it is termed, also revolves by electric power.

Mrs. George E. Hobbs, of Bridgeport, Conn., recently secured a patent on a car truck which enables trains to round curves without lowering the speed, and also permits the substitution of a broken wheel without the necessity of running the car into a repair shop. The invention was recently inspected by two representatives of the Manhattan road of New York.

Export of American Horses.

by george e. walsh.

The revival of the horse does not necessarily mean a decline in the popularity of the bicycle, automobile, and trolley. These latter will go on independently of our four-footed beast of burden, and the latter, it may be said, will have his day again in spite of harnessing all the agencies of nature for performing the work of man. Wars and rumors of wars stimulate the demand for horses and mules, and in times of peace new forms of sport and pleasure introduce ways of utilizing them. The world to-day appears to be suffering a horse famine, and the heavy drafts made upon the resources of this country contribute largely to the steadily advancing prices for good horseflesh. England has been an excellent purchaser of our horses and mules for her South African campaign, where the animals were killed off by insects and the climate so rapidly that it seemed as if a sufficient number could never be shipped there to keep the army in the field well equipped.
In Europe to-day not a single country raises enough horses to meet its own actual demand in times of peace, and the facilities for breeding and raising horses are growing poorer every year. There are few good grazing lands and stock-breeding farms in Europe where horses can be raised on a large scale, and consequently this country becomes more and more the land for keeping the European armies supplied. with their proper complement of horses and mules. In recent years the American trotters and fine carriage horses have become important factors in the export trade, and whereas a few decades ago such a thing as an American horse was hardly to be found abroad, to-day we have a steady stream of them going to all the European centers. Not even Russia has hesitated to avail herself of our best blooded stock, although for years the Orloff strain of trotting stock held complete supremacy in the minds of the Czar's patriotic citizens. But loyalty to a ruling house cannot forever last, and the best thing the Russian horse lovers could do was to import American stallions for crossing with their Orloff breed, and then get a few American breeders and trainers to go over and show them how the Americans did it. So we have to-day not only American horses and trotters in abundance in Russia, but American trainers and breeders practically in control of the royal stables and stock farms. Each year a good-sized consignment of the best American trotters go abroad to add new blood and speed to the Czar's stock.

Germany next to England is probably one of our best European customers for horses, and there is a steady, healthy demand from that country that promises to continue and develop indefinitely as the years
 to horses from other countries, and the French sportsmen have this show practically all to themselves; but unfortunately for them the small glory attached to a restricted competition of this character makes it almost an empty honor. However, a good many French horsemen are purchasing American trotters and in a roundabout way getting the American horses to the front in the home races. In time it will be

A Sausage-Drying Room.
necessary for the sake of the sport to open the races to more general competition. A good many American horses are sent to Belgium, and then they are taken across to France, and within a very short time appear on the French turf as home-bred horses.
Italy, Denmark, and Holland are good buyers of our trotting horses, and the annual shipments to these countries are considerable, while far-off New Zealand and Australia make small drafts upon our resources. To see that these American trotters exported are as represented, the National Trotting Association has export offices in a number of our seaports to issue certificates of pedigrees and identity to the highgrade horses shipped. This is to prevent fraud, and thus injure the American horse trade in foreign countries, and it was first suggested by the European trotting associations. Several thousand certificates have been issued to high-class racing stock; but these do not include the trotting-bred roadsters or fine carriage horses.

In this export trade of American horses not a little
proving the horse is needed, and it partly accounts for a good deal of our success in supplying the world with the finest and fastest horses.

Mountains and Hail.

The influence of mountains on the fall of hail has frequently been the subject of controversy, but up to the present time no certain conclusion appears to have been arrived at. The Italian Meteorological Office has recently published an interesting note upon the question by Prof. V. Monti. .The positions chosen were perhaps the most suitable for the purpose of any among the Italian network of stations, viz., the Collegio Romano and Montecavo, an isolated station near Rome, situated at an altitude of about 1,000 meters; the complete observations at both stations, for the years $1880-87$, are contained in the Annals of the Italian Meteorological Office. During this period, forty-one days of hail were recorded at Rome against eighty at Montecavo; the monthly values show two maxima, in April and October, and two minima, in July and December, as regards the excess of days of hail at the mountain station. A comparison of days of thunderstorms shows, on the other hand, that there were 76 such storms at Rome, against 29 at Montecavo. This seems to show the excess of hail at the mountain station is not attributable to a greater intensity of atmospheric electricity. The author gives a table showing that the monthly mean temperature at Rome is at times about 10 deg . higher than at Montecavo, and suggests that the fusion of hail traversing a warmer stratum of air may account for the smaller amount at Rome.

The Louisiana Purchase Exposition authorities have offered a prize of two thousand dollars for the best design for an emblem. It may be either in relief or color, but if color is used symbolically, red, yellow, blue and white should be selected, as these are the colors involved in the national flags of the countries in which ownership of this territory at various times has been invested. The design must be one which will be available for letterheads, medals, posters or for any purpose in connection with the dignified exploitation of the Exposition.

Marconi's Improvement.

In a lecture at the Royal Institution, June 12, Marconi announced that he had made important improvements in coherers. He said his new invention, which is a magnetic detector, rendered it perhaps possible to receive several hundred words a minute. At the pres ent time he could read thirty words a minute.
In commenting on his February experiments, when readable messages were received aboard ship 1,551

Dressed Meat Hung in a Storage Room.

Machines for Making Sausage-Meat

THE PACKING INDOSTRY OF CHICAGO.

go by. The American trotting horses at the Vienna race tracks are not only features of the exhibitions, but they capture a large percentage of the prizes There is no better way to advertise American horses and methods of training than to take a few of them abroad and enter the races in competition with the European horses. France became so jealous of our success in this line on her native soil, that she practically prohibited foreign horses from entering the
attention should be directed to the American breeding methods and training. It is pretty generally recognized that our trainers and methods are superior to those found abroad, and we are to-day busily engaged in exporting trainers as well as racing-horses. Most of the best European stables have American trainers connected with them, and American methods oi breeding and raising the best stock are adopted. No better testimony to our national efforts in im-
miles from Cornwall, and signals were transmitted to a distance of 2,099 miles, Marconi stated that at a distance of over 700 miles signals transmitted by day failed utterly. Those sent at night, however, remained strong up to a distance of 1,551 miles, and were even decipherable at a distance of 2,099 miles. Marconi explained this peculiar phenomenon by diselectrification of the very highly charged transmitting elevated conductor when operated by daylight.
the grisson continvous-alternating current TRANSFORMERS.

by a. frederic

The evolution of the circuit-breaker or interrupter for induction coils has been slow, owing to the lack of commercial utility of large coils prior to the introduction of the X-rays as an accessory in surgery. After Roentgen's great discovery, an impetus was given to the art of constructing induction coiis and the necessary device with which to operate them, and this was greatly added to upon the advent of wireless telegraphy.

Probably the first attempt to make and break the circuit of a primary coil, by which alternating currents would be induced in the secondary coil, was by sliding one terminal of a copper wire over a coarse file. Sturgeon, the inventor of the electromagnet, exhibited his coil in 1837 equipped with this primeval device. Various forms of mechanical contact breakers were then constructed, by means of a ratchet and spring, and operated by hand.

These finally gave way to forms better adapted for the purpose, one of which was the revolving contact breaker of Barker, who employed a star-shaped wheel or spur to dip in mercury.

Dr. C. S. Page invented the first automatic contact breaker, which he described in 1838. Wagner and Neef improved upon the mercurial breaker by constructing one operated automatically and having the vibrating armature arranged with platinum points where the break took place. This simple electromechanical arrangement is now used on all coils of small size. From that time to the discovery of the X-rays many different forms of contact breakers were designed to give a long make and a short break, but no very wide divergence in the design or construction of interrupters was made until the mercurial turbine and.Wehnelt electrolytic interrupters were brought out. In the former, a hollow spindle containing a steel worm, when revolved, draws the mercury from a well below up to two diametrically opposite, lavatipped steel tubes, by centrifugal force; it is then projected against a pair of sheet-iron sectors, where the circuit is completed. In this way the interruptions may be varied from 10 to 10,000 per minute.
In the electrolytic interrupter 1,000 to 10,000 per minute. It consists in its usual form of a small surface platinum anode and a large surface lead cathode immersed in a solution of one part of commercial sulphuric acid and five parts of water. When connected in series with the primary coil or inductor, bubbles of a non-conducting gas are formed on the anode by electrolytic action, and bursting, complete the circuit. In wireless telegraphy it has been found that continued working produces a heating loss of more than three or four amperes, and forty or fifty volts-the E. M. F. required to operate it-are used.

In the mercury turbine interrupters, especially of foreign manufacture, the deposits require frequent cleaning of the apparatus, and this has called forth fresh effort on the part of inventors to introduce a form that would eliminate the objectionable features and retain the good qualities of both. This is the purpose of the Grisson transformer.

In the Scientific American of December 28, 1901, I described the wireless telegraph system designed by Dr. A. Slaby and Count d'Arco, and which is now manufactured by the General Electric Company of Berlin. This company has recently placed on the market a substitute for the electrolytic and turbine interrupters in the form of the Grisson continuous-alternating current transformer, shown in the engraving and diagram. This apparatus changes a direct continuous current into a pure alternating current, hence its name. Its periodicity or frequency of alternation may be varied from 900 to 6,000 per minute, and, though this is less than in the electrolytic and turbine forms, currents of any amperage may be easily employed. Different from other interrupters in the Grisson transformer, there is no interruption of the current at the maximum value, and consequently there is particularly no sparking of the brush, B^{3}. at $U^{1} U^{2}$. The use of heavy currents for feeding the inductor is thus made possible, besides reducing the size of the condenser in shunt with the interrupter, if not dispensing with it entirely.

Referring to the dia-

Fig. 1.-GRIsson contindous-alternating current transformer.
will have reversed the flow of current and p^{1} and p^{3} is cut off. As both portions of the inductor have a common iron core, i. e., the same core, and are magnetized in an opposite sense, a counter-electromotive force is produced by means of isolating the current, $p^{2} p^{3}$, in the first current circuit when the primary current strength is lessened, and as the beginning of one segment approaches and the other leaves the brush, B^{3}, the value of the current is brought to 0 .
At the moment the first circuit is interrupted, the current quickly reaches a critical maximum value in $p^{2} p^{3}$. This is accomplished by the automatic closing of one or the other circuit, or both, at the same time by the contact disks, which, as the illustrations show, are arranged like a continuous-current dynamo commutator, except that the metal segments are insulated by insulating segments of equal peripheral width instead of thin sheets of mica

The General Electric Company (Berlin) recommend this type of transformer especially for their standard station wireless telegraphy sets and the equipments they supply for armored war vessels.
ozone for Sterilizing Water in Germany.
Ozonized air has long been known to be a very efficient sterilizer for water, although the dry gas has been found to possess little bactericidal power. Its use has, therefore, been suggested for the purification of potable waters, but the early experimental installations, which were erected at Blankenburg, Oudshorn, and Paris, are reported to have been abandoned, and, at present, the process is only known to be in operation at Lille in France, at Bole in Mexico, and at Moscow in Russia. The method is a simple one, but hitherto the cost has been a considerable factor against it. One of the London water companies is at present conducting experiments with a view to introducing the process there. Considerable interest, therefore, attaches to the publication of details regarding the working of the small experimental installation which was erected by Siemens \& Halske, at Martinikenfelde, near Berlin, in 1898.
The ozonizers employed here are of the Siemens \& Halske plate and tube type, and yield from 20 to 25 grammes of ozone per E.H.P. hour, with an E.M.F. of 12,000 volts. Air is first forced through a drying chamber, and then passes into the ozonizers, on leaving which it contains from 2.5 to 3 grammes of ozone per cubic meter. It is then led to the base of the sterilizing tower, a square structure packed with flints, and as it rises through these, it meets a descending stream of the water to be sterilized, which has undergone preliminary filtration through sand. The plant in question is capable of treating 240 cubic meters of water in 24 hours (1 cubic meter is equal to about 220 gallons), and the results of the exposure to ozonized air will be seen from the following tests made with water from the River Spree. With a consumption of 2 grammes of ozone per cubic meter of water, the number of bacteria per cubic centimeter was reduced from 600,000 to 10 ; the permanganate absorption figure was diminished by 18 per cent, and the aeration of the water was increased from 10 to 12 per cent.
The capital outlay for an installation capable of treating 150 cubic meters of water per hour is estimated to be $\$ 33,750$, of which total the ozonizers and sterilizing tower absorb $\$ 18,750$. The actual cost of treatment for a plant of this size is given as 1.736 pfg. per cubic meter, and the total cost, including interest and depreciation, amounts to 5.031 pfg . per cubic meter, the latter figure being equivalent to about $\$ 55$ per million gallons. In addition it may be noted that Siemens \& Halske have recently patented a method of clearing turbid water by the combined action of ozone and iron.

Trial of a Motor Fishing The first completely

 equipped motor fishing boat has recently made her trial trip most satisfactorily at Lowestoft. This is the first fishing craft which will rely upon petrol to generate the force required for all purposes -hauling her nets, hoisting sails, working the capstan, and driving her pumps. The motor is of 24 horse power, and is fitted in a case 4 feet by $21 / 2$ feet. It is only 3 feet high, and the top cover serves for a table. The motor is of the three-cylinder, two-cycle type, and self-starting and reversing.NEW TYPEWRITER KEYBOARD
Notwithstanding the great number of inventors who have concentrated their minds on the improvement of typewriters, one important field for invention seems, up to the present time, to have escaped all. It has
peculiar construction of the front tier, whereby each key is adapted to print either of two characters. This construction is shown in Diagram 2, and it will be seen that each phalanx-piece is directly connected by a socket joint to one of a pair of key-levers, and indirectly connected to the other key-lever by secondary levers and links. Operation of the latter mechanism is accomplished by drawing the phalanx-piece backward. A slot in the phalanx-piece receives the upper end of a curved lever, which is so connected by a link to a secondary lever below that any backward movement of the phalanx-piece will result in the depression of the latter lever. Thence connection is made to the proper key-lever above, but not directly, for the depression would be insufficient for the purpose. A third lever loosely pivoted to the front of the machine is connected near its center to this secondary lever and at the end to the keylever. By this arrangement the leverage is increased and proper depression can be made to operate the type-bar. The directly-connected key-lever is operated by the mere depression of the phalanxpiece. and we, therefore, have an effective mechanism for operating two type-bars by the manipulation of a single key.
A very complete keyboard is thus afforded, which comprises but three tiers of keys, and which is further augmented as in the stand
evidently been taken for granted that the present arrangement of the keyboard was the very best, and no study has been devoted to this part of the machine. Now comes forth an inventor from Cuba with a keyboard radically different, which is so arranged as to conform to the outline of the hand, as clearly shown in Diagram 3. The front tier of keys is adapted to be operated by the first or second phalanges of the thumbs or fingers, while the other two tiers, which

2 -the phalant mechanism. 3.-Odtline of the tiers.
are curved to the shape of the hand, are operated by the finger-tips. Each finger-tip operates two keys, the upper tier being engaged when the finger is distended, and the lower tier when the finger is bent at the first joint. L-shaped guides are provided on certain of the keys, to enable the more clumsy digits to instinctively find their proper locations.
A very important feature of this keyboard is the
ard machine, with a shift mechanism for obtaining the upper-case characters. This keyboard can be easily applied to nearly all the typewriters now on the mar ket and a few lessons will teach anyone to operate the machine rapidly. Great speed may be obtained, for every digit is brought into play, and each finger with the exception of the thumbs, has four distinct movements, each of which produces a different char acter. The possibility of printing a wrong character is remote, for the hand is not moved during the writing, even for printing capitals or spacing, and each finger is continually in engagement with its individual set of keys. A typewritist can therefore perform his work without looking at his machine. Patents for this keyboard have recently been granted to Mr. Juan Vidal, care of his agent, Delgado de Lemos, 44 W. 10th Street, New York city.

A RECENT REAR-END COLLISION ON THE NEW YORK

 CENTRAL RAILROAD.A collision similar in its effects to the horrible tunnel disaster in New Yoik city last January, occurred on the New York Central Railroad at Peekskill early on the morning of June 14. A passenger train standing at the station, luckily having two trailing empty passenger cars, was run into at the rear about 3 o'clock in the morning by a night fast freight train. Either the engineer or fireman failed to heed the block signal set against them, or the block signalman failed to set the signal, about which no explanation is given. Had the rear cars contained passengers there would have been a great loss of life.

As it was, the freight engine plowed right through the passenger car, the roof sliding over the top of the engine, as shown in one of the illustrations, the
sides of the car also passing over the sides of the engine. The other illustration shows the effect of the concussion in telescoping the following freight car with the tender. The car being filled with soft material prevented serious damage to the tender. Strange to say, nẹither the freight locomotive engineer nor fireman was seriously injured.

The collision emphasizes the need of automatic safety appliances for stopping trains when signals are ignored.

CRUSHER

Mr. Alexander G. Morris, of Tyrone, Pa., is the inventor of a new crusher which we show in sections in the accompanying illustration. The machine is designed to crush rock, ore and other like material, which is broken into fine particles between powerful jaws operated by suitable mechanism. The material to be crushed is poured into the feed hopper, A, and falls between a series of open jaws, B and C. The jaws, B, are stationary, while the jaws, C, are oscillated toward and away from the jaws, B. Each jaw, C, carries a roller wheel, E, loosely mounted therein and adapted to bear under spring tension

SECTION OF AN ORE-CRUSHER

against the periphery of its respective cam, F, on the main shaft, thus imparting an oscillatory motion to the jaw. The ore is thus intermittently crushed and allowed to drop between the inclined jaws until sufficiently reduced in size to permit of its falling onto the chute, G, arranged to direct the crushed rock toward the front of the machine. Each jaw is provided with a wearing surface which may be readily removed, when worn out, and replaced by a new one. The jaws, B, are provided with transverse extensions which are held in corresponding cavities in the frame by bolts slightly movable therein to permit the jaws to swing. The proper inclination of the jaw, B, is maintained by hook-bolts working in connection with spacers, D. By placing spacers of various sizes in position, the jaws may be regulated to crush ore to different degrees of coarseness. Furthermore, the spacers act as safety devices to prevent the destruc tion of the machine by overloading it, for they are made of such strength as to stand the strain of the load which it is desired they should bear. If the crusher be overloaded, these spacers will fracture and give way, thus relieving the machine of its strain, and preventing the destruction of other and more expensive parts of the apparatus.

telescoped tender and freight car.

RECENTLY PATENTED inventions. Agricultural Implements. DEVICE FOR LOADING CORN-SHOCKS W. A. Tea, Bellevue, Ohio. This device, which is wheel-supported, is adapted for attachment
to the rear of an ordinary farm wagon fo the purpose of automatically carrying the shocks from the ground up an inclined track to the wagon bed and delivering them there in, thus facilitating the gathering of shocks
adapted to be transported to husking and adapted to be tran
shredding machines.
COTTON-CHOPPER.-F. M. and L. E Sharp, Partridge, Okla. Ter. .The machin
belongs to that class of machines belongs to that class of machines which are
adapted to be drawn over a drilled row of cotton plants for chopping out portions of the crop, thus leaving the plants in bunches hills. This invention comprises a new con struction whereby the cutter is adapted to rotate when in action and may be set at dif ferent depths or thrown up entirely out of action.

Apparatus for Special Purposes.

 GAS-WASHER.-PAul Riecke, Dessau, Germany. The gas washer belongs to thatclass known as "standard" washers, in whic several wheels or disks are arranged on a com mon shaft revolving in a cylindrical casing the lower part of which contains the washing
liquid. The object of this invention is liquid. The object of this invention is to get a maximum amount of washing surface in
a minimum amount of room while leaving a perfectly free passage for the gas and, at the same, to clean the washing surfaces while th apparatus is working
WEIGHT AND PRESSURE RECORDING apparatus.-E. McGarvey, Bellefonte, Pa It is a recognized desire by scale manufac which the weight to have an attachment by beam may be quickly and accurately recorded thus avoiding mistakes liable to be made by the weighman and supplying a correct recor Such an apparatus is provided in this inven Such
tion.
tapping - Jacket. - M. Barrett, Grand Forks, Canada. The jacket is used in connection with the tap-hole in metallurgical fur
naces. The object of the invention is to culate cold water or some other cooling fluid around the tap-hole for the purpose of pre-
venting the same from becoming unduly heated

Electrical Apparatus

TELEPHONE-CALL FOR PARTY-LINES.Wilson, Walla Walla, Wash. This system be longs more particularly to that class wherein longs more particularly to that class wherein
several stations are located on the same circuit. The operator at the central station may call any desired station on a party line by depressing the usual form of push button a proper number of times. This signals the station required without sounding a call at
any other station on the line The duration any other station on the line The duration ordinarily given at centra; is sufficient to operate this machine.

Engineering Improvements.

 TrAIN AND SIGNALLING APPARATUS - W. A. and B. S. H. Harris, Greenville, S. inventors for improvements on a previously patented invention in train-signalling apparengineer through a slight reduction of pres sure in the train pipe without the necessity of using a separate signal pipe. In the present inventions the system is simplified and made more certain and efficient. Means operated by the exhaust are provided for intercepting the air passing through the signal valve to the whistle, so as to prevent the whistlefrom sounding by any operation of the engineer's brake valve in the application of the neer's brakes.

Hardware

Wrench.-W. M. Treglown, Sr., New York, N. Y. The improvement relates to pipe wrenches, and its object is to provide a venient adjustment for gripping large and mall articles and turning the same in either direction.
Cutter.-F. L. Levy, Duluth, Minn. The der is particularly adapted for use by dress athes for cutting cloth in strips extending like. It consists of a transers are arranged, side y side, a number of pins carrying rotary cut ters at their lower ends.
Cheese-cutter.-W. J. Spillman, Pullman, Wash. The invention relates to a de vice for carrying cheese and for facilitating
the work of slicing it in regularly formed pieces. The device is particularly adapted for use by retail merchants.

[^0]may be readily adjusted to the increasing
size of the paper roll while the winding size of the pape
drum is revolving
FIRE-ESCAPE.-J. and P. J. Setbacken, Cynthiana, Ind. This fire escape belongs to that class in which a line or rope is pro-
ided for the descent of a person. The rope is used in connection with certain governing mechanism for causing it to be paid out at a uniform rate.
burner.-H. C. Zenke, New York, N. Y In burners for linotype melting pots, as heretofore constructed, reliance is had on pres ure of the gas to draw sufficient air into the
ixing chamber to form the blue flame at th ip of the burner. But as soon as the pot is heated to the desired degree, and the gas
partly shut off, very little, if any air, is rawn into the mixing chamber and a poor ame at the tip is the result. To avoid this difficulty, Mr. Zenke employs an air-inlet for
the mixing chamber and an independent inlet for a combustion chamber under the pot to insure a perfect burning of the gas and consequent proper heating of the pot at all times. SKYLIGHT-OPENER. - G. Bickelhaupt New York, N. Y. This skylight-opener is easily manipulated and may be opened a desired distance for ventilating or other purposes and after this adjustment is made, means are rovided for locking the skylight in place.
FRICTION GEAR.-E. P. Dawson, Butte Mont. The friction gear is peculiarly con structed for variable speed and is adapted par ticularly for connection with sewing machines Two cones are employed with their tapering connects the two cones, transmitting the pow onnects the wome to the other The speed an be regulated by shifting the transmitting wheel along the surface of the driving con away from or toward its apex.

Medical Apparatus.

RECEPTACLE FOR ETHYL CHLORID. . Schmartz, New York, N. Y. The inven ethyl chlorid and other fluids, such for ex thyl chlorid and other fluids, such for ex
mple, as in devices for use by dentists or surgeons for producing local anesthesia. The receptacle is provided with an improved form of spray nozzle adapted to so tightly close the receptacle as to
highly volatile fluid.

Railway Improvements.

CAR-SEAT.-L. Jarson, Brooklyn, N. Y. The ar seat is of that class in which two seat
proper are mounted on a common suppor proper are mounted on a common support turn in unison. The seats are held to turn on vertical axes, but are not allowed other move ments. A latch is pivotally mounted on top
of the base and is arranged to normally enof the base and is arranged to normally en COAL hold the seats from turning
COAL-CHUTE.-W. H. Simms, Grand Isl, Neb. The coal-chute is designed to be used in connection with bottom-dump coal cars.
The chutes are built in series along a high trestle work, so that the coal cars on the trestle work, so that the coal cars on the
tracks along the top of the trestle may dis charge their coal directly into an engine or car standing on tracks at the bottom of the chut on either side thereof.

Vehicles and Their Accessories brake-block.-J. S. Odgers, Centra City, Col. The invention is designed to fu nish an improved brake-block for buggies, wag
ons and all wheeled vehicles which shall pro ons and all wheeled vehicles which shall pro-
vide a stiff and rigid connection for the rubiron to the operating bar that carries it, that the brake-shoe will not become loose and tilt on its point of support, and yet provide construction which will permit the position of the brake-shoe and rub-iron to be adjusted to the plane of the wheel, whose dish is some-
times changed in adjusting new tires to the heel.
PEDAL-BALANCE. - F. H. ANDERSo Walhalla, N. D. The object of this invention
is to provide a suitable construction whereby to properly balance a pedal provided with properly balance a pedal provided with
toe-clip so as to prevent its being turned by the weight of such clip.
rein-holder.-J. Granger, Springer, New Mexico. The rein-holder may be readily attached to a dashboard or other part of the
vehicle, and the reins may be easily engaged and clamped thoreby, especially when the har ness trace is slack, so that the reins cannot
be dirawn out by a forward pull.

Miscellaneous Inventions.

DOUBLE IRONING-BOARD.-J. M. GERroning boards are foldably connected with each other, which enables the use of either board. The boards are of different marginal
forms, and one board becomes the base for the support of the other, which is being put in

NECKTIE-FASTENER.-A. N. Dow, Fxeter, N. H. The device which is of simple con-
struction is designed to effectually hold a tie or bow of any form and prevent it slipping up-NECKBAND-SH the collar.
neckband-Shaper.-M. H. Ellenbogen nd A. L. Levy. Paterson. N. J. The necksized neckbands, and may be conveniently ap-
plied to the neckband to hold the same in
proper position during the ironing of the shirt proper position during the ironing of the shirt
yoke to insure proper setting and uniformity in shape. BELT-CLAMP FOR BUCKLES.-L. SAN Ders, Brooklyn, N. Y. The invention pro-
vides a clamp for a belt adapted to be use in connection with a buckle, and the device is so consiructed that the ends of the belt may be readily and conveniently connected and the belt rendered larger or smaller to any ex ent within the limit of its adjustment.
BOOK-COVER.-F. C. G. Knibb, London, and Thomas R. Towler, Woodford, England The improvement relates particularly to boo covers of yielding material, such as are de signed to be carried in the pocket. The in vention provides means for rendering the cover
stronger at the edges than are the usual covers. TRIPOD.-W. K. Holmes, Brooklyn, N. Y The tripod is constructed with telescopic leg drawn out to their full extent they may held in this lengthened position by simply turn ing the sections slightly in one direction. Kite.-H. J. Trainor, Jersey City, N The kite has certain peculiarly arranged whi tles therein, and a telephonic receiving device held in the hand of the perso flying the kite the connection being such that the noise of
the whistles will be communicated to the reeiver
veil-FAStener. - W. Bernstein, New York, N. Y. The veil fastener is adapted for uimanent use on a lady's hat, to allow of in place. The fastener is rather inconspicuous hat.
CALENDAR-BLOTTER.-S. M. DEWEY, Rutherford, N . J. convenient blotter and a daily calendar such a manner that a new blotting sheet or new calendar can be readily inserted and se curely held in position for convenient blotting
of sheets and for displaying the day of the week, month, and year, together with suit-BUILDING-BLOCK
BUILDING-BLOCK. - A. De Man, New York, N. Y. The building block is designed cially such as have I-beams for floor supcially such as have I-beams for floor sup-
ports. The building block reaches from one floor-supporting beam to the next adjacent one, and is arranged to permit the convenient handling and placing of the blocks in position, one alongside the other, to form a sectional
slab oi great strength and durability, producing a flat ceiling and straight top sur-
STOP-MOTION FOR MECHANICAL TOYS -A. D. Converse, Winchendon, Mass. The device provides an effective means whereby
when the motor or mechanical toy is wound up it will not act upon the axle or wheel of the toy with which it is connected untll upon which it is adapted to travel.
necktie-frame.-A. Cole, Hood River Oregon. The frame is made from one piece
of spring wire, thus dispensing with a separspring wire, thus dispensing with a separ
ate cardboard or metal piece, and the de vice is so constructed as to constitute an efficient form of support for the body or knot portion of the tie and provides means for at-
tachment to a collar-button and any style of tachment to a co
turndown collar.
churn-cover.-T. h. b. Van hoozer, Co manche, Texas. The churn-cover embodies a churn, a guide tube for the dasher rod, and special construction at the outer edge of the base of the cover which provides a channe o fit upon the upper edge or the churn body SHOWCASE-A. Reinle, Baltimore, Md n this invention Mr. Reinle provides a nove form of resilient joint strip for application between the abutting plates of glass. The strip is so constructed that it will overlap
both edges of the plate of glass, thus dispens ing with the necessity and expense of grind ing the edge of such plate
Shoe-lace fastener.-L. h. Hancock Fargo, N. Dak. This device is adapted to se lacing or string to the upper part of a shoe thus obviating the necessity and inconvenienc of tying the strings.
GARMENT-STRETCHER.-H
acon, Ga. By this invention Dr. Brown Brown produced a simple device which is light, so it can be easily carried in a valise and will oc
cupy but little room therein and which can be used for creasing trousers whenever de sired. This result is.effected without the us f irons.
BURGLAR-ALARM.-W. H. Moody, Dallas Texas. This economical, portable, cartridge
discharging burglar alarm is adapted for at tachment to a window or a door, and is so constructed that it will be quick and positiv in its action, and may be left indefinitely in firing position without detra ing from its use fulness. A simple locking device is provided which may be set to hold the hammer cocked permitting the
parative safey
Flood-Gate. - H. B. Casperson, St. Marys. Ohio. This flood-gate belongs to the soclated with a horizontaly-hung gate is a up-stream. In the present invention the gat
zontal confined positions on the rising of the is at its height. Means are when the flood at its height. Means are provided for op
oosing the rising motion of the gate and the posing the rising motion of the gate and the
fender, which means is also free to be lifted thereby on an increase in the volume of the food, thus minimizing all liability of injury to the parts.

Designs.

ORNAMENTAL FRAME FOR TEAPOTS OR SIMILAR Articles.-E. Piepenbring, Washington, D. C. The design is in the natur mental character embracing the body of the vessel, and is jeweled and ornamented to represent holly sprays with the berries, and ha a shield-like figure and edge ornamentations producing an extremely ornamental and at ractive frame
Note.-Copies of any of these patents will be Please state the invention, and date of this paper.

Business and Personal WVants.

 MUNN \& CO.

Inquiry No. Ny90.- For a grod second-hand gaso
line marine engine from 2 to 3 horse power. AUTOS.-Duryea Power Co., Reading, Pa
Inquiry No. 2791.-For dealers in mining ma For logging engines. J. S. Mundy, Newark, N. J. Inquiry No.
cuttiug machines. C. S." Metal Polish. Indianapolis. Samples free. Inquiry No. 2793.- For manufacturers of novel
ies and Christmastoys. Water wheels. Alcott \& Co.. Mt. Holly, n. J. Inquiry No. 2794.-For dealers in vacuum pans
for evaporating maple sap or fruit juices.

Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St

 Chagrin Falls, 0.Inquiry No. 2995. - Parties to manufacture an
improved hande for Mrs. Potts' sadirons. Sawmill machinery and outfits manufactured by the
Lane Mfg. Co Box 13 , Montpelier, Vt. Lane Mfg. Co.. Box 13, Montpelier, vt.
Inquiry No. :g96.-For a spring motor for pro
pelling a sewing machine. Gear Cutting of every description accurately done
 We design and build special and automatic machinery land, Obio.
Inquiry No. Ay
with a rubber-like
composition. For Manufacturers of patent articles, dies, stamping
tools. light machinery. Quadriga Manufacturing Comtools. light machinery. Quadriga Ma
pany, 18 South Canal Street, Chicago.
Inquiry No. 2799.-Fir a knurling tool for mak
ing embossed paper of special pattern. Designers and builders of automatic and special
machines of all kinds. Inventions perfected. The W.
A. Wilson Machine Inquiry No. 2800.-For parties engaged in ball-
bearing and model work. The celebrated "Hornsby-Akroyd" Patent Safety Oil Engine is built by the De La Vergne Refrigerating Ma Inquiry No. 2801.-For dealers in appliances for Ideas ineveloped.-Uesigning, draughting machine Hudson Street, New York.
Inguiry No. 280: -For makers of tin caus about
4inches high and $13 /$ inches in diameter, with enameled
advertising thereon. Send for new and complete catalogue of Scientiftc New York. Free on application.
Inquiry No, e803-For aurner for attaching to Inventors, Attention! -Highest prices paid for
novelties in card or paper. Established in years. Address The Tablet and Ticket Co No. 87 Franklin Street. go, 11 .
Inquirv No. 2804.-For an apparatus for repro-
ducing written reports in numbers.
 thauitry No. 2506.- For ceaters in loades for hamn Hinaity No: 2S07.-For manutaturuers of roof
 Thad.'iry No. eso9.-For mantataturest of bent

 Inaniry No. 2si4--For a alare pratitalal diab rinitivy vo. 2815 .-For carpet.cleaning appeatutus

Inquiry No. 2819.-For dealers in rubber special-
Inquiry No. 2820.-For makers of double-sction
suction pumpg.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending June 17, 1902, ANDEACH BEARINGTHAT DATE
(siee note atend of list about copies of these patent

 Badge medallion, J. E. MillerBag. See Water bag.
Bag holder, J. P. Adams.....
Balance or scale, automatic,

Ele
Ele
Ele
Ele
Ele

\because.
Hoiland....702,
N. .

 Cane convevor, sugar, C. H
Care bolster, H. Buh.
Car dor, sliding, J. Playe

 Carbon ho
Carbonator
Carbureter
Carbureter
Cartridge

Chair, H. W. Bo. Ho.....

 Clock synctronizer, electricic,
Cloth cutter, S
Cloth, etc., device for for unki.

THE FRANKLIN DYNAMO

MINERALS

FOOTE
 HOPPES MFG．co．． 25 Larch St．．Springfield，Ohio．

 YACHITS \＆LAUNCHIES

open or cabin

Marine Gasolene Engines

Stone or brick and the pre paration of limo

 DESIGNS．

Buckle，belt，L．B．Prahar．．．．．．． Cabinet，dresing，J．C．CTiylo． Casket，trimming，E．r．Sargent．

Recentacle，V．Goetze．
Stove，W．V．
Stove or range，cookison
Sooking，
TRADE MARKS．

\qquad
\qquad
\square

\qquad

SIXTEENTH REVISED AND ENLARGED EDITION OF 1901.
＊The Scientific American＊ Cuycuperilia of Receipits，Iotes anc quaries． $\begin{array}{ccc}15,000 & \text { RECEIPTS．} & 734 \text { PAGES．} \\ \text { Cloth．} \$ 6.00 \text { in Sheep．} \$ 6.50 \text { in Half Morocco．Post Free．}\end{array}$ Price，$\$ 5.00$ in Cloth．$\$ 6.00$ in Sheep．$\$ 6.50$ in Half Morocco．Post Free． This work has been revised and enlarged，

900 NEW FORMULAS．
The work is so arranged as to be of use not only to the specialist，but to the general reader．It should have a place in every home and workshop．A circular containing full TABLE OF CONTENTS will be sent on application．

Those who already have the Cyclopedia may obtain the
1901 APPENDIX．
Price，bound in cloth，\＄I．oo，postpaid．
MUNN \＆CO．，Publishers，36I BROADWAY，NEW YORK CITY

ATIONS	Daguerreotypes "Decatur, la la Dinosaur, Jur Dock, Howard Dock,			(Airships, prizes for \qquad Alcohol as motive p Alcohol automobiles $\ldots \ldots .$. Alcohol Exposition, new.123, Alcohol industry in Germany 381 Alcohol motor, improvement. . 191	Boilers, water tube, compari- Bologna, leariter ….......... 4126 Books, text, Amer., abroad... 201 Bore, tidal, picture of a..... 10 B
Accum.ulators, automobile .. 351	Dock, dry, A	Loop, N ${ }_{\text {L }}$	Station indicator.............. 243	Alcohol motor, the $\dddot{\text { Al }}$.......... 18 Alcohol motors in 64	
203					
rime	${ }_{\text {divider }}$		m chest, ${ }_{\text {cocomotive..... }}^{396}$	Al	Brake trials, important.... ${ }^{\text {dof }}$
-oplane, $\begin{aligned} & \text { curitish } \\ & \text { currents, } \\ & \text { stutu }\end{aligned}$	Drive-gate, auto.........: ${ }_{3}^{245}$	Mail van, automobile...... 104	Steamships, Atlantic, growth		
pump automatic...... ${ }^{47}$	Drydo	Marconi, experiments or..... ${ }^{4} 4$ Martinique, disaster in.... 465			Bread making, mechanical, ${ }_{*}{ }^{\text {a }}$, ${ }^{\text {a }}$, ${ }^{\text {a }}$
Ship 'Pax',	Dust	Match box, bicycle.......... 420		Aluminium saw handes.... ${ }^{279}$	8
ship, Santos-Dumont	$\left\lvert\, \begin{aligned} & \text { Dust, } \\ & \text { Dyna } \end{aligned}\right.$				
	Dynamork ignition				
ship, Severo, end of.....: 395					
coho automo	E				
nalyzer, gas eetric...........: ${ }_{93}^{225}$		Motor, Knox ${ }^{\text {M }}$ Mo.......... 140			Briage, Last kiver, calissons ${ }_{\text {of }}$
			T		
aturing	E^{2}	Motor, steam, Lane......... 138	Tabulating machine.......... 269	Armature winding, feat in.: 155	
h sifter, du	Engine, steam, Lane........: 138	Motor, steam, White....... ${ }^{\text {a }}$ 136		${ }^{\text {Armor plate }}$ Arror plate	
pen tunnel	Engine, steam, ${ }_{\text {Engine, }}$			Arrow, an Esquimau........ ${ }^{54}$	Bridge, Redheugh, new. ${ }^{\text {a }}$... ${ }^{122}$
say	Engines of Edison power sta. 199			Artillery launches Assay o ftee, New	Bridge, stonv, Petrasse River 52 Bridge tunnei, Penn. R. R. ${ }^{*}$.
Automobile, Automobile ald	Erie Canal imp	Missions, old Spanish. $\because \ldots .{ }^{56}$			
tomobile coupe $\ldots \ldots .0 . .0{ }^{226}$	Etchograph, the 121	launching of.... 20			Briquettes of garbage........ ${ }^{257}$
tomobile frame	Excavator, canal,	N	${ }_{3}^{8}$		
tomobile, marine	\mathbf{F}		Tiberius, bronze head of.... 401		Bronze, aluminium, eests...: ${ }^{253}$
tomobile, Me				Automobile accumulators $\ldots \ldots 351$	
tomobile, motor				Automobile Automobile ambubs, Ence clulishi...: 274 274	
tomobile, Overu		o		Automobile coun	
tomobile, rac				Automobile	B
					Burner, gas
tomobile			Tool rec	Automobile endurance e te	
,	${ }^{\text {Flour }}$ F			Antomobile frame, flerage...: 187	
e bearing, automobile.... 152			Trades of old	Automobile house, portable.. 145 Automobile in Porto Rico... 293 and	Buttes, formation of........*349
, $\quad \mathbf{B}$					
	29			Automobile mail van . \ldots...... $* 104$	Canal, Erie, improvements..*290
ges, tractor, canal........ 394	${ }^{\text {Freitht, handing, New }}$ Nori 418		nsformer, ternating corrent 452		Cables, submarine, mfr...... ${ }^{* 87}$ Cable, submarine, new.... ${ }^{\text {che }}$
tery, international $\quad \ldots \ldots .{ }_{351}^{191}$	Friction clute			,	
	Furnace, blast, modern. .165, 172	\mathbf{P}	Triceratops, model of......:43	Automobile novelties $. . .152, * 227$	
	G		$\left\lvert\, \begin{aligned} & \mathrm{Tre} \\ & \mathbf{T r e} \end{aligned}\right.$		al boat, tractor..........*394 al, Darien, route......... 118
tleship "Missouri,", 20					nal, engineers, Isthmian, ${ }_{\text {a }}$
le attachments …....: ${ }^{420}$		6			
	Gas ana	"PPax," airship 362	86	Automobile, racing, Baker. . ${ }^{*} 119$	C
k, spring, new.......... 208	Gate, drive, new........... ${ }_{70}^{15}$		nels, bridg	Automobile, rise and growth. ${ }^{134}$	Cana, Isthmian
	Gasoline			Automobile show, Chicago... ${ }^{134}$	
(ocom	Gasoline motor, novel...... 291			Automobile shows, Amer.... ${ }^{271}$	
			Turbines, 8,000 horse power. 41		
ma	Gear,	Pho	Typ	Automobile speed	Canal
nstructio	Ge	P	pewriter, Hanso	Automobile, stables $\ldots \ldots \ldots \ldots 149$	
仡	Generator, ether-vapor $\ldots \ldots{ }^{9}$		Typewriter, simplex 255	Automobile, steam, Overman *139	
	Glass, engraving $\ldots \ldots \ldots \ldots{ }^{173}$	ants,	v		
Brake, Duryea ${ }_{\text {Breal }}$	Glassware, manufact. process 323			Automobile tires	Cape Cod, the sands of..... ${ }^{2} 127$
achil	Gnats and midgets in winter 295	Plow, hilling up............. 208	Valve for pumps............ ${ }_{59}{ }^{97}$	Automobile,	
idge, a th			Venice of Long Island $:$.....: 345	Automobile touring outfit.... ${ }^{134}$ Aut	
East River, caisson. 375	Grass, pampas \qquad 400	Pompeii		mobiles, alcohol *37	ar, shortage
ra	Grid, the Madden.......... ${ }^{352}$	Power ho		Aut	
e, tres	G			Automobiles,	Car, touri
idge, treste,		${ }^{\text {P }}$	w	Automobiles, milit	
ush, hair, coin-in-slot..... 420			Wagon, steam, Stearns..... ${ }^{137}$	Automobilies, of oil fuei for....: ${ }^{139}$	electric, jack for...... *70
		Projector, photographic........ 184	War car, Simms............. 350	Automobiles, wear	Cars, freight, large order for ${ }^{\text {a }}$ (${ }^{\text {Cars, mail automobile }}$
$\begin{gathered} \text { arglar } \\ \text { arnere, } \\ \text { sunne } \end{gathered}$					Cars, mail,
		Pump, mixing P...............: 432		b	Cars, $\begin{aligned} & \text { cars, } \\ & \text { catetal } \\ & \text { sadde }\end{aligned}$
rner, Lane	Hardware locomot	Pump valve. 397			Cars, self-du
Butter, formation of........ 349		Pumps, speed gear for..... ${ }^{120}$	Welding machine 333		Cars, street, Carriage,
		Python, feeding a 57			Carriage, gasoline, Knox... $*_{140}$
C	${ }_{\text {Hill }}$	\mathbf{R}			Carriage, sta
	Hones				Carriage,
		Race, Nice-Turbie..io..... 384			Carriage, st
	Hose, metallic		\mathbf{Y}	Baldwin, searching for...... 332	Cartridge co Cascaret cas
					Cast
	Hub,	Railroad, Union Pacific....... 240		Balloon projects for the	Cats,
nal, isthman, work...... ${ }^{674}$	Hydrometer, home-made 106	Railroading, winter, Aiaskia. 124			
uatomo	- 1			$\begin{aligned} & \text { in, s, end of:. } \\ & \text { in } \\ & \text { York eity } \\ & 414 \end{aligned}$	Cement, Portland, domestic. ${ }^{\text {chen }}$ (22
					Central Park, mainten
Car, repair					
	"Indiana," launch of.......: ${ }^{254}$		MISCELTANY		Chair, oak, old, discovery.... ${ }^{310}$
Car, touring, Packard...... 146				Bath, photo., new..........: 20	
Car, war, Simm's				Battery, the storage $\ldots148$ Batteries, storage, charging. $* 202$	
399	Insects in winter.............: 401		Figures preceded by a star (*) refer to ilu ${ }^{\text {atrated articees. }}$ (Claims, construing,
Carbureter, alcohol $\ldots \ldots \ldots \ldots .387$ Carbureter, Packard		Redheugh bride........... 117		Battleship "Missourl," ${ }^{\text {baunch }}$ *20	Cram,
		Revolver and dark lantern.: 315			Club, Indian, illuminateed. $\because: 369$
$\begin{array}{r}\text { rriage, } \\ \text { Duryea } \ldots \ldots \ldots \\ \hline 147 \\ \hline\end{array}$		俍		submerged, signaling 94	Clutch, friction, Phillips....*291
				"Beillesièe,; defence ship ... 190	Coal, anthracite, first use... ${ }^{244}$
riage, st		"Rollo,"	Acid, carbonic, solid		
ggs, messine		Runabout, Ajax.......... 148	Acetylene, carbureted $\cdots \cdots i$	Berthoud-Thoune	Coal
ma		Runabout, gasoline.......... 142	Acetylene, explo	Bicycle, a smow............**45	95
	Kite, great Marconi.......... ${ }^{4}$	\mathbf{S}	${ }^{\text {Acetylene }}$ Acetylene gas	Bicycle Bicycle, attachm novel	Column of Hal1 of Records. ${ }^{\text {Cras }}$
	Kneading machine 379		Acetylene gas, increasing use ${ }_{\text {of }}$		
		Sand drifting, Ca	lene	Bicyce whirl	
242		Sand, modeling in.........: ${ }^{\text {a }}$ 761	berries	Bicycling problem	Coal, spontaneous con
		"Scorpion," monitor ${ }^{416}$	experiments in.*125	Bird mummies at lyons.....: 111	Coa
	ne			Birds, nati	
Club, Indian, illuminated.... ${ }^{369}$	Lamp hanger,	le, column of........... ${ }^{249}$	Ae	Black, ace	
	${ }_{\text {Lamp, }}^{\text {Lamp, }}$ night, si	wenegan Falls	Aeroplane, British,	Bleaching, new method. $\quad \cdots \cdots * 208$	Coin, gold, for bullion,..... ${ }_{364}$
Conlision, rear-end $\ldots \ldots \ldots . .453$	Langen suspended	$\left\lvert\, \begin{aligned} & \text { pant } \\ & \text { Shell practice, } \end{aligned}\right.$	${ }^{\text {Aeroplane, }}$ Aerostatics, ${ }_{\text {me }}$		Coill
		2	Afrrica, commercial prose.e.ts 410	Roat, fishing, motor. $\ldots \ldots \ldots{ }^{452}$	Colisision ${ }^{\text {a a }}$ sea, Comet, a new
202		pyard material, . handing ${ }_{366}$	${ }^{\text {A }}$ Agriculture ${ }^{\text {A mriculture, sec }}$		Commet, ${ }^{\text {come }}$, ne
	Lathe				Com
Copper refining, electrolytic. 181	${ }_{\text {Lewn }}^{\text {Leaw }}$ Levak				Co
		Silworkworm			
			Air, permeability of	Boats, motor, exhibition of. 278	Coooling machine, newt $1 . . .435$
	ph	Stsat plantation			
					Copper, extraction, Hoepfner proc
tr				Boiler, locomo., water tube,	
Crane, traveling, electric...: 435	$\begin{gathered} 33 \\ 53 \\ 59 \\ 59 \end{gathered}$				
					57

	$\begin{gathered} \text { Gear } \\ \text { ciear } \end{gathered}$	Likthtouse,	$\begin{aligned} & 0_{4}^{4} \end{aligned}$	Runabout, Haynes-Apperson. Rubber boots for dogs....... Rubber scrap, recovery of... R	
		Hzhming			
	deorortion	Likne			
Curren traneormer simiele	${ }_{\text {Glase }}^{\text {Glass }}$				
mer	new	Locemotive			
		,	Paten		
Crciate					
Cryips polvera	Corla	Lecomotive			
	gin				
	nin the				
Dief eie					
	atator per				
				Sensation	Tractor baire
Driver eanerin					
Drydork, le					
ignition					
	Heavens in Harchi........: 1 187				Trains, eleasted, ieie.tic...:
				${ }^{\text {Signal }}$ night,	
			for B	Sied	
	mericea			Smotee con	
					dus
Tleetricity direet trom heat	ut,	$\begin{aligned} & \text { Herere } \\ & \text { Herf } \end{aligned}$			
		Milet	Plus,		tro
	Hy	$\begin{aligned} & \text { Metete } \\ & \text { Note } \\ & \text { Nete } \end{aligned}$		Somber	
ine					
steam, steam,	ing			a	
Engine, steam, oscillating... ${ }^{* 384}$			${ }^{\text {Po }}$	Senem	
tins,				Soill	
		coin			
		Motor, alcohol, the 168 Motor car, new 18		Steamship, Brit	Turunine Turbe, pitat sta site
		Moter	-	Ste	
				gremer	
	Inventions, curious $\ldots \ldots$ 27 Inventions, Interesting \cdots $* 209$				
	(inden	Motor, petrol, for boats..... 347 Motor, pyro-magnetic...... Motor, rotary, new		Steel	
	Invenions				
$\begin{array}{lr}\text { ohol, new.... } & 123 \\ \text { rleston } & 54 \\ \text { Pan-American } & 85\end{array}$					
222				Street	
$\mathbf{F}^{\text {a }}$				Street	
	Irven angs, stel, German I.... ${ }_{380}^{48}$	Mountains and hail......... 451 Mummies, bird, at Lyons.... 111			Venice of Lem.
	Iron, influence of hydrogen... Iron, large shipment of 106				Vesels, Crion
	Iron ore in Porto Ri Iron ships, compo		Ra		
coire					
Fire,					
	J				
$\substack{\text { of the worli. } \\ \text { ng mik, Berim }}$					
		$\begin{gathered} \text { Nile } \\ \hline \text { Niter } \\ \hline \end{gathered}$			
		$\begin{aligned} & \text { Nome } \\ & \text { Nome } \\ & \text { Nome } \end{aligned}$			
				Telegraphy, wireless, \quad and promoter Telegraphy, wireless. 288	
	iil	$\underbrace{}_{\substack { \text { Neen } \\ \begin{subarray}{c}{\text { Nut } \\ \text { Nrat }{ \text { Neen } \\ \begin{subarray} { c } { \text { Nut } \\ \text { Nrat } } }\end{subarray}}$	(eater		War
			¢̈rosisicieitiorieide		
	nse				
	Lam,	(enersips mer.			
ces,					
					we methg, Goidschmidt,
	Lan	ng	Railway workmen		
		Ore,			
	die			itz :	
	e,				Workmen, English, American
orm:					
a					
Casiline burner Welibia		vate			
asiole motat, daratag:					Year 1901, the, retrospect of
morr, perectin					

ELECTRICAL ENGINEERING

 TAUGHT BY MAIL,"CAN I BECOME AN ELEC.

LEARN PROOFREADNGG If you pog

STANDARD INDEX CARD CO.

 I/2-1/4 RECORD, TAB \& GUIDE CARDS. Plan Printed. Ruled \& Accurately Die Cut For allmakes of Cabinets Qualty Execution \& Prompiness Guaranteed Odd Size Guides any Noof Propections or Alphabetical Subdivivsions Manc us sampit Movier $\left.\left.\left.{ }^{6}\right)^{1}(2)(4) 5\right)^{8}\right)(9$

(1)HARDWARE SPECIALTIES Contract Manufacturers Difficult Parts or
Finished Articles UNION MFG, \& SPECIALTY CO.,

The World's Playground

Colorado,
Michigan, Canada, The Adirondacks, St. Lawrence River, White Mountains,

Sea Coast of New England Best reached by the

"Big Four"

Write for Rates and Folders.
Warren J. Lynch,
Gen'l Pass.\&Tkt.Agt. $\quad \begin{gathered}\text { W. P. Depper } \\ \text { Ast.Gen'l P.\&T. }\end{gathered}$ Gen'! Pass.\&Tkt.Agt. Asst.Gen'l P.\&T.A Cincinnati, ohio.

$$
\underbrace{}_{1}
$$

$$
1
$$

Reme
Rem
Rhir
She
Shoe
Soa
Soa
Soa
Syr
Tob
ve
ve
.

$$
\begin{aligned}
& { }^{\circ}
\end{aligned}
$$

$$
\left\lvert\, \begin{gathered}
\text { "Sta } \\
\text { "'sta }
\end{gathered}\right.
$$

"Me

A printed copy of the specification and drawing in print issued since 1863, will be furnished fron
this office for 10 cents, provided the name and
number of the patent desired and the date b York. Aan patents may now be obtained by the in-
Gentors for any of the inventions named in the foreventors for any or the inventons named in the fore
going list. For terms and further particular
address Munn \& Co., 361 Broadway, New York.

TR
 Notes ana Quepies.

HINTS TO CORRESPONDENTS.

Names and Address must accompany all letters or
no antention will be paid thereto. This is for
nour information and not for phblication
our information and not for publication.
dences to former articles or answers should give
date paper and page or number of question.
Inquiries ont ansivered in reasonable time should be
repated; correspondents will bear in mind that
some answers require not a little research, and,
repeated; corresponients will bear in mind that
soome answers require not a little research, and,
though we endeavor to reply to all either by
letter or in this department, each must take
his turn.
Buyers wishing to purchase any article not adver-
tised in our columns will be furnished with addresses of houses manufacturing or carrying the same.
Special Written Information on matters of personal
rather than general interest cannot be expected rather than general interest cannot be expected
without remuneration.
Scientific American Supplements referred to may be
had at the oftice. Price 10 cents each. had at the otthee. Price 10 cents each.
Books referred to promptly supplied on receipt price.
Minerals. . for ex for examination should be distinctly
marked or labeled
(8626) A. E. L. asks: With our 12 horse gasoline engine we frequently have power
to spare. Would it be practicable to run a small dynamo for charging battery like the new
Edison storage, to be used for mobile, lighting Edison storage, to be used for mobile, lighting
warehouse and furnishing spark for engine warehouse and furnishing spark for engine
and if so, what kind of outfit would be best and if so, what kind of outfit would be bes
adapted to our wants? A. It is quite practicable to use the excess of power from your
gas engine in running a dynamo for lighting or charging storage battery or any other electrical work. We have no special dynamo to recommend. Any one giving the voltage and current suited to your battery will be all right.
The company from which you buy the battery The company from which you buy the battery
will put you in the way of getting a suitable will put you in the way
dynamo.
$\begin{array}{ll}(8627) & \text { C. E. B. asks how to rewind }\end{array}$ (8627) C. E. B. asks how to rewind
the following 50 -volt, 30 -ampere incandescent dynamo so as to deliver 115 volts and 30 amperes. The armature is of the slotted drum type, 4 inches diameter, 5 inches long, and contains 20 slots, each slot containing eighteen
No. 14 B. \& S. double cotton-covered wires; speed of armature 1500 R . P. M. A. To double
the voltage of your dynamo, you must double the voltage of your dynamo, you must double field coils should be rewound with twice the present number of turns, using wire of onehalf the size of the wire now upon them. By double the size is meant twice the sectional area. You can then increase the speed to about 1800 R . P. M. and bring the voltage up then get 30 amperes at the hinhk you can This is about $21-3$ times the present output and if the field is now anywhere nearly satur ated. it cannot be made to give so much mor than it now gives.

Cbe Cypewriter Exchange

		NIAGARA FALLS One of the natural wonders of the world A charming place at any season of the aear, reached from every direction by the
		NEW YORK CENTRAL LINES A visit to the Falls is an object lesson in geography; an exhibition of landscapes that no painter can equal, and a glimpse trial world.
The Remington Typewriter		

lasts longest-so does the Remington operator.

The Remington does not overwork the
operator. The operator cannot overwork the Remington.

WYCKOFF, SEAMANS \& BENEDICT 327 Broadway

The New Sun Typewriter

A New Result from theEDISON PHONOGRAFH

DIVIDENDSK
for prospectus of the Rayo Min-
ing and Developing Co. of Cal-
ifornia. Every dollar invested in these shares will return invested in
lar, handsome, dividends. MILLIONS of ore values ready to mine; Elec-
tric Water-Power Plant in connection. Not the ordinary mining proposition. Shares
now selling at ground-foor price. Bank References.
ROANOKE INVESTMENT CO. Hutchinson, Goldsmith \& Company, Exclusive PROPOSALS.
 The, N. .end for one metal work and erection of Fort
then opworth Light House, New York Harbor, N. F. In-
Wads formation furnished on application to WM. T. ROSSELL,
Major, Corps of Engineers, D.S. A., Engineer, 3d Dist.
 MATCH Factory Machinery. W. E. WI LIAMS,

NOW READY

 ITS PRODUCTION, USES AND APPLICATIONS.

 By GARDNER D. HISCOX, M. E.LARGE 8 VO . 820 PAGES.
547 ILLUSTRATIONS.

PRICE, bound in Cloth, $\$ 5.00$.
Half Morocco, \$6.50.

A most comprehensive work on the subject of Compressed Air.

MUNN \& CO
Publishers of the Scientific American, 361 Broadway, New York.

BEST IN THE LAND.

Winton Touring Car-Tonneau Detachable.

Automobile Gearing

CHARTER ENGINE
UNH] $\begin{aligned} & \text { ANY Place } \\ & \text { By ANy ONE } \\ & \text { FOR ANy Pur }\end{aligned}$
Stationaries. Fortables, Pawing Outrits,
Hoisters. Engines and Pumps
 Charter gas engine co., Box 148. sterling. ill.

A new folding

KODAK

for the pocket-almost for the vest pocket, at six dollars. Makes pictures $15 / 8 \times 21 / 2$ inches, loads in daylight, has a fine men= iscus lens, brilliant finder, automatic shutter-in fact, has the "Kodak quality " all the way through.
No. 0 Folding Pocket Kodak, for pic.
fures $15 / 8 \times 21 / 2$ inches,
Tra.00 Transparent Film Cartridge,
posures, $15 / 8 \times 21 / 2$, ex. $\quad .25$ EASTMAN KODAK CO. Catalogue free at the
dealers or by maiil. \quad Rochester, N. Y. \$4,000.00 in prizes for Kodak and Brownie Pictures.

Poor lime has its ending

Every Elgin watch has the word "Elgin" engraved on the works, and is
guaranteed against original defect of every character. A booklet about guaranteed against original defect of ever
watches will be mailed to you for the asking. ELGIN NATIONAL WATCH COMPANY, Elgin, Illinois.

STEWARD'S WONDER

AOETYLENE BURNERS ${ }^{\text {The }}$ Exponent of Hishest A Ar in

WANTED REPRESENTATVE

 "KEYLESS CLOCK,"

 -madeat kerwesti-
\{ These Cigars are manufactured under the most favorable climatic conditions and from the mildest blends of Havana to- bacco. If we had to pay the imported bacco. If we had to pay the imported cigar tax our brands would cost double the $\{$ money. Send for booklet and particulars. CORTEZ CIGAR CO., KEY WEST:
 Orient Motor Cycle.

Fitted with the New Orient 3 H. P. Moto Speed over 40 Miles per hour.
The most Powertul Motor Bicycle in the worl WALTHAM MFG. CO., Waltham, Mass

BRISTOL'S RECORDING Gauges, Vacuum Gauges, Volt Pressure Gauge, Vacs, wattmeters, and Thermometers, make continuous records Day and Night. Will pay for themselves. lars and specimen Chart The Bristol Company Waterbury Conn	

"The most satisfactory cement Mill made."

THE GRIFFIN MILLS which we have sold for this purpose will produce 50,000 barrels of Portland cement a day, or over $15,000,000$ barrels a year. No other mill approaches such a record, because no other mills begin to work as chearly or as satisfactorily. Write for our illustrated descriptive catalogue.

MILL

BRADLEY PULVERILER CO. BOSTON.NEW YORK.CHICAGO.

[^0]: Hachines and Mechanical Devices. PAPER-STOP.-H. F. Dunbar, Turners
 Falls, Mass. The device is arranged for use Falls, Mass. The device is arranged for use in connection with paper or other material
 while winding on a drum, the object being to produce a simple stop to permit the pape sliding one layer upon another. The stop

