LEntered at the Post Offce of New York, N. Y., as Second Class Matter. Copyright. 1801, by Munn \& Co.]
a WeEkly Journal 0f Practical information, art, SCIENCE, MECHANICS, CHEMISTRY, and ManuFactures.

	NEW YORK, JUNE 29, 1901.	

provisioning a transatlantic liner-equivalent in live stock and general stores.-[See page 406.]

sitintific Ammiram.

ESTABLISHED 1840
MUNN \& CO., - - - Edtors and Proprietors.
No. 36I BROADWAY, - - NEW YORK.

 the Scientific a merican publications.
 The combined subscription rates and rates to foreign countries
e furinised upon application.
Remit by pontan order, or by bank draft or check.

NEW YORK. SATURDAY, JUNE 29, 1901.
The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are will receive special attention. Accepted articles will be paid fo at regular space rates.

BIGGEST IN THE WORLD

Is it because we never entirely lose some of the strong characteristics of childhood that, in describing an event or an object, we seem to consider that the last touch of dignity and importance has not.been put upon it until it has been designated as the biggest or most superlative something or other of its kind in the world? It is really surprising how much heart-burning may be caused by a journalistic inadvertency, actual or supposed, in placing the coveted honor where it does not belong. A curious instance of an imagined injustice of this kind has lately reached the Editor's desk in the form of an editorial from our esteemed contemporary, The Daily Eagle of Poughkeepsie, N. Y., in which the writer takes us to task for having stated that the new double track railway viaduct over the Des Moines River, Iowa, is in some respects the most notable railway viaduct in existence. This' structure is 2,685 feet in length and its rails are 185 feat above the water The peace of mind of our Poughkeepsie contemporary has been rudely disturbed by our stating that this structure, "in point of the total weight of metal em ployed in its construction, is fully three times a heavy as the next largest bridge of the kind in th world." The statement is unpardonable in the eye of our critic, who hastens to remind us that he lives beneath the shadow of a double-track railway bridge, which is 6,767 feet and some inches in length, and 212 feet above high tide, and contains a dead-weigh of over 21,000 tons of steel as against the insignificant total of 5,680 tons that was built into the structure over the Des Moines River. The trouble with our contemporary is that he is comparing two horses o an entirely different color, namely, a viaduct and a cantilever, the Des Moines crossing being of the first and the Poughkeepsie crossing of the second type. In bridge engineering parlance it is customary to classify a bridge according to the predominant feature thereof In the case of railway bridges, such as the Loa viaduct in Bolivia, and the Kinzua and Pecos viaducts in this country, where by far the greater part of the crossing is made up of short spans carried on steel bents or braced towers, with or without a trus span thrown across the main channel, or gorge, as the case may be, the structure takes its name from its predominant feature and is known as a viaduct, this term being generically applied to any tower-and-short span structure of the .kind described. On the other hand, a bridge of the character of the Forth cani lever structure in Scotland, or the Poughkeepsie cross ing of the Hudson, in which the cantilevers form the predominant feature and the viaduct approach, great as it may be, is entirely subsidiary, the structure is generically known as a cantilever bridge. The same may be said of the new East River bridge, which although it is approached by a viaduct several thousands of feet in length-of an aggregate length in deed much greater than that of the suspended struc ture-will nevertheless be known as a suspension bridge. For all its 4,000 and more feet of viaduct, the splendid structure at Poughkeepsie will ever be know as one of the great cantilever bridges of the world.

EXTRAORDINARY SPEED IN THE PARIS-BORDEAUX AUTOMOBILE RACE.

From Paris to Bordeaux by road is a distance of 348 miles, and when the great chauffeur Charron covered this distance in the race of 1900 in 11 hour 4 minutes and 20 seconds, at an average speed of 31.4 miles per hour, it was justly considered to be a mos remarkable performance. This year, however, has wit nessed a feat which is not only the most sensationa in the annals of automobilism, but one of the most remarkable speed performances of any kind whatso ever, whether by road, rail or sea; for the same dis
tance was covered by the winner in 8 hours 44 minutes and 44 seconds, at an average speed of about 40 miles an hour. The significance of this performance is only understood when we bear in mind that the ParisBordeaux course involves a reduction of running speed to about $71 / 2$ miles an hour in passing through ten different towns and cities along the route. If the 18 miles on which there is a speed restriction be deducted, we find that Fournier covered 330 miles in 6 hours 11 minutes and 44 seconds, at an average speed of more than 53 miles an hour. Remembering that in climbing the hills and on certain parts of the road where curvature or other local conditions would neces sitate it, the speed must have been brought down very much below this average, we can see that, on certain stretches, the automobile must have been running at a speed of from 70 to 75 miles an hour-and this, be it remembered, upon a country macadamized road and not upon a carefully aligned steel track, fenced in from all the risks and dangers of miscellaneous traffic. Interest in this performance centers both in the man and the machine. The latter was a Mors vehicle of 35 -horse-power, and, unprecedented as was this capacity, it was excelled in some of the other machines that were present at the starting line, the English automobilist Edge, for instance, being on hand with a 70-horsepower machine, which was disqualified on the ground that the tires, which had been substituted on account of a puncture, at the last moment, were of French and not of English make. The machine thereby failed to meet the conditions of the race, which demanded that each machine should have an absolutely national character. Judged on purely technical and mechanical grounds there is, of course, no reason why an automobile provided with sufficient horsepower should not maintain such high speeds and even higher speeds for as great and greater dis tances; and we say this without wishing to detract from the great credit which is due to the builders of the leading vehicles, several of which made better time than that accomplished by the winner of last year's race.

The most remarkable feature of the whole performance is the nerve and skill possessed by the chauffeur Fournier, for at the terrific pace achieved, it is evident that the slightest error in judgment could easily have precipitated disaster. Full details of the race will be read with considerable interest, particularly as regards the special policing, which must surely have been carried out at crossroads and elsewhere to main tain some kind of a clear track ahead of machines that were sweeping along at speeds faster than those of the average express train. Fournier is well known in this country. Only a couple of years ago he was a conspicuous figure upon the bicycle track at Madison Square Garden, where he exhibited a motor-cycle and introduced motor-pacing to the American public.
It is noteworthy that the leading automobiles were all heavy vehicles of great power, the first five beins in the class weighing over 1,430 pounds. The winning machine was, as we have said, a Mors, and the second, third, fourth and fifth were Panhard vehicles. The sixth and seventh contestants to finish were 8 -horsepower De Dion motor-cycles, the first covering the distance in 8 hours 13-5 minutes and the second in 8 hours 3 min utes. An average speed of over 40 miles an hour fo 330 miles for a motor-bicycle is a scarcely less remark able feat in its way than that of the winning machine.

THE LESSON OF THE RECENT FERRYBOAT DISASTER
It is to be feared that the relatively small loss of life in the recent ferryboat collision in New York Harbor small, that is to say, compared with the loss which might easily have occurred, may result in our too read ily forgetting the lesson which this accident teaches Had the Staten Island ferryboat been rammed by th "Mauch Chunk" when she was far from her berth, in stead of being fortunately within reach of shoal water the list of fatalities would probably have run up into the hundreds.

It is not for us to enter into the question of culpabil ity in this accident: that will be decided by the proper authorities and the blame, if there be any, will be placed where it rightly belongs. Moreover, when wo bear in mind the enormous number of passenger carried every year by our ferryboats, the crowded state of the New York waterways, and the fact that the ferryboats make their trips directly across the line oí travel of incoming and outgoing ships, we must ad mit that the freedom from accident is something truly phenomenal and reflects the highest credit upon the skill of our ferryboat pilots. Shipping men from all over the world have commented upon the extraordinary care required in the navigation of the stretch of water that embraces the southern end of Manhattan Island and have spoken in the highest terms of the skill which is shown by the captains and pilots of our local craft. Having said this much, however, there is one lesson of the "Northfield" disaster upon which we would lay very special emphasis, and this is that in view of the ever present possibility of collision, all ferryboats at the por of New York should be built with a view to their pos
sessing a wide margin of flotation, therr hulls being so subdivided by bulkheads that they would be in capable of being quickly sunk, as was the "Northfield, by a single blow beneath the water line. The more mod ern ferryboats, of course, are constructed on this plan; but there are some of the older boats around New York, which, if they should be run down, would have great difficulty in reaching shoal water before they sank. We trust that one result of this disaster will be the enactment of even more stringent regulations as to the construction and subsequent inspection of all craft employed in the ferry service around this city.

THE NEW CLYDE LINE STEAMSHIP "APACHE."
It is probably due to the great size and high speed of the transatlantic liners, and the interest of the American public in their performances, that we are in danger of forgetting that our American coastwise steamship companies are adding steadily to their fleets and putting some very serviceable and thoroughly up-to-date new boats upon the various routes. There sailen from this port last week the Cramp-built liner "Apache," the first of two sister ships which have been built by that company for the Clyde Line for service on the route between this port, Charleston, S. C., and Jacksonville, Fla. The "Apache," which is the seventeenth steamship of the company's fleet, is slightly larger than the "Comanche," "Algonquin" and "Iroquois," of the same service. She is 310 feet long, 46 feet beam and 31 feet deep. She is driven by triple-expansion engines with cylinders 25,43 and 70 inches in diameter and 36 inches stroke, and is built to steam 15 knots when loaded to her full capacity of 3,000 tons of cargo. The staterooms are characteristically American, that is to say, they are spacious, well lighted and airy, and they are free from that too-profuse decoration with which modern passenger ships are apt to be overloaded. There is accommodation for 200 passengers, all of which is above the upper deck.

RECONSTRUCTION OF GERMAN CRUISERS

The German navy has recently undertaken an important piece of work, which consists in modifying a series of eight cruisers which form part of the fleet so as to increase their tonnage and bring the construction up to date. This is to be carried out in a somewhat novel fashion by lengthening the hull by some 25 feet, cutting it in the middle and adding a central portion. This has already been carried out with the first of the series, the "Hagen," and the results have proved so successful that there is little doubt that the remaining seven will be treated in the same manner. The series of cruisers includes the " Hagen," " Frithjof," " Beowulf," " Hildebrand," " Siegfried," " Heimdall," "Aegir" and " Odin." They are coast defense cruisers which were designed at a period when the German navy was mainly occupied with the defensive, and in consequence these boats, which were to navigate along the coast and keep within a short distance from supply points, carried only a small provision of coal, this being about 220 tons. Their displacement was reduced as much as possible, this being just sufficient to comply with the requirements of this class of boats. Six of these cruisers proved quite satisfactory in service, and gave proof of remarkable nautical qualities, and it was thereupon decided to increase the number from six to eight; the latter two had a displacement some what greater than the others, and the power and coal supply was thus increased. However, with the recent increase of the German navy and a new order of ideas, these boats were judged to be quite insuif ficient to figure in the present fleet. But if their radius of action was limited, their other qualities showed that they were fitted to perform the duties of first class cruisers, and it was accordingly decided to transform them by increasing their coal-capacity and thus add a series of boats to the fleet at a rel atively small cost, and as the oldest of these dates only from 1889, they will be still quite modern. To increase the coal capacity, the displacement, and con sequently the length of the boat, was to be increased. This operation, which is comparatively easy on an ordinary steamer, presents certain difficulties in the case of an armored vessel; in order to cut it in the middle and add the amount required for the increased displacement, it is necessary that as few of the parts as possible should be dismounted in the two halves, which should be left in their original condition, thus leaving in place the engines and boilers, etc. It was decided to commence the work with the "Hagen," and this was begun at the Kiel docks in September, 1899 The section was made in front of the engines, and the rear part was drawn back about 26 feet; the oper ation of moving the mass required less than an hour. The intermediate portion which was added represented a weight of 500 to 600 tons. In October, or about a year after the commencement of the work the "Hagen" proceeded with its trials, with very sat isfactory results; the engines and boilers acted well, and developed 5,230 horse power, the number of revo-
lutions being increased to 142 per minute. The coal supply, owing to the increased displacement, has been raised from 220 to 500 tons, and a number of minor changes have been made which give the boat an up to date appearance. The coasting cruisers, when thus transformed, will be able to take an active part with the remainder of the fleet, and there is no doubt that the whole series will be thus treated. To transform the eight vessels will cost about five millions, according to calculations, this representing the cost of a single modern battleship, and the advantage is at once apparent.

THE HEAVENS IN JULY

The brightest stars in the summer skies are the ruddy Arcturus and the bluish Vega. At 9 P . M. on July 15 the former is some distance west of the zenith, and the latter somewhat nearer on the east. Between them lie the constellations of Corona Borealis and Hercules, the first of which consists of a semicircle of inconspicuous stars, and the second of a keystone-shaped group directly overhead, with out liers on both sides. South of these a large area is filled by the intermingled forms of Ophiuchus and Serpens; whose most characteristic configuration is a kite-shaped figure a little west of the meridian.
Close above the southern and southeastern horizon are Scorpio and Sagittarius. The bright red star Antares, and the long, curving line below it which forms the Scorpion's tail, cannot be mistaken; and Sagittarius, which is anyhow one of the more conspicuous zodiacal constellations, now includes within its borders both Jupiter and Saturn.
Aquila, marked by the brilliant Altair, with fainter attendant on each side, is well up in the south east. Below it is Capricornus, whose two brightest stars both show double in a field-glass. Cygnus is conspicuous in the Milky Way below Vega. Farther down on the right is the little group of Delphinus, often called "Job's Coffin." Pegasus and Andromeda are rising in the northeast. Of the circum-polar con stellations, Cassiopeia is below and to the right of the pole, Cepheus higher up, Draco and Ursa Minor avove the pole-star, and Ursa Major on the left. Leo Virgo and Libra fill most of the western and south western sky.
The present is a good opportunity for the study of some interesting variable stars. First among these may be mentioned Beta Lyrae, which is the nearest to Vega of a pair of small stars which lie on the line joining it with Altair, about one-quarter as far as the latter. The changes of its brightness may be easily observed by comparing it with its neighbor Gamma Lyrae. They are completed in 12 days $213 /$ hours, during which time there are two equal maxima of brightness, separated by two unequal minima Beginning at the first maximum, its magnitude is 3.4 about equal to Gamma. Then it falls nearly to the fourth magnitude, rises again to its original bright ness, and descends once more to the $41 / 2$ magnitude returning finally at the end of the period to its initia condition. The star's spectrum also shows remark able peculiarities, containing both dark and bright lines, which are periodically displaced with reference to one another in such a way as to show that they are produced by two different bodies revolving abou one another in a period equal to that of the light variation.

The following explanation of the star's variability deduced from the above-mentioned facts, is taken from an article by Mr. Myers, published some time ago in the Astrophysical Journal. Beta Lyrae con sists of two stars, one about three-quarters the diam eter of the other, revolving about one another, in circular orbit, so close together that they almost touch The plane of this orbit is inclined very little to th line of sight, so that the stars alternately eclipse one another. The smaller star is nearly twice as brigh as the larger one.
At the principal minimum, the small star is behind the larger one, and only the light of the latter reaches us. Three days later it is on one side, and the combined light of both stars produces a maximum. After about three days more the small star is in front of the large one, hiding most of it. All the light of the small star and part of that of the large one reaches us, so that, though the star does not appear to us as bright as at maximum, it is much brighter than at the principal minimum. When the small star has moved off on the other side we have a second maxi mum. The actual velocities of the stars in miles per second can be determined from the spectroscopic ob servations, and thus it is found that the centers of the two stars are about $30,000,000$ miles apart. The larger star is over $30,000,000$ miles in diameter, and is about 21 times as heavy as our sun The diamete of the smaller one is about $23,000,000$ miles, and its mass nearly 10 times that of the sun. Their bulk, in proportion to their mass, is enormous, so that they must be entirely gaseous and hardly denser than the earth's atmosphere at sea-level.

Two other short-period variables are now in good position for observation. On the upper edge of the Milky Way, about midway between Cygnus and Cassiopeia, is a triangle of small stars. The nearest one to Cassiopeia is Delta Cephei, which varies between the magnitudes 3.7 and 4.9 in 5 days, 8 hours and 48 minutes. The other two stars of the triangle are good " comparison stars."

To find the other variable, start with Altair. A line drawn from the small star above it through the fainter one below it, and continued as far again, bending sharply to the right, points out Eta Aquilae. The period of this star is 7 days, 4 hours and 14 minutes, its maximum magnitude is 3.5 , and its minimum 4.7.
The variation of both these stars is of the same type. The brightness changes continuously, rising rapidly to the maximum, and falling off much more slowly toward the minimum. In the case of Eta Aquilae a slight rise to a secondary maximum inter rupts the falling phase. Such variation evidently can not be due to eclipses, as the times of fall and rise would in that case be nearly equal, since the eclipsing star would move off about as fast as it moved on
The variation of both these stars is of the same problem. Both stars show variable velocity in the line of sight, and by study of this it has been found that each of them is revolving in a highly eccentric orbit about a dark body-or rather about the common center of gravity of itself and the dark body-in the same period as that of the light-variation. The minimum does not occur when the dark star is between us and the bright one, and so we have additional proof that it is not due to an eclipse. It is also clear that the orbit must be inclined to the line of sight so that the dark star passes to one side of the bright one instead of directly in front of it, as otherwise we should have an eclipse and a second minimum

The accepted explanation of the variability of these stars is that it is due to tidal action. The attraction of the dark companion must produce enormous tides in the liquid-or, most probably, gaseous-mass of the central star. Owing to the eccentricity of its orbit (which is about the same in both cases under consideration), the least distance of the dark body is but one-third of its greatest, and, since the tide-raising force varies inversely as the cube of the distance, it is 27 times greater at one time than at the other
As the two bodies approach one another, the in creasing disturbance of the atmosphere of the lumi nous one increases its brightness, the effect reaching its maximum shortly after the passage of the nearest point, or periastron. With the decrease of the tida force the bright star gradually cools down, rising again only when the return of its satellite stirs up once more its central fires.

the planets.

Mercury is in Gemini, and is evening star till the 12 th , when he passes between us and the sun, and becomes morning star. He can only be seen in the last days of the month, just before sunrise.

Venus is evening star, and is gradually coming out from behind the sun into a more conspicuous position, remaining above the horizon more than an hour after sunset.
Mars is evening star, being well past the meridian at sunset. He is more than twice as far from us as he was in February and only about one-sixth as bright and is still retreating and growing fainter as he moves eastward from Leo into Virgo

Jupiter is just past opposition, and at his nearest for the year. He is by far the most brilliant object in the southern sky, and his disk and satellites are easily visible with a field-glass.
Saturn is in Sagittarius, close to Jupiter. He is in opposition on the 5 th. His rings are seen at the great est possible angle and form a splendid telescopic sight, in spite of his low altitude.
Uranus is in Scorpio, about 8 degrees northeast of Antares. Neptune is in Gemini, too near the sun to be visible.

Full moon occurs on the morning of the 1st, last quarter on that of the 8th, new moon on that of the 15th, first quarter on the night of the 22d, and ful moon once more on that of the 30 th. The moon is nearest us on the 11th, and farthest on the 23d.
She is in conjunction with Jupiter on the afternoo of the 1st, Saturn the next morning, Mercury on the 14th, Neptune on the 15th, Venus near moon on the 17th, Mars on the morning of the 21st, Uranus on the night of the 26th, and Jupiter and Saturn once mor on the night of the 28 th and morning of the 29th.

DEATH OF T. C. CLARKE.

Mr. Thomas Curtis Clarke, one of the best-known civil engineers and bridge-builders, died in New York June 15, in his seventy-fourth year. He was trained to be a civil engineer and early in life engaged in various kinds of railroad work, but finally made bridge engineering a specialty, and his name is identified with many of the most important bridges built in the United States. One of the first of his works in thi line was the building of the $C ., B$. \& Q. bridge at

Quincy, Ill. In the piers and foundations of this bridge, Mr. Clarke was among the first of American engineers to use concrete upon a large scale. Mr. Clarke was the senior member of the firm which afterward became the Phoenix Bridge Company. Among the famous works on which he was engaged was the erection of the Kinzua Viaduct. In 1884 Mr. Clarke became one of the members of the Union Bridge Com pany, which soon became the largest concern devoted to bridge-building in the world. While Mr. Clarke was connected with this company they built the famous Hawkesbury Bridge in Australia, which is one of the first cases where a bridge was built in a foreign country by an American concern. He also had special charge of the Poughkeepsie Bridge. It is stated that Mr. Clarke had been concerned in the building of over eighty miles of bridges and viaducts. He was well known as a writer upon professional subjects.

SCIENCE NOTES

The Baldwin-Ziegler polar expedition will start shortly for the north.
Mr. Morris K. Jesup has perfected an arrangement by which the American Museum of Natural History and th

The Arnold Arboretum, in the suburbs of Boston, has carried on its highly interesting and important work on a very slender income. Steps are now being taken to raise $\$ 300,000$ in addition to the present endowment.
The Massachusetts Institute of Technology has held examinations in London for the entrance of pupils to the Boston institution. The London Engineer says: "It would seem that American competition is not to be confined to commerce in the future."
Prof. Nicols Finsen, the inventor of the light cure for lupus, has been summoned to London by the Queen of England to superintend the administration of the apparatus which her Majesty presented to the London Hospital. The Belgian government also proposes to install the cure at Brussels, and Prof. Dubois has been dispatched to Copenhagen, to become acquainted with its application.
The invention of the mariner's compass by Flavio Gioja is to be celebrated this summer at Amalfi, Italy. Gioja came from Positano in the hills back of Amalti. There have not been wanting those who contend that the invention, like most others, was gradual, and that the tendency of the magnetized needle to point north was known long before Gioja's time, it even having been familiar to the Chinese.
Prof. Henry Truman Henry Safford, an eminent mathematician and astronomer, died recently at Williamstown, Mass. He was born in 1836 and was known in his early youth as the "Vermont boy calculator." In 1866 he was appointed Director of the Astronomical Observatory at Chicago. From 1869 to 1871 he was engaged upon the great catalogue of stars then in course of preparation by the co-operation of European and American astronomers. This work was interrupted by the Chicago fire of 1871 . He prepared a star catalogiue which was published by the War Department. He did considerable work in relation to latitude and longitude.

John D. Rockefeller has given $\$ 200,000$ to found "The Rockefeller Institution for Medical Research." The gift is not for an endowment fund, but for immediate expenditure. Mr. Rockefeller has for some time been consulting with eminent medical men as to the need of such an institution, and he has had the best of advice. Facilities for original investigation are to be provided, especially in such problems in medicine and hygiene as have a practical bearing on the prevention and treatment of disease. The first work of those connected with the institution will be that of co-operating with the Board of Health in studying its work and the problems confronting it, particularly that of milk supply. Work of a more ambitious nature will be begun in the fall under the guidance of experienced investigators.

In Europe it has been found rather difficult to introduce the circuit-system for the transmission of meteorological messages for a time after each observation. In the United States this is very easily accomplished, but in Europe, where the control of the wires is in the hands of different governments, the difficulty of introducing a similar method is almost unsurmountable. The system recommended by the Deutsche Seewarte is called the radial system, in which the observations pass through the central of fices. Special observations have been made for near ly a year at eight A. M., mid-European time, at some thirty-five stations in various countries, including several in the British Isles, and forwarded to the Deutsche Seewarte, which enables the Hamburg of fice to issue reports. as early as nine A. M., and the early publication of this information has been found +o lead to such satisfactory results as to warrant a considerable extension of the plan in the near future.

Sciratific gamericau

a NOVEL HOUSE MAIL-BOX.
Our illustration pictures a mail-box which was de vised by Mr. Clayton P. Myer, of Silsbee, Tex., for the purpose of facilitating house-to-house delivery and of indicating that mail has been delivered.
The arrangement comprises essentially a box provided with a hinged hood for the letter-receiving slot, which hood when lifted operates a slide by means of chains, to expose the word "Mail," thereby show

an Improved mail-box.
ing that mail of some kind has been delivered. The slide is held in its raised position by a spring, and is restored to its normal position by hand.
The box is also provided with a door through which the mail is removed. The door is controlled from the inside of the house, thereby rendering it impos sible to open the box without entering the house. A lock controlled by a shaft holds the door closed Upon turning the shaft, the door is pressed open by a spring. For the reception of bulky mail, a spring-arm is attached to the bottom of the box. The contrivance is cheap, neat, rain and dirt proof, and secure from thieves.

CURIOUS DOCKING ACCIDENT.

The illustrations herewith produced give an idea of the accident which recently occurred at Baltimore when the steamship "Hudson" careened while being docked, falling partly upon her side. She was being hauled out on the marine railway at the dock of Messrs. William Skinner \& Son, in order to make repairs to a bent propeller blade. The ship was left on the railway with the stern entirely out of water with the exception of about one foot. The work of hauling her out began at high tide, and the after portion of the hull was held in a perpendicular position by driving posts under the rear quarters for shoring. The tide rises and falls about 18 inches at this point, and at low tide so much of the hull was ex. posed as to overcome, in spite of the supports, the equilibrium of the vessel, and, falling to the left, she struck the side of the dock, breaking down portions of the superstructure. The deck railing was broken and a part of the rigging supporting the masts on the port side was cut away; some of the upper plates in the hull also being bent inboard. Below the wa-ter-line the divers found her perfectly tight. The incline of the marine railway is such that, in heeling over, the "Hudson" forced her bows under water to a distance of about fifteen feet from the cutwater.

One of the steamers of the Merritt Wrecking Company was sent for, and the first step toward righting the vessel was to pump out the water which entered the hull through the port windows and forward hatchway. The next step was to stretch cables from the masts and deck stanchions to powerful tugs in the harbor and to the wrecking steamer, and endeavor to pull her out by the bow

Into deep water. This failing, weights are to be attached to the starboard side of the vessel, and an attempt will be made to pull her over onto an even keel by a system of cables attached to windlasses connecting with the engine of the marine railway.
Fortunately, the hull of the vessel was empty at the time she was docked; but the work of righting her will, nevertheless, be attended with considerable difficulty, as she is 287 feet in length, 34 feet beam and has a net register of 1,300 tons. She has a cargo capacity for about 2,500 tons of freight and accommodations for sixty passengers. The engines and most of the machinery are located amidship.

Photographic Printing in Two Colors

A new method of photographic printing upon paper in two colors has lately been devised by M. Bolle. By this means images may be printed side by side in different colors and an agreeable effect thus produced; it is especially applicable in the case of a central image surrounded by a border of a second color. One of the images is printed from a photographic negative and the second from a negative prepared from a hand design. The method is based upon the com bination of the ferro-prussiate (blue print) and the bichromated gum process, and gives a blue image combined with another whose color may be varied according to the taste of the operator. To obtain the blue image the paper is sensitized by a mixture of the two following solutions:
A. Citrate of iron and ammonia. 15 parts or 15 grains B. Ferricyanide of potassium....50 parts or 50 minims Water $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .40$ parts or or 80 grains.
These solutions, prepared and filtered, may be mixed in advance and kept in yellow bottles, but it is best to mix at the time of using. The image is strongly printed and developed by washing in water till the whites become pure. The second image may form, for instance, a border for the blue image. To obtain it a plate is first prepared by exposing an ordinary gela plate is first prepared by exposing an ordinary gelaentirely black. The design to be reproduced is copied or traced upon tracing paper and transferred to the plate by impression paper. It is then engraved through the film with the point of a needle, giving a negative in black and white. To print this design the border of the blue image is sensitized by brushing over it a thin and even layer of gum arabic, 40 per cent solution, to which is added a sufficient quantity of the color decided upon. When this layer is dry a sensitizing solution of bichromate of potash (10 per cent) is applied in the same way. The printing is carried out as usual and the image developed by

VIEWED FROM THE PORT QUARTER.

STEAMSHIP "HUDSON," CAPSIZED ON A MARINE RAILWAY AT BALTIMORE
washing in cold or lukewarm water. This process may be modified in different ways and will find many applications; if desired, the center of the image may be prirted by the latter method and the margin in blue, or different images may be printed side by side.

A SELF-CLOSING SPIGOT OR FAUCET.

To provide a means for automatically closing a faucet or tap when a predetermined quantity of liquid has

AN AUTOMATIC FAUCET

been drawn from a cask is the purpose of a device invented by Mr. David M. Bredin, of Picton, Canada. On the spigot a scale-beam is fulcrumed, the shorter arm of which supports a platform for the vessel to be arm of which supports a platform for the vessel to be
filled, and the longer arm of which carries a counterpoise which can be shifted. The counterpoise is ad justed at a point determined by the weight of the liquid which is to be drawn from the cask. When the desired amount of liquid has fiowed into the vessel, the shorter arm of the scale beam descends automatically, closing the spigot by the operation of a plug. By means of a spring latch the piug is prevented from opening the spigot during the removal of the vessel.

New Methods of Packing Butter for Shipment.
Our Consul, Mr. Hughes, of Coburg, under date of April 26, 1901, sends the following description of a new method of packing butter for long ship. ments:
A light wooden case or box is lined thoroughly at the bottom and sides with a layer of plaster of paris one-fourth of an inch of paris one-fourth of an inch
thick, on which common glass slabs, with their edges fastened to gether by gummed paper, so as to make a perfect-fitting box, are placed. In this box the butter is placed, packed in good waterproo paper, in 10 -pound packages. The glass top is then put on and sealed carefully with gummed paper bands, so as to make the box air-tight. A one-fourth-inch layer of plaster of paris is then put over this and the wooden cover nailed on. Each of the cases is made to contain about 200 pounds of butter. The plaster of paris being a non-conductor, very little heat reaches the butter, which ar rives at its destination in good condition. The Consul is informed that very successful results have been obtained by shipping butter packed in this manner from Melbourne to Kimberley-rather a severe test.

The Diatto surface-contact sys tem does not appear to be working very successfully in Paris. There have been so many accidents and breakdowns that a committee was appointed to inquire into the trouble, and it reported that the dam age was due to several causes. First, insufficient drainage of the surface - contacts and conduits causing shunt currents; second, to unsatisfactory insulation; third, to a deposit of carbon caused by sparking; fourth, bad insulation of the cables.

June 29, 1901 .

THE WATER SUPPLY SYSTEM OF CHICAGO.

by f. b. embree.

It is not yet three-quarters of a century (November 10, 1834) since the Board of Trustees of the infant Chicago paid $\$ 95.50$ for the digging of a well as a

THE INTAKE CRIB COMPLETED.
means of water supply. Outgrowing that, in January, 1836, the Chicago Hydraulic Company was incorporated by the State Legislature and given a charter which was to continue in force for seventy years, by the provisions of which lake water was to be furnished to Chicago. The works of this company were put in operation in the spring of 1842 . They comprised a reservoir, about two miles of wood pipe and a 25 H. P. engine, the whole costing about $\$ 24,000$.

This company, however, supplied only a portion of the south and west divisions of Chicago, and did not reach the north division at all. The inhabitants of the unsupplied sections were furnished with water either from the river, or by the "watercart system" from the lake. Finally it became clear that the whole water supply needed to be managed by the city, and compromises having been agreed upon be tween the company and the city in 1852, the latter put its works into operation immediately.
The north side pumping station at the foot of Chicago Avenue was the first station to be established. It began work in December, 1853, with a capacity of $8,000,000$ gallons every twenty-four hours. The water came from an inlet basin on the lake shore cut off from the lake by a semi-circular breakwater with an opening to the southeast. There were three reservoirs holding from two to three days' supply. They were at LaSalle and Adams Streets, Chicago Avenue and Sedgwick Street, and Monroe and Morgan Streets. The first iron distribution pipe, 4 inches in diameter, was laid in 1852. In 1887 a shore-inlet tunnel 7 feet in diameter and 1,500 feet long, with an inlet shaft protected by a crib opposite to the north side station, was completed

THE FOURTEENTH STREET PUMPING STATION.
for use when the supply was endangered by ice, or from any other cause, at the two-mile crib. The addition of needed engines and other facilities to the north side station has kept this, the oldest and largest station in the city, in efficient use up to the present time. In 1869 the greater part of the station as it is to day was finished, The style of architecture is castellated Gothic with heavy battlemented corners, executed with solid, rock-faced, ashlar stone and cut trimmings, with details of a massive and permanent character. The tower is the most imposing feature of the structure, and in the days preceding the sky-scraper epoch, a view of the lake and city from its top was thought to be very fine. A new lake tunnel, 7 feet interior diameter, extending from the crib to the north side station, was finished July 3, 1874, and in October of the same year it was extended under the land to the new pumping station at Ashland Avenue and Twenty-second Street (the west side station)
On November 6, 1876, the year in which the "Board of Public Works" was succeeded by the "Department of Public Works," with a single responsible head, the west side pumping station was put in operation, its capacity being $30,000,000$ gallons per day. In 1884 this was raised to $60,000,000$ by the addition of two new engines. The growth of the city's needs and the constant outlay necessary to satisfy them may be seen when this amount is compared with that actually pumped at this station for

INTERIOR OF THE CRIB.
the year 1899, the amount reaching the enormous output of $19,281,301,400$ gallons. It will be remembered that the first inlet basin to supply Chicago with water was quite near the shore, and although the city grew rapidly and packing houses and distilleries added their refuse to the Chicago River, and complaint was made by the citizens that the source of their water supply had become contaminated, no effort toward change was made until 1861, when the Board of Public Works entered upon its duties. A plan of filtration was first experimented with, but it was soon cast aside as impracticable, and it was decided to construct a tunnel, which would bring lake water from a distance sufficiently removed from the contaminating river deposits to insure its purity. It was thought that this could be accomplished by using a tunnel two miles in length. The horizontal diameter of the tunnel was fixed at 5 feet, that size offering a capacity sufficient to furnish 50 gallons of water per day to each person in a population of one million. Work was begun on this tunnel March 17, 1864, the introduction of pure lake water into the finished waterway being celebrated with appropriate public ceremonies March 25, 1867.

The present system of water pipe tunnels under the Chicago River was not originated until 1869. An accident occurred August 18 of that year, in which the water main crossing the river at Chicago Avecrossing the river at Chicago Ave-
nue was broken by the dragging anchor of a vessel, and the west side thereby deprived of water for

northeast lare tunnel-intake crib during procebs of ERECTION-THE PARAPET.

NORTHEAST LAKE TUNNEL-INTERNAL DIAMETER 10 FEET.
three days. This brought out the necessity of tunnels under the river bed. Up to this time all pipes at intersections of the river had been laid on the river bottom. But the pollution of the water continued, and when the construction of the next tunnel was planned, in 1887, it was decided to make it 8 feet in diameter and to extend it four miles into the lake The initial work was done in the same year on chore shaft at the foot of Peck Court. The land ramifications connecting the shore shaft with the south side and central stations were nearly completed in 1888, but it was not until December 15, 1894, that the immense work, up to that time the greatest engineer ing enterprise undertaken by the city, was completed The intordependence of pumping stations and feeding tunnels prevented the central pumping station at Har rison Street from doing full work before the four-mile tunnel was in operation, although it began servic July 14, 1890. The Fourteenth Street station was built in 1890, and re-equipped in 1898.
But increased as were the facilities for water supply, the growth of Chicago afforded no chance for a breath ing spell for the water supply department. July 15 1889, the suburban towns of Hyde Park, Lake, Jeffer son, and Lake View were annexed to Chicago, adding to its population 220,000 souls, and to its water works system the pumping stations of Sixty-eighth Street and of Lake View; one lake tunnel 6 feet in diameter and 8,000 feet long with a submerged inlet for Hyde Park and Town of Lake; one lake tunnel in process of con struction, 6 feet in diameter, for Lake View and Jef ferson, and about 350 miles of water pipe. Imme diate extensions and repairs for the adequate wate supply of this new territory were imperative. The original plans of the Lake View water departmen contemplated a tunnel 6 feet in diameter extending easterly from the foot of Sulzer Street to a point on mile from shore. After annexation and while the work was in progress, it was decided to extend the tunnel a mile further. In order to utilize the con struction as soon as possible a temporary crib was sunk 6,000 feet from shore on the line of the tunnel and water obtained from this point, work meanwhile progressing from a temporary shaft to the outer or permanent in-take crib previously sunk. This tunne was completed in July, 1896, and the intermediate crib abandoned and finally removed in 1899 . The construc tion, appointment, and furnishing of the Carter H . Harrison crib mark it as the most modern and efficient of the Chicago cribs. Its cost, including sub structure, superstructure, and landing, was $\$ 192$ 441.40

In 1895 it was again found necessary to plan for the construction of two additional pumping stations t elieve the sufferings of the remote west and north west sections of the city due to an inadequate water supply. As a feeder for these, it then became neces sary to build a new lake tunnel, which is divided int a lake section and three other sections covering the land ramifications. The lake tunnel extends to the Carter H. Harrison crib, and was completed in Jan uary, 1899. Section one of the land tunnel was com pleted in 1897, number two and number three in 1900 The capacity of the lake tunnel is $200,000,000$ gallons per 24 hours, and the cost of the new service wa $\$ 4,986,266.37$. With the completion of the new tunnel and pumping stations a population of $3,500,000$ can be supplied with 150 gallons of water per day to each person, and there will still be ample reserve machinery.

PROVISIONING A TRANSATLANTIC LINER.

Not by any means the least impressive evidence of he huge size to which the modern transatlantic steam ship has grown is to be found in the graphic representation, on the front page of this issue, of the bewildering amount of provisions that have to be taken aboard for a single trip across the ocean. A mere tabulation of the various kinds of food which go to replenish the ship's larder, during the few days which she spends in port, fails to convey any adequate idea of the vast amount of stores taken aboard. Our pictorial representation is, of course, purely imaginary, particularly as regards the live stock; the beef, mutton, game, etc., being received on the ship in the dressed condition, no live stock whatever being carried. The drawing was made up from a list of the actual amount of provisions carried on a recent eastward trip on the Hamburg-American liner "Deutschland," and the number of live stock which contributed to meet the supplies for one voyage was estimated from the actual number of cattle, sheep, etc., that would be required to make up the total weights in dressed meats given in the table. With the exception of the live stock, the provisions are shown in the actual shape in which they would be taken on board.
The dimensions of the vessel are: Length, 686 feet; beam, 67 feet, and displacement, 23,000 tons; her highest average speed for the whole trip is 23.36 knots, and she has made the journey from Sandy Hook to the Lizard in five days, seven hours and thirty-eight minutes. In considering the question of feeding the pas-
sengers on a vessel of this size, the thought is sug gested that there are other hungry mouths within the hull of the ship besides those to be found in the din ing saloons of the passengers and the messrooms of the crew; mouths that are so voracious that they re quire feeding not merely at the three regular meal hours of the ship, but every hour of the day and night, from the time the moorings are cast off at one port until the vessel is warped alongside at the other. We refer to the 112 furnaces in which the fuel of the six teen boilers in the boiler-room is consumed at the rate of 572 tons per day. Now, although the voyage from New York to Hamburg lasts only six or seven days, according to the state of the weather, the bunkers of the ship are constructed to hold a sufficiently large eserve of coal to cover all contingencies, her tota coal capacity being about 5,000 tons; and at each voy age care is taken to see that they are pretty wel filled.

The total number of souls on board of the vesse when she has a full passenger list is 1,617 , made up of 467 first cabin, 300 second cabin, 300 steerage and a crew of 550 , the crew comprising officers, seamen, stewards and the engine-room force. Sixteen hundre and seventeen souls would constitute the total inhabi tants of many an American community that dignifies tself with the name of "city," and it is a fact tha the long procession which is shown in our illustra tion, wending its way through the assembled pro visions on the quay, by no means represents the length of the line were the passengers and crew strung out along Broadway or any great thoroughfare of this city. If this number of people were to march four leep through Broadway, with a distance of say abou yard between ranks, they would extend for about quarter of a mile, or say the length of four city blocks. To feed these people for a period of six days re quires, in meat alone, the equivalent of fourteen steers ten calves, twenty-nine sheep, twenty-six lambs, an mine hogs. If the flocks of chickens, geese and game required to furnish the three tons of poultry and game hat are consumed were to join in the procession board the vessel, they would constitute a contingen by themselves not less than 1,500 strong. The ship. arder is also stocked with 1,700 pounds of fish, 400 pounds of tongues, sweetbreads, etc., 1,700 dozen egg and 14 barrels of oysters and clams. The 1,700 dozen f eggs packed in cases would cover a considerabl rea, as shown ir our engraving while the 1,000 brick of ice cream would require 100 tubs to hold them. Of table butter there would be taken on board 1,300 pounds, while the 2,200 quarts of milk would re quire 64 cans to hold it, and the 300 quarts of cream cans.
In the way of vegetables there are shipped on boar 75 barrels of potatoes, 75 barrels of assorted vege tables, 20 crates of tomatoes and table celery, 200 ozen lettuce; while the requirements of dessert alon would call for $41 / 4$ tons of assorted fresh fruits. For making up into the daily supply of bread, biscuits cakes, pies, and the toothsome odds-and-ends of the pastry cook's art, there are taken on board at each rip 90 barrels of flour, each weighing 195 'pounds, this tem alone adding a weight of $81 / 2$ tons to the cooks stores. To this also we must add 350 pounds of yeas nd 600 pounds of oatmeal and hominy.
Under the head of liquids the most important item is the 400 tons of drinking water, whose bulk is adequately represented by the circular tank shown in our engraving. This is supplemented by 12,000 quarts of wine and liquors, 15,000 quarts of beer in kegs, besides ,000 bottles of beer. Last, but not by any means east, is the supply of 40 tons of ice
Of course, it will be understood that, as in the case of the coal, it is not to be supposed that all of this supply will be consumed on the voyage. There must be a margin, and a fairly liberal margin, of every kind of provision. Moreover, the extent to which the larder and cellar are emptied will vary according to the conditions of the voyage. In tempestuous weather, where the trip is a succession of heavy gales, and the dining room tables are liable to be practically deserted for two or three days at a stretch, the con sumption will be modified considerably. Stormy voy ages of this character, after all, occur at infrequent in tervals, and as a rule the supplies are pretty well consumed by the time the passage is over.

Fire from W,aste Paper

The deterioration in the quality of paper increases the liability of fire wherever waste paper is accumulated in any quantity. Most modern paper is made from wood and other vegetable fibers which, chemically, are not very different from the component ma terial of a hayrick. If the waste paper is stacked in large quantities, and especially if it happens to be a little damp, heating takes place just as with a prematurely stacked hayrick, and spontaneous combustion may at any time break out in flame, as it has often been known to do in the farmyard, and of late years the greatest care and vigilance has been necessary to guard against it.

Engineering Notes.
Ten American locomotives have just been delivered to the Paris-Lyons Railway
Acetylene black produced from the carbon of acetylene is of excellent quality, fineness and purity By reason of its very fine division acetylene black seems particularly suited for the production of India ink.

During the year 1900 the shortest passage of a sail ing ship from London to Calcutta was 82 days, and the longest 199 days. The shortest passage from Lon don to San Francisco was 109 days, and the longest 203 days. The shortest trip from San Francisco to London was 96 days, and the longest 181 days
A new solder is being introduced by an English con cern. It consists of an alloy composed of pure metals mixed in the most efficient proportion, and incorpor ated with it is the necessary amount of rosin. The solder is made in the form of a tube with a narrow bore, the central cavity being occupied by the flux.
We learn from The Engineer that railway un punctuality is by no means unknown in Russia. On the Vistula line in 1900 , out of 348,933 trains which were run, 52,020 , or 15 per cent, left the station be fore time; 74,909 , or 21 per cent, arrived late. The other lines have not much more to boast of. The only fairly punctual line is the Warsaw-St. Petersburg one on which only 7 per cent of the trains were late.
Arrangements are in progress for the visit of a rep resentative commission of British artisans to this country. It will be their business to make a tour of observation among our varied industries. The com mission has been organized through the medium of a London weekly called "Red Letter." The men are elected by popular vote. Their itinerary will include a visit to the Pan-American Exposition.
When the British Chancellor of the Exchequer levied the tariff of twenty-five cents upon each exported to of coal, it was maintained by the various colliery owners that a heavy blow had been dealt to the Eng lish industry. As a matter of fact, however, since th duty was imposed the exports of coal from Grea Britain have increased considerably, especially to Ger many and France. During the month of April 620,000 tons of coal were shipped to France, while the quan tity for the first four months of the present year ag gregates $1,882,880$ tons, representing a value of $\$ 7,737$ 400. The shipments to other parts of the Continent have been equally heavy.
A Baltic-White Sea Canal is proposed in order to more rapidly develop the vast territory of Archangel It is contemplated to build the canal large enough to admit vessels of ocean tonnage. The canal would also be of great value to the Russian navy in time of war If it is carried out, the total length of the canal will be 598 miles; 304 miles of the route will be formed by lakes. The canal will follow the bed of the Neva as far as St. Petersburg, crossing Lake Ladoga and following the Svir, which unites Lakes Ladoga and Onega. Dif ferent watercourses will then be utilized, the channels being enlarged and deepened until the White Sea is eached at Soroskaya. It is estimated that the wor can be completed within a year, and that the cost would be $\$ 10,300,000$

A scheme for supplying the manufacturing districts of South Staffordshire with gas made by the paten Mond process is being considered by the British gov ernment. The gas is not to be employed for illumi nating purposes, but is to be devoted to heating and manufacturing requirements entirely. The Mond ga is manufactured from an inferior quality of coal at a very cheap rate. The President of the Society of Chemical Industry of Great Britain, who is interested in the scheme, stated before the Parliamentary Com mittee that whereas now $50,000,000$ tons of coal are annually consumed for manufacturing purposes in this istrict, the necessary steam and motive power wil be obtained from Mond gas distilled from $10,000,000$ tons of coal, thus effecting a considerable economy in the consumption of coal. The gas is to be supplied at the low price of four cents per 1,000 cubic feet.
Two derailments which have occurred recently on the Siberian Railway are a further proof, if any wer needed, that the line has been too lightly constructed to enable it to carry the heavy locomotives now run ning on it, to say nothing of the ever-increasing freigh traffic. The first derailment referred to was cause by a "burst rail," and, of course, until the entire line has been relaid with heavier and sounder rails, ther will be always the risk of other "burst rails," causing loss of life and interruption of the traffic, says The Engineer. The second accident, which is the fifth o this nature on the new line, shows that the supervision exercised over the traffic is far too weak. The contro of the line is in the hands of one man. Both the people and the press of Siberia have come to the conclusion that to insure the proper working of the line in the best interests of the country, the Siberiar Rail way ought to be divided into three or four separat and independent sections.

Sorrespondence.

Photographing in the $\mathbf{5 0 , 0 0 0 t h}$ Part of
To the Editor of the Scientific American:
In the article appertaining to the history of pho tography for the past fifty years, published in Sunday's Sun, May 19, 1901, by George G. Rockwood, mention is made of the fact of his having taken photograph in the twenty-four thousandth part of a second, by means of the discharge from a Leyden battery.
As the writer conducted the electrical part of the experiments referred to, and still retains the original apparatus used for the purpose, as well as data re lating to the experiments made first at Mr. Rock wood's laboratory, in Union Square, then in the base ment of Kurtz's studio-opposite the Post Office at that time-and later at the residence of W. E. Cramp ton, in Brooklyn, it may add to the history, in a more detailed manner, of this particular line of photog raphy, if the following facts relative to the subject are brought forward.
It was at the suggestion of the late Josiah P. Fitch a then well-known patent lawyer of New York, that the question as to whether it was possible to have plates made sensitive enough to receive impressions during the minute period of a Leyden battery discharge came up.
Mr. Rockwood was consulted, but, of course, could not guarantee that his plates would respond during the infinitesimal fraction of a second that the Leyden sark gave light.
However, he prepared a number of special plates, and one evening during the summer of 1881 an elec tro-static machine of French make, giving a spark, under favorable conditions, of eight inches, a battery of fifteen Leyden jars and the necessary mechanical and telephonic apparatus were set up and ready for use about $10 \mathrm{P} . \mathrm{M}$.
A number of scientific men were present, one of whom would be talking in the transmitter, upon the contacts of which the camera was focused, while an other would listen at the receiver, in a difierent apartment, and record the messages articulately re ceived.
Mr. Rockwood figured the duration of the electric spark on the basis of Wheatstone's calculation, that a spark passing through a space of one inch and having the electro-motive force behind of ten Leyden ing the electro-motive force behind of ten L
ars would pass in the 24,000 th part of a second.
As the electro-motive force of the spark used these experiments was the product of fifteen jars, connected in series, and the space traversed was from one-quarter to three-eighths of an inch, the duration of the spark, according to the above calculations, was in the vicinity of the 50,000 th part of a second in stead of the $24,000 \mathrm{th}$.
There was an anxious time spent while Mr. Rockwood was developing the first half dozen plates, as in case of their showing nothing, it would be useless to proceed further in that line of demonstration.
To the surprise, and gratification, of all, the pho tographs of the transmitter vibrating point came out as clear and distinct as if the exposure had been for a second instead of the 50,000 th part of one, and many other fine impressions were taken that evening.
The stationary transmitter contact consisted of a half-inch length of carbon one sixty-fourth of an inch in diameter, and the vibrating one, of a platinum wire of the same dimensions, but tapering to a fine needle point where it contacted with the carbon.
The Leyden spark was discharged at a distance of one inch from the transmitter contacts, on the op posite side of which the camera was focused so as to be in a direct line with them and the center of the space over which the discharge took place.
Some of the photographs were taken with the jars connected in multiple and in multiple-series, but the best results were obtained when all were connected in series. Five of the jars were fractured, through the chains being too short to rest on the inner tin foil.
On examining the fractures with a microscope, they presented a funnel-like formation and had the appear ance of being fused, a very surprising fact consider ing the enormous speed with which the sparks passed through the glass. One of the holes had the appear ance of having been made by a bullet.
While the experiments were being conducted the laboratory was in absolute darkness, and the sensations experienced by those present when the discharge took place were of a very peculiar nature, especially when anyone, accidentally, got too close to the Leyden jars. Often, when seemingly safe for handling, a residual charge would assert itself to someone's discomfiture.
Among those present were Josiah P. Fitch, W. E. Crampton and T. A. Richards, M.E.
Subsequently to the above experiments, several nights in Mr. Kurtz's studio resulted in the production of many plates of varying quality.
It was then decided that micro-photography would be necessary for the proper elucidation of the object aimed at, and Mr. Crampton immediately had a room
equipped for the purpose in Brooklyn, and went thor oughly into the study of rapid photography.
A very powerful microscope was attached to the camera used, and necessitated the use of very minute contact points on the transmitter, as it had to be brought to within the thickness of a piece of card board from the lens, to get the proper focus, and the handling of the apparatus had to be conducted with extreme delicacy and care, through one of the con tacts being made from a piece of carbon filament taken from an incandescent lamp and the other from a very fine platinum needle.
The minute contact points were magnified to about one inch in diameter and showed re.ults far ahead of the previous experiments, and seldom were the points caught in actual contact.
By several months' hard work, a beautiful collec tion of negatives was obtained, showing the contacts at varying positions relative to each other, every negative being taken while articulate speech was being transmitted and received over the telephone
Those experiments showed visually and conclusively that mechanical contact could be and was broken to a minute extent between the transmitter contacts, while articulate speech was being transmitted, and without impairment of its quality, but, of course, the Bell telephone people argued that it was not by reason of, but in spite of, the mechanical breaks that speech was transmitted, and if the quality of speech was not impaired it was for the reason that, although the circuit might be broken mechanically, it was closed electrically, through the current bridging the gap.
There is little doubt but that Mr. Rockwood is en titled to the credit of making the first photographs by means of a spark from a Leyden battery, and that Mr. Crampton was the first to make micro-photographs by sfmilar means. The same electrical apparatus was used in both cases.
After going the length he did, Mr. Crampton decided to have made the most powerful microscope that could be focused on the transmitter contacts, and use it for the purpose of examining with the eye the actions that took place between them. The microscope was of 4,000 diameters and the contacts had to be flattened to allow of its being brought within range. It was rigidly fastened to the same base as that of the transmitter, but even then, owing to its great magnifying power, the least touch would throw it out of focus, and it required a great deal of perseverance and skill to use it at all.
A minute incandescent lamp was placed behind the contacts, and when speech was being transmitted the vibrations were too rapid for the eye to catch the contacts together, a thin streak of light appearing contacts together, a thin streak of light appearing
between them, all the time that speech was being between the
transmitted.
When the incandescent lamp was extinguished most beautiful halo of bluish, purple light, radiating from the points, was seen. Magnified as it was, it seemed to extend about half an inch around the con tacts, melting into the darkness in a very gradual and misty manner, that would seem to confirm the theory of scme experts that a luminiferous ether con ducted the current when the points were separated These effects could, of course, not be distinguished with an ordinarily powerful microscope.
J. Hari Robertson.

Brooklyn, N. Y.

The Nernst Are Light.

Somewhat more than a year ago the Nernst incandescent lamp was brought forward with a filament of refractory, earthy material instead of the usual carbon, and heated in the open air instead of in a vacuum. In the Elektrotechnische Zeitschrift of Feb ruary 14 an arc lamp with pencils of similar refrac tory material is described. This new electric arc is similar to the Jablochkoff candle of long ago, in that the arc length from point to point of the electrodes for the case reported is about 0.04 inch and nearly constant. The most important feature reported for constant. The most important feature reported for
this new arc is its comparatively high efficiency. this new arc is its comparatively high efficiency.
Good incandescent lamps with carbon filaments show an efficiency of 3 watts per mean spherical candle power. Open-arc direct current lamps show an effi ciency of about 0.3 watt per candle power in the direction of greatest intensity of light, but this rises to about 0.6 watt per mean spherical candle power. This great variation between mean and maximum candle power is partly due to the shape of the carbon points, which form so as to produce the greatest illumination at an angle of about 45 degrees below the horizontal. The new arc lamp above mentioned is reported to have given a horizontal candle power of 556 units with an expenditure of 154 watts at the arc. This corresponds to a horizontal illumination of 0.27 watt per candle, or about that of present direct current arcs at 45 degrees below the horizontal. While the ordinary arc is maintained between carbon points, one of which is convex and the other concave, this new arc takes place between points of refractory ma terial, both of which are convex. Moreover, the pen-
cils of refractory material for this latter arc are only 2.5 times as great in diameter as is the arc length while the diameter of carbon points is generally as much as six times the lengths of their arcs. These conditions make it appear that the arc with pencils of refractory material may have a much wider field of maximum illumination than does the direct current arc with carbon points, and consequently that the mean spherical candle power of the new arc may be nearer that at the horizontal or maximum point than is the case with carbons and direct current. With alternating current the mean spherical candle power of the arc between carbons of convex points is about 70 per cent of the maximum intensity. If this relation holds good for the new lamp, its mean horizonta candle power for the case reported should be $556 \times$ $0.7=389.2$ units, and the efficiency $154 \div 389=0.4$ watt per mean spherical candle power. Another important feature of the new lamp seems to be its adaptation to moderate rates of watt consumption and candle powers, because of its simplicity. The considerable amount of mechanism incident to the arc of varying length in a lamp with carton points, and the lower efficiency of very small lamps of this kind, has tended to confine their use to points where large candle powers are desired.
A. D. A.

Automobile News.

Motor carriages are possessed by King Edward VII., by Queen Alexandra, the Czar, the Emperor of Germany, the King of Belgium, the King of Italy and the Shah of Persia. Queen Alexandra uses an electric motor car.

Automobile omnibuses are to be run between Huntington, Northport and Oyster Bay, L. I. They will carry fourteen to eighteen passengers. The steering is done by means of compressed air. Both power and hand brakes are used. The motor is of sixteen horse power.
According to The Automobile Magazine, when a horse has been injured in the steeplechases at Auteuil, France, and is unable to rise, a specially constructed motor car is brought up and the wounded animal deposited in it and transported away to the care of the veterinary surgeon.

A novel type of motor war machine is being built by Vickers, Sons \& Maxim, Limited. It is an armored car intended for the protection and inspection of railways. It runs on the rails and is propelled by a petrol motor, the armament consisting of a onepounder Maxim gun. Each machine is constructed to be manned by one officer and two or three men.
The Fifth Avenue stages of New York city are all to be operated by electricity. The development of the electric omnibus has been long delayed by the difficulty of finding a satisfactory storage battery. The new vehicles which have been ordered will be ready about August 1, and they will be capable of holding thirty-four persons. The top of the old stages were so low that they were uncomfortable for tall persons. This defect has been remedied in the new ones. They will be double-decked affairs and will be equipped with rubber tires.

Observations of the Giacobini Comet-Nice obser-

M. Perrotin has communicated to the Académie des Sciences a series of observations made upon the comet discovered by M. Giacobini at the Nice Observatory on the 20 th of last December. These observations, which were made at Nice from the 24th of December to the 11th of January, are shown in the table.
 farther the present knowledge of the orbit, whose parabolic elements were at first calculated by Messrs. Kreutz and Möller, of the Kiel Observatory, and later by Mr. Campbell, of Mt. Hamilton, but since the re cent atmospheric troubles the heavens have again become clear, and the observations will be taken up again with the hope of making new calculations. This comet is likely to be of especial interest, owing to its direct movement and the value of certain of its elements, which make it resemble a singular type of comets whose number is continually increasing. M. Perrotin thinks that we shall soon be edified upon this point if the new body, whose brilliancy is decreasing, may be followed long enough to permit the determination of elements having for base an arc of some extent. The tail of the comet extends at an angle of position near 45 degrees, and measures from 2 to 3 minutes of arc in length; the nebulosity of the head, which is regularly rounded, surrounds a well-characterized nucleus of about the 11th magnitude.

THE GANZ ELECTRIC LINE OF VALTELLINA. In a very short time the electric line of Valtellina built by Messrs. Ganz \& Co., of Budapest, will be opened to the public. The line has at tracted no lit tle attention among European electrical engineers, for the reason that it represents the very highest devel opment of the Ganz threephase high. tension system of electric traction.

The Valtellina line is some 60 kilometers, or 38 miles in ex tent. Starting from Milan, it runs to Lecco, at the south-

THE GANZ EXPERIMENTAL ROAD ON ALTOFEN ISLAND,
cade connection with the low tension motor, after the speed has risen to "hali speed," or 150 revolutions per minute-above which speed the cascade connec-
passengers and freight. Passengers will be carried by the cars at a speed of 60 kilometers ($371 / 2$ miles per hour. The electric locomotives will be used for hauling freight trains. freight trains. will have a net weight of 250 to 300 tons. The speed to be attained will be about 30 kilometers ($181 / 2$ miles) per hour.
The commercial merits of the system are many. The initial outlay is not inordinate. The annual cost of maintenance is said to be comparatively small. For railways of considerable length and heavy traffic,
tion ceases-the periodicity of the currents in the rotor of the high tension and in the stator of the low tension is about $71 / 2$ per second. The speed of the
east corner of Lake Como, extends along the eastern shore to Colico, at the north end, and then branches off to Chiavenna on the north and to Sondrio on the east. The high-tension lines deliver the primary current of 20,000 volts to nine stationary transformers, which feed the current to the trolley wires and earth rail as three-phase current at 3,000 volts. The efficiency of transmission from the dynamo to the transformers averages 95 at full, 94 at the half, and 94 per cent at quarter load. Current is generated at a central station situated at Morbegno, between the Colico-Sondrio branch. Hydraulic power is used to develop electrical energy. 'rhree turbines, each of 2,000 horse power, are directly coupled with threephase generators, which supply the primary current of 20,000 volts.
For the line at Lake Como the motor cars are 18.1 meters in the carriage body and 19 meters ($621 / 4$ feet) over the buffers. The cars rest on two bogie-trucks, each truck having a wheel-base of $21 / 2$ meters. Without passengers a car weighs 50 tons, including the motors. The wheels are 1.17 meters in diameter, while those of the electric freight locomotives supplied to the same line have a diameter of 1.4 meters. The locomotive motor weighs 3.8 tons; its rotor about $11 / 2$ tons. The car-motors with a smaller size wheel weigh $31 / 2$ tons approximately. Each cascade pair of these motors develops a full-load horse power of 150 , while the high tension motor itself, when running at full speed with the low tension motor cut out, yields about the same horse power. Thus, 300 horse power are developed in one truck carrying two pairs of motors, or 600 horse power (450 kilowatts) on one train with front and rear driving cars.

The current generated at the central station has a frequency of 15 per second. When running synchronously the high tension motors make 300 revolutions per minute. In the rotor of the same motor the periodicity of the induced currents varies according to the slip. During the start, when the high tension is switched into cas-

INTERIOR OF CAR ON GANZ VALTELLINA ROAD.
locomotive motors is 125 revolutions per minute. The Valtellina locomotive motors are not geared in cas cade; they are all high tension.
The line will be used for the transportation of both

ELECTRIC FREIGHT LOCOMOTIVE FOR THE VALTELLINA ROAD.

less maximum power is required in the central station with the Ganz high tension distribution than with the necessarily low tension of continuous current distribution, the ratio of maximum to average load at the central station being less.
The electrical merits of the system are no less noteworthy, especially when the length of transmission from one central station is considered. By reason of the high voltage no large currents are used. The loss involved in converting to continuous current by rotary converters is eliminated. The use of pure induction motors without commutators, and the coupling of these in cascade pairs, results in a high motor efficiency.

Our Mineral Resources.
A chart published by the Geological Survey gives a summary of the mineral products of the United States for the past ten years, says Bradstreet's. The aggregate value have increased by more than one half in that period, and the figures for 1899 are greater than in any previous year, footing up the enormous total of $\$ 976,000,000$. The value of the metallic products of the year is given at $\$ 527,218,084$ and of the non-metallic at $\$ 447$, 790,862 . The latter class includes, of course, the coals- $\$ 168,000,000$ in bituminous and $\$ 88,000,000$ in Pennsylvania anthra-cite- $\$ 64,600,000$ in petroleum, $\$ 20,000,000$ worth of natural gas and large value in stone, brick clay and cement with various other minerals. Of the metals our pig iron is worth almost as much as all others together, the value of the product in 1899 being given at $\$ 245,000,000$. Cop per comes next with $\$ 104,000,000$, and the $\$ 71,000,000$ in gold is third. The market value of the silver produced in 1899 was about $\$ 33,000,000$ and the lead and zinc together were worth about as much. Quick silver, aluminium, antimony, nickel and platinum are the other metals that figure in the table.

Applied on a burn, where the skin is not yet open, turpentine quickly alleviates the pain.

trdec of a valtellina cab.

June 29, 1901

METHOD OF UTILIZING OLD STREET CARS.
It was reserved for some original genius in San Fran cisco to discover a method for the utilization of ancient and out-of-date street cars. There was once a imited demand for these articles from young and ambitious communities that wanted to inaugurate a street railway system of their own and were willing to buy rolling stock, even second-hand, provided the cost was low enough, but the change in the metropolitan systems, first from horse or mule power to cable roads, and afterward to the employment of electricity as the motive power, together with a general demand from the public for improved cars, left so large a num ber of the old-fashioned kind on hand that the com panies were at a loss what use to make of them. To break them up into firewood seemed to be the only disposition possible. The supply was infinitely greater han the demand
An Italian immigrant in San Francisco solved the problem. He had purchased a lot of land, but had no money left with which to build a dwelling. Observing several of the old cars in store he bought one for $\$ 10$ and had it transported to his land, where, at small cost
angles, and plank walks are laid so as to give pedes trians access to their homes without wading through the deep sands. Few of these cars have been adorned with a coat of paint. The exteriors are generally in tact, and the conspicuous signs denoting the route over which the cars once perambulated are not oblit erated.
Some methods are used in the adornment of thes curious resorts. Many of them are covered with vines, most have galleries extending around the front and sides. The roofs of some are arranged as lookouts, and awnings drop over the windows. There is consid erable space for storage below the cars, while other cars acquire additional room by little extensions. In some instances one car is raised above another, and sometimes the cars are laid upon other buildings, thus giving an extra story. The platforms of the cars are often transformed into balconies and bay windows with the aid of the carpenter and glass fitter, and afford points of observation protected from the cold winds, besides giving extended views of sea and land
The arrangement of the interiors of these dwelling highly ingenious, the necessities of the case requir

A"Cartown" Home.

A"Cartown" Skyscraper.

"Cartown," San Francisco

Interior of a Car Home

CURIOUS VILLAGE IN CALIFORNIA, BUILT OF OBSOLETE STREET CARS.

he built a small addition to it and provided a very comfortable home for the family. This example was followed by others, and in various parts of San Francisco there may be found discarded street cars doing duty as dwellings, barns, wood and outhouses that are not only substantial, but at the same time economical and highly picturesque.
There is a little settlement just outside the city where the large majority of the structures were once street cars. It is located at the ocean beach on the shore end of Golden Gate park. What community of interest prompted the beginning of this unique settlement is not known. The fact that the lands are of small value and not likely to be acquired for public uses in many years probably had its influence, though the situation, close to the resounding ocean and bordering upon a largely frequented boulevard, had attractions for many. There are perhaps fifty of these car dwellings in the little settlement, many of them fitted out with considerable elegance and numerous conveniences. They are arranged upon a general plan affording their occupants the widest views, all fronting the sea. Streets intersect, at right
ing the utmost economy of space, the average sleeping car suggesting a model. Half a dozen persons have been at night accommodated with lodgings in one of them. Ventilation is always assured.
While there are many families permanent residents of "Cartown," the larger number occupy the "vehicles" as others do the house-boat, giving opportunities for original methods of entertainment and diversion for themselves and friends. Confined and restricted as these dwellings are, there is compensation in the fresh ocean breeezes which here blow right from thẹ sea, besides the enjoyment of a health-giving environment. History and romance have been ransacked in providing names for these car "villas" suitable to the facetious idiosyncrasies of their various owners. In "Cartown" the "Villa Miramar" and "Château Navarre" adjoin the modest restaurant and more conspicuous bar.
There are many kinds of trades pursued in this odd settlement, restaurants and bars being most numerous. "Cartown" is an interesting spot for the visitor, not only on account of its individual attractions, but as a demonstration of the problem of what can be done with street cars that have outlived their usefulness.
to those suitable for alternating three-phase motors which are used to supply the required power. This last system has the obvious advantage that it avoids the expense of sub-stations, rotary converters, and 500 -volt distribution lines incident to the second sys tem named. To offset this advantage, the three-phase motor is not yet as desirable in efficiency and regu lation as its direct current competitor. The alter nating, long distance and the direct current short dis tance systems may both remain, but it seems doubtfu whether the mixed system with rotary converters finds permanent place.

Naphtha launches under ordinary circumstances are perfectly safe, but with any form of liquid fuel a certain amount of care must be exercised. An explo sion recently occurred at Great Neck, L. I., which was caused by lighting a match near the naphtha tank. Immediately there was a tremendous explosion. The burning naphtha was scattered in every direction, setting fire to the launch and to the clothing of the owner and his wife, who immediately jumped into the water.

Hardness of Metals.

F. Auerbach's definition of hardness is given for the case of plastic bodies, including metals, by the limiting pressure per unit surface, attainable between a lens and a plate of the same substance, says Science Abstracts. In the case of metals the deformation cannot be observed with the same facility as in the case of transparent bodies, but the surface of contact may be measured by covering the lens with a thin layer of lampblack. This is only necessary at small pressures, since at great pressures the deformed are retains its shape. A complication is introduced by the fact that the hardness is considerably influenced by small impurities, as well as by the elastic and thermal history of the metal. The author gives the following table of the hardness of various fairly well defined metals, as compared with minerals

The aluminium was alloyed with 6 per cent copper The bronze was an alloy of 15 parts copper. 2 parts zinc, and 1.5 tin. The brass contained 2 parts copper to 1 of zinc.

Shipping at Nagasaki

Consul Harris, of Nagasaki, February 9, 1901, re ports the launching, on the 26th ultimo, of the steam ship "Kaga Maru" from the Mitsu Bishi Dock Yard and Engine Works, of that city. This vessel was constructed under the shipbuilding encouragement act of the Japanese Government and Lloyd's rules, class 100, A1, and was built to the order of the Nippon Yusen Kaisha (Japan Mail Steamship Company) for its American line. The materials used in its con struction were purchased in England, and the keel was laid on the 20th of March, 1900. The ship is to be completed and delivered in March, 1902. A description follows: Type, 3 decks; material, steel; length ove all, 459 feet; beam, 49 feet 2 inches; depth, 33 feet 6 inches; gross tonnage, 6,240 tons; displacement 11,800 tons; draft, 25 feet; dead-weight capacity 6,820 tons; engines, twin-screw, triple-expansion; boilers, cylindrical, four in number; indicated horse power (estimated), 4,500; speed, 15 knots.

three recently patented novelties.

Three interesting inventions which have been pat ented in the United States within the last few months are an adjustable gun-stock, a combined rocking-chair and cradle, and a single-wheel vehicle.

The gun-stock is the invention of Mr. Joseph N. Zoeller, a resident of St. Matthews, Ky. Within the stock an adjusting-head is pivoted and attached to the grip. The head is provided with peripheral teeth, between the spaces of which a bolt, held in the stock, may enter. A manipulating device is provided for the bolt, which device is passed to the outside of the stock for convenient operation. To change the inclina tion of the stock. the bolt is carried out of engagement with the adjusting-head. After the grip has been moved the bolt is allowed to enter the most convenient space between the teeth to hold the stock and grip as adjusted.

Samuel S. Arnold, of Toronto, Canada, is the inventor of the combined rocking-chair and cradle. The upper and lower bars connecting the rockers of the chair are grooved to receive the corresponding bars of a cradle provided with a rocker at one end. Pins limit the movement of the cradle. When not in use the cradle can be pushed under the chair.

Perhaps the most curious invention is Mitchell R. Heatherly's single-wheel vehicle. Our illustration shows the construction so plainly that an extended description is hardly necessary. Broadly, the contrivance consists of a curved tongue pivoted to the harness, and a single wheel carried by the lower end of the tongue. Above the axle of the wheel are stirrups for the rider or driver, if we prefer to call
him so. Suitable handles are provided on the tongue, which are to be grasped for security. The tongue it should be observed, is so connected with the harness that it will adapt itself to the motion of the horse. Mr. Heatherly lives in Mundell, Kans. His vehicle Mr. Heatherly lives in Mundell, Kans. His vehicle
is designed to take the place of the bicycle and to be used on race courses. The Development of Wireless Telegraphy in Eng-
land-Its Proposed Adoption in the Post Office. Some months ago, when the utility and widespread advantages of Marconi's invention were conclusively established, a Departmental Commission of the Eng lish Post Office was formed to consider the merits of the system and the advisability of its adoption throughout the British postal service. The report of this

COMBINED ROCKINGCHAIR AND CRADLE.
commission is now complete, and it is stated to relate favorably upon the scheme in its general principle. The result of this commission consequently por tends a great revolution of the English telegraphic strvice. For several months past the telegraph au thorities have been endeavoring to satisfactorily cope with the exigencies of the rapidly increasing telegraph traffic, but the country is so comparatively small, and the congestion of the traffic so acute, that practically no headway has been made toward the solution of the difficulty. If Marconi's system were employed the difficulty. If Marconis system were employed the possibility of blocks on the lines would be entirely obviated, since each telegraph office would have its own synchronized receiver, and only the transmitter corresponding with that receiver would be able to establish communication therewith. Then, again, in stormy weather widespread damage is caused to the wires, frequently destroying communication, while in connection with Marconi's system it has been proved to work better in boisterous weather. These salient characteristics have impressed the commission, and have no doubt appreciably influenced their favorable decision.

Yet the scheme will have to be well prepared, since its innovation is attended with numerous difficulties, some of which can only be obviated by Parliamentary measures. For instance, the British Post Office has a monopoly in any system of telegraphy, and it is only natural to expect that they will endavor to enforce these rights in the present case. In this event Marconi will be prevented from establishing independent installations without the official license. It is generally believed that at the present time the Post Office does actually claim the monopoly of wireless telegraphy in the British Isles, and that Marconi has not yet received the necessary license to install hi system. This belief is somewhat supported by the fact that the English government will not permit wire less telegraph communications to be transmitted from a point less than three miles from the shore. This fact was established at the inauguration of the system upon the mail packet service between Dover and Ostend, when the authorities would not permit the establishment of a land station at Dover. The Post Office is awarded this monopoly by act of Parliament, and it is practically certain that if necessary they will enforce that prerogative. But such a contingency is hardly likely to arise. Marconi has placed himself at the disposal of the commission and has extended them every assistance in his power, in order that the advantages of the system might be thoroughly understood. That the systen will be nationalized there is not the slightest doukt, as in the cases of the tele-
phone and the District Messenger Agency of London. For once England is desirous of leading the way. Negotiations have already been opened with one or twe of the European powers, concerning the idea of establishing the system partially, if not entirely, upon the Continent. By this means the cables will be dis pensed with, and the international messages transmitted through the air. Of course there is the question of expense, because such a radical revolution could not be effected except with a great outlay. Yet the system is cheap to install, for the cost is limited to the purchase of transmitters and receivers. Wires, poles, and cables are entirely dispensed with. It will even be unnecessary to erect the lofty pole in connection with the apparatus, since Marconi has invented a cylindrical appliance which performs the same functions with equal satisfaction, as described in a recent issue of the Scientific American.

Another instance of England's desire to encourage the utilization of the system is proved by the decision of the Admiralty to equip all the vessels in the fleet with the apparatus. Several ships are already supplied, but those which are yet deficient in this respect are being fitted with all possible speed. In a few weeks' time the report of the commission will probably be published, together with the suggestions for acquiring the system from Marconi without interfering with the legality of his patents. Certainly the action of the British authorities will be followed with keen interest by the other nations, and should Great Britain decide upon its immediate introduction other nations will be compelled to do likewise.

Demand for Blood-Oranges in Germany.

Demand for Blood-oranges in Germany.
Consul Hughes writes from Coburg, April 26, 1901, as follows: There is a great demand in Germany for the so-called "Italian blood-orange." The popular idea here is that this fruit is colored, not by nature, but by injections of some artificial vegetable dye. To discover the truth or fallacy of this belief, several wellknown German chemists have been experimenting, first, to find out from the blood-orange itself if its color is due to artificial means, and, secondly, to change the common Italian orange into a blood-orange by injections of different kinds of coloring matter. The experiments, however, have not been attended with success. It was found that no single injection of any solution would color more than one part of the orange, and that if several injections were made, the fruit was likely to decompose very quickly. The theory was then advanced that the coloring was produced by watering the roots of the trees with a blood-red veget-

A CURIOUS VEHICLE

able solution. It is needless to say this experiment was as barren of results as the first.

The current Supplement No. 1330 has many articles of general interest. The Racing Yacht "Independence" is accompanied by two illustrations, showing the bow and the remarkable rudder. "Protection of Ferric Structures," by M. P. Wood, is a continuation of a most important paper. "Resistance to Death Among Insects" is a most curious natural history Article. "Recently Discovered Greek Masterpieces", is accompanied by a number of engravings made from photographs showing the remarkable nature of the find. "Packing Goods for Foreign Markets," which was commenced in Supplement No. 1329, is concluded in this issue and shows how goods of all kinds should be packed for export.

REGENTLY PATENTED INVENTIONS. Electrical Apparatus. SWITCH FOR ELECTRIC LAMPS.-Charles Wagner, Manhattan, New York city. The
switch is arranged to permit one conveniently to turn the current on or off. The appearance of the lamp is improved, especially when the de vice is applied to the candle-type of lamp. The unsightly key heretofore used in electrical
switches is dispensed with, and a sleeve emswitches is dispensed with, and a sleeve em
ployed for opening and closing the switch. ELECNRIC-CLOCK SIGNAL - HAREY B Varman, Little Rock, Ark. The signal-clock is of that form in which the clock-hands are made to touch contact-points on the face of the dial, and, by closing an electric circuit at any particular point or hour or number of points, to ring at that hour any particular bell
or number of bells. The present invention consists in the peculiar arrangement of such
devices whereby any number of guests in hotel can be automatically called at any par hotel can be automatically called at any par
ticular hour, and whereby all the guests of ticular hour, and whereby all the guests of
the hotel are alarmed in case of fire. An alarm-signal can be sounded in any one of the
cooms. and an electric lamp lighted by one aucooms, and an electri
tomatic mechanism.

Mechanical Devices.

PrN(IING-MACHINE-GEorge M. Rogers, Manhattan, New York eity. The machine is
designed to indicate upon a dial the force of a designed to indicate upon a dial the force of a
blow struck upon a pad. The blow has no blow struck upon a pad. The blow has no
direct influence on the indicator-hand, but merely deflects an intermediate lever to a greater or less degree, according to the forc
of the blow, to which position it is held by locking device. The lever acts as a stop
device to determine the drop of a rod which device to determine the dro
operates the indicator-hand.
SAFETY-CATCH FOR ELEVATORS.Henry Jewell, Butte Mont. The safety
catch is to be applied to the lower deck of a catch is to be applied to the lower deck of a
car and to be operated from the king-bolt to which the hoisting-cable is applied. While the hoisting-cable is in good condition and sup as soon as the cable breaks, the catches are automatically forced beyond opposite sides of
the car into engagement with the wall of the the car into engagement with the wall of the
shaft, or with racks or their like. shaft, or with racks or their like.
LOCK--Ira W. Abbort, Nevada City, Cal.
The novel feature of this padlock is a slide unlocked and moved by a key and adapted to engage a spring-pressed knee-joint bolt
This bolt is pivoted and designed to engage This bolt is pivoted and designed to engage lock cannot be picked unless the person has the proper key. The lock is simple and durable and can be cheaply manufactured.
hyidiallic air-compressor.-Lee f Mitchell, Boston, Mass. Mr. Mitchell has
improved the air-compressor which he inimproved the air-compressor which he in
vented in 1900 . In the power-cylinder a pis vented in 1900. In the power-cylinder a pis
ton reciprocates. Valve-chests open into th cylinder at the ends and have waste-outlets. A supply connection is provided between the
valve-chests. A reciprocating-valve is arranged alternately to open and close the connection to the valve-chests and alternately to close and
open the discharge for the waste-outlets from the valve-chests. The piston-valve is actuater be a shaft mounted to rock and provided with
a lug. On the shaft a crank-arm is mount a lug. On the shaft a crank-arm is mounted
loosely and connected with the valve-stem of loosely and connected with the valve-stem of
the piston-valve. the crank-arm having spaced the shaft The shaft is rocke from the piston-rod of the power-cylinder.

Railway Appliances.

PNEUMATIC PACKAGE - IIANDLER. George H. Wall, Cadillac, Mich. This pack age-hander side of the car-doorway, the pistons
at each
being attached to a section of the car-floor. being attached to a section of the car-floor.
The arrangement provides a platform about The arrangement provides a platform about
five feet long and having a width equal to that five feet long and having a width equal to that
of the car-door. A governor maintains the of the car-door. A governor maintains the
level of the platform during operation. Air is drawn from the train-line into a special forty-day test was given to the first machin to show that air from the train-line could be used for the purpose of loading and unloading
baggage. The inventor is an old and experibaggage. The inventor is an old and experi car-colileler-Mark a. Brown, Douglas Ga. The coupling belongs to that class in which the drawhead is provided with a pivoted member or knuckle adapted to bed on another car. In the present invention proision is made to allow a yielding lateral movement of the locking-pin.

Miscellaneous Inventions.

drapery-hanger. - Joserf Langlots, Leominster, Mass. The invention is a drapery form an enclosure for coffins. The essential eature is a brace or truss for the side-bar of the drapery-hanger, the brace having a
crotch or fork between its ends and a hook at each end. The crotch engages the side-bar and its ends with the hooks, which are adapted to pass around the bar.
WICK - TRIMMER. - Rorert M. Johnson, ancuster, Penn. This simp'e device serves to clampa wick to be trimmed. By its means,
the wlek is compressed at its exposed o the wlek is compressed at its exposed or
Igniting surface; moreover, a straight hori-
zontal line is established at the charred por-
tion and a substantial surface is obtain and hydraulic engineering by writing can and a substantial surface is obtained at
an admirable book outlining the latest pra
caide. Upon these surfaces the shears
tice. The book has many illustrations, and or scissors may bear, and over the surfaces well printed and bound
he wiping material may be drawn
RETURN-FLOW SYRINGE. - Denwood n L. Newbury, Manhattan, New York city. Th in its sides. and a shield within which the tube is contained. This shield comprises a body section having a series of curved bars, and front section in the form of a loop with which the outer ends of the bars are joined he inner ends of the bars are connected with
perforated cap-plate. The outer end of th perforated cap-plate. The outer end of the
tube extends out through the loop-section and the inner end of the tube screws into ollar connected with the apertured cap-plate A receptacle is carried by the lower portion the loop-section
hat-box.-Benjamin F. Porter, Manhat an, New York city. The hat-box is so contructed that the hat can be raised at th in its raised position without injury. Thu the hat can be brought into position for inspection or for careful removal
Pianoforte.-Ilerbert S., Percy A.., an
Owen E. Reading, 18 albion Road, Tun Owen E. Reading, 18 Albion Road, Tun-
ridge Wells, England. The invention relate o improvements in pianofortes in which sound-board formed of a rolled or cast-plate or sheet of aluminium or aluminium alloy is
employed, in order that the instrument mployed, in order that the instrument ma ithstand the effects of a hot, damp climat o prejudicial to the ordinary wooden sound
oard. Moreover, the resonance is increased longer sustaining power is obtained : and the quality of the tone is improved
JEWEL-HOLDER ANI FASTENING DF VICE FOR CORI COLLARS.-Sherwood 13 Robertson, Brooklyn. New York city. The
device is intended to be used with cord collars orn by Masonic fraternities. The inventio rovides a neat and efficient means of holding the ends of a collar, at the same time allow
ng the ready attachment of jig the ready attachment or ornaments o or the production of emblems or other orna ments.
Saw-gage--Danifl C. Steble, Village Sills. Texas. Mr. Steele has devised an im proved saw-gage more esperially designed for o permit accurate filing of the cleaner-teet without leaving an undesirable burr and with ut danger of filing the
WELL-IDRILLING APPARATUS.-Miltos and readily portable. It apparatus is ligh hand. thus avoiding the necessity of hors power. The pump-valve is not subjected to
the action of the mud, dirt and gravel drawn the action of the mud. dirt and gravel drawn p through the well-tube. The receiving chameadily removed for the purpose of cleaning out. The current through the drill is fast work is performed to draw up gravel. All The strain or suction is always inward, so that in case of breakage or a leak at any point the mud, water, and the like will not be
thrown outward upon the operator. Note.-Copies of any of these patents will be curnished by Munn \& Co. for ten cents each. hease state the name of the pater
the invention, and date of this paper

NEW BOOKS, ETC

New Lands. Their Resources and Pros pective Advantages. By Hugh Rob
ert Mill. London: Charles Griffin ert Mill. London: Charles Griffin Company. 1900 With ten maps. Pp. 280.

The present volume deals with a subject which is of great interest, in view of th countries and emigrate to new lands. The book presents, in a simple and practical man ner, the conditions of life in those parts of the world where there is still an opening for desiring to make their home or invest thei apital in a new country. Little more tha he countries of the temperate zone are con
idered. The author has done his work oughly, and it is a book which cannot but prove of value to the audience to which it is

Water Power. An Outline of the De velopment and Application of the
Energy of Flowing Water. By Joseph P. Frizell. First edition, frst thousand. New York: John \& Hall, Limited. 1901. Pp. 563. \&rice, \$5.
Water power is becoming more and mor velopment every day. Recent remarkable de transmitting mechanical energy have recalle water power to something like its former position in the industrial economy of the world. The changed conditions have given a new in erest to this source of power, and directed th merly appeared entirely outside the range practical consideration They have also to some noteworthy improvements in the utilization, development and transmission of
power. The author has done a real service

The Principles, Construction, and Ap By Henry Davey. London: Charlas By Henry Davey. London: Charles
Griffin \& Company, Limited. Phil adelphia: J. B. Lippincott Company
1900. With frontispiece, five plates and over 250 illustrations. Pp. 295 Price, \$6.
The purpose of this book is to present th nformation in such a form as will make it oost useful to the practical engineer engaged
in the application of pumping machinery in the application of pumping machinery in which large quantities of water have to b dealt with. A large number of illustrations are given, showing the typical installations, and there are several full page and folding lates. The practice appears to be largel nglish practice, but it is certainly of. ver pensable to the hydraulic engineer
Sur les Nerfs Cephaliques, les Corpor mi. Par Charles Janet.

Essai sur la Constitution Morpholo gique de la Tete de l'Insecte. Par et G. Naud. 1899. Pp. 74.
'Esthetique dans les Sciences de la
Nature. Par Charles Janet Extrait du Bulletin de la Société Zoologique lique, Année 1900. Paris: Au Sièg de la Société Zoologique de France 1900. Pp. 8.

Engineering Chemistry. A Manual of Quantitative Chemical Analysis for the Use of Students, Chemists, and Engineers. Second Edition. By
Thomas B. Stillman, M.Sc., Ph.D Easton, Pa.: The Chemical Publish
ing Company. 1y00. Pp. 503 . With 132 illustrations.
This book was written especially as a manua
of quantitative chemical analysis for the use of tudents, chemists, and engineers. It treat in the various metals, water for all uses, and paper. lubricating and illuminating oils, paint ment, and the like. There are also chapter ation of the different grades of steel and the ises forms one of the most valuable chapters hapter on pyrometry. The book conclude with chapters on the electrical units and energ quivalents, which are especially useful fo ready reference. Numerous tables of pressures,
temperatures, percentages, etc., are also ap tempera
New Ideas. Quarterly Publication of the $\begin{array}{ll}\text { Romanes } & \text { Society. Published by } \\ \text { Witherby } & \&\end{array}$ Knowledge, 326 High Holborn, London.
umbers of this pamphlet. which contain issays Toward a Mechanical Theory of Vita Irocesses. The Romanes Society was founded
at Chiristchurch. Oxford, in 1897, for the purpose of stimulating and promulgating original Ideas are printed original articles of merit on scientific subjects.
The Chemical Analysis of Iron. By London: J. B Lippincott 1901. 320 pp., 105 figures. Price $\$ 4$.

This work is intended as a guide for
the student of iron chemistry. In it are described many. special apparatus for the performance of analytical work which
otherwise only the possessor of a complete chemical library would have at his command The book has just entered its fourth edition, up to date. Besides apparatus for analyzing ron and steel, the author treats of the analysi of slag, clay, sand, coal, coke, and furnace anc producer gases also. The book will be found great value to chemists engaged in this
special line
Waterworks Distribution. By J. A. Mc-
Pherson, A.M., C.E. New York: The
D. Van Nostrand Company. 1901
154 pp., 19 full-page diagrams and
his book is intended as a short, practica This to the laying out of systems of distri and cities. It is by a practical engineer who has had twenty-four years' experience: and contains much valuable data. together with numerous illustrations of the various valves and other apparatus employed in an up-to
date supply system. A large chart of an example district, showing distribution, is added to the other diagrams.
We acknowledge the receipt from the Director of the Sydney Observatory of New South Wales. Australia. of a report on the Results of Meteorological Operations in New
South Wales during 1898, which is the Department of Public Instruction io Meteorology of New South Wales. It is very complete in its arrangement of items of special

Business and Personal Wuants.
READ THIS COLUMN CARFFULLY,-You umbered in acture these goods write us at once and we wil end you the name and address of the party desir sary to give the number of the inquiry.

Marine Iron Works. Chicago. Catalogue free.
Inquiry No. 904.-For manufacturers of spring
Turbines.-Leffel \& Co. Springfild, Ohio, U. S. A.
Inquiry No. 905.-For parties to manufacture
money bak of canvas and brass.
Inquiry No. 906.-For the manufacturers of the
ames sash Lock.
water wheels. Alcott \& Co., Mt. Holly, N. J.
Inquiry No. 907.-For manufacturers of wate
Wheels or any form of hy draulic power.
Inquiry 0.908 - For parties engaged in cuttin
For bridge erecting engines. J. S. Mundy, Newark, N.J. Inquiry No. 909.-For manufacturers of smal Machine chain of all kinds. A. H. Bliss \& Co. North

Inquity No. 91, 9.-For the address of the toy gas
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell st
Inquiry No. 911. -For parties to manufacture an
article composed of small glass tubing and of special
Sheet Metal Stamping: difficult forms a specialty
The Crosby Company, buffalo, N. Y.
 Sawmill machinery and outfits manufactured by the Inquiry No. 913.-For manufacturers of ain ain
blowers orinjecerrs. fuel oin injectors. air and oil in
jecturs, operated by steam or compressed air. For Sheet Brass Stamping and small Castings, writ For Sheet Brass Stamping and small
Badker Brass Mfg. Co., Kenosha, Wis.
Inquiry No. 914 .-For manufacturers of drill
presses. electricul
motolnors. boiless, laundry machinery, etc. Rigs that Run. Hydrocarbon system. Write St
Louis Motor Curriage Co., St. Louis, Mo. Inquiry No. 91.5 .-For manufacturers of auto
matic panto-playing devices. Ten days' trial given on Daus' Tip Top Duplicato
Felix Daus Duplicator Co., 5 Hanover St., N. Y. city. Inquiry No. 916.-For manufacturers of wheel
for wheel barrows. SAWMILLS.-With variable friction feed. Send for
 Wanted-Punch and Die Work, Press Work and ligh Inquiry No. 918.- For manufacturers of small
kasoline motor castings of $/ 4$ or $1 / 2 /$ horse power. Manufacturers of Valves, Fittings, Brass and Iron City, N .

Inquiry No. 919.-For manufacturers of castings for smarl model steam engines, also of supplies fur small boilers.

Inventions developed and perfected. Designing and
archine work. Garvin Machine Co., 149 Varick, co Spring Sts., N. Y.
Inqniry No. 920.-For manufacturers of screw
wrenches, etc.
The celebrated "Hornsby-Akroyd" Patent Safety Oil ngine is built by the De La Vergne Refrigeratung Ma-
chine Company. Foot of East 13sth Street, New York Inquiry No. 921. - For manufacturers of pine
pails and barrels for salt flish.
The best book for electricians and berınners in elec-
ricity is " Experimental Science," by Geo. M. Hopkins. By mail. \&4. Munn \& Co., publishers. 361 Broad way. N. Y.
 chine preferred.
ny any part of number, for money to perfect patent and
dispose of same. Address S . O. Stewart. E. Las Vegas,

Electrical Engineer (Tramways)-Wanted in mediately by the Council of the City of Wellingto neer, who must have had special experience in carryin power stations. Full particulars and conditions may he obtained on application to Messrs. R. W. Forbes \& Mon,
Produce Exchange, New York, and applications must Produce Exchange, New York, and apphications must L.td..Lime Street. London, E. C., England, not later than noon on the 20th July.

Impressed Upon his notice

The various features for which the Lackawanna Rail-
road has become noted are involuntarly impressed upon the notice of the passengers. Who realize the lux
ury of hotel or club appointment in the electric lights the smooth-running journals of the whee ; ordinary cleanliness made possible by the use of an-
thracite coal. avoiding all dust and nauseating smoke the consciousness of being always on time-which com. the enjoyment of the unsurpassed scenery throurh
which its lines pass. It is but the natural sequence that the Lackawanna is prospernus in like degree to its exellence of service and ts warm friends are equal in service means an ardent admirer and friend earned
Inquiry No. 9 925.- For
sererties to manafacture
acter thousand aluminium medals of a special charWe do Experimental Special and Automatic Machine.
Tool. Die and Model Work, also Metal Stamplng. Racine Model Wor
Inquiry
scopeas.

hints to Correspondents.
Names and Adress must accompany all letters or
no
at

sume answers require not a little research, and,
sthough we erdeavor to reply to all either by
lettor or in this department, each must take his turin
Buyers wishing to purchase any article not adver-
tised in our collumns will be furnished with
addrowss's of houses manufacturing or carrying addresses of houses manufacturing or carrying
hthr sumperten Information on matters of personal
pecial Writen
rather than general interest cannot be expected without remunerationtents hat at the oltice. Price 1 ce cents each.
Books referred to promptly supplied on receipt of Minerals. sent for examination should be distinctly
marked or labeled.
(8226) A. S. D. asks: By what method an I coat glass plates with a clear transparent coating of gelatine? I desire a transing on the regular gelatine-coated dry plate ing on the regular gelatine-coated dry plate photographic properties, simply a clear trans-
parent coating of the same texture. I have used the clear gelatine with alcohol and water, but it cracks and peels up for me. A. If we
wished plates coated with gelatine we should wished plates coated with gelatine we should
buy photographic plates and remove the silver with hyposulphite of soda. The gelatine a uniform thickness far better than we could hope to make it ourselves. We can send you descriptions of the process of coating plates in
cirplement $272,330,467$ and 1042 , price striplement 272 ,
ten cents each.
(8227) C. F. asks: 1. My son and one of his companions are making an electric
motor as described in Suprlement No. 641. They follow directions as they understand the field magnet they used 33 feet of Russian the field magnet they used 33 feet of Russian
sheet iron (of No. 24), but does not make sheet iron (of No. 24), but does not mak
$7-16$ inch in thickness as described. weighs $51 / 8$ pounds. Had they better put more
iron to it so it will be $7-16$ inch thick or is he 33 feet sufficient? A. The sectional area of the iron is important for the core of the magnet. Your boys had better wind on more
wire to bring up the thickness to the pecifications. 2. Does it make any difference wind armature and field magnet? Have No.
18. Iirections give No. 18 wire for winding the armature and No. 16 for the field. In list of dimensions of the parts the same size the size of wire is in the table of dimensions. as given in the description. 3. In winding the armature should the wire be wound tight or only moderately? So far in the winding the boys do not get as neat a job as they
like to have. and suggest putting a strip of brown wrapping paper between every layer of wire: how would that do? A. The coils hould be wound as tight as possible, and ture turns makes it difficult to hold the coils n place unless they are well wound. It is not well to fill the space with paper, though if you get all the windings in and have space
to spare, it may be done. 4. Is there any to spare, it may be done. 4. Is there any
rule to calculate the area of a crescent? What is it? The water plant here has valves of different sizes (some are 4 inches in di-
ameter) and a disk or circular plate a trifte larger is moved by means of a screw across the end of a 4 -incll pipe. to open or shut off the water. Now how wide must this opening be to have the same area as 1 -inch and
2 -inch pipe? We can then calculate the
amount of water that will flow through the other pipes. A. The simplest method for ob-
taining the area of any shape not easily calcu lated is to cut a piece of card of the exact shape and weigh it carefully on a jeweler. or druggist's balance, if an analytical balance is not to be had. Then cut a piece from the same card of a known size, four or five square inches, and weigh this, from which the weight of one square inch of the card can be found, (8228) W. H. K. writes: I have a sol tion of cyanide of silver for electro-plating in a glazed stoneware crock. The cyanide seem to go through and settle on the outside of
crock in a dry, powdery form. 1. What causes this action and what will prevent it? A. The solution should not go through the glazing. It may be that the evaporation cause some of the crystals to climb over the edge
of the crock, and to form down the sides of of the crock, and to form down the sides of respondingly weakened, and would any of the silver go through along with the cyanide
A. The strength of the solution is not duced if the crystals are formed in the man ner we suppose. The silver is in the form cyanide of silver, and is one substance, inseparable, not two substances as you suppose 3. At the bottom of page 7, Watt's "ElectroMetallurgy," is described a battery; in constructing the copper cylinder should the edges Joined by soldering or lapped and hammere
together, or how? A. The copper is not joined at all in the Daniell's cell. It is a sheet of copper rolled into the form of a cyl (8229) G. D. Y. writes: Your favor of March 21 received; would state that it was not a hydrometer manufacturer that I was inquiring for, but for a formula to be printed in
the Scientiric American of how to convert Baume degrees into specific gravity degrees. Kindly state also on what principle is the of grain degrees of vinegar into Baume degrees or specific gravity. A. The Baume hydrometer was one of the earliest forms of the instru-
ment. It is a hydrometer of variable immer sion, but of constant weight. It always displaces the same weight of liquid. Its scale is made as follows: The instrument is placed in distilled water and the point to which it sinks is marked. It is then placed in salt
water and a second point noted. The distance between these two points is divided into a certube is graduated with the same divisions. There are two Baume scales, one for light and one for heavy liquids. For light liquids Baume took zero point at the place where the instrument stood in a solution of 10 parts salt and 90 parts water. The point to which and the scale was graduated upward through out its length on this basis. For heavy liquids, the zero point is found by placing the instrument in distilled water. It is then placed in a solution of 15 parts of salt and 85 parts water and the point determined is marked 15 degrees. From the distance between these points one degree is found, and the scale is this basis. Both scales are scales of equal parts, and the degrees are not the same in the two scales. For a hydrometer of variable immersion the specific gravity scale is not a scale of equal parts, since the bulb at the bottom is not as large as the tube. If one were made of the same size throughout its often used in school laboratories for purposes of instruction. From the above it should be evident that there is no formula of conversion rom the Baume to the specific gravity scale.
Conversion is a matter of comparison, and not one of calculation. Our correspondent should purchase two hydrometers, one for light and one for heavy liquids, upon whose manufacturer or he should purchase a reference book containing these tables We have not space to reprint what is in every reference
(8230) O. E. writes: I have made a Wimshurst machine according to the descrip-
tion in "Experimental Science," leaving off the tion in "Experimental Science," leaving off the outside plates and buil the rest as it is most spark. hinder these machines from a forking will Does the thickness of the glass have anything to do with it? Why would not connecting the plates together, as they are by the iron shafts, be a hindrance? Is a friction machine in any way superior to the induction? Will condensers increase the length of these sparks as copper sectors answer the purpose as well as tinfoil or brass? A. From your letter it is machine. It has no Leyden jars, and cannot give any but the eff usive discharge, which is never long nor loud, but is a stream of sparks only. The machine is also exposed to the moisture of the air because you have not provided a case for it. This reduces its efficiency. The glass should not be unusually thick; but it should not contain any lead. Ordinary window glass may be worthless for this use. The iron shaft has no effect on the spark, since the glass is an insulator and the electric charge cannot pass from the glass to the shaft. A friction machine would be far inferior to an
induction machine made from the same mater-
ials. The metal of which the sectors are made is of no consequence. Any metallic foil or
very thin sheet which can be attached to the glass firmly is good for the purpose
(8231) C. G. C. asks: I wish to build the small fan motor described in the Scienfific American, by George M. Hopkins, and same width and thickness as stovepipe tron would answer as well for the armature? A Yes, any good quallty of sheet fron will answer the purpose
(8232) L. H. E. asks: Will you kindly tell me how to ascertain the horse power of an electric motor? A. To find the horse powe
of an electric motor measure the amperes it is taking and the ply these numbers together, and divide the product by 746. That is all. It is very sim-

INDEX OF INVENTIONS

For which Letters Patent of the United States were Issued for the Week Ending

June 18, 1901,
AND EACH BEARINGTHAT DATE. [See note at end of Iist about copies of these patents.]

 Bag, c. c. Ely...
Bag, Mo. E. Mogg.
Bag holder attuchimen gg.........................i6, 6

Bottle, E. Ader. $1 . .$.
Bratte, non-refillabe,
Brace
Brake

Buckle, R. Scheuer...........
Bullding block, G. L. Mouche
Buliding block, w. E. Shaw...
Bung. J . Scior.

Carding
shat
Carpet cle

Circuit breaker trip, A. J. Purin
Clock, watchman's. Aewman..
Clothes drice, T. A. A. Anston...
Coat holder, M. Mendels........

Mlars, rete., pasting machine for, A.
Fenwick

59992

LLECTRIC AUTOMOBILE. - DIREC-
 in detail. Price
all newsdealers.

 哋FOR LIGHT AND MEDIUM WORK - B. F. BARNES B. BARNES COMPANY, Rockord, III.
 HOT BLAST
 WATER JACKET FURNACES COPPER ORES. MATTE from SULPPIDE AT ONE OPERATION. UNION IRON WORK

 11 Tool Inventory

Montgomery \& Co.'s Tool Catalogue
 MONTGOMERY \& CO.,

the mietz \& Weiss KEROSENE
 and GAS Engine
unns K ER OSE E E
heaper and saferthan waso-

ail bateree, purping and

PALMER BROS., -

SOLD OUTRIGHT

Kellogg Switchb 43 So. Green Street, $\begin{gathered}\text { Supply Co., } \\ \text { Chicago, III }\end{gathered}$

The Worcester Polytechnic Institute,

GERE GASOLINE ENGINES ITIITI CABN

Queen Transits and Levels

 QUEEN \& CO., Inticumand therntif

Coitcoicliaits

-MADE AT KEY WEST:-
These Cigars are manufactured under the most favorable climatic conditions and from the mildest blends of Havana tobacco. If we had to pay the imported money. Send for booklet and particulars. CORTEZ CIGAR CO., KEY WEST.

That are Moulded True to Pattern.
That are of Tough and Uniform Metal. hat are Easily Machin That will take a Firine Polish.
That will Harden like Tool Steel. THE ELECTRIC HEATER.-A VALU-

The Perfection of Pipe Threading

\qquad IGNITERS

A PLEASURE LAUNCH

 WESTERN GAS ENGINE CO.. - - MISHAWAKA, IND
Whe REVERSING STEAM TURBINE.-PAR-

Building Edition Scientific American

SINGLE NUMBERS, 25 CENTS The July Number 9

Talk with Mr. John M. Carrìre on the Pan
Araerican Exposition.' Anoter importa1.
article is.

NEW DEP.. RTMENTS Monthly Comment.

Talks with Architects.
New Books.
New Building Patents.
Digest of Current Articles. Household Notes.
MUNN \& CO.

UNDERWOOD WAGNER TYPEWRITER CO.
 NICKEL Electro-Plating Apparatus and Materal
 Newriti. N. J.
136 Liberty St., N.
30 \& 32. Canal St.
WAGE Calculatoo
 Needed in Every Establishment Employing Help. of $\begin{gathered}\text { In book form- } 108 \text { pages. Sddress }\end{gathered}$ KERN \& JOB, Pubs., SHAMOKIN, PA Non water carried. Fuel tank
with multiple oill
 er. pounds. Fine oweight
Tu every hund horse power power pound
T. AUTOMOBILE COMPA
Westfield, Mass.

LEROY RACER

THE AUTO-CARBURETTOR

 Telephones,
for Interior, Short Line, Intercom muni-
cating and Hote Wot Write us for
prices, cataloue, etc., with testimonials THE SIMPLEX INTERIOR

431 Main St., Cincinnati, ohio
 Lumu matre brass bano

Perfection Air Nattresses FOR - CAMP - YACHT - HOME - HOSPITAL
 small bazka
 Mechanical Fabricfo.

 T ${ }^{5}$ Toponopone Per Ay

DESIGNS.

 Westield, Mass.RACER

 Labels.

TRADE MARKS.

Does 12\% Interest You?

If it does, we would be pleased to have you send us your name and address, that we may send you a booklet which will tell you all about "Jupiter Steel Castings" and the "Neal Duplex Brake," as well as giv ing you full information concerning the Treasury Shares in this company a block of which is now offered for sale at par value, $\$ 5.00$ per share.

For a year and a half quarterly dividends, at the rate of 12 per cent. per annum, have been paid on all the outstanding stock of this company, and this dividend rate will be increased as soon as we can enlarge ou plant at Everett, Mass., to meet the needs of rapidly growing business The plant which we now have at Everett cost us over $\$ 250,000$, but it is not large enough.

We have just received an order from the Fore River Ship and Engine Company for over one million pounds of Jupiter Steel Castings to be used in the construction of the New Battleships "Rhode Island" and "New Jersey," which this company is building for the United States Government. An order like this should mean something to every careful and sagacious investor.

THE UNITED STATES STEEL C0.,
143 Oliver Street, BOSTON, MASS.

PATENTS PROTECTED

 Also Copyrights and Trademarks.
Bookke on application.
PATENT TITLE \& GUARANTE CO.

Che Cypewriter Exchange

 APPLIED To your AUTOMOBILE
nounce each mile passed by the stroke of a bell. CARRIAGE

S. M= DAYIS \& CO.

Write ws for the tell you where to buy anything you want.
Novelties, Special Tools, Machinery, Equipments, New Patent LABOR SAVING DEVICES. MUNN \& CO., Pubushers of the SCIENTIFIC AMERICAN, 361 BROADWAY, NEW YORK.

Knox Gasoline Runabout $\underset{\text { Dellvery. }}{\text { Immediate }} \quad \begin{gathered}\text { WHY So POPULAR } \\ \text { Novel and improved engine. }\end{gathered}$

 KNOX AUTOMOBILE CO., SPRING:IELD, MASS
A NEW ENGLAND TRIO.

For years New England north from Boston has been
frequented by the vactiontat and health seeker. The
flrst and most important feature which has made the Irst and most important feature which has made the
retion famous in the health-giving atmospere; and
 Outing place.
Nortbern

 hok company issues a variety of illustrated descriptive
want whichare listed in a readable index and it vou
ddress.

[^0]

Ancestry of the Coach

ILLUSTRATED IN
FOUR COLORS
BY EDWARD PENFIELD
Interesting and Timely Articles for OUT-OF-DOOR
COUNTR Y-LIVING $\underset{\text { MEN and WOMEN }}{\text { SOPRT }}$

Write for SPECIAL OFFER TO NEW SUBSCRIBERS. THE OUTING PUBLISHING COMPANY, 239 FIFTH AVENUE, NEW YORK.

Town Topics says:

" THE NEW YORK CENTRAL" IS THE
"National Railroad of America."
In its issue of May 9, 1901, this item appears
"IN the special issue of postage stamps to
advertise the Buffalo Exposition the Post
 cearrier in the world. The one greatest mail
represents the make navi
ratation with which the Central Railroad conneetss: the two-cent
stamp, the famous Fmpire State
traxpress

 Cen Government establishes the New Yor
Central as the National railroad of America.

CREST MFG. CO. CAMBRIDGEPORT, MASS. 3 to 5 H. P. MOTORS

$\underset{\text { Batteries }}{\text { Coils }}$ Batteries
Carbureto

\varangle Like A Bird OnThe Wings

SHOE BLACKING.-FORMULAS FOR

THE "KHOTAL"

Available in city or country, on land
sea, anywhere that a supply of its or sea, an ywhere that a supply of its
fuel (kerosene) can be bought or carried; and that means everywhere. Handsomely and strongly made of
heavy brass and tinned iron; $81 / 4$ inches high, $83 / 4$ inches top diameter, weighs
$4^{1 / 2}$ lbs., never gets out of order.

Price, $\$ 3.75$
Other sizes-special finish for
frames and accessories.
Send for descriptive pamphlet
Boils one quart of water in three minutes.
Cooks a six-pound roast to a turn in 60 minutes. camping, y achting. picnics modern cont-weather comport
in the louselold kitchen; capable of meeting any THE HYDROCARBON BURNER CO. 197 Fulton Street, New York.

WANTED

a firm to take up the manufacture and sale of PROCTOR'S
Patent Mechanical Stokers and Self=Cleaning Bars

These inventions have been the subject of a great number of patents and may now be machines. machines. 8,500 have been fitted up in England. Also one-fourth of this number have been re-
newed, many of which have been working 20 newed, many of which have been working 20
years, and $\cdot 5$ per cent. of the business is from years, and 5 pe
old customers. old customers. These patents can be taken up either on royalty or would sell for cash and small royalty
Apply

Jas. PROCTOR
Hammerton Street Iron Works,
Burnley, England.

 MODELS $\underset{\text { Inventions }}{\text { E ERIIMENTAL }}$ WORK. AGENTS.—You can't find a better proposition. ment. Write. give us a chance to convince yout Lewis
\& Company, t: North Third Street. St. Louis, Mo. AGENTS on salary or commission; 812 daily or $\% 100$ file tiumercbants and physicians. Sayers \& Company,
D 60,408 olive Street, st. Louis, Mio. SHORTHAND BY MA ILL Pioneer home course Potts Shorthand College, Box 33, Williamsport, Pa.
 1/2 H, P. GAS ENGINE CASTINGS Materials and Blue Prints. Write for Catalogue 9 .
PARSELL $\&$ W
ROSE POLYTECHNIC INSTITUTE
 D:AMOUR\&LITTLEDALE MACHINE CO. PATTERN AND MODEL MAKERS.

STATLER'S Amanican HOTEL

Manted Offers

 For anything new
AUTOMATIC MACHINERY

For the manufacture of
Wire Fencing, Neting, Wire Cloth, etc.

[^1]Address: "WIRE WORKER, Box 993 , New York

"TTe Furi Huntren"
 among $\begin{gathered}\text { American } \\ \text { made } \\ \text { are certamomobilines }\end{gathered}$
and the WINTON MOTOR CARRIAGES Most
ociety
favered
becaus PRICE $\$ 1,200$. $\quad \begin{gathered}\text { run better operater ond } \\ \text { easier and are in }\end{gathered}$ high-gray superior to other machines. The acme oe THE WINTON MOTOR CARRIAGE CO

THIS WILL CARRY YOU."
ELECTRIC VEHICLES OF ALL VARIETIES storage batteries. MOTORS.

e make a specialty of Delivery Wacons and Busses. Write for Catalogue. COTT AUTOMOBILE CO.,

CHARTER ENGINE

 Pump, Hoisters
Send for Catalogue and Testimonials.
State Your Power Needs HARTER GAS ENGINE CO., Box 148, STERLING, IL
 RECORDING INSTRUMENTS. Pressure, Gauges, Vacuum Gaukes. Volt-
meters, Amperemeters, Wattmeters, and hermometerest, matere ocotinumeus records
Day and Nioht. Will pay for themselves
very ins
 The Bristol Company, Waterbury, Conn.
MEDAL PARIS EXPOSITION. GET A RUNNING GEAR and BUILD YOUR OWN AUTOMOBILE
 We make two
styles, solid rub-
ber or pneumatic ber or pneumatic
tires,
complete tires, complete
with springs and with sprinks
wood wheels. he Brecht Automobile Co.,I205 Cass Av.,St.Louls,Mo.

WALTHAM WATCHES

Ralph Waldo Emerson in an essay on Eloquence said, in speaking of a man whom he described as a Godsend to his town, "He is put together like a Waltham Watch."
"The Perfected American Watch", an illustrated book of interesting information about swatches, will be sent free upon request. American Waltham Watch Company, Waltham, Mass.

EARLY DELIVERY OF 1901 MODELS
NEW EXIDE BATTERIES CAPACITY AND DURABILITY FORTY MILES ON SINGLE CHARGE
WRITE FOR 1901 LLUSTRATED CATALOGUE AND PRICE LIST OrCORIO Call at

"KODAK"

Stands for all that is Best in Photography

To the perfection of Kodak construction, to the perfection of the Kodak mechan= ism, to the perfection of the Kodak lenses, is due the

Goriumph of Kodakery Kodaks Load in Daylight with our Transparen Film Cartridges. Several styles use either films or
plates. Sixty-four page catalogue, describing them in detail, free at the Kodak dealers or by mail.

EASTMAN KODAK CO.
Rochester, N. Y.

GIEWARDS WONDER

 Acuanteran int

 THE LATEST TICKLING MACHINE Fun, Instruction and
Invigoration combined R. 1. Telephone \& Electric Co.

§rinntific Americian.

 E Engineers, electrical, Africa... England, long-deferred decad- Equipment, costly. Erie Canal muddle Erie Canal finder Eros, the light of Excavations at Nippur Exhibition, Charleston Exhibition, Glasgow, $1901 . .$. Expedition, Baldwin-Ziegler. Expedition, eclipse. Expedition, eclipse. Expedition, eclipse, Sumatra. Expedition to Labrador. Expeditions, polar, Baldwin Expedition, south polar.. Experiments of M. Curie.. Explosive, maximit Exports Vienna 113 $\begin{array}{llr} & 275,298,338, & * 361 \\ \text { Exposition, St. Louis, } 1903 \ldots & 371 \\ \text { Expositions of } 1900 \ldots \ldots \ldots . & 4\end{array}$ G 					

[^0]: MATANTS Anyone seluinini is sketch and descriotion may

 ## Scientific American.

[^1]: Say whether Euro
 to be disposed of.

