a WEEKLY JOURNAL OF PraCTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
Vol. LXXXIV.-No. $\underset{\text { Established }}{\text { 1845. }}$ 25.]
NEW YORK, JUNE 22, 1901.

Train of Forty 50-Ton Ore Cars, Carrying $\mathbf{2 , 0 0 0}$ Tons of Ore from Lake Erie to Pittsburg

Box Car, $\mathbf{7 0 , 0 0 0}$ Pounds Capacity, with Pressed-Steel Unaerıraming.

Hydraulic Press Forming Up Car Bolsters

Diamond Type Truck.

Fos Pedestal Truck

Ore Car-Capacity, $\mathbf{1 0 0 , 0 0 0}$ Pounas; weight, 28,800 Pounas.

Bailast Car-Capacity, $\mathbf{1 0 0 , 0 0 0}$ Pounds; Weight, $\mathbf{3 7 , 6 0 0}$ Pounds.

Gondola Car with Pressed-Steel Underiraming-100,000 Pounds Capacity.
THE PRESSED-STEEL CAR INDUSTRY,-[See page 391.]

gitintific बimxrian.

ESTABLISHED 1845
munn \& co., - - - Editors and Proprietors.
published weekly at
No. 36ı BROADWAY, - - NEW YORK.
terms to sebscribers
 the sitentifie a merican publications.

NEW YORK, SATURDAY, JUNE 22, 1901.
The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles shurt, and the facts autlentu, the contributions
will receive special atteation. Accepted articles will be paid for will receive special atteat
at regular space rates.

AMERICAN LOCOMOTIVES ABROAD.

The American engines which were purchased by the Midland Railway Company of England in 1899 have at last been heard from officially. Mr. Johnson, Superintendent of Locomotives, states that the company put into operation thirty Baldwin and ten Schenectady engines, the builders having been given a free hand in the matter of design and pattern. The result of a six months' trial in 1900 showed, according to the repori, tinat the cost of operation of the American locomotives exceeded that of the English engines by the following percentages: Repairs, 60 per cent; oil, 50 per cent; percentages: Repairs, 60 per cent; oil, 50 per cent;
fuel, from 20 to 25 per cent. These figures are cerfuel, from 20 to 25 per cent. These figures are cer-
tainly surprising, and they are by no means offset by tainly surprising, and they are by no means offset by
the fact that these engines cost each $\$ 2,000$ less than the fact that these engines cost each $\$ 2,000$ less than
English engines of the same size and power. It is impossible to draw any conclusions from this official statement until full details of the circumstances under which the comparison was made are known. Of course there have been the usual hints and suggestions that the imported engines were not given fair play; but to anyone who is acquainted with the working of at least the official side of the English railroads it is certain that every effort would be made to obtain reliable data where such an interesting and unusual opportunity as this was offered for comparing the two types of engine under similar conditions. It is possible, of course, that the American locomotives may have suffered in the comparison from the fact that the engineers and firemen were familiar with their own engines, and necessarily found the American machines somewhat strange. Ideal conditions would be those in which each type was operated by engineers and firemen of its own nationality, if we may so speak. It is reasonable to expect that of two locomotives, one which costs $\$ 2,000$ more to build would prove more economical in operation. Part of this increased cost of operation might be due to the use of the copper fireboxes which are common in English practice; for it is not denied that this device is a great saver in the matter of repairs, the fireboxes in many of the English locomotives outlasting the engines. There is also a slight saving in fuel due to the superior conductivity of the copper over the steel-though this is so small as to be almost negligible.
After making all allowances of this kind, we fail to understand how such a great difference in repairs and oil could occur; and one is forced to the conclusion that the English engines must, as far as the engineers and firemen are concerned, have received more careful handling than the foreign-made locomotives. Possibly, also, the American locomotive may have suffered from the fact that it is built for harder service than its English competitor, and that it was hauling loads much below its maximum capacity. The American boiler is built to be forced, and the exhaust is harsher with a view to a fiercer draught. The exhaust is softer in the English locomotive and the boiler is not usually forced as it is in American service. It can readily be understood that if the American locomotives were not being worked up to their full capacity, they would show less fuel economy per load hauled than engines which were designed and built for the conditions of the test.

PROTECTION OF IRON STRUCTURES.

The complete revolution which has been effected in the field of industry by the introduction of iron and steel has brought the world face to face with a problem which, if it be not successfully solved, is likely to put a definite limit on the useful life of all structures that are built of these materials. Corrosion of such structures is a certainty if they be not absolutely protected from the oxidizing i~fluences of the elements. They will lose steadily in weight and there-
by in strength-a consideration which should modify somewhat our self-congratulations, when we point with
pride to our towering, skeleton-steel, buildings and pride to our towering, skeleton-steel, buildings and far-reaching bridges on shore, or to our fleets of gian steamships afloat. Although it has been understood from the very first that the life of iron and steel structures was, other things being equal, proportionate to the efficiency of the means used to prevent corrosion, it is nevertheless a fact that our knowledge of the best means to. prevent their decay has by no means kept pace with our skill in the design and erection of metallic structures. This most vital subject is treated exhaustively in a paper presented by M. P. Wood, of New York, at the May meeting of the American Society of Mechanical Engineers, which contains a vast amount of data bearing upon the question of the relative value of the different systems of protection by painting.

The paper will be given in full in the Supplement, commencing with the current issue, and without attempting to review it at any length, we would refer to three widely known structures, which are mentioned in the article as showing the destructive ef fects of corrosion, in spite of the fact that they are extensively painted at regular intervals. Thus, we learn that advices as to the condition of the great cantilever bridge over the Firth of Forth, Scotland, finished less than ten years ago, show that corrosion is widely established over the entire structure; and this in spite of the fact that a corps of painters is continuously employed upon it, and that the structure is practically repainted every three years, and in many places yearly. It seems that the lower sections, for 20 feet or more in height above the niasonry piers, are particularly subject to attack by the salt spray which is blown from the Firth during the prevalence of high gales. Yet this structure received two coats of boiled oil at the shop before erection, and then two coats of iron oxide paint, the last two coats together calling for not less than 180 tons of paint. Another case in point is the tubular railway bridge over the St. Lawrence River at Montreal, where the destructive action of the elements was intensified by the hot gases and steam from the locomotives. The elevated railway system in this city is also quoted as affording an instance of the rapidity with which deterioration is taking place under our very eyes.

A valuable opportunity was offered to test the rela tive value of the various paints by an experiment which was carried out, or rather commenced and never completed, on the viaduct over the Harlem station of the New York Elevated Railway at 155 th Street. Here the lattice work, floor beams and buckle plates are subject to attack by the gases of the elevated locomotives, and the structure is well suited to an investigation of this kind. The metal work was first carefully cleaned by the sand-blast, and then seventeen panels were painted with as many different grades of paint, some of the panels receiving two and some three coats. Every possible condition was brought to bear to make the test one of a practical, commercial nature, as well as to give it true scientific value. After an exposure of about nine months, a thorough examination of the condition of each panel was made by a prominent engineer, acting under orders of the Board of Public Works of New York city. The report was based upon a rating of 100 as representing a perfect condition of the coating. The freedom from rust varied from a maximum percentage of 99 to a minimum of 25 . The 99 per cent of freedom from rust was shown by a paint known as Nobrac, and the 25 per cent freedom from rust was shown by a paint known as Red Lead Ax tonide. A 97 per cent efficiency was shown by a lead graphite and lucol oil paint, and 92 per cent by a car bon paint. Then followed a carbon black paint with a record of 85 per cent and an amorphous graphite pairt showed an efficiency of 80 per cent. It should be mentioned that the 99 and 97 per cent results were gained on panels which had received three coats of paint, while most of the other panels received oilly two coats; and it should further be noted that although there was little appearance of rust upon the panels securing a high percentage, the paints showed a tend ency to crumble in places as though being rotten-a condition which would suggest inability to resist cor rosion had the tests been continued for a greater length of time.
Unfortunately this important test was not continued It is probable that the poor results obtained with many of the specimens offered were such that the makers were only too glad to have these telltale experiments brought to a speedy close. In view of the fact that New York has now under construction no less than three bridges which will rank among the largest in the world, and a rapid transit tunnel which will be framed from end to end with steel and will be associated with many miles of steel viaduct, we think the officials, both of the Tunnel and Bridge Commissions, should inaugurate a further series of tests, to ascertain what would be beyond question the most serviceablo paint to use, in protecting metallic structures whose value will amount to not far short of a hundred million dollars.

OUR FASTEST BATTLESHIP.

The greatest credit is due to the builders of the new United States battleship "Illinois" for the brilliant success achieved by this vessel in her recent official trials over the Cape Ann course, when she showed an average speed during four hours of continuous steaming at full power, of 17.31 knots an hour. This gives to the "Illinois" the distinction of being not merely the fastest battleship of her official class-the other two of the same design being the "Alabama" and "Wis-consin"-but also for the time being the fastest battleship in the United States Navy. The "Alabama," built at the Cramp shipyard, has an official speed of 17.01 knots, and the "Wisconsin," built at the Union Iron Works, has an unofficial speed of 17.12 knots, or about one-fifth of a knot less than the "Illinois."
There are certain features which lend particular interest to this achievement. In the first place the contract requirement as to speed was that the vessel should maintain a speed of 16 knots an hour when the engines were being worked at full power. The contractors have, therefore, exceeded the requirements by a knot and a third. Moreover, the trial was to take place on a mean draft of 23 feet 6 inches and a displacement of 11,565 tons, and these conditions were fully realized; sufficient ballast being taken in to bring the vessel down to 23 feet $71 / 4$ inches and sufficient coal and water being used up during the trial to decrease this draft by about an inch and a half. The trial, therefore, was a thoroughly practical test. and except, of course, for the fact that a good quality of coal and expert stokers were employed, the conditions represented those which will exist when the ship is fully equipped, ready for sea, with all stores on board, with a normal coal supply and with a clean bot tom. The trial course on the New England coast, which is made use of by the government on these occasions, is 33 knots in length; and on this occasion it was marked off by means of buoys placed 6.6 knots apart, the "Illinois" covering the course twice during her four-hour trial. Near each buoy was anchored a naval vessel whose duty it was to take observations of the tide and of the time of the ship on passing these points. The fastest speed between any two buoys made by the vessel was 17.84 knots, and the slowest 16.97 knots. The engines were run at a mean speed of 118 revolutions per minute, and the boilers carried an average pressure of 180 pounds to the square inch.
The next fastest first-class battleship in the navy to the "Illinois" and her sisters is the "Iowa," which has an official speed of 17.09 knots. Then follow the sister ships "Kentucky," of 16.89 knots, and "Kearsarge," of 16.81 knots speed. Next in point of speed are the three vessels of the "Oregon" type, the fastest of which is the "Oregon," of 16.79 knots, while the "Massachusetts" has a speed of 16.21 knots and the "Indiana" one of 15.55 knots. Although the "Illinois" has exceeded her contract speed by 1.31 knots, this is not the greatest amount by which any battleship in our navy has shown herself superior to contract stipulations, the credit for this being due to the "Oregon," which exceeded her contract speed of 15 knots by 1.79 knots per hour. Against this, however, must be put the fact that it takes proportionately more engine power to make a gain in speed above 16 knots than it does above 15 knots, and this on account of the wellknown rule that the necessary horse power to drive a vessel increases as the cube of the speed.
The "Illinois" and her sisters may be called the prototypes of the form of battleship which is destined to become permanent in the United States Navy. They are marked by a high freeboard and generous accommodation for officers and crew, being in this respect a decided improvement on our first battleships of the "Oregon" class. She is 368 feet on the water line; 72 feet $21 / 2$ inches in beam, and displaces 11,565 tons on a draft of 23 feet 6 inches; the normal coal supply is 800 tons and her full bunker capacity 1,440 tons. She car ries a complement of 40 officers and 453 men. The main battery consists of four 13 -inch rifles in balanced turrets, carrying armor 17 to 15 inches in thickness, and fourteen 6 -inch rapid-fire guns, of which ten are on the main deck within a casement of $51 / 2$-inch armor, and four are on the upper deck with similar protec tion. There are sixteen 6 -pounder rapid-fire guns in the secondary battery and four 1-pounders, besides two Colts and two field guns. The "Illinois" is also pro vided with four torpedo tubes. The armor belt, which extends from abaft the after turret to the stem, is $161 / 2$ inches in thickness at the top edge and $91 / 2$ inches at the bottom. It tapers in thickness toward the stem, where it is reduced to 4 inches. Diagonal 12 -inch armor connects this belt armor with the barbettes, which are themselves protected by 15 inches of steel armor. Forward the vessel has a freeboard of 20 feet and aft of 13 feet. Altogether we must confess to a liking for the "Illinois" and her sisters. Her speed, it is true, is not up to the latest suandard of 19 knots which has been accepted by our own and most foreign navies as sufficient; but she is an exceedingly powerful vessel for attack, and would stand the hardest kind of hammering in a sea fight without risk of serious disablement.

GAS ENGINES.*

Among the merits of gas motors there is one which should be specially mentioned, and that is that they will accommodate themselves to all kinds of gas and may be fed by the richest as well as the poorest products, whose scale extends from acetylene down to the blast-furnace gases. For this it is only necessar to modify the proportions of the explosive mixture and to regulate properly the degree of compression and the ignition period. When an appropriate car buretor is used it is possible to use hydrocarbon liquids whose density and volatility are quite different comprised between gasolines and ordinary petroleum It is owing to this great elasticity that the gas moto has reached such a wide development and has been put to such varied uses, its power ranging from one or two up to a thousand horse power
The gas engine of 1,000 horse power was a brilliant dream whose realization haunted the minds of many workers, and the foremost among these; it has now a tangible realization, for it suffices to couple in tandem or otherwise two cylinders like that of the great motor shown at the Exposition by the John Cockerill Com pany to obtain this result. This engine is of the single ylinder type, measuring 52 inches diameter with 56 inch stroke. It has developed, under the inspection of a commission of prominent engineers, 560 to 670 ffective horse power, consuming blast-furnace ga of but 27 calories per cubic foot. It absorbed about 88,440 cubic feet of gas per hour while developing 670 horse power. According to the remark of an minent engineer, the cast iron is henceforth only a secondary product of the blast furnace, which assume the rôle of a powerful gas generator, furnishing, on the one hand, 150 tons of cast iron per day and on th ther 21 million cubic feet of gas. Even discounting one-half of this volume for heating the air-blast of he furnace and for other uses, there remains a quan ity of gas sufficient to produce 3,500 effective horse power by the use of gas engines. If the same gase were used to heat the boilers of steam engines not more than 1,000 horse power could be obtained. The gas engine has thus found a new sphere of action, an a like success is in store for the engineers who will utilize the gases of coke furnaces
The gas generators of Dowson, Gardie, Deutz, Bénie and others have been essential in the progress of the gas motor. At first they required choice coal, anthra cite of the best quality, carefully separated from dus and otherwise possessing exceptional qualities which corresponded to a high price, but at present ordinary anthracite is used of a relatively low price, and thi has multiplied the applications of the gas generators; among these may be mentioned electric light plants tramway stations, pumping works, mills, printing es tablishments, and even in the spinning and weavin industries gas engines have been used with success ful results. A motor of 100 horse power working 3,000 hours per year, whose generator is fed by an thracite at $\$ 5$ per ton, gives the effective horse power hour at less than $\$ 0.008$ (allowing for interest, etc.) with a gain of $\$ 0.001$ over a good steam engine burning coal at $\$ 4$ per ton, and the first cost of the plant is scmewhat less. These results are certain at present The energy of the generator gas ranges from 30 to 40 calories per cubic foot. The generators accommodate themselves to the use of coke, but the high price of his combuctible is an obstacle to its use. Mr. Mond as put in service in the chemical works of Brunne Mond \& Company, in England, a remarkable form of generator which permits the use of fine bituminou coal, with the formation of sub products which are quite remunerative. The ensemble of the apparatus resembles a small gas works, but the cost per kilowatt hour is only $\$ 0.008$, with Crossley engines of 25 horse power, and this figure has justified a complete installa tion of this kind. The Riché generator, in which wood is used, gives gas of a relatively high quality at 80 calories per cubic foot, which has been used with Charon engines quite successfully. This process may find useful applications in localities where wood is plentiful, and thus the domain of the gas motor will be increased.
The use of water gas for motors has not been at tended with the results which were hoped for; this may cause some surprise, but the necessity of using coke and the alternative phases of working may per haps explain the fact. The Delwick generators, which furnish a gas of 70 calories per cubic foot, have had a ertain success in Germany, and in America the Low generators, transformed by Merrifield, are used. But few experiments have been made as to the supply of motors by water gas, but these have been sufficient to give new proof of the great adaptability of the motor, which works as well with water gas as with mixed or with Siemens gases. Biedermann and Har vey have proposed a novel process, this being to sup ply the generators with carbonic oxide gas whic would be reduced to carbon monoxide by contact with
ported by Paris Correspondent of the Scientific Americ an.
candescent carbon. If this idea becomes practicable it would give rise to an interesting regeneration of th burned gases of the motors. In fact, the cycle could be closed by reviving these gases by causing them o pass through a layer of carbon at a red heat. The high temperature of the exhaust would no doubt suffice to keep up the reaction and the heat would hus be recuperated. Unfortunately, there would b an accumulation of nitrogen on account of the intro duction of air into the motor cylinder to form the explosive mixture.
The gases of distillation may now be considered these constituting the gases of high quality. Thei energy varies from 100 calories per foot (gas from dry wood) to 140 from coal and 200 from schist. These are average figures, and we find 130 to 160 calories for the gas of the city gas-works. This latter has een the first gas used for the motors, and for which they were invented and built, from the time of Philippe Lebon to Lenoir and Otto. With gas at $\$ 0.54, \$ 0.81$ 1.08 and $\$ 1.35$ per 1,000 feet, and for motors of 4 10 and 30 horse power, working 3,000 hours per year the price per horse power hour is shown in the following table:

These figures, which, of course, are subject to varia tions, show at least that up to 10 horse power the gas engine need not fear the competition of any motor even with city gas at $\$ 1.08$ per thousand, but for 30 horse power the price should not exceed $\$ 0.81$. It is rue that the gas engine, fed from the city mains, ha such great practical advantages that it will be used even if the price per unit of work is somewhat higher It needs no accessory apparatus, no grate nor supply of combustible; it can be set working instantly by operating a valve and consumes nothing during the hours of rest.
The application of gas engines in cities has not re ceived the development which might be expected by reason of the great improvements made during the last ten years. Now that an effective horse powe hour can be guaranteed by the consumption of 18 cubic feet of gas of 135 calories (city gas) the use of these motors should be advantageous and economical in many industries. In Paris, the gas company sup plies only 3 per cent of its output for gas engines however, in Germany some of the gas-works supply as high as 17 per cent for this purpose.

THE CLOTHING OF THE ANCIENT ROMAN

At the December meeting of the Archæological In stitute of America, Prof. Myron R. Sanford, of Mid dlebury College, read a most interesting paper upon "The Material of the Tunica and Toga," and we extract the following from the Journal of the Institute:

With the passing of the simple toga and tunica o he early years to the more ornate and complicated forms of dress there came to Rome many new fabrics to vie with wool. Many Latin writers tell of the use of inen, cotton, silk and various mixed stuffs. The idea students gain from the perusal of classical literature is that rarely did the newer materials actually supplant wool in making up the various articles of cloth. No one seems to have undertaken the formid able task of an elaborate study of the existing paint ing and statuary representing the Roman dress, t etermine how far the artists intended to sugges various materials in their drapery. In some of the portrait statues in Pompeii it is unreasonable to believe that the clumsy, thick folds do not represen some form of wool, and the lighter and sometimes diaphanous folds the finer fabrics. Frequently in painting, and not rarely in statuary, different materials are to be seen in the clothing belonging to the same figure. The Latin department at Middle ury College has been interested in experimentin with a considerable variety of materials in imitation of some of the well-known figures. Besides coming to certain conclusions regarding the graceful and stif olding of different cloths, the.students had realized a fact insufficiently emphasized in the manuals, name ly, that no material from the heaviest wool to the most delicate silk will of itself take the beautiful olding shown in the ordinary statue or painting. The drapery in the latter is always one of two re sults; it is either taken from the plaits and foldings if the clothing of the model draped beforehand with he most painstaking care, or it is the conventionaliz ng of the artist. Not until a trial is made will one ealize how elaborate the process must have been to produce the appearance of the toga of Hortensius, for the accidental disarrangement of which on the crowded street he sent a challenge to his friend Often the simplicity of certain effects is, after all, an elaborate effort. For example, the Commodus of the Vatican collection seems to have the drapery hang ing from the body in the most natural manner, whil
an attempt to imitate it will show that it is a case o art concealing art. The simplicity is only apparent and occasion.llly no imitation with material of any par whatsoever can follow the contortions in the drapery of certain clisssic figures.

SCIENCE NOTES.

A comet wlich was first seen in South America abou the first par: of May has reappeared, according to a dispatch from Lima, Peru, dated May 12, says The New York Tribun ?. It apparently has two tails, one of which is longer than when it was first seen.
At Carracruss, on the west coast of Ireland, the only building in the place is the residence of the priest Seventeen ols. fishing boats, one of which is said to have been built between 1740 and 1750 , form the rest of the quain . little village. There is not a tree of sufficient size to furnish timber within eight miles.
A new pro :ess now used in Germany of imitating wood carvings, etc., in plaster, bronze and other ma terials, is sa d to supersede the old way of painting and lacquerir g, in so far as it reproduces perfectly the fibers and poles of the wood models. The model, which is best made som porous oak, is covered pretty thickly with a solut on of two per cent collodion, and when this is dried up it leaves the usual dull and porous appearance of the wood unaltered, but the model is perfectly oil proof, and the casting is proceeded with in the usual wiy

The appro tching millenary of Alfred the Great lends special interest to the estate of Winklebury, in Hampshire, now in the market. It contains the well-known circular canıp of that name, said to have formed a stronghold of Alfred. Excavations just made by Reginald Snith, of the British Museum, have brough to light fragments of ancient British pottery. An examination was also made in the autumn of last year and on both occasions bones of extinct animals have been discove :ed, showing traces of fire, probably sacri ficial. The camp is believed to have existed before the Roman invasion. It was occupied as late as the seventeenth century by the Parliamentary forces when besieging Basing House

The London Lancet in an article on nicotine inverts the order of injuriousness usually associated with cig arettes, cigars and pipes. It states that nicotine itself has been proved to be practically guiltless of evil ef fects in smoking, but pyridine and its derivatives are responsible for headaches, trembling and giddiness The degree of toxicity in smoke depends largely upon the completeness of combustion. The combustion of a cigarette is more complete than that of a pipe or cigar. A pipe acts as a condenser, but the condensed products do not reach the mouth, while considerable condensation must occur in a cigar, the products reaching the mouth and being absorbed. Therefor The Lancet places the cigar first in the order of injuriousness, then the pipe and lastly the cigarette.

John D. Rockefeller has given $\$ 200,000$ to found "The Rockefeller Institution for Medical Research.' The gift is not intended for an endowment fund, but is for immediate expenditure. Mr. Rockefeller has for some time been consulting with eminent medical men as to the need of such an institution, and he has had the best advice. Facilities for original investigation are to be provided, especially in such problems in medicine and hygiene as have a practical bearing on the prevention and treatment of disease. The firs work of those connected with the institution will be that of co-operating with the New York Board of Health in studying its work and the problems con fronting it, and particularly that of milk supply. Re searches of a more ambitious nature will be begun in the fall under the guidance of experienced investiga tors.
There is a movement in Great Britain to secure a photographic record of historic events, and homes in the country which are rapidly disappearing before the advance of progress. The work is being carried out by the National Photographic Record Association. It was founded in 1897 by several well-known gentlemen, anxious to preserve photographic records of objects of interest, scenery, life, customs, and history of the - time. Such a faithful picture as that secured by means of the camera conveys a much more comprehensive idea of the subject than columns of written description can convey. The pictures are being preserved in the British Museum as they are collected, and they will constitute a valuable work of reference to the chroni clers of future generations. Several menabers of the association are enthusiastic photographers, and many valuable pictures have been secured by this means The society aiso commissions pictures of importan events or historic spots to be secured in all parts of the country. The work is of exceptional value in connection with London, since many of the old, historic and interesting landmarks are rapidly vanishing, so that within a few years there will be very little of ancient London in preservation, with the excrntion of the national buildings and monuments.

AN ADJUSTABLE POWER-HAMMER

The inventions which have recently been patented in the United States include an adjustable power-hammer devised by Mr. Abel Sack, of Ashton, Neb.
The handle of the hammer, as our illustration shows, is hung on centers carried by a link, the lower end of which is fulcrumed on the base. By means of a screw-rod surrounded by a spring which presses on the link and on an inclined brace extending from the base to a central upright, the link is caused to swing forward or backward so as to shift the hammer and its die according to the nature of the work in hand

The hammer-head is pivotally connected by a yield-

SIDE ELEVATION AND DETAIL OF POWER-HAMMER.
ing pitman with the wrist-pin of two counterbalanced crank-wheeis driven by a belt. Our smaller illustra tion shows that the pitman consists of a head from which a tubular portion depends, designed to receive the upper end of a shank pivoted to the hammer. The shank carries a cross-head through which guide rods extend. Springs are coiled around the guide rods, and press against the cross-head on opposite sides. The pitman yields in the direction of its length for an upward pressure of the hammer on the pitman causes the cross-head to press the springs.
By hanging the hammer on a link pressed outward by a spring, and by connecting the hammer with a riplding pitman to the crank-wheels, it is evident hat the desired blow to be given can be struck with any pressure. Objects of any kind can be readily fashioned by this trip-hammer, owing to the yielding pitman and to the transverse adjustability of the hammer relatively to the anvil.

In order to tighten or loosen the belts and simul taneously to actuate and stop the hammer, tightening pulleys are employed which are operated by a treadle through the medium of a system of levers and links. When the hammer is idle the belts run loosely around the crank-wheels. By pressing the treadle the tighten ing-pulleys are thrown forward against the belts to tighten them When the pressure on the treadle is released, a spring automati cally withdraws the tightening pulleys from the belts.
The hammer delivers a draw ing stroke, since it is supporte so that it can move longitu dinally.

LAUNCH OF THE SUBMARINE TORPEDO BOAT "FULTON."
The launch of the submarine torpedo boat which is herewith illustrated affords practical evidence of the fact that the possibilities of submarine warfare are being fully recognized and tested by the great naval powers of the world. It is to the French navy that we owe the present awakening of interest in this subject, and their elaborate course of experiments in the Mediterranean

LAUNCH OF THE SUBIKARINE BOAT "FULTON."
at the meridian of observation. As the angles are counted from the vertical, it is essential that the lat ter should be accurately determined; this is carried out by the ust of the mercury bath. The telescope is directed perpendicularly over the bath, and in consequence two images of the cross hairs near the eye piece are formed. One of these is formed directly and the other by reflection from the mercury; if the telescope is exactly vertical the two images coincide.

MERCURY BATH, HAMY SYSTEM

It is then observed whether the zero of the graduated circle at the side of the telescope corresponds with the zero of the vernier, or if not, what correction is to be added or subtracted. At the Observatory of Paris the question of mercury baths has been carefully studied of late, owing to the fact that the Observatory is located in the center of the city and the surface of the mercury is troubled by the vibrations of the soil. Among the different forms of mercury baths in use may be mentioned, first, the bath formed of a material which is wet by the mercury; it has certain ad vantages, the reflected image being fixed, but diffused. This want of sharpness may come from vibrations which are very rapid, but of small amplitude. Second, grooved baths; in these the vessel has grooves on the bottom 0.12 inch wide by 0.12 inch deep. This form was studied by Leverrier in 1869, and its introduction was considered as improving notably the ob servations of the vertical, and was thought to have entirely suppressed the influence of vibrations. In fact, the image is improved, but to a degree quite insufficient for permitting the observation of the nadir during the day. Third, floating baths a floating bath with a thin layer of mercury, proposed by P. Gautier, was tried with success at Paris and Melbourne, but it was afterward shown by Perigaud that its advantages had been wrongly attributed to the floating, and his experiments show that it is the thickness of the mercury which comes into play The images are sharper as the layer is thinner. It is on this principle that are established the baths which are at present in use at the Paris Observatory for meridian observations Fourth, suspended baths; this type of bath appears to have been proposed by Seguin and Mauvais in 1852. After placing the bath upon rubber plates or cushions they found that the best results were obtained by suspending it from rubber bands and concluded that elasticity by traction is preferable. At Mel bourne, Mr. Ellery, in 1888 . found that the rubber band sys tem overcame the large trepida-
tions. but not the smaller ones, and that the prob lem was not yet solved. It is only recently that M . Hamy, of the Paris Observatory, established theoretically the conditions which the bath should rill, and he has obtained with his new bath an image which is practically motionless. This apparatus was shown at the Paris Exposition, and is at pres ent undergoing some modifications in detail. M. Hamy wished to find by calculation whether it was possible to realize a method of suspension which would give a perfect sur face to the mercury. The two main problems may be briefly mentioned. The study of small movements of a solid swinging in a liquid when the vessel is submitted to vertical vi brations shows that after a time the solid takes a vibratory movement, syn chronous with that of the chronous with that of the amplitude; the latter is much smaller than that of the vessel, if, with a suf ficient immersion, the re sistance to movement due to viscosity is not too great. Then, remarking that the action of a liquid
upon the solid in movement is comparable with the elastic action of a spring, M. Hamy was led to solve the second problem, this time not making the restriction that the vibrations should be vertical. A rigid support, having a vibratory movement, acts upon a heavy solid, M, which is suspended from it by coiled springs of negligible mass and attached at the points of a regular polygon. The question is to determine the absolute movement of the mass, M, knowing that

Photo. by N. L. Stebbins, Boston.
"INDEPENDENCE."
 that the palm for originality, as far as the modeling of the hull is concerned, belongs to Crowninshield, the young designer at Boston, who, in the modeling of his first 90 -foot cutter, has not hesitated to branch out on new and hitherto untried lines. Judged on the basis of construction, however, the most original boat of the three is the "Constitution," which differs so

Photo. by Symonds \& Co., Portsmouth, England.

Copyright, 1901, by Frank H. Chill, Newport, R. I
"CONSTITUTION."
Length over all. 132 feet 6 inches. Beam, 25 feet 24, fnches. Draft, 19 feet 10 incheen
widely in this respect from her competitors and, in deed, from all other 90 -foot racing yaclits that have preceded her, that she stands in a clas; entirely by herself. Of the Watson yacht it must be confessed that she presents less novelty than the other tivo boats. She reminds the writer strongly of the yav.l "Sybarita," also built from Mr. Watson's designs, whish has hitherto proved the fastest 90 -foot yacht in British waters The "Shamrock" differs from that boat shiefly in her bow sections, the overhang being muci longer and the beam being carried much further nto the bow with a substitution of flat and full sections for the sharper V-sections which are found ir the bow of the "Sybarita" and other Watson craft. In construc tion she is not unlike "Shamrock I.," with the differ ence that her sheer strake is of steel iistead of aluminium. The body of the yacht is Llated with special make of bronze, and the deck is of steel, cov ered with a thin layer of pine planking.

dimensions of 90-Foot cup-yachts

	Length over all.	Beam.	Draft.	: allast.	Sail Area.
	Ft. In.	Ft. In.	Ft. In.	Tons.	Sq. Ft.
Shamrock II..	1350			95	
Constitution.......	1326	${ }^{25} 21 / 2$		93	14,400
Independence... ...	140 101/2	23 11182	200	75	14,300

As to the performance of the three conpeting yachts under sail, it may be described as tru y sensational. Both "Shamrock" and "Constitution" Jave been dis masted, and "Independence," as the re ;ult of a jam ming of her steering gear, came very near being so As far as can be judged from these sailing trials, "Shamrock II.," after her defeat by "Shımrock I.," ap pears to have very little prospect of winning the cup. The only element of uncertainty, as far as she is con cerned, hinges on the possibility that "Shamrock I," is sailing faster than she was when ove. here in 1899 but inasmuch as orders were given that, to render he a medium of comparison, the older vessel should not be changed, we see no reason to suppose that she is a faster boat now than then. As to the speed of "Con stitution" and "Independence" there ha.; been no scale by which to judge of it, other than the perfervid imagination of the spectators who have followed these vessels in their canvas-stretching trials. Nevertheless, we should be greatly surprised if both of these boats are not faster than "Columbia," and this for two reasons. In the first place, "Constitution" is several tons lighter in construction than "Columbia," and by transferring the weight so saved from the Jull to the keel and adding 12 inches to her beam, it h is been possible to increase her sail-plan at least 10 per cent over that of "Columbia," without giving her more displacement than that boat. "Indeper dence," on the other hand, has achieved the same result by the peculiarity of her model. Although ber hull is probably no lighter than that of "Colunıbia," she gains power through the flattening of the foor and hardening of the bilges, and the carrying of the floor out into overhangs of exceptional lengtr. As originally designed she was to carry a sail-sprear. of 14,611 square feet, with a total amount of ballast of 75 tons. Mr Crowninshield, the designer, gave fer an excessive sail-spread and a moderate amount of ballast, with the idea of decreasing the first and increasing the second, should the sailing trials pr ve it to be necessary, until the proper balance betreen the two had been established. The unprecedenter character of her model-unprecedented, that is, for a 90 -footer-rendered this tentative method of propoctioning the spars almost a necessity; and, very wisel $r_{\text {, }}$, care was taken to have the sail-spread over rathe: than under the capacity of the boat. It is easier t, cut down a sailplan than to increase it, and the Boston boat is now having 5 feet cut from her mast and as much from the topmast, with the result that 300 square feet of canvas, and a corresponding weight in spars and gear, will be removed from an altitude of from 100 to 173 feet above the deck. The reduction o. weight aloft will above the deck. The reduction o weight aloft will
fully compensate for the reduced sail-power. Another fully compensate for the reduced sail-power. Another
change is the substitution of a rudder of the normal type for the experimental balanced rudder with which the preliminary trials have been carried out. Alto gether, the coming races promists to be, to say the least, exciting. The enormous sail-plans, the fact that the designers have kept dowr the factor of safety to the vanishing point, and the possibility of piping breezes during the month of September, when the races will be held, introduce ele nents of uncertainty which may yet land the cup in, the lockers of the boat which carries the stoutest s jars and gear.

Copyright Business in 1900.

From January 1 to Decembes 31, 1900, the United States copyright fees amount sd to $\$ 66,630.50$, dis tributed as follows: Filing 8,47, titles foreign produc tions, $\$ 8,478$; filing 89,489 titles United States productions, $\$ 44,744.50 ; 23,832$ copyright certificates $\$ 11,916$; for copies of record, $; 662$; for recording as $\$ 11,916$; for copies of record, 662 ; for
signments, $\$ 801$; search fees, itc., $\$ 29$.

Electric cab service in Paris has proved very unprofitable, and it is said that the loss represents $\$ 900,000$. The failure of the enterprise is considered to be the high cost of maintaining the accumulators and the consequent high charge for the service.

The Northwich Union Fire Brigade had a startling experience recently, and the attendant circumstances were of a serious nature, says The Mechanical Engineer. Lately the steam fire engine, hitherto drawn by horses, has been converted so that steam propulsion is now used. The trials have not been wholly satisfactory owing to the continuous emission of sparks from the funnel. One evening the brigade received a call to a fire about three miles from the city. The brigade turned out with their steam-motor fire engine, and before they reached the city boundary the sparks from the engine had ignited a load of straw standing in the roadway, and the hedges in two places. The city fire brigade were called out to extinguish the blazing straw, but the whole was consumed and the wagon damaged Other hedge fires, as well as two large straw ricks, were ignited by the engine before it reached its destination, while on arriving there a pipe in the engine burst and rendered it useless for all practical purposes.

When the out-of-town use of electric automobiles is discussed the question is often raised in a dubious way as to the existence of proper facilities for charging and storage of vehicles. The Electrical World gives an interesting list of the charging plants between New York city and Greenwich, Conn., a distance of rossibly thirty miles. It will be seen that there are ten plants, averaging one to every three miles: No. 1. West Chester Village, near Morris Park; No. 2. Union Port, electric power house-both convenient to Westchester Country Club and Century Golf Club. No. 3. Pelham Manor, near station of N. Y., N. H. \& H. RR., Harlem River branch; convenient to N. Y. Athletic Club, Pel ham Country and Golf clubs; at the laboratory of Mr. E. T. Gilliland. No. 4. New Rochelle, Rose and Huguenot Streets, one block from N. Y., N. H. \& H. RR. station, at livery establishment of Mr. Charles H Coe; vehicles cared for and batteries recharged. No. 5 New Rochelle, electric power house, Webster Avenue No. 6. Larchmont, Boston Post Road and Chatsworth Avenue, opposite golf links, and convenient to Larch mont Yacht Club; J. Maddox \& Sons. This will be a model station for the care of vehicles and recharging of batteries; also the Central office of the company. No. 7. Rye, "Rye School for Riding and Driving," at N. Y., N. H. \& H. RR. station, and the entrance to Apawamis Golf Club; care of vehicles and recharging of batteries. No. 8. Portchester, Portchester Electric power house, after June 1. No. 9. Portchester, directly opposite N. Y., N. H. \& H. RR. station, at livery es tablishment of Charles H. Benedict; care of vehicles and recharging of batteries. No. 10. Greenwich, after June 1, 1901, near entrance to Fairfield Country Golf Club and at station of N. Y., N. H. \& H. RR., or other locations convenient for residents of Belle Haven.

The annual race known as the "Course du Cata logue" presents a rather unique feature, as the ma chines, instead of being classed as usual in regard to weight or capacity, are classed according to the catalogue price, making five series, with a sixth for electric vehicles. The race was run this year on the 28 th of April from Melun to Nangis, Valence and back; this route forms a quadrilateral of 46 miles, and the distance was covered once by the light machines of the first class and the electric vehicles, and twice by the others, or 92 miles. The race was one of the most successful of the season, and attracted a great crowd of prominent chauffeurs. In the first class, machine valued up to $\$ 800$, the best record was made by Demester on a Gladiator machine, who covered the 46 miles in $1 \mathrm{~h} .19 \mathrm{~m} .222-5 \mathrm{sec}$., or an average of 35.1 miles an hour. The second series (machines valued at $\$ 800$ to $\$ 1,600$) was won by Edmond (Darracq ma chine), making 92 miles in 2 h .32 m . 55 sec., or 36.5 miles an hour. Third series, $\$ 1,600$ to $\$ 2,400$, Cuenod (Geo. Richard machine), 92 miles in 3 h .47 m .53 sec ., or 25.1 miles an hour. Fourth series, $\$ 2,400$ to $\$ 3,200$, none. Fifth, value above $\$ 3,200$, De Champrobert (Bo lide machine), 92 miles in 2 h .27 m .271 .5 sec ., or 38.4 miles an hour. Electric series, Garcin (Bouquet, Gar cin \& Schiore), 46 miles in $3 \mathrm{~h} .16 \mathrm{~m} .202-5 \mathrm{sec}$., or 14.4 miles an hour. The record made by De Champrobert is the best which has been made for two tours over this route; M. De Rothschild made the best rec ord for one tour, but this was run outside of the official race. This was the result of a wager laid between MM De Rothschild and René de Knyff at the time of last year's race; the former gentleman had bet that he could make an average of 36 miles an hour with his 28 horse power Daimler machine, but did not succeed This year he raised this figure to 42 miles an hour, and won the bet with a very small margin, using Mercedes (German) machine, which carried three per sons.

According to the report issued by the Minister of Railways•in Austria for 1899, there were 18,738 kilometers in existence; 2,015 accidents occurred, of which 318 were due to collisions, and trains left the rails in 308 cases. The number of passengers injured through accidents and neglect on their own part was 215 , with 15 fatal injuries. The proportion of personal injuries was 1.51 per million passengers, and 0.04 per million passenger-kilometers.

Consul Donaldson, of Managua, says that the Nicaraguan government has placed an order with its agent in New York for 2,400 tons of steel rails for the new central branch of the National Railroad, which is being constructed by a German engineer, Mr. Julio Wiest. Considering the fact that Nicaragua has always purchased rails in Germany and England, says Mr. Donaldson, and that the contractor for the present railroad is a German, the placing of this order in the United States is an item of considerable importance in the growth of our trade with Central American countries.
As a consequence of the increasing demand for superior grades of sugar in Japan, attention is being turned toward improving the very primitive methods of crushing now employed at Tainan, and turning out a cleaner and higher grade sugar, says The Engineer. As a first step in this direction four iron mills -crushers-were introduced during the year to replace old stone crushers, but as the same motive power-bullocks-is used as before, this improvement is limited only to the extraction of a larger percentage of juice, and the quality of the sugar produced remains much the same.

According to statistics issued by Lloyd's Register, during 1900, exclusive of warships, 692 vessels of $1,442,471$ tons gross-viz., 664 steamers of $1,432,600$ tons, and 28 sailing vessels of 9,871 tons-have been launched in the United Kingdom. The warships launched at both government and private yards amount to 29 , of 68,364 tons displacement. The total output of the United Kingdom for the year has, there fore, been 721 vessels, of $1,510,835$ tons. The tonnage launched in 1898 and 1899 was less by 75,000 tons and 26,000 tons respectively than that launched in 1900. As regards war vessels, the figures for 1900 are less than those for 1899 by 100,000 tons.

A committee of the Canadian Roadmasters' Association reported that the best method to prevent the creeping of rails on a soft or swampy road-bed is to put on 18 inches of cinders-to lay ties 10 to 12 feet long, and 7 to 8 inches thick, and not more than 8 inches from bearing to bearing; also to block four ties on each side of joint, under each rail, with angle bars of 4 inches by 4 inches scantling. In the discussion, an official of the Canadian Pacific Railway said that several years ago he had some experience with badly creeping rails, and had adopted the practice of putting in ties of 12 feet length, and 8 inches thick, with a bed of cinders, using a long angle bar. He found that it prevented the rails from creeping, but thinks that with heavy trains and engines it is almost impossible to prevent it altogether. Another railway man laid stress upon the importance of keeping the bolts tight in track over swampy land. He has had experience of track which will creep 8 to 9 inches both ways the same day in hot weather, but this is believed to be an extraordinary experience.
The Nilgiri Railway is notable as being the first Abt-rack railway constructed in India, and, at present the longest of its class in the world. It is, moreover the first for which all the plant and material was manu factured in England. An account of the permanent way and rolling stock was given at the meeting of the Institution of Civil Engineers, on February 12, by Mr. W. J. Weightman, says Nature. The railway was chiefly designed to serve the important towns of Ootacamund, the summer headquarters of the Madras government, Coonoor, Kotageri and Wellington, the latter being the military sanatorium for South India and Burma. It is $163 / 1$ miles long, and from its start ing point at Mettapollium on the Madras Railway, as cends nearly 5,000 feet to the plateau on the Nilgir Hills. The first $43 / 4$ miles are adhesion-line with gradients not exceeding 1 in 40 ; the remaining 12 miles are built on the Abt-rack system, and have a ruling gradient of 1 in $121 / 2$. The formation-width is everywhere 16 feet, and as the rainfall is frequently 6 inches in as many hours, the greatest possible care has had to be taken to see that it is effectually drained. The locomotives are of the type known as "combined" Abt engines, that is, they can run either on rack or on ordinary line. Before the line was opened for traffic a series of brake experiments was made with a fully loaded train of 100 tons gross weight. With an ascending train at speeds of 6,8 and 10 miles per hour on a 1 in $121 / 2$ gradient, stops were made in 24,36 and 60 feet respectively; with a descending train at various speeds ranging from 4 to 12 miles per hour, relative stops were made in 54 feet, increasing to 425 feet.

PRESSED-STEEL SYSTEM OF CAR CONSTRUCTION.
In the early days of railroads in the East, wo was used almost exclusively as the material of framed structures. Not merely the trestle viaducts, but even the important long-span bridges were constructed of timber. Half a century ago this was a matter of necessity, and to-day, on western roads, it is still one of economy. With the growth of the steel in dustry and the great cheapening of iron and steel structural shapes, it was only a question of time be fore these wooden bridges would be replaced by mor serviceable and safe metal structures, and as the country opened up by the pioneer railroads in the West is being settled and its resources developed, the smme substitution of steel for wood is taking place.

Strange to say, although the use of iron and stee in the construction of the rolling stock of the rail roads was advocated and experimentally attempted nearly half a century ago, it is only within the las three or four years that the steel car has been able to assert its superiority over wooden railroad cars, an thereby bring within measurable distance the time when, at least for the transportation of freight, all steel rolling stock will be exclusively used. Th same arguments which favored the introduction of steel bridges, steel ships, and skeleton-steel buildings, are now operating to produce a revolution in the freight car business, which is one of the most remark able economic facts in the field of transportation Briefly stated, the argument from a structural stand point is based upon the fact that, although cubic foot of southern yellow pine or Oregon pin when built into the car will average about 50 pound in weight as against a weight per cubic foot of stee of 490 pounds, the maximum strain allowed in cal culating the necessary section of the various mem bers of a wooden freight car is only 1,100 pounds t the square inch, as against a unit of stress allowed in the case of steel of 13,000 pounds per square inch figures which show a theoretical superiority weigh for weight of steel over wood, say of about 20 pe cent. This saving would apply only to such part of a car as were subjected to direct tension or com pression. Seventy-five per cent of the material in the car acts as a beam, however, and is sub jected to transverse strains; and here the saving of weight, strength for strength, will amount to about 9 per cent. Hence it is estimated that the theoretical saving of weight on the whole car is about 11 per cent. In making the connections and joint. of the steel parts, however, there is not so much sacrifice of materials as in a wooden car; and thi 11 per cent advantage must, therefore, be increase proportionately. Moreover, it is safe to say that, in a comparison of two cars of the same carrying capac ity and strength, the "factor of safety" will be foun to be larger in the steel car than in the earlier type

What is suggested by theory is proved by actual facts; for in a wooden car of 30,000 pounds weight empty, and 60,000 pounds carrying-capacity, the ratio of the load to the total weight of car when loaded is 66.67 per cent; whereas in a pressed-steel car of 80,000 pounds capacity, weighing 28,500 pounds, the ratio of load to total weight when loaded is 73.75 per cent; while in the case of a pressed-steel ore car of 100,000 pounds capacity, weighing 28,000 pounds, the ratio of load to total weight when loaded is about 78.1 pe cent. Another and valuable advantage of the presser steel car is that its life is probably double that of the wooden car. It was officially reported by the Western Railway of France, in the year 1897, tha steel cars built in 1869 had lost only 6 per cent of their weight by corrosion in an interval of twenty eisht years.
As a result of the reduction of the dead-weigh of the car there are many numerous advantages to which the roads that have adopted the new system refer in justification of their policy. Thus, the ca pacity of the individual car being increased, a reduced number of cars is required to haul a given amount of freight. From this it follows that there is a re duced amount of empty-car hauling to be done, and a reduced amount of switching service. The train length is shorter, and hence it is easier to back trains into sidings and otherwise handle them in the various yards of the roads. There is also a reduced payment or car mileage and cost of inspection; and, lastly there is a decrease in the cost of repairs from an av erage of say $\$ 35$ to $\$ 40$ per annum for the wooden car to an average, as proved by reports received from the railroad companies, of from $\$ 10$ to $\$ 15$ for the steel car. We have before us an interesting compari son given by Mr. Von Z. Loss in a paper read before the International Railroad Congress, Paris, last year showing the comparative earnings of wooden and pressed-steel cars operating under average conditions of service in the United States. The figures are worked out on a basis of costs and earnings per ton per mile on an assumed yearly mileage of 5,000 miles loaded and 5,000 miles empty. The cost per ton per mile of both live and dead weights is assumed at ?
mills, and the gross earnings per ton per mile of
freight in the Eastern States of America at 6 mills Of 1,000 pressed-steel gondola cars, recently figurei on against specifications for wooden gondolas of 80,000 pounds capacity, the wooden car weighed 18.2 tons and was of 82,000 pounds of coal capacity. The steel car weighed 16.1 tons, and had a capacity of 86,200 pounds of coal. In the case of the wooden car the yearly income from lading hauled 5,000 miles at the given rate amounted to $\$ 1,230$. The cost of hauling the lading was $\$ 615$, and the cost of hauling the dead wsight $\$ 546$; so the net earnings for the year of the wooden car amounted to $\$ 69$. In the case of the pressed-steel car the yearly income ifrom lading amounted to $\$ 1,293$. The cost of hauling the lading amounted to $\$ 646.50$; the cost of hauling the dead weight amounted to $\$ 483$, the net earnings of the steel car per year working out as $\$ 163.50$, or $\$ 94.50$ in excess of those of the wooden car. Hence, it was shown the increased earning capacity of the car during its life of thirty years would be $\$ 2,835$, and the increased earning capacity of 1,000 steel cars over 1,000 wooden cars during a life of thirty years; would be $\$ 2,835,000$ It is estimated, in the paper above referred to, that the average capacity of the existing wooder cars in the United States is about 25 tons, and that the total capacity of all wooden cars in the United States is $37,500,000$ tons. From this it is figured that on the basis of an average annual mileage per car of 3,500 miles, and an average cost per ton per mile of mills and average gross earnings of 8 mills, the total yearly profit from all wooden cars is $\$ 215,000,000$. If the above-mentioned lading of $37,500,000$ tons were t be concentrated in large capacity, pressed-steel cars, the total dead-weight would be cut down from 21,000 000 tons to $14,000,000$ tons, which would represent a hauling expense saving of $147,000,000$ tons. Of course the above figures are given merely in a general way for comparison, and must not be applied too literally for the reason that there must be certain localities where the conditions of railroad service, and the na ture of the freight to be carried, would not favor the use of large-capacity cars; but even if the statemen be largely modified by this consideration, the arg ment is still enormously strong in favor of the new system of construction.

That the above estimate of the economies realized by the use of steel cars is not exaggerated is rendered likely by the remarkable popularity which they have achieved with the railroad companies. Although the first pressed-steel car was built as late as 1897, the industry has grown at such a rate that at the begin ning of the present year there were 46,000 pressed steel cars in use, and at the present time about 10,000 men are employed at the four different works of th Pressed-Steel Car Company in turning out new cars at the rate of over a hundred per day. The two largest factories are located at McKee's Rocks and at Allegheny, at each of which works over 4,000 men are employed. There are also two smaller works at Joliet and Pittsburg, each employing about 600 men. Of the two larger concerns, the one at Allegheny is the older. In spite of the frequent enlargement of the latter establishment during the past three years, it was found necessary to purchase new ground at M Kee's Rocks and erect an entirely new plant to ac commodate the rapidly increasing business.
The steel used in the manufacture of the cars is what is known as medium-soft Carnegie, with an ultimate strength of 60,000 pounds to the square inch and an elongation of 25 per cent in 8 inches, with a reduction of area of 50 per cent. The buildings ar aid out with a view to a minimum amount of hand ling of the material, which moves from shop to shop a regular sequence of operations, until it is haule ut on the tracks from the paint shop in trains of finished cars, to be taken to the various railroads of the country. At the date of our visit to these works in March, 1901, cars were being finished at the rate of 106 per day.
The stock, in the shape of plate steel, is first marked out with templates and sheared to the finishel size. It then undergoes either Heavy Pressing or Ligh Pressing. The larger pieces, such as longitudinal ca sills for the under-framing, and also such pieces s equire but slight forming in the presses, are pressed cold; and one realizes what an economy in labor there is in the manufacture of these cars in seeing how rapidly the side sills, many of them 40 feet in length are pressed into shape, the work being done in three strokes of the hydraulic press. The first stroke brings up the center of the sill where its section is deepest and two more strokes serve to bring up the shal lower ends. As a matter of fact, the whole operation f forming side sills of the largest dimensions oc cupied only one and a quarter minutes. The smalle and more complicated pieces, which are more diffi cult to bring up to shape, are first heated in the fur nace to a bright cherry red, and then subjected to light pressing in a smaller hydraulic press.
After pressing, the parts are taken to the construc ion department where the work is almost entirely one of drilling and riveting, the work of the presses
being of such accuracy as to involve a minimum amount of fitting. As much of the machine-riveting as possible is done in the Construction Department, and the material is then passed on to the Erecting Depart ment, where the cars are put together, and such hand riveting done upon them as is necessary. Here the draft-gear and brakes are put in as ordered, each Road having its own special preference as to type and pattern. In the erecting shop there are four aisles with series of parallel tracks extending down them. Upon these the cars are erected. The axles come to the tracks rough-turned, where they are finished and put upon the wheels by hydraulic pressure.
One of the first items undertaken in the direction of pressed-steel car construction was the pressed-steel bolsters for trucks. As shown in our engraving, these are built as box girders, in a form which offers great resistance to vertical and lateral distortion. Then foilowed the pressed-steel truck, of which we show two types; one, the Fox Pedestal Truck, which is specially suited to first class roadbeds, and the other the PressedSteel Diamond Truck, which affords greater horizontal flexibility and is suited to roads with less carefully aligned and surfaced track. Our other illustrations show some of the types of car which are to-day in successful operation.

Electrical Notes

A company has been formed to manufacture the new storage battery invented by Thomas A. Edison, which will be known as the Edison Storage Battery Company. The new company will proceed at once to enlarge the factory of Mr. Edison at Glen Ridge.

It is said that negotiations are in progress with the Western Union Telegraph Company for the adop tion of the Rowland multiplex-telegraph printing in vention. The machine has been brought to a high sta:e of efficiency, and the heirs of Prof. Rowland and business men of Baltimore have organized what is known as the Rowland Company
A correspondent of The Electrical World writes that while in the Western Cnion office at Reno, Nev., recently, he noticed a very pronounced hum above the noise of the instruments. Upon inquiry he was informed that the Blue Lakes Power Company was test ing its line and that this inductive effect was the result. It was also stated that the line was at the time being experimentally tested at 85,000 volts, the line being about 170 miles distant from Reno. The noise, which was most disagreeable, would rise to a certain pitch and then fall to a lower pitch as if the generator was racing
The first installation of Marconi's wireless telegraph system upon an Atlantic liner has been placed upon the Beaver steamship "Lake Champlain." When the vessel left Liverpool, owing to the great interest that was manifested in the innovation, arrangements were made at several parts of the coast for receiving messages from the vessel as she proceeded on her journey Communication was first opened with the wireless tele graph station at Holyhead when the steamer was thir teen miles distant, and was maintained until thirtyseven miles separated the vessel from the station. Several of the passengers availed themselves of the op portunity to telegraph to their friends in all parts of the United Kingdom, each message being acknowl edged from the receiving station and then dispatched to its destination over the government wires. The ex periments were highly satisfactory, and the other ves sels of this line will be similarly equipped with the apparatus as soon as possible. When the various steam ships of the other transatlantic companies are fitted with the apparatus, it will be possible for the passen gers to be kept posted in the progress of the world even in mid-ocean, since the news will be telegraphed from ship to ship.

A new underground rapid transit electric railway is being projected in London. It will stretch from Piccadilly along the Strand, Fleet Street, Ludgate Hill to the City. By this means travel through the busies artery of the metropolis will be considerably facili tated. It is proposed to take the line beneath a narrow street in the immediate vicinity of St. Paul's Cath edral, and great apprehension is felt that the excava tions will seriously impair the foundations upon which the sacred edifice stands. The soil beneath Ludgate Hill and the surrounding neighborhood is composed for the most part of loose gravel and sand. The Dean and Chapter of the cathedral fear that any excavation would tend to drain off the underground water. The cathedral itself rests upon a tremendous bed of con crete. Should the underground water be tapped there is a liability of this concrete bed cracking in all directions, in which event the safety of the edifice would be severely menaced. A settlement of the build ing, it is considered, would be inevitable. The Cen tral London Railway in its passage through Cheapside passes beneath the church of St. Mary le Bow-an other of Wren's buildings-and through the settlement of the building the spire has been thrown 23 inches out of the perpenäicuiar

¥ifuntific Amrricau.

THE STRALAU-TREPTOW TUNNEL UNDER THE RIVER SPREE.
The first submarine tunnel ever constructed in Germany extends beneath the River Spree, between Stralau and Treptow, and has been in active use since its formal opening, in 1899. Although the tunnel is but 453 meters (493.77 yards) long, its construction was no simple task, for the quicksand of which the soil beneath the Spree is largely composed was removed with some difficulty.
The preliminary work was begun in the summer of 1895 . But the actual work of removing the soil in the line of the tunnel was not commenced until the end of February, 1896, because the tunneling-shield was delivered too late. Despite this delay, 160 meters (524.8 feet) of soil had been excavated by the end of autumn of that year. A second interruption of the work was caused by the deliberations of the authorities as to whether the street railway should be extended so as to pass through the tunnel under the river. Finally work was again resumed in September, 1897; and in February, 1899, the last shovelful of soil was removed and the last rivet driven.

The tunnel cnosses the line of the river approximately at right angles, the width of the stream at that point being 195 meters (212.55 yards). So deep is the tunnel that between its roof and the river-bed there is still a layer of sand some 3 meters (9.8 feet) in thickness. The lowest point of the tunnel lies 12 meters (39.36 feet) below the mean water level of the Spree. In the direction of Treptow to Stralau the tunnel is built on a downward inclination (1:20), but becomes more level as it passes under the river (1:600). The tunnel tube is composed of castiron annular segments varying in width from 500 to 650 millimeters (20 to 26 inches), and having flanges

Section of Completed Tunnel.
which are connected by screw-bolts. Between the rings or annular segments flat, iron straps are laid, which appear externally as corrugations and serve as reinforcing and stiffening members. Externally the tube is covered with an 8 -centimeter (3.2-inch) layer of cement, and internally with a 12 -centimeter (4.8inch) layer. The clear breadth of the tunnel is, therefore, reduced to 3.75 meters (12.3 feet), and barely leaves room for a narrow passageway along the tracks. The rails are embedded in the cement of the tunnelbottom.
The tunnel was built in the usual way, the shield having been pressed forward as the work advanced. The completed portion was divided from the workingchamber by a partition provided with two air-locks for the entrance of laborers. Compressed air was used
for ventilation. In front of the working-chamber the shield was placed, forming a second chamber between its inclined front wall and its vertical rear wall. Through openings in the front wall, which could be closed by slide valves, the sand was excavated and thrown back into the chamber. When sufficient sand had thus been removed to leave a small and clear space, the shield was pushed forward by sixteen hydraulic jacks. In the new tunnel space which had thus been formed an additional ring was built after the pistons of the hydraulic rams had been built after the pistons of the hydraulic rams had been
withdrawn. In the narrow annular space between the tunnel and shield, cement was packed. Thus 374 meters (407.66 yards) were cleared beneath the Treptow shore and the river-bed. The 80 meters left on the Stralau shore were built on the subway plan; that is, a trench was dug, the walls of which were lined with piles or planks shored in the usual manner, and cement laid along the bottom of the trench. For a length of 30 meters (98.4 feet) it was found that the plank walls could not resist the action of the quicksands. The section was, therefore, divided by partitions into three compartments, which were separately completed.

During the work of constructing the tunnel telephone wires were carried along the line so that those at work could communicate with the power house. Aside from minor mishaps, which were unavoidable owing to the imperfect working of new machinery, and lack of experience on the part of the laborers, no serious accident occurred during the progress of the work. The cost of the tunnel is about $\$ 425,000$, or $\$ 850$ per yard.

Turpentine mixed with wax is known to give very good floor wax. A cloth squeezed out in turpentine restores the luster to oilcloth.

Entrance to the Lock-Chamber.

A Bend in the Tunnel

Rear Face of Shield.

Commencement of a Double-Tube Section.

METHOD OF TESTING SPECIMENS OF MARBLE.

prof. frank d adams.

In the Scientific American for April 23, 1898, an account was given of some researches on the Flow of Rocks, which were being carried on by Prof. Adams and Prof. Nicholson, at McGill University, in Mont real. The rock employed for purposes of experiment was Carrara marble, small columns of which were inclosed in stout tubes of wrought iron, constructed after the manner of ordnance by wrapping long strips of Lowmoor iron around a bar of soft iron and welding the strips to the bar as they were rolled around it The core of soft iron composing the bar is then bored out, leaving the iron tube, into which the marble column was very accurately fitted. The pressure was applied through heavy steel pistons fitted into either end of the tube, making use of a hydraulic accumulator by which the ordinary pressure of the water mainsnamely, 130 pounds to the square inchcould be increased to any desired extent pressures up to 13,000 atmospheres, for instance, being frequently applied. Making use of this machine, it was shown that columns of marble, when inclosed in the iron tubes as above described, might, at the ordinary temperature, be de formed, the marble column being squeezed down and the inclosing iron tube bulged out; the marble remaining throughout the process compact and solid.

Since the appearance of the article in question, experimental work along this line has been continued, additional presses have been constructed, new apparatus installed, and many new and important results obtained

The machines, as at present arranged, are shown in our engraving. The three presses are set up side by side, but at different levels, to allow free play to the long screws which afford an accessory means of increasing the hydraulic pressure in the cylinders The cylinders and additional intensifiers, with all their complicated system of pipes and valves-by which the water pressure from the main is trans ferred to the oil which fills the whole system, and through it to the machine, and by which the pressure may be maintained constant at any value for any desired time-are shown on the right of the photo graph. The apparatus is also arranged so that wate under ayy desired pressure may be passed through the rock itself while it is being squeezed. The rock may be heate to any desired tem perature by means of a gas flame, or a gasoline blast, while undergoin compression. The hy draulic pump in front is capable of develop ing a pressure of 10,000 pounds to the square inch, and may be used either in connection with the machine or or forcing wate through the rock it self.
In the machine on the left a marble col umn, inclosed in its ron tube, is in position eady for the applica ion of the pressure to deform it at the ordin ary temperature ("cold dry squeeze"). The machine in the cente is arranged for a "hot dry squeeze," that is, for an experiment in which the rock shall be bermed while heated o 300 degrees C or 400 degrees C. The heat i supplied by the Bunsen burner shown in the photograph, the heated gases circling about within a massive iron casting which incloses asting which incloses
he iron tube contain
ing the marble without coming in contact with the latter except at the ends-space being left within the casting to allow for the bulging of the iron tube when the pressure is applied. The wires of the plat num thermometer for measuring the temperature pass into the casting on the left side, through the fire-clay tube shown in the photograph, and are brought out almost in contact with the iron tub inclosing the marble. Before the experiment is com

PRESSES FOR MAKING RESEARCHES ON THE FLOW OF ROCKS
menced the whole apparatus is, of course, covered with asbestos to prevent loss of heat. This, however, was removed before the photograph was taken, in order that the arrangement of the parts might be clearly shown.
Another appliance is employed for producing a "hot wet squeeze," in which the rock; while heated, is strongly compressed, water at the same time being forced through it at a pressure of several hundred
 Betore Compression
of as much as 5,350 pounds per square inch. This, however, was only about one-half the crushing weight of the original rock, which is about 12,000 pounds per square inch. The predominant structure of the deformed rock, under the microscope, was found to be what is known as a cataclastic structure-that is to say, the calcite crystals composing the marble had been broken and the fragments had passed over one another, but had remained so firmly pressed together that the rock still retained its solidity. The strength of the rock when deformed at a temperature of 300 degrees C., however, rose to 10,652 pounds per square unch; that is to say, it was nearly as strong as the original rock, and under the microscope it was seen to have moved, not by the breaking of the individual crystals composing the rock, but by a flattening of each crystal, owing to movements on twinning and gliding planes. This is preciseiy the nature of the movement in the case of iron or any other metal when it is hammered or rolled, as has been shown by the recent investigations of Ewing and Rosenhain. The marble "flows" under these conditions just as a billet of iron does when heated and rolled.
Our engravings show microphotographs of a section of the marble before squeezing, and the same marble after it has been deformed at 300 degrees C. The flattening of the grains can be distinctly seen

When the heated marble was deformed, while at the same time water was being forced through it, the movement was of the same character as that just described, but the marble was found to be actually stronger than the original rock.
These experiments have an important bearing on the nature of the movements which take place in rocks when they are folded up into mountain ranges, and they are now being continued with granites and other harder rocks.

Areas of Future Cilies
Writing in the Fortnightly Review, H. G. Wells observes that we are "on the eve of a great development of centrifugal possibilities. And since it has been shown that a city of pedestrians is inexorably limited by a radius of about four miles, and that a horseusing city may grow out to seven or eight, it follows that the available area of a city which can offer a cheap suburban journey of thirty miles an hour is a circle with a radius of thirty miles. And is it too much to expect that the available area for even the common daily toilers of the great city of the year 2000 , or earlier, will have a radius very much larger even than that?

Now, a circle with a radius of thirty miles gives an area of over 2,800 square miles which is almost a quar ter that of Belgium But thirty miles is only a very moderate esti mate of speed, and the reader will probably agree that the available area for the commuter of to-day will have a radius of over 100 mile and be almost equal to the area of Ireland The radius that will sweep the area avail able for such as now live in the outer sub urbs will include sub vaster area. Indeed, i is not too much to say that the London citize of the year 2000 A . D may have a choice o nearly all England and Wales south of Notting ham and east of Exete

The deformed marble was then tested in compression by means of an Emery test'ng machine, and its strength compared with that of half columns of uncrushed marble cut to the same form. Thin sections were also cut from the deformed marble, and their micro scopic character compared with that of the uncrushed rock.
was found that when the marble was deforme in the cold, after deformation it would bear a load
as his suburb, and that the vast stretch of country from Washington to Albany will be all of it 'avail able' to the active citizen of New York and Philadel phia before that date."

Stonehenge has been cut off from Salisbury Plain by a wire fence and a charge of a shilling is made to visitors who desire to pass the barrier in order to get a near view of the monument.

THE LIFE HISTORY OF AN INSECT PARASITE

The parasites of the insect world, like those of other animal kinds, including the human, are wonderfully in telligent and absolutely remorseless; they must be so to successfully carry on their affairs. But the irsect kinds, being little things and preying upon little things, do not at once impress us with a feeling of repugnance, and indeed they are so generally found to be beneficial to mankind that we must call them friends. I think that it can be safely stated that the majority of the insects attacked by parasites are noxious species.
Insect parasites are of many kinds, even the mildmannered lepidoptera including among its numbers a few species, while the diptera, coleoptera and hemiptera possess many. It is to the hymenoptera that we turn, however, when the word parasite is used, for here are hundreds of species-the true insect parasites of insects. To this order belong the ichneumon, bra chonid, chalcid and proctotryped flies, stingless rela tives of the wasps, all the species of which live by their wits. For the most part these most typical para sites attack the larvæ only of their victims, for by this they will most easily derive nutriment and have the time to reach development; and, too, the larvæ or the insects attacked are far more easily victimized than the hard-coated, more active and short-lived imagoes. Of the insects attacked, the lepidoptera fur nish the greater number of species; indeed, it is prob able that no moth or butterfly larva is without its parasitic enemy, while the coleoptera, hemiptera, dip tera, and even other hymenoptera, number species commonly parasitized. To the insect thus preyed upon naturalists have applied the term "host," and the manner in which these unfortunate larvæ become ten anted by living, squirming, voracious bloodsuckers chat sap upon their vital organs and eventually kill them, is very interesting. With the parasite fly it becomes, of course, a matter of expediency, a ques tion of room; supply and demand the chief factors. Thus we see a large, bulky larva either infested by a parasite of considerable size. or by many tiny grubs of a small species. A medium-sized ichneu mon will choose for its host larva that grows just large enough to serve the purpose of nourishing its larva, and thus, generation suc ceeding generation, the parasite will remain true to its host, though no doubt, if the host could be consulted, it would wish its admirers should prove more fickle.
One of the daintiest of our com mon insects is the pretty little collared grapevine moth, Harrisina Americana, formerly included in the genus Procris. This moth is deep bluish-black, the only touch of bright color an orange or vermilion band or collar surmounting the thorax, and it is a surprise to discover that its caterpillar is bright yellow, with only small brown or black spots distributed, ring-like, on each segment. Grapevines are its most common habitat, and feeding in small colonies, each being the hatching of one batch of eggs, and each caterpillar being possessed with the usual caterpillar appetite, it is very natural to find some portion of the vine with its leaves rapidly dis appearing, one by one. Indeed, were it not for our friends the wren and the parasite, our grapevines would soon practically cease to exist. And as efficient as the admirable little wren is, I believe the parasite plays the more important part. So successfully warred upon are these pretty little pests that it is. doubtful if any large vine supports an average of more than half a dozen caterpillars of Procris that reach ma turity.
Naturalists have many ways of naming species Here they have called a parasitic insect after the later generic name of its host. Thus a small brachonid fly, pale yellow in color, with large black eyes, the individual parasite of the grapevine moth, has been given specifically the later generic name of its host Rhogas harrisiner. It seems almost like benefits forgo to load the brief existence of this most useful insect with such a name, and, as with most insects, ther has been no common name supplied with which to more familiarly label it. So the generic name must serve, as with Procris.
Decidedly the most interesting part of the tragedy between Rhogas and Procris is the beginning of it, when, after the female of the former, with unerring instinct, has hunted diligently for the larva of the latter, she happens upon a colony of her victims. Back and forth she has searched, under and above each leaf, walking excitedly as if on springs, her long

rhogas attacking caterpillar of procris. (Enlarged.)
caterpillar host would have passed into before becoming a moth, had it lived, is with the hymenoptera of short duration, and in six or ten days, the weather being warm, another perfect Rhogas, transformed from the grub, cuts open a little flap in the dried caterpillar skin, emerges, and presently flies away to find and parasitize other Procris caterpillars.

Thus we have observed one of the most wonderful acts in nature, a life endowed with the very extravagance of cruelty, that seems at first almost uncompensating, for the mother parasite never sees her offspring, indeed it is reasonably certain that she knows nothing about their existence, but with an instinct resulting from a very high development she goes about preparing for their welfare.

The Chemistry of Soil.

"Undoubtedly one of the most wonderful discoveries of modern chemistry has to do with the soil," says The Saturday Evening Post. "It has been ascertained that the most barren land can be made rich simply by adding to it certain mineral elements which cost but little. On this basis it.is estimated that the United States will be able eventually to maintain $500,000,000$ people-more than one-third of the present population of the world. it is merely a question of supplying the requisite quantities of nitrogen, phosphoric acid and potash. The last two are readily phosphoric acid and potash. The last two are readily obtainable at small expense, whereas the first may
be supplied either by furnishing to the soil condensed be supplied either by furnishing to the soil condensed
nitrogen in the shape of slaughter waste or nitrate nitrogen in the shape of slaughter waste or nitrate
of soda or by planting clover, beans or peas, which have an affinity for nitrogen and absorb it from the atmosphere. It is now known that nitrogen is the most important plant food, and, inasmuch as this element composes four-fifths of the atmosphere, the question is merely to absorb it into the soil. It has also come to be understood that only 2 per cent of the material of plants is derived from the soil, the re maining 98 per cent being drawn from the air and from water."

Improvements in the Holy Land.

It has often been stated that if one of the Prophets had returned to the field of his labors, he would have had little difficulty in recog. nizing the old scenes, but now mat ters are decidedly changed. The railway from Joppa to Jerusalem is now on a paying basis, and other lines which will connect it with points of interest up and down the valley of the Jordan have been projected or are actually in course of building. In Jerusalem there are electric lights, telephones, phonographs, modern stores and sanitary plumbing; in fact, all the comforts of civilized life can now be obtained. Trolley lines are projected to connect Jerusalem with Bethany, Bethlehem, the Lake of Galilee, Samaria, Jericho, Nazareth and other places. Recently an American salesman went to Jerusalem and Beirut and sold modern merchandise to the amount of $\$ 3,800$. It is thought that in a few years the Holy Land will be a good consumer of flour. More
a truly terrible appetite. This is the larva of the Rhogas. The grub feeds and rapidly grows upon the vital juices of its host. The caterpillar continues to feed also, furnishing its tenant with food. But as the parasite grows the poor host loses its activity, soon scarcely moves, and finally, its insides having been almost entirely devoured, it perishes miserably. By this time the larva of Rhogas is full grown and is ready to pass into the next, or pupa, stage of its existence, intermediate between the grub and the per-

COLLARED GRAPEVINE MOTH. (Enlarged.)
fect insect, and finding the hollow skin of the caterpillar a fit habitation it remains in its place, the stiff dry skin becoming its cocoon. In addition, before changing, it spins a thin silken lining that serves to strengthen the walls of its domicile. This pupal life, analogous to the chrysalis stage that the poor
than two hundred phonographs were recently sent to Jerusalem, Damascus and nearby places, the Moslems buying them largely for their harems. There seems to be a considerable opening for windmills and irrigating machinery in the East. The Sultan appears to be favorably disposed toward the modernizing of this part of his dominions.

The Current Supplement.
The current Suplement No. 1329 is filled with most interesting subjects, the first article being "Science and Agricultural Experiments," which describes the re markable work which our experiment stations are doing. "Kondeland in German East Africa" is accompanied by a number of engravings. "Syntonic Wireless Telegraphy" is by Signor Marconi. "Protection of Ferric Structures," by M. P. Wood, is a most valuable paper, and is referred to elsewhere.

Contents.	
(Illustrated articles are marked with an asterisk.)	
Automobile news. 390	Iron structures, protection of... 386
Bath, mercury*.................. 388	Lucomotives, A merican, abroad. 386
Battleship, fastest............... 385	Marble, testing specimens of**... 393
Book notices.......... 398	Notes and queries 936
Car, pressed steel...........*385, 391	Oils, chemistry of............... 394
Cities, areas of future........... 393	Parasite, insect*................. 394
Copyright business............... 330)	Power hammer, adjustable*..... 388
Cup yachts*...................... :399	Romans, clothing of ancient..... 387
Electrical notes 391	Science notes. 387
Engineering notes............... 3:4	Sulmarine toryedo boat*........ 388
	Supplement, current.. 394
334	Tumnel, Berlin*

RECENTLY PATENTED INVENTIONS. Electrical Apparatus. hattan, New York city. The inventor has de-
vised an improved contact-plug for attachment to walls and other supports. The plug is ar anged to insure a perfect contact when in th socket, to be readily removed in order to
break the contact, or to be inserted in order positively to make the circuit.
used for the socket and plug.
batcherthral. - James R. Blackweli, it sometimes hap nected with a battery is deranged by the
breaking of one of the cells. The object of this nvention is to provide a tray to hold a numbe of cells and to indicate when a cell is broken The battery elements are connected with an
a larm, so that should a cell be broken its liquid, flowing into the tray, will cause a cur rent to pass through the alarm, thus indicating eure is a breal
保 E. Jahe, Manhallan, New York city. The inention provides an improved combination water-tight junction-box. receptacle, and fix-
ture, which is especially designed for use in ure, which is especially designed for use along the shore of a river, in ships, and in along the shore of a river, in ships. and in
subterranean and submarine work. The device is arranged to insure at all times proper connection, and, in case of an overload in the
main current, to prevent breakage of the elec main current, to prevent breaka
tric lamp by burning out a fuse.

Mechanical Devices

Elevator for binders.--Albert M. Allex, Pauls Valley, Indian Territory. Mr
Allen has dispensed with the top elevator apron by providing a single apron having slat carrying teeth, and has thus materially reduced
the draft of the machine. The apron of the he draft of the machine. The apron of the
elevator is passed over two wheels, the slats elevator is passed over two wheels, the slats
at the inner face being adapted to enter the at the inner face being adapted to enter the
spaces between the teeth of the wheels. Ifence the apron is given a positive and uniform
movement. and will not be shifted as heretofore, by frictional contact with a smooth sur face.
CLUTCH AND RETERSING MECIIANISM mechanism comprises a shaft to be driven: an internal gear-wheel : and an external gear-wheel
both gear-wheels being loose on the shaft With the gear-wheels a driven pinion meshes. For each gear-wheel an independent clutch-mechanism is provided to lock either of the gear-wheels
the shaft to be driven. The device permits to the shaft to be driven. The device permits
the operator readily to drive the shaft in either the operator readily to drive the shaft in eithe
direction or to stop whenever he may desire.
STOR MOTION FOR MECHANICAL TOYS The purpose of the invention is to provide means for automatically preventing the wheels urning unt turning until the vehicle is placed upon the
support on which it is to travel. The driv ing-axle is provided with a projection second axle is employed. which is mounted to turn and slide and to operate a check-device
which is arranged for contact with the projecion from the driving-axle. The moment the begin to turn.
ShoE-TURNiNG DETICE, - Gionge B Gainder, Haverhill, Mass. This invention re
lates to devices for facilitating the work of urning shoes, which work is necessary in the manufacture of certain kinds of shoes. Th urner comprises two essentiany parallel arm has its end portion turned laterally approximately parallel with the line CONCENTRATOR.-LDwin A. Sperry, Bi
wabik, Minn. The material treated is to b wabik, Minn. The material treated is to be mixed with water and delivered on the surface
of the table from the distributing-box. By ad justing the conical pitch of the table-top the re-pulp is allowed to flow down toward the
edge of the table, while the vanning or agitating motion, together with the action of the wate mixed with the pulp, gives the particles an oppertunity to separate according to their respec
tive specific gravities. The hravier particles set tive specific gravities. The hravier particles set
tle on the table, while the lighter particles emain on top of the heavier. The revolution and a spray from a pipe washes off the upper and lighter portions of the material deposite and leaves the heavier values on the surface o the table. The values are in turn washed of to suitable receptacles.
disintegrating - machinf. - Bruno Molstier, Roquevaire (Bouches du Rhône),
France. The machine is a powdering or disin France. The machine is a powdering or disin
tegrating machine which breaks up, crushes, tegrating machine which breaks up, crushes,
granulates, and pulverizes by inter-reciprocat ing shock of the material, and is characterized by a special construction which is exceedingly efficient and which reduces the wear of the
working parts to a minimum.
Motor. - Charles W. Stelle, Detroit.
Mich. The motor is designed to be employed in connection with boiler-tube cleaners, and comprises a casing which can be connected a
one end with a motive-agent supply-pipe. one end with a motive-agent supply-pipe.
cap is secured to the opposite end of the cas ing. and is provided with exhaust-ports. In has bearing at one end in the deflector at the
inlet end of the casing and at the other end
in the cap. Propeller-wheels are secured to
the shaft and alternate with the deflectors, th wheels having peripheral angularly-disposed blades. The process is materially (1 Ov
Clothes-WriNger. - Albert G. Carl
ng, Hackensack, N. J. By means of the im provements devised by Mr. Carling the clothes wringer can be actuated speedily for light work and can be adapted, by a quick change of work ing parts, for slow movement with great in
crease of power when heavy work is to be erformed
Propelleht.-...Kirk G. Johnston, Piqua Ohio. The object of the invention is to pro-
vide simple means for shifting the angle of the blades and locking them in order to prope versing the direction of rotation of the pro peller-shaft. The device is particularly
iceable in naphtha and gasoline launches. ceable in naphtha and gasoline launches. H. Dunconbe, 300 Talbot Street, St. Thoma Ontario, canada. The water-reservoir, gas eceiver, and generating-chamber are arrange side by side. The water is allowed to gravi generator in order to produce gas, and is forced back and away from the carbid by the gas so produced, to cause the generation of gas to
proceed or to be discontinued automatically in ccordance with the consumptio
COAL-MINING MACHINE.-OTIS Jacobi Sandrum, Ohio. The chief features of the it vention are a strong main frame and a car-
riage which supports the cutting devices and the engine or motor mechanism and which moves back and forth in the main frame. so that the cutting devices can be properly projected to cut into the bank of coal when the
machine is operated. In this machine the main rame possesses great strength to resist the vibration and lateral strain w
neet an unyielding obstruction
MACHINE FOR OIPERATIN
TALKS.-Gbone R HiNG UPON IPTIIY avenue, Chicago, Ill. The shell from one side of the stalk is severed by a cutter which is reciprocated longitudinally. To this cutter the
stalk is fed by rollers which extend paral lel with the cutter. The roller on the ide from which the shenl is cut is practically unyielding during operation and under the con-
trol of adjusting devices: while the other roller is yieldingly supported. Both of these utters discharge on a carrier which can be coupled to other carriers to deliver the shell
t any desired point. The pith is discharged y a screw-conveyer at one side of the ma hine.
Stheet-siveeper.- Jessem m. harr, Ninth machine is designed to be propelled by one laborer and automatically io sweep up the machine. The dirt-receptacle rests on the bot tom of the machine. A rotary brush and a
bucket are provided, the bucket being adapted o be opened on the side adjacent to the brus nd to be automatically raised and dumped int dirt-receptacle

Vehicles and Their Accessories
bictcle-lock.-EArl F. L. Russell and Charles M. Bhows, Denver. Colo. The purpose
of this invention is to provide a simple device of this invention is to provide a simple device
for rendering bicycles inoperative and there by preventing them from being stolen. This against the tire of the bicycle-wheel so that the wheel cannot be turned.
ELASTIC TIRE. Winiam F. Whamims, 17
and 18 Great Pultney Street. London. W. England. The invention relates to the manu acture of hollow rubber tires of D sectio adapted to be secured to the wheel-rim by The inventor produces a tire having embedde in the rubber (in immediate proximity to the bore) helical springs conforming with the
transversely-arched shape of the tire, in comfill up the interior of the springs. Cords and
fill springs co-act to strengthen the tire. MEANS FOR SECCRING ELASTIC TIRE 18 Great Pultney Street, London, W Wng land. The invention relates to tires which are clasped about the wheel-rim by a metal band binding the base of the tire, or by inwardly turned marginal flanges on the margin of the
tire. The novel feature of the invention is to in a means for adjustably tightenin and securing the tire

Miscellaneous.

Plpe-storper.-Grorge B, Simblivar Danville, Ill. Mr. Sidelinger has devised
means for hermetically sealing the ends pipes in a most secure manner and yet so as to permit him to remove the plug quickly and er necessary.
WAtLer-REGClating inevicle. Tumans signed to regulate the water fed into an ele vated tank on a building. is automatic in oper-
ation, is adapted to supply water to water fixtures for use as required and likewise to supply water to a heating-tank which is con-POCKET-ROOK, IIAND-BAG OR TULE LIKE By mans of the imnrovements invented by
provided entirely separate from the other
compartments of the article. Hence it it possible more readily to store change, bills, (iss abren supronv -GAS-METER SUPPORT.-HENRy T. Hol And, Maulattan, New York city. The in trong, and simple, which permits ready access of the meter from all sides, which is capable of being used in different positions, and which is compact. permitting the gas-meter to be set here but little space is a vailable.
tuning-bltwon. - Arther J. Lang, lrooklyn. New York city. The tuning-button is of the kind used at the neck sections of
stringed musical instruments. The purpose of stringed musical instruments. The purpose of
the invention is to provide such a tuning-button with a light, yet durable head, and firmly Pheshevie-tin.-Fmile besse and louis Labiv. Paris, France. These two inventors have devised a tin which can be soldered with or without pressure, in such a manner as to
prevent the melted solder (which is interposed prevent the melted solder (which is interposem
between the tin and its cover or its bottom plate) from running during the soldering i toolhanhle. John C. lambert, Tonic II. The handle comprises a shell in which two jaws are fitted. The jaws are tapered
and the inner walls of the shell are correspondingly formed. One of the jaws has a
threaded shank at its upper end over which is passed an eye formed on the under jaw so
that the jaws may be connected with each that the jaws may be connected with each
other. The threaded shank of the first-named other. The threaded shank of the first-name
jaw screws into the upper end of the shell. WORKMAN'S TIME-RFCORMER.-Imil: Denuth, Oberlin, Ohio. The workman who is he perforates by a register. When the work man leaves at night he repeats the operation so that the card bears two perforations. If the workman goes out and returns at noon the verify the record of a late man a special d forated. If this perforated record tallies witio the workman's account, the workman's record Safety-Check.-Whliam h. Black, 100 Broadway, Manhattan, New York city. The invention is an improvement in checks, drafts, oreign exchanges, letters of credit, etc.., and is specially designed for use as a traveler's tification. The paper is good anywhere in the hands of the purchaser or his morsee. but is holder. The check can be cashed in by the
purchaser at the issuing office without the purchaser at the issuing office without the
necessity of giving bond or securing identification further than that afforded by the counter signature.
badge-bar beviuy harbis Manhat tan, New York city. By means of the badgebar a ribbon is fastened to the coat. The
device comprises a bar the front race of which is ornamented and the rear face of which is
provided with peculiarly-arranged pins, one being adapted to pierce the coat and the other being adapted to pieree the coat and
to engage and suspend the ribbon.
badge-bar.-Benjanin Harris, Manhat an, New York city. This badge-bar comprises
a back-plate, a front binding-rim, a panelang insignia or ornamentation, and pin ribbon. The various parts are held together in

Process of Treating blast-FU
ACE SLAG IN ITS MOLTEN STATE. Alexander I. Hlbers, Hoboken; N. J. The
molten slag is gathered in a kiln having nonconducting walls and having an air-space above conducting walls and having an air-space abo
the surface of the slag. This space has re stricted communication with the atmosphere Communication between the air of this space air the atmosphere is regulated so that the
air above the slag is intensely heated by radia tion and the cooling of the slag is retarded while the slag
the solid form.

AND LIGHT-SUPPORTING attachanent for stools or chairs.yarles h. Bacos. Danielson, Conn. The in music-rack and a support for a lantern to a stool. thus accommodating each musician of a
band with a support for music and with a light.
mich. Mich. The cigar is arranged to prevent the ashes from falling off while smoking and at
the same time to preserve all the flavor in the same time to preserve all t.
the ctgar and insure a free draft.
DASK TOP. Robiri M. SMith. Chicago,
By means of By means of Mr. Smith's invention an
ordinary school-desk can be transformed into a desk fitted both for academic work and for manual training. This end is obtained by fit-
ting the desk with a reversible top. one side of which can be used for academic work, and one Niluelay Voltzow and Henry Jürgens, Brooklyn, New York city. By means of this machine the depth of water a inches at any desired point above or feet the receptacle or at any point within the the device is particularly applica Be for automatically indicating to the watch
or officer of the deck of a vessel the depth of

DOOR SPRING AND STOP.-HENRY McCliry, Evanston, Ill. This invention is an im-
proved closing spring for stop devices for proved closing spring for stop devices for
swinging doors of carriages to prevent the striking the carriage-wheels. The device is entirely hidden from view when the door is closed.
Can-spoct.-Virginile A. Ifenky, Manhat-
 which protects the contents of the can against cludes the outside air from all but a small the surface of these conte DESK.-Robert M. Smith, Chicago, Ill working desk adapted for use in schools which combine both manual and academic studies. A reversible top is pivotally connected with slides mounted in slideways of a framing.
Upon the movement of the slides from one end Upon the movement of the slides from one end
of the desk to the other the top is reversed. It is to be understood that the one side of the op is designed to be used for manual training,

Designs.
badge. - Frederick Koch, Manhattan, New York city. The design shows the new Pan-American Lxposition badge which has re-
cently gained such wide popularity. The badge consists of two heart-
one beneath the
(Ani)Y-Molol)-Chathis Repetti, Manhattan, New York city. The mold produces a
andy which bears a design consisting of two crossed flags upon which a pan is superposed.
the dish of the pan bearing the head of a bufthe dish of the pan bearing th
falo. The purpose is obvious.
Grass-hook.-- Imeniy B. Lhaden, Wallingford, Vt. The shank of the hook is near the point. The blade hangs at an angle to the cutting edge lower than the back, siving free play for a broad swath, and preventing the
hand from coming in contact with the ground. PARING-KXIF Hackensack. N. J. The leading feature of the design consists of a blade having two points extending therefrom which are dished.
Note.-Copies of any of these patents will be flease thed Please state the name of the patarce, title of

NEW BOOKS, ETC.

The Victoria Jubilee Bridge. Complithe Grand Trunk Railway System. tis artistic little silvered metal covers and well illustrated with fine engravings, showing both the original ictoria tubular bridge across the St. Law which was finished in 1899 . Considerable in erest attaches to the original bridge, especialy as it was opened in 1860 by the Prince of Wales. A photograph of the Irince and party, re all reproduced in the book, which contains a complete description of this great engineering feat and its accomplishment.
Plain Facts Abolt tiie Automobile. By Albert S. Clough, S.B. Manchester,
N. H.: The Nature Study Press. 1901. 36 pp .
This pamphlet contains a popular description of the three systems now in use in this
country. viz.. steam, electric and gasoline. country. viz.. steam, electric and gasoline. A
comparison of them is made and the prospective purchaser is enlightened as to the advan tages and disadvantages. and a

Snap Shots. Photographic Paper. J. W. Whot Publishing Cditow York: Snap Shot Publishing Company. 20 pp .
This breezy little photographic paper is now
the midst of its ninth annual volume, and ontinues to be the purveyor of interesting raphic methods.
The Locomotive. Hartford Steam Boiler Inspection and Insurance Company.
Vol. XXI. 1900. 191 pp., $40 \mathrm{ill}$. The bound volume for 1900 of this little paper contains many articles of value to eng gires and boilers. A number of photographs of curious boiler explosions are reproduced.
and the causes gone into and described. In each number a monthly list of boiler explosions is given, as well as a list of boilers Bibeiotics. of The Study of Documents. By Persifor Frazer. Third Edition, greatly enlarged, rearranged and in
part rewritten. Philadelphia: J. B. Lippincott Company. 1901. 266 pp., 45 ill.
This little volume is a complete handbook for those interested in the determination of exposing forgery and fraud. The author uses sientific methods throughout, employing composite and micro photography for obraining
standard of comparison and for investigating tremors in the pen stroke respectively. IIs book describes (1) physical considerations (2) grammapheny. or the study of the indi-
vidual characteristics of the writing. (3)
the detection of forgeries, (4) chemical con
siderations, including a statement of the con
stitution of common stitution of common inks and chemical test applicable to documents by means of which
the nature of an ink may be ascertained. The author describes no less than seven method The book also has an appendix containing valuable notes on the scientific aspect an legal status of the subject.
Electric Lighting. By Francis B
Crocker, E.M., Ph. D. New York: Th D. Van Nostrand Company. ${ }_{1901}$ 500 pp., 391 ill. Price $\$ 3$.
This book, which is the second of two vol-
umes dealing with the subject. describes the distributing system and lamps, and covers al the generating plants. In treating each branch of the subject the principles are first branch of the subject the principles are first
stated with considerable fullness and are then followed by practical examples of prominent methods and apparatus employed in actual practice. Both volumes are intended as textbooks for engineering schools and as
handbooks for practising engineers, and thus hanabooks for practising engineers, and thus
all abstruse and detailed matter has been omitted as far as possible. The National Elec trical Code and the Report of the Committee on Standardization of the American Institute
of Electrical Enzineers are added as appenof E dices.
dit
The Trusts. By William Miller Collier New York. The Baker \& Taylor Company. 1900. 336 pp .
Mr. Collier should receive the thanks every business man for such a fair-minded and
able discussion of this great problem of the new century in America. He approaches the and views it in the light of past experience He shows the causes that have led to the gian corporations of to-day, as well as the dangers that lie in the monopolistic tendencies
of these corporations; and also indicates what appears to be the proper legislation to hold reaches is that the treck. The conclusion he of modern competition; that it is the most economical form of conducting industries, and that its only danger is in its power to become temporarily a monopoly and raise prices if it so desires. That such a course is in the end self-destructive he very clearly demonstrates.
A chapter on trusts and good suggestions as to one unappreciated aid in remedying the evil, while another chapte is devoted to all the various remedies. number of appendices give the various acts
that have been passed. both State and Fed that have been passed, both state and Fed-
eral., thus far to regulate trusts. The book is a fair-minded discussion of both sides of this burning question by an able student of economy
Untersuchungen teber Heterogeneses IV. Die Granula der Milch Gronigen plates. Gronigen: P. Noordhoff. 1901 Octavo. Pp. 102. Price, paper, \$1. The work before us is an ingenious demon stration of a new hypothesis that bacteria ar not individual living creatures, but only par
tial bions, proliferative forms of diseased protoplasm from which they have sprung by Stik le Système Glaydclatre des Fourmis. Par Charles Janet.
sur la Vespa Crabro L., Ponte, Conser vation de la chaleur dans le nid. Par
mercag zu einer Neuen Einfachen Vothol. W. Giltay, in Delft. Sonder abdruck aus der Electrotechnischen Zeitschrift. Berlin: Verlag von Ju-
lius Springer. 1901. Hus Spin
Etudes str les Fourmis, les Guepes ext
ues abeiles., Note 18 , Aiguillon de Les Abellues, Note 18, Aiguillon de la Myrmica rubra, Appareil de fer menture de la glande à venin. Par
Charles Janet. Paris: Georges Carrê et C. Naud. 1898. Pp. 27
The Practical Hotel Steward. By John Tellman, Chicago, Ill. The Hotel Monthly. A most excellent book which will be wel-
omed by all hotel and club stewards. It gives comed by all hotel and club stewards. It gives
precisely the information which stewards need to conduct the affairs of a house with economy The steward is very much in the position of a general of an aring. and in order to mak a success it requires unremitting attention to the smallest detail. The book before us gives samples of menus for various grades of hotels, samples of requisition blanks, etc., and takes rence. It is written by a thoroughly practical

The American School of Correspondenc of Boston has just published a Referenc trical and Mechanical, which comprises a set of five large and extremely handsome volumes. The elitors have been led to prepare this.
library as a result of sucess obtained in teachlibrary as a result of success obtained in teach-
ing engineering subjects to mechanics and othing engineering subjects to mechanics and ot
ers who are not deeply versed in mathematica science; and in the preparation of the librar adhered to throughout. The illustrations. which have been carefully chosen, number son

Business and Personal JJants.
read this columi carbfully:-Yeu wili find inquiries for certain classes of artigles facture these goods write us at once and we will send you the name and address of the party desir ing the information. In every case
sary to give the number of the inquiry MUNN \& CO.

Marine Iron Works. Chicago. Catalogue free. Inquiry No. 858.-For manufacturers of electric N.s.-Lefiel \& Co. springfiela, Ohio, U. s.A. Inquiry No. 8.59.-For makers of

Inquiry No. 860- For a hand. power machine for
ifting and mining baking powder. water wheels. alcott \& Coo, Mt. Holly, N. J. Inquiry No. 861.-For manufacturers of cigarete Inquiry No. 6 .2.-For a small engine driving tw Handie \& spoke Mchy. ober Mfg. Co.. 10 Bell st Inquiry No. ©63.-For a machine for making ic
in smail quantities adapted for hotel and family use. Sheet Metal Stamping: difificult
'he Crosby Company, Buffalo, N. X.
Inquiry No.
Sawmill machinery and outfits manufactured by the
Imaniry No 865-yor
For Sheet Brass Stamping and small
Badzer Brass sfg. Co.,
Kenosha,
Inquinv Yo. S66.-For parties to
tinware novelly on royaly or otherwise.
Rigs that Run. Hydrocarbon system. Write St
Inquiry No. 8isi.-For manufact
Ten days' trial given on Daus' Tip Top Duplicato In quiry No. $\mathbf{6 8 8}$.-For manufacturers of pum SA WMLLLS.-With variable friction feed. Send for
Catalogue B. Geo. . Comstock Mechanicsury, Pa.
Inquiry No. 869.-For whistles or other alarm
or gasoline launches. Wanted-Panch and Die Work. Press work and ligh
hanutg. Danuerty Novelty Woress Kittanning Pa Inquiry No. 870.-For dealers in 2 horse
alternating current dynamo, second-hand or new. We are equipped to manufacture all kinds of special.
ties. Send samples. Chicazo Handle Bar Co. Chicazo Ill. Inquiry No. 871.-For manufacturers of oil ma Machinery designed and constructed. Gear cutting,
The Garvin Machine Co. 149 Varick, cor. Spring Sts. N. Y Inquiry
No. .
kinetoscopes.
.
. Kester Electric Mf'g Cos, Self-fux ing solder save ago, Ill.

Inquiry machiuery.

The celebrated "Horisob.-Akrosd" Patent Safety ou

 The best book for electricans and beguners in elec By mail. 4 t. Munn \& Co. publishers. 361 Broad way X . Comquiry No 885.-For manufacturers of rotary Willsive one-haf imerest in welve inventions, y part of number. for money to perfect patent a
ispose of same. Address E . o. Stewart. K. Las Ve

Inauiry No. Dyt.-For manuacturers or
Urners to buri a substance in in vowdered form
Ele.ectin Exginerr (Tramways).-Wanted in Sew Zealaud, a thoroughly qualitied Eiectrical Eny neer, who must have had special experience in carrying
out and equipping overhead electrical tram ways an power statiousp. Fuli partienulars and conditions may be btained on application to Messrs. R. W. Forbes $\&$ son Produce Exchange, New York, and applications must
be delivered at the office of Messrs. John Duthie $\&$ C Latd. Lime Street, I.O.
Inginier No. 877.-For manufacturers of sugar
While it has alkr Mans the Thip?
Uack a beautiful trip over the Lackawanna Railroad to buffalo, yet the fact has not
bean so generally knowi as it has of late, and the he mos talked of vieces of scenery is the Delawa Water Gap, and it would pay any one who has never
made the trip to Buffalo by way of the Lackawanna to ake it and view this beautiful spot. Another great a antage is the shortuess of the ronte. It is a fact that
he I.ackawanna is the shortest road to Buffalo.-II surance Times.
Inquiry No. S78. For manufacturers of screw.
top, rund tin cans for liquids in quart and smaller
tizes.
 New York. Free on apolication.
Inquiry No. ©79.-For manufacturers of smal
maileable iron castings, near Canon City, Inquiry No. S80.-For manufacturers of alumI nquiry No. 881.-For manufacturers of glass. Jnquiry No. 88.
daking machines. Inquiry No. 883.-For manufacturers of copper Inguiry No. 884.-For manuf
and obio, of dress hnoks and eyes.

Inquiry No, 886.- For manufacturers of pipe
makilik machinery, also machinery for working and
Inquiry No. 887.-For small glass articles.

Inquiry No. S89.-For manufacturers of well drill ng machinery:

Inquiry Noi. 890--For a sand screen and elevator
Innuiry No. S91.
nake picture frames.
Inquiry No. S92.-For fertilizer dryers.
Inquiry No. 894. - For tobacco grinding m
Inquiry No. 894.-For tobacco grinding
Inquiry No. 895.-For glue machinery.
Inquiry No. 895.-For glue machinery.
Inquiry No. 896. - For vacuum pans for gla
Innuiry
machinery.
Inquiry No. 898.- For manufacturers of steam
iver boats of the stern-wheel pattern.

Inquiry No. 900.- For machinery for making coal

Inquiry No. 902.-For a toothpick machine Inquiry No. 903.-For manufacturers of diving
bels, suppuies, etc.

Hunctiduris

 HINTS TO CORRESPONDENTSnd not for publication. date of paper and page or number of question.
repeated; correseren indenteasonable time should be till bear in should mind that
reat some answers require not a little research, and,
though we endeavor to reply to all either by
letter or in this departent, each must take Buyers wishing to purchase any article not adver-
tised in our coumuns will be furnished with
addresses of the same. of Information on matters of personal
 price.
minent for examination should be distinctly
marked or labeled.
8215) C. J. K. asks: What horse powe lectric motor, connected to axle by doubl eduction gearing, would be necessary to dra train of cars weighing five to six pounds, track perfectly level? How many cells of aci motor should pull a couple of pounds on th drawbar, which is all that is required to dra weight of 6 pounds on a level track. SUP plement Nos. 783 or 1210 , price ten cents each, may contain plans which will meet the six the second of these motors.
(8216) U. M. writes: 1. I would like to ask a few questions in regard to volt-
meters described in Supplement No. 1215, meters described in Supplement No. 1215,
page 19480. 1. What necessary changes are equired to make the voltmeter register from to $12 ?$ That is, divide the full length o
cale into 12 divisions in place of $1 \because 5$ divis ons. A. To cause the needle to swing the whole length of the scale for a voltage one-
tenth as great. or for 12.5 volts, you should use one-tenth as much wire. 2. Would it be advisable to use copper plate of $1 / 8$ inc (which I have) in place of brass, for the back of voltmeter: A. There would seem to be
no reason why copper may not be used in place of brass, except that copper is harder to work han brass.
(8217) C. G. asks: Is nickel plate acted upon by photographic chemicals? A. rapidity, hence these dishes are not suitable for use in photographic work. Use hard rubber. celluloid. glass or porcelain. The use of nickel-plated dishes is unsafe in the kitchen for the reason that the acids of the foods will orm with the nickel compounds which a
poisonous.
(8218) J. L. M. writes: All wiring tables are figured mostly in algebra. I am
not up in this study, and wish you would give not up in this study, and wish you would give
me some table that can be worked out in plain multiplication and division for getting sizes of wire for carrying different amounts of current at different voltages any given distance and with different percentages of loss. A. Cushing's "Standard Wiring," price $\$ 1$ by
mail, contains the rules expressed in initial mail, contains the rules expressed in initia division. These can be easily learned and are the simplest form for expressing the rules.
(8219) C. H. asks: 1. Can glass be made by sand and potash falling between held in place before it will form into a liguid and would it then interfere with the carbon or current? A. We do not think sand could be melted in the time it would occupy in alling through between the carbons, and if fter it passed into solid in the same time You will find a furnace to be the cheapest way for melting sand and making the glass.
2. If glass were held in an arc would it break the current? A. Yes, if the heat did
not crack it too soon. 3. Would a blowpipe
have any effect on an arc the same as with
gas to direct the heat? A. No. The blowpip does not direct the heat of a gas jet. It pro due the heat. The heat of a blowpipe is the greater supply of oxygen furnished by th blast. It is a blast furnace on a small scale he arc would be cooled by a blast of air, he its heat is not due to combustion, as the ordinary flame. An arc can be blown out
to a point and act as a blowpipe by using an (8220) J. J. No
(8200) J. J. D. writes: In the Sciex rific American of March 23, page 178, I san the expression, "a current of three thousand
volts at the motors." Is the expression correct? A few weeks ago in your inquiry col "We in answer to a correspondent, you set the expression very frequently current of so many volts.' The statement entirely wrong. A current is measured in en
amperes, not in volts." A. The voltage of a
current is its pressure. The current is measured in "amperes." The expression so often heard, "A current of 10 volts," is not cor We confess that we do not always use entirel correct language; that does not prevent our pointing out incorrect language when it comes in our way to do so.
(8221) C. G. asks: Will you please publish in the Scientific American a descripdirect current of 125 volts? A. The Supple ment, pages 19602 and 19811, price ten cents Wehnelt interrupter The articles upon the Wehnelt interrupter. The interrupter is ad ing the length of the platinum wire which is in the acid.
(8222) R. H. C. asks: 1. In a copying camera or enlarging camera, how far from the source of light (incandescent gas burner) should the condensing lens (ground glass) be Place the ground glass one or two inches in ront of the negative. It will then diffuse the light of the lamp so as to give an even dilumination over the negative. 2 . At what hegative be placed? A. If a lens is used the negative should be quite near it, so that the negative shall be covered by the cone of
light from the lens. 3. What size should the condensing lens or ground glass substitute be or a 4×5 or $21 / 4 \times 31 / 4$ negative? A. Anyof lens or lenses should be used in enlarging to obtain the best results? And what size (diameter) should the lens be? A. The same lens that was used in making the negative will work to enlarge it to any size. If the lens (8223) W. T. M. writes: In answer 111, for specific heat of hydrogen and con volume for 0.2419 read 2.419 . The
ratio of the specific heats at constant vol ume and pressure is 1.41 for hydrogen and 3.4062 divided by 1.41 equals 2.419 A. We
confess the error. And yet we quoted the best authorities accessible. Our error arose from not verifying the calculation and making sure that the reference was correctly made. Since our correspondent has called our attention to the matter, we have been through a large
number of authors on this subject with innumber of autho
teresting results.

| | Specific IIeats.
 Constant
 Constant | |
| :--- | :--- | :--- | :--- |
| Pressure. Volume. | | | It is of course known by every student of

thermodynamics that the ratio of the specific heat at constant pressure to that at conand is 1.11 , for a perfect gas. is constant, at some time a table makes it plain that n giving the specific heat at constant volume. iving it as 0.24 instead of 2.41, and that this text to text. The oldest book quoted above was printed in 1876, and contains the erro more glaring error of the same sort is seen in the number given by Kohlrausch, 0.409, an obvious error, if one is inform on the subject: but a reference book is for the learner
and the uninformed. These cannot detect such misprint unless by a comparison of autho iwhich which may not be at hand. and for which there may not be time. Very few eminent an authority as Kohlrausch. We think we have shown that we were in good is not a solitary instance of errors travelins for a long time in textbooks without detection. Many an experiment has been printed without ang performed by the author. which was istry recently published by a professor in a university directs the student to collect chlorine by the displacement of water: IIe
will get some after the water is saturated, will get some after the water is saturated. rupt the complete success of the operation,

battery is in multiple the voltage is 0.667 the same external resistance the current give would be about one-half an ampere. 3. I
have a small toy motor which will run on two cells of the battery, if connected directly with after it has passed through the resistance
coil used for making the sparks for the en coll used for making the sparks for the en-
gine. Can you tell me why this is? A. This
is because the resistance of the coil is large as compared with that of the battery.
(8225) L. E. Dare asks: Is there an electric light which can be used successfully
at any depth of water and about at what depth: A. Any incandescent electric light
will burn under water at any depth if the wires and the lamp are protected from getting

TO INVENTORS.

An experience of over fifty years, and the prepa-
ration of more than one humdred thousand appli-
cations for patents, at home and abroad, enable cations for patents, at home and abroad, enaboth
us to understand the taws and practice ton both
continents. and to possess unequaled facilities for
procuring patents everywhere. patent laws of the United States and all foreign
countries may be had on aplication, and persons
contemplating the securing of patents, either at
home or abroad are invited of write home or abroad, are invited to write to this office
for prices, which are low, in accordance with the
times and our extensive facilities for conducting
ext

INDEX OF INVENTIONS

 For which Letters Patent of theUnited States were Issued United States were Issued June II I90,

DATE.
patents.] 676,235

 : 676 67, | 676,014 |
| :---: |
| 676,041 |
| 676,036 |
| 6 |

$\begin{aligned} & , 835 \\ & \hline, 240 \end{aligned}$	naces, condenser for fumes of metallurgi- cal, E. Balbach, Jr......................
676,367	G for projectiles or torpedoes, distance,
	Fuse ${ }^{\text {G. }}$ Safety
676,047	Game apparatus, H .
	Garment, F. H. Spr
	Garment
	Garmen
675,942	Gas and air heater for burners, C. M. Seifert
676,325	Gas and steam generator, combined, S. D.
675,940	
675,939	Gas, apparatus for making water, H.
676,249	Gas burner, oil, P. B. Spaulding.
676,298	Gas burner regulator, R .
676,308	burner self-igniting
676,198	
	Gas heater, G. White.............
5,921	Gas lines, automatic drip for
	Gas meter, prepaym
676,374	
	Gas meters,

Those Who Have

once experienced the delicious comfort, cleanliness and dryness of Dr. Deimel's Linen-Mesh Underwear will never go back to poison-laden woolens, sodden night and day with perspiration.

The Deimel Linen-Mesh System Co,
SAN FRANCISCO, CAL., III Montgomery St.
WASINGTN, 72 Fiftenth St., N. W.
MONTREAL, CAN. 2202 St. Catherine

SHOE BLACKKING.-FORMULAS FOR

 676,217
11,914

 cating into rotary, , converting Houlehan.
Motion

 676,044
676,305
676,230
676,002
6

 Nut lock, W. E. White........
Nut

 Penholder, A. Bergmann........
Percussion drill, B. H.
Phase compensation, producing,

676,2e5

676,097
676,200

 676,132
676,286

 676,343
676,260
676,160

$\begin{aligned} & \text { Refrigerator } \\ & \text { Refuse burn } \\ & \text { Rein holder. }\end{aligned}$
(Continued on page 398)

A USEFUL ATTACHMENT

YOUR BICYCLE
 Tells About Tools

Montgomery \& Co.'s Tool Catalogue.
510 papes, well printed. Copiously,
illustrateo. Avaluable book of refer-
ence for everybody interested in ence for everybody interested in
y. Mailed for 25 cents, sent to

Pratt \& Whito
Hartford, C.,
 STILLSON WRENCH

WALWORTH MANUFACTURING CO.,
128 TO 136 FEDERAL ST.,

Building Edition scientific American

SINGLE NUMBERS, 25 CENTS.

nagazine in the United States. It has many new and
mpartant features.
Send 25
cents for the umber, and see the new departments. The illustra-
tions and cover are more attractive than ever. Send

NEW DEPARTMENTS
onthly Comment

nterviews with Architects.

New Building Patents.

Digest of Current Articles.

Publishers,

361 Broadway, New York.

NGINEER'S LICENSE. MEMNTSS EVGNEERS SENT FREE. GEORGE A. ZELLER, Publisher, Rom of Engineers.

Straightens It Out

the rate of 120 feet per minute.
F. B. SHUSTER CO., New Haven, Conn., U.S.A

 THE BICYCLE: ITS INFLUENCE IN

Cover Your Refrigerating PIPES

Economical Gas Engine Igniters
 CAMERA

BY-THE-BYE, WHEN YOU BUY A BICYCLE

ELECTRIC LAUNCH MOTOR. - THE

 Dept.2, N.Y. Camera Exchange, 114 fulton mite., few few

OLDS MOTOR WORKS, 1328 Jeff. Ave., Detroit, Mich.
ELECTRO MOTOR, SIMPLE, HOW TO

"OLDS CASOLINE
ENGINES

A ROOF THAT IS WEATHERPROOF.

ATLAS ${ }^{\text {ENGINE,3N}}$
AUTOMATIC ENGIN will puil 30 H. Perfect cond
dition with good solid wood base attached. Guaranteed
to give satisfactionor money refunded. Adrass
Epitomist Publishing Co.,
Spencer. Ind.

ELECTRICAL ENGINEERING TAUGHT BY MAIL.

CAN I BECOME AN EL
TRICAL ENGINEER?

 REVERSING STEAM TURBINE.-PAR

WELL

DRILLING Machines on wheels or on sills. With engines or horse powered.
Strong Strong, simple and durable, Any mechanic
operate them easily.
tend for catalog.

REGE ALED TE MACHINES

 A GRADUATED Automatic REDUCING VALVE

Anyone senting a sketch and descrivtion may
quiccive ascertion our opinion free Whether an
invention is probably patentable. Communic

Scientific American.

 MUNN \& Co. ${ }^{361} 1$ rraaway, New York

 LABELS

\section*{| 36,592 |
| :--- |
| 36,558 |}

\section*{| 36,555 |
| :--- |
| 36,585 |
| 36565 |
| 36,564 |}

sto...................................... mand

PRINTS.
"Horlick's Malted Milk Cold,", for malted milk,

A printed copy of the specification and drawing
any patent in the foremoing list, or any patent
nrint issued since 1863 , will be furnished fro Trint issued since 1863 , will be furnished frat
this office for 10 cents. In ordering please sta
the name and number of the patent desire, a
remit to Munn \& Co.. 361 Broadway, New York. Canadian patents may now be obtained by the in
ventors for anv of the inventions named in the the ventors for any or the inventions named in the fore
going list. For terms and further particulars
address Munn \& Co., 361 Broadway, New York.

 Wanted Offers For anything new

AUTOMATIC MACHINERY

Wire Fencing, Nėtting, Wire Cloth, etc.
\qquad
Address: " WIRE WORKER, Box 973. New York.

ONLY WATER MOTOR toblow air A. ROSENBERG CO., Baltimore, Md.,U.S.A. PAN-AMERICAN HINT. Quick and Inexpensive Method. The great Pan-American Exposition hasrealized fully the expectations of the managers, while the great \qquad the many buildings is without equal, and the effecte ob- tained through the marvellcus color decorations are simply astsunding. The landscape work has devolved the grounds into a perfect paradise. The exhibits are a chosen lot and far superior in comparison are they to Buffalo, as a city. is a mosi delightful place, and ex- cursions can be made in every directicn to localities intensely interesting, but the greatest attraction save the marvels of the world. The Boston \& Maine Railroad is tourist to Buthalo from New England. The rates are the and its trains without question the best eduipped of any from Boston. The General Passenger Department of the Boston \& Maine Railroad, Boston, will upon application seud you a Pan-American older, which is repy in information of service and is yours for the asking

OLGA VENTURA OIL COMPANY

PUMPING PLANT BEING ERECTED ON OUR FIRST WELL.

	Only a limited amount of full paid, nonassessable sitock left at 15 cents per ghare,
productive oil reaion in Califorria, and surrounded by some of the heaviest producing wells in the	parce. value \$1.00. Don't wait; order at
Stateme The Union and Bard Connmaties'lands and	This is one of the very best opportunities
other numerous large producers ajoin the land	ever offered toparticipate in the enormous
PAYY. The Union Oil Company paid \$ $\$ 600000$ in	Dil.
dividends last year. The Paciftc oil company,	The price will soon be greatly advanced. Buy
dividends. One of its wells has produced more	now while your.
he Superintendent has had a large and success-	- Proceeds to apply in further developing and ope-
erience in sinking and operating Oil Wells.	her information and prospectus on application.
OLGA VENTURA OIL COMPAN	70 STATE STREET, BOSTON.

 SALE MN EUROPE, particularly in France of VOLNEY W. MASON \& CO., Friction Pulleys, Clutches \& Elevators Cement Books. How to Use Portand Cement. Cement and Engineering News, 162 La Salle St., Chicago.
DAMOUR \& LT TLEDAE MACHINE CO. PATTERN AND MODEL MAKERS. STATLER'S American HOTEL The Largest in the World. Send for map of
city and EXposition grounds, also folder telling how to
secure
 Accurate Model and Tool Work. Write for Circular
PARSELL \& WEED, $129-131$ West 3Ist St., New York.

$\mathrm{W}_{\text {hat }}^{?} \mathrm{D}_{0} \mathrm{Y}_{\mathrm{ou}}{ }^{2} \mathrm{~W}_{\text {ant }} \mathrm{T}_{0} \stackrel{?}{\mathrm{~B}_{\text {uy }}}$?

Write us er can tell you where to buy anything you want.
Write us for the addresses of manufacturers in ANY line of business.
Novelties, Special Tools, Machinery, Equipments, New Patent LABOR SAVING DEVICES. MUNN \& CO., Publishers of the ScIentific American, 361 BROADWAY, NEW YORK.
 every owne
WINTON MOTOR CARRIAGE Cold inRIAGE

Carbon system. Cost about ill EASTERN DEPoT, $150-152$ East 58 th Street, New York

of all varieties STORAGE BATTERIES. MOTORS.

and Busses. SCOTT AUTOMOBILE CO

8927-8939 Olive Street, St. Louis, Mo., U. s. A.

GET A RUNNING GEAR and BUILD YOUR OWN
AUTOMOBILE

We make two
styles, solid rub-
ber or pneumati tires, comple
with springs a
wood wheels.

WATCMES:

advertisement can properly portray
the striking etreects produced in our
watches. They are illustratedin our watc bes. They are ill ustratedin our
UE BOOK showing Ladies' Watches our Watches Either Blue or Red Bedo-date attractive designs. THE NEW ENGLAND WATCH CO., $37 \& 39$ Maiden Lane,
Sew York City.
Spreckels Buiding, San Francisco.
CRUDE ASBESTOS

EAGLE Acetylene Generators

TO CORRECT ERRORS UNION KNIFE \& TOOL GRINDER ${ }^{\text {sic }}$

CHARTER ENGINE
USED ANY PLACE

 Charter gas engine co., Box I48, sterling, ill THE ELECTRIC HEATER. - A VALU-

The Locke Adder.
 and UICKLY PAYS FOR ITSELF
 E. Locke mFc. PATENTS PROTECTED

Dealers and Manufacturers. Patented Articles Protected
against dangerous ilitiantion at a Also Copyrights and Trademarks. PATENT Boklet on application

CASTINGS AND WORKING DRAWINGS

"KODAK"
 Stands for all that is Best in Photography

To the perfection of Kodak construction, to the perfec= tion of the Kodak mechan= ism, to the perfection of the Kodak lenses, is due the

Griumph of Kodakery

All Kodaks Load in Daylight with our Transparent

EASTMAN KODAK CO. Rochester, $\mathbf{N} . \mathbf{Y}$.
$\underset{\substack{\text { GAS } \\ \text { ble and fully illustrated article } \\ \text { En } \\ \text { ENGis } \\ \text { thubect is }}}{ }$

Asbesto-

 Metallic Packings SHEETING, GASKETS. TAPE and PISTON PACKINGS.Will stand the highest pressure for either steam or

GOSEPH DIXON CRUCIBLE CO
Jersey cits. N. J.

STAMARD'S WONDER

