(2)

Dipper Dredge Making Finishing Cut.

Retaining Wall at West End of Reservoir.

A Completed Length of the Triple Aqueduct.

Gatehouse at North End of Reservoir.

Panoramic View of the Work, with Triple Aqueduct in Foreground.

Sumbifir dmeritam.

ESTABLISHED 1845

MUNN \& CO.,
Editors and Proprietors.
published wefkly at
No. 36I BROADWAY, - - NEW YORK.

 the stientific a merican publications.

 MUNN \& CO., stil Broadway. corner Frankin Street. New
NEW YORK, SATURDAY, JCNE 1, 1901.

The Elitor is allways plad to recerve tor examination illust rited
 Will receive special attention. Aceepted articles will be paid for at repuluar space rates.

the new edison storage battery

The first authentic account of the new Edison stor age battery was presented at the eighteenth annual meeting of the American Institute of Electrical Engineers, held in New York May 21. The paper was read by Mr. Arthur E. Kennelly. It is well known that the history of the storage cell is essentially tha of the lead cell cisiscovered by Planté in 1.860 , in which lead peroxide is the depolarizing substance. An enor mous amount of labor has in the aggregate been expended upon the improvement of this cell in the hands of experimentalists. As a result of that labor the storage battery has at last become a recognized adjunct to direct-curent central stations; but it has limitations that seem to withstand further attempts toward improvement. Of late years hardly any success has been met with in the direction of reducing its weight for a given energy-storage capacity without detriment to endurance, and this weight is the great drawback of the storage battery in electric storage battery traction, and has been the principal obstacle to its advance in this direction for the past twenty years. In practice the storage energy per unit mass of the modern lead battery may be expressed as follows: The battery weighs from 124.5 pounds to 186.5 pounds per horse power hour at its terminals. While it is possible to increase the energy per unit mass by making the electrodes very light, this has always been found to be followed by a very heavy deterioration. Many attempts have also been made to perfect storage cells of the alkaline zincate type, but the great difficulty of depositing zinc in coherent form from the solution, as well as the lack of a depolarizer that shall be insoluble in the electrolyte, has stood in the way of this cell's success. Mr. Edison set himself to the task of finding a cell which should possess the following advantages: absence of deterioration by work; large storage capacity per unit of mass; ca pability of being rapidly charged and discharged; capability of withstanding careless treatment; and inexpensiveness. The negative pole or positive ele inexpensiveness. The negative pole or positive ele
ment of Mr. Edison's cell, corresponding to the zinc ment of Mr. Edison's cell, corresponding to the zinc
of a primary cell or the spongy lead of a secondary of a primary cell or the spongy lead of a secondary
cell, is iron. The positive pole or negative element, cell, is iron. The positive pole or negative element,
corresponding to the carbon of a primary cell or lead peroxide of a secondary cell, is a superoxide of nickel, believed to have the formula NiO_{2}. The cell is, there fore, a nickel-iron cell, a name which suggests the structural material-nickel-steel. The electrolyte is potash, viz., an aqueous solution containing 10 per cent to 40 per cent by weight, but preferably 20 per cent to 40 per cent by weight, but preferably 20 per
cent of potassium hydroxide. In practice with the cent of potassium hydroxide. In practice with the
ordinary storage battery the storage-energy per unit ordinary storage battery the storage-energy per unit
mass of the modern lead battery is from 4 to 6 watt mass of the modern lead battery is from 4 to 6 watt
hours per pound of battery; but the storoge capacity of the Edison cell per unit of total mass of steel is 14 watt hours per pound. Expressing the same state ment in another way, the weight of the battery per unit of initial energy at the terminals is 53.3 pounds per E. H. P. hour. If the stored energy in the ordinary E. H. P. hour. If the stored energy in the ordinary
storage battery available at the terminals were all expended in gravitational work, a battery could raise its own weight to a vertical distance of from 2 to 3 miles. With the Edison battery it could lift its own weight to a vertical distance of approximately 7 miles The normal discharge period is $31 / 2$ hours. The cell may be discharged at a relatively high rate in approximately one hour. Charging and discharging rates are alike. That is to say, the cell may be charged at the normal rate of $31 / 2$ hours, or it may be charged at a relatively high rate in one hour with no great detriment beyond a somewhat lower electrical efficiency
The positive and negative plates are mechanically
alike and can scarcely be distinguished by the eye. They differ only in the chemical contents of their pockets. The construction of the battery is fully described in Mr. Kennelly's paper, which is published in full in the current issue of the Suphenent.
The cell is an oxygen-lift. Charging pulls the oxygen away from the iron and delivers it temporarily to the nickel. The condition is then stable, until the circuit of the cell is completed. The discharge then allows the oxygen to fall back from the nickel to the iron with the natural affinity of iron and oxygen. This action is very different from that which take place in the lead storage cell. In the new Edison cell the theoretical action of the potash solution is merely to provide the proper channel through which the oxygen ions may travel in one direction or the other-positive plate to negative plate in charge, and negative plate to positive plate in discharge. Secondly, negative plate to positive plate in discharge. Secondly,
the amount of solution needs only to be sufficient to the amount of solution needs only to be sufficient to
fulfill mechanical requirements. As regards cost it fulfill mechanical requirements. As regards cost it
is believed that the new cells can be produced at a is believed that the new cells can be produced at a
price per kilowatt hour not greater than the prevailing price per kilowatt price of lead cells.

last of the cable systems in new york.

By the time this issue is in the hands of our readers, the cable system of street traction which has done such yeoman service in New York city will be a thing of the past, and electrical traction will have taken another important step toward that day when it will be the only method of traction employed in the transportation of passengers in New York city. It was just a quarter of a century ago that the first cable road built on this continent was constructed in the city of San Francisco, and the system has fully lived up to the high hopes which were entertained of it when the San Francisco lines were opened. Although subsequent to that date, and prior to the inauguration of the Broadway line in New York city, electric trac tion had begun to assert itself as a practicable system, it was not at first believed to be equal to the successful handling of the enormous traffic which was certain to be encountered on Broadway at the time the cable line was put in. Even as late as the year 1897, President Vreeland, of the Metrop llitan Street Railway Company, stated to the editor that the man agement of that road considered that the cable was bet ter adapted than electrical traction for handling the extremely heavy traffic of that thoroughfare. An ex perimental underground trolley line, however, was at that time in operation on Lenox Avenue, and the Met ropolitan Street Railway Company was carrying on a course of experiments, which have resulted in the equipment of the whole of their north and south lines with the underground trolley system. The first impor tant thoroughfare to be so equipped was the Fourth Avenue and Madison Avenue line. Following this came the electrical equipment of the Sixth Avenue and Eighth Avenue lines. The results, judged from any and every standpoint, have been so invariably successful (the capacity of the line being enormously in creased and the operating expenses reduced) that it was only a question of time when the steel cables would be withdrawn from the conduits and the electric cables put in their place. The preliminary work of installing the necessary manholrs, insulators, etc., was done last year; and now, with a very brief interruption to traffic, the cable cars have been withdrawn, and the standard electric cars of the company placed on both the Lexington Avenue and Broadway systems. New York city now stands at the very front of the New York city now stands at cities of the world in the matter of rapid, cheap, and convenient street railway service.
opening of the pan-american exposition
The opening of the very complete and aitogether beautiful Exposition at Buffalo was marked by several features which render this Exposition unique among the many which are being conceived and carried out with ever-increasing frequency-a frequency which is, in itself, a striking sign of the commercial activity and development of our times. Among the features which entitle this latest effort to distinction are the fact that in conception and execution it is practically the work of a single city; and that in the combined har mony and strong individuality of its grounds and buildings it surpasses any like undertaking that pre ceded it. Moreover, the Exposition, which was so happily dedicated on the 20th of May, acquires distinction from the fact that there is about its aims and purposes a definiteness which has been lacking in some of the expositions, large and small, which have recently been held.
The proposal to make the Buffalo Exposition distinct ly Pan-American seems to have appealed from the very first to the country at large, and to the many republics which are embraced under the comprehensive name adopted. The United States government gave practical proof of its indorsement by an appropriation of $\$ 500,000$, and emphasized its approval by the state ment: "It is desirable to encourage the holding of a Pan-American Exposition on the Niagara frontier, in
the city of Buffalo, fittingly to illustrate the marvelous development of the Western Hemisphere during the nineteenth century by a display of arts, industries. manufactures and the products of soil, mine and sea. Invitations were extended by the national govern ment to the various governments of the Western Hemisphere, from Canada on the north w the Argen tine Republic on the south. The handsome assistance of the national government, and the hearty and ready co-operation of the governments of the Western Hemisphere found a quick response from the citizens of Buffalo. The matter was taken in hand with such thoroughness that the necessary funds, estimated at $\$ 10,000,000$, for the larger scope which the plans of the Exposition thereupon took on, were readily forth coming. New York State appropriated $\$ 300,000$ and other appropriations, ranging from $\$ 75,000$ by Illinois to $\$ 10,000$ by North Dakota, were voted by the various States, with the result that the sponsors of the Expo sition were enabled to plan the grounds and buildings on a scale, and with an architectural beauty and finish which entitle it to rank as one of the largest, and as many will think, the most harmonious and beautiful display of the kind ever attempted. Before leaving the question of finance and management, it is only just to say that the successful carrying out of such an ambitious scheme is the highest possible tribute to the energy, the resourcefulness, and the great public spirit of the citizens of Buffalo and the western sec tion of New York State.
A fact which has contributed largely to the success of the Pan-American Exposition was the timely recognition on the part of the committee in charge of the planning of the grounds and buildings, that both the landscape treatment and the architectural and sculptural elements of the Exposition should be made as highly distinctive and characteristic as possible. Since this was to be an American exposition, it was decided to plan the buildings so that they should be strongly suggestive of the architecture of the new world. At the same time, realizing that in the aptly named "White City" at Chicago the possibilities of treatment entirely devoid of color had been perhaps exhausted, it was decided to give a general color treat ment to the whole group of the Pan-American building as such. The preparation of plans along these lines was intrusted to a board of architects whose work can be appreciated only by a visit to the Exposition itself.
In pleaning the Exposition the board were favored by the fact that they were not cramped for room. The ground at their disposal being of generous propor tions, and of a fairly rectangular shape, they did no have to conform the layout of the buildings and the ornamental features of the ground to any hard-and fast, predetermined lines. The grounds are about one mile in length and half a mile in width. At the Buffalo end the landscape features are greatly en hanced by two large lakes of water, surrounded by gently sloping and richly wooded grounds, in which are to be found the two permanent buildings of the Exposition-one the Albright Art Gallery and the other the New York State building. Both of these are built of gray-white marble and are classically treated Passing down through the center of the Exposition grounds, entrance is made to the magnificent approach to the Exposition buildings; and here one has to admit, even with the beauties of the Paris Exposition of last year fresh in mind, that the present effort is more successful, not merely in one, but in every element of its landscape and architectural effects. As the eye ranges down through the long perspective of the Fore Court, the vast Esplanade with its accommoda tions for a quarter of a million people, the Court of Fountains and the Grand Basin, until it rests upon the stupendous pile of the Electric Tower, which last may truly be called the dominating feature of the whole Exposition, one feels that there is a pervading harmony and proportion which has too often been wanting in displays of this kind. Particularly happy is the way in which the water effects have been worked in among the assembled buildings, whether in the way of winding canals, or broad, placid lakes, or laughing fountains. As one wanders from plaza to courtyard, from courtyard to boulevard, one has a feeling that everything is just about where it should be, that noth ing could be omitted without a sense of loss, nor added without a sense of crowding and over elabora tion. Amid so much successful treatment, it is dif ficult to select any feature for special mention; but no doubt there will be a consensus of opinion that the bridge between the Fore Court and the Esplanade and the Electric Tower with its grandly curving wing springing sheer from the clear waters of the Grand Basin, are two of the most striking among the many beautiful effects which distinguish the Exposition
Dedication day was a pronounced success, both in respect of the large attendance, which was over 101,000 and the high character of the addresses which marked the opening ceremonies. As was natural, the keynote of the speeches was to be found in the name which is borne by the Exposition. It was certainly pardon-
able that "America for the Americans" should have veen the burden of the addresses; and it was natural, in view of the astonishing progress which has marked the closing years of the old and the opening year of the new century, that there should be an undertone of conviction, sometimes spoken and at all times suggested, that the center of wealth and civilization was finding its way by the inevitable operation of economic and ethnical laws from the Old to the New World.

HIGH-CLASS WOIIK AT OUR NAVY YARDS

The successful withdrawal of the damaged gun of the "Kearsarge" and the substitution of a new gun in its place, as carried out at the navy yard, Brooklyn, is another evidence of the high state of efficiency to which this yard has been brought in the past few years-an efficiency, we are happy to say, which, as far as the personnel is concerned, whether in the office or the shops, can be matched at any of the other yards of the navy. From the illustrations and description of these repairs which are given elsewhere in this issue it can be understood that the problem presented was as unprecedented as the method of its solution was ingenious and skillful. We are informed by Naval Constructor Capps, who is now filling the position at the yard vacated by Rear-Admiral Bowles on the latter's recent appointment as Chief of the Bureau of Construction and Repair, that much of the credit for this work is due to the intelligence and skill of the workmen and the great interest which they showed in the successful carrying through of an admittedly difficult job. By the same authority we are assured that his experience of the work and methods at both private and government yards justifies him in saying that results at our naval yards are to-day not merely equal but superior to those secured at the civil establishments. It was not always thus; and the present satisfactory condition of things is to be attributed largely to the emancipation of our navy yards from the last vestige of political control.

THE " FACTOR OF SAFETY" IN "SHAMROCK.

In the designing of previous challengers for the "America" Cup, Mr. George L. Watson has alway been held more or less in check by considerations of cost. On this occasion Sir Thomas Lipton gave him an absolutely free hand in the spending of money and this is probably the reason why so much experi mental work has been done in connection with "Shamrock II." The elaborate tank tests by which the shape of the hull was determined were only the beginning of the experimental work done in connection with the yacht. Sections of every tubular spar, and of every bit of wire used for rigging, were taken and tested to destruction before the weight of materials was fixed. In deciding upon these weights the margin left for safety was of the smallest, and the result brought disaster in the first three or four trials sailed
The first time she was under canvas in anything of a breeze brought out an abnormal stretch in the running gear and rigging, and the strain of bobstay and jib halyards on the bowsprit end found a decided weakness in the butts in which the heel of the bow sprit is set. They started from the deck, and before she could be brought out again a collar had to be fitted taking in the bowsprit heel and bracing it to the stem head. When these things were made good she wa started again, and this time she caught a shrieking squall which put her to rather a severe test. Again it was demonstrated how small has been the margin allowed for safety; for though the squall was nothing worse than might be expected, even in summer weath er, it left her lying helpless like a crippled seabird. It is said that trouble started as she drove before th wind with the breaking of one of the backstay blocks. The boom was square off and one backstay was, o course, slacked away. When the other stay broke the mast whipped like a fishing rod, and it looked for a time as if every spar was going overboard. The mast stood, but the gaff broke short off. The topsai yard was a hollow wooden spar made for "Valkyrie III." and would probably have stood well enough had the gaff held. The gaff was, however, built of stee plates only three-sixteenths of an inch thick, and th jerk of the mast was fatal to it. Discussing the accident afterward Sir Thomas Lipton stated, wisely enough, that if these things were too weak for racing strains, it was better that they should go then than in the actual contest. There is much good sense in this view; but the fact that so many accidents hap pened in weather which cannot be called abnorma proves how much Mr. Watson has sacrificed to the saving of weight. It has been a commonplace sayin with British yachtsmen that the principal factor aid ing the Americans in their successful defense of the cup has been the three thousand miles of ocean which divides Great Britain and Sandy Hook. One of th lessons of the trials has been to show that in the build ing of the latest of the challengers little has been conceded to the demands of the passage. Had the
yacht carried any handicap, in the shape of extra weight thrown in to strengthen her for the ocean pass age, it is not likely that she would have developed so many weaknesses during the trials.
[The truth of our correspondent's estimate has received a dramatic indorsement in the most unfortunate wrecking of the "Shamrock" by a sudden squall in the Solent. He is right, moreover, in showing that it is not the dangers of the Atlantic passage that handicap the challenger so much as the delay-the loss of that invaluable time for tuning up, which enables a "Columbia," for instance, though beaten at the start of the season by a "Defender," to beat the older boat by ten minutes before the tuning-up process is over.
For the first time in the history of the races the English yachtsmen have had a good start and a trial boat; but this accident will rob them of all opportunity for tuning-up trials, unless Sir Thomas Lipton is given a sufficient extension of time to compensate him for the delay. The New York Yacht Club has an excellent opportunity to extend a sportsmanlike favor to a gentleman whose sportsmanlike ways have strongly commended him to the American public There is a further reason for the extension in the fact that the end of August is a most unfavorable time for a contest, and the beginning of October will probably provide better cup-contest conditions thaï the date at first agreed upon.-ED.]

THE HEAVENS IN JUNE

The most conspicuous object in the sky during the short June nights will be Jupiter, low in the south east and south, with Saturn, much less bright, a short distance to the east. The two planets are now moving slowly to the west among the stars in their retrograde motion, and, in consequence of the more rapid motion of Jupiter, are slowly separating. By September the retrograde motion will have ceased, and the two planets will be moving eastward with gradually increasing speed. Jupiter, making the east ward circuit of the heavens in eleven years, will over take Saturn, moving much more deliberately eastward, in a period of thirty years; and at the end of Novem ber will pass by, nearly a moon's diameter to the south.

That Jupiter is much brighter than Saturn, several times as bright, indeed, is evident. But to estimate with any approach to the truth the number of time as bright, without instruments of measurement to assist the vision, is something quite beyond human psychology. In fact, even the measures are not so accurate as might be desired, when the photometer is introduced to suppress a measured percentage of Jupiter's light, so as to have the image seen by trans mitted portion, varied at will, to be adjusted equal to the undiminished image of Saturn.

The brightness of either planet varies considerably from time to time. The planet is sometimes a little farther from the sun than the average, and so is less strongly lighted by the central luminary, on whom he is entirely dependent for the light he sends out. He is somewhat nearer to the earth when both are on the same side of the sun, and so he looks a little bigger (in the telescope) and seems a little brighter than when they are on opposite sides of the sun. And in the case of Saturn the splendid ring may be edgewise toward the earth, when, on account of its excessive thinness, the light from it is substantially -nil; or the ring may be turned up toward us at such an angle that its apparent short diameter is half it long diameter, in which case the ring gives fully as much light as the ball of the planet.

Assuming that the reflecting power of the surface of Saturn is equal to that of the surface of Jupiter the theoretical ratio of their brightness is readily cal culated. Taking the planets as now situated, the dis tance of Saturn is almost double that of Jupiter, so that, in accordance with the law of inverse squares, a unit of surface on Saturn would receive from th sun scarcely more than a fourth as much as a unit of surface of Jupiter; the distance of Saturn from the earth is a trifle over double that of Jupiter, so that if Saturn's actual radiation were equal to Jupiter's he would seem from the earth to be scarcely a fourth as bright. Of the sun's radiated light, then, Saturn renders to the earth one-sixteenth as good an account per unit of surface as Jupiter. As the diameter of Saturn is 70,000 miles, and that of Jupiter 86,500 , the ratio of their surfaces is about as two to three, which would give for the light from the ball of Saturn about one-twenty-fourth, or 4 per cent, of the light of Jupiter. The light from Saturn's ring, which is now only beginning to recede from its widest open position, may be taken equal to that from the ball, so that the total light from Saturn should be, if the reflecting power of the surfaces of the two planets is equal, 8 per cent of the light from Jupiter. $\begin{aligned} \text { ithat the surface- }\end{aligned}$ reflecting power is the same in the two cases seems not to be quite true; photometric measures of the brilliancy of two planets, carefully taken, and com pared with their theoretical brilliancy, indicate that the surface of Jupiter reflects about 60 per cent of
the light received, and the surface of Saturn about 70 per cent. Perhaps it would be safe, at the present time, to take the brightness of Jupiter to be ten times the brightness of Saturn.

After their opposition to the sun in July both will decline a little in brightness, Jupiter a little more than Saturn.

Aside from the ring of Saturn, which is absolutely unique, the two planets are much alike. They are much larger than any of the other planets of the solar system. They both have a very low density, Jupiter a little more, Saturn a little less, than water. Both are brighter at the center than at the edge, and both have belts as their chief surface markings. Both rotate in about ten hours. Their spectra are very similar, giving strong atmospheric indications. On Jupiter at least the movements of the numerous spots are incompatible with a solid surface such as the earth's, while presumably Saturn's surface is similarly mobile; indeed, some suspicion exists that possibly there may be nothing of a true solid about either planet, even at the center.

tile planets.

Mercury will be visible the entire month, just after sunset, near to the horizon, a little north of west. This will be an unusually good opportunity to look at the innermost planet, which so few people have ever seen; in fact, in spite of the smallness of the area of the eclipse track of May, 1900, probably many more people saw Mercury, then close to the sun's corona, than have seen him the world over for the last ten years. Venus will be far enough away from the sun after the middle of the month to be comfortably seen; and at the end of the month will begin to be a good evening star, with Mercury a few degrees to the south. Mars will be seen in the west in the evening, having decreased in brightness so much as to be no longer conspicuous. Jupiter and Saturn will rise about dark and will be prominent objects the entire night, low in the southeast and south. Uranus will be visible to the unassisted eye as a very faint star about ten degrees east of the bright star Antares. the constellations.
Bootes will be overhead in the early evening, with Arcturus the most conspicuous star. Virgo will be in the southwest, and Scorpio in the south, the long curving line of stars of the latter stretching down from Antares being readily traceable on nights when the haze will permit. Ursa Major, with the big dipper conspicuous, will be in the northwest, rather high up. Aquila will be coming up in the east, and Lyra and Cygnus in the northeast. This portion of the heavens, while not very brilliant, is still a great improvement on the very dull constellations of the spring months.

SCIENCE NOTES

Dr. Franz Melde, professor of physics in the University of Marburg, died recently
Dr. William Jay Youmans, for many years the editor of the Popular Science Monthly, died April 10. He established the monthly in 1875
A new form of sealing wax has recently been devised. It differs from the ordinary stick wax in that it is inclosed in a glass tube, from which it may be poured by heating the cylinder.
The St. Louis World's Fair, which is to celebrate the centennial of the Louisiana Purchase, may be said to have made a beginning by the passage of an or dinance by the city of St. Louis authorizing the issue of $\$ 5,000,000$ in bonds. Congress may appropriate an equal sum at its next session.

The Peary Arctic Club has chartered for its work this summer the steamer "Erik," which was recently purchased from the Hudson Bay Company. The cruise of 1901 is the fourth of the series under the direction of the club to assist Lieutenant Peary. The "Erik" will sail from Sydney about the middle of July, and will return about two months later with full details of what has transpired in the two years since Peary has been heard from.
The eclipse expeditions report varying success in the observation of the eclipse on May 18. At Singkel, Sumatra, Prof. Todd reports that while the weather was good the sky was cloudy, and during the total eclipse of the sun no instruments could be operated except the polariscope and the X-ray apparatus. Six auxiliary stations were established on adjacent islands within 33 miles, and three of them showed a clear eclipse. No shadow bands were seen and the corona was invisible. President' Pritchett, of the Massachusetts Institute of Technology, received a cable message from Prof. Burton, in charge of the Technology eclipse party, announcing that important results had been obtained. The weather was cloudy during a portion of the eclipse, but all four contacts were observed and a brilliant corona was shown at totality which lasted nearly six minutes. Photographs were obtained The most interesting and novel work of the party consisted in the observations obtained photographically of the shadow bands.

DOUBLE-TRACK RAILWAY VIADUCT OVER THE DES MOINES RIVER

There is nearing completion across the Des Moines River what will be considerably the longest railway viaduct for its height in existence. While there are other viaducts of considerably greater height, what makes the Boone viaduct, as it is called locally, remarkable is the combination of height and length, and the fact of its being a double-track structure. In point of total weight of metal employed in its construction it is fully three times as heavy as the next largest bridge of the kind in the world.

	Kinzua.	Loa	Pecos.	Des Moines
Length.	,050	800	2,180	2,685
Height above water.	302	336	321	185
Greatest width at base	103	124	90	70
Wilth at grade	18	13	16	27
Nu.nber of tracks	1	1	1	2
Tons of metal	1,400	1,115	1,820	5.680

The loftiest of these structures is on the line of the Antofagasta Railway in Bolivia and is known as the Loa viaduct. It was constructed by English engineers in the year 1889. The height of the tracks above the water is 336 feet. As the crossing is over a narrow cañon, the length is only 800 feet; the great depth, however, involves a proportionate width of the towers at the base, the extreme spread of the columns being 124 feet. The next in point of height is the Pecos viaduct, which carries the Southern Pacific Railway over the Pecos River in Texas. This structure, which was built in 1892, is but little lower than the Bolivia viaduct, the height from water to rail wing 321 feet, and the total length from abutment to abutment is 2,180 feet. Then comes the Kinzua viaduct, 302 feet above the water and 2,050 feet in length. These three viaducts carry only a single track; and, as we have said, it is the width and consequent weight of the floor system, and the great breadth of the whole structure, which render the Des Moines viaduct so much larger than the other three, the total weight of steel in the structure being 5680 tons, as against 1,820 tons in the Pecos, 1,400 tons in the old Kinzua viaduct, and 1,115 tons for the Loa viaduct

The Des Moines structure consists of the viaduct proper, built of plate girder spans carried on braced towers, and a 300 -foo truss across the channel of the river. The towers consist of four legs of built-up latticed construction, with strong lateral and longi tudinal bracing between them. The spans across the towers are 45 feet in length and the spans between the towers are 75 feet. The substructure was built in the ordinary method, by means of derricks, which were carried by the towers, as they were built up, section by section, to the level of the underside of the plategirder superstructure. It should be explained that the much greater weight of the Des Moines viaduct as compared with the others mentioned in our comparison is to be attributed not merely to the fact that it carries two tracks, but also to the extra-
the new structure having been increased forty per cent to meet the heavier rolling stock of the present day.

The Preservation of Stonehenge.
A party of representatives of societies interested in archæology recently met Sir Edmund Antrobus at

A Near View of One of the Towers.
Stonehenge to discuss the details of the resolution passed at the recent conference in London. The party approved of all the suggestions made at the London conference. The work will be carried out as soon as the weather is favorable, by an architect and a civil engineer. Nothing in the way of restora tion will be attempted, the only object the socie ties have in view being the preservation of this most ancient memorial. The first work will be the raising of the huge monolith which overhangs the altar stone, as it is in a most dangerous condition, into an upright position. It is the largest and finest monolith in England, next to Cleopatra's Needle. At present it rests on a smaller stone, but there are two large flaws, or cracks, in it, and if it were to fall it is feared that it would be broken into three parts. Other stones will be put in position to support the lintel, which will rest upon them. Sir Edmund Antrobus

General View of the Viaduct

At the Channel Crossing, Showing Bridge Pier.

DOUBLE-TRACK RAILWAY VIADUCT ACROSS THE DES MOINES RIVER, NEAR BOONE, IOWA.
ordinary increase which has taken place of late years in the weight both of locomotives and rolling stock. The single-track viaducts were constructed at a time when the maximum load on the axles of rolling stock was very much lighter than it is to-day. A striking instance of the increase in weight of bridges, due to this, is shown in the comparison of the new Kinzua viaduct with the old one, the weight of the metal in
hopes to obtain permission to divert the roadway now passing through the earth circle which surrounds the stones and to proceed with the erection of a wire fence as approved by the conference in London.

The Union Iron Works has decided to use oil for fuel in their plant, and the necessary changes in the furnaces are being made.
of the trees took place only here and there, and thus a number of trees quite distant from one another were felled, while the trees separating them remained in tact. It is also remarkable that this great development of force took place without the least agitation of the air being felt in the neighborhood. The series of whirlwinds were found at distances of 500 to 600 feet apart.

THE UNITED STATES EXPERIMENTAL MODEL BASIN
The method of determining the resistance of a ship by towing a small-scale model of the same was origi nated by the late William Froude, who built a small tank for such work at Torquay, England. Demonstrations there made induced the English Admiralty to build a much larger basin at Hasler, near Portsmouth. In time other governments, particularly Italy and Russia, built similar basins, and one firm of private shipbuilders, Denny Brothers, were sufficiently enterprising to build a basin of their own. In this connection it is of interest to remember that the designer of "Shamrock II." carried on a series of experiments in the Denny Brothers' tank, which extended over a period of nine months, and that the model of the new yacht, according to its owner, has been determined largely by the results thus obtained, over sixty different models having been experimented with
The United States experimental model basin is situated in the Washington Navy Yard. The b:ilding is 500 feet in length and 50 feet inside width, the water surface of the tank being 470 feet in length, and the deep portion of the tank 370 feet long. The water surface is 43 feet wide, and the depth from the top coping to the bottom of the basin is a few inches under 15 feet. The basin is spanned by an electrically-driven towing carriage, which is capabl of a wide variation of speed, and is provided with a very complete system of stopping and starting control, all of which is operated from the platform of the carriage. The models are attached beneath the platform in the method shown in our engravings. A pair of brackets extends vertically beneath the bottom of the plat fom of the platform. They carry at their lower
end a towing rod, end a towing rod,
which is connectwhich is connect-
ed to the dynamoed to the dynamometric apparatus by which the resistance of the model is automatically recorded upon a drum, carried upon the platform above. The resistance is measured directly by a spring. The forward end of the spring is attached to a bracket which is
screwed forward or backward by an electric motor and a rigid arm runs up from the bracket and carries a pencil which records its position on the drum. The record, then, is of the position of the forward bracket. The after end of the spring takes hold of a small crosshead, to the other end of which is attached a towing rod, which takes hold of the model. This crosshead has a very slight play between stops in the after fixed bracket, and when it touches either stop it closes an electrical contact which further throws an electric clutch, by means of which a motor

Scirntific Amrricau.

running all the time screws forward or backward the forward bracket, thus increasing or decreasing the tension of the spring until the contact is opened again. After the carriage has been started and a uniform speed is obtained, the operator throws in certain automatic appliances which start the record drum. The drum makes a record of the time, the run
speed to the resistance of the full-sized vessel at the speed at which the latter is designed to run. In making tests the model is towed at various speeds, and a curve of resistance is plotted from which the naval architect is enabled to determine with great exactness the amount of resistance of the fullsized vessel and, therefore, the total horsepower which will be required to drive her at various speeds. Two of our illustrations show the wave line produced by the model of the battleship "Georgia," when it was being towed at speeds of 4.15 knots and 6 knots, which correspond respectively to speeds of 19 knots and 27.50 knots in the full sized vessel. Regarding the change of level of the models under different speeds, the tests developed the fact that at low speeds of 2 or 4 knots , both bow and stern settle. As the speed increases, the bow gradually ceases to settle, and then begins to rise rather rapidly. A rather rapid rise continues until the bow returns to its original level, and if the speed is pushed high enough
ETHOD OF ATTACHMENT OF MODEL TO TOWING PLATFORM
and the resistance of the model. The amount of the pull of the towing rod, which, of course, represent the resistance of the model, is determined by means of a kind of weighing machine, which is provided with one vertical and one horizontal arm, the machine being delicately balanced. When the model has been connected up and is ready for towing, a knife edge which bears upon the vertical arm, is connected to the model, and a known weight is put into the scalepan attached to the horizontal arm. The automatic attachment in connection with the dynamometer it rises above that level. As the bow tends to rise the stern shows a tendency to sink more rapidly, with the result that the center of the model invariably set tles when it is well under way. The fact that the model settles bodily does not necessarily imply greater immersion, since the water level is disturbed by the passage of the model. In conclusion it is interesting to compare the maximum speeds of vessels whose models have been tested with the corresponding speeds of the models. Thus the "Oregon" class, 348 feet in length, showed a speed of 16.8 knots for a model speed of 4.03 knots; the "Kentucky" and "Alabama" class, 368 feet in length, a speed o 17.1 knots as compared with ome model speed the model speed of 3.99 knots while the "Georg ia" class, for a length of 435 feet and an estimated maximum speed of 19 knots showed in the models a corresponding speed of 4.07 knots. We are indebted for our photographs to the courtesy of Rear-Admira Bowles and Naval Construc tor Taylor, who has the towing
spring is then thrown into gear, and the weighing machine is screwed forward or backward until it is in perfect balance. Under these conditions the pull of the spring is exactly equal to the weight in the scale pan.
The models are of a uniform length of 20 feet, and they are built with the greatest care exactly to scale, being in their lines and displacements a perfect reproduction of the ship whose resistance is to be determined. Mr. Froude determined a formula giving the ratio of the resistance of the model at a certain
tank immediately under his charge.
The Niagara Falls Power Company is about to pro ceed with the development of the power of the Horse shoe Falls. The present plan of the company is to develop 35,000 horse power. A third of this amount will be used to operate an industrial establishmen outside Victoria Yark, on the Canadian side; a third is to be transmitted to Toronto, and the remainder s to be held in reserve for the use of the Niagar Falls Power Company

It is now JEROME PARK RESERVOIR.
of this nearly seventy years since the authorities of New York city's water supply, which resulted in the construction of the Croton reservoir some 40 miles north of the city. The scheme as ultimately developed included this reservoir and an aqueduct now known as the Old Aqueduct, which extended from the reservoir to New York, and had a capacity when running entirely full of $90,000,000$ gallons in twenty four hours. In 1890 the new aqueduct with a capacity of $300,000,000$ gallons per day was completed. This structure was built as far as possible in tunnel, and was carried in a practically straight line from Croton reservoir to the Harlem River. Both aqueducts dis charge directly into a terminal gate-house at 135 th Street, from which the water is led by 48 -inch pipes into the city mains, and into the Central Park reservoirs, which latter have a capacity of a billion gallons of water, or sufficient for somè thing over four days' supply for the city. As a result of the comparatively low level of these reser voirs, the high-water level being only 115 feet above the sea, the pressure fails before they are empty and the remaining water ceases to be available on the higher floors of the city buildings. On this ac count, the actual supply available in the Central Park reservoirs is only sufficient for about three and a half days, and were there to be any failure of the Croton reservoir, or in the connecting aque ducts, the city would be confronted with a wate famine. It was for these reasons that the Aqueduct Commissioners determined five years ago to con struct an additional reservoir at the city end of the line, to have about double the capacity of those in Central Park.

The Jerome Park reservoir, as the new storage basin is called, is located on a lofty ridge, which runs north and south between the valleys in which are located the New York and Putnam and the Harlem railroads. It takes its name from the famou race-course, which is indicated in the accompanying map of the locality, by the white dotted line within the area of the reservoir. The site is admirably adapted by nature for the excavation of a large arti ficial basin; for at this point there is a genera depression in the summit of the ridge, and the labor of excavating and embanking the reservoir has been proportionately lessened. The greatest length of the reservoir in a north and south direction is a little over one mile, and its greatest width half a mile, its area being 229 acres. The whole of the bottom is being excavated to a uniform depth of $261 / 2$ feet Such is the configuration of the ground that for about half a mile of the perimeter of the lake the waters will be held in by the natural ground, and the other half will be contained by an artificial embankment built of earth put down in 6 -inch layers and well rolled and tamped. The outer face, which has a slope of 2 to 1 , will be sodded, and the inner face with a similar slope will be covered with 6 inches of concrete and a paving of granite blocks, the paving being carried up to about $21 / 2$ feet above high-water line. The embankment is 20 feet wide at the top, and to assist in rendering it perfectly impervious to water, a vertical wall of first-class masonry has been built in the center of the embankment, starting from bedrock and rising to a level somewhat above the high-water line. As is explained later in this article this form of embankment has been modified wherever the nature of the subsoil demanded a heavy retaining wall on the inner face.
Although the total amount of excavation is greatly lessened by the natural depression of the ground, there is no point where it is carried less than 16 feet below the natural surface, the bottom of the finished reservoir being everywhere $31 \frac{1}{2}$ feet below the top of the embankment. Add to this the fact that there are many parts of the site, such as the rising ground upon which the old Jerome Park Club House stood, which were considerably higher than the present top of the embankment, and it will be understood that the total yardage to be excavated reaches a very high figure. As a matter of fact, the total estimated excavation at the commencement of the works was $6,500,000$ cubic yards, of which at least one-half is solid rock; and since excavated rock occupies about double the space that it does in the solid mass, and subsequent changes have raised this total by 300,000 cubic yards, the contractors, by the time they have completed their work, will have to dispose of about $10,000,000$ cubic yards of material. At the present writing an estimated total excavation of $3,933,000$ cubic yards has been taken out, loaded on cars and carried, most of

MAP OF JEROME PARK RESEFVOIR AND VICINITY.

separate basins. Opposite the point where the shaft which rises from the aqueduct tunnel pierces the reservoir, there is a large main gate-house which connects with the shaft by a short conduit. To the south of the gate-house the new orueduct is carried through the reservoir as a double-barrel conduit, each conduit being 11 feet in diameter, and the old aqueduct is carried above these at its former elevation, as shown in the accompanying figure. Fifteen hundred feet south of the gate-house one of these conduits leads into the western, and the other into the eastern basin of the reservoir. Radiating from the main central gate-house are six lines of 48 -inch pipe, two of which leave the reservoir to the northwest, two to the west, and two to the southeast, one of these leading to a high service pumping station. At each of these three points of exit is a gate-house, and the main gateconnects with the shaft by a short conduit. To the feet south of the gate-house one of these conduits
it, toward Long Island Sound, where it is being used in filling in swampy ground and depressions in Bronx and Pelham Parks. The excavation is being carried on with powerful steam dredges and diggers; and during the past three years the interior of the basin has been covered with a network of tracks. As the work was carried down to grade, the tracks were removed, and at present they are concentrated against the western wall of rock. They lead to a main line, which passes out of the reservoir, crosses the Harlem Railroad tracks by means of a bridge, and runs down to the tide lands of Long Island Sound.
Two of our illustrations show the very important work which is being done in the construction of the triple aqueduct which bisects the reservoir from north to south. Both the old and the new aqueducts pass through the site of the Jerome Park reservoir on their

SECTION THROUGH TRIPLE AQUEDUCT BELOW MAIN GATE HOUSE.
way to the city, their position being indicated by the dotted lines in the accompanying map. The old aque duct was at ground level and the new aqueduct some 100 feet below the surface. The bottom of the reser voir is below the old aqueduct foundation, hence it was necessary to remove the latter altogether, and build an entirely new structure, in which has been incorporated a branch aqueduct from the new aqueduct. At a point about a mile to the north of the reservoir the new aqueduct is at ground level. Here it begins to descend, and is carried in a tunnel at a depth of about 100 feet below the reservoir. At the cente of the reservoir a vertical shaft rises from the aque duct to the reservoir bottom. A gate-house has been put in the new aqueduct where the tunnel commences and a surface branch of it has been built, which runs parallel with the old aqueduct until the northern entrance of the reservoir is reached. Here the branch and the old aqueduct are embodied in one compact masonry structure, which is built up from the solid rock of the reservoir bottom, and extends from northeast to southwest, dividing the reservoir into two
house connections are so arranged that these pipes may be supplied with water from either basin of the reservoir, or directly from either the old or new aqueduct.

The plans for this gate-house, which is one of the most important pieces of work in the whole scheme, have been revised by the present Chief Engineer of the Aqueduct Commission, William R. Hill. The present design is so arranged as to secure a maximum number of combinations and by-passes for the proper control of the water. The mass of masonry is approximately circular in plan and contains within it 22 separate gates. Broadly speaking, it may be said that the new aqueduct is conveyed directly through the northeastern and southwestern axis of the main gate-house, while the old aqueduct is conducted in a broad curve around its western circumference. The total amount of excavation has been raised by certain changes in the direction of the embankment along the northwesterly side of the reservoir, where for a length of 2,300 feet the central core wall has been dispensed with and a massive retaining wall carried from the high-water level down to bed-rock has been substituted on the inner face of the embankment. This was necessitated by the exceedingly poor nature of the sub-soil at this place, which was found to approximate a shifting quicksand in constituency. The extra excavation necessitated by this form of wall has provided a larger water space within the reservoir, and it has been found that the saving in concrete and paving secured by dispensing with the inner sloping of the embankment at this point and the value of the increased storage for water more than offsets the extra cost of the heavy retaining wall. The present estimate for the total excavation is $6,900,000$ cubic yards of material, of which $3,900,000$ is earth and $3,000,000$ is solid rock. Of this total $2,286,000$ cubic yards of earth has been taken out and $1,647,000$ yards of rock, so that some thing less than two-thirds of the work has been completed. The capacity of the easterly basin is $1,085,000$, 000 gallons, and the capacity of the westerly basin $765,000,000$, making a total of $1,850,000,000$ gallons. It is expected that the excavation of the westerly side of the reservoir will be completed this year, and that in the spring of 1902 the process of concreting and finishing will be under way, in which case one basin of the reservoir will be in use some time during the latter part of 1902 or the spring of 1903 . The total cost of the finished work will be $\$ 5,840,000$.

In a subsequent article we shall treat of the methods of excavating and handling the material on this great work.

German Life-Saving Apparatus.

A new life-saving apparatus is being introduced into Germany. It consists of a buoy of globular form and carrying from two to four life belts, and supports a long cylinder of sheet tin having twelve compart ments filled with carbide of calcium. These compart ments are arranged at different elevations. When the apparatus is thrown into the sea, the water passes thrnugh perforations in the bottom of the cylinder, and, com ing in contact with the carbide, generates acetylene gas. Each compartment is connected with a burner by a pipe, valves preventing the escape of gas except through the burner. When the volume of gas decreases, hydrostatic pressure opens the valves and allows water to penetrate into the next com partment to generate an additiona supply of gas. The gas is lighted electrically, and ignition takes place about twenty-five seconds after the buoy is thrown into the sea. The light produced is equal to 150 candle power, and the flam is protected from the wind by glas and burns steadily with great il. tensity for three or four hours. It requires only a few minutes to clean and refill the apparatus.

Atlanta and Dayton have a unique system in their fire departments. They clean up the premises after the fire is out, and at Atlanta each hook-and-ladder truck has, in addition to the regular equipment, tar paulins, tubs, buckets, sponges, brooms, and everything necessary for cleaning up a building after a fire. After the conflagration is over, the firemen take out all of the burnt timber, plaster, laths, etc., in the building that has not been entirely destroyed. The goods are covered with tarpaulins to prevent water and plaste from falling on them, and the removal of the charred boards, planks and plaster never fails to decrease the fire loss. The expense is practically nothing, as the work is done by the firemen.

The well-known English constructors, Vickers, Sons \& Maxim, have lately built an automobile mitrailleuse of the Simms type, designed to run upon rails and re place the present system of armored trains. It is diriven by a 7 horse power Simms motor, with ignition by magneto machine. Three speeds are provided-8, 16 and 24 miles an hour. The motor is water-cooled, and it is stated that only two gallons of water are required. The total weight of the machine is 2,800 pounds. The length is 7 feet, width 5 feet 6 inches, height 4 feet. It is completely protected with armor and the wheels are covered.
The automobile designed for the Shah of Persia has recently been finished by a Belgian firm. This vehicle is a landau of five places, and cost no less than $\$ 22,000$. The interior is upholstered in pale gray brocaded silk and the carriage body is finished in blue with gold ornamentation; the wheels and truck are in red. At the sides are two lanterns of very handsome design, of gilded metal work and beveled glass, bearing the Lion and the Sun of Persia. The carriage body is ornamented with the arms of the Shah, whose name is surrounded by a branch of laurel and of oak, sur mounted by the imperial crown.

The Artillery Station at Vincennes, near Paris, is making arrangements to purchase all the automobiles possible in case of mobilization, and to this effect has addressed a circular to automobile owners requesting all the information which will be necessary in such case. It is desired to purchase both auto mobiles and motocycles, but the preference will be given to closed vehicles. The conditions of sale have been established on two general principles. First, the estimation of the value of the vehicle at the present time, according to an agreement between its owner and the Artillery Administration. Second, the fixation of the final value at the time of taking possession, taking into account the condition in which the machine is then found. The Artillery cannot require the delivery of the automobiles except in case of mobilization, and even in this case it reserves the right to purchase or not, as it may choose.
The Self-Propelled Traffic Association, of Liverpool, has organized a competitive test for heavy weight automobiles such as delivery wagons, tractors, etc., to commence on the 3 d of June. The vehicles are divided into four classes. First, those weighing less than 2 tons empty and carrying a load of $11 / 2$ to 2 tons. The platform surface must equal 45 square feet, and the speed 8 miles an hour. Second, vehicles weighing empty 2 to 3 tons and carrying 2 to 5 tons of load. Surface 75 square feet and speed 5 miles an hour. Third, vehicles of at least 3 tons empty, without maximum limit of weight. They must carry more than 5 tons load, with platform surface of 95 square feet and speed 5 miles an hour. The fourth class has no limit of weight of the vehicle nor of the surface; the minimum load is to be 4 tons. Steam-propelled vehicles are to be represented for the most part, but it is expected that petroleum machines of the Panit is expected that petroleum machines of the Pan-
hard or Daimler types will be entered. The complete hard or Daimler types will be entered. The complete
programme may be obtained from the secretary, Mr. programme may be obtained from the secretar
Shrapnell-Smith, Royal Institution, Liverpool.
The automobile industry in Germany is making rapid progress, as is proved by the new machine of the Mercedes type which won the speed race for four-place vehicles at Nice. Its motor has four vertical cylinders, and will give no less than 35 horse power at 1,000 revolutions per minute. The ignition is; on the Mayback system, using a magneto machine which gives a long spark. The admission valves of the cylinders are controlled by a regulator which permits of using from one to four cylinders at will. The motor is water cooled, and uses only $1 \% / 1$ gallons of water. In one test, over a run of 277 miles, not more than 1 per cent of the water was lost. The radiator has the form of a honeycomb, and contains as many as 5,800 tubes; the action of the radiator is assisted by an automatic ventilator, and the water is kept at a temperature of 50 degrees C. The motor has four speeds of $17,28,50$ and 72 miles an hour. It icc claimed that this latter speed may be attained after the machine is once well under way. The speedchanging gears are inclosed in a tight case. The truck is built of steel angle-iron; it is 23 inches from the ground, and the lowest part of the machine, 11 inches. ground, and the lowest part of the machine, 11 inches. The front wheels are 36 inches in diameter and the
rear 45 inches, carrying pneumatics of 3.6 and 4.8 rear 45 inches, carrying pneumatics of 3.6 and 4.8
inches respectively. Three metallic brakes are provided, these having a novel system of water-cooling which proved of great value in the races at Nice. The steering is carried out by the hand-wheel and endless screw system, with, however, several important modifications. The machine is provided with roller bearings of the Lorenz system. A central lubricator, bearings of the Lorenz system. A central lubricator,
worked by the motor, oils the whole system. The worked by the motor, oils the whole system. The
motor is very li for its capacity, as it weighs, in$\begin{array}{lr}\text { motor is very li } & \text { for } \begin{array}{l}\text { its capacity, as it weighs, in- } \\ \text { cluding flywhee }\end{array} \quad \text {, oil pump and water-cooler, }\end{array}$ cluding flywhee
only 524 pound this interesting
oil pump and water-cooler,
details and illustrations of
will be given later.

Dr. W. Seward Webb, first vice-president of the New York Central and Hudson River Railroad, made the trip from San Francisco to New York in 79 hours.
A large gasholder has recently been built of cement concrete. Several tanks have been built on this system, one of them 53 feet in diameter and 25 feet deep (both inside measurement), with its upper part 10 (both inside measurement), with its upper part 10
feet above the natural surface of the ground. The feet above the natural surface of the ground. The
walls are 30 inches thick at the bottom and 23 inches at the top.
A recent cold water paint calls for wet casein or milk curd, which is mixed with any suitable mineral base, dried and ground to powder. Some of the product is mixed with slaked lime and glue in the presence of water. This is then dried and ground to powder. of water. This is then dried and ground to powder.
The two main compositions are then mixed, the white The two main compositions are then mixed, the white
and the colored pigment added, and the whole is diand the colored pigment added, and the whole is di-
luted with water to a working consistency. The material is claimed to be waterproof, not to act upon the brushes, and may be diluted as required and always gives a uniform appearance, even if the entire surface is not treated at the same time.
The locomotive builders in Great Britain are at present experiencing a decided increase in trade. In addition to the large numbers of locomotives that are under construction for the home railways, Natal has just entered into contracts with the leading firms for the supply of 75 locomotives, 600 freight and 54 passenger cars. The government of Cape Colony are also placing their contracts for locomotives and rolling stock, for the greater part, with the British manufac turers. Belgium has also purchased several of the Dunalastair type of railroad locomotives, which have proved eminently successful upon their railroads.

It is said that the London War Office is contemplating the purchase of Dr. Barton's war balloon. It is of cigar shape, and has a platform and machinery sus pended from the balloon. The propellers are driven pended from the balloon. The propellers are driven plane for causing the balloon to ascend and descend, and at the rear there is a vertical aeroplane steering to the right and left. The difficulty which arises from moving the center of gravity is overcome by $21 / 2$-foot water tanks at each end, water being automatically pumped from one to the otrer as either end of the machine becomes heavier. At the end of the summer it is thought that the balloon will carry three persons at the rate of twelve miles an hour.

For some time past the London County Council have been conducting experiments in connection with the utilization of liquid fuel for fire engines. In 1899 a steam fire engine was equipped with the fittings necessary for liquid fuel consumption, as invented by the Clarkson \& Capel Steam Car Syndicate. This engine has been maintained at one of the busiest, stations, and the chief engineer has reported that the oil fuel meets the requirements admirably in every respect. Another existing steam fire engine is to be fitted with this oil fuel apparatus, and two large steamers that are now in course of erection will also be similarly adapted. It is stated that probably all the fire engines of London will be fitted with this ap paratus.

Weston Howland, who is said to have been the first discoverer in America of a method for refining petroleum, died May 19, at Fair Haven, Mass. In 1860, when Secretary of the New Bedford Coal Oil Company, he began experiments with a view of getting a better illuminating oil than the crude material. He used a large kettle for a condenser, and succeeded in distilling the petroleum. The result was a mixture of oil and water. He then tried a milkpan and added alkalies and water to the crude product. $\mathrm{H} \epsilon$ again produced a thick, ill-smelling liquid, and he put the pan and its contents away in his barn. The next day he found the problem had been solved; the rays of the sun had completed the process. He car ried on the manufacture of refined oil for some time.

A new method of manufacturing Oriental carpets has been placed upon the market by an English syndicate, which has secureu the entire rights from the inventor. It relates principally to the weaving of Turkish "piled" and "tufted" carpets, and the process embodies an advance as revolutionary as the inventions oit Lord Masham. By hand about half a day is occupied in making a square yard of this textile fabric, but the Hallensleben power loom, as it is called, has a capacity of 35 square yards per day, and the material is equal in every respect to the finest hand-made Oriental productions. The loom is very ingenious in its arrange ment, since the shuttle is dispensed with. The advantage of this system is that low-grade materials hitherto considered useless may be utilized, while a great economy is effected in time and power. The process of coloring the yarns for the design is another novel feature. This again is almost entirely accomplished by hand. and it is consilered, in view of its simple character, that it may be adapted to other ramifica tions of the textile industry.

The Attorney-General of Massachusetts has just rendered a decision in relation to the constitutionality of the bills authorizing street railways to carry merchandise in small packages. He finds that the bills are constitutional.

A French inventor has devised a way of awakening sluggards. Means are provided by which the weight of a person in bed makes an electric contact. A bell and a clock are placed in the circuit, and when the proper time has arrived the clock breaks the circuit and a bell rings until the sleeper is awakened and arises.
Consul Warner, of Leipzig, says that the longdistance telephone line connecting the cities of central Germany with Frankfort, Kalk, Mühlheim, Cassel, and Wiesbaden, in the western part of the country, has been opened for use of the general public. The charge for using this line is 1 mark (23.8 cents) for every three minutes to any one of the above-mentioned places.

Consul Grout, of Malta, notes that recent experiments in wireless telegraphy off the coast there have resulted in the successful transmission of a message 134 miles. While experimenting on a ship in the open sea, he adds, the operators were surprised toreive a message in Italian, asking as to the position of the ship. It afterward turned out that the message came from an Italian war vessel at Syracuse.

Westminster Abbey is to be illuminated with electricity. Gas has been used for a long time as an illuminant in the Abbey, but the gas sets up a chemical change in the limestone which is followed by disintegration, and a few weeks ago a small marble shaft fell from one of the windows in St. Andrew's Chapel, the iron pin which had sustained it for six hundred years having become corroded.

Next summer the Paris, Lyons and Mediterranean Company will operate an electric railway from Ge neva to Chamouni, the time being $31 / 2$ to 4 hours. It is expected that the line will be in operation by July. The trip to Chamouni has heretofore been very long and tiresome, and it is probable that the new road will prove very popular to those who wish to economize time and money.

The number of inhabitants per 100 candle power of street illumination in some of the larger cities of the United States was given as follows by Mr. E. C. Jones, chief engineer of the San Francisco Gas and Electric Company, in a paper in The American Gas Light Journal: San Francisco, 40; Boston, 44; Cincinnati, 51; Chicago, 58; Cleveland, 65; Buffalo, 65; New York and Brooklyn, 86; Baltimore, 101; Omaha, 120.
Consul-General Guenther, of Frankfort, March 25, 1901, says it is reported from Brussels that the central African telegraph line connecting Brazzaville with Loango, on the west coast, has been completed, and that direct communication with Libreville may be had from any station of the English-Atlantic cable. The consul-general adds that the cable from Brazzaville to Stanley Pool, which is being laid to connect with the telegraph system of the Kongo State, will ultimately be extended to Lake Tanganyika, where it will form a conjunction with the German East African system.
The statistics collected during 1899 showing the damage done by lightning have been published by the Weather Bureau. The number of buildings damaged or destroyed by lightning in 1899 was 5,527 . In addition to these 729 buildings caught fire as a result of the proximity to other structures that were fired by lightning. The approximate loss in 2,825 cases was $\$ 3,016,000$; in 3,431 cases the amount of the loss was not reported, owing undoubtedly to the fact that the loss was small. A conservative estimate of the total loss by lightning during the year would be $\$ 600,000$. The great majority of buildings struck by lightning were not provided with lightning rods. The same conditions prevailed in the preceding year.
Consul General Guenther writes from Frankfort, April 15, 1901: The association for the study of electric rapid transit railroads has issued its report for 1900. Among other things, it is stated that the elevated track of the military road between Berlin and Zossen, upon which experiments will soon be made, has been carefully inspected and strengthened. It is hoped to attain a speed of 125 miles per hour. Two cars will be employed, which are supplied with the strong machines required and will hold from forty to fifty passengers. The construction of the cars and their equipment differ, in order to make manifold experiments. Each car will have four motors, aggre. gating from 1.100 to 3,000 horse power; two threeaxle movable trucks, and the necessary transformers, switching apparatus, etc. The cars will be $711 / 2$ feet long and will weigh about 90 tons. The effect of this speed on the elevated track will also be noted. The experiments will doubtless prove of the highest importance for the improvement of rapid-transit, although it may be found that the speed contemplated will not be feasible.

PINE NEEDLES INDUSTRY IN OREGON.

The utilization of the pine needles of the yellow Oregon pine, botanically Pinus Ponderosa, is becoming an industry of considerable importance on the Pacific coast. Fifty years ago it was discovered that the extracts and products of the long, slender leaves of the pine possessed real efficacy in complaints of a pulmonary character. It is claimed that insomnia yields to the influence of the pungent odor, and asthmatics have found a real relief in partaking of the oil and in sleeping upon pillows stuffed with the elastic and fragrant fiber manufactured from the interior substance of the pine leaves. The illimitable forests of yellow pine abounding in the State of Oregon, with their accessibility to through lines of transportation, suggested to a German from the forests of Turingia the transfer of a lucrative business to the Pacific coast. In Germany the leaves never exceed two inches in length, while in Oregon they often exceed thirty inches, and average twenty. In the former country the forest laws are extremely strict and often prohibitive, obliging the maker of the product to use the dried leaves that have fallen to the ground and thus insuring an inferior and less effective quality of goods. In the Western State denuding the yellow pine of its leaves has been encouraged, the expert of the Forestry Commission having pronounced the process as beneficial. A tally kept of the weight gathered from a certain number of trees indicated that the crop taken in April weighed 650 pounds while that of the same trees in October yielded 775 pounds. Two crops are gathered yearly, the later one being always the largest. The leaves of the young trees are preferred, yielding a better quality of oil, it is said; though this fact is doubted. The leaves are stripped from the trees by women and men, who are hired for the purpose, and who are paid 25 cents a hundred pounds for the needles. Five hundred pounds is regarded as an average day's work. The leaves are picked into sacks and hurriedly sent to the factory. Exposure to the sun causes the leaves to wilt, and impairs the quality of the product. In picking, the thickest bunches of leaves are selected, and the scanty ones neglected. The vast quantity available, so far beyond any present demand, permits the picker to thus discriminate. The factory at which the essences and extracts of the needles are manufactured has a capacity for handling 2,000 pounds of leaves per day; but it is soon to be enlarged to about four times its present size.

In the extraction of pine oil, 2,000 pounds of green leaves are required to produce ten pounds of oil. The process is the ordinary one of distillation. In the manufacture of fiber the leaves pass through a process of steaming, washing, drying, etc., twelve in all, occupying four days. Two qualities are produced, first and second. The first, from which no oil has been distilled, is worth, upon the market, about ten cents per pound. The fiber is elastic, and the staple only little shorter than the green leaf from which it was made, and with strength sufficient to enable it to be spun and woven into fabrics. Mixed with hair, the fiber makes an excellent material for mattresses or pillows, and repose comes quickly when resting upon them. It is also used as a partial filling for cigars, imparting a flavor not the least disagreeable, and calming to the nerves. The oil extracted gives an agreeable flavor to candies Toilet soaps are made, strongly impregnated with essential oil of pine needles.

The fiber itself, after curing, looks like a slender shaving of some dark wood, retaining its odor indefinitely. Insects abhor it on that account. It is said that the Oregon factory is the only one in the world outside of Germany.

Mr. Quin, the borough electrical engineer of Blackpool, England, has perfected an invention by which all dangers from overhead electric wires are obviated. When a wire breaks, the current is switched off by a switch which is automatically released, and the wire thus rendered harmless. In the experiments which were carried out to prove the efficiency of the invention, three telephone wires were severed and fell upon an overhead electric wire. Instantly the automatic switch operated, and the inventor picked up one end of the broken wire.

The Age of Mammon.
Money-making is the axis around which the world's activities revolve. This is nothing new, adds Collier's Weekly, but probably it was never so true as it is to-day. On every side we see evidences that the world is in a sort of fever of acquisition. Wealthgetting has become a passion. The public press is filled with gossip about the great money-makers and their methods. Enormously rich men are held up as

PLANT FOR DISTILLING OIL FROM PINE NEEDLES
models. The acquisition of wealth is set before our eyes every day and every hour as an example of success. The Pierpont Morgans, the Henry C. Fricks, the Schwabs, Carnegies, and Hills are the modern ideals of our youth. Nor is this all. Science and art are becoming more and more the mere hand-maidens of industrialism. Our greatest scientific men are devoting their energies, not to pure science, not to their noble profession in its abstract or elementary form, but to those applications of it which result in some new economy of the world's work and in the formation of more immense stock companies, with bonds and common and preferred shares, dividends, and all the paraphernalia of modern financial operations on a big scale. The men who love science for science's

stripping the pine neldles from the trees.
sake are giving way to the Edisons, Teslas, Triplers, Pupins, Marconis, those wizards who by day and by night seek to wrest from nature some new and com mercially profitable service to mankind. The number of patents taken out at Washington steadily increases, notwithstanding the predictions made not long ago that American inventiveness had reached its high tide. This is the age of materialism and of mammon, sure enough.

ALCOHOL AS FUEL FOR MOTOR CARRIAGES

The champions of the alcohol motor scored anothej triumph in the Paris-Roubaix races, held on the 7th and 8th of April. The route passed through Pontoise Beauvais, Amiens, Arras, to Roubaix, or a total dis tance of 167 miles. The competitors were divided into two parties; the first of these started from Paris and made the trip in two stages, with a stop at Amiens (89 miles), while the second party covered the whole distance in a single stage. The machines were divided into six classes, from quadricycles and voiturettes up to the heavy machines. The first party started from Paris on the 8th, commencing at 9 o'clock, from the Automobile Club building, on the Place de la Concorde, where a great crowd had assembled. The commission, including Messrs. Jeantaud and Forestier, gaged the reservoirs and took samples of the alcohol for analysis. The liquid was divided into three classes, pure alcohol, carbureted alcohol containing 75 per cent of alcohol, and carbureted alcohol at 50 per cent. The 50 per cent alcohol was used for the most part. On the first day there were 29 starters in the different classes. A similar start was made the next morning by the single-trip party (22 starters). The supply of alcohol could be renewed at Amiens, if necessary, and this was checked by a second commission. The following list gives an idea of the time and some of the best figures for consumption of alcohol: Class A, quadricycles, average weight 770 pounds-Osmont (De Dion machine), time 5 h .54 m ., consumption 5.85 gallons (50 per cent alcohol) ; Cousin (Werner machine), time 11h. 20 m. , consumption 2.73 gallons (50 per cent); Cormier (De Dion), 14h. 46 m ., consumption 1.89 gallons (50 per cent). Class C, Voiturettes, average .weight 1,200 pounds-Theodore (Darracq machine), time 7 h .55 m ., alcohol (50 per cent), 4.68 gallons; Declercq (Renault machine), time 20h. 53 m ., alcohol (75 per cent), 5.93 gallons. Class D, light vehicles, average weight 1,450 poundsUhlmann (Decauville machine), time 6h. 38 m ., alcohol (75 per cent), 16.79 gallons; E. Brierre (Brierre), time $10 \mathrm{~h} .9 \mathrm{~m} .$, alcohol (50 per cent), 7.85 gallons; Perez (Begot \& Cail), time 12h. 8m., alcohol (pure), 8.57 gallons. Class E, vehicles, average weight 2,000 pounds-Girardot (Panhard \& Levassor); time 7h. 12 m ., alcohol (50 per cent), 8.06 gallons; Manechal (Brouhot), time 10 h .25 m ., alcohol (50 per cent), 8.97 gallons; Le Blond (Gillet \& Forest), time 12 h .40 m ., alcohol (pure), 10.01 gallons. Class F, heavy vehicles, average weight 2,800 pounds-Aristide (Panhard \& Levassor), time 7 h .7 m ., alcohol (50 per cent), 8.25 gallons; Loysel (Bollée), time 7h. 45m., alcohol (50 per cent), 12.60 gallons. Class G, Industrial vehiclesRost (Bardon machine, weight 3,170 pounds), time 15 h .33 m ., alcohol (pure), 12.74 gallons; Letellier (Richard machine, 4,830 pounds), time 16 h .24 m ., alcohol (75 per cent), 18.20 gallons. The weights given include the load carried by the machine. In spite of the bad condition of the roads, 48 of the 51 starters were able to finish the trip. The results obtained in the contest give an interesting series of data on the performance of the alcohol motor. The motor tests which are shortly to be made by the Automobile Club will throw additional light upon the subject. The performance of the Bardon, Gillet-Forest, Peugeot and BegotCail machines shows that pure alcohol may be used with success; the greater number of competitors used 50 per cent alcohol, however and this seems to be in favor at present.

German Prize ror Cooling Beer. Consul-General Guenther, of Frankfort, March 21, 1901, informs the State Department that the German Brewers’ Association has of fered a first prize of $\$ 375$ and a second prize of $\$ 125$ for the beat mixture for cooling beer. The mixture for cooling beer. The
composition must not be injurious to health nor cost more than 6 d . (12 cents) for a cooling capacity equal to that of 100 pounds of ice, and must maintain the beer at a temperature of 45 deg. to 47 deg . F. Formulas should be sent to Mr. Johann G. Heinrich, Neue Zeil No. 68, Frankfort, Germany.

President Loubet and two of his Ministers made a trip in the "Gustave Zede" submarine boat at Toulon. They remained in the boat for 2.2 hour and a half, which moved along the surface ar d below the water.

REMOVING THE DISABLED 65-TON GUN OF THE "KEARSARGE."
During the recent cruise of the "Kearsarge" in southern waters, and in the course of some target firing by the heavy guns, a shell exploded in the bore of the port 13 -inch gun in the for ward turret. As the fragments of the shell swept through the bore they cut deep scores through the rifling which, in some cases, were over an inch in depth. The gun was condemned and a new one or dered in its place.
The "Kearsarge" is the first of our battleships to carry her main battery in double turrets, the 13 inch guns being carried in the lower turret, and the 8 -inch in a secondary turret superposed above the 13 -inch turret, in the manner shown in our illustrations. The removal of the damaged gun from a single-deck turret of the ordinary type would have been a compara tively simple matter, involving merely the removal of the 3 -inch plating of the roof, and the lifting of the gun directly from the turret, breech first. But in the case of a double structure in which the uppe turret with its pair of guns weighed over 170 tons, the problem of getting out the gun took on a very serious aspect, so much so, indeed, that it has been unofficially stated that the builders of the ship required $\$ 75,000$ and three months' time in which to do the job. To re move the upper turret en masse would have been, if not impracticable, at least a very delicate operation, and it is more than likely that its removal would have neces sitated its practical dismemberment, and its recon struction after the new gun had been put in place.

The "Kearsarge" was sent to the Brooklyn navy yard, and a careful survey of the turret was made by Naval Constructor Capps, to determine whether it would be possible to remove the gun without disturbing the superposed 8 -inch turret. It was ascer tained that by lifting the gun from its recoil the gun from its recoil sleeve, and doing a ping on the horizontal ping on the horizonta joints of the sleeve, the gun could be removed, without any further dis mantling of the turret than the removal of two port-plates and some of the angle iron framing at the ports

By the courtesy of the Department we are enabled to present three photographs, showing the methods by which the work was done. The first step was to remove from the interior of the turret the mantlet plates adjoining the gun port. Extra long wrenches were then used to unscrew the 3 -inch bolts by which the port armor plates are fastened to the backing. Then the two plates themselves , and 17 inches in thickness, and weigh respectively 3 J and 28 tons, were picked up by a floating derrick and placed on the adjoining wharf. When he armor plates had been removed, the reverse angles which run around the port opening, and abut on the backing, were cut loose and removed. This left sufficient clear. ance to admit of the gun, which is 49 inches in dimeter ove the breech, be-

the 15-inch and 17 -inch port-plates after removal from the turret.
distance, it was found that the gun could be drawn forward clear of the sleeve provided about $11 / 4$ in forward clear of the sleeve provided about $11 / 4$ inches
of metal was chipped away from the corners of a lip which projects inwardly at the forward end of the sleeve. These facts were determined by making a full-sized drawing of the gun and sleeve, and allowing about a quarter of an inch clearance after the corner of the sleeve had been removed. It should be explained

THE INJURED 13-INCH GUN RESTING ON THE WAYS, OUTSIDE THE TURRET.
jacks, which were heeled or the purpose between that had been provided between the longitudinal timbers of ways. It should be explained that the heavy tackle which is shown made fast near the muzzle of the gun and carried back to the turret was one of several measures of precaution taken against any possibility of accident.
Work was commenced on April 25 and the gun was in position and the turre plates restorer by the 23 d of May, the whole job being suc cessfully car ried through at a cos which will be within $\$ 10$, 000 . We are indebted for our informa tion to Naval Constructor Capps, under whose super vision thi most interest ing and diffi cult work was carried out.

The illumin ation of Ni agara Fall by searchligh will take place during the passage of all trains a night.

Water in Ancient Rome
In a remarkable address delivered before the Insti tution of Civil Engineers of London, its president, Mr. Mansergh, has destroyed the secular legend of the profuse distribution of water to the inhabitants of profuse distribution of water to the inhabitants of
ancient Rome. Some extracts from his address follow, translated from a French version, and therefore not in his very words.
"We are used to hearing of enormous quantities of water brought to Rome by the great aqueducts which Frontinus has described and which existed down to the beginning of the Christian era. I had always thought that the figures given were much exaggerated," he says. "To-day it is evident that the volume of water so distributed was never properly measured either at the inlets of the aqueducts or at their out lets, and no one seems to have understood the method of calculation that will give the volume delivered when the section of the aqueducts and their slope are given."

The estimates of Frontinus were based on the discharge of a number of different openings of different sizes, and he takes no account of the difference be tween the discharge of 100 separate openings each an inch square, for example, and the discharge of one opening of 100 square inches. The unit of measure cited by Frontinus was a quinaria, a circular opening four square centimeters in area.
The discussions based on the data of Frontinus led to the conclusion that Rome was furnished with the enormous quantity of $1,400,000$ cubic meters of water every twenty-four hours. These figures are absurd because they imply that the water flowed with velocities that have never been realized in practice. Moreover, we know from Frontinus and from Pliny that the nine aqueducts were rarely in operation at the same time, and having regard to all the data it follows that the daily supply of water was about 144,000 cubic meters, which would give about 144 liters (about 38 gallons) per head to the population of a million inhabitants. This supply will not seem excessive when we consider the great expense of water in the public baths and in the fountains. It must be remembered also that most of the houses were supplied by water carried by slaves, and that many wells and springs were also utilized in dwellings.

THE EXPERIMENTS OF M. CURIE.

M. Curie, in continuing his researches with regard to the rays given off by radium, has studied the re markable phenomena of induced radio-activity. M. and Mme. Curie had already found that a substance, when placed in the neighborhood of the radiferous salts of barium, became itself radio active, and that this induced activity persists for a long time after the exciting body is removed. It diminishes, however with time, at first rapidly, then more and more slowly. The phenomena of induced radio-activity have been also studied by Mr. Rutherford, who show that air which has remained for some time in the neighborhood of oxide of thorium (a radio-active body and then carried into a current to a distance, retains its property of communicating the radio-activity to other bodies. Mr. Rutherford explains these phenomena by supposing that the oxide of thorium gives off a special kind of emanation which is capable of being conveyed by the air, and that this is the cause of the induced radio activity. At present the question is far from being clear, and M. Curie, with M. Debierne, has made the following experiments in which he brings out some interesting facts. The phenomenon is much more strongly marked when it is carried out in a closed vessel. The active matter is placed in a thin glass bulb, F (see diagram), open at O, and placed in the center of a vessel completely closed. Three plates, B, D, E, suspended in different parts of the vessel, become active after one day's exposure. The plate, D, sheltered from the radiation by a lead screen, P, becomes active like the others. A plate, A, resting on the bottom, is made active upon the upper face, but not on the lower. In a series of plates in contact C, placed against the bulb, it is only the exterior sur face of the lower plate next the air that becomes active. All substances seem to take the activity in about the same way (lead, copper, glass, ebonite, paraffine, etc.). With a very active specimen of chloride of barium, the plates exposed for several days took an activity 8,000 times stronger tran that of a plate of uranium of the same dimensions. When exposed to the air they lost the greater part of their activity in one day; the loss is much slower if the plates are left in the closed vessel, from which the exciting substance has been removed. Lastly, if the experiments are re peated with the bulb closed, no induced effect is produced in the plates. In a second experiment the small chamber, c (see diagram), containing the active body, communicates with the two others, c^{\prime} and $c^{\prime \prime}$, containing the bodies, A and B, to be acted upon, by capillary tubes of diameter 0.004 inch and lengths 2 and 30 inches. The chambers were very small, and it was found that the excitation of A and B was produced as rapidly and as strongly as if they were placed
in the same chamber as the exciting body. These phenomena were observed with different radio-active salts of barium and also with salts containing actinium; on the contrary, polonium compounds, even very active, did not produce the effect. As it is known that the latter do not emit rays which are deflected by the magnetic field, these two facts must be connected. It may be concluded, from these experiments, that the phenomenon is not produced by the ordinary rays of radium, but rather by extremely absorbable rays which act upon the air in immediate contact with the body. The induced activity is transmitted in the air by convection from the active body to another placed near it, and may thus pass even through capillary tubes The activity, besides, tends toward a certain limit,

resembling an effect of saturation; this limit is higher as the exciting body is stronger. These experiments are in their first stage, and it is too soon to form a theory as to the cause of the action. M. Curie considers that these phenomena constitute one of the most important properties of radio-active bodies.

A PORTABLE MORTISING MACHINE

The illustration herewith presented pictures a simple and cheap mortising machine invented by Mr. William J. Smith, of Detroit, Ore.

The machine comprises an upright frame on which a table, D, is vertically adjustable. To this frame a weighted table-adjusting lever, A, is fixed, by means of which the table can be raised and lowered. Ar ranged on the vertical backboard of the table is an adjustable gage-plate by which the work is engaged. Against the backboard the work is tightly held by a clamping-lever pivoted to the upper side of the table, which clamping-lever is. in turn held in place by a pin inserted in a hole in the table. To prevent vertical movement of the work a second clamping-lever, C, is employed, which has a series of notches in any of which a locking-pawl may be engaged.
Movable in guides attached to the upright frame

THE SMITH MORTISING MACHINE.

is a chisel-carrying plunger operated by a hand lever, B, weighted so that it automatically moves upward after operation. The upper end of the chisel-carrying plunger may be engaged with a rocking-lever and the chisel operated by power if it be so desired.
Before cutting the mortise with the chisel, the work is bored by a gang of bits, F. mounted in the lower part of the upright frame and driven by belt and pulley. The table is moved down in order that the bits may come in contact with the work. After boring the table is moved up, and the chisel forced through the wood, making clean cuts at the sides and ends of the mortise. A protective shoe is employed to prevent the chisel from tearing the wood.

A Nice Place to Live.
The useful household magazine, Good Housekeeping, is responsible for the following:
"Imagine keeping a snake in the house to fill a cat's duties. That is what they do in Manila," says an American woman who has just returned from spending a year in the Philippines with her journalist husband. "The first night I spent in our own home was hot and smothering, so I lay wide awake, hoping for a breeze. Suddenly I heard a strange noise overhead. Manila houses are built of bamboo and are about as substantial as a bandbox, so one hears every rustle. I had listened to the scamper of a rat overhead, then came a queer noise like a stealthy slide. The rat gave a shriek of agony. I could hear the lash of the snake's tail and a terrible scrimmage all over the thin floor. They seemed to be rolling over each other and the snake was swallowing the r.t. I heard it as distinctly as if I could see it. I shrieked louder than the rat had done, and in a moment every China boy in our establishment was in my room to see what had happened. Before I left Manila I grew see what had happened. Before I left Manila I grew
as accustomed to finding a house snake on my floor as if it had been a cat. The house pests of the Philippines drive an American woman to distraction. Lizards are everywhere; you find them in your bed, in the dishes in the pantry, clinging to your gowns or napping in your bureau drawers. Some are no bigger than the chameleons we used to pet; others are a foot long. Ants of every size and sort simply inhabit everything you own. Every good housekeeper in Manila keeps the feet of her dining table standing in pots of oil. If you did not take that precaution one would be eating ants in every dish served."

Railroads of Roumania.

From official Roumanian sources, I learn, says Consul Hughes, of Coburg, that there are at present 1,932 miles of railway open to traffic, as against 1,550 miles in 1890 and 1,713 miles in 1895 , while 72 miles are under construction and 360 miles under survey. The total expenditure on railways up to the present has been $\$ 140,000,000$, including about $\$ 6,700,000$ on the Cernavoda Bridge. Last year, the revenue was $\$ 8$, $992,761.55$ and the working expenses about $\$ 7,299,750$. A combination of lignite and petroleum is now largely used for fuel, a special apparatus having been invented for the proper consumption of the mixture. In 1896 only 2,200 tons of petroleum were consumed in the engines, but last year this rose to 15,200 tons; while the consumption of lignite rose in the same period from 17,200 tons to 67,000 tons. The railway admin istration recently initiated a weekly through service between Paris and Constantinople and Ostend and Constantinople via Bucharest and Constantza, and a daily service between Bucharest and Berlin via Lemberg.

A League Against the Rat.

Dr. Nashandi, a Japanese bacteriologist who has been visiting Chicago, declares that a league against the rat may be formed, says The New York Tribune. As a disseminator of disease this rodent works much more serious injury to human society than any already charged to his account. The malady with which these animals are most closely associated in the public mind is the bubonic plague. It is not uncommon for rats to die of that cause in a house before any human beings are attacked by it. Rats are such ramblers that it is possible for them to infect a whole neighborhood before the fact is discovered, and they even die in inaccessible places, so that their bodies remain hidden but active sources of infection for days and weeks.

The Current Supplement

Probably the most interesting article in the current Supplement, No. 1326, is "The New Edison Storage Bat tery," by Arthur E. Kennelly. The storage battery seems destined to work a revolution in electric automobiles. The project of the Krupp Works is described and a number of their large guns are shown. "Pre ventive Medicine-The City of Havana as a New Field for Its Application" is by Dr. Erastus Wilson. "The Bacteria Beds of Modern Sanitation" is by Eliza Priest ley. "The Gods of the Filipinos" is by R. I. Geare. "Agriculture in Hawaii" is an interesting article. "The Distribution and Conversion of Received Currents", is begun in this issue.

RECENTLY PATENTED INVENTIONS. baND-CLTter aND feeder HRESHING-MACIINES.-John Len FOR creek, Oklahoma Ty. In this machine the speed of the threshing-cylinder is regulated
by the amount of grain deposited on the endless grain conveyer or carrier leading to the cylinder. A second conveyer is employed, aranged to swing backward in a vertical plane when a large amount of grain passes between it and the main conveyer. A clutch mechanism automatically regulates the speed of the swinging conveyer. A new arrangement or ircular band-cutters has been devised, whereby sheaves.
llow-Williani C. Pope, Acme, Fla. The invention provides a plow for use in working vator embodies two disks which run on opposite sides of the row, together with device whereby the angle of the disks to the row shallow, as may be required.

halow, as may be required

DEVICE FOR OPERATING MARKERS OF Mattoon. Ill. Mr. Cunningham has provided device adaptable to any corn planter, whereby the marker can be quickly raised by the foot of the driver and freed from any trash which may have been gathered. Thus, a plain mark is made during the planting, and the work is also serviceable in raising the marker to clear a rock or stump.
REPLANTER ATTACHMENT FOR CUL TIVATORS-Jlrger W. Groxewold, Golden, tachment, which can be readily applied to any cultivator and operated from the handle, a "set" of corn can be instantly and accurately dropped in a lost hill and added to one thinly
planted during the cultivation of the field. planted during the cultivation of the field few seeds or grains are dropped on the ground he furrow having been previously opened for the seed. The dropped seed is covered and thelled.

Engineering Improvements

ROTARY LNGiNE. - Thomas Croston, stantly and automatically adjust itself to the equirements of the load and to the variation of steam pressure. Racing is prevented. The ngine is not liable to slow down until the
limit of its working power is reached. The cut-off can be varied from zero to full revolution. Effficient reversing means are provided The engineer can ascertain the horse powe under which the engine is running at al mes.
ROTARY ENGiNE.-Johy D. R. Lamson Toledo. Ohio. Mr. Lamson's engine is simple
in its construction and effective in its operain its construction and effective in its opera-
tion. The novel features of construction ar o be found in a revoluble ring-shaped cylinder in which piston-heads swing. A fixed, hollow abutment is arranged in the cylinder and dis charges the steam against the piston-head The cylinder revolves around a fixed steam chest connected with the abutment through
an opening in the inner wall of the cylinder, an opening in the inner wall of the
to furnish steam to the abutment.

[^0]Business and Personal zJants. READ THIS COLUMN CAREFULLY,-You
wili find inquiries for certain classes of article wili find inquiries for certain classes of articles
numbered in consecutive order. If you manufacture these goods write us at once and we will ing the information. In every of the party desi sary to give the number of the inguiry.
MiNN $\&$ co.
 plant carries 183 gallons.
Forquiry No. 716. - For Mundy, Newark, N. Turbines. - Leffel \& Co. Springfield, Ohio, U. S. A.

"L s." Metal Polish. Indian Inguiry No. $\mathbf{7 1 8}$.-For manufacturers of acet water wheels. Alcott \& Co., Mt. Holly, N.J. Inquiry No. 719.-For manufacturers of patent Yane Notions. Waterbury Button Co.. W aterb'y. C Inquiry No. gen.-For manufacturers of match
making machinery. Dies \& Sp
Ottawa, Ill.
Inquiry No. gen.-For manufacturers of hand
power.nixiug and sifting machines. Machine chain of all kinds. A. H. Bliss \& Co. North Inquiry No.
Handle \& Spoke Mchy; Ober Mfg. Co.. 10 Bell St. Chagrin Fals,
Inquiry No. $\mathbf{~ Y : 3 3 . - F o r ~ i m p l e m e n t s ~ f o r ~ a ~ f r u i t ~ c a n ~}$
Sheet Metal Stamping: difficult
The Crosby Company, Butfilo
The Crosby
Inquiry
machines. ane Mfg . Co.. Bor 13 , Montpelier. Vt
Inquiry No. Y.E.T.-For manufacturers and dealers
in aluminium goods tor coos ing purposes. Rigs that Run. Hydrocarbon system. Write St Inquiry No. 266 .-For the addresses of the largest
tone quarry companies in the Unitited states. Our Specialties :-Steel rims, steel tubes, steel boilers. Inquiry No. 827.-For manufacturers of crucible Ten days' trial siven on Daus' Tip Top Duplicato Thquiry No. 耳.28.- For a weivhing or tallyng ma-
chne toatomaticaily weigh or count each coal tub in SAWMILLS.-With variable friction feed. Send for Inquir.r. No. $\mathbf{7 2 9 . - \text { For machinery }}$
round soapstone and crayon pencis.
I want to secure the latest and best machinery for ex-
cavating and making peat fuel. J. Melvin, Box TiJ, N. Y. Luquiry No. 730.-For manufacturers of cheap
stort distance telephone outtits in quantities. Special and Automatic Machines built to drawings on

Inquiry No. 731.-For
The celeorated "Hornsoy-Akroyd" Patent Safety oil chine Company. Foot of East 13isth Street, New York.
 mattresses.
The best book for electricians and beginners in electricity is "Experimental Science," by Geo. M. Hopkins.
Bv mail. $\$ 4$. Munn \& Co Inquiry No. F33.-For a maclune for sharbening
hurse Wanted.-The best "Horseless Carriage" there is in
the market. Please quote lowest price for spot cash nd mail descriptive circular or catalogue, P. O. Box Inquiry No. 734.
castings in quantities. mor manacturers of small Wanted.-A manufacturer to introduce the Fowler
Pen on royalty (Pat. U. S.. Can., Eng.), described in Scientific American, April 20. Fowler \& Briggs,
18 Center Market, Washington D. D. Inquiry No. 73.5
special instrument.
Wanted-General Superintendent for large manufacuring concern near New York. Must be all executive and organizer of ability and force. Give age, refer-
ences, experience etc.-E. B. B., 16 and 18 Park Place,

Inquiry No. 736.-For a lathe to turn ordinary
bobbins for cot
Inquiry No. 737.-For a machine for turning and
mortising shutiles.
 Inquiry No. 739.-For manufacturers of the Blake
stone crushing machine.
Inquiry No. F40.-For manufacturers of miniature
railways.
lnquiry No. 741.-For manufacturers of machin-
ery tor evaporated truits.
Inquiry No. 74:.-For manufacturers of well
drilling machinery.
Inquiry No. F43.-For blue-flame kerosene cook-
ing sto ves and ranges.
Inquiry No. 744 .- For do
kitcten labor-saving appiances.
Inquiry No. 74.5.-For manufacturers of oil fil-
Iuquiry No. 746.-For manufacturers of steam
hoistulg eng ines for building work.
Inquiry No. 747.-For manufactur
steam saws for cuiting off timbers, etc.

Inquiry No 9 (49.-Fir the manuacturer of the

 Inquiry No. F5, 2.-For manufacturers of gold
 inquiry
iun rivets.

Thani iry No.
graphic supplies.

 Iuniry. No. 761.-For manufacturers of smal Induiry No. ${ }^{\text {In }}$ 62.-For manutacturers of ice har-

hints to correspondents.

his turn. Buyers wishing to purchase any article not adver-
tised in our collunlus will he furnished with
addresses of houses manufacturing or carrying the sume.
Special Written Information on matters of personal
rather thaul Without remulureration.
Scientific American Supplements referred to may be
lian :at the "atice. Supre 10 cents each. Books raferred to prompty supplied on receipt of Mrices sent for examination should be distinctly
marked or labeled.
(8194) A. C. writes: 1. I read the folowing extract from canot: "IIe who makes trical measurements with the 'absolute units' will constitute the system of absolute elec trical units known as electrostatic system.: If the law of electrodynamic actions, expressed
by the Ampere formula, be chosen, the electrodynamic system will be formed. At last, he dynamic system will be formed. At last, he
who prefers the law of the electromagnetic who prefers the law of the electromagnetic
actions expressed by the Laplace formula will
lute electrical units... please be so kind as give me a notion of: 1 . Coulomb's law. A
The formulas for which you inquire are mostl Tiven in (ianot, from whom you quote. Cou lombs law is that the force between two charges is directly as the product of the quan tances and inversely as the square of the dis electrodynamic actions expressed by the Ampere formula. A. Ampere's formulas refer to the motion produced by currents in relation to the direction of their flow, by their attrac tions and repulsions upon each other. They may be found in any advanced text book of physics. 3. The law of the electromagnetic
actions. A. The electromagnetic actions of currents upon each other are given at length in (danot. 15.)th American edition, sec. 909. As they cover more than half a page of fine type, we cannot spare space to reprint them.
The formula of Laplace. A. We are at a The formula of Laplace. A. We are at a loss
to say what formula of Laplace is referred to. to say what formula of Laplace is referred to.
7. You have a solid body animated by the rotary movement around an axis. There are the centripetal and the centrifugal forces; the centrifugal force, and we have the equality of action and reaction. But suddenly, the body breaks to pieces: the centrifugal force has be come too great; the molecular attraction has been overcome. How can it be maintained in that case, that the action is always equal to
the reaction, and vice versa, according to the principles of mechanics? A. You are in e in your conception of Newton's third law each other, and not the action of a single body in motion. While the body is held together, the action and reaction of its parts are as you state them ; but when the body breaks to pieces there is no longer any reaction against its mo-
tion. If there were but one body in the tion. If there were but one body in the uni-
verse, there could be no reaction. A reaction is always between two bodies, and the law is bodies are always equal and oppositely directed." (Barker).
(8195) C. W. S. writes: A substance called "Sencone" is stated in Thorp's "Dictioning crystalline silicon to redness in chlorine and passing the compound formed into water. It claims that this substance when heated glows with a bright light and deposits silica. ('an
you kindly inform me it this means that this glow. when heated. is permanent: A. The
heating of the compound of silicon which you describe produces its decomposition with light.

When the action is over the light will, of course,
cease. There is no way to produce permanent light.
(81
(8196) J. L. P. writes: I would be glad if you would give me a rule for finding the trial figure in the divisor in extracting square root. A. To extract the square root of any number separate the number into periods of
two figures each, counting each way from the decimal point. Fill the lowest period of the decimal part with a cipher, if it contains but one figure. Find the largest square in the highest, or left-hand period. Place the root of this square as the first figure of the root, and subtract the square from the highest period of the number. To the remainder annex the second period of the number as a dividend. Marthe product as the tial figure in the divisor. Divide all of the dividend except its lowest figure by the trial divisor for the next figure of the root. Write this both in the root and as the lowest figure in the divisor. This is called the complete dirisor. Multiply the complete divisor by the last figure of the root.
subtract the product from the dividend, bring down the next period of the number, and proceed as before till the entire root is found. This rule is simply the statement of a formula of algebra in words
a represents the first figure of the root, and the second figure. An example of the mode using the rule is given: $6,34, .20(25.18$

Trial figure $\underset{45) 234}{4}$

Trial figures $50 \frac{225}{501,920}$
Trial figures $502 \underset{5028) 41900}{501}$
o any desired num-
This may be carried out to any figures.
(8197) A. F. D. asks: 1. What effect, solution: Does it give solution more strength or lessen it? Example: If rule gives 3 ounces sulphuric acid and 3 ounces bichromate potash and water, and you add 5 ounces instead of 3 ounces potash, what does it do? A. Adding in bichromate, relatively weaker in the other ingredients. If the formula is properly made up, no change should be made in its propor-
tions. The chemist who made the formula tions. The chemist who made the formula knew what quantities to use so as to have the
various ingredients do their proper work. 2. I have small electric motor, about one-halt battery to run same and number of cells am going to use motor to run small foot drill and emery wheel. A. A battery is described in Striplement No. 792 which is just the thing for your purpose.
(8198) R. K. F. asks: 1. Will you kindly inform me of a firm selling aquarium Manufacturer's Index, which is sent upon application. 2. Have you a recipe? A. Nix equal parts of gutta percha and yellow pitch. Heat carefully, stir well, and apply to the
heated glass while hot. 3. What is the lowest voltage (direct current) at which the electric arc may be operated! A. The drop in the arc is $4 \overline{5}$ volts. Any excess over this in an open arc must be taken up by a resistance. 4. Can a 10 -inch spark (induction coil) be produced with a pressure of 48 volts? A. Yes. 5. Can
chalk be made incandescent? A. Yes, by the oxy-hydrogen jet, just as the lime is in a cal cium light. 6. At what temperature does incandescence occur? A. The latest conclusion is that an electric light carbon emits visible radiations at $734^{\circ} \mathrm{F}$. Iron sends out light at $713^{\circ} \mathrm{F}$., and gold at $783^{\circ} \mathrm{F}$. The first light seen is gray, and the spectrum extends from the point of greatest luminosity to both end
of the spectrum. 7. At what temperatures platinum and German silver melt? A. The latest figures for the melting point of plati num are $5.846^{\circ} \mathrm{F}$. Previously the figure given was $3,427^{\circ} \mathrm{F}$. German silver is a substance
of no fixed composition. Its melting point thus of no fixed composition. Its melting point thus

INDEX OF INVENTIONS For which Letters Patent of the United States were Issue
for the Week Ending

May 2I, 1901,
AND EACH BEARINGTHATDATE.
[See note at end of list about copies of these patents.]

NEW BINOCULAR.

 QUEEN \& CO ical and Scientificic. Instr ew Yore: 59 Fifth ave. Philadelphia, Pa

 ARMSTRONG'S PIPE THREADING

American Sheet Steel Company Battery Park Building
Manufacturers of all varieties of Iron and Steel Sheets Iron and Steel Sheets
Black and Galvanized
Plain and Painted
Flat, Corrugated and
Apollo Best Bloom Galvanized Sheets W. Dewees Wood Company's

Planished Iron
W. Dewees Wood Company's

Refined Iron
Wellsville Polished Steel Sheets

GERE GASOLINE ENGINES

Acetylene Gas Lighting

> Niagara Falls. N. Y. and Canada.

"The Reeves" Variable Speed Countershaft

REEVES PULLEY CO
REEVES PULLEY CO. RUBBER STAMP MAKING. - THIS article describes a simple method of making rubber
stamps with inexpensive apparatus. A thorrughly
practical article writen by an amateur who bashade
prex Sractical article written by an amateur who bas had ex-
perience in rubber stamp makng. One illustration.
Contained in SUPLEMENT 1110. Price 10 cents. For
sale by Munn \& Co. and all newsdealers.
MILLS FOR ALL MATERIALS.

A PLEASURE LAUNCH

AN ILLVSTRATED MAGAZINE OF_SPORT TRAVEL ADVENTVRE

AND COVNTRY LIFE EDITED BY CASPAR WHITNEY
are you interested in
Golf, Yachting, Shooting, Photogramobiling, Fishing, Mountaineering, Country Living, College Sports, or in Horses, Dogs, Birds, Game Protec

> Especially Important Articles apropos SIRTHOMAS THOMS LIPTON and the America's Cup, and the Prop.

PRACTICAL PAPERS ON

> Country Living and Country Homes, Care of the Garden, Fine Poultry, in America, England and France.

OWEN WISTER
writes in OUTING for JUNE

Cheodore Roosevelt

Che Sportsman and the man.

SPECIAL OFFER to NEW SUBSCRIBERS The Outing Publishing Co., $\begin{gathered}239 \text { Finhav. } \\ \text { New York. }\end{gathered}$

For Heavy Continuous Work

 the mietz \& weiss KEROSENE
 and GAS Engine

The "Wolverine" Thr
Cylinder Gasoline MaCine Engine.

otors from ${ }^{2}$ to
NOLVERNE
MOTOR

ROTARY ENGINES.-ARTICLES ON

ARTESIAN

For MARINE, VEHICLE and
BICYCLE MOTORS,
For MARINE, VEHICLE and
BICYCLE MOTORS,
with Working Drawings.

LOWELL MODEL co., 22 Wiggin St., Lowell, Mass.

\qquad

THE SMITH PREMIER TYPEWRITER
Occupies an Imperishable Position in the BUSINESS wORLD.
Unquestionable Superior Merit

ADDITIONAL CAPITAL SUPPLIED

Charters Secured in any State. Stocks and Bonds
Underwritten or Sold under guarantee and on commission. Good Inventions Marketed. Cash furnished for any good enterprise.
DANIELS

ELEVATING - CONVEYING	${ }^{\circ}$
OPWER TRANSMISION MACHY	
COAL WASHING MACHINERY	

The Goodyear Tire and Rubber Co AKRON, OHIO, U. S. A.
Largest Tire Makers in the World. THE BICYCLE: ITS INFLUENCE IN
 $\xrightarrow{\text { Aub be had at this oficiee and fom all newsdealers. }}$

Thomas Auto $=\mathrm{Bi}$

Patee Motor Cycles, \$200.

seribed. Big trade disco
PATEE BICYCLE Co.,

YOUR BICYCLE
 BY-THE-BYE. WHEN YOU BUY A BICYCLE

Nom HOW TO MAKE AN ELECTRICAL

 AUTOMOBILE STEAM BOILERS

(Continued on page s51)

ROAD WAGON-Style $\mathbf{G} . \mathbf{\$ 1 , 0 0 0}$.
National Automobiles are a1ways ready to
run, do not "freze in summer, have no unpleasant odor, do not leave a trail of blinding vapor and are noise-
less. To appreciate The National you should own
one of "the other kind" flrst, but as you can't one of "the other kind" flrst, but as you can't
do this send us ten cents in stamps for our "A uto Book." If you contemplate purchasing investment you ever made.

Illustrated pamphlet mailed fre
The National Automobile \& Electric Co.

DICKERMAN'S DURABLE DESKS Don't buy until you get our catalegue-
100 papes of mmey saving values.

Building Edition Scientific American

MONTHLY, \$2.50 PER ANNUM. SINGLE NUMBERS, 25 CENTS
monthly, \$2.50 per annum

MUNN \& CO.
${ }^{\text {mimimive }}$ BELL ODOMETER AUTOMOBILE
CARRIAGE
GAS FNGGINE DETAILS.-A VALUA-

 nest

and | Send |
| :--- |
| Stra- |
| S. |

ROSE POLYTECHNIC INSTITUTE

Che Bliss Electrical Scbool

Learn to Write "Ads."
 Husnes

Page-Davis Advertising School,
Suite 20,167 Adams
St., Chicago
Beiter tran Red Lead

Dixon's
Pipe-Joint Compound.

ACETYLENE BRILLIANCE
 The (OLT Carbide Feed sitand

SENSITIVE LABORATORY BALANCE.

 THE NEW HISINTOL COUNTEIE

ICE Machave qion Eutine reved
 $12 /$ H, P, GAS FNGINE CASTINGS

 DAMOUR \& LITTLEDAL WIGHINE CO.
PATTERNAND MODEL MAKERRS.
STATLER'S APan- H OTEL

Renticumilus

BACKIS ss ano GASOLINE ENGINE simple Economical. Durable Write for circular and prices.

FOR SALE-A CHILD'S KNIFE BLADE

 WANTED.
An experienced party to assist in the introduction of
the Webster Air Brake Attachment. Patented in webster air brake attachment co.,

 invention 1s probably patentable. Communica-

Scientific American.

$$
\text { MUNN \& CO. } 361 \text { broadway, New York }
$$

'HOT BATH IN ONE MINUTE

T

"Broadway at Midnight"

$$
\begin{aligned}
& 386
\end{aligned}
$$

 Canadian patents may now be obtained bo the in
ventors for any of the inventions hamed in the fore

$W_{\text {hat }}^{?} D_{o} Y_{o u} \stackrel{?}{W}_{\text {ant }} T_{o} \stackrel{?}{B}_{\text {By }}$?
Write us for the eaddresses of manufacturers in ANY line of business.
Special Tools, Machinery, Equipments, New Patent LABOR SAVING DEVICES. Novelties, Special Tools, Machinery, Equipments, New Patent LABOR SAVING DEVICES.
MUNN \& CO., Publishers of the SCIENTIFIC AMERICAN, 361 BROADWAY, NEW YORK.

-MADE AT KEY WEST;-
\{These Cigars are manufactured under $\{$ the most favorable climatic conditions and from the mildest blends of Havana tobacco. If we had to pay the imported cigar tax our brands would cost double the money. Send for booklet and particulars. CORTEZ CIGAR CO., KEY WEST.

THOROUCH INSPECTIONS

 THE LUXURY OF A LIFE TIME
 мотов CARRIAGE It is "so different", from any other aetho from any other metbod of onvey- ance and yet so de- and PRICE $\$ 1,200$ ble. Every vehicle leaving our factory has been made ing beauty of design. speen, satety and durability Cost about 12 a-cent a mile. Hydro-Carbon system. THE WINTON MOTGR CARRIAAGE CO.,

 ELECTRIC VEHICLES OF ALL VARIETIES

 Ample power an
all changes
 six yallons
fual calried.
fised in all par
Unt ofed in all par
ofry te country
account of

 Awarded 100% and the Official Blue Ribbon for a Perfect Run of 109 Miles Without a Stop.

TRAMHAY. MAIN OFFICE
920-922 North First Street, ST. LOUIS, MO

SAVAGE MAGAZINE RIFLE
 . 303 and

STYLE 0003. VICTORIA top.
(2)

"KODAK"

Stands for all that is Best in Photography

To the perfection of Kodak construction, to the perfec= tion of the Kodak mechan= ism, to the perfection of the Kodak lenses, is due the

Griumph of Kodakery

All Kodaks Load in Daylight with our Transparent
Film Cartridges. Several stylyes use e ither films or

EASTMAN KODAK CO.
Rochester, N. Y.
 A Reliable and Simple FOUR CYLINDER Gasoline - Motor

 ehyertululy fivion. in. asking. MOTOR VEHICLE POWER CO., 1229 Spring Garden St. PATENTS PROTECTED

 Also Copyrighints and Trademarks. Booklet on application.
PATENT TITLE $\&$ GUARANTEE $\mathbf{C O}$

CHARTER ENGINE

 VDED FY ANY ONE FuEL-Gasoline, Gas, Distillate
Stationaries. Portables, Eng
 CHARTER GAS ENGINE CO., Box 148, Sterling, ill

CRACKS IN FLOORS

 TURN YOUR BIKE into AN AUTOMOBILE THE BOISSELOT AUTGMOBLLE CO.,

HIENARDS WONDER

[^0]: Electrical Apparatus.
 Cable.-John D. Gocld. Brooklyn, New York city. The cable is to be used for conductin ectric-light currents. The cable comprises not also a fusible conductor designed for connection with a fire-alarm system. Thus the cable is converted practically into a thermosta throughout its entire length, or throughout the ing for electric-lighting purposes.

 ## Miscellaneous.

 Tool-IIaNinle. - Johy A. Ihale Box
 19, Aspen, col. This tool-handle can be 19, Aspen, Col. This a hammer, an ax, a pick, and with other forms of heads. The handle is simple in construction and very cheaply manufactured.
 P'Mir-ROI
 GRII and Charles F. Richei, Franklin, Pa. The Eripping device consists of a frame between
 the side pieces of which clamping-jaws are pivoted, thrown into gripping position by a
 pull-chain. The device is intended mainly to make connections between tackle-boxes and oil-well rod lines.

 ## Designs

 mividocarbon ladir. - John w. Mc rea, Manhattan, New York city. The essen ial features of the design are to be found in bending the vaporizing tubes upward in a cir-
 cle and in supporting upon them a globe to prevent the smoking of the ceiling. The support is ornamental in character. The design removes much of the hideousness of the ordinary hydrocarbon lamp.
 fabric for meses belts. - Joserif Rifgelaman, Manhattan. New York city. Ot namental figures are transversely coiled at the central portion of the strip of fabric, and
 V-shaped ornainental tigures are marginally ar V-shaped ornainental figures are marginally ar-
 ranged. Both series of figures are embossed. Note. Copies of any of thes matents will be Note-Copies of any of thes patents will he
 furnished by Mum \& co. for ten cents cach. Plaise state the name of the patert,
 the invention, and date of this paper.

