
a WeEkLY JoURNaL 0F PRACTICAL INF0RMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTIURES.

NEW YORK, APRIL 6, 1901.

Electric Car Controller.
Brake and Controller Instruction.

Electric Car and Section of Feeder Ralls.
TRAINING SCHOOL FOR NEW YORK sTREET-CAR MOTORMEN.-[See page 214.]

sifirutifir Gmxtican.

Established 1845

mUNN \& CO., - - - Editors and Proprietors.

dublished weekly a

No. 361 BROADWAY, - - NEW YORK.

terms to subsuribers

 the scientific american publications.
 it by postal ur express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, corner Frankiin Street, New York.
NEW YORK, SATURDAY, APRIL 6, 1901.
The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles slumrt, and the facts authentuc, the contributions
will receive special attention. Accepted articles will be paid for at regular space rates.

prospects of the new erie canal

In reply to a committee from the Commerce Conven tion in Syracuse, Governor Odell has expressed himself as being opposed to the policy of urging the Legislature to authorize the construction of the Erie Canal along the lines of the scheme which was strongly indorsed by his predecessor. As an alternative, the Governor is in favor of the completion of what is known as the project of 1895 .
The canal, with the exception of such work as has been done in carrying out the 1895 scheme, is in the condition in which it was left after the enlargement of 1862 . It has a depth of 7 feet, a bottom width of 52 feet and is capable of accommodating boats of 240 tons, with a capacity of 8,000 bushels of wheat. The pian of 1895, which is the one now indorsed by the Governor, provides for the deepening of the canal to 9 feet, with top and bottom widths of 73 and 49 feet, thereby providing accommodation for boats of 450 tons, with a capacity of 15,000 bushels of wheat. It provides for a single pneumatic, or some other form of single mechanical lift at Cohoes and Lockport, to gether with other changes at important points along the route of the canal. The estimated cost of this project is $\$ 2,161,645$.
The alternative scheme, which was reported upon about twelve months ago by the Special Committee on Canals, calls for the enlargement of the canal to a depth of 12 feet, ana a bottom width of 75 feet, with capacity for barges of 1,000 tons carrying 33,335 bushels of wheat. The scheme is estimated to cost $\$ 62,000,000$; and it was drawn up on these ambitious lines because it was felt by the committee, in view of the recent completion of the Canadian system of canals with a completion of the Canadian system of canals with a
minimum depth of 14 feet throughout, and in view minimum depth of 14 feet throughout, and in diew the Western wheat trade to Canadian ports, that the time had come to enlarge the Erie Canal sufficiently to enable it to compete-successfully against its wellequipped rival. It was found that the 9 -foot canal, while it was a decided improvement, as far as it went, would be altogether inadequate to meet the present emergency. The larger scheme, it was urged, would have a capacity of $20,000,000$ tons per annum, and that the saving on that tonnage as compared with the present canal would be $\$ 12,200,000$ per annum. The proposed canal could carry freight at a third of the cost by rail, and, as compared with the lowest railrate ever quoted, the saving across the State of New York, on a prospective tonnage of $20,000,000$ tons, would be about $\$ 18,000,000$ per annum.
After a careful study of the question, the Governor says he is satisfied that, on account of the strong opposition in some sections of the State against any further use of the State's money for canal purposes, it will be impossible to secure favorable legislation for the expenditure of the $\$ 62,000,000$ required for the larger scheme. He is satisfied that the 9 -foot canal would be regarded by the Legislature in the nature of a compromise, and that the necessary money for its construction could be secured.
We thoroughly agree with the Governor in his conviction that if anything is to be done in the way of improvement in the Erie Canal, it must be done at once, and that if the question should be allowed to lie dormant a few years longer, it might be impossible to secure appropriations of any kind for canal im provement. At the same time, we cannot but feel that if the citizens of this State, particularly those that live in what are known as the "granger counties," could be induced to look upon the question broadly, and not merely from the viewpoint of local interests, they would see that the construction of the 12 -foot canal would promote the interests, not only of the terminal points at Buffalo and New York, but indirectly, by the multitudinous and far-reaching benefits
which always accrue from a general increase of trade, the interests of the whole State. It is scarcely to the point that Governor Odell should draw a contrast between the crowded state of the canal docks in his boyhood's days and their comparatively deserted condition just now. In those days, not only was railroad competition less severe, but the canal, as such, was adequate in conveniences and methods to the necessities of the time; whereas to-day in its present condition, it is as much out of date as a system of one-horse street cars would be on the Broadway surface line in this city. With a 12 -foot canal and 1,000 -ton barges, the economic conditions of operation would be so vastly improved that we think the Governor would soon witness a return to the prosperous conditions of an earlier day.

WATER-TUBE BOILERS IN THE BRITISH NAVY

At a time when our naval authorities are adopting the water-tube boiler, exclusively, for use in our new warships, the recent adverse report of the British Admiralty Committee against the use of the Belleville water-tube boiler cannot but excite great interest in this country. Indeed, the British navy is so vast, and its constructors and engineers have been in the main so successful in producing permanent types of vessels, that a reversal of their policy, involving the practical condemnation of the boiler power of the numerous and powerful ships that have been built during the past four or five years, has produced a pronounced sensation throughout the, whole naval world.
The determination to adopt this boiler was made after a series of trials carried out in one of the gunboats of the navy, and the "Powerful" and "Terrible," cruisers of over 14,000 tons displacement and 22 knots speed, were the first important vessels in which it was placed. Following close upon the trials of these ships came the announcement that the Admiralty had decided to install the Belleville boiler in all future battleships and cruisers. The "Powerful" and "Terrible," however, had not been long in service before complaints began to be heard against the performance of the new boilers under daily service conditions. There were difficulties in maintaining the desired steam pressure, and they proved to be very extravagant in coal consumption. Although a consumption of fuel of about 1.8 pounds per indicated horse power per hour was given out as the result of a trial, it was found that the average consumption of the same ship, when cruising, was between 2.5 and 2.8 pounds per indicated horse power per hour. When we compare this with the consumption of 1.3 pounds, actually recorded last season on the fastest transatlantic steamer, and with the consumption of 0.97 pound recently achieved on a 400 -mile trial of one of the freighters of the Inch Line of steamers, it can be seen that an adverse report from the Admiralty Committee was a foregone conclusion. We cannot do more than briefly summarize the more important findings of the committee, and must refer our readers to the current issue of the Sipplewev for the full report.
In the first place, the committee are of the opinion that the advantages of the water-tube boiler, from the military point of view, are so great that, provided a satisfactory type can be found, it is preferable to th ordinary cylindrical type. They do not consider that the Belleville boiler has any such advantage over other types of water-tube boilers as to lead them to recom mend it. The principal objections of the committee to this type are that the circulation of the water is defec tive; that an automatic feeding apparatus of a deli cate and complicated kind is necessary; that a great excess of pressure is required in the feed pipes and pumps over the boiler pressure; that the water-gages do not reliably indicate the water-level; and that the up-keep of the Belleville boiler has so far proved to be more costly than that of the cylindrical boilers; while the additional evaporating plant required and the greater coal consumption on ordinary service as compared with cylindrical boilers, has hitherto nulli fied to a great extent, the saving of weight effected by its adoption. Lastly, the evidence before the committee showed that a large proportion of the coal expended in the navy is used to distill water and for other auxiliary purposes; and for such purposes the cylindrical boiler is considered to be more suitable and economical than any type of water-tube boiler The report recommends that, as regards future ships that may be authorized, the Belleville boilers should not be fitted; as regards ships recently ordered, on which not much work has been done on the boilers the boilers be not fitted; while the boilers are to be retained on completed ships and on those under construction, in which any alteration would delay comple tion.
While condemning this particular type, the commit tee is fully alive to the manifest military advantages of water-tube boilers as such; and they recommenc an extended trial of four types of straight-tube boile:'s, which are now being adopted in foreign navies. These are the Babcock \& Wilcox, the Niclausse, the Dürr, and the Yarrow large-tube boiler. It will thus be see that a large section of the most recent ships of the

British navy is equipped with a boiler which its own expert committee condemn, a fact which proves that in naval, as in many other matters, it is well to make haste slowly.

LONGITUDINAL FRAMING FOR THE HERRESHOFF CUP-YACHT.

Each of the two yachts that are being built for the defense of the "America" cup will present decided features of novelty among boats of their size and purpose. The Crowninshield yacht, as we pointed out in our issue of March 30, presents novelty of form, being for a 90 -foot craft a wide departure from the Herreshoff model, and a purely original creation. The new Bristol boat, on the other hand, will adhere closely to the "Columbia" in form, but will differ radically from her in construction, her designer having broken away from traditional ideas-at least, in yacht construction-by substituting longitudinal framing for the transverse framing by which, from time immemorial, the boatbuilder has given his craft the necessary strength. In the transverse system, as followed in "Independence," the form of the boat is preserved by 79 frames, spaced $211 / 2$ inches apart (not $21 / 2$ feet, as, by a typographical error, was stated in our last issue), and the longitudinal strength is afforded by tie-rod trussing in the overhangs, by side and bilge stringers, and by the natural resistance to distortion of the hull and deck plating, acting in a general way as a tubular girder. On this system, the transverse framing is the fundamental feature, and the longitudinal system is subsidiary to it. In the new Bristol boat, the main framing is longitudinal, and the transverse frames are worked in as subordinate and auxiliary. The result is a reduction in the total weight of material for a given strength. The idea is new in yachts, but not in naval architecture, Brunel having built the "Great Eastern". half a century ago on this system. It is stated that Herreshoff has reduced hull weights 25 per cent as compared with "Columbia." This is manifestly impossible; if he has saved from 7 to 10 per cent, he has done well.

OUR ADVANCING TRADE

Although the recent increase in the exports of iron and steel manufactures from the United States has been simply phenomenal, there is at present no sign of falling off of the rate of increase. An analysis of the February export figures shows that for the eight months, ending with February, 1901, the total export is six and a half millions greater than the truly phenomenal figure of last year, and nearly three times the total for the eight months ending with February, 1891, which means an increase of 10 per cent ruary, 1891, which means an increase of 10 per cent
in a single year, and 333 per cent in the decade. In in a single year, and 333 per cent in the decade. In
the eight months ending with February, 1901, iron the eight months ending with February, 1901, iron
and steel formed 3 per cent of the total domestic and steel formed 3 per cent of the total domestic
exports, whereas in the eight months just ended they formed 7 per cent. These total figures are particularly gratifying when it is known that the exports cover a great diversity of products, thus proving not only that our manufacturers are rapidly increasing their output, but that they are each year fabricating a large proportion of the product, and thereby securing for themselves and for the labor employed the greater share of the profits arising from such manufacture. Thus, ten years ago, such articles as typewriters, cash-registers, pumping machinery, electrical machinery, and other articles requiring a high degree of man ufacture, had no place in the export schedules of the United States; whereas now they constitute an important part of our annual exportations of iron and steel, and are steadily increasing both in volume and in the number of foreign markets in which they- find profitable sales. To take a single instance, we may quote electrical machinery, in which in 1891 no ex ports whatever were recorded; while in 1900 the figures for the transactions of two-thirds of the year had reached about $\$ 2,500,000$. For a similar period in the present year they had risen to over $\$ 3,500,000$. An other gratifying feature is the fact that the area of distribution steadily and rapidly enlarges. Exports which formerly went only to the principal countries of Europe are now shipped to China, Japan, Australasia, Africa, and the islands of the South Sea, where such articles as sewing machines and typewriters find a market in the most distant islands.

SYLVICULTURE AND THE SUEZ CANAL.

In an interesting article on the above topic, the Revue des Questions Scientifiques describes as follows the highly successful efforts of the Suez Canal Com pany to protect the banks and approaches of that great highway of the world's commerce by a systematic plant ing of trees and shrubs of various sorts.
The Suez Canal Company is utilizing to great advantage saplings, shrubs, and large trees in order to consolidate its banks, and to preserve the maritime canal from the encroachments of the desert. The operation began in 1897, and was continued from year to year with the improvements suggested by experience.

For the purpose of diminishing the effects of ero sion at the edge of the banks of the maritime canal, and of the swells caused by the passage of vessels, there has been planted at the water's edge a reed of unusual dimensions, the Arundo gigantea, which speads its roots rapidly in the water and quickly attains a height of from ten to twenty feet. Farther back, on the slopes of the banks, there is employed with success several varieties of tamarisks (T: gallica, T. nilotica, T. articulata), whose branches take root when the sand hills just cover them, and which are intermingled with herbaceous plants like the orach (Atriplex halium) and the alfa (Stipa tenax).
In addition to the foregoing precautions it was necessary to protect the canals from the encroachment of the desert sands driven by the wind. To accomplish this there has been established, at about 350 feet from the water's edge, hedges formed of arborescent species, and 170 feet long. The filao, with horsetail leaves (Casuarina equisitifolia), an Australian tree quite well naturalized in Egypt, the acacia of the Nile (A. nilotica), the eucalyptus globulus et robusta; the cypress of Lambert; the caoutchouc and Bengal fig trees (Ficus elastica, F. bengalensis); poplars, mulberry trees and even the sycamore generally thrive well on these plantations, especially in silicious soils; this, these plantations, especially in silicious soils; this,
however, is due to artificial irrigation obtained by cutting ditches from the fresh water canals derived from the Nile for the sustenance of the inhabitants.
Vegetation is more rebellious where the soil is found to be argillaceous, compact or too solid. In order to overcome this the lime-bearing waters of the Nile have been brought down, after much labor, and now a number of tamarisks, willows, orachs and other trees thrive well.

On the banks where the swells of passing vessels would endanger the young plantations of reeds, they are sheltered, for the first few years, by hurdles which are taken elsewhere when the plants thus protected have acquired sufficient strength.

the heavens in april.

by itenry norris russell, ph d.

Although Mars is now some time past opposition and more than eighty million miles distant, he is still the most interesting object in our evening skies; and this not so much for what we know about him, as what we imagine.
The belief in his habitability, rather strengthened than diminished by the discoveries of recent years, but as yet incapable of proof or disproof, finds its most appealing presentation to the public mind in the idea of possible signaling between men and the inhabitants of the planet
Let us for the present assume that such intelligent inhabitants exist, and that the Martian canals are their work. We may then go on to consider what signaling to them involves, and whether it would be mechanically possible.
At the outset we are limited to two ways of signal-ing-by means of light, and by the electric waves of the same nature but enormously longer period used in wireless telegraphy, since these alone, of all earthly wireless telegraphy, since these alone, of all earthly
means of communication, can pass through intermeans of communication, can pass through inter-
planetary space. Of these two, light is by far the most promising, as the unaided eye can detect a far smaller amount of energy in that form than the most delicate instruments can in the form of electric waves.

When Mars is nearest us, the earth is almost directly between him and the sun. In consequence we can only see Mars at night, and his sunlit side is turned toward us. From Mars, on the contrary, only the dark side of the earth can be seen, and that in the Martian daytime. Therefore signals from the earth to. Mars would have to be made by artificial light while those in the reverse direction might be made with reflected sunshine. Moreover, our signals would be obscured by the glare of the Martian sky close to the sun; while theirs would have only the light of the planet and stars to interfere with them. For both these reasons it is much easier for the Martians to signal to us than for us to reply, and therefore we will first calculate on the supposition that they are flashing to us with reflected sunlight.

It is surprising how small a mirror will suffice to produce signals visible at a considerable distance in broad daylight. One three inches in diameter gives flashes which are conspicuous to the naked eye ten miles away. Indeed, this is the system of heliograph ing messages of which we have heard so much from South Africa. The writer has no available data as to the minimum size of mirror which can be used. I is, however, probably safe to allow an inch of di ameter of the mirror for each ten miles of distance if the signals are to be clearly read by the naked eye, and we will use this ratio in our work.
In the case of Mars the signals would be observed with large telescopes transmitting perhaps 10,000 times as much light as enters the naked eye from the same object. In conseauence the Martians' mirror need have object. In consequence the Martians' mirror need have
only $1-10,000$ of the area or $1-100$ of the diameter that
our heliograph rule would require. We need make no extra allowance for the fact that the Martian signals are to be observed at night, since they would be seen against the bright background of the planet's disk, just as the terrestrial flashes are seen against sunlit sky or hills.
Our final ratio is then one inch of mirror diameter for each thousand miles of distance. Now the least for each thousand miles of distance. Now the least
possible distance of Mars is $35,000,000$ miles. The mirror with which its inhabitants signaled to us would therefore have to be at least 35,000 inches or nearly 3,000 feet in diameter. To produce such a piece of glass is clearly far beyond the present resources of human engineering. It seems possible, however, that beings who could construct the Martian canals could also make such a mirror, but once made its mount ing would present still greater trouble. It would have to be set up so that its plane was equally inclined to the directions of the earth and sun, and moved by some sort of gigantic clockwork, to counteract the planet's rotation just as telescopes have to be moved on earth. To make flashes by covering up the whole enormous structure, or by tilting it, seems hardly possible; but this end could be attained by a mirror composed of parallel strips, like the slats of a mirror composed of parallel strips, like the slats of a window blind, which could all be turned out of their
plane at once, and later brought back to place by plane at once, and later brought back to place by
relatively simple mechanism; the whole to be mounted in a great frame moved by the clockwork spoken of above. No firm on earth would take the contract for such an apparatus; but it does not seem impossible that the human engineering of a few centuries hence might be equal to the task. So we reach the interesting conclusion that it is not inconceivable that men residing on Mars might be able to heliograph messages to us; and we cannot deny the same ability to the Martians, however unlike us they may be.
How hopeless the task of signaling to them would be we can now see. What gigantic conflagration, what combination of all the searchlights of the world, could produce a ray equal in intensity to a solid beam of sunlight a thousand yards across? How could we point them all correctly? And how interrupt their light at will? Remembering that these are the conlight at will? Remembering that these are the conditions for sending a message from Mars and that it is much more difficult to signal in the reverse direc-
tion, we may give up once for all the idea of any tion, we may give up once for all the idea of
regular communication between the two planets.

the healens.

As we once more watch the heavens at 9 o'clock on the evenings of the middle of the month, we see that we must soon bid good-bye to many of our old friends among the stars.
Canis Major, Orion, Taurus, and Perseus are all close to the horizon, and before another month has passed we shall lose them all. Cassiopeia, in the far north, escapes a similar fate only because her diurnal circle about the pole does not quite dip below our horizon. Auriga, Gemini, and Canis Minor are higher in the western sky, and we shall not lose them for some time yet.

Ursa Major and Leo are at their highest, fairly on the meridian. Lower down on the east is Virgo, with the brilliant Spica, and the arc of fairly bright stars between it and Leo. Below this is the little but conspicuous quadrilateral of Corvus, the Crow, who is perched on the back of Hydra, whose whole length can now be seen stretching from Canis Minor to Libra.
Arcturus is well up in the east, and Vega has just risen. Between them are the graceful circlet of Corona Borealis, and the extensive constellation Hercules, and below are parts of Ophiuchus and Serpius.

the planets.

Mercury is morning star all the month. His great est elongation occurs on the 3d, when he is unusually far from the sun, but as he is also south of him, he rises only about an hour before sunrise.
Venus is morning star till the last day of the month when she passes through inferior conjunction and resumes the rôle of evening star. She is too close to the sun throughout the month to be well seen.
Mars is still in Leo, moving westward till the 4th, then slowly eastward. He comes to the meridian about 8 P. M., and does not set till nearly three in the 8 P. M.,

Jupiter is in quadrature with the sun on the first that is, he is 90 degrees west of him and on the meridian at 6 A. M. Saturn comes to a similar posi tion on the 5th. The two planets are getting quite close together in the constellation Sagittarius and will remain so for some months.

Uranus is farther west, in Scorpio, and rises about 11 P. M. on the 15th. Neptune is in Taurus, nearly opposite the planet last named.
the moon
Full moon occurs on the evening of the 3d, last quarter on that of the 11th, new moon on the after noon of the 18th, and first quarter on the forenoon of the 25th. The moon is nearest the earth on the 18 th , and most remote on the 4 th .

She is in conjunction with Uranus on the night of
the 8th, Saturn on the morning of the 11th, and Jupiter on the afternoon of the same day; with Mercury on the morning of the 17th, Venus on the afternoon of the 18 th, Neptune on that of the 23d, and Mars on the morning of the 27 th.

AUTOMOBILES IN NEW YORK.

The above was the title of an address by G. Herbert Condict, before the New York Electrical Society. on March 27, at the new station of the Electric Vehicle Transportation Company, corner of Forty-ninth Street and Eighth Avenue, in this city. Before a very large audience, standing in an electric runabout for a platform, Mr. Condict related briefly a few facts concerning the rise and growth of electric transportation. He remarked that there were at the present time four hundred and fift \bar{y} automobile vehicles in New York, as compared with about four thousand horse-draw. In the next twenty years it was a possibility that no horse-drawn vehicles would be permitted in the streets, and so the vast expense of keeping the latter clean would be saved.
It was during seasons of snow and ice, when the smooth pavements were slippery, that the demand for electric vehicles was the greatest, and frequently overtaxed the facilities of the company. At these times, on one occasion, as many as four hundred calls an hour had been received. The company, of which Mr. Condict is the chief engineer, decided in the spring of 1.900 to secure larger quarters, and began the work in August of last year of transforming half of the great building on Eighth Avenue, between Fortyninth and Fiftieth Streets, formerly used as the Eighth Avenue car stables, where over 1,500 horses were accommodated, into an enlarged station covering three acres, equipped with motor current transformers, which take the Edison alternating current at 3,200 volts and deliver direct current at 110 volts; a special switchboard, which controls the current supply to six hundred separate sets of batteries, with room to spare for controlling one thousand batteries at a time; electric motor automatic water pumps for supplying the roof tank which produces the hydraulic pressure for elevating the sets of batteries and transferring them to and from the vehicles; an immense battery room, ventilated by two large electrically-operated fans in the roof; two great electrically-propelled cranes spanning the room, arranged with separate motors, for lifting and lowering individual sets of batteries from or to the charging fingers on the floor; a battery repair room, a well-equipped machine shop on an upper floor, a motor room for repairing and adjusting motors and parts to vehicles, a blacksmith shop, a paint shop, and adjoining the machine shop a long room having a double trolley wire overhead, on which runs a trolley carriage, and from it the current is conveyed by a flexible wire to a cab for testing the motors and the running of the vehicle without a battery.
When a vehicle comes in for the day the battery is transferred to the charging room, and the vehicle is washed and sent up stairs. There it is carefully in spected, the rubbed plate battery connections are brightened with sandpaper, the motors are cleaned, the vehicle trimmings examined, and the tires blown up. It is then ready for the next day's business.
So complete are all the arrangements that it was stated within fifteen seconds of the receipt of a telephone call a cab is started on the way to answer it.

The station and the system is regarded as the largest in the world, and is the most unique and perfect in all its appointments for the rapid handling of individual batteries and inserting and withdrawing them from vehicles. It represents the possibilities of the practical use and application of electricity on a large scale as applied to transportation. This system was illustrated in the Scientific American, March 25, 1899.

METHOD OF DETECTING HYPO IN PHOTOGRAPHIC WORK.

The importance of thoroughly eliminating the hypo from negatives or prints in photographic work is so well recognized that it need not be insisted upon, and it will therefore be useful to give a method which has been brought out in the Belgian Photographic Bulletin for detecting small traces of hypo in the washing water and thus observing when the operation is finished. Into a deep tray is poured a small quantity of the water or solution in question and a few pieces of granulated zinc are thrown in, after which add a few drops of hydrochloric acid. F'ace above the tray a fllter paper wet with a solution of acetate of lead. If the least trace of hyposulphite remains in the solution the paper will become brown, and afterward assume a black metallic appearance. This action is due to the formation of hydrogen sulphide, which escapes to the surface and colors the paper by forming lead sulphide. In this way it is always easy to determine when the washing is finished or to examine a. solution suspected of containing hypo.
electrically illuminated fountains.
Of late years the electric illumination of fountains has been carried to such a point that the best of them form a spectacular display, which will continue for two hours before the series of designs which can be formed is exhausted. A fountain was recently erected in Philadelphia, which shows over fifty different designs illuminated in various colors by the system of illumination employed. As an amusement feature, these displays have proved very attractive, and city authorities as well as owners of private parks have gone to considerable expense in securing them. In Prospect Park, Brooklyn, a fountain is in operation, which cost $\$ 25,000$.
In planning the electric fountains, the basin to contain the water is constructed of stone or concrete in the usual manner, except that portions of the bottom are covered with glass. The electrical apparatus is usually located in a chamber beneath it. The chamber is connected with the surface by an underground passage, which is also used as a conduit for the electric cables. The wires of the cables connect with a stand, or switchboard, containing a series of electric buttons, and extend to lamps of both the arc and incandescent type, placed in the various pipes or funnels, through which the water is forced. The lamps are protected from the water by panes of colored or clear glass, some of them being covered with a set of movable panes which can be swung or whirled by the use of compressed air. Arc lights are utilized for the general illumination, and their rays are intensified by movable reflectors, so that beams can be thrown upon the upper or lower part of the water and at any angle desired. The buttons are colored to represent the tint desired in the illumination. For instance, the operator presses a red button when he wishes to introduce light through the red glass, a yellow button when it is desired to give a yellowish hue, and a green button when it is desired to give a green tint, etc. The designs in water are created by the shapes of the pipes through which it is thrown into the air, and by the arrangement of the holes in them. A conduit supplying a one-inch stream may have its nozzle pierced with holes in the shape of a star, an umbrella, or open to form a single jet, as desired. If its stream is to be thrown vertically into the air the pipe is, of course, placed in a vertical position. If it is to form an angle, the position is varied accordingly. As the larger fountains may have several hundred pipes arranged in various positions in the basin, an idea can be gained of the combinations. The water is conducted from the reservoir or pumping station to the fountain by underground conduits in the usual manner. Valves are set in the conduits and in the smaller pipes, and are connected with the operating chamber in such a manner that each is controlled merely by the pull of a lever. The set of levers is arranged somewhat similar to the apparatus.in a railroad block signal station. In planning the display, the piping and wiring are, of course, installed to allow the use of single jets and combinations, and the introduction of colored illumination, as desired. This must all be arranged in advance, as the pipes and wire cables are generally inclosed in concrete, or other waterproof material, after being connected with the various funnels and jets beneath the basin.

Such is the simplicity of operation that only two men are required -one to work the levers, and the other the buttons. A small window of thick glass allows them to note the water formation from their stand in the underground chamber. When the 700. Date, 1901.

ELECTRIC FOUNTAIN EFFECTS.
time for the display arrives, the electrician takes his place at the switchboard, and gives his orders to his assistant. The latter pulls the lever he indicates. As soon as the column of water appears, the electrician illuminates it by pressing a button on the switchboard. If it is a single jet, it is allowed to play for two or three minutes; then several others are added by another pull of the lever. It remains illuminated by the white light until the electrician presses another button and the tint is changed. Different effects are pro-

NEW RUSSIAN BATTLESHIP "CZAREVITCH."
Displacement, 13,000 tons. Speed, 18 knots. Armor: Belt, 9 inches; gan positions, 10 and 11 inches for main battery, 5 and 6 inches for secondary battery Armament : Four 12 -inch ; twelve 6 -inch rapid-fire guis; twenty 3 -inch ; twenty 8 -pounders and 8 smaller guns. Torpedo Tubes, six. Complement

duced in the same manner. As already stated, the com binations which can be arranged are really remarkable in their extent. The Brooklyn and Philadelphia fountains, which were designed by Mr. F. W. Darlington of Philadelphia, display umbrellas, various flowers sheaves of wheat, globes of liquid, and spiral columns which writhe in the air like snakes. At Willow Grove Park, Philadelphia, the arrangement is such that a cascade can be formed in the shape of a fan extended. This constitutes a background, or curtain, on which colored pictures are thrown by means of a stereopticon, giving a novel, yet beautiful, effect.
The quantity of water required varies from a few thousand gallons an hour to as high as 100,000 gallons in the larger fountains. A pressure of from 125 to 150 pounds to the inch is required for the more elaborate displays, and usually the supply is forced to the fountain by a powerful steam or electric pump. There is no necessity for waste, as the water can be forced back to the pumping station or reservoir and used over and over if de sired. An electric current of 500 volts is usually suf ficient for the illumination. For the larger fountains it is sometimes generated in an individual station, but when they are set up in pleasure grounds owned by street railway companies, or in cities where the municipal authorities have their own electric light plant, the current can be carried from the central station by means of the cable system.

THE NEW RUSSIAN BATTLESHIP "CZARE
VITCH" AS SHE WILL APPEAR WHEN COMPLETED FOR SEA
The sudden effort at expansion in which the Russian navy is just now engaged has led to orders for the building of new battle ships and cruisers being distributed in a large number of different places and coun tries. Like America, France has come in for her share in this business, and one of the most important warships now under construction for the Russian navy in that coun try is the "Czarevitch," which is being built at the well-known yard at La Seyne, near Toulon, belonging to the Forges et Chantiers de la Mediterranée.
This ship, when complete, will be a big armor-clad of 13,000 tons displacement, bids fair to be a very formidable ship of war and has that somewhat "ferocious" appearance for which French battleships are con spicuous. Her masts, heavy, castelated, and bristling with guns; her tumble-home sides; her high superstructure and numerous "tourelles," or turrets, all contribute to impress the onlooker with the idea of war-like power. This appearance, like others, is, however, not infrequently some what deceptive, but in the present case cannot be con sidered so, as both in offensive and defensive equip ment the "Czarevitch" is extremely well provided.
Her armament consists of four 12 -inch guns, twelve 5.9 -inch rapid-flring guns, twenty 12 -pounders, twenty -pounders, six 1-pounders, and a couple of 2 -pounders, or sixty four guns in all, equaling the number carried in the old sailing battleships of the early part of the century. Her dpfensive armoriso considerable area In the flrst place she has a complete belt of armor hav ing a maximum thickness of 9 inches, and upper and lower armor ed decks, while al her heavier gun are placed in bar bette turrets, the heavier of which containing the four guns form ing her principa armament, are 11 inches thick in the turrets, and 10 inches in the barbettes. The hoods of the six turrets containing the twelve rapid firers of her sec ondary arma ment are 6 inches in thickness on barbettes of 5 -inch plating.
The "Czarevitch" is provided with
six torpedo-tubes, of which two are below water, the remainder being situated at bow, stern, and on either broadside. The new battleship will be a twin-screw vessel, and is estimated to attain a speed of 18 knots an hour. Belleville boilers, twenty in number, are to be fitted, and will supply steam for two sets of fourcylinder triple-expansion engines, working up to 16,300 horse power. The "Czarevitch" will be fitted with six electric projectors and a complete installation of electric lighting. Electricity, too, will supply the motive power for revolving the turrets and other purposes for which local machinery is re quired. She is to be fitted as a flagship and will carry a crew of 700 men.

A SUGAR CANE REAPER WANTED IN
 HAWAII.

The Hawaiian Sugar Planters' Association have a most important problem to solve, namely, the invention and designing of a reaper for sugar cane in plantation fields. They have set about the problem in an eminently practical manner, offer ing prizes which aggregate $\$ 8,500$. A prize -or reward, as the Association terms itof $\$ 2,000$ is offered for the best practica design of a machine for reaping the cane This competition will close on the 30th of June, 1901. The design selected is to be come the property of the Association, who may cause the machine to be manufactured for actual trial. A further prize, or re ward, of $\$ 5,000$ is offered for the best work ing machine that will actually reap cane in the field in a practical manner. This part of the competition will close on De cember 31, 1901. Should the machine built from the accepted design participate in the actual trials and be successful, the inventor will receive $\$ 3,000$ in addition to the $\$ 2,000$ which he has already received in the first part of the competition. If the competi tion is won by a machine not manufactured by the Association, it will be purchased from the inventor by the Association at the cost price delivered in Honolulu. A further prize of $\$ 1,500$ is offered for the best design of an apparatus to transport the cane to and load it in railway cars. This competition closes on the 30th of June, 1901. Competi tors are required to submit drawings of the machine as a whole, together with full de-tail-drawings, and only a description where the design is called for. In the second part of the competition, where a machine is called for, competitors will be required to furnish the machines to be experimented with in the field by the board of judges. Should the Hawaiian Sugar Planters' Association accept a design of machine, the payment of the reward will be equivalent to the purchase of all patent rights to such design or machine in the Hawaiian Islands. All communications should be addressed to the secretary of the Association at Honolulu. In order to enable inventors to gain some idea of the practical nature of this problem, we have secured some photographs taken specially to show the conditions which prevail in sugar cane plantations in the islands. The photo graphs are taken on an irrigated estate, and the figures may be considered as the average.

The canes grow in furrows, 30 feet long and 5 feet apart, center to center. They follow the land contour and for this reason are sometimes straight and very often curved. At the end of each 30 -foot furrow is a water-course 18 inches wide, which supplies one set of furrows. These water-courses are from 50 feet to

sugar cane field just planted, showing furrows and watercourses.

CANE CUTTERS AT WORE ALONG LINE CUT OUT FOR TRACK
furrows, provided their growth be in that direction. The top to be removed consists of a portion of soft cane low in saccharine matter, of green leaves attached at their bases to the stalk, and of unformed leaves in process of growth. Any reaper must of necessity cut canes off where they emerge from the soil and cut off tops in a satisfactory manner.
Concerning the loading device, the illustrations show the condition of the canes. The canes when cut are laid upon the field on top of the loose leaves and tops. This mat of leaves is several inches thick. Canes are cut in lengths about 5 feet long. As far as possible, they are laid straight; owing, however, to the curving of cane stalks, they are frequently laid irregularly. Portable tracks are placed in the fields, running generally parallel to one another, from 150 to 250 feet apart. Cars are run on these tracks in trains of about forty in number, and placed to suit. The car bottom is 2 feet from the ground; its length is 11 feet, and breadth 6 feet. It is assumed that canes on the ground will have to be placed on the conveyer of loader by hand. Any machine for cutting or loading should be operated by either horse power, gasoline, or electricity. Any engine deriving its power from coal or wood, which would either drop cinders or throw sparks, cannot be used in a cane field.
The quantity of cane loaded per day at this particular plantation averages 1,150 tons. For season of 1902 this will be doubled. From this it will be gathered that competitors should design substantial machines, capable of handling cane in large quantities.
It is hoped that American inventors will not be backward in devising an acceptable reaper and loader. We already lead the world in agricultural machinery, and we shall probably continue to do so.

The Becquerel Rays.
A new technical journal, Kirchhoff's Technische Blätter, to be issued within a few days, will contain an interesting article concerning the latest rays.
In 1895, a French chemist discovered rays emanating from the element uranium, which possessed properties similar to the Roentgen rays. They were called Becquerel rays, after their discoverer. But while the discovery of Roentgen aroused great interest in the whole civilized world, leading to radical changes in medical diagnosis, the Becquerel rays were only employed in a very limited way in physical laboratories, and an asser tion by the French scientist, Demarcays, that they were not emitted from uranium, but from a new element, made no impres sion.
Recent experiments by the Berlin High School of Technology have proven this as sertion-that a new element is responsible
to 20 feet long, with an average stalk diameter of 1.60 inches. The weight of cut cane runs from 70 tons to 105 tons per acre, with an average of 86 tons. They contain 11 per cent to 12 per cent of flber
The canes do not stand upright. Owing to their own weight, they lie along the ground for threefourths of their length, with a perpendicular upturn for the remaining fourth, surmounted by the green leaves, or "top." After emerging from the soil, they reach out in all directions, forming a sort of mat of interlacing canes below these fairly upright tops. It will, therefore, be noticed that, with furrows 5 fee apart, the canes of above lengths will lie across two
for the Becquerel rays-and the interesting fact has been observed that these rays render almost every transparent substance luminous in the darkness.
These rays make it possible to tell genuine diamonds from artificial ones in the dark. This will prove of great practical importance in testing. The experiments have also resulted in obtaining, for the flrst time, larger quantities of the new element, which has demonstrated that rays emanating from a larger quan tity make the air such a conductor of electricity that it is hoped this property can be utilized in wireles telegraphy. Experiments for this purpose are being made in the Berlin institution, but the deepest secrecy

A TRANN OF CARS ALMOST LOADED.

coading cars on the temporary track
is maintained concerning them. It is stated that the results will soon be laid before the Emperor, which seems to indicate that the discovery is regarded as one of great importance.

TRAINING SCHOOL FOR NEW YORK STREET-CAR MOTORMEN.

To the man in the street, the running of a 38 -foot electric car of the underground conduit system, at a fairly high rate of speed, through the most crowded and busy streets of the world, is a matter which involves merely the turning of a controller-handle and of a brake-lever in obedience to the signals given by the conductor. But the man on the car is chosen, not because his work is apparently so simple, but because he has proved his fitness to hold his position by an arduous preliminary training. The heavy cars of our large cities cannot be controlled unless the starting apparatus be properly manipulated, unless the brakes are operated in a certain way, and cannot be safely driven through an interminable stream of wagons unless the motormen have no inconsiderable presence of mind and reasonably good judgment.
In order to train its men to think and act with coolness and precision, the Metropolitan Street Railway Company established a training-school some two years ago, in which ambitious recruits were to be systematically taught how to become not only acceptable motormen, but also fairly good electricians, thoroughly familiar with the mechanical and electrical construction of an electric car. The school was the first of its kind ever founded. When it was started by President Vreeland it was scoffed at; but the best proof of its success is to be found in the fact that the street railway-companies of the largest cities have followed the example of the New York company.
Before he is admitted to this training-school, the applicant is examined by a physician. If his eyes be weak, or if he be not sufficiently robust, he never even sees the training-school. The applicant who has successfully passed the physical examination is admitted to the school, and is assigned to one of thirty dummy car-platforms, disposed around the classroom, each fitted with a controller, a brake, a ground-switch, and a fuse-box. He is given a book of rules-his electriccar gospel-which he must learn as thoroughly as he once learned his forgotten catechism and the Ten Commandments. The breaking of one of these rules is a \sin for which almost any punishment may be meted out. But, of all offenses, the most heinous is the neglect to remove the handles of the controller upon leaving the car. "Never leave the car-platform for an instant without removing the handles of the controller," is so thoroughly and persistently dinned into the embryo motorman's ears that the rule is followed in the end almost instinctively. Even the men who are tolerated in the school merely because they will not be convinced of their unfitness, never leave the dummypiatform with the controller-handles in place, although as a ruse they may be called by the instructor to his desk to receive some paltry information.
During the few days passed on the dummy platform, the motorman is taught how to start his imaginary car without hurling the passengers from their seats, and how to stop gradually under ordinary circumstances, and suddenly in a case of emergency. The advisability of turning the controller-handle one con-tact-point at a time, so that the power is applied gradually, is forcibly impressed upon him. In order that he may obey the signals of the conductor, the schoolmaster conveys his orders largely by means of an ordinary car-bell.
When he has learnt the rudiments of his calling, the pupil is taught something of the mysteries of electricity. He is taken to the classroom controller, the casing of which is open, so that all who have eyes may see how it is constructed, and the meaning of each contact-point, each resistance, is clearly explained. He is taught how to cut out the disabled motor of a car from the controller, and how to manipulate the re-versing-lever. The terms "multiple" and "series" are defined not only in unmistakable words, but objectively by means of the controller and the motors.
For this purpose the classroom is equipped with an operative skeleton-car, jacked up from the fioor so that its wheels may spin with even more freedom than they would on the road. At this period the motorman enters upon the most difficult part of his education. On the road he must be able not only to run his car in a manner which will be a credit to his his car in a manner which will be a credit to his
teaching, but he must also be able to locate open teaching, but he must also be able to locate open
circuits whenever occasion may require. Accidents of all kinds may happen, and the pupil must be able to cope with them before he is graduated. Each man in turn is placed on the platform of the skeleton-car, is instructed practically how to operate the apparatus of which he has charge, and how to locate open circuits on a "dead" car, as it is called in road parlance. If, after having been brought to a stop, the car refuses to move when the current is turned on, the motorman knows that something must be amiss. In accordance with the teaching of the instructor, he
orders the conductor-usually another pupil-to switch on the lights. When the glow within the car shows that current is at hand, the motorman steps from his platform and examines the overhead switches on both ends of the car, not, however, without removing his handles. Should the switch-handles be in proper position he inspects the fuse-boxes. If he finds that a fuse has been burnt out he proceeds to the groundswitches to cut off the current, then inserts a new fuse, replaces the ground-switches, mounts his platform again, and starts the car. But if the fuses be intact the motorman is instructed to cut out the motors in succession from the controller in order to ascertain which motor is defective. Should the lamps fail to light he examines the ground-switches. If they be properly set and the headway short, he knows that nothing can be done and that the following car must push him to the terminus. But if the headway be sufficient he continues his inspection. Entering the car he lifts a trap-door and examines the leads of the plow by which the current is fed to the motors. If the circuit be open at the regular connections the leads are replaced in position; but if they be properly connected, then the motorman knows that some injury has been sustained which he cannot repair and that his car must be pushed to the stable. This instruction in making repairs is accompanied by striking illustrations of the conseqquences of the motorman's breach of the infiexible rule which requires him never to leave the car-platform without removing the con-troller-handles. Either the instructor or an advanced pupil plays the part of an excitable, forgetful motor-man-the man who, when he finds that his car will not start, leaves his controller-handle perhaps on the sixth or ninth point, frantically rushes off to renew a burnt fuse or turn a switch-handle to its proper position, and then suddenly finds himself standing alone with his car speeding away so rapidly that it cannot be easily overtaken.
When a car is disabled by an open circuit and the brakes fail to arrest the car, the motorman is instructed to pull the reversing-lever toward him and then to turn the controller-handle to the sixth point. Thus the motors are placed in multiple and converted into dynamos, sufficient power being generated to stop the car almost immediately. If an emergency stop be necessary, the brake is released, the power is reversed, the controller-handle turned to the first point, and sand applied to the rails. Should a fuse or automatic switch be blown out, the controllerhandle is moved to the sixth or ninth point, whereby the car is stopped in the manner already described. The motorman must also learn that, when on a heavy grade, an open circuit requires his attention and that the brake fails to hold his car, he has only to turn the controller-handle to the sixth or ninth point to stop the car, the reversing being left in the forward position since the car is already traveling backward.
The skeleton-car is provided with the usual resistance panels, raised, however, so that they can be readily seen, and fitted with lamps which clearly indicate when the resistance is partially or entirely cut in or out of the circuit. By means of these resistance lamps, the controller, and wiring-charts, the men are taught that with the controller-handle on the first point, the 1,550 -volt current furnished by the power-house passes through all the resistance; that on the second point, one-quarter of the resistance is cut out; that on the third point, one-half the resistance is cut out; and that finally when the fifth point is reached, the motors are running in series with all resistance out. The transition from the fifth to the sixth point connects the motors in multiple, the con-troller-handle passing over three unmarked transition points. The motorman is instructed to make this transition rapidly, so that the motors may sustain no injury from the change to multiple. On the first transition point one-quarter of the resistance is cut in; on the second transition point three-quarters of the resistance are in the circuit, the motors still being in series. On the third transition point, motor No. 2 is dropped out of the circuit. On the sixth point both motors are in multiple with three quarters of the resistance in the circuit. On the seventh point one-half of the resistance is in the circuit; and on the ninth point, the resistance is out of the circuit, both motors running under full speed in multiple.
The training which the motorman receives on the skeleton-car is supplemented by lectures on the method of crossing avenues and streets through which other cars travel. For classroom demonstration two sets of channel-rails are used, separated any desired distance, to represent the breach in the underground conductor. The schoolmaster constantly reiterates the necessity of shutting off the power at the point indicated by long white marks on the road, and of "fioating" across the break. The consequences of turning off the power without sufficient headway are shown by means of a plow used in connection with the channel-rails.
When the applicant has learnt in the school all that he need know, he must pass through a post-graduate
course on the road under the guidance of an expert motorman before he is permitted to don the blue uni form which is his diploma, and to mount the platform of his own car. If the road practice prove that he has not fully grasped all that the instructor has impressed upon him, he is either sent back to the class room, provided there is still hope for him, or sum marily dismissed without ever entering the service of the company. The road is the crucial test which the training-school graduate must withstand. There all his faults and all his virtues glaringly exposed are carefully observed by the chief instructor; and ther the electric-car career of many an applicant ends.
Our article has been confined to the training of the electric-car motorman. But the school is also equipped with the dummy platform of an air-motor car, and with a cable-grip. The air-motor car is controlled with more difficulty than a locomotive; and for that reason not more than ten per cent of the training school pupils are capable of manipulating its complex starting apparatus. Nowadays the cable-car grip is rarely used. In ten or fifteen years the tall model which now stands in the classroom and towers above everything else will be a relic of the bygone days of the cable-car-an interesting, antique curiosity.

Automobile News.

A long trip through Algeria has been lately made by Messrs. Joseph and Pierre de Crawhez, two prominent chauffeurs. Starting from Algiers, they proceeded toward the south, passing through Boghari, Djelfa and Laghouat, then returning by way of Bou-Saada and Aumale. The distance covered on the tour is about 850 miles, in a region where the roads are but little more than footpaths. The machines were an object of curiosity to the natives, as well as to the Europeans, who saw an automobile visit their region for the first time.
Some additional information has been received as to the operation of electric omnibuses in Berlin. An omnibus line has been lately put in operation to connect the Stettin and Anhalt depots. The Siemens \& Halske vehicle with which the company has been making experiments during the last year has proved satisfactory. This omnibus has 12 places interior and 6 on the rear platform. The battery of 44 Pollak ele6 on the rear platform. The battery of 44 Pollak ele-
ments is placed under the seats and is sufficient for ments is placed under the seats and is sufficient for
a 10 to 12 mile run. The present line is about $21 / 2$ miles long and the trip is made in 25 minutes. The fare for the whole distance is $21 / 2$ cents. Each omnibus makes about 60 miles per day; the route has some rather steep grades, reaching 7 per cent. At each end of the line is a central station for charging the batteries. The new system is said to work well and there is some talk of establishing other omnibus and there is some talk of establish
lines in different parts of the city.
The annual automobile race, organized by the St. Petersburg Club, had to be abandoned on account of a heavy snowfall, and postponed till a later date. The race was fixed for the 17 th of February, and seven competitors were engaged, Messrs. Mazi, Barkett, Henrik and Loginoff in large machines and Sourmetz, Krouspsky and Alexieff in motocycles. The prize was a challenge cup. The day before the race the thermometer marked 18 degrees below zero (Centigrade) and thick whirlwinds of snow filled the air. Four of the competitors declined to run; the other three left the next morning by railroad for Alexandrovskaya, on the Warsaw line, from which the start was to be made. Upon arriving the starter made a tour in his machine and decided that the snow was too deep to permit of running. The jury, composed of Dr. Klimenko, secre tary of the club, and two other members, then declared the race off.

The Automobile Club of America now has clubrooms adjacent to Central Park, and a fine library and grill room are provided. The Board of Governors has issued a resolution asking all mem'bers to regard the speed regulations. They strongly disapprove of an excessive rate of speed on the public highways, in disregard of the comfort and safety of other users of the common roads, as an injury to the sport and to a great industry They expect that when members driving automobiles meet a driver of a horse or horses which are restive or frightened, the automobilists, on request or a signal from such driver, will in all cases stop and use every precaution to avoid the possibility of an accident. Any member of the club who shall be found, after a fair hearing, to be guilty of driving at a dangerous or excessive speed on the public highway, or who has disre garded the comfort and safety of other users of the same by failure to stop when requested by the driver of frightened horses, or who has been guilty of such conduct in the use of automobiles on the highways as shall tend to bring odium or reproach on the organiza tion, shall be duly warned and suspended, and upor the repetition of such offense, shall be expelled from the club. This step taken by the Automobile Club of America will win respect for the organization, which has always done everything in its power to help, not only the sport, but the motor industry as well.

Sorrespondence.

The 7 -inch vs. the $\boldsymbol{6}$-inch Gun.
To the Editor of the Scientific American:
I have followed with interest the controversy now in progress in your paper concerning the armamen for the cruisers of the "California" class. It is mos satisfactory to know that there are people who take such deep interest in the development of our navy as do your correspondents. It is well that our people take an active interest in such matters, and that their opinions be brought forth. While some very good points are raised on both sides of the question, er roneous ideas are apt to appear. It is to such an ide that I wish to call attention, not for mere argument's sake, but in the hope that its correction may lead to further discussion of the subject in question on a more comprehensive basis.

I refer to the communication in your issue of March 23. 1901, in which your correspondent suggests the substitution of 7 -inch for the 6 -inch rapid-firing guns as a means of solving the battery question of the "California" class of armored cruisers. That would be a great mistake; for there would be no gun of intermediate caliber between the 7 -inch and the 3 -inch (14 pounder) guns. Moreover, if an intermediate cal iber could be introduced the difference in efficiency between the 7 -inch and the 8 -inch gun would not war rant the installation of the two on the same ship. In fact, it would be considered a very unwise policy to have two so closely related guns on one ship, be they 4 -inch and 5 -inch, or 6 -inch and 7 -inch. The 6 -inch (100 -pounder) is a very good "stepping stone" between he 8 -inch (250 -pounder) and the 3 -inch (14 -pounder)
One of the lessons of the Spanish war has evidently escaped the consideration of your correspondent, and that is the moral effect of rapid fire upon an enemy What overwhelmed the Spanish gunners was not the accuracy of our fire, far from it-only from two to hree per cent of the shots having taken effect; it wa the rapidity of our fire that filled the air with shell that demoralized them.
It is safe to assume that the latest 6 -inch gun will be able to deliver more metal within a time limit than the 7 -inch gun, and with the same, probably superior accuracy due to its more manageable size; for the smaller the caliber the greater the rapidity of fire If the 7 -inch gun were adopted, as proposed, the 8 -inch gun and the 6 -inch gun would have to be discarded and the 5 -inch gun brought into play to fill in the gap between the 7 -inch and the 3 -inch guns, and that is not as effective for all-around work as the 6 -inch un against the latest ships.
The following also attracted my attention while reading the correspondence referred to, viz.
"If fighting is the primary object of a warship, it would certainly seem that her offensive power should not be made of secondary importance to other qualities in her make-up."
According to that let us take our "Californias" and remodel them so that the machinery is reduced to ten or twelve knots efficiency, the coal capacity to about 500 tons, the high freeboard of some twenty feet to the low one of a foot and a half or two, and reduce everything else that we do not actually use in fighting. The result would be a monitor-an excellent fighting ship, but of what strategic value? Surely a monitor with four 8 -inch, fourteen 6 -inch eighteen 14 -pounders and twelve 3 -pounders and four 1-pounder guns would be a most formidable fighting vessel, even more formidable than the "California" of the same armament before being changed. Ancho them both within fighting range and let them bang away at each other. The result would be the cruise much the worse for the experience, due to her greater exposed surface; for her high freeboard would serve as a short stop for many shots. If, however, the cruiser be permitted to use her superior speed she would be able to accept or refuse battle. If accepting attle her speed would serve her for constant maneu vering which the slow speed of the monitor could not offset. But give your monitor speed, hence greater coal capacity, hence a greater crew, hence greater freeboard, hence greater displacement, and you have a rival for the cruiser on an equal standing. Thus it will be seen that a ship, to be an all-around fighting ship, must combine such qualities as belong to vessels of another class-the protected cruiser or even the gunboat, which are strategically excellent but offensive ly poor.
It seems that for all-around efficiency the "Cali ornia" and class are first-class ships and I am sure that they are the result of conscientious work on the part of our naval constructors, to whose benefit it is to produce only first-class work.

Carlos de Zafra
118 West 44th Street, New York, N. Y.
The great Serpent Mound in Ohio has been trans ferred to the Ohio Archæological and Historical Society.

The Cape-to-Cairo railroad is now in operation to a point 100 miles beyond the southern line of Lake Tanganyika.
The company making cellulose for war vessels, ex plosives, etc., now has three large factories in suc cessful operation, besides two cutting plants. A fourth factory is nearly completed.
The French art critic, M. Arsène Alexandre, has dis covered that our machinery showed a distinct beauty of racial type. The national character was clearly marked, he thinks, even in our locomotives. This theory is an ingenious one, and is worthy of elabora tion.

A scheme is on foot to start a fast line of steamers on the Thames between Kew and Woolwich. Certainly there is no river in the world that needs fast service of boats as the Thames. The boats which run to Hamp ton Court make phenomenally slow time. They are re tarded by the locks.
The sizes of anthracite coal and the screens through which they are made are as follows, says Steam En gineering: Coal which runs through a screen having mesh of $3-16$ of an inch is called barley; $3 / 8$, rice $9-16$, buckwheat; $7 / 8$, pea; $11 / 2$, chestnut; 2 , stove; $23 / 4$ egg; $41 / 2$, grate; 7, steam. Coal beyond this size is known as lump coal. Bituminous lump coal passes over bars $11 / 2$ inches apart; bituminous nut coal passe through bars $11 / 2$ inches apart; slack coal passes through bars $: 3 / 4$ of an inch apart.

Germany offers abundant market for a large number of American commodities, especially in the way of office furniture and supplies. The safes are mostly of obsolete types with old-style locks, and judicious ef forts on the part of our manufacturers would result in large sales of our medium styles store and office safes. German offices and stores are rapidly adopting modern furniture including desks, typewriters, fil cases, cash-registers, etc., and safes will prove equally as popular. Heidelberg students carry ink in bottles to and from classes and, indeed, the fountain-pen seem to be very little known in Germany

In December a serious country fire occurred along he line of the Great Southern Railway in the Argen tine. It extended 60 miles, and burned some freigh rolling stock as well as telegraph poles and fence posts. The fire appears to have been spread by the great amount of "paja voladora," or flying grass. It is blown about by the wind and whatever care the rail road companies may take naturally they cannot keep it off their right of way so long as it exists. It is difficult for the trains to cut their way through it, and t causes hot boxes and even derailments, while fore most of all is the terrible danger of its taking fire The shifting of the wind a few points after the section hands have cleared the track of the flying grass may result in its immediately being buried in the dangerous stuff again.

Vaucluse, in South France, is a center of the ocher industry. Sometimes the ocher is excavated direct without mining, but often shafts are sunk. The ma terial when brought to the surface is transported to the valley below on carts and is then washed. Mining is only done in the winter season, as the watercourse are dry in summer. By means of successive settling basins various degrees of fineness are secured in washing the ore. At the end of the winter these basins ar filled with ocher in the form of mud, which dries hard during the heated term, and is then cut into blocks of regular size and dried in the sun. It is then either cut into blocks or crushed into powder for shipmen and is sorted for color; the yellow shades command he highest price. The total production of these mines ast year was about 180,000 tons, and of this amount 3,000 tons were shipped to the United States. Although the mines have been worked for many years they are not exhausted.

The London County Council have issued their annual eport reviewing the work accomplished in the me ropolis during 1899 concerning tramways, dwellings, and numerous other schemes which were carried out a an aggregate cost of more than $\$ 56,250,000$. Twenty three miles of new thoroughfares were undertaken which will result when completed in an increase in the population under the jurisdiction of the Council from its present $4,700,000$ persons to $7,096,400$ persons. The maintenance of the Fire Brigade cost $\$ 1,000,000$, while a similar sum was expended upon the drainage of the city. The present sewers are too small to cope with the rapidly-increasing exigencies of the population, and a new scheme for reconstructing the drainage system is being projected at a cost of $\$ 15,000,000$. London possesses 3,809 acres of open spaces and parks, to main tain which cost $\$ 572,575$. In 1889 the cost in this di rection was only $\$ 263,755$. The Council also maintains the coroners' courts and the asylums; is responsible for the highways, bridges and public health; controls the theaters and music halls; and attends to the en orcement of the Weights and Measures act, in which 1,100 offenses were punished during the year.

Electrical Notes.
The London United Tramways, upon which electric traction has been introduced in place of horses, are meeting with considerable opposition from the scien tists of Kew Observatory. A section of the line passes within threequarters of a mile of that building and the observers complain that their delicate instruments are deranged and the records spoiled by the near neighbor hood of the electric current. The Board of Trade have the matter in hand, and experiments are to be carried out to ascertain to what the electrical disturbances at Kew will amount, and the best methods of insulation The tramway engineers do not feel disposed to resort to elaborate and expensive means for insuring com plete insulation, so that a complete deadlock is the result,
traffic.
The separation of wireless messages is now receiving great attention by electricians. M. P. Jégou ha adopted a new system in which he employs mast-wire of different ranges. Four such mast-wires are em ployed, two at the sending station and two at the re ceiving station. Their heights are so arranged that one of them covers, say, a range of five miles, while the other does not. The circuits of the coherers at tached to the two mast-wires are so arranged that their simultaneous action produces no effect upon the galvanometer, but at a distance of five miles the gal vanometer will respond to a message from the sending stations addressed to both coherers, as only one of them is brought into action. At half the distance when both coherers are within range no effect is produced on the galvanometer.

There is a project on foot for the construction of a movable electric platform on the right bank of the Seine. It will be underground and its length will be about six miles. The route proposed passes under the Avenue de l'Opera, the great boulevards, Boulevard Sebastopol, the Rue Turbigo and the Rue de Rivoli The new scheme calls for four platforms instead of three as was in use at the Exposition. The first plat form will be stationary, the second will have a velocity of $11 / 2$ meters a second, the third 3 meters and the fourth 5 meters or $161 / 8$ feet. This will enable pedes trians to have a very rapid means of transit afoot, in a portion of Paris which is greatly encumbered by vehicular traffic, for as all the locomotion is in on direction persons can walk very fast on the fourth plat form, and will be able to cover a great distance. Som means of transit on the streets mentioned is so neces sary that it is very likely the scheme will be carried into effect.
Attempts are being made by the Marconi Wireless Telephone Company, of London, to inaugurate a wire less telegraph service to Australia. Although the tota distance is considerably in excess of that from England to this country, it can be more easily negotiated owing to the facilities offered at various points en route, for the installation of subsidiary transmitting stations. Ar rangements are being made to erect stations at Prawle Point, the Lizard, Ushant, Cape Finisterre, Gibraltar, Malta, Algiers, Sardinia, Sicily, Cape Malea in Greece Alexandria, Aden, Socotra, Colombo, Sumatra, the Cocos Islands, Perth, Albany, Adelaide, and Melbourne The various governments of the countries in which these points are situated are being approached to obtain permission to install the stations. In no single instance is the span between two points so great as that from the west of Ireland to New York, so that, if success attends the experiments in this case, it will probably be equally possible to extend the distance and to estab lish ether communication between this country and Great Britain. If the vessels plying between England and the Antipodes are supplied with instruments, it will be possible for passengers to dispatch and receive messages during the voyage.
A new process for making plates of porous lead for use in accumulators or for acid filters has lately been patented in Germany by Richard Bauer. In place of treating the melted lead by a jet of gas or vapor, as is often done, the inventor uses a material which by con tact with the melted metal is volatilized and penetrates through the mass during the cooling. Sulphur is best adapted for this purpose; it has the property of combining with the lead to form sulphide, and this sulphide when decomposed by dilute hydrochloric acid leaves a mass of porous lead. In practice the operation is carried out as follows: The two halves of a plat mould are heated and a small quantity of melted sul phur is introduced, su that after cooling the sides of the mould are covered with a layer of sulphur. The ead, heated to redness, is then poured into the mould the sulphur is vaporized and penetrates into the mass After cooling, the plate taken from the mould is com posed of lead, sulphide of lead and an excess of sulphur The latter is removed by a preliminary washing and the plate is then treated with dilute sulphuric acid, which decomposes the sulphide and leaves a plate of pure lead which is extremely porous and well adapted for accumulators and other uses.

THE OMNIGRAPH-AN INSTRUMENT FOR TEACHING

 ELEGRAPHY.Old telegraph operators will still remember how messages were once received on a tape driven by a clock train. The skill acquired soon rendered it possible to dispense with the tape and to translate the message directly from the sounder. But the acquisition of that skill came only with long practice; for which reason the modern hovice must spend hours and hours be fore the ticking of a sounder becomes in stantly intelligible to him. An instrument which is designed to simplify instruction in elegraphy, and to impart in a comparatively short time a complete knowledge of the Morse alphabet, has recently been intro duced by the Omnigraph Manufacturing Company, of 39 Cortlandt Street, New York city. Patents have been applied for
The Omnigraph, as the instrument is called, consists of a baseboard on which are secured an ordinary key and sounder, be tween which a disk is mounted, formed on its periphery with teeth. A spring con act adjacent to the wheel engages the peripheral teeth of the disk. Although irregular, the arrangement of the teeth is arbitrary. For if the disk be rotated by means of a small crank-shaft geared with the disk-shaft the spring contact is forced outwardly by the teeth, but drops back by its own elasticity, and thus makes and breaks the circuit. The experienced telegraph operator detecting these makes and breaks at the sounder, recognizes them as the dots and dashes of the Morse alphabet. A close inspection of the disk would reveal to him that the teeth are so arranged as to spell the sentence, "John quickly extemporized five tow bags." If the disk be rotated forwardly, this sentence, thus oddly worded to include every letter in the alphabet, is ticked off at the sounder ; if rotated in the opposite direction, the sentence will be telegraphed backward.

The disk is completely under the control of the student. It can be rotated as slowly as desired; or it can be so rapidly turned that its urious sentenc will be renc will be receive at the with a speed tha would open th eyes of a good operator. More over, the mes sage on the desk is transmitted with a distinct with a distinct ness and faul lessness whic

the omnigraph.

means of the key which forms part of the apparatus.

HYDRAULIC ELECTRIC-CAR BRAKE.

The extraordinary development of city and suburban electric car service is making the question of a proper control of the cars of increasing importance. Not only is the average running speed increasing, but the headway between cars is growing less. Coupled with the growing number of cars and the higher speed, there is the fact that traffic is becoming denser, all of which
conditions render it imperative that the cars should be conditions render it imperative that the cars should be provided with a brake system which will be powerful, and instantaneous in its application, and safe-guarded against any possibility of failure at the critical moment. Although many forms of mechanically-operated brakes, showing more or less ingenuity, have been devised, it is a fact that a great majority of the cars are still The extraordnary development of city and suburthe headway between cars is growing less. Coupled with
the letter to be transmitted cannot possibly be anticipated. Thus the student learns how to receive a cipher message, the meaning of which he cannot know.
When sufficient proficiency has been obtained in receiving messages from the sounder, the student can learn to transmit messages in the regular method by

the other a sectional view, showing what is known as the Neal-Duplex brake, which is operated on the hydraulic principle, and has the advantage of being applicable to any standard car, and of being operated by the same brake handle to which the ordinary chain brake is attached, and available for use at any time The device consists essentially of a pump carrie upon and operated from the axle, and a hydraulic-brake cylinder, which is fastened to the bottom of the car and supplied di rectly from the pump with a non-freezable oil under hydraulic pressure.
The oil reservoir, with the pump and its valves, is contained in a casting which is made, for convenience, in three separate sections, which are bolted together, and completely shut in the working parts to the exclusion of all dust and dirt. It incloses and is carried directly upon the axle, the escape of oil being prevented by means of stuffing boxes, one of which is clearly seen in the perspective view.
The pump piston, P, is driven by means of an eccentric, B, which is mounted on the axle, and, of course, is in constant operation when the car is running. The brake cylinder, D, contains two pistons, whose piston rods, E and F, projecting through opposite ends of the cylinder, are connected directly with the ordinary brake levers, G. This cylinder is provided with a piston valve, H, which is connected directly through the rod, I, with an eccentric, K, carried on the lower end of the brakestaff, the turning of the brake-handle from a quarter to a third of a revolution by the motorman serving to open or close this valve. The brake cylinder is connected with the pump by means of two pieces of steel hose, M and L. Normally, when the brake is not in operation, the piston valve in the brake cylinder remains open, and the oil is driven through the hose, M, to the brake cylinder and thence back to the suction pump valves, the fiow of oil being continuous suction pump valves, the flow of oil being continuous
and perfectly free. By a quarter turn of the brakehandle, however, the piston valve is closed and the full hydraulic pressure of oil is exerted upon the pistons of the brake cylinder, driving them to the center of the cylinder, as indicated by the arrows, and thereby setting the brake shoes. When the piston is opened by the motorman the free circula-

HYDRAULIC ELECTRIC-CAR BRAKE.
the most perfect operator can never hope to attain. At first blush it might seem that the student simply learns one sentence forward and backward, and that the instrument is a good teacher only within very narrow limits But this disk can be partially rotated forward and backward any number of times, in any place, so that
controlled by the old hand-brake; and while this is fairly efficient, it has the drawback of being slow in its application, whereas in cases of emergency, the gain of a fraction of a second in the action of the brake may be of the most vital importance.

We present two engravings, one a perspective and
tion of oil takes place as before. This brake, which was invented by J. H. Neal, and is manufactured by the United States Steel Company, 145 Oliver Street, Boston, Mass., is the outcome of considerable experience in the operation of the Boston Elevated Railway Company's system, and it has many advantages
which have been proved by the test of actual service In the first place, it is instantaneous in its action, the brake being set, as we have said, by a quarter turn of the brake handle, and the appreciable delay which occurs in the winding up of an ordinary handoperated. chain-brake avoided. Another most important advantage, which will be appreciated by the repair shop, is that the actual locking or "skidding" of the wheels is impossible, the brake being under automatic control; for should the wheel, and, therefore, the pump, stop, the pressure on the brake cylinder piston heads is lowered and the braking effect re moved. At the same time the motorman has at com mand the full efficiency of the ordinary chain-brake. The mechanism is adjust able to any brake that allows 6 inches or more of axle space. Its total weight is less than 500 pounds, and the cost of power for its operation is, practically, nothing at all The whole brake being carried in an air-tight casing filled with oil, the mechanism is self-lubricating, and repairs, as proved by actual opera tion, are very light.

A REMARKABLE SALT

 DEPOSIT.by charles f. holder. Few reade of the Scientific American had heard of the Sea of Salton
up to 1892 . At this time up to 1892 . At this time the Colorado River broke
its barriers and flowed into the desert of California, flooding it to an extent of hundreds of square miles. In the vicinity of Salton was one of the largest salt deposits-in America; the water encroached upon it, and for a time threatened the industry, but after creating an excitement which spread over the entire West, it receded. The rumor was to the effect that the new sea was so vast that it would change the climate of Southern California.
The deposit of salt at Salton is one of the sights of California. It lies in a depression almost three hundred feet below the sea level, and was at some time in the past the bed of a sea, or extension of the Gulf of California. From the train, which passes nearby, the tract looks like a vast snow field, and in the early morning is frequently the scene of beautiful mirage effects. The salt deposit, which is essentially rock salt, covers about one thousand acres, and is at present the center of interest on account of the dispute of rival companies over the possession of the property. The company in possession has shipped from this place annually about two thousand tons of salt, valued at from $\$ 6$ to $\$ 34$ per ton, according to quality. The outfit of the salt mine consists mainly of a crusher, a drying building, and a dummy line from the salt beds to the Southern Pa cific Railroad, not far dis tant. The work is carried on mainly by Indians, who can withstand the in tense heat of the desert150 deg. in June-and the grare better than white men. The work is inter esting and novel. The drying house is a building six hundred feet in length, about which hundreds of thousands of tons of salt are heaped, having all the appearance of snow. Here the salt is dried and
milled. The salt is col lected at first with a plow-a singular machine with four wheels, in the center of which sits an Indian guiding it; the motive power is a dummy engine some distance away, which hauls the plow along by cables. As it passes, the steel breaker is seen to cut a broad but shallow furrow, eight feet wide and three feet long, throwing up the ridges on either side. Indians now follow along, and with hoes pile up the salt in pyramidal forms, which later is transported to the mill. Each plow harvests seven hundred tons of salt per day. A singular feature of this bed is that the

piling the salt at salton, cal.-280 feet below the level of the sea

At the same time, old sheet scrap, when carefully cleaned from tin and solder, gives very good castings, but the waste is greater, this often more than balancing the difference in price.
Having your copper, it should be melted in crucibles kept for copper only, and it is well to use the best nonsulphurous coke for melting. Gas coke holds too much sulphur to be useful, and some of the hard cokes are not to be recommended for the best work, as some of the impurities get into the metal at times, Clean melting is essential to obtaining good results, and must not be overlooked.

In preparing the moulds care must be taken to ram fairly hard, and to vent well, giving large runners, and, where required, risers, but the gates should be only of ordinary size as for iron. Thin sprues are not desirable, as it is policy to keep the connection between the runner and casting fluid until the latter has set, so that metal can keep drawing in until contraction ceases; in fact, the writer has found that a large head of metal and moderate feeding is of great assistance; therefore, in making moulds this should be provided for. The moulds should be coated-sleeked-over with plumbago, and dried, and, needless to say, the boxes should fit well. So far as possible a slight inclination from the pour-
where it is reduced to particles of the same size. It then passes through a burr mill and is well ground. After this it is sifted and is finally passed through an aspirator, which cleanses it of all foreign material, when it is ready for packing in bags. The salt is used for a variety of purposes, and is of several different grades, the lowest being unrefined-a product called hide salt, used in manufactories. Large quantities are sold for sea-bathing purposes, a certain amount producing a very similar chemical equivalent to sea water. Other grades are prepared for the table, dairy and for the use of druggists.

Copper Casting.

For some purposes, such as valve seating and the like, states Walter J. May, in The Practical Engineer, copper has considerable advantages, but there is usually some trouble in getting them sound; in fact, ing gate should be allowed when setting the boxes for pouring; but due attention to the shape of the castings must be paid in arranging this part of the business. The metal should be poured hot, and the feeding rod should be kept at work longer than for iron, and the castings should not be opened out before they are black hot or even cold. In every case it will be necessary to flux the metal, and for this purpose either muriate of ammonia and chalk, well ground together in equal proportions, or roughly-crushed chloride of manganese, should be used, from 4 ounces to 12 ounces to the hundredweight of metal being necessary, according to local requirements; but the writer finds that either of these is effective. In applying these fluxes, they may only be put into the metal after it is melted, the best time being soon before the crucible is taken from the furnace, throwing the flux on the metal and well stirring in, not taking the crucible from the fire until the fumes have ceased. It is no earthly use putting chloride fluxes into the pot before the metal is melted, as you only destroy the pot and make a stink by so doing, without affecting the metal. You are not using glass or other hard material that has to be melted, it must be remembered, and if you want to obtain the due effect from any flux which you are using you must add it when it will be effective.

There is no reason why copper should not be cast as soundly as brass. although it needs more care, and copper can be hardened, if necessary, to the hardness of mild steel; but alone, copper would not make a good bearing metal. The small amount of manganese added in using the chloride mentioned above does not
many brass-foundry people say that sound castings cannot be made in copper, and probably such has been their experience, using ordinary brass-foundry moulding and cheap brands of copper; but all the same for that, under proper conditions, copper can be cast as readily and as soundly as gun metal if you go the right way to work. In the first place, you require good metal, and probably you cannot do better than use good new sheet scrap, as this would give the highest grade of tough metal at a moderate price, and such metal as would probably give the best castings.
seriously affect the copper, if it is of good quality to start with

The difference between the specific heats of cobalt and nickel increases as the temperature rises. According to the results obtained by Pionchon the specific heat of nickel is at first a little greater than that of cobalt, and becomes very much less at higher temperatures. The electrical conductivity is very different for the two metals. Taking silver as 100 , cobalt equals 17.22, and nickel 13.11.

AN IMPROVED PIPE-WRENCH.

The illustration presented herewith pictures a novel pipe-wrench which has been recently patented by Charles M. Ingersoll, of Summit Hill, Penn. The wrench has a hollow body in which a rolling carrier is mounted. Through this carrier the threaded shank of the movable jaw of the wrench is passed. By means of a nut which encircles the shank, and which is fitted in the carrier, the movable jaw can be adjusted to grip' pipes of various sizes. The fixed jaw is mounted at the lower front portion of the wrench, and is formed with

THE INGERSOLL PIPE-WRENCH

a lug engaged by a transverse pin. By reason of this simple arrangement the fixed jaw is rigidly, though removably held in place. The fixed jaw presses against the end of a spring and holds it firmly in position The free end of the spring is connected with and actu ates the rolling carrier. The spring is so set that it tends to throw the inner end of the shank of the movable jaw upward, holding the shank and jaw, when not operating, in the position shown by the larger illustration.

By turning the wrench in the usual manner when a pipe is to be gripped, the oppositely-ratcheted faces of the jaws will engage the metal. When the working strain on the wrench is relaxed, and movement of the wrench reversed to recover the grip of the jaws on the pipe, the shank of the movable jaw is moved by the force of the spring so that its inner end is thrown up. Thus the jaw itself is pressed yieldingly against the pipe. The jaws, by reason of this arrangement, can be moved idly over the pipe to recover their grip; when the wrench is moved again to turn the pipe, the jaws are again brought into action.
It will be observed that, owing to the protrusion of the jaws, the wrench is enabled to turn a pipe close to a wall or ceiling.

A NEW WICKLESS OIL BURNER

The possibility of generating from common kerosene or petroleum a gas equal in heating power to that obtained from the street mains of a large city is something that has long been desired. The difficulty has been that in heating oil to a vapor there is a certain proportion of carbon that adheres to the tubes through which the vapor passes, and in a short time the generator tubes are filled with this deposit and rendered useless. It is difficult to remove this pipe carbon, and this has been one of the reasons why the use of petroleum has met with little success.
But in the modern improved burners which have been introduced by the Hydrocarbon Burner Company, of 197 Fulton Street, New York city, which form the subject of the present article, the difficulty is very simply overcome. A novel cleaning device is now used, which answers all requirements and insures a steady fiow of vapor.
The improved hydrocarbon burner consists of an oil-reservoir provided with an air-pump and with a filler-cap, on which reservoir a burner is supported by three standards. By means of the air-pump sufficient pressure is obtained to force the oil upwardly through a small tube into the vaporizing-tube extending horizontally above the burner. From the vaporizing-tube the vaporized oil passes into an air-tube curved downwardly and terminating beneath the burner. The vaporizing and air tubes are not directly connected, but are slightly separated so that the vapor, in bridging the space between the tubes, is mingled with sufficient air to give an intensely hot, blue fiame. The vaporizing-tube is located above the burner, so that the oil may be converted into gas by the heat of the burner. In order to start the generation of gas, the vaporizing-tube is first heated by alcohol. As soon as the burner is ignited, vaporization proceeds automatically.
To control the fiow of vapor from the vaporizing-
tube to the air-tube, a needle-valve is employed. And the particular formation of the stem of this needle valve constitutes one of the most important features of the apparatus. For the stem in question is not merely a straight rod, but an auger, or screw, which permits the passage of oil, and also acts as a cleaner A slight rotation of the valve causes the auger-like stem to remove from the entire interior wall of the vaporizing-tube the accumulation of carbonized matter. By this simple device, the tube can be readily cleaned whenever desired, and the regular fiow of oi and gas at all times controlled.

The present device seems practical, and is said to be efficient in removing carbon from the tubes by the ordinary operation of the stove, at the same time keeping the exit opening for the vapor clear of obstructions. It has great power. The pump which forces the oil into the burner gives any reasonably strong power desired. By means of the needle-valve, the power can be so regulated that a fiame can be obtained, varying from a consumption of 35 feet of gas per hour to 1 foot of gas per hour. This principle can be applied to a larger burner of greater power.

THE WENTWORTH COTTON-GIN.

Cotton-growers have ever been reluctant to cultivate long, fine staple cotton for the reason that the proper gin to separate the lint from the seed and to prevent the breaking and cutting of the fiber has never been ir vented. The objections to existing machines seem, however, to have been overcome by Mr. William H . Wentworth, of Fort Sam Houston, San Antonio, Texas who is well known as the first successful grower of Egyptian cotton in America.
Mr. Wentworth's experience with the roller system of ginning taught him that the main disadvantages encountered were slowness or lack of capacity, and the impossibility of treating any but the long free ginning cottons. In the belief that our common cottons, if ginned in the roller process, would command better prices he associated himself with Mr. Otto Klaus, of the same town, and patented the gin which forms the subject of the accompanying illustration.

an improved hiddocarbon burner

THE MEEDLE-VALVE AND ITS AUGER-STEM.

In the Wentworth machine the seed-cotton is fed through openings in the head of the gin-casing to a series of compartments each containing a ginningroller covered with hide, the hair of which has been cut short. In each compartment are vertical feedboards pivoted at their upper ends. Between the feedboards and the rollers the seed-cotton falls, the feedboards being reciprocated to force the seed-cotton to the rollers. Vertical seeding-blades each coact with a roller, one of the blades being fixed and the other movable to and from the fixed blade. The rollers con-
duct the cotton to the space between the fixed and movable blades. By reason of the operation of the coacting fixed and movable blades the cotton-seeds are forced from the fiber. The bottom of the casing of the machine is provided with a central opening for the fiber and openings for the seed.

The driving mechanism comprises a system of gear ing which consists of a master-wheel having teeth on its inner edge meshing with gears on the rollers and teeth on its outer edge meshing with pinions on the cranked shafts by which the feed-board and movable blades are operated.

The capacity of the machine is regulated by the number of rollers used, one roller representing one bale per day. The hide covering of these rollers grips readily the short-linted common cottons. A gin of ten rollers will occupy about the fioor space of one horizontal roller gin, or 15 square feet.

New alkaloids of Tobacco.

Three new alkaloids of tobacco have been isolated by Messrs. A. Pictet and A. Rotschy One of these has received the name of nicoteïne $\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$. It is a liquid body, easily soluble in water and the organic solvents, and has a strongly marked alkaline reaction. its odor is agreeable, somewhat resembling that of parsley. It is extracted from nicotine in the proportion of two per cent. The second alkaloid is solid, and has received the name of nicotelline. It appears in the form of small prismatic needles, melting at 148 degrees C. The proportion of this body contained in tobacco is extremely small. It is but slightly soluble in water and ether, but dissolves easily in alcohol and chloroform. The third alkaloid, which has not yet been well examined, has been called nornicotine; its composition appears to be very close to that of nicotine, and it is supposed to be derived from it by the elimination of the methyl group attached to the nitrogen. The physiological action of these substances has not yet been determined.

The Current Supplement.
The current Supplement, No. 1318, is filled with interesting articles. The firstpage engravings are views in Taormina, one of the most beautiful places in Sicily. "The Effect of Physical Agents upon Bacterial Life" is a very practical article by Dr. Allan Macfadyen. "Information Concerning the Angora Goat" is concluded. "The Oil Fields of Baku" is by Prof. G. Frederick Wright "The Museum of Artillery at Paris" is ac companied by a large number of interesting engravings showing arms and armor "Wooden Railways" dsecribes some curious old railways. The third installation of "American Engineering Progress" deals with the "Influence of Combination," which is very timely at the present moment. "A New Elliptical Cutting Machine" is by Prof C. W. MacCord.

RECENTLY PATENTED INVENTIONS Electrical Apparatus.
REVERSING APPARATUS FOR ELEC trical devices.-Robert J. Hughes an Alexander B. Shaw, Duquesne, Pa. This ap paratus comprises a reversing controller fo connecting the terminals of an electric gen era tor interchangeably with the wires of a two
wire line. The device dispenses with one set ire line. The device dispenses with one set to be found in machine-shons, and enables th motor on the traveler to be reversed with only one set of wires. by means of the nove reversing device employed the current passe through the field-coils as before, but is made to change its direction in the armature-coil in order

Mechanical Devices
cilip-breaker. - Walter L. Crouch Thomaston, Conn. The purpose of this inven tion is to provide a more efficient chip-breake chines than has hitherto been known. The in ention comprises a carrier arranged to rock around the axis of a rotary cutter and carrying a finger which engages the work to break the chips, and which moves concentrically to th axis of the rotary cutter
KNEADING and mixing apparatus Oor soap.-Anatole and Ernest des Cres onvieres, Brussels, Belgium. The crushing kneading and mixing apparatus is designed mixing treatment in shavings, instead of sub jecting it to simple crushing by means of thre cylinders, thus enabling an absolute homo geneity of the paste to be obtained and permitting its mixture with color while pre enting waste of soap. This alternate crusk ong and mixing is obtained by the arrangemen provided with a scraping comb and placed in uch a way that the shavings from the two coupled cylinders are intermixed for crushing by the next crushing-cylinders, and so on up the
dipping-machine. - Johann A. Jena, South Bend, Ind. The invention relates to
machines for dipping, and particularly for enameling crockery and other goods. At th pper portion of a vat a dish-holder is journa ures. A rack has a longitudinal inner mem ber adapted to be seated upon the peripherie of the end portions of the holder. Arms ex end from the rack inwardly beyond the inner member, and are provided with projections adapted to fit into the apertures of the end ortions.
dYNAMOMETER.-Karl Leverkus, Char ottenburg, Germany. The dynamometer serve to measure power transmitted from one shaf ployed the relative revolution or distortion of he members of which they are composed is too small to render the measuring of the powe easy and exact. To remedy this defect the in entor employs a toothed gearing for increa ing or enlarging the motion of the lengthwise novable part. Moreover, this lengthwise siral grooves engaged by rollers on the mot ble part and the one member. The efficiency of the apparatus is increased and the cost manufacture very considerably reduced.
ACTUATING MECHANISM FOR RETAIN
NG VALVES IN AIR-BRAKE SYSTEMS. Edwin J. Emmons, Brandon, Manitoba, Can Mr. Emmons has devised a means by which all the valves are under the control of th the ordinary air signal-pipe of the train bein utilized. The actuating mechanism comprise an air-motor having connection with the ste of the valve and with the air signal-pipe. Th signal-pipe is connected with the main reservoir and is provided with a reducing valve. The pipe has a controlling-valve. A signal-valv has connection with the pipe. By means of
this inviention the brakemen are no longer his invention the brakemen are no longer
required to turn the handle of each retainingvalve to close the exhaust from the brake cylinder to keep the brakes on while the en gineer is recharging the auxiliary cylinders.

Tinid-CUTTER.-Beverly P. Herndon Florence, Arizona Territory. The device con ists of a ring adapted to receive one of the ingers of the hand and an S -shaped prong or arm formed in one piece with the ring and projecting laterally thereform, the same being ring and under the next one, so that the device may be conveniently held. The cutter proper s attached to the side of the ring opposite the spring, and arranged transversely thereon, so as to be adapted for convenient use
bolt-GUARD.-William Taylor, 40 East Harrison Street, Chicago, Ill. The bolt-guard is designed for use on doors to prevent the in sertion of a case-knife or other thin blade for the purpose of throwing the bolt back. The the entrance of the blade and so prevent its adjustment into engagement with the bolt and thus forms an efficient guard for the purpose.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each.
Please state the name of the patentee, title of the invention, and date of this paper.

Marine
Inquiry Xo. Y99.-For a machine for making ic
in smail quantities adapted for hotel and family use.
Inquiry N . $\mathbf{3 0 0}$.- For dealers in electrical sup
plies, such as small motor and dyna ino castings, etc.
C.s. Metal Polish. Ha

Inquiry No. 301.-For gas engine adapted for
acetylene gas.
Motor Vehicles, Duryea Power Co., Reading, Penn. Inquiry No. 302.-For wholesale dealers in ritles
nd sporting guous. water wheels. Alcott \& Co., Mt. Holly, N. J. Inquiry No. 303.- For manufacturers of special
Wooden and sporting articles suitable for the German Waterbury Button Co.. Watero 's.CL
 Inquiry No. 30.5.-For the
Pan-American Electric Lamp.
I Catalogue free,
machinery. No. 306.-For catalogues or paint-making
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St. Inquiry No. 307.
with a core or bit drill.
Machine chain of all kinds. A. H. Bliss \& Co. North
Inquiry No. 308.-For machinery for extracting
grease and moisture from wet glue stock and other
Sawmill machinery and outfits manufactured by th
Inquiry Na . 309.
steel for metal
oxes.
Rigs that Run. Hydrocarbon system. Write St.
Louis Motor Carriage Co., St. Louis, Mo.
Ii,quiry No. 310.-For manufacturers or dealers
in cheap albumen, such as that taken frum blood, etc. SAWMILLS.-Variable friction feed. Send for Cata S. Comstock, Mechanicsburg, Pa

Inquiry No. 311.
Ten days' trial given on Daus' Tip Top Duplicato Inquiry No. 31\%.-For manufacturers of moto Wanted. Pan Am. Ezpostion Patent Novelties suit
able for souvenirs. Address J. M. B., >20 B'way, N. Y. lanuiry No. 313.-For Grimme, Natalis \& Co.s For Machine Tools of every description and for Ex
perimental Work call upon Garvin's, spring cor. Varick 1"quiry No. 314.-For the manufacturer or dealer
in the "kinodrome." Guns and Sporting Goods. Keating Wheels. New
catalogue out now. The H. \& D. Folsum Arms Co., 314 Inquiry No. 31J.-For a new. novel and orna-
mental article for sale in the country, not high in The celebrated "Hornsby-Akroyd" Patent Safety Oil ngine is built by the De La Vergne Refrigerating Ma
chine Company. Foot of East 138th Street, New Yort
 The best book for electricians and beginners in elec-
ricity is " Experimental science." by Geo. M. Hopkins. By mail. s4. Munn \& Co., publishers. 361 Broadway. N. Y.
Inquiry No. 317. - For machines for making spring tickets.
Government Relics-guns, swords, revolvers, saddles, cannons, etc. from Goverment Auction are now being sold at ridiculously low prices. Send for illustrated lists. Inquiry No 31: N.
Inquiry No.
ium novelices.
Wanted-Revolutionary Documents, Autograph Let
cers, Journals, Prints, Washington Portraits, eers, Journals, Prints, Washington Portraits, Early
American llustrated Makazines. Correspondence SoliIngity Adar A, Mox 773. New York
Inquiry No. 319.-For hard wood veneer, birch or
maple.
Machinery for Sale.-One Cataract Tool Compauy lathe with slide rests, chasing attachment, milling at-
tachment, counter attachment and chuck; one turret head lathe; five spectal speed lathes for light brass work. All in irst-class condition, nearly ne w. Address
The Vogt Optical Company. Rochester, N. Y. $\underset{\text { ery for making bair feit. }}{\text { No. }}$
Manufacturing agents tn sell the Reagan Improved Shaking Grate. We will guarantee to eva porate 25 per
cent more water than any other grate on the market and do this when evaporating as many pounds of water per pound of coal as you do now. Good men wanted in
all paris of the United States. Write for particulars and terms. Reagan Grate Bar Co., 209 North Front
 For Sale.-A Ane man'f'g business, articles covered by have filled export orders to four foreign countries Answer and we will give you all particulars. Address G. Box 773 , N. Y.
Inquin. No. N29.-For manufacturers of novelties
for advertising purposes. Inquiry No. 3.23.-For manufacturers of fiber conTnuiry No. 324.-For manufacturers of fire es Inquiry No. 32.5.- Yor a burglar alarm that uses a
hlank cartridge. and which can be attached to a door or
window.
Inquiry No. 326. For mnnufacturers of glass mare
bles or small glass bails. 9 or or $\%$ inch.

 sine.iniry No. 331.-For makers of open ese bolts, tunumbly No. 332.-For outtis for making rubber

 IIngury No. $339 .-$ For maunafacurers of auyers Hinuar No. 3 and:

sor uniry Noin 34.3

teatuan ris fuster: ${ }^{345 \text {..- For machinery for making }}$

IInguits No. sisi-1.toro manuracurers of air com.

brase and in iroin ubisiz:- ${ }^{3}$

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters or
no attention will hee Diad thereto. This is fur
our information and not for pullication.

Information and not for pullication.
ces to tormer articles or answers should give

letter or we endeavor to reply to all either by
bis turn. in this department, each must take
Buyers wishing to purchase any article not adver-
tised in our colunns will
addresses of he furnished with
filt
the same.
$\begin{gathered}\text { Special } \\ \text { rather titten Infor }\end{gathered}$ Information on matters of personal Scientific American Supplements referred to may be
Books rat refer oftice. Price 10 cents each.
promptly supplied on receipt of Books referred to promptly supplied on receipt of
price.
Minent for examination should be distinctly
marked or labeled.
(8144) B. B. asks: What power the motor requires, described in December 8 and which are the best batteries to use-the bichromate of potash or storage batteries-and
how many of each? If storage batteries are how many of each? If storage batteries are
the best, what make is the best, and what size? the best, what make is the best, and what size ?
A. Or- cell f either of these batteries will run the motor. It makes no difference which is used. Any size will answer, and any make best in these cells. It requires 4 or 6 cells for doing work.
(8145) A. L. L. asks: 1. Can a satis factorily illuminated picture be produced with acetylene gas light in a moving-picture ma and electric (arc) light be used? A. The acety lene burners as used in lanterns do not give much above 100 candles, and it is not supposed that a moving picture can be properly illumin ated with such a it is made for its own use, and about what will it cost. A. Acetylene is cheaper than the oxyhydrogen light, but there is in it very much less light. Per candle, we presume acetylene is cheaper. Calcium carbide can now be had for a moderate price.
figure for the present time. Our advertisers figure for the present time.
can give them on application.
(8146) C. W. W. asks: Can hilly roads be climbed easier on a high-geared bicycle, say, 80 or 90 , than on a low gear, 55 or 60 ? What
is the philosophy of it? A. The hill can be the philosophy of it? A. The hill can be
climbed by rider on a low-geared machine easier than on a high-geared machine, because with the low gear he does not have to lift himself so far up the hill with one tread as with the high gear. A 90 gear goes half as are again for one tread as a mosear, and therefore rerpuires $11 / 2$ times the work for one
revolution of the pedal. (8147) J. W. B. writes: I am trying
having bad luck. What shall I do? A. For
permanent magnets use only the best tool permanent magnets use only the best tool
steel, Jessop's or Stub's, though fine American tool sults. Harden doubtless give satisfactory reis useless to harden the whole length of the bar. Wind a coil into which the bar will slip easily of any convenient size of wire, and with perhaps 100 turns, the number is not important. There should be enough that the coil will not heat badly when in circuit. I'ut the
coil in circuit with your dynamo of lowest coil in circuit with your dynamo of lowest
voltage, and while the current is flowing push the bar to be magnetized to and fro from end to end of the bar in the coil, stopping at the middle at last. Open the circuit and remove the bar, which should be strongly magnetized. (8148) R. R. W. asks: 1. In an isoated district would it be feasible to run a 1 or 2 horse power dynamo for private house and barn lighting, by means of a windmill: Could storage batteries be used without great expense when the wind would not blow-the good results have been charging? A. Very an electric-lighting plant from a windmill and storage battery in country districts. It must not be expected that the light will be obtained at less expense than oil. 2. Immediately above the photosphere of the sun lies a layer of gases having a spectrum. What name do astrono mers give to the spectrum: A. The layer is the reversing layer of the sun. It is composed
of the vapors of metals, and the spectrum of a vapor is a line or discontinuous spectrum. Such a spectrum is given by sodium, for example. It consists of two yellow lines. 3. In what year was the first patent for a bevel gear to a bicycle granted? What book could I look up to learn the particulars? A. We can-
not state the year. No one can claim the use of bevel gear on bicycles uncombined with any other feature.
(8149) A. S. writes: Please give the dimensions of the face of the cam, with a diagram, if possible, of the simple engine
described in the issue of the Scientific Amierican of November 17 , 1900 . A. The an-

nexed cut shows the cam roller and fork full (8150) W. H. B. asks: Is it necessary, in order to make a spark that the two glass
plates of a Wimshurst machine should revolve at the same speed: A. It is not necessary that the plates of a Wimshurst machine should evolve at the same speed, though it is usu
(8151) B. T. M. asks: Which is the heavier, dry air or an equal volume of moist
air, each under the same pressure and at the same temperature? A. Moist air is lighter than dry air at the same temperature and pres sure. Water vapor is only about $5 / 8$ as heavy
(8152) R. P. W. writes: A curious ex plosion occurred February 15 at the house
of Mr. Rufus P. Williams, Cambridge, Mass. of Mr. Rufus P. Williams, Cambridge, Mass.
A new, quart, beer bottle was nearly filled with water which had been run through a I asteu filter. It was tightly closed by the usual beersubsequently being placed on a marble washstand in a room at, say, 70 deg . F.-about the standing some three or four hours, it suddenly exploded, landing the base and neck of the bottle a foot away in the wash bowl. The glass was about 0.5 centimeter in thickness. A. The breaking of the bottle must have been
caused by the straining of the glass from some cause in the making of the bottle. It was not an explosion in the ordinary sense of the term. The parts did not fly far enough to be propelled by expanding gas. The force of so. The case of the ink bottle recently pubso. The case of the ink bottle recently
lished in our columns is similar to this.

TO INVENTORS.

An experience of over fifty years, and the prepa-
ration of more than oun hundred thousand appll-
cations for

INDEX OF INVENTIONS

For which Letters Patent of the

 United States were Issued for the Week endingMARCH 26, 1901 ,
AND EACH BEARINGTHAT DATE.

670,814
670,890
670,901
0

670,901
670,661
670,681

> TRADE MARKS.

LABELS.

"Amertan, Sweet Chocolate, for chocolate, 8,249

 PRINTS.
"Henry George," for cigars, W. … L. Long........ ${ }^{319}$

250 Poultry Pictures

AT Tool Inventoriy

 Tool Catalogue
 MONTGOMERY \& CO., Acetylene Gas Lighting
 Telephones,

(1)
 THE SIMPLEX INTERIOR
TELEPHONE CO. ${ }_{431}$ Main st., SENSITIVE LABORATORY BALANCE By N. Monroe Hokins. This " built-un", laboratory
balance will weigh up to one pound 1 and will turn witly

 "NEW GEM" SAFETY RAZOR

A SAVINGS BANK

STANDARD SMELTING AND REFINING COMPANY

Union Consolidated Oil Co.

2 Stocks at 55 Cents Per Share.
 Monthly Dividends Will Begin in May

DOUGLAS, LACEY \& CO.,

 Members New York Consolidated Stock Exchange 66 Broadway and 17 New

 WILL SHIP C, O. D. FOR \$25.00

FREIGHT PREPAID TO YOUR STATION. \&TME WILLARD STEEL RANGE

WM. G. WILLARD, Manufacturer, 619 and 62I N. 4th St., St. Louis, Mo
ELEVATING - CONVEYING
POWER TRANSMISSION MACH'Y
COAL WASHING MACHINERY

GRAND PRIZE, PARIS, 1900. Highest Award possible.

ansolue
morom
CASTINGS
For MARINE, VEHICLE and BICYCLE MOTORS, with Working Drawings.
OWELL MODEL CO.. 22 Wiggin St., Lowell, Mas
 APPLIED TO YOUR AUTOMOBILE CARRIAGE
10 DAYS' TRIAL DAUS' TIP TOP
written original and 50 copies from typewriter. one pen
an expert to tell the tuphicates from the oriyinal.
and
FELIX DAUS DUPLICAIOR CO., 5 Hanover St., New Nork

DICKERMAN'S DURABLE DESKS n't buy until you qet our cat
100 pages of maney saving vaine Vanduzen Steam Jet Pumps

$\underset{\substack{\text { Ther.ive } \\ \text { Impive } \\ \text { BELL ODOMETER }}}{ }$

Yost Writing Machine Co. NEW YORK CITY. LONDON, ENG.
Che Cypewriter Excbange

to 50\% on Typewriters of ail me wakes. Send for Coutalogue.
Perfection Air Nattresses
FOR - CAMP - YACHT - HOME - HOSPITAL When deflated can be rolled into
small package or sorace of ransportation. Mechanical Fabric Co.

CHE NEW IBRISTOL COUNTER

 other automatic machines. Couns up to 1,000000 and
repeats automatically. Sinple, accurate, durable. Spe cial counters to erder, BOT, Bristol, Con

THE ELECTRIC ḢEATER.-A VALU

ALTERNATING CURRENT MOTORS.

 ROTARY PUMPS AND ENGINES.

GERE GASOLINE ENGINES

american boat \& machine co. ROW, SAIL AND PLEASURE BOATS, marine Station, ST Louls, MO.
Es OUR MARINE MOTORS ARE GUARANTEED TO GIVE SATTIFFACTION. Durable in Construction and
Easy and Sate in Operation. empsend for catalogerue and

THE ORIGINAL AND GENUINE

\qquad

 dsor Collar \& Cuffif
Windsor, Conn.
RUBBER STAMP MAKING.-THIS

 Pneumatic Pulley WILLIAM \& Sons,

ACETYLENE

ELECTRICAL ENGINEERING TAUGHT BY MAIL.

FREE Menimact
S. S. Willifinison, Publisher,
Betz Building,
Philadelphia, Pa

BICYCLES BELOW COST $50000^{\text {Hish }}$ drade Emarantee

 EARN A BIGY
uting catalogs for us. You can
make money as our agent. Write at once for our Bargain List and Special Offer.
MEAD GYELE CO. Dept. 62 L Chicago.

ACETYLENE APPARATUS PLEEMENT, dascibibing. With fillililuctrations, the most
Pecent, simple or home-made and commercial apparatus for generating acetylene on the large and small scale.
 Price 10 cents prepaid hy mail. For other numerous
valuable articles on this subiect we refer you to pare 21
of our Supplement Catalogue, sent free to any address
MIVN \& Coo. 361 Bruad way New Yorki

DO YOU KEEP POULTRY?
 NOXALL INCUBATOR \& BROODER CO Quincy, II MORAN FLEXIBLE JOINT

A Valuable patent.

 K no dompetition write to Palmyra, New York

Anyone sending a sketch and description may invention 18 probably patentable. Communica-
tions strictly contidential Handboo on Patents

Scientific American.

MUNN \& Co. 361 broadway, New York

A Book for Every American Engineer
AMERICAN Engineering Competition

The articles which make up this volume appeared originally in the London Times.

They are the work of a British engineer who visited this country for the purpose of studying our industrial progress.

They show our advance over England along those very lines in which she has long been pre-eminent.

The publication of these articles has aroused the greatest apprehension among British manufacturers.

8vo. Cloth, \$1.00.

[^0]1CE MACHINES, Corlise Enines Brewers'

SHURTHAND BYMAIL Mioneer home course $1 / 2 \mathrm{H}, \mathrm{P}$. GAS ENGINE CASTINGS
 STyey

SALE IV EUROPE, particularly in Francee of of
 FOR SALE. - Valualle putent treeent hottle stont
 DAMOUR\&DITIEDALENACHINE CO.

REGEAALD 1 SE MACHALNES

THE PRINCIPAL CHARACTERISTICS

FOR
SA LE
 OTIS ELEVATOR COMPANY, Yonkers, N. Y.
BACKUS GAS AND ENGINE

Backus Water Motor, cheapest power known.
Write for circular and prices. Write for circular and prices.
BACKUS WATER MOTOR CO,, Newark, N. J., U.S.A.
 Catalow Free. Write now. BINGHAMTON, N. Y.

 20\% whe privinc A PLEASURE
 NOTICE! RECEIVER'S SALE!

 LYON \& HEALY'S BRASS BAND
Own Make

 GEO. A. zELLER, Pub. SHNT HKW Room 650, 18 s. 4th St., - St. Louis, Mo., U. S. A.

Coiotesiraciars
 -MADE AT KEY WEST:-

These Cigars are manufactured under the most favorable climatic conditions and from the mildest blends of Havana tofrom the mildest if we had to pay the imported cigar tax our brands would cost double the \{ money. Send for booklet and particulars. CORTEZ CIGAR COr, KEY WEST:

THE PRIDE OF POSSESSION
 is it'sardonable if MOTOR CARRIAGE PRICE $\$ 1,200$

THE WINTON MOTOR CARRIAGE CO., 486 Belden Street. Cleveland, Ohio, U. S. A.
Eastern Depot, $150-152$ East 58th Street, New York.
The Haynes-Apperson Co.

BUY
 THE
 BEST
 OUR
 1901

MODEL

America. Pro pioneer automobile manutacturcrs of our our experience. me have passed ofter. Write tor catalo ane dese something our practine gaine sys-
tem and one, two and three seated carriakes. THE HAYNES-APPERSON CO кокомO, IND. METHODS AND INSTRUMENTS USED

WATERPROOF GLUE
A NEW GLUE which is strictly WATER-
PROOF. Information and prices supplied by the GASEIN COMPANY OF AMERICA,
74 JOHN ST., NEW YORK, N. Y

WALTHAM WATCHES

The best pocket machines for keeping time that it is possible to make.
"The Perfected American Watch", an illustrated book of interesting information about watches, will be sent free upon request

American Waltham Watch Company,
Waltham, Mass.

Are You Selling Machinery?

 moving picture your machine in actual moving pict operation.
 TME
 Commercial Mutoscope

Takes the place of expensive demonstrations. Saves hundreds of dollars in the transportation of models and samples. Gives wonderful results in demon strations before a jury in patent litigation. Now in use by

Hipwood-Barrett Car Fender Co.
Cliff-Guibert Hose-Reel Co.
Brown Hoisting \& Conveying Machine Co.
Harrington Rail-Bonding System
Chicago Pneumatic Tool Co. American Railway Co. The Draper Co. Northrup Loonis

American Mutoscope \& Biograph Co. ${ }^{841 \text { Broaddway }}$ New York.

JAMES MEANS' E2 ${ }^{50}$ SHOE

 Made in two weights indicated by (L) or (H) Distributed at wholesale by

MORSE \& ROGERS OF NEW YORK.

Do You Know That Your Razor Has Teeth
 jure these eeeth by invisibie corrosion. Thhis is what puts a
razor out of order, compelling frequent stropping and honing. ELECTRO SHAVING LATHER is a new and rcientific improvement in a shaving outat.
it oreserves and bardens the delicate teeth of the razor
makes it cut easier soothes the skine is easy to make and makes it cut easier soothes the skin, is easy to make and
delightult tuse. Send for free foider giving particulars.
F. G. FOWLER \mathbb{C} CO., Bridgeport, Conn., U.S.A.

WATCHESI
(2) No advertisement can properly portra $\begin{gathered}\text { the strikin entets produced in ou } \\ \text { wate bes. They are ilustratedin ou }\end{gathered}$ BLUE BOOK showing Ladies' Watche in all metals and exquisite enamels;
our
RED BOOK showing Men's and Boys Watches
with up-to
with up-to-date attractive designs. THE NEW ENGLAND WATCH CO $37 \& 39 \begin{gathered}\text { Maiden Lane. } \\ \text { New York City. }\end{gathered} \quad 149$ State Street,

HOT BLAST
Water Jacket FURNACES COPPER ORES. MATTE from SULPHIDE UNION IRON WORKS San Francisco, Ca'., U. S. A:- ${ }^{-}$, Send for Catalogues

The lightest practical Electric Vehicle on the market.
It embodies every good device found in
modern Auto conveyances. Send ten cents in stamps, for the
handsomest and most complete "Auto Book", ever published on the
subject of Automobiles. subject of Automobiles.

The National Automobile \& Electric Co. NDiANAPOLIS.iND.
"Pocket Kodak Portraiture"
is the title of a daintily printed and instructive booklet about home picture taking, which has just been issued by the Kodak Press. The illustrations are all from the Kodak of
Mr. Rudolf Eickemeyer, Jr., and include a number of his most charm ing studies of child life. Free at the Kodak dealers' or by mail.

EASTMAN KODAK CO., Rochester, N. Y.

JESSOP'S STEE[THE Mip\%

[^0]: Franklin
 Square
 Harper \& Brothers
 $\underset{\text { City }}{\text { New York }}$

