
a Weekly journal of practical information, art, science, mechanics, Chemistry, and manufactures. Vol. LXXXXIV.-No. 13.]

NEW YORK, MARCH 30, 1901.



Garboard Strake and Keel Framing.

# surimifir Ammerram <br> <br> ESTABLISHED 1845 

 <br> <br> ESTABLISHED 1845}
munn \& co., - - - Editors and Proprietors.
published weekly at
No. 361 BROADWAY,
NEW YORK.




## NEW YORK. SATURDAY, MARCH 30. 1901.

The Editor is always plad to receive for examination illustrated articles on subjects of timely interest. If the photopraphs are
sharp, the articles short, and the facts culter the the contributions will receive special attention. Accepted articles will be.paid for at regular space rates.

THE GANZ SYSTEM AND THE LONDON ELECTRIC RAILWAYS.
There is food for thought in the fact that the di rectors of the Metropolitan and District Underground Railways have decided to use the Ganz high-voltage, tri-phase system in the electric equipment which is to be carried out on these two important roads. The selection was made from a large number of competing bidders, among whom were included the repre sentatives of the leading electrical firms in this coun try. It is stated that the choice of the directors was based upon the fact that the Ganz bid was $\$ 1,000,000$ cheaper than the lowest American tender, and that the operating expenses were represented to be 30 per cent lower than those of the low-voltage, direct-current system as used in this country. American practice is to generate high-tension alternating current for trans mission, and transform it at sub-stations to low-tension direct current for use at the motors, the usual potentia being about 500 volts. In the Ganz system, as used in the new Italian road, three-phase current of 20,000 volts potential is supplied to the line, and is trans formed at sub-stations to 3,000 volts, at which high pressure it is used directly at the motors. The Hungarian engineers have succeeded in overcoming the difficulties of insulation which are attendant upon the use of such high pressure, and have apparently gained all the resulting economies of construction and operation.
It can justly be claimed that America is the birth place and the home of successful electric traction We have hitherto led the world both in the improve ment and development of this system of transporta tion, and to many people it will come as something of a shock that a European firm should apparently have moved ahead of us in the improvement of the art. If the contract should be secured by the Buda pest firm it will be but another illustration of the fact that, however supreme a nation may be in any particular industry, it can never afford to rest upon ts laurels. It must be prepared to meet an ever extending competition, as other nations begin to center their intelligence and skill upon the improvement of existing systems and plants.

## CUP-YACHT DESIGNING

Since the year 1893, when four yachts were built for the defense of the "America" Cup, the responsi bility of designing a defender has rested upon the shoulders of one man, whose name is identified throughout the yachting world with the fastest craft that have ever hoisted canvas in an international cup race. Although the cup has proved on three memorable occasions to be perfectly safe when its defense was intrusted to Mr. Herreshoff, it is believed that its future security would be better assured if more than one designer were engaged at each contest in the production of an "America" Cup defender. The task of constructing the fragile hull of a 90 -footer and giving it the necessary strength to carry its enor mous load of lead below, and above, its towering spread of canvas, requires both skill and experience. Experience and an accumulation of well proved data are especially valuable, for it is a well-known fact that yacht designing is not an exact science, not, at least, in the sense in which bridge construction may be said to be so. Originally the yacht-builder was a man of rule of-thumb methods altogether, and there are even to day many points, both in the modeling of the boat and in her sail plan, which are determined, not by scientific formula, but by the particular fads or prejudice of the individual designer. One man prefers bluffer bows and leaner quarters; another thinks that better results come from a straight, sharp entrance and rather full, broad quarters, as in the "Shamrock" of two years ago. In one sail plan we see the cloths running parallel with the leech. in another they are cross-cut; while the controversy
as to whether sails should be as flat as the proverbial board, or whether they should have left in them something of that bagginess to which the English yachtsmen who succumbed half a century ago to the "America" largely attributed their defeat, is still a matter for conjecture. One yachting sharp believes in setting up his rigging perfectly taut; another will tell you, as the father of a noted yacht designer in erested in the last cup contest did, that "Shamrock" lost the races jecause the rigging was not slacked up to the degree which insures getting the best results out of the sails!
All of which goes to prove that there may be more things in yachting philosophy than have yet been dreamed of, and the steady increase in speed which has taken place of late years gives reason to believ that we have by no means reached, in form of hull or in sail plan, the theoretically perfect racing craft The more designers of cup defenders, then, the mor deas, the more proved and reliable data, the more de velopment, and, most important of all, the less possi bility that the successful defense of the cup will ceas with the incapacitation or death of one individual.
For this reason we are glad to note that this year there are two yacht designers engaged in the task of defending the "America" Cup, and the more so s the yacht which is being built from Mr. Crownin shield's designs is of a type which will differ very widely in some respects from what might be called the typical Herreshoff model. Although no particulars have yet been given out, it is practically certain that the new Herreshoff boat will be an improved "Columbia," and will embody in herself the accumu lated experience which has resulted from the con struction and sailing of the "Vigilant" and "Defender" and "Columbia." It is also probable, in spite of cer tain sensational rumors to the contrary, that the new Watson boat which is building at the Denny's yard will be in all respects a standard Watson craft the lineal descendant of the "Britannia," "Valkyrie," "Meteor" and last year's "Sybarita." There will be far more likeness between the Watson and Herreshoff boats than there will be between the Herreshoff and the Crowninshield craft; and, strange as it may seem it is possible that from a yacht constructor's purely technical point of view, there will be greater inter est evinced in a contest between the two Americai craft than there would be between the Herreshoff boa and the English challenger.
The "Independence," whose plans are fully de scribed elsewhere, is an attempt to apply to the 90 font yacht a form of hull which has been developed of late years in the keen competition between smal craft of 15 and 20 -foot waterline. In no branch of yachting has greater ingenuity or freer inventive ness been shown than by the designers of these lit tle "raters." A wide variety of models, many cf them positively grotesque, have been built and tested: boats of great beam and enormous overhang, flat-ended boats, boats with wing ballast, others with keel ballast, and others with none at all; while out of the competition there has been evolved what is known as the scow-form of yacht, which is, for its size, by far the fastest sail-driven craft with a single hull in the world. The "scow" has enormous overhangs, a flat floor and a hard bilge. Her beam is ridiculously wide; when she is heeled her model is such that her sailing-length is almost doubled, while the weather half of the boat, lifted often entirely out of the water, is depended upon to give the boat stability The "Independence" is practically of a modified scow form, with the deep fin-keel and lead ballast of the typical 90 -footer hung beneath it. When she heels to a breeze her sailing length will be increased far beyond that of any previous cup contestant, and unless there is any serious difficulty with the steering and control of the boat when there is any weight in the wind, the great spread of sail which she will be able to carry, coupled with her relatively small displacement, should render her an extremely fast yacht.

## YELLOW FEVER

Now that we have before us the full and authentic eport of the proceedings of the Pan-American Medical Congress held in Havana 4th to 7 th of February, the most important subject of which was the presentation and discussion of the report of the special yellow fever conimission, we are able to form an unbiased opinion and to estimate to some degree the farreaching influence which the findings of this commission will have upon the theories of the causation of disease and of contagion and infection, as well as upon vaccination and preventive inoculation.
Summarized, this report is as follows: Yellow fever cannot be communicated by contact with the patient or with the clothes or other articles worn by a patient before and during the course of the disease, although they may be impregnated with the excretion of the body. The disease is, therefore, not contagious. It can, however, be communicated by inoculation if a
small quantity of blood from a yellow fever patient, taken during the first two days of the disease, is in jected into a healthy person. If, however, the blood is taken later in the disease, or before the attack has set in, no result is obtained.

Yellow fever is communicated, however, by the bite of a particular kind of mosquito (the Culex fascinatus) that has previously bitten a yellow fever patient dur ing the first two days of the attack. It takes twelve days for the specific poison to develop in the mos quito. Healthy persons bitten by such inoculated mosquitoes before the twelfth day after the contam ination of the insect showed no symptoms of the disease, while those bitten after the twelfth day, without exception, were stricken with yellow fever after a lapse (period of incubation) of from forty six hours to six days. Disinfection of houses and belongings of yellow fever patients, fumigation of letters from yellow fever districts, and quarantining of passengers from infected localities would therefore be unnecessary, provided the mosquito were destroyed.
The report concludes: "While the mode of propagation of yellow fever has now been definitely deter mined, the specific cause of this disease remains to be discovered." In the numerous reports of yellow fever epidemics in this country and abroad, and in the lengthy and erudite dissertations in medical literature, we find that the theory of contagion was by no means universally accepted by medical author by no means universally accepted by medical authorColomar in his report on the yellow fever epidemic in 1811 in Spain. We can therefore readily accept the demonstration of the commission of the non contagiousness of yellow fever. There are, however many peculiarities in the transmission of the disease recorded in medical literature, which cannot, as yet be fully explained by accepting the statement that the mosquito is the only carrier of the disease virus. t is true we can explain why General Butler succeeded in stamping out yellow fever in New Orleans by establishing proper sewerage and rendering the city habitable and healthful, but unhealthful for the Culex ascinatus, and why the epidemics invariably cease when the average temperature of the air falls below 70 deg. F. For we know that the insect cannot live in clean places or a cool atmosphere.
Other malarial diseases have been stamped out in certain localities by planting eucalyptus trees, which by their rapid growth and greed for moisture drain swampy places, or by the artificial draining of swamps hereby making it impossible for certain species of mosquitoes which are the carriers of the fever to exist in these localities. We cannot, however, as yet explain in what manner the virus is transported ove great distances of land or sea, distances too great for the culex to traverse. We must look for an ex planation in the results of experiments which will determine what is the specific virus and what is its rigin. For it is very plain, almost self-evident, that it is not a bacillus or coccus. It must be ascertained whether or no the eggs and larvæ of the infected mos quito (for it is the female insect only which sucks the blood of animals) carry within them the specific poison in a latent form to become potent in the fully developed insect, and if so what are the most favorable conditions of climate, temperature and surround ings for the development and life of the insects Finally we must learn what is the most practical and effective method of destroying the insects and their eggs and larvæ.
When these questions have been answered we will be able to stamp out yellow fever and a number of other epidemic and endemic diseases and make the so-called "foci" of such diseases as yellow fever in Havana and the West Indies, and cholera in India, salubrious instead of disseminating depots of scourges for the whole world.

NEW METHOD OF AERIAL TELEGRAPHY.
The ingenious system devised by M. Paul Jegon for use in aerial telegraphy has for its object the localizing of messages sent by a given transmitter, so that of a given number of receivers within its radius of action, each post will receive the message intended for it and no other; it is not intended to assure the secrecy of the message. Each of the receiving stations has two masts of unequal length, and each of the masts is provided with a separate coherer and bat tery. The two circuits have in each of them a coil wound upon an iron core side by side, but in opposite directions, so that when a current flows in one of them an induction effect is produced in a third coil wound upon the core, but when both circuits act the effect is neutralized and the third coil is not acted upon. The third coil is connected with a galvanometer to indicate the presence of the signals. The case of two receiving stations of this kind, 1 and 2 , placed at different distances from a transmitting station A, may be considered, and it will be found that communication may be made with one or the other at will The transmitting station has two masts of unequal length, and the longest of these gives waves which are
powerful enough to reach the station 2, and act upon its long mast, but not upon the shorter; thus A, by using the long mast, may communicate with $B$ and deflect its galvanometer. As to the station 1 which is nearer A, the distance is so much shorter that the waves may act upon both the long and the short tnasts, and as the effect of the two circuits is neutralized the galvanometer will not be deflected. In this case it will be seen that A communicates with station 2 but not with 1 . To produce the contrary effect thee short mast of the transmitting station is used; its waves are not sufficiently powerful to act upon the distant station 2 , nor even upon the shorter mast o station 1, but they act upon the long mast of 1 , and the galvanometer is accordingly deflected. By a proper disposition this system may be applied to a number of receiving posts placed at different distances, and each receives its proper message.

## BUILDERS' TRIAL OF THE "ILLINOIS."

The builders' trial of the U. S. battleship "Illinois" took place off Cape Henry Tuesday, March 12. The "Illinois" left the dock at the Newport News Shipbuilding and Dry Dock Company's yard at 7 o'clock A. M., proceeding down Hampton Roads to Old Point Comfort and Cape Henry, then to sea about 25 miles, where the trial for speed was made. The greatest speed, which was taken by log, was 16.2 knots, during which time the engines developed 11,920 I. H. P. at an average of 108.5 revolutions, and under a boiler pressure of 175 pounds. The vessel had been lying beside the dock for ten months, and her foul bottom accounts for the poor showing in speed. From the high horse power developed the indications are that, with a clean bottom, she will exceed the speed of her sister ships on the official trial. The "Illinois" is fitted with two sets of triple-expansion engines with cylinders $331 / 2,51$ and 78 inches in diameter and 48 inches stroke. There are eight single-ended Scotch boilers 15 feet 8 inches diameter and 9 feet $11^{1} \%$ inches long, with 685 square feet of grate surface and 21,649 square feet of heating surface. Forced draught is furnished by eight blowers 60 inches diameter and .14 inches width of tip, each run by a 5 by 4 double engine. The propeller is 16 feet 9 inches diameter and set at 17 feet 3 inches pitch. The builders are well satisfied with the showing made and are rapidly preparing the vessel for the official trial

## THE PATENT OFFICE--RESIGNATION OF THE COMMISSIONER OF PATENTS <br> We are advised that the President has received the

 resignation of Charles H. Duell as Commissioner oî Patents, who is about to return to active practice in this city, after having held the position of Commissioner very acceptably since February 5, 1898At the beginning of his administration he found the work in the Patent Office greatly in arrears, and at once set about devising means to bring it up to a more businesslike standard. His success in this direc tion is a matter of record and the present celerity with which applications receive attention, despite their increase in volume, is a satisfactory proof that his efforts have not been in vain. The promptitude with which applications can be acted upon is helpful to inventors from the fact that it tends to keep alive their ideas and stimulate further invention. It frequently happens that important industrial enterprises are dependent upon the prompt or tardy action of the Patent Office officials, hence it is to be hoped that the present efficiency will continue, and if possible be improved.
Mr. Duell also brought order out of chaos in reform ing the distribution of printed copies of patents which are so largely used by attorneys and inventors by placing at the head of this division a competent, active business man.
The printed patent copies were formerly stored in various nooks, corners and hallways difficult to find, often in the wrong places, improperly or carelessly numbered, entailing an amount of worry and delay in their procurement that was extremely annoying to the attorney and inventor.
On account of the vast accumulation of printed copies and the storage space required only seventy five copies of each patent are now printed, unless special orders are received in advance of the printing. By this change much less shelf space is needed and a saving of room is brought about.
The new head of this division, with the approval of the Commissioner, has had erected many new alcoves of shelving readily accessible in the upper galleries of the Patent Office, where every patent, arranged in consecutive numbers, can be quickly obtained or "pulled."
An accurate daily journal is also kept of the exhausted patent copies by means of which the condition of the whole supply is readily noted. There is a pressing need for more room in the Patent Office, especially for the safety of the records in the assignment division, where it is reported about one thousand deeds a day are received for record. These valuable
records are exposed to the danger of fire, a condi tion that would not be tolerated in any well managed institution, and one which is a menace.
During Mr. Duell's term of office the new system of classification has been introduced, the intent of which is to grade patents into kinds or classes so that the state of the art can be readily determined. Owing however, to the multiplicity of subjects and subdivisions and the differences of judgment among in dividual examiners there appears at the present time to be no special advantage in the work accomplished over the old régime. The new Commissioner wil need to give the system careful study if any improve ment is to be effected.
Mr. Frederick J. Allen, of Auburn, New York, has been appointed to succeed Mr. Charles H. Duel to the important position of Commissioner of Pat ents, and will soon assume his new duties. We trust the new Commissioner will not only maintain the present standard of work, but greatly increase its efficiency.

## RUSSIAN ARMY AND MARINE.

The Russian empire, occupying as it does such a vast extent in Europe and Asia, needs for its security the greatest army now existing. The present recruiting laws permit of mobilizing, in case of war, twentytwo classes of seven hundred and fifty thousand sol diers each, or, allowing a considerable margin, at least thirteen millions. This immense army must not be considered, however, as an instructed and mohilizable corps; it may be admitted that about four million solcorps; it may be admitted that about four million sol-
diers ready for the campaign could, if necessary, rediers ready for the campaign could, if necessary, re-
spond to the call of the Czar. The Emperor is the supreme chief of the army, and no parliamentary as sembly has the right to question his acts. Usually, the Minister of War acts as intermediary between the Emperor and the troops, and in such capacity his authority is of the greatest. To the Ministry of War are attached the higher Council of War, the Supreme Court of Military Justice, and the Military Cabinet of the Emperor; the War Department is divided into a Chancellery and eight grand divisions: Etat Major general, intendance, artillery, engineering corps health, military schools, Cossack troops and military justice. The military territery is divided into 12 grand departments, at the head of which are the offi cers bearing the title of commander-in-chief; these have the command of the troops stationed in the region, those belonging to the territory and those of the various establishments. In several of the regions in Finland, at Wilna, Warsaw, Moscow, Kieff, in the Caucasus, in Turkestan, in Siberia, and the Amour district, the commanders-in-chief are invested with a higher political authority, and take the title of Gov ernor-General. The distribution of the Russian troops by army corps is not uniformly established, as in some other countries of Europe. It may be admitted, however, that in European Russia 52 divisions of infantry, 52 groups of mounted artillery, 23 divisions of cavalry and 44 batteries of mounted artillery constitute 25 army corps, of which two are in the Caucasus region. Beyond the Ural, in Siberia, in Turkestan and the Amour region, and, at present, in Manchuria, the organization is variable, and depends upon circum stances.
The corps of Russian officers is recruited in a great part from the Lower Military Schools, of which there are seven for the infantry, those of Kazan, Odessa, St. Petersburg, Tchougouiev, Tiflis, Wilna and Irkoutsk; two for the cavalry, Elisabethgrad and Tver; two for the Cossacks, Novocherkask and Orenburg. The remainder of the officers come from the Body of Pages of the Emperor and the Military Schools. These latter schools are open, in principle, to young men of all classes of society, including the under-officers and private soldiers; they are located at St. Petersburg and Moscow. The preparatory instruction for these schools is obtained at twenty-four cadet schools and three preparatory schools. For the higher military instruction four Military Academies are established, the Nicolas Academy of the Etat Major, the Michel Artillery Academy, the Nicolas Engineering Academy and the Academy of Military Law. The Russian army on a war footing is composed of five contingents of the active army, thirteen contingents of reserve and four of militia of the first class; all these troops have re ceived the necessary instruction and have been grouped by the officers of the active army and the officers of reserve. The militia of the second class has received no military instruction. The Cossack troops, which form a unique feature of the Russian army, ar recruited in a special manner, and are clothed equipped and mounted at their own expense; the State furnishes only the arms and ammunition. The effec tiveness of the Cossack troops on a war footing would excesd 250,000 cavalry
As to the Russian Marine, it may be remarked at the outset, that Russia has but a small coast develop ment, and it is easy to defend by means of coasting
cruisers and line of torpedoes, without counting the ice, which forms during several months an impassabie barrier around the Baltic ports. The entry of the Black Sea would be stopped by the fleet of modern battleships constructed on the docks of Nicolaieff and Sebastopol. For some years since, the efforts of Rus. sia have been directed toward the extreme Orient, and the vessels which are being constructed are de. signed to reinforce the Pacific fleet, being thus upon the open sea; the ports of Vladivostock and Port Arthur are constantly developing, and new vessels are being constantly sent there.
The Emperor is the supreme chief of the Marine, but he delegates his powers to one of the members of the Royal Family, this being in the present case the Grand Duke Alexis. This Admiral-General, who presides over the Admiralty Council, has under his orders the Minister of the Marine. At the present time the Russian fleet has seven first-class battleships, with displacements from 8,500 to 11,000 tons; three coastdefense cruisers, of 4,000 tons; eight armored cruisers, of 6,000 to 12,700 tons; three protected cruisers of 3,000 to 5,000 tons. All these vessels are at least twenty years old; to them must be added those which form part of the Black Sea fleet, including seven battleships of 9,000 to 12,500 tons and one cruiser of 3,000 tons. Besides, a fieet of twenty destroyers, etc., and seventy-five torpedo boats is distributed between the northern and southern coasts and those of eastern Siberia. The personnel for these different vessels is made up of sailors coming from the recruitment, who remain seven years in service. These men are in general embarked upon the same vessels; they are sent to special naval schools where they complete their instruction. The under-officers come from the ranks and cannot become officers; they do not form a very compact body, and generally prefer to leave the service at the end of the seven years. The number of underofficers and marines is about 41,000 . The officers must belong to the nobility or be the sons of officers of the Marine; they come from two sources, those who pass the Cadet School of the Marine and those who engage as volunteers and after eighteen months of embarkment pass a satisfactory examination. The Cadet School of St. Petersburg is established on land and has besides numerouis vessels for practical exercises; the course lasts six years, after which the cadets be come midshipmen. As to the officers of the Marine, these include 55 rear-admirals, 92 captains of the first class, 212 of the second class, 724 lieutenants, and 366 midshipmen. A number of special naval schools enable these to complete their instruction; some of these are of a theoretical nature, as the Nicolas Academy, devoted to astronomy, naval architecture, etc. and others practical, as the schools of marine artillery, diving, torpedoes, etc.
Russia has but one arsenal on the Baltic, that of Cronstadt. Another is being constructed at Libau, not far from the German frontier; it is called Port Alexander III., and the work has been going on since 1891. On the Black Sea are those of Nicolaieff and Sebastopol, the former of these is in the interior, on the Bug River; in the extreme Orient are Vladivo stock and Port Arthur. In the Gulf of Finland are the secondary posts of Revel and Sveaborg. Besides these a certain number of state and private docks and establishments aid in the construction of the fleet; the principal of these are situated on the Neva, near St. Petersburg, and at Nicolaieff. As to the volunten transport fleet of the Black Sea, its origin goes back to the Turco-Russian war of 1877. At this period, the government lacked transport boats, and some wealthy individuals associated together in order to purchase the necessary vessels in Germany; these, however, ar rived too late to be of service on this occasion, but the institution of the volunteer fleet was kept up, and the vessels already bought were added to. At the present time they serve to transport the necessary troops and military supplies to Siberia; on the return voyage they bring back a load of freight, including tea. Besides 12 rapid transport vessels of 12,000 tons and a speed of 20 knots, this fleet possesses a number of slower vessels.

## the remains of an old indian village.

Mr. J. A. Udden has recently printed the results of his investigations of the remains left by an ancient tribe of Indians of the Siouan stock who formerly inhabited a village in McPherson County, Kansas. A series of circular mounds were opened, each of them being about twenty feet in diameter, and none of them more than three feet in height. Fifteen such mounds constituted the village, and it is noteworthy that their distance apart was 125 feet or some multiple of this number. No human remains were discovered, but a quantity of domestic utensils, bones of animals, pot tery, tools, arrow-heads, pipes, etc., were found. The most remarkable item was a piece of chain-armor, which is presumably of European armor, and which may have come from the expedition of Coronado, who passed through this region in 1542.

THE MUTOSCOPE AND MACHINERY IN MOTION.
It does not often happen that a device, which was originally designed as a mere toy, becomes an instrument of practical utility in the great world of com merce. Occasionally it does, as in the case of the bicycle, which, in the form of its natural ancestor, the "hobbyhorse," was a toy of the most rudimentary description but in rudimentary description, but in its modern development is a ma chine of the highest general utility It is the purpose of the present article to describe an instrument which is undergoing a similar change by enlarging its field of usefulness from that of a mere instrument of entertainment to one of commercial utility. Our readers are familiar with the muto scope, which has been aptly de scribed as "the little brother of the biograph." it is a simple and ingenious contrivance for the exhibition in a cabinet of the same moving pictures that the larger machine throws life-size upon a screen. It is not necessary to give here any detailed account of this well-known machine, and those who wish to learn fully about the construction and oper ation of the biograph and an earlier form of the mutoscope are referred to the Scientific AmerICAN of April 17, 1897, which contains a fully illustrated article on the subject.
Now, the art of moving photography, as we have said, has hitherto been solely devoted to the purposes of entertainment. In the case of the biograph, the subject is thrown upon a large screen hung on the stage of the theater, and in the mutoscope the photographs are set up in circular book form, within a suitable box or case, and successively tripped before the eye by means of a hand-crank or electric motor. In each case the subjects chosen for exhibition have usually been se lected for their scenic or spectacular effect, and with certainly no thought to their commercial utility.

It was inevitable, however, that the great possibilities of this little machine in a commercial or industrial way should early suggest themselves. If it is possible to reproduce a train in motion, to catch the discharge of a rifled gun at Sandy Hook, or the rush of the whirlpool rapids at Niagara, why should not the mutoscope be harnessed $\therefore$ : 0 the service of industry, and made to show machinery in motion and recall to prospective purchasers the operation of complicated devices? There is an old saying that "seeing is believing," and while a good line drawing, or a judiciously taken photograph, will do much to bring a subject before the mind, the actual movement is lacking and may very easily be misunderstood. At present there is an endless number of commodities that cannot be sold from samples; such, for instance, as locomo tives, cars, derricks, pile driv ers, and all heavy machinery, revolving doors, fire-escapes and extinguishers, blasting powder and an ever-increasing list of etceteras. Some of these devices are portable; but it is not enough to show them to the prospective customer-he must see how they work. This, however, if often impossible, for the man with a fire extinguisher or escape cannot start a blaze to order, nor can a blast of giant powder be set off at the nearest street corner to demonstrate its disruptive value. Moreover, there are many large operations, such as systems of transportation of the raw materials from mines to mills and factories, of which no mere verbal or written description conveys an adequate idea, and for which some system of continuous illustration is necessary to render it intel-


CAR APPROACHING DUMMIES.


DUMMIES PICKED UP.


REMOVING DUMMIES FROM THE FENDER.


UNREELING THE HOSE.


WATER TURNED ON.


FIRE OUT IN 30 SECONDS

Selection of Views from two 180 -foot strips of Mutoscope films.
mutoscope have produced the compact instrument shown in the accompanying illustrations, to which they have given the self explanatory name of "Commercial Mutoscope." It will be recognized as an improved slot-machine mutoscope, with the stand and slot-mechanism removed, and its bulk and weight so reduced that it is as conveniently portable as a photographer's camera, or an ordinary sample case.
Of our illustrations, one shows the cabinet open, with


THE COMMERCIAL MUTOSCOPE
the circular book of photographs removed, and another represents the mutoscope in operation, and alse closed with the mirror and turning-crank removed. The photographs of objects in motion are taken upon a moving film at the rate of forty per second. These are reproduced upon cards which are mounted radially in consecutive order around a hollow cylinder, and stand out like the leaves of a book (see illustration). The cylindrical book is placed upon a small shaft arranged centrally and transversely within the cabinet. On the same shaft is mounted a worm wheel, which is engaged by a worm on a shaft that is carried near the righthand wall of the mutoscope. When the cylinder is slowly revolved, the picture-cards being held back by a stop, (carried in the position shown), and allowed to sweep past the eye one by one, as one thumbs the leaves of a book, an apparently moving picture is the result, and the exact motions of the device are reproduced. One great advantage is the ability of the operator to vary the speed; for he may make the operation quick or slow as he desires, either maintaining the normal speed at which the original demonstration took place, or stopping the spectacle at any point in the series, so as to inspect each picture step by step at his leisure. The case containing the mutoscope is hinged at its forward end to a base plate, and by means of a vertical rack extending from the front end of the box the machine may be inclined to suit the convenience of the user.
As an instrument for the exploitation of newly patented inventions, this machine should have a wide field of usefulness. We present a series of tnree pictures of a new style of car-fender. Life size dummies of children were placed in front of a moving car and the biograph camera took a roll of pic tures (from which these three were selected) as the fender successfully picked up the objects. Another group of pictures shows a woman in the act of unrolling a reel of hose and throwing a stream of water into a blazing cottage. There are on view at the office of the Mutoscope Company series of pictures showing the operation of heavy machinery, cars, etc. One of the best of these represents a wellknown hoisting and conveying machine in operation. It can be understood that in commending this ma. chine to the favorable consideration of the manager of a railroad, or a steamship company, the vendor would be at an immense advantage if he could place his mutoscope cabinet on the desk and let the official take the crank in his own hand and vary the "ocular demonstration" to suit his own idiosyncrasies.

We are indebted for our pho tographs and information to the courtesy of the American Muto scope and Biograph Company, of 841 Broadway, New York, whose studio and factory afford impres sive evidence of the growth and future promise of the essentially modern art of moving photo graphy.

Experiments have been car ried out in England to ascer tain the amount of corrosion that takes place upon the plates of a ship under vary ing conditions regarding water. weather, etc. Iron and steel plates were immersed in sea wates wiver water, and also ex posed to the weather, but very little difference was found to occur in the relative corrosion of the two metals. When an addition of 3 per cent of nickel was introduced into the steel the rate of oxidation dimin ished by about 23 per cent, and when the steel was mixed with 26 per cent of nickel the loss by oxidation was equal to about 33 per cent of that of wrought iron.

## THE TOPOPHONE.

Fogs are unquestionably the greatest menace to the mariner. When he can see a danger he has a chance to avoid it, but in a fog all he knows posi tively is the direction of his vessel as given him by the compass; as to the direction of warning sound signals, he has to depend on his unaided hearing. Now this is notoriously uncer-tain-the sense of hearing, so far as direction is concerned, is very defective even when assisted by the eyesight; witness the performance of a ventriloquist who does all the talking for several manikins on different parts of a stage. To the spectator it will seem as if the sounds proceed from the manikins, while, as a matter of fact, it is the performer who makes the sounds, and it is the spectator's imagination which gives the direction.

It is not improbable that it is also the imagination which frequently deceives the mariner. He knows, or thinks he knows, that a certain fog signal should be heard in a certain direction; he is listening for it, and when he hears it his preconceived opinion biases his judgment
Various attempts have been made, especially of late years, to invent devices which will assist the mariner to locate his position in a fog. Fog signals themselves have been improved so as to give the sound a greater penetrating power, and wireless telegraphy and the late Prof. Elisha Gray's method of ringing bells under water have been pressed into service. The Hamilton-Foster fog-signal. which gives a distinctive blast according to the direc tion the fog-horn is pointed, may also be cited. All of these need special appliances, either on shore or on the vessel, or on both, to make them of any use, and all of them are so expensive as to debar their general introduction. Besides, with the exception of the Hamilton-Foster fog-signal, although a sound or a signal may be heard, its direction is not given. If the mariner knows the direction of any signal, in addition to the course of his vessel, he will be greatly assisted in keeping out of danger.

The United States government has established 393 fog-signals, 120 bell buoys, 73 whistling buoys, and 44 light-vessels with fog-signals on or near the shore of its navigable waters. Other nations have similarly guarded their coasts. Every vessel that floats 15 required by law to carry some kind of a fog signal. In addition, there are other sounds, such as echoes, breakers, etc., whose direction the mariner needs to know to prevent accident. The topophone has been devised to accomplish just this thing, and also t hear sounds at greater distances than is possible with the unassisted ear. With its use the mariner can determine the direction of any sound before it can be heard without the instrument. The topophone is simple in construction, light in weight, portable, can be used in any part of a vessel, and any one with normal hearing can soon become proficient in its use.
It consists of two acoustic receivers or trumpets, pointing in opposite directions and supported on a vertical shaft-see Fig. 1. From the lower ends of the trumpets extend rubber tubes connected with the ears by specially constructed ear pieces. The observer holds the shaft so that the instrument is above is head; if a sound is heard in either ear-the righ ear, for example-it shows at once that the sound must be somewhere on his right-hand side If he then turns to the right until the sound is heard in his left ear, it shows that he has passed the direction of the sound. If he then oscillates the trumpets so that the sound is heard alternately in each ear, the sound will be in a direction inside the angle of oscilla tion; this angle generally is about one point f the compass. The whole operation is sim ple, and the above operations take but a few econds.
As soon as the direction of the sound is ascertained, the observer can keep the topo phone pointed in its direction, and, knowing the speed of the vessel and its course, the ocation of the sound can be quickly plotted accurately enough for all practical purposes For example: Suppose the observer locates he direction of the fog signal at Beaver Tail at first as due north-see Fig. 3 ( $A$ )-that the vessel's course is NE $1 / 4 \mathrm{E}$, and that after the vessel has gone one and a half miles the di rection of the signal is west, by a very simple calculation it will be known that when the vessel was at $A$ it was about one mile and when at $B$ about one and one-eighth miles from the fog-signal. If the directions of the fog-signals at Beaver Tail and at Brenton Reef Light-Vessel are determined by the topophone, the location of the vessel can at once be plotted. The topophone is the invention of Lieutenant-Colonel D. P. Heap, engineer of
the Third Light-House District, Tompkinsville, N. Y Prof. Mayer, of the Institute of Technology, Ho boken, N. J., invented an instrument to determine the direction of sound to which he also gave the name
"topophone."


SIDE DOOR OF MUTOSCOPE LOWERED, BOOR OF PICTURES REMOVED O SHOW TURNING GEAR
half the wave length of the sound, the impulse from the one neutralizes that from the other, and the "A is obliterated. source of any sound within this instrument, the observer, guided by the varying intensity of the sound transmitted by the resonators, turns until their openings touch the same sound waves simultaneously, which position he recognizes either by the great augmentation of the sound (when the tube lengths are equal) or by the cessation of sound, when the tubes vary so that the interference of the sound waves is perfect. In either case the determination of the direction of the source of the sound is almost instantaneous, and the two methods may be successively employed as checks upon each other's report.'
Prof. Henry Morton, of the same Institute, experimenting with this instrument, says:
If the surface of a sound wave were always truly spherical, this instrument might locate its direction with a fair degree of accuracy, but this surface is frequently deformed, sometimes to the extent of being a curve of double curvature, and in such a case the instrument would be fatally misleading.
In addition, it is necessary that all fog-signals should be tuned to one note to make this instrument effective, as it will not locate any sound not tuned in unison with it.

## A Tunnel to the Isle of Wight

The bringing of the Isle of Wight, off the

The following is the description of it, taken from the Scientific American Supplement of July 4, 1885 :
"Briefly described, the topophone consists of two resonators (or any other sound receivers) attached to a connecting bar or shoulder rest. The sound re ceivers are joined by flexible tubes, which unite for part of their length, and from which ear tubes proceed. One tube, it will be observed, carries a tele scopic device by which its length can be varied.


Fig. 3.-DIAGRAM SHOWING USE OF TOPOPHONE.
When the two resonators face the direction whence a sound comes, so as to receive simultaneously the same sonorous impulse, and are joined by tubes of equal length, the sound waves received from them will necessarily re-enforce each other, and the sound will be augmented. If, on the

Fig. 1.-HEAP's TOPOPHONE. Fig. 2.-THE TOPOPHONE IN USE.

coast of Hampshire, into closer communication with the mainland by the construction of a submarine tunnel has been proposed. The idea is by no means an original one, since it was first suggested over fifteen years ago. The scheme, at that time, was to con: struct a tunnel beneath the Solent, from Start Point, on the English coast, to Cowes, the yachting center on the Isle of Wight. It was, however abandoned principally owing to the many engineering difficulties that would have been encountered, the most serious of which was the provision of a suitable approach to the tunnel at Cowes, owing to the abrupt descent which the shore makes into the water.

The present idea, however, is to penetrate the bed of the Solent, near Hurst Castle, and to emerge upon the island at Totland Bay, near the Needles. The channel at this point is two miles in width, and the preliminary surveys have revealed the fact that the soil through which the tunnel will extend is favorable to the rapid completion of the work, so that no unusual engineering difficulties will be experienced. By this means the island, which is only accessible at the present time by steamboat lines, will be brought into close and rapid communication with the main trunk railroad in the south of England, and will thus be a valuable means of developing the island.

The enterprise is well supported financially, and the application for the necessary powers will be made during the coming Parliamentary session. It is es timated that the total cost of the project will amount to $\$ 3,750,000$, and that it can be completed within two and a half years. It is proposed to construct a rail way branching off trunk line of the London and SouthWestern Railroad at Brockenhurst, near Bournemouth, to a point on the coast of the Solent, somewhat north of Hurst Castle. This latter is really a range of buildings used principally as a Lloyd's signaling sta tion for the mail steamers passing to and from Southampton, and is located at the end of a pebbly spit of land jutting out into the Channel somewhat similar to the Chesil Beach off Portland. The country is level at this part, so that no elaborate ex cavation will be necessary to construct the approach to the tunnel, the gradient of which will be gradual, since the bed of the Solent at this point has a gentle shelve. The first section of the tunnel will be constructed of circular iron plates, similar to the Central London Electric Railway, only of larger dimensions. This method has been suggested as offering the best resistance to possible scouring. When the tunnel has penetrated well beneath the sea bed it will be constructed of brick. On the island the tunnel will emerge up a gradual slope similar to that on the English shore. The total length of the tunnel and necessary approaches is to be seven miles, and the journey beneath the Solent will only occupy five minutes at the most. The line will be continued inland to Freshwater, where a junction will be effected with the insular railway system.
The construction of this tunnel will be in strumental in bringing the principal towns of the island within two and a quarter hours' railway traveling from London, whereas with the present facilities the journey occupies from three and a half to five hours. It will
also enable the goods traffic to be carried on more expeditiously than it is under the existing circum stances.
When the Channel Tunnel was projected with a view to connecting Dover on the English mainland with Calais on the French coast, the British War Office vigorously opposed the scheme, on the grounds of national defense. In this instance, however, it is anticipated that the military authorities will support the scheme, since it will enable them to transfer their troops from the military camp at Aldershot which is also upon the main line of the London and South-Western Railroad, to the island, if the exigency arose, within three hours. Near the island entrance to the tunnel exist a number of modern forts, to guard the entrance to the Solent, and in case of war troops could be concentrated at this point with the utmost celerity. The military authorities have been seriously considering the advisability of strengthening the defenses of this island, which at present is in a very vulnerable condition, so that the construction of this railroad would probably facilitate the work of the military department. At any rate, it is not at all probable that they will offer any opposition to the enterprise.

## THE INTERNATIONAL RACING-YACHT "INDEPENDENCE"

The very liberal policy which is being pursued by Mr. Thomas W. Lawson, the owner, and Mr. B. B Crowninshield, the designer, of the 90 -foot racing yacht, which is now under construction in Boston, for the defense of the "America" Cup, comes in pleasing contrast to the secrecy which of late years has surrounded the design and construction of chal lenging and defending yachts on their respective sides of the water. The illustrations of the "Independence" on the front page of this issue are made from photo graphs taken in the shed where the yacht is being built and from the working drawings, blue prints of which were kindly furnished from the designer's office. The dimension of the boat are as follows: Length over all, 140 feet $101 / 2$ inches; length on water line, 90 feet; overhang forward, 27 feet $51 / 2$ inches; overhang aft 23 feet 5 inches; beam, extreme, 23 feet $111 / 2$ inches; beam at water line, 23 feet 5 inches; draft, extreme 20 feet; freeboard at stemhead, 6 feet 11 inches; free board at taffrail, 4 feet 8 inches; freeboard, least, 4 feet; deck beam at forward end of water line, 15 feet; deck beam at after end of water line, 18 feet 9 inches; beam at taffrail, 11 feet 8 inches; area of lateral plane, 772.6 feet; area of midship section, 117.9 feet; area of L. W. L. plane, 1,771.5 feet; wetted surface, with small rudder, $2,913.5$ feet; with large rudder, 2,956 feet; displacement, 146.75 tons.

Assuming that the new defender which Herreshoif is building will be an improved "Columbia," as "Columbia", was an improved "Defender," it is interesting, with the plans of the Lawson boat before us, to compare the points of difference between "Independence" and "Columbia." In the first place, com paring the midship section, the "Independence" has a harder bilge, a flatter floor and the curve at the garboards is of much smaller radius; in these respects, indeed, she is not unlike the "Shamrock." As we leave the midship section, the difference between "Independence" and "Columbia" becomes very marked. In the "Columbia" the bilges begin to ease away rapidly toward the bow until at the forward end of the water line the cross section of the bow approximates a blunt V form, thus giving a sharp and easy entrance and water lines that do not lengthen much as the boat heels to a breeze. Aft of the midship sec tion the run and quarters of the "Columbia" are remarkably fine and easy, and although in a breeze she lengthens her water line almost to the taffrail, the form is such that there is but little perceptible drag, or quartering wave, when the vessel is reaching in a strong breeze. The characteristics of "Independence" are her extremely long overhangs, giving her an overall length fully 10 feet greater than that of any previous cup defender. Coupled with this great length is the fact that she carries her hard bilges and flat floor well out beyond the normal 90 -foot mark, both forward and aft, thus providing an extremely long, flat floor and a great gain in water-line length when the boat is heeled. With this form of hull it is possible to carry a maximum amount of sail with a minimum amount of ballast, and as a matter of fact "In dependence" will carry only 75 tons of lead in hel keel as against the 85 to 90 tons which are generally credited to the "Defender" and "Columbia."
Perhaps the best idea of the full bow and stern sections and natural sail-carrying power of the yacht is derived from a consideration of the load-water-line plane as shown on the accompanying plan, and the photographic views of the in terior of the hull looking toward the bow and toward the stern from the mast-step. Here it will be seen how the flat floor extends practically the whole length of the yacht, the hard curves at the bilges being main
tained well into the bow, and carried out to the 79 th or last frame, as shown in the cross-section of the hull at this point. Although there will be a certain bluffness in the bows it must be admitted that once entrance has been made, the lines of the yacht will be such as not merely to provide great sail-carrying power, but a form which will lend itself to high speed. Even when driven to the limit, the "Independence" should leave a wonderfully smooth wake behind her. It will be noticed that two rudders are provided; the after rudder will be used in place of the forward one, if the sailing trials prove that its more powerful control is necessary.
Considered from a structural standpoint, the new yacht shows how the principles of framed structures, as used by the engineer in bridge building, are being applied to yacht construction. The peculiar model of "Independence," with her great overhangs and shallow depth, renders the task of meeting and distributing the intense local strains which are set up in the structure of such an extreme racing yacht most difficult. For instance, it will be noticed that the mast is stepped fully 10 feet forward of the stem and at a point where the molded depth of the boat is not more than 4 feet and the draft 2 feet. Upon the thin bronze bottom of the boat, which at this point is less than $1 / 4$ of an inch in thickness, is to be carried the enormous vertical load of the mast with its towering structure of spars, canvas and rigging, a load which is intensified by many tons when the vessel is heeled to a breeze, and the vertical component of the pull of the shrouds is added to the normal dead-load of the mast. This vertical thrust is met by interposing between the heel of the mast and the plating of the hull a deep, cellular structure of steel plates, which meas ures 12 feet in width by 14 feet in length, and is $21 / 2$ feet deep at the center. This structure is riveted upon the frail floor of the boat, and serves to distribute the load of the mast throughout the surrounding frame work of the hull. Associated with the mast foundation is a series of four, special, transverse, deck-beams, extending across the deck in the wake of the mast, which are in reality bowstring trusses, 17 inches in depth at the center, of great vertical stiffness. From the bottom of these trusses a number of $\pi / \mathrm{inch}$ steel tie-rods are carried down through the steel ring which forms the step of the mast and secured by knots below the bottom face of the same, thereby trans mitting a portion of the mast load directly to these deck beams. Moreover, it will be seen from the transverse section of the boat at the mast-step that the special deck beams above mentioned and the mast step framing are connected by a system of trussing composed of $2 \%$-inch hollow steel struts and 3 by 3 inch angles. As the transverse strains which are set up at this point in a racing yacht when she is being pressed to the utmost in a strong breeze are enormous, not only is there the great downward thrust of the mast as above explained, but there is the upward pull of the shrouds on the side of the boat which in itself will run up to the total of a great many tons. The deep deck beams and the cellular structure of the mast step, with the triangular bracing of the angles and struts, together constitute a true bridge structure, admirably adapted to take care of the intensified local stresses at this point, and distribute them over a broad area of the delicate shell of the yacht.
Another interesting study is the provision made for giving the necessary longitudinal strength to the long, overhanging bow and stern of "Independence." It will be noticed that there is a deep, vertical keel-plate which varies from a depth of 9 inches at the bow to 18 inches at the point where the fin keel commences. At the center line of the deck there is also a horizontal steel plate of the average width of 18 inches associated with the vertical plate which is from 6 to 8 inches in depth. Be tween these two members, which might be called the top and bottom chords, there is worked in a system of tie rod bracing and vertical, hollow, steel struts, the rods varying from $\pi / 4$ of an inch to one inch in diameter and the struts from $11 / 2$ inches to 2 inches in diameter This construction provides what is practically a deep steel truss which extends from the stiffened framing at the mast out to the end of the overhanging bow. The necessity of trussing of this kind will be appreciated by those of us who remember what happened to the over lightly built bows of the 70 -footers of last season, which, yielding to the enormous upward pull of the head stay and topmast stay, were drawn up ward out of their proper line from 12 to 14 inches. The after overhang, it will be noticed, is similarly trussed, the tie-rod bracing, however, running only in one direction-being put in, doubtless, to assist in carrying the weight of the crew, when it is massed toward the taffrail to keep the bow of the boat up when she is running before the wind. The hull is further stiffened by four lines of stringe"s, two on each side, with 2 -inch tubular struts, extending from the string ers to the deck beams.
There are 79 frames in the yacht, spaced about $21 / 2$ feet apart. The frames consist of nickel-steel angle
bulbs. The plating of the hull is of bronze from the keel to the sheer strake, which latter is of steel. From amidships to a little forward of the mast the sheer strake is $9-32$ of an inch in thickness, while from forward of the mast to the bow it is $1 / 4$ of an inch, and from amidships to the stern it is $1 / 4$ and $3-16$ of an inch in thickness. From the garboard strake to the sheer strake the bronze plating is $7-32$ of an inch and $1 / 4$ of an inch in thickness amidships and 3-16 of an inch thick forward and aft. From the garboard strake to the bottom of the keel the bronze plating is $1 / 4$ of an inch and 5-16 of an inch in thickness, while the bottom plate of the keel is a bronze casting $5 / 8$ of an inch in thickness. In constructing the yacht the keel was first built up and riveted, and then pig lead, with shot to fill up the interstices, was stowed, until 62 tons of the same was in place. Molten lead was then run over the top, to form a crust, and keep it in place. After the yacht is afloat, about 13 tons of pig lead will be stowed above this until the vessel has reached the desired trim: The deck beams are angle bulbs of the same weight as the frames. The deck plating is of steel and aluminium, distributed as follows: Continuous steel side stringers run from stem to stern, and vary in diameter from $3-16$ by 10 inches at the ends, to $1 / 4$ inch by 2 feet in width amidships. There is also the longitudinal centerline steel plate, already referred to, which varies from $1 / 4$ inch by 2 feet amidships to $3-16$ of an inch by 1 foot in the ends. The deck is covered with $3-16$ of an inch steel plating for a distance of 10 feet forward and aft of the mast. The rest of the deck is plated with aluminium. As the displacement of "Independence" is given as $146 \% / 4$ tons and the total lead ballast will amount to about 75 tons, it is fair to presume that the total weight of the hull, spars, rigging, sails, stores and crew, when the boat is down to her 90 -foot water line, will be about 72 tons.

There can be no question of the great originality and skill with which the construction of this interest ing boat has been worked out. The peculiarity of her form, her great sail-carrying capacity, involve that she will be put to severer strains than any yacht of her size that has yet been launched; and we think that the designer is to be congratulated upon the success with which he has combined lightness and strength in producing a powerful form. Had the "Independence" been built upon what might be called the commonly-accepted lines of a 90 -footer, and had there been less originality shown in the design, there would not be the great public interest attending her trials against the Herreshoff boat which is now certain to be manifested.

Electric Wind-Registering Apparatus.
A new apparatus for registering the direction of the wind is in use at the observatory of the Agronomical College, at Berlin, which permits of registering eight directions of air-currents by electrical means, using but two pendulums, each provided with a stylus. The apparatus carries at the top a vane of the usual type, carried upon a rod which passes below and has on its lower end a metal sector which may rub over four contacts placed at the corners of the platform carrying the pivot of the rod. The dimensions of the sector are calculated so that it may touch but a single contact or two adjacent contacts. The movable sector is connected to one of the poles of a battery. Each of the four contacts has a wire which passes to the coil of an electro-magnet and the four magnets are placed horizontally so that between each of the two pairs of coils oscillates a pendulum carrying the ink stylus. The other ends of the coils are connected with the other pole of the battery. With this arrangement each of the two pendulums will be attracted to the right or to the left according as one or the other contact is touched by the revolving sector; if the sector touches two contacts at once the two pendulums will be at tracted either in the same or contrary directions. If the contacts $1,2,3,4$ correspond to the directions N., S., E., W., of the compass, suppose that the pendulum I. is deviated to the left by contact 1 and to the right by contact 4 , while pendulum II. is deviated to the right by contact 2 and to the left by 3 . Under these conditions a left deflection of the pendulum I. alone indicates N. ; while the same deflection, combined with that of pendulum II. to the right, indicates N. E., etc. If the indications are to be given at regular in tervals, the wire from the coils to the battery passes through a relay and clock mechanism by which the circuit is closed at periods of 5 or 10 minutes, etc. The current required to work the apparatus is very small.
The famous statue of Voltaire, by Houdon, is probably the most important art object displayed in the Théâtre Français. The fire in the theatre last year excited great alarm for the safety of this precious souvenir of the French stage. The architect of the new building has designed means by which, in case of emergencies, the statue can be moved out of danger. A series of wheels has been arranged under the pedes tal so that the mass can be moved with as much ease as if it stood on a trolley.

The meteorite which fell at Porto Alegre, Brazil, has ow been measured, and the results are most astonish ing. It measures 56 feet from the base and is 85 feet high.
German towns are increasing rapidly in population. In five years Posen has increased 58.6 per cent; Ber lin has now $1,884,345$ inhabitants; Hamburg, 704,669; Munich, 498,503; Leipzic, 455,120.
William Couper, the sculptor, is engaged in modeling a heroic portrait-bust of the late Prof. Thomas Egleston, and funds are being collected for this memorial to the founder of the School of Mines of Columbia University.

A marked rise in the level of the Dead Sea has been ted. A broad lagoon has been formed on the north side of the Jordan delìa. The water does not sink in summer, and it is surmised that the whole bottom of the Dead Sea has been raised by volcanic action.

A London dealer in physical apparatus, etc., offers for sale a strictly limited number of vacuum tubes, containing neon, krypton and xenon. Also tubes of argon and helium. They cost from one to three pound each without quartz ends, and the whole set of five gases, with quartz ends, costs about $\$ 100$
At a recent Headmastera' Conference held in Eng land, a committee was appointed to take up the study of archæology in schools and the foundation of an archæological museum. It was thought that the more extended study of this science would quicken the stu dents' imagination of the lives of men who made classical history and literature.

Berlin has refused a legacy of $\$ 120,000$ for an orphan asylum, as one of the conditions of the bequest was hat the orphans should be brought up on a vegetaria diet. Those who are making bequests should not thrust their fads on institutions, and Berlin is to be commended, as Breslau is to be condemned, in this matter, as the latter city expressed a willingness to ac cept the gift with the conditions imposed.

The latest issue of The Geographical Journal con tains a most interesting account of the results of Mr Moore's recent expedition to Lake Tanganyika and the regions to the northward. Mr. Moore brings forward additional arguments in favor of the marine origin of the fauna of this lake (which includes shells of a marine type and a jelly fish) ; and from the ab sence of a similar assemblage of animals in the more northern lakes, he is led to conclude that Tanganyika communicated with the ocean by way of the Congo Basin, and not through the Nile Valley.
In a paper printed in The American Journal of In sanity Mr. G. Styles presents statistics regarding the occurrence of suicides. Forty years ago it was shown that only 4 out of 10,000 persons rated as paupers died by their own hands, while 7 coachmen or other servants, 5 bankers or professional men, nearly 8 soldiers, 7 tailors, shoemakers or bakers, and only $13-10$ carpenters, butchers and masons out of 10,000 were suicides. Sweden had the lowest average of all the countries considered, namely, 1 suicide to 92,000 per sons; Russia had 1 to 35,000 ; the United States 1 t 15,000 ; Saxony 1 to 8,446 . In St. Petersburg and in London the proportion was 1 to 21,000 . If we take the statistics of the fifty years just passed for France the ollowing results: For every 100,000 inhabitants France there were in 1841-45, nine suicides; in 1846-50 ten; in 1861-70, thirteen; in 1871-75, fifteen; in 1876-80 seventeen; in 1889 alone, twenty-one; in 1893, twenty two; in 1894, twenty-six. During the years 1826-1890 the percentage of suicides increased in Belgium 72 per cent; in Prussia, 411 per cent; in Austria, 238 pe ent; in France, 318 per cent; in Saxony, 212 per cent in Sweden, 72 per cent; in Denmark, 35 per cent.
The third series of reports to the Malaria Commit tee of the Royal Society has just been issued, and con tains the results of observations made by Drs. Stephen and Christophers on the west coast of Africa, and by Dr. Daniels i: most Africa, says Knowledge. The two former write ... that it cannot be too clearly re alized by Eu Africa that $t$ of malaria that the na do not exhi essentially conveyed $b$ this fact an they must 1 disease cor quito) fro convinced, cause of c ble from sesses an
living un,
stantly si
examinat
ways absen

McGill University, Montreal, has recently installed two large electric furnaces, taking a current of 100 amperes at 110 volts.

Marconi has sent wireless messages 200 miles from St. Catherine's to the Lizard. Perfect communication has been established between these points.

A submarine electric arc light will soon be experimented with to aid in the sponge fishery off the coast of Florida. At present, the sponges are obtained only from a comparatively small depth, as the sponge fishers at present can only see to a limited distance by the aid of a water glass, and if this distance could be increased, larger areas would immediately be opened up where sponges have been growing unmolested for years.

A new electric fire alarm consists of a metallic case containing a charge of a Bengal light surmounted by an igniting charge in which is buried an electric fuse. The whole is made water-tight, and is arranged to be put in position on a cornice or other prominent part of the building. The fuse is connected through thermo stats to the battery. When the temperature rises un duly the circuit is closed, the igniting charge is ex ploded and the compound is ignited, making a brilliant iight in the neighborhood. A device of this kind will doubtless prove of considerable value in sparsely-settled districts where there is no fire alarm system.

There have been many prosecutions in New York recently under a new law which provides for the punishment of theft of gas or electricity. The law is very comprehensive, and provides for the tapping of supplies without passing through the meter or other instrument provided for registering the quantity con sumed, and for the obstruction or injury to a meter. Until this law was passed the electric companies knew perfectly well that they were being robbed, but found no way of punishing in any adequate way those responsible. Several offenders have been convicted, and one of them was sentenced to pay a fine of $\$ 150$ or spend sixty days in prison. A number of Chinese laundries were found where the meter had been bridged so that their bills were only about half what they should be and nine of the laundrymen were arrested.

Now that the Behr monorail scheme between Liver pool and Manchester has been rejected by the Eng lish Parliament, it is proposed to connect the two cities by an electric tramway. There will be 84 miles of lines communicating with all the principal towns en route, and forming junctions with other tramway systems. In view of the densely populated nature of the districts through which the tramway will extend a heavy and remunerative passenger traffic is assured. Then again, owing to the number of manufactories in the area served by the tramway, it is anticipated that considerable revenue will accrue from the carrying of freight, which will be conveyed cheaper by this means than by any other, and also from the supply of elec trical power. The undertaking is being developed by the South Lancashire Electric Traction and Power Company, Limited, and the capital required to establish the enterprise will amount to alout $\$ 7,500,000$.

A determined attempt is to be made in England to prove the capabilities of Marconi's wireless telegraphy for the prevention of disasters at sea. The experiment are being conducted under the auspices of the Board of Trade, Lloyds', the Trinity House Corporation, and several other institutions interested in maritime affairs A mast thirty feet in height has been erected upon the pier at Southend, which town is situated at the mouth of the Thames. At the top of this pole is fitted a metal lic conductor, which is connected with the usual in struments arranged in the pavilion. The apparatus is entirely automatic in its action, thus dispensing with the constant attendance of an operator. The vessels are each supplied with a bell, connected to a receiving instrument, which is actuated directly the ship enter the zone of influence of the shore apparatus, which in this case is a distance of seven miles. By this means the captain of the vessel receives ample warning of the danger he is approaching, since the bell continues ringing until he has once more passed beyond the sphere of influence. It is also intended that the shore apparatus shall transmit the nature and name of the danger spot to which it is attached, be it a sandbank, rock, or submerged wreck, so that the captain of the vessel is able to retain his bearings. If necessary, mes sages may be transmitted between the station and th vessel, since at the shore station it is only necessary to raise the transmitting wheel containing the name of the danger spot, and to actuate the apparatus in the usual manner. It is anticipated that the installation f such apparatus along both banks at the mouth of the arm will be of inestime value, especially dur hame warin oggy weath s difficult under normal conditions, is often rendere mpossible, and strange vessels have to wait at th estuary, often for days at a time, until the fog has sufficiently cleared to enable them to make their way up the river to their desired destination.

Automobile News.
The Automobile Club of America has been notified by Col. John J. Astor that at least one of the proposed country houses on the road between New York and Albany will be ready this season. The house which Col. Astor has offered to place at the disposal of the club, without expense to them, is "The Maples," whic forms a part of Col. Astor's Ferncliffe estate. It wil fitted up in the best manner for the requirements of the club.

King Leopold II. of Belgium is an ardent lover of the sport, and takes a keen interest in the develop ment of the automobile in that country. He has de cided to improve the roads, which in some parts of the kingdom are in a very bad state, and has charged one of the government engineers with the work of draw ng up the plans. He is now having built in France large automobile which approaches somewhat the idea of a palace car, as it will be divided into com partments. According to reports it is to have a sleep ing chamber, a toilet room and a servants' compart ment. This vehicle is to cost no less than $\$ 50,000$ the motor is built for 30 horse power, and its reservoi will contain 25 gallons of gasoline. The consumptio of gasoline will cost about $\$ 2$ per hour. In this wa King Leopold is to make his voyages in the future when he does not use his machine of the ordinary type
A somewhat novel system for carrying the mail i now in use between two towns in France-Bonnétable and Connerré-Breillé. These towns, 10 miles distant are on a line of narrow-gage railroad, but a part he mail was formerly carried by a four-wheele? running on the rails, provided with two bicycle move ments and worked by two men. As this system of locomotion proved too slow, the railroad compan has substituted a four-wheeled automobile car $w^{1}$ has a 3 -horse power gasoline motor, water coc 1 . the movement of the motor is transmitted to the rear axle by two round belts passing over two speed chang ing pulleys which are loose on the shaft and may be coupled by friction to a fixed pulley, mounted on the intermediate shaft. This shaft is connected by reduction gearing to a second intermediate shaft which carries a chain passing to the rear axle. Ball bear ings are used throughout. A pedal operates a powerful band-brake upon the rear axle. The total weight of this car is 1,050 pounds, and it makes an average speed of 20 miles an hour. Since it has been put into use for carrying the mail its performance has been quite satisfactory.

An automobile exposition will be held at Hamburg, lasting from the 31st of March to the 14th of April. It will be installed in the Exposition Palace of the Rotherbaum Velodrome, a vast building, well lighted and having an area of 45,000 square feet. The Organization Committee are preparing for an exposition of considerable importance. Nine classes have been distinguished: 1. Automobiles and motors. 2. Automobiles in construction. 3. Moto cycles and voiturettes. 4. Boats. 5. Motors and accumulators. 6. Accessories. 7. Apparatus for automobiles and cycles. 8. Models, drawings, maps, etc. 9. Divers. At Breslau is held each year a kind of international fair or exposition of machines, which includes machines of all kinds, steam engines, etc., as well as automobiles and bicycles. This exposition, which is known throughout all Germany, attracts a large crowd of visitors to Breslau every year. the number being estimated at 25,000 . The exposition lasts three days, and in general more than 150 exhibitors are represented, most of these being German firms, but some American, English, Swiss and Austrian firms are represented. This exposition is in its thirtyeighth year of existence. This year it will be held from the 6th to the 8 th of June. It is expected that this year's exposition will contain a large number of automobiles shown by the principal German and European firms.

## Telephone Journal at Budapest. <br> The system of "telephone journal" which has been in

 operation in Budapest for several years is meeting with increased success. The system was inaugurated in 1893; the subscribers receive their news by telephone instead of by a printed journal. All the interesting news is telephoned from the central office to the subscribers from 8 A. M. to $11 \mathrm{P} . \mathrm{M}$. Each class of news comes at a certain hour, except for the news of the Stock Exchange and Parliament, which are given every half-hour as they are obtained. The subscription price is 75 cents per month by periods of four months each; no extra charge is made for the receiving ap. paratus or lines. The receiver is double, so that two persons may hear the news at the same time; the announcement of the communications is made by an electric bell. At the end of 1898 the system, which was limited to the city of Budapest, had already 550 miles of lines. At present the number of subscribers reaches nearly 7,000 , this being eight times the number during the first year. The system is likely to be extended to the neighboring towns of Szegedin and Arad, as the preliminary trials which have lately been made have given good results.A NEW METHOD OF MANUFACTURING STEEL PIPE One of the most important and in some respects on of the most novel water schemes ever proposed and contracted for is that for carrying water from Perth the capital of Western Australia, to Coolgardie the central point of an extensive and comparatively modern group of gold fields. Unfortunately the development of this district is retarded by the lack of water, which is as scarce as gold is plentiful, the monthly output of gold for the colonies of Western Australia being nearly 200,000 ounces. Realizing that an abundant supply of good water was essential, not merely for the modern processes of gold recovery, but also for the health and comfort of the rapidly increasing population, the government sanctioned a very costly and elaborate scheme for piping water from Perth, the capital, to Coolgardie, a distance of 330 miles. The water is to be collected in a large storage reservoir at Mundaring, 24 miles from Perth, from which it will be forced through a 30 -inch steel pipe by means of eight separate pumping stations, dis tributed along the route of the line. The total lift will be 1,200 feet. Three hundred miles of the pipe is laid in trenches and 30 miles will be carried on trestles.
The steel pipe will be laid in 30 -foot lengths. The werght of each section with joint is about one ton, and the total weight of the whole line will be about 68,452 tons This, by the way, is, with one exception, the largest contract for steel ever undertaken, the largest contract being that for the steel necessary for the construction of the New York Rapid Transit


1. Fifteen Hundred Feet of 30 -Inch Pipe Loaded on Cars.

Tunnel, which exceeds the Coolgardie pipe line, we believe, by about 10,000 tons.
Apart from the magnitude of the undertaking, this pipe line possesses special interest because of the

2. Wrought-Steel, Lead-Calked Joint.
novel means adopted in the manufacture of the pipe itself, which is of what is known as the Ferguson locking-bar type, being so named after its inventor, Mr. Mephan Ferguson, of Melbourne, Australia, to whom we are indebted for our illustrations and particulars.

The method of manufacturing the pipe is shown in the accompanying illustrations. Each length is formed of two steel plates, each of which is bent to a half circle and its longitudinal edges upset in a special machine. Two halves are as sembled together and their upset edges inserted in a pair of longitudinal locking-bars. Hydraulic pressure is then brought to bear on the locking bars, which are thereby closed down over the upset edges of the plates, thus forming at each bar a double dovetail joint. Such, briefly stated, is the operation of manufacture. In detail it is as follows: After the plates have been put through a set of straightening rolls, they are clamped to a table upon which they are carried through two pairs of circular shears which cut them to exact length. They are then taken to the planing and upsetting machine, shown in Fig. 4, upon the bed of which they are securely clamped. On either side of the bed of the machine, which, by the way weighs 100 tons, are mounted two massive saddles, which are connected together across the machine by heavy bolts In these saddles are carried eight planing tools, four on a side, with each tool set slight y in advance of the one that ollows it. Behind the tools re sixteen rollers, eight on each side, each of which, like the planing tools, is set some

3. Bending Rolls.

4. Plate Planing and Upsetting Machine

5. Pipe-Closing Machine, With Half-Finished Pipe.

6. Shows Pipe About to Enter Closing Machine.
what in advance of the one that follows. The two saddles are caused to travel along the machine by means of two massive screws, one on each side. As the side saddles move along the plate, it is planed down to exact width by the tools, and then the edges, as thus planed, are upset by the rollers which follow, into the proper form for clamping into the locking bar. The plate is then removed, a new plate inserted and similar worm un it on the return stroke of the machine.

The plate is next taken to a crimping machine not shown in our illustrations, where the neces sary curve is given to the edges of the plate, so a to prepare it for the plate bending rolls which ar shown in Fig. 3. These rolls, which are 30 feet in length, are provided above and below with a pair of suitable supports to prevent the rolls from springing away from the plate. The two upper supports are shown clearly in the figure referred to. The plates, after being rolled to the proper curve, are assembled with their edges resting in recesses of the two locking bars, already mentioned. The locking-bar is roughly of a blunt I-section, as clearly shown in illustrations 5 and 6. The pipe, firmly clamped to hold the two halves and the locking bars in position, is then placed within the closing machine, Figs. 5 and 6, which consists of a massive frame carrying the upper and undel closing tools, and the long mandrel in the front part of Fig. 6 which carries the inside tools. The pipe is placed upon the traveling table and run forward until the locking-bars are between the outside and inside tools referred to. Then, by means of a hydraulic piston acting upon the inclined plane on the mandrel, the squeezing tools are all brought home snugly against the two locking-bars. Hydraulic pressure is now exerted, and the locking-bars are squeezed snugly down upon the upset ends of the pipe. The amount of pipe upset at one stroke is, of course, only equal to the width of the squeezing tools, which work at the rate of about twenty strokes per minute, the pipe traveling through the closing machine upon a set of carrying trolleys, which are shown clearly in Figs. 5 and 6. The pipe is then taken to the testing machine and subjected to a pressure of 400 pounds per square inch, which is equal to a tensile strain of about 10 tons per square inch of the steel plate. After being coated with asphaltum, the pipe is ready for shipment.

We are informed that the locking-bar, $C$, of this form of pipe has shown itself, under official tests, to be stronger than two plates themselves, and as the 28 -foot pipes, 30 inches in diameter, are turned out at the rate of about six per minute, it can be understood that this method of manufacture is highly economical, as compared with pipe with riveted seams. There is also the added advantage that the frictiona resistance to the water is considerably less than that due to the rivet heads of a riveted pipe.

In illustration No. 2 is shown the form of joint which is used on this pipe line. It consists of a wrought steel ring, o thimble, whose inside diameter is in creased from the edges inwardly, with the object that when the lead is run in at both ends, it will form a wedge joint that will act against the escape of the water.

## PORTER ROTARY ENGINE

At the electric-light plant of Crawfords ville, Ind., a rotary engine invented by James A. Porter, of the same city, was recently tested with exceptionally grati fying results. The engine occupies space 54 by 48 by 24 inches and weighs one ton. The tests proved that the en gine is of 8 horse power, running one hundred revolutions per minute with an effective pressure of $12 \%$, pounds and an expansion from 20 to 5 pounds. The high speed and steam pressure obtained make the engine very efficient.
As our illustrations show, the shaft is eccentrically mounted and the cylinder heads are peculiarly grooved. In the center of the head is a cam-way which forms a bearing surface for rollers carried on the inner ends of the pistons. The outer groove or way in the head is engaged by the outer ends of the pistons. It is evident from our illustrations that the cam in the center serves to press the pistons into steam-tight contact with the cylinder-wall and to hold them to their proper places. Wear is taken up by spring packing.

Partially surrounding the cylinder are two steam passages provided with openings leading into the cyl inder, and with smaller openings to permit the sur plus steam to exhaust, thereby avoiding back pressure The arrangement of openings leading to the cylinde from the passages is such that the steam is not ex


THE PORTER ROTARY ENGINE, SHOWING DETACHED CYLINDER-HEAD.
on the best roads which average 200 miles a day, or something like 1,200 miles a week. From 60,000 to 70,000 miles per year for a locomotive engaged in drawing heavy mail and passenger cars makes a record that is considered excellent. This record has been exceeded, and will be more than increased by one-third in the future by the more powerful engines, but the average of the fast engines to-day is really lower than this. Most train experts put the annual run for a good express engine at 50,000 miles a year. At this rate it would take twenty years for the engine to make the million-mile record if she was not condemned to the scrap-pile before that
On many of the Western roads there are locomotives in service to-day that started business twenty and thirty years ago, and while no record has ever been kept of the number of miles they covered in that period it can be inferred from figures given that they have crossed the million-mile mark. Until within a few years there was running on the Chicago, Milwaukee \& St. Paul Railroad an old Lawrence inside connection engine built in 1857. This engine was employed in all sorts of work, and during its period of usefulness extending upward of forty years it must have covered fully a million miles.
The active life of some of the modern heavy locomotives is something to be determined by the future Like the swift ocean steamers they must deteriorate more rapidly when driven at their maximum speed, but after serving as fast mail expresses they will have a long period of usefulness on runs not quite so exacting. The modern big locomotives on the long-distance runs average more miles a day and week than the oldtimers, and they will consequently cover the millionmile record in much less time. It is estimated that some of the crack locomotives engaged in carrying the fast transcontinental mails will reach this high record within ten or twelve years.

A few years ago the London \& Northwestern Railroad published some statistics concerning one of their locomotives. According to these figures, published by F. W. Webb, locomotive engineer, she made the millionmile record in nine years. Every day except Sunday this locomotive made the run between London and Manchester and back, covering in the round trip 367 miles a day. The engine was 50 feet long, and weighed 33 tons, with a tender weighing 25 tons and carrying 1,800 gallons of water. Either trip of $1831 / 2$ miles was made regularly on schedule time of $41 / 4$ hours, and not once in the nine years did the engine lose a day except on Sundays. These days were used for fixing her up and making such necessary repairs as were demanded. Her record is without parallel in English or American railroading.

Cinematograpl for the flind in France
Dr. Dussaud, of the Psychological Institute of Paris, gave a lecture on February 16, at the Hospital des Sociétés Savantes, on the education of the blind and deaf. A large audience witnessed interesting experiments founded on his method for supplementing the senses of these two classes of unfortunates.
The cinematograph for the blind is a machine which passes under the fingers of the blind a series of reliefs representing the same object in different po-sitions-the branch of a tree, a bird, or any other object. The blind person has the illusion of moving scenes just as photographs passing over a luminous screen lend the illusion to those with sight.
Dr. Dussaud has also arranged an electric vibration for the use of the deaf who are incurable. This gives them the notion of musical rhythm. For those not entirely deaf, he has invented a "gradual amplifier of sounds," which supplements the organs of hearing and in some instances improves them
Dr. Dussaud expressed the hope that these two inventions would materially aid in the education of the deaf and blind. The doctor gave a number of
forms of engines. There have been several English locomotives which have made million-mile records, and they are still in use on some of the small branches. These English locomotives, however, were run on much finer roadbeds than those built in this country years ago, and the wear and tear on them must have been correspondingly less. It has been demonstrated many times in the history of railroading that the condition of the track more than the high speed determined the life of the locomotive.
In the past most of the American locomotives would average runs of 200,000 miles before going into the repair shops. To cover this distance it would require from three to five years. There are plenty of engines
statistics already furnished by him to the Academy of Medicine and the Society of Biology showing that his method had been applied during the last four years to more than three hundred patients affected either with blindness or deafness, ard that in most cases the results obtained had been extremely satisfactory.

Through the death of Prof. J. D. Whitney, its former owner, the famous Calaveras skull has come into the possession of the Peabody Museum of American Archæology and Ethnology. Prof. Putnam visited the Calaveras region last summer to examine the various gravels in the Mattison mine, where the skull was discovered.

## A NOVEL SELF-HEATING SAD-IRON.

One of the drawbacks to the more general intro duction of the self-heating sad-iron is the necessity of using as fuel a high-grade gasoline, which, in coun try villages, cannot always be readily obtained. The drawback has been simply enough avoided in a new sad-iron invented by Mr. Iver Wickland, of West Superior, Wis. Besides overcoming the difficulty men tioned, the inventor has also devised a burner which completely consumes the vapor formed, and has provid ed a generator which maintains a constant pressure.
The illustrations presented herewith are perspective and partial sectional views of a tailor's goose made ac cording to the principles of Mr. Wickland's invention

The oil-reservoir is supported at one end of the iron. From the lower end of the reservoir a tube ex tends through the lower portion of the iron beneath a metal shield. The tube is connected with a retor in which the oil is received for the generation of gas The retort communicates with a valve-casing provided with a needle-valve and arranged to discharge the vapor in a burner-tube located directly above the shield. Openings in the lower portion of the burner tube discharge the gas downward on each side of the shield. The forward portion of the iron constitutes a cup for oil. When ignited this oil will heat the re tort and adjacent parts sufficiently to generate vapor. By opening the needle-valve the vapor is mixed with air, forced into the burner-tube and ignited

The iron can be kept hot for more than sixty hours at a cost of twenty cents. The heat can be regulated as desired. Only one iron is required for the house laundry. No stove is needed to heat several irons. The combustion of the gas is so complete that no odor is perceptible.

A SINGULAR INDUSTRY IN THE POISONOUS INSECTS OF CALIFORNIA.
Southern California has a number of so-called poison ous insects-scorpions, centipedes, tarantulas and others; yet it is rarely that they are seen outside the curiosity shop. In a residence of fifteen years in this section the writer has never seen any of these insects where they should not be, namely, in the house, and has only found them after a diligent search-a strange


Fig. 1.-TARANTULA.
contrast to life on the Florida reef, where at night a crunching sound underfoot, or beneath the rocker would tell the story of a wandering scorpion, the sting of which is extremely painful.

In Southern California there is, singularly, a great demand for all the insects mentioned, which consti tutes a business of some magnitude, involving the


Fig. 3.-SCORPION.
more or less skilled labor of a number of persons In China such a demand might be understood, as ob jects of this kind are of use in the medicinal dietary of the Celestial Kingdom; but what Americans not naturalists should want with hideous tarantulas, unspeakable centipedes and others would seem a mystery,
yet these commodities are eagerly sought for by tourists in such numbers that thousands are sold annu ally, and one dealer stated that he had difficulty in supplying the demand. When asked to explain the apparent craze for such objects, he replied: "They fall in line with what are known as curiosities, and


PARTIAL SECTION OF a SELF-HEATING TAILOR'S GOOSE.


## PERSPECTIVE VIEW OF SELF-HEATING TAILOR'S

 GOOSE.Southern California being the great American tourist center, they naturally find a sale. The average tourist thinks it necessary to carry home something as a souvenir; in nine cases out of ten the same thing can be bought in the East; but they wish something that came from the locality in which they are visiting. I sometimes think that tourists wish to convey the idea to their less fortunate friends that they have been traveling in a dangerous country, and so send or take back home the poisonous insects as evidence of it In any event, there is an ever-increasing demand for them.'

There are in Southern California several wholesale houses who employ men to mount these horrors, and the method of work is not uninteresting. While one rarely sees a scorpion or tarantula in this section, a careful search for them is generally repaid, but it is not near houses. In Florida the scorpions are surface lovers, and houses, and especially old board piles, offer the greatest inducements to them; but in California this insect is a burrower and found underground, as are the tarantula and trapdoor spider. The tarantula trade is, perhaps, the most important; the huge hairy creatures being more repulsive than others are consequently more in demand. The low hills to the south of Pasadena were once famous collecting grounds, being partly adobe, the soil especially suited to the building operations of the insect burrowers. At this place I once found the collectors of one of these firms. They were boys, and each was supplied with a large bottle of water, a tin can and a forked twig or stick. The ground was rough, dotted over with gopher and squirrel holes, and every few yards a hole about an inch and a quarter across could be seen. Sometimes this was covered with a gossamer shutter of web, but generally it was wide open. Placing his can on the ground, one of the boys uncorked the bottle he carried and poured a little of the contents into the hole. The water was probably tinctured with alcohol, as I doubt if pure water would have sent the occupant up so quickly; a fierce spider with a span of legs nearly four inches in extent, a huge hairy creature with a body seemingly as large as that of a mouse. Out it darted, then seeing danger ahead, drew back; but the forked twig was deftly inserted beneath its body, and the spider was tossed several inches away where it settled back in the manner popularly described as "on its haunches," showing the death-dealing fangs ready for action.

It was a tarantula, the Mygale hentzii of science, a near ally of the bird-eating spider of South America and a creature to admire from a distance. But the young collector treated the insect with scant courtesy, placing the mouth of the can before it and hustling the giant into it with a businesslike air; then with bottle in hand he moved on. The next find was a trapdoor spider (Fig. 2), very common in Southern California. This is the Cteniza Californica of science, a most remarkable and ingenious nest builder. The spider sinks a tube from six inches to a foot in length, lines it with silk so that it presents a perfect satin finish; then a door of silk and clay is made, which
fits so perfectly that it is water and air tight, this works on a hinge, also made of silk. Just on the inner rim are several small holes, which look as though they might have been made with a pin; these are where the spider grips the lid with its mandibles to hold it down. This the boy illustrated for my benefit. The nest could only have been seen by an expert, as the outer part of the lid was exactly like its immediate surroundings in color and tint; but the collector's eye was keen, and he seemed to find the nests with perfect ease. As one was discovered he dropped to the ground and deftly inserted the point of his knife beneath the lid, lifting it up and exposing the silvery interior; a most marvelous structure, as the work of a spider. Dropping the lid the boy asked me to lift it, saying that the spider was upon the other side holding it down. As I inserted the knife and lifted I could feel the little owner tugging at the lid, and as I raised it, caught a glimpse of the hairy legs. She had the lid firmly in her mandibles and was holding it with a force which would be effective against what might be termed .her normal enemy. The spider was ousted by pouring water into the tube, and quickly landed in the tin cup. The boy now cut out the door of the tube and about four inches of the latter which was later mounted in a square box and the spider placed within to tell the complete story. In the course of the forenoon a number of tarantulas were caught in this way, also as many trap-door spiders. Scorpions were found in small burrows near the surface, or often in the holes of lizards.
The tarantula merely digs a burrow from six to twelve inches in depth, and makes no pretense of covering it, though sometimes there is a mass of web at the bottom, and at times a web placed over the entrance. The insect is a night-feeder, roaming about, preying upon crickets, beetles and other insects so unwise as to venture forth at the same time. The spiders brought in by the boy collectors, who search the country for them in all directions, are killed by immersion in alcohol, and handed over to the taxidermist who prepares them as quickly and cheaply as possible; the abdomen is filled with cotton and the insect then dried in a position to show its greatest spread. The room of the taxidermist is a chamber of horrors; the walls covered with tarantulas; scores of them drying,


Fig. 2.-TRAPDOOR SPIDER.
while hundreds more await preparation. Exactly how many of these insects are sold in this way to the tourist trade is not known, but the firm referred to-Messrs. Wakely \& Company-mount thousands every year, not to speak of centipedes, trap-door spiders and horned toads.
Among these insects is a giant wasp, common here and generally sold under the title of tarantula hawk, the wasp being an inveterate enemy of the spider. I have often followed the wasp in its search, and no hound ever tracked a fox with more eagerness. It would walk rapidly over the ground, examine every hole and crevice, vibrating with emotion; and when a hole was discovered, darted down into it eagerly; a few moments later perhaps out would come spider


## Fig. 4.-TARANTULA HAWK.

and wasp engaged in a terrific battle. The wasp was overmatched, as regarded size, its burly antagonist rolling it over and over; but the wasp evaded the strong mandibles and finally managed to drive its rapierlike sting into the tarantula, which paralyzed it; indeed, the effect was at once apparent, the spider

March 30, igoi.
Srinntific Amrrican.
retreating, followed by its active enemy which merely desired to use it as depository for its eggs.
In almost every town in California the singular in dustry described is carried on, and its effect in Pasa dena has been to materially diminish the supply of tarantulas, the places where they were once commo knowing them no more.

The Recent Eruptive Period of Vesuvius-Simul
rater.* of July, 1895. It continued with uniform phe 3 d of July, 1895 . It continued with uniform phe-
nomena until September 3, 1899, when the lava ceased nomena until September 3, 1899, when the lava ceased to flow by the lateral fissure. From that time the crater, which was then 656 feet deep, began to fill up again. On April 24, 1900, it was only 260 feet deep, and contained a magma of bases rich in aeriform products. A period of a month of extreme activity nsued. There was no emission of lava but the ex plosions within the crater were intensely violent, es pecially from May 4 to May 14, the maximum occurring on the 9 th of May. They could be distinctly heard throughout all Campania Felicia. The crater was en larged by 13 or 16 feet in diameter. At the end it measured 537 feet from southwest to northeast and 590 feet from east to west. The circumference was 1,771 feet. The flames were abundant, due to the emission of the vapors of sulphur and hydrogen sulphide. The greatest height attained by the bomb and scoriæ was 1,761 feet from the bottom of the crater.
On the 9 th of May a bowlder measuring about twelve cubic meters was thrown out, which weighed ap proximately thirty tons. This was.the greatest ejected, and took about 17 seconds in passing over the whole trajectory, falling on the ground with a velocity of about 262 feet a second. The vis viva of the vapors
which had propelled it was estimated at 607,995 hors power.
The quantity of solid matter thrown from the crater during the explosive period (April and May) was about half a million of cubic meters. These emissions increased the height of Vesuvius by 33 feet. The high est point previously was 4,221 feet above the level o the sea; now it is 4,273 feet

I remained on the mountain for three consecutiv days, the 11 th, 12 th and 13 th of May. On the 13 th in the morning, there was a copious emission of va pors; toward noon the explosions were resumed, and soon reached a point of extreme intensity. From my position near the border of the crater I was observing the action closely, when I was startled by a formidable explosion, which rained about me a shower of myriads of stones and incandescent scoriæ. I escaped as by miracle. Among the most important phenomena wa the complete envelopment of the crater with flame and the multitude of bombs bursting violently in their course through the air. It was a marvelous spectacle Around me were lapilli, covered with sal ammonia and scoriæ, with a lustrous patina of metallic appear ance, formed of ferric nitrite.

As is known, M. O. Silvestri, stimulated by the experiments of Henri Sainte-Claire Deville, undertook observations on the lavas of Etna, for the purpose of investigating volcanic theories, especially relating to the influence of chemical dissociations, and that $h$ reached very satisfactory conclusions with respect t the genesis of certain nitrated compounds formed within volcanoes.
Thus, by passing a current of chlorhydric acid over reheated iron-bearing silicates, Silvestri ob tained water, free silica and ferric chlorides. On heat ing these chlorides in a current of ammonia there were disengaged besides hydrogen and ammonium chloride, chlorhydric acid and ferric nitrite. Finally in causing the reaction together, on the reheated lava,
of chlorhydric acid and ammonia (or ammonium chloride), pure hydrogen, chlorhydric acid and ferric nitrite were obtained with separation of sal ammoniac (ammonium chloride).
Without ignoring the great difference between the operations of nature and those of our laboratories, I have no hesitation, in view of my observation of a true isochronism in the production of ammonium chloride and of ferric nitrite in the crater of Vesuvius, in holding, according to the experimental results I have cited, that there exists an intimate genetic connection between these two nitrated compounds of vol canic origin.

## The Current Supplement.

The current Supplement, No. 1317, contains many articles of interest along many lines. The first page is occupied by an engraving showing the removal of Moreau-Vauthier's statue "La Parisienne" from the monumental gateway of the late Paris Exposition. "The Foothills of Colorado" is by .H. A. Crafts. "The Canals of Mars" is by Miss M. A. Orr. "Information Concerning the Angora Goat" is accompanied by several illustrations. "Snow Upon Railways" describes the systems in vogue on the Trans-Siberian Railway "American Engineering Progress" is continued.


RECENTLY PATENTED INVENTIONS.
COIN-controlieis telierione.-Julio E. Condorez, Panama, Colombia. The char-
acteristic features of this telephone apparatus acteristic features of this telephone apparatus
are a support for the receiver, which support are a support for the receiver, which support ceiver rests thereon or not; a movable coinsupport; a circuit designed to be closed by
the movement of the coin-support; and a the movement of the coin-support; and a
movable coin-retainer operatively connected with the receiver-support and arranged to keep the coin upon the coin-support and to re lease the coin when the receiver is put back
on its support. Thus the introduction of a o close the speaking-circuit.
ElECTRICAL DEVICE FOR ALTERNATrance. The inventor has discovered paris electrolyte formed of a solution of phosphoris acid to which ammonia may be added and in which are plunged two electrodes, the one of
graphite or plumbago, and the other of an graphite or plumbago, and the other of an alloy of zinc and aluminium, has the property
of arresting one of the phases of an alternatof arresting one of the phases of an aternase to pass freely. In order continuously to conmerely to arrange two similar couples in parallel, having their electrodes disposed in everse order. By experiment, it has been found that two similar couples thus arranged can convert alternating currents having
mean electromotive force of 200 volts .
 Grerge S. Meier, Newburg, N. Y. It has
been the object of the inventor to provide a been the object of the inve by means of which the receiver the transmitter, so that the hands may be left ree to take notes. The arrangement con sists of a bar in engagement with and pro jecting from the transmitter-arm in such a
position that the receiver is in proper position position that the receiver is in proper positio

## Mechanical Devices.

BaliN(G-PRESS.-Albert L. Tieese, Jennings, Oklahoma Territory. With this im-
provement, the bale formed in an ordinary provement, the bale formed in an ordinary
cotton-press receives a final compression. Mr. Treese prefers to employ his invention as an attachment to a cotton-press. The complete which are alternately filled with cotton plunger operates in conjunction with one the chambers at a time to compress the cotton against a platen. A removable follower is
designed to be carried by the plunger : and in designed to be carried by the plunger: and in
conjunction with the removable follower a conjunction with the removable follower a
frame is employed, carrying a number of frame is employed, carrying a number
platens to compress the cotton. At one side of the platen a hydraulic device is arrange follower to compress the material finally.
dumping - Wagon. - Thomas wright, ersey City, N. J. This invention relates to class of dumping-wagons which discharge
the load by tilting the waron-lody rearwardly the load by tilting the waton-body rearwardly
The object of the invention is to provide dumping-wagon of novel construction which
is better adapted for the discharge of the
load and the replacement of the tilted bod structed, and which will also permit the ready removal of the wagon-body for the
reception of a load and for its subsequent rereception of a load and for its subsequent re-
placement on the running-gear of the wagon. apparatus for producing molds For cast-iron Pipes.-Ernst Forster, 43 Sagoroduiji-Prospect, St. Petersburg, Rus-
sia. This invention is designed to at one phis invention tubes, pipes, and other articles of regular form and considerable length. The castings made from such molds are perfectly seamless; the molds are not divided either longitudinally or transversely. The time required for making a mold for sixteen pipes does not exceed
twenty minutes, it is claimed. The efficiency twenty minutes, it is claimed. The efficiency
of the apparatus is, therefore, evident. Furthe apparatus is, therefore, evits are the great exactness and accuracy, and the omission of mold boxes inlosing the mold
to dry properly.
merry-go-round.-Willian f. ManGELS, Coney Island, Brooklyn, New York city The merry-go-round is of that type having a crank-shaft for imparting movement to the
seats. The object of the inventor is to provide seats. The object of the inventor is to provide
improvements in the construction of such improvements in the construction of such
merry-go-rounds whereby the driving-gear for merry-go-rounds whereby the driving-gear the
the crank-shaft is completely relieved of the weight of the revoluble frame. Consequently, undue strain is avoided and the frame is supported independently of the gearing to insure an easy running of the machine with comparatively little power.
Twine-holder and cutter.-Ray iond D. Weakley, St. Louis, Mo. The devic holds the twine in a suitable carrier. Cutting blades are brought into action at any tim after the twine-carrier has been brought to a position within a casing. The movement o plished by the operation of a movable knife When the twine has been cut, the movab knife is relieved from pressure, and the twin carrier is automatically carried to its norma position.
MACHINE FOR SETTING CALKS IN boots and shoes.-Charles R. John-imply-constructed durable machine for calk ing boots and shoes. The improvements mad tion and increased the efficiency of operation. Cash-mrawer.-Julius Ohmen, Man mattan, New York city. The cash-drawer condevices, both controlled by the drawer-knob One locking device serves to lock the mone receptacle to the drawer, and the other locking device serves to lock the receptacle to stationary part. An alarm is actuated by the drawer. Mechanism is controlled by the last in or out of action according to the position of the locking devices. The alarm is given when any person not familiar with the con-
struction of the drawer seeks to steal the money.
Latile-doci- l'ililip Schwickart, Brook-
yn. New York city. The lathe-dog comprise an. New York city. The lathe-dog comprises
a body having $V$-shaped members. On one of
number of recesses located one above the
other. A clamping-bar has its fulcrum in one other. A clamping-bar has its fulcrum in one
of the recesses. On the free end of the clamp-ing-bar an adjustable bolt is pivoted, engaging a flange on the other body member. Pivoted on the clamping-bar between the fulcrum and bolt is a clamping-block, having concave sides
located at different distances from the pivot of the block. Eight different adjustments can be made, thus adapting the lathe-dog for objects of different diameters.
CURRENT - Wherl
Spokane, Wash. The water-wheel compris a supporting-shaft to which a shell is attached Spokes pass through the wall of the shell and are secured at their ends to the ends of the shell. Blades are attached to the spokes. For-
ward of the shell is a tapered casing. As the current strikes the raper it is divided and thrown out to strike the several blades simultaneously; thus the eddies of the stream w
be overcome and greater power obtained.

## Vehicles and Their Accessories.

bicycle-support.-Eben Miller, Fredricton, New Brunswick, Canada. The bicyclesupport comprises essentially a supporting wheels engage the rack-bar. On the gearwheels supporting-legs are carried, by the movement of which a wheel-engaging device
is operated. The supporting-device is simple is operated. The supporting-device is simple
in its construction and can be very easily justed.
wheel.-Otto Teigen, Lowry, Minn. The purpose of this invention is to provide a ve-hicle-wheel which will yieldingly support its
load. To this end the invention embodie a wheel with its rim and hub connected by longitudinally-extensible and contractible spokes hinged in place and provided with springs which have their ends
connected with the hub and rim.
Speed-GEAR.-SEdgwick M. Wade, Andover, Ohio. This invention is a means fo transmitting motion and for varying the speed
and direction of motor-vehicles. The gearing comprises two worms driven in the same direction. Between the worms is a double-bevel worm-wheel movable to engage either worm. A spur worm-wheel is movable to engage one of the worm-wheels, and a crown worm-whee is movable to engage one of the worms.

## Railway Appilances.

Tie.-Hiram Stout, Kingman, Kans. The ailway-tie comprises a pair of hollow stringer bar is bolted. Wooden chairs receive the rails and are interposed between the blocks and rails and have recesses at their under sides o receive the ends of the tie-bar. The chairs form cushions for taking up the vibr
also prevent wear on the clay blocks.
CONVERTIBLE FREIGHT-CAR.-Oscar B. constructed that it can be conveniently converted from an ordinary flat-bottom box-car for carrying freight to a hopper-bottom boxcar for carrying grain. The floor for the car body is made in sections arranged to extend
either: in a horizontal position on the flooreither in a horizontal position on the floor-
supporting timbers, or to hang with their
outer ends on the supports and extend from the car-body inward and downward to the car. A conv at or near the middle of the the middle of the car into which the floo sections discharge. Slides for closing the casing
LOADING DEVICE FOR RAILWAY-CARS. -William P. Porter, East Jordan, Mich. By means of this apparatus railway-cars can be
loaded without being side-tracked. The machine employed comprises a platform on which a motor is carried. A transverse shaft is
geared with the motor. With the transverse shaft longitudinal shafts at the sides of the platform are respectively geared. Keepers the keepers uprights of the platform. In, which uprights carty racks engaged by pinions on the longitudinal shafts.

## Miscellaneous Inventions.

SUPPORT FOR BUCKETS.-John Lowe, Arlington, Kans. The bucket is to be used with supporting devices which can be attached to the knees of the milker, so as to leave both hands free. When the bucket is not in use the supporting devices can be carried close to the side of the bucket.
artificial tooth. - William K. Slater, East Tennessee National Bank Building, Knoxville, Tenn. The invention compre-
hends the formation of artificial teeth in which keepers are baked projecting above the gum ends of the teeth in the direction of the longitudinal axes of the teeth, and are ar secure attachment to a retaining wire. These keepers are located in those portions of the lain. The teeth depend almost entirely upon the wire for their attachment to the plate. IVATER - DISTILIING APPARATUS ickinson L. Rose, Mankato, Minn. The ap Dickinson L. Rose, Mankato, Minn. The ap-
paratus is specially adapted for domestic use. The construction comprises a vertical boiler which is open at the top. A condenser is located above the boiler, and a water-reservoir exterior to the boiler. The water-reservoir has n upward extension composed of double walls, of condensation, both walls surrounding the boiler, and the outer one being attached to the condenser and forming the outer side of the condensing space above the boiler. The apparatus removes volatile and mineral matter, and effects rapid condensation and aeration NUT-LOCK.-Samuel S. Jamison, Saltsburg, Pa. When once applied, the bolt and nut will be locked together without the possicure of being the inventor employs a nut having a tapered hole provided with a series of independent angular projections. The angular edges are sunk in the bolt end and allow the metal of the bolt to spread into the angula resses betwen the anguar profotions.
PULP-STRAINER. - James W. Packer,
Glens Falls, N. Y. The pulp-strainer for paper-making comprises a fixed support, a a cam for operating the plunger. An arm
a
or bar projects from the support and is con-
nected with the plunger. A spring exerts
nressure on the pums ar nected with the plunger. A spring exerts
pressure on the arm or bar. The plunger properly actuates its part of the diaphragn
to draw off the fibers through the openings in a screen into a suction-box, the material flowing by its gravity into a receiving-box and over a gate. The provision of a single outlet for two or more suction chambers having a
number of screen-plates brings the pulp into number of screen-plates brings the pulp into
a separate compartment in the receiving-box, a separate compartment in the receiving-box,
so that the operator has full control of the pulp, regardless of the number of suction ctambers in the machine.
adjustable gCN-stock. - Joseph n Zoller, St. Matthews, Ky. This attachment for gun-stocks enables one gun to be used for
various purposes. An adjusting head is pivoted in the stock and attached to the grip. The head is provided with peripheral teeth between the spaces of which a bolt held to lide in the stock can be projected.
WASII-TUB attachment. - Otto CHWertyer, Paterson, N. J. The invento tion enabling the wash-tub to be used as bathtub. On the upper edge of the partition, levers are mounted. A plate is pivoted on one lever and has sliding connections with the other lever. A screw is carried on the parti
tions and works with the inner ends of the tions a
Stool--John m. Burdum, Batavia, ill and shoe store of the person on whom lest for the foot
CRUCIBLE.-Porter W. Shimer, Easton, ra. The crucible is to be used for fusing o highly heating metal or other material in a tmosphere of any gas. The crucible is proided with a hollow stopper seated on a rubbe per and crucible and circulating air.
WEather-strip. - William L. Smith Iomele E. Ashcraft and Whlinam O. Jami attached to any door. When the door is close a member of the weather-strip is firmly in en gagement with a threshold-strip. As the doo s opened, a protective member of the weathe strip is automatically carried up to engage ment with the body of the weather-strip; a the weather-strip is automatically brought into engagement with the threshold-strip and lodged in protective position.
GAME.-John G. Floyd, Mastic, N. Y The apparatus employed in this game comIn this course a ball is to be placed. Player arranged in opposing teams are to have fo their object to protect their respective goals
and to prevent their opponents' forcing a ball past the goal. The apparatus can be quickly set up in a room or on a lawn
SPACE-BAR FOR LINOTYPE maCHines. -David A. Hensley, Vicksburg, Miss. The mproved space-bar consists essentially of two parts or wedges, the upper one of which may $\dot{t}$ is hed a stationary member inasmuch a is held against upward movement in the ermed the movable member, as it is driven y the usual or any improved mechanism for he purpose of expanding the space-bar. The peration of the improved space-bar is the same as that of ordinary space-bars. Superior esults are oobtained, however, owing particu larly to the fact that a shield is employed of substantially the same outline as the movable instead of boing wedge-shaped as in other con tructions. It is impossible for either the movable wedge or the shield to spring awa from the stationary wedge or to move trans versely or edgewise.
Callenidar. - Arther A. Sparis, San Francisco, Cal. The calendar relates to that class in which a device is provided for indicating at a glance the day of the week and the holder or fastening device. An indicator can secured to any of the fastening devices To prevent accidental loss of the indicator, an elastic string or cord is employed.
Stove.-Samlel W. Jackson, Selma, Ca From the top plate of the stove a combustionchamber, and an inner or suplementary comuntion chamber, are hung. A stand-pipe ex mbustion the bottom wall of the outer chamber. Fuel is economized. and the draft is controlled in a simple, novel manner.

## Designs.

anmint - hook - Willian h. Goss, Stonington, Me. The hook comprises two up-wardly-curved members and an upwardly an
display sample-tube. - Charles Price, Richmond Hill, Queens, N. Y. The leading feature of the design consists of a glass tube closed at one end, and decorated at some distance along the body.
plaiting-blade--David Kisch, Manhattan. N. Y. The blade comprises a number of on one face and convexed.

Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. of the invention, and date of this paper.

Business and Personal KUants.
READ THIS COLUMN CAREFULLY,-You wili find inquiries for certain classes of articles facture these goods write us at once and we will send your name and address to the party desiring the information. In every case it is neces. sary to give the number of the inquiry
$M$ MUN $\&$ co.

Marine Iron Works. Chicago. Catalogue free
Inquiry No. 232.-For very that sheet metal such
Natich masians in spring flowers,
U. S." Metal Polish. Indianapolis. Samples free.

Inquiry No. 233.-For machinery for makin Duryea Power Co., Reading, Penn. Inquiry No. 234.-For electric storage batteries
for railway cars.
Water wheels. Alcott \& Co., Mt. Holly
Iuquiry No. 235.-For can manufacturers. Have your making baking powder. Inquiry No. 237.-For moulds for making toilet Metal Novelties Manuf'd. Bliss-Chester Co., Prov Inquiry No. 238.-For manufacturers of cold
cream jars. Just Pate
koma, Ind.
Inquiry No. 239.-For dealers in suall stamped
outaticles made of leather, such as tops for umbrellas
matress-tufts, etc. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St Chagrin Falls, O
Inquiry No. 240.-For manufacturers of luminous
paint. Machine chain
Attleboro, Mass.
Inquiry No. 241.-For electric dynamos for elec Sawmill machinery and outfits manufactured by the Inquiry No. 242.-For
situte for bromide paper.
Rigs that Run. Hydrocarbon system. Write St Louis Motor Carriage Co., St. Louis, Mo

## Inquiry No. 243.-For ejectors for ashes from steamboats.

Rushton Boats and Canoes. Morris Can
D Folsom Arms Co.. 314 Broadwas,
Inquiry
plants for lighting vilages. ogue B. Geo. S. Comstock friction feed. Send for Ca Inquiry No. 245.-For machinery that will supe
sede hand picking of coal at the mines. Ten days' trial given on Daus' Tip Top Duplicator.
Felix Daus Duplicator Co., 5 Hanover St., N. Y. city. wells or prospecting for coal. ${ }^{\text {Inall }}$ drills for sinking oil New feture in the March Building Edition Inquiry No. 247.-For manufacturers of paper or
cardooard lettering for pasting on windows. Wanted. Pan Am. Expostion Patent Novelties suit-
able for souvenirs. Address J. M. B.. 320 B'way, N. Y. Inquiry No. 248.-For machinery for shelling pe Inventions developed and perfected. Designing and Inquiry
of old flues.
Inquiry No. 250.-For improved brush machinery MANUFACTUR ERS WANTED who can make in quan tities a tool con sisting of combined level and plum Inquiry No 251.
The
Engine Engine is built by the De La Vergne Refrigerating Ma dhine Company. Foot of East 1 soth Street, New York Inquiry No. 252.-For ice manufacturing machinThe best book for electricians and begıners in elec
tricity is "Experimental Science," by Geo. M. Hopkin By mail Experimental Science," by Geo. M. Hopk. Inquiry No. 253.-For rubber stamp manufac-Wanted-Revolutionary Documents, Autograph Letters, Journals, Prints, Washington Portraits, Early
American Illustrated Magazines. Correspondence Soliited. Address C. A, M, Box 73, New York.
Inquiry No. 254.-For mechanics' tools
Interviews with prominent Architects. Builaing Ed
tion 25 cents.
Inquiry No. 255.-For striping wheels for use in
carriage painting.
Machinery for Sale--One Cataract Tool Company
lathe with slide rests, chasing attachment, milling atachment, counter attachment and chuck; one tur ret head lathe; five spectal speed lathes for light brass
work. Ali in first-class condition, nearly new. Address The Vogt Optical Company, Rochester, N. Y.
Inquiry No. 256.-For broom making machinery. ITV Send for new and complete catalogue of Scientithc and other Books for sale by Munn
New York. Free on application.

- Inquiry No. 2.57.-For the manufacturer of the

Inquiry No. 258.-For German silver key checks.
Inquiry
machines.
Inquiry No. 260.- For manufacturer of the "Hol-
royd" killer.
Inquiry No. 261.-For blank aluminium business
Inquiry No. 262.-For German silver wire.
Inquiry No. 263.-For manufacturers of dry bat
Inquiry No. 264.-For manufacturers of tinfoil.
Inquiry No. 265, For electric su.
Inquiry No. 266--For manufacturers of machin.
ery for cutting and shaping pumice stone in regular
Inquiry No. ©Gir.-For the manufaziturer of a scale
patented by Bachor \&o Waterman, of Phionelphia,
the scale working without weights.



 Inguiry No. $\mathbf{N z \%}$. - For manufacturers of electric


per.
Inuiry No. N4.-For manufactu
tary engines of moderate horse power.
Inquiry ${ }^{\text {I }}$
cane ferrules. 275.-For manufacturers of walking





Inquiry No. 28.2.-For manufacturers of oblo Iniquiry No. 283 .F.For articles. for sale in mail
order business
noveities preferred. Inquiry No. 284. -For filter to romove the lime
(rom hard water of several barress cap acity. Inquiry No. 285.-For manufacturers of crutches Inquiny y. No. 286.-For manufacturers of cheap
 Inquiry No. 288.-For manufacturers of the Amer


 sopera ind alumnium with about 100 holes to the
squar inch.
Inuiry.

eryquir No. 293.-Fo
In muiry No: 94. .-For manufacturers or dealers

 Intaniry No. 297.-For parties to make a 3 -piece Inquiry No. 298.-For manufacturers of creame
supplies, condensing and sterilizing apparatus.

## 

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters or
no attention will be paid thereto. This is for
our information and not for publication our information and not for publication.
References to former a rticles or answers should give
date of paper and page or number of References to former articles or answers should give
date of paper and page or number of question
Inquires not answered in reasonable time should be
repeated; correspondents will bear in mind that repeated; correspondents will bear in mind that
some answers require not a ilttle research, and,
though we endeavor to reply to all either by
letter or in this department, each must take his turn.
Buys wishing to purchase any article not adver-
tised our columns will be furnished with the same. of houses manufacturing or carrying
cial Written Information on matters of personal
rather than general interest cannot be expected without remuneration.
ntific American Supplements referred to may be Scientific American Suppliements referred to may be
Books ha at tre oficee Price 10 cents each.
to promptly supplied on receipt of price.
$\begin{gathered}\text { Minerals sent for examination should be distinctly } \\ \text { marked or labeled. }\end{gathered}$
(8143) J. W. B. writes: 1. I desire to make a helix to magnetize a $7 /$-inch bar of octagon steel. How long and how many turns it? I get current from a dynamo. A. The statement that the current is from a dynamo gives no clew to its voltage, which must be
known before a coil can be constructed to magnetize a magnet. However, proceed as follows: Wind a coil of No. 12 cotton-covered wire of a size that the bar will slip easily
through the coil. Any insulated wire will do as well, if magnet wire is not at hand. Make perhaps 100 turns, number not important. Connect this in series with a lamp. Turn on the current, and pass the bar back and forth hrough the coil. Continue this till by experiment the bar is not made any stronger by further treatment. If the lanp is an arc lamp, the work will soon be done; if it is an incanflow of the amperes around the bar magnetizes it. The process is very simple .), Can I make good bar and U magnets, using steel ends and wrought-iron center? A. Yes; the iron neither helps nor hinders the magnetism.

## NEW BOOKS, ETC.

The Scientific American Cyclopedia of Recipes, Notes and Queries. Edited by Albert A. Hopkins. Sixteenth Re-
vised Edition. New York: Munn \& Company. 1901 . Large 8vo. Pp.
790 . Cloth, $\$ 5$; sheep, $\$ 6$. Appendix 790 . Cloth, $\$ 5$; sheep
sold separately for $\$ 1$.
The first edition of this book appeared in 1891, and within the past decade it has gone
through sixteen editions (including the pres-ent)-a fact which, alone, is sufficient to atthe great value of the work as a book
reference, solving the difficulties of all
the manufacturer and artisan, down to the
housewife and the cook in the kitchen. It is housewife and the cook in the kitchen. It is
by far the most compendious work of the sort ever attempted, comprising upward of 15,000 recipes and formulæ, and usually embracing minute directions for carrying out the processes. The titles are arranged alphabeti-
cally, thus facilitating consultation. The cally, thus facilitating consultation. The
book is well and clearly printed on good paper and is strongly and substantially bound.National Druggist.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Issued for the Week ending

MARCH 19, 1901

## See LACH BEARINGTHAT DATE.




## Tells About Tools

A perfect encyclopedia of tools in us
in evert trade and profesisor wit
prices and discounts of same.
Montgomery \& Co.'s
Tool Catalogue. MONTGOMERY \& Co., 105 Fulton St., New York City THE BEST BENCH LATHE





MACHINES FOR ROLLING
 SCREW THREADS. Any size up to 1 "diameter,
ong. Four isize of machinese.
one Send for Catalopue. BLAKE \& JOHNSON,
Straightens It Out

 You USE GRINDSTONES ?

 The CLEveland stone co.
2d Floor, wilshire, cleveland, 0 .



## WILL SHIP C. O, D. FOR \$25.00

WITH PRIVILEGE OF EXAMINATION. $\because$ TME WILLARD STEEL RANGE
 WM. G. WILLARD, Manufacturer, 619 and 62I N. 4th St., St. Louis, Mo


## ZJJe have an Inquiry for Your Goods

very often, and if we only knew your address, we could turn over to you inquiries by the hundred that come pouring into our office daily.

## Read the "Business and Personal dUant" Zolumns.

There you will find inquiries numbered. Read them carefully every week, and if
you can furnish the goods required, write us at once, GIVING THE NUMBER OF THE INQUIRY every time, and we will put you in communication with the parties desiring the information. You may get an order or many orders by simply reading our Business and Personal Want Columns every week.

$\underset{\text { andarded at PARS }}{\text { Gold }}$
Exposition, 1900 trated Catalogue ated Catalogue
mailed on reque

UNDERWOOD
WAGNER TYPEWRITER CO.
EA GIE Acetylene Generators


KRÖMSKOि Color Photography Tin the already long list of marvelous devices which
come into coommon every-dy use m must be added
bis last and most pleasing Kromskop's Kromograns and K romskop's
Cameras, now ready. IVES KROMSKOP COMPANY, Incorporated, "NEW ROOFS FOR OLD" $\begin{aligned} & \text { can be easily } \\ & \text { accomplished }\end{aligned}$ Warren's Natural Asphalt Strong Surface Ready Roofing


CUTTING DIES $\begin{gathered}\text { For Leather, Paper, Cloth \& Everry } \\ \text { Desphion } \\ \text { Rubber }\end{gathered}$ Manufactured by

 S
S
S
S
$S$
$S$
$S$
$S$
$S$
$S$



securing, M. Bertels. position,
Tag, catte,
Tas or chalison \& Bing....

Tectephon, isist






ype metal supplying apparatus for con-
posing and line casting machines, aut
matic o


## EstrRepohisime



OLDS MOTOR WORKS, 1328 Jeff. Ave., Detroit, Mich SHOE BLACKING.- FORMULAS FOR liquid and solid blacking are given in SUPPLEMENT
Nos. 1213 and 1239.8 Price 10 cents each. For sale
by Munn \& Co. and all newsdealers.
 One Hundiced Dollars!

BLACK, BLUE and RED INK
 Toronto Type Foundry Co., Limited, TORONTO, CANADA


## 

$W_{\text {hat }}^{?} D_{0} Y_{o u} \stackrel{?}{W}_{\text {ant }} T_{o} \stackrel{?}{B}_{\text {Buy }}^{?}$ Write us for the addresses of manufacturers in ANY yount.
Novelties, Special Tools, Machinery, Equipments, New Patent LABOR SAVING DEVICES. MUNN \& CO., Publishers of the ScIentific american, 361 BROADWAY, NEW YORK.


ELECTRICAL ENGINEERING TAUGHT BY MAIL.


FREE MECHANICAL ENCYCLOPEDIA


1148 Betz Building, Philadelphia, Pa.
A IMPROVED GASOLINE BURNER


Economical Gas Engine Igniters


 Or jump spark
or., 80 St. Clair St.,


FOR TIRED BUSINESS MEN


IHE CHOREESHOE


able for seat, pillow or bolster.
Price $\$ 5.00$, express paid.
6-258 Greenwich St., New York.

WHY NOT USE Don't fail to see our Exhibit at the Pan-
American Exposition

## $\underset{\substack{\text { TERCH } \\ \text { TOUREFEF } \\ \text { TELEGRAPHY }}}{ }$


 Has been thrown out of service by a direct-conn.
generating engine owing to electric cransmission. OTIS ELEVATOR COMPANY Yonkers, $N$.


TRADE MARKS




LABELS



## 


"Midnight Dream," for cigars, Schmidt \& Co..
"Peerless Hair Restorer. forr hair restorer:
"Peerless Hair Restorer Company.
"Prize Cup," for cigars, American Lithograph



PRINTS

A printed copy of the specification and drawing of
any patent in the foremoing list, or any patent in
print issued since
 Canadian patents may now be obtained by the in
ventors fror any of the inventions named in the fore-
going list, provided they are simple,


Cut Out and
Sign this

Advertisement | Name ant a adreses |
| :--- |
| If you profer |

## FRENCH GERMAN SPANISH <br> THE INTERNATIONAL <br> EXCEPTIONAL OPPORTUNITY Master a Foreign Language Three Gents a Day

Dr Richard S . Rosenthal's Common Sense Method of Practical Linguistry


 ©arranke as to only ocecups spare how to apply for membership nternational Colleg of Language, Park Row Building. New York, $\mathbf{N}$.


The International College of Languages, Park Row Building, New York

 RAISER MOUSTACHE

CRyewtyin seler. No ompention
 Corresponenence invited from manufacture
their goods introduced References exchan
PRINCIPLE, BXX 773 ,
VALUABLE PAT ENT For Sale or Exchanged for
mailable Novelties. Address INVENTOR, 1626 $\mathbf{O}^{\circ}$ Farrell
Street, San Hrancisco.

## FAGTORY

 FOR SALE!

 Scientific American.
 MUNN \& Co ${ }^{361 \text { riadway. New York }}$

MATCH FACTORY.-DESCRIPTION
 an S

 Lawn Mower Grinders, for hand or borse
 BTE INVENTIONS PERFECTED. Fine Experimental and Model Work


## PATENTED ARTICLES

 AND NOVELTIES MADE Tito ordere VOLNEY W. MASON \& CO. Friction Pulleys, Clutches \& Elevators PROVIDENCE, R.Magical Apparatus. Experimental \& Model Work NOVELTIES \& PATENTED ARTICLES




 MODELS \& EXPRERMENTAL WORK.

sixteenth revised and enlarged edition of 1901

* The Scientific American *

Price, $\$ 5.00$ in Cloth. $\$ 6.00$ in Sheep. $\$ 6.50$ in Half Morocco. Post Free.
This work has been revised and enlarged,
900 NEW FORMULAS.
The work is so arranged as to be of use not only to the specialist, but to the general reader. It should have a place in every home and workshop. \& circular containing full TABLE OF CONTENTS will be sent on application.
Those who already have the Cyclopedia may obtain the
1901 APPENDIX.
Price, bound in cloth, $\$_{\text {I.oo, }}$ postpaid.
MUNN \& CO., Publishers, 36I BROADWAY NEW YORK CITY.


High Glass -
Workmanship
 WINTON MOTOR CARRIAGE $\xrightarrow{\text { This applies to }}$ every detal of con-
PRICE $\$ 1,200 . \quad \begin{aligned} & \text { stra intercharge } \\ & \text { are } \\ & \text { able. inter } \\ & \text { ple }\end{aligned}$ Speedy, safe and durable. Go at any pace you like.
THE WINTON MOTOR CARRIAGE CO., 486 Belden Street, Cleveland, Ohio, U. S. A.
Eastern Depot, $150-152$ East $58 t h$ Street, New York. The Haynes-Apperson Co.


 one, two and three seated carriages.
 FIRE EXTINGUISHERS
 Write tof territery, prieses nat terma
 SIMPLICITY,
RELIABIITY, dURABILITY,

Stituelto. Woitar Gar


The Success Emery Grinder




## CHARTER ENGINE

 USED ANY PLace FUEL-Gasoline, Gas, PistillateStationaries, Portables. CHARTER GAS ENO Power Needs

## JAMES MEANS'猿 $\$ 250$ SHOE \$2.5OSHOE.DSOLD BY LEADINO RETAILEERS. Made in a variety of styles and leathers. Sewed. Smooth innersoles. Made in two weights indicated by (I) or (H) Distributed at wholesale by Made in two weights indicated by $\begin{aligned} & \text { Mtamped upon the soles. Be sure to buy the } \\ & \text { weight best suited to your needs. }\end{aligned}$ MORSE \& ROGERS OF NEW YORK. \&



FORTY MILES ON ONE CHARGE.

 ELECTRIC VEHICLE CO., HARTFORD, CONN.


No tink -
No tinkering and fussing ing made that in any sense competes with the Lozier Marine Gas Engine upon request.

THE LOZIER MOTOR CO., WATER ST., PLATtSbURGH, N. Y.

 Moner. List rree. Mishics


Bristol's Patent Steel Belt Lacing.

 The Bristol Co.
Waterbary Conn
"Pocket Kodak Portraiture"
is the title of a daintily printed and instructive booklet about home picture taking, which has just been issued by the Kodak Press. The illustrations are all from the Kodak of
Mr. Rudolf Eickemeyer, Jr., and include a number of his most charming studies of child life. Free at the Kodak dealers' or by mail.

EASTMAN KODAK CO.,
Rochester, N. Y


MINES and WORKS, R. H, MARTIN $\underset{\text { THETFORD, P. Q. OFFICE, ST.PAUL BUILDING }}{\text { CANADA. }}$

THE ELECTRIC HEATER - A VALU able paper, with working drawingo of various forms of
the electrical beaters,
electric coduding electric sold


ACETYLENE



JESSOP'S ST

