

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMLTILI, AD MANUFACTURES.

Excavation of Slipper-Shaped Coffins.

Excavations in Pre-Sargonic Strata to Water Level

View of the Temple Area and Inclosure, 2800 B. C.-Excavations in Pre-Sargonic Strata in Foreground.

sciontifit smoricam.

ESTABLISHED 1845
munn \& Co., - - - Editors and Proprietors.
published weekly at
No. 36I BROADWAY, - - NEW YORK.

tervs to subscribers
 he scientific american publications.

NEW YORK, SATURDAY, MARCH 2, 1901.
The Editor is always glad to receive for examination illustrated The Editor is always glad to receive for examination illustrated
articles on subjects of timely interest. If the photographs are sharp, the articles shart, and the facts authentuc, the contributions will receive special attention. Accepted articles will be paid for at requar space rates

CABLES FOR THE NEW EAST RIVER BRIDGE.

Within a few days the preliminary work for string. ing the great cables of the new East River Bridge will be in full swing, and such have been the improvements in this important and very special line of work since the construction of the Brooklyn Bridge twenty years ago, that it is likely all four cables will be in place before the close of the present year.
The four main cables will be $18: / 1 / 2$ inches in diameter, and each will consist of thirty-seven strands. each strand being made up of 282 steel wires 1-6 of an inch in diameter. In each cable, therefore, there will be 10,434 wires, with an ultimate or breaking strength of about 20,000 tons, a total of 41,736 wires with a combined strength of 80,000 tons. This means that the four cables would be equal to lifting by a direct vertical pull a fleet of eight warships of the size of the armored cruiser "Brooklyn." That the cables should have such an enormous aggregate strength will be fully understood, when we remember that each square inch of section of the wire is required by contract to have an ultimate strength of 100 tons.

Preparatory to stringing the wires of the main cables four temporary footbridges will be erected for the construction of each cable. Each pair of foot bridges will be thoroughly braced together, and also at intervals there will be transverse footways connecting the two pairs. The four footbridges will be double-decked, the lower deck being about 15 feet be low the upper deck. The upper deck will be utilized for making the thirty-seven strands of which each cable is composed, and, as each strand is completed, it will be lowered several feet to the position which will be occupied by the finished cable.
The working platforms or footbridges, although they are merely temporary affairs, will require four cables, of an aggregate strength of 2,500 tons, to carry them, and the cost of constructing these platforms will be not less than $\$ 200,000$. The stringing of the footbridge cables will be carried out in a novel manner, as follows: A lighter, on which will be placed the reels of cable, will be moored at the foot of the New York tower. A line will then be attached to one end of the cable, which will be hoisted to the top of the tower, carried over a temporary saddle, and down to the New York anchorage, where it will be made fast. The lighter will then be towed across the river and the cable being paid out as it advances, and allowed for the time being to lie upon the bottom of the river. The end of the cable will then be drawn up over the Brooklyn anchorage. When the four cables have been swung, floorbeams will be laid across them, and the planking and handrails will be put in place, thus affording a continuous footway or working platform from the anchorages up to the towers and across the whole wide span of the river. After the cables are completed they will be clamped with bands of steel to which will be attached the suspenders from which the stiffening trusses and floor will be hung. The cables will be filled in with a protecting substance composed of oil and pitch, etc., and then they will be completely inclosed with half-round steel plates which will overlap each other so as to completely shed the rain water and give a thorough protection against the weather.

THE RETIREMENT OF REAR-ADMIRAL HICHBORN.
The retirment of Rear-Admiral Philip Hichbor on account of age limit, which takes place on the fourth of this month, marks the close of an official life which has been most intimately associated with the history of the United States navy, not merely in connection with what might be known as the steam and-steel period, but also with that of the wooden hull and sail-power. The retiring chief naval constructor forms a link between the old and the new schools of construction. His first practical experience in the
navy consisted of five years of apprenticeship to the government as a shipwright in the Boston navy yard, where for a few years he acted as assistant secretary to Admiral F. H. Gregory. After a course of theoreti cal training in ship designing, Mr. Hichborn moved to the Pacific coast, where we find him at Mare Island as a journeyman shipwright, timber inspector, draftsas a journeyman shipwright, timber inspector, drafts
man shipwright, and finally in 1862 as master ship wright, a responsible position for a young man but twenty-three years of age. In 1869, seven years later he was appointed assistant naval constructor with the rank of lieutenant. The following year he was ordered to report to Portsmouth navy yard, where he super vised the building of the wooden steam vessel "Essex," which, by the way, was recently refitted at the New York navy yard and is now doing duty as a training ship. In 1875 he received his commission as Naval Constructor.
Mr. Hichborn's connection with the new navy dates from the year 1880, when he was selected to serve as a member of the first Naval Advisory Board. In 1884 he made a tour of investigation of the navy yards of Europe and on his return published a report on European dockyards, the demand for which was so great that Congress authorized the printing of two editions. On his return from Europe he was ordered to the Navy Department at Washington as Assistant Chief of the Bureau of Construction and Repair, and on July 12, 1893, he was appointed chief of the same bureau, a position to which he was reappointed four years later and from which, by virtue of age limit, he now retires. For a more detailed account of Rear-Admiral Hichborn's life and work, we refer our readers to an article in the current issue of the Supplement.

AERONAUTICAL CONGRESS.

beported by the special correspondent of the scientific

The Congress of Aerostatics has been one of the most interesting of the series held at Paris during the Exposition. It was presided over by M. Janssen, Director of the Ubservatory of Meudon, in which the meetings were held. The different governments sent official delegates; those of the United States were Messrs. Chanute, Gallice, Langley, Marvin, Rotch, Poëy, and Zahm. The list of delegates included a great number of names prominent in aeronautic and scientific work, such as Aimé, Bereau, Bonaparte (Prince Roland), Bruce, Saint Victor, De Dion, Giampetro, De Fonvielle, Lieut. Hinterstoesser, Hammer, Count de la Valette, Morani, Richard, Santos-Dumont, Tissandier, Tzerseleff (Prince Dimitry), etc. The French army and marine were represented by a number of delegates. The principal address was delivered by M. Janssen, in which he reviews the progress already made in aerostatics and the results hoped for in the future. Since the last Congress, held at Paris in 1889, a considerable progress has been made in the different branches. In France and the leading nations the governments have taken up the subject, and its importance in military operations is becoming more clearly recognized. If it is considered that the armies are constantly increasing, as well as the range of the arms of artillery and infantry, a like extension of the theater of combat is to be predicted, and in consequence the use of balloons will become indispensable, and these will be provided with more powerful optical appliances. It must not be forgotten that balloons play an important part in indicating to the artillery the efficacy of its fire and the corrections to be given. If, on one hand, it is pleasing to record the progress which military aerostatics has accomplished in the hands of the skilled officers charged by their governments with the establishment and operation of these services, it must be acknowledged that great desiderata still exist. In fact, if it is possible to leave a besieged place almost with impunfty, it is not the same for re-entering; it is to this second phase of the question that the subject of the direction of balloons is attached. Since 1889 the great problem of the dirigibility of balloons has occupied many workers, but it should be said that in spite of the very interesting attempts, the question has not made a decisive step. The experimenters are, however, still at work. M. Santos-Dumont is preparing for the competition for the Deutsche prize of $\$ 20,000$, and Count Zeppelin is making a great effort with his balloon of 360 feet on Lake Constance. Although the question of dirigibility is the most important, it is also of the greatest interest to improve the aeronautic conditions, either as to remaining as long as possible in the air or to rise to a great height. In this order of facts may be cited the remarkable voyage of Count de Castillon de Saint-Victor from Paris to Sweden, where the balloon covered more than 800 miles, and that of Count de la Vaulx, who kept his balloon in the air for more than 30 hours without landing. M. Mallet has made with the same balloon a tour of France lasting eight days, landing in different places. As regards the altitude reached, the record has been made by M. Berson, of the Meteorological Institute of Berlin, who
has risen several times to a height of 28,000 feet, exceeding the highest summits of the Himalayas; it is by the use of oxygen that M. Berson was able to support the rarefaction of the air at this great height. Scientific ascensions have made great progress in Germany owing to the initiative of the Society of Aerial Navigation of Berlin, which is sustained by the liberality of the Emperor. During the last five years the number of these ascensions has reached no less than seventy-five, and the results obtained have lately been discussed in the extensive treatise of Assmann, Berson, and Gross. But the heights attained by these balloons carrying observers are necessarily limited. Even with the use of oxygen, the observer must contend with the depression which surrounds him, and from which results an expansion of all the gases contained in the system, which, in spite of the respiratory reparation due to oxygen, may read to death. M. Janssen then speaks of the scientists and aeronauts whose loss is to be regretted, among others Eugene Godard, originator of siege balloons, and from whom the author obtained excellent counsels at the time of leaving Paris the 2nd of December, 1870, during the siege with the balloon "Volta;" Hureau de Villeneuve, one of the founders of the Society of Aerial Navigation; Gaston. Tissandier, Coxwell, and others. M. Janssen closes his address by a review of the advantages which would result from the mastery of the air and the effects this would have upon civilization.
The Congress was divided into four sections, and in each a number of interesting papers were read. The following is a list of the sections and some of the communications for each: Section 1. Aerostatics. Aimé; dirigible thermosphere. Angelot; new system of balloons. Dibos; signals from balloons at great distances. Giampetro; use of sails in direction of aerostats. Jaguaribe, new apparatus (velo-aerian). Reynard; ascensional propeller. Zahm; theory of balloon direction, etc. Section 2. Aviation. Ader; military aviation. Alexander; force of helices. Bretonnière; study of flying and aeroplanes. Canovetti; experiments on the resistance of air. Herard; new propeller. Mortureux; aerocycle with four wings. Rntch; use of kites at Blue Hill, United States. Roux; study of the flight of birds. Santi; aeroplanes, etc. Section 3. Instru ments. Assmann; scientific aerial voyages. Batut; aerial photography from kites. Bouquet de la Grye; aerial telegraphy from balloons. Bruce; luminous balloons for military signals and exploration. Dibos; project of exploring voyage in Central Africa. Rotch; kite apparatus. Triboulet; method of triangulation by panoramic apparatus, etc. Section 4. Legislation. Formation of a scientific commission for the study of aerostatic patents. De Villiers; role of military aeronauts in the Egyptian campaign. Pesce; aeronautic and maritime rights, etc. A number of these papers, which are of great interest, will be reproduced in full or in abstract.

LOTUS POISON.

Meṡsrs. Dunstan and Henry have recently read a paper before the Royal Society, treating of the nature and origin of the poison of the Lotus Arabicus. This is a small leguminous plant, indigenous in Egypt and the north of Africa. It grows abundantly in Nubia and especially along the borders of the Nile, from Luxor to Wadi-Halfa. It is known to the inhabitants under the name of "Khuther;" the plants whose grains are ripe serve as fodder, but at certain epochs of its growth the plant is quite poisonous for horses, sheep and goats, the poisonous properties are most strongly marked in the young plant and continue up to the time that the grains appear. As this plant has caused considerable trouble to the civil and military authorities of Egypt, a complete study of it has been made at the Royal Institute of London, after the material collected by Mr. E. A. Flayer, Director of Egyptian Telegraphs. The dry plant is of a brilliant green color and has the odor of freshly-cut hay. When wet with water and ground, the leaves of the plant give off a considerable quantity of hydrocyanic acid. This quantity is a maximum in the plant just before or just after flowering. It is found that the prussic acid comes from a crystalline yellow glucoside, having the formula $\mathrm{O}_{\ldots 2} \mathrm{H}_{t:,} \mathrm{NO}_{1, \ldots}$, which is called lotusine by the experimenters. Under the influence of an enzyme, also contained in the plant, the lotusine is transformed into prussic acid. sugar, and a new yellow coloring matter, called lotoflavine. The action takes place also under the action of acids, but is produced only slowly with emulsine and not at all with diastase. The experimenters propose to call the new enzyme lotase: it seems to be distinct from all the others known. Its activity is nullified by the action of alcohol, and it has but little action upon amygdaline. The old plants contain lotase, but not lotusine. The sugar formed by the action is identical with ordinary dextrose. The lotoflavine has a composition which corresponds to the formula $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{6}$. It belongs to the class of pheno-y-pyrones; it is a dihydroxychrysine, isomeric with luteoline, the yellow coloring mat.

March 2, Igol

ter of the Reseda luteola. The decomposition which is produced when the lotase is put in contact with the lotusine, this taking place when the plant is ground with water, is represented by the following reaction with water, is represented by the following reaction
$\mathrm{C}_{22} \mathrm{H}_{1}, \mathrm{NO}_{10}$ (lotusine) $+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{15}+\mathrm{H}_{10} \mathrm{O}_{10}$ (lotoflavine) $+\mathrm{HCN}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (dextrose). Hydrocyanic acid is found in small quantities in many plants, and accord ing to Treub and Greshoff it is often present in the atmosphere. The only glucoside well known at pres ent which produces this acid is the amygdaline of bit er almonds, which, under the influence of emulsine also contained in the almonds, forms dextrose, ben zaldehyde and prussic acid. This new glucoside pre zaldehyde and prussic acid. This new glat
sents, therefore, a great scientific interest.

estimation of tungstic acid in its ores.

Carrying out the method recommended by Blair in his "Chemical Analysis of Iron," page 264, Mr Herbert M. Shilstone made a large number of tungstic acid determinations in wolfram and scheelite or concentrates for the American Tungsten Mining and Milling Company, of Long Hill, Conn., a few month ago, and found the following methods very satis factory, accurate results having been obtained without excessive care or unusual precaution
For the analysis of wolfram he proceeds as follows The ore concentrate is very finely pulverized and passed through a No. 13 bolting cloth. From 0.3 to 1.00 gramme is weighed and brushed into a smal beaker, nitric acid is added, the beaker covered, and the whole digested or heated on the water bath fo one-half hour. Hydrochloric acid is now added, and the digestion continues until the ore concentrate is thoroughly decomposed. It is generally left on the water bath all day. It is necessary to replenish the nitric and hydrochloric acids during the digestion, re taining about 25 cubic centimeters of solution in the beaker all the time.
When the ore concentrate appears to be perfectly decomposed it is evaporated to dryness on the water bath (a higher temperature is not desirable), is then edissolved with hydrochloric acid and evaporated down again, redissolved again with hydrochloric acid, diluted with water, filtered, washed thoroughly with acidulated water and then with alcohol. The tungsti acid now remains on the filter along with the unde composed silica, etc.
It is treated on the filter with ammonia, the filtrate allowed to run into a platinum dish, then evaporated to small bulk, and excess of ammonia added, filtered again if necessary into a platinum crucible, evaporated carefully to dryness, heated gently to drive off the ammonia and finally ignited at a high heat. Cooled and weighed as tungstic acid.
If the ore concentrate is not thoroughly decomposed in the first case, the residue from the first filter mus be redigested with acids, treated as before and the result added to the first.
For scheelite he uses a fusion method (as per Fresenius' Zeitschrift, 29, pages 104, 105), which he finds gives results as accurate and is more rapid in operation.
From 0.3 to 1.00 gramme of the finely powdered ore concentrate is mixed with about 10 grammes of equal parts of soda and potash carbonates and fused in a 2-ounce crucible for two hours; the crucible is now given a circular motion so as to coat the inside with the melt, and then chilled by immersing in a beaker of cold water, without letting the water in the top of the crucible. When cool the melt probably will crack away from the sides of the crucible; if not, the crucible must be laid on its side in a small beaker just covered with water and digested on the water bath until the melt is dissolved. The crucible is washed thoroughly and the washings run into the same beaker; it is better to rinse the crucible finally with a dilute solution of hydrochloric acid which must be kept for further use. Continue the digestion of the melt until it is thoroughly decomposed and the soluble tungstate of soda dissolved in the hot water, filter tungstate of soda dissolved in the hot water, filter hot water.
The acid washings of the crucible are now added to about 200 cubic centimeters of a 25 per cent solution of hydrochloric acid and brought to a boil, the filtrate containing the tungstate of soda is added slowly and constantly stirred, and the beaker is kept covered to avoid loss by spitting as much as possible. A precipitate of tungstic acid will be thrown down if there is an excess of acid; if not a further addition of boiling hydrochloric acid must be added until it gives an acid reaction with litmus paper; the boiling is continued for one-half hour, the beaker removed from the fire and allowed to stand twelve hours in the cold. Filter off as much of the supernatant liquid as possible, never filling the paper more than halif full, add a little water and a few drops of nitric acid to the precipitate and transfer as carefully as possible to . r, taking all precautions. For a very fine pr. \quad mop out beaker and wash precipitate unti ishings are no longer acid, dry

ジitutific Ampricau.
in the air bath at 110 deg. C., remove the precipitate from the filter and ignite the filter paper, moisten the ash with a few drops of ammonium nitrate and ignite again, add the precipitate of tungstic acid, ignite first at a low heat and finally at a high temperature cool and weigh as tungstic acid.

THE HEAVENS IN MARCH, 1901.

by henky norris russell, ph.d.
This is another uneventful month from an astronomical standpoint. Of all the planets only Mars is visible in the evening sky; and so we may well devote part f our time to the consideration of the strange mark ings on his surface, as was promised a month ago.
These objects, the so-called "canals," were discovered by the Italian astronomer, Schiaparelli, about fifteen years ago, and have since been seen so frequently, and by so many observers, that there is now no doubt of their reality. They appear, under favorable conditions, as fine straight dark lines running across the ruddy parts of the planet's surface-the so-called continents-in all directions. Their actual width mus be 40 or 50 miles at least, since a narrower line would hardly be visible at so great a distance. Many of them reach the "seas" just at the head of some bay and frequently three or more converge accurately o a single point. Most remarkable of all, a larg number of them have, at certain times, been seen "doubled," the single line being replaced by a pair of parallels, two or three hundred miles apart, and this duplication seems to follow the course of the Martian seasons. When the air is unsteady, the canal appear as faint, ill-defined streaks; and some of the ablest observers have never seen them otherwise
They are very difficult objects to observe, but never theless, the facts of observation have accumulated far more rapidly than satisfactory explanations for them They can hardly be rivers, because they are quite straight, and frequently run from one sea to another It has been suggested that they are cracks in th planet's surface, but though this accounts for their traightness, it hardly explains the regularity of thei arrangement, and much less their duplication.
A mere glance at one of the recent drawings of Mars suggests with great force another hypothesis-namely that the canals are artificial structures of some sort But here again we meet with serious difficulties. Why should an artificial waterway be fifty miles wide? And how can their doubling be accounted for?
Perhaps the best of existing theories, and certainly he most stimulating to the imagination, is that pro posed by Mr. Lowell and his fellow-workers at hi observatory in Arizona, who have devoted a great deal of attention to the subject. He regards the dark greenish portions of Mars' surface as areas covered, not with water, but with vegetation, while he believes the ruddy areas to be deserts. The planet's surface is evidently pretty flat, as mountain ranges, if present would be conspicuous, just as they are on the moon According to Mr. Lowell, there is much less wate on Mars, in proportion to his surface, than on the earth, and much of it is frozen up in the polar ice-cap during the Martian winter. As the ice melts in th spring, the water floods the lower lying regions of the surface-the "seas"-and keeps them green and flourishing. The canals are artificial watercourses built to carry off the water where it is needed. On each side of them is a strip of irrigated land, bearins he same relation to them that Egypt does to the Nile and it is this belt which is wide enough to be visible from the earth. The duplication of the canals is ac counted for by the ingenious idea that, for some rea son, the Martians cut the water off from the centra part of this strip first, so that it dries up while the edges are still green.
Mr. Lowell has a good many other facts to back up his theory. One of the most important is that he has seen a number of the canals prolonged upon the "seas." It is hard to see on the old theory how canal could be dug in the ocean, but there is nothing ery remarkable in a belt of dense vegetation near a rrigating canal in a sparsely grown tract. There are also many instances of seasonal change among the canals, and certain parts of the seas, which bear out his theory.
There is, however, something to be said on the othe side. The regularity of the arrangement of the canals may be more apparent than real. When several faint ines near the limit of visibility are nearly straight and intersect near the same point, the figure which they present, seen as it is only by glimpses when the air is steadiest, is very likely to be drawn by eve the most careful observer as composed of straight lines, intersecting exactly in one point, so that too much stress must not be laid on the published draw ings.
There is also a controversy in the astronomica world as to the reality of the doubling of the canals Prof. W. H. Pickering has pointed out that lines a ittle out of focus are often seen double. Any on may verify this by following his directions. Draw a few fine dark lines on a piece of paper; place them
three or four feet from the eyes, close one eye, ant look with the other at the finger held a foot or less from the face. The lines will appear distinctiy double. Of course he does not deny that observers have focused their telescopes properly; but the eye when tired with long or careful gazing may, and often does alter its focus suddenly and almost arbitrarily. This explanation is, however, strenuously opposed by many observers and the question is by no means settled.
Another objection of a different kind raised agains the vagetation theory is that Mars receives much less heat from the sun than the earth does, and, unless he has much more internal heat, it is hard to see how his ice-caps can be so much smaller relatively than the earth's. Other substances might freeze and mel in the same way; the polar caps might be of frozen carbon dioxide, or even frozen in as far as their tele scopic appearance is concerned.
So at present we can only say that no completely satisfactory theory of the condition of Mars' surface has been advanced, much less demonstrated, although those which assume the presence of intelligent life on the planet will always remain the most attractive to the imagination.
the heaters.
The western sky still contains the familiar winter constellations. Along the Milky Way lie Cassiopeia Perseus, Auriga, Gemini, Canis Minor and Cani Major; and west of it the most conspicuous group are Orion and Taurus
At our chosen hour of 9 P . M. on the 15 th Ursa Major is well above the pole. Besides the Dipper one can easily recognize the group of stars neare Capella which form the animal's head, and the thre pairs of small stars, almost in a straight line, which ie to the southward above Leo, and mark its paws In the northeast are Bootes and Corona Borealis, and farther south is Virgo. Leo, identified by the con spicuous "sickle," with Regulus at the end of it;s handle, is approaching the zenith. Between Regulus and Procyon, a small group forms the head of Hydra whose body is marked by a long line of rather in conspicuous stars extending eastward beyond the horizon.

the planets.

Mercury is evening star till the 7th when he passes between us and the sun and becomes a morning star nce more. He will not be visible to the naked ey till near the end of the month, when he rises over an-hour before the sun. On the afternoon of the 12 th he is in conjunction with Venus. Venus is still morn ing star, but is now so nearly behind the sun, that she rises but forty minutes earlier on the 1st and only twenty minutes before him at the month's end. Mars is conspicuous in the east in the early evening, and passes the meridian about 10 o'clock in the middle of the month. He is beginning to recede from the earth, but is still very bright. Jupiter rises about $2: 30$ A. M. on the 15 th, Saturn about 3 o'clock, and Uranus a little before one. Neptune is still in Taurus, setting about midnight.

the moon.

Full moon occurs early on the morning of the 5th, ast quarter on the forenoon of the 13 th , new moon on that of the 20 th , and first quarter on the night of th 26th. The moon is nearest the earth on the 20th, and farthest away on the 8th.
She is in conjunction with Mars on the morning of the 4 th, Uranus on the evening of the 12th, Jupiter on the afternoon of the 14th, Saturn the next morning Mercury on the night of the 18th, Venus on the after noon of the 19th, Neptune on the morning of the 26 th and Mars once more on the evening of the 3uth.
On the night of the 20 th the sun enters the sign of Aries, and spring begins.
Oyster Bay, January 21, 1901.

MUSICAL SOUNDS FROM THE ELECTRIC ARC

Mr. W. Duddell, an electrician of London, has discovered a method of producing musical sounds from the electric arc, and recently gave a lecture upon thes nvestigations before the London Institution of Elec trical Engineers. It is only the solid carbon, that which is homogeneous in its nature, that is capable of producing these unusual sounds. The cored carbons are absolutely silent. Not only is it possible to obtain musical sounds, but they may be varied so as to pro duce a tune, and to exemplify his thesis, the inventor played a popular air. The variations in the sounds are accomplished by a by-pass or shunt placed across the carbons, and which have the same effect as the finger and keys upon a flute. Mr. Duddell, in the course of his lecture, arranged four arcs in series to increase the intensity of the sound, and by varying the self-induction and capacity in the shunt circuit by means of a keyboard, of two octaves, produced his tune. The key board may be placed at any distance from the lamps without depreciating the musical effects emitted by the arcs. The inventor has also requisitioned the electric light arc for receiving telephonic messages transmitted from another point of the building.
an automatic reducing valve of vovel form.
In order to control the flow of illuminating gas, or of compressed air used as a motive agent, or of any fluid under pressure, a highly sensitive valve is reguired which automatically maintains a constant current. As a highly efficient type of such valves we have selected for illustration the very ingenious device made by the Automatic Reducing Valve Co., 125 La Salle Street, Chicago, Ill.
The vaive comprises essentially a pres sure-chamber, provided with an inlet and an outlet; a closure for the inlet; and a spring-pressed diaphragm controll ing the closure.
As shown in one of our illustrations, the closure consists of a carrier, in one side of which a single large elastic roller, A. is mounted, and in the other side of which two small metallic rollers, B, are journaled. The large rubber roller serves as a valve for the inlet; while the two small rollers serve primarily as antifriction devices to facilitate the movement of the carrier.
Mounted on the carrier is a flexible diaphragm, C, clamped in place by a cap threaded on the pressure-chamber and utilized to regulate the inflow of gas. Within a tube screwing in the cap a coiled spring is inclosed, which bears upon a plunger projecting from the carrier and upon a disk secured to a screwshaft formed on a milled head. The disk is provided with a pointer projecting through a slot in the tube and playing over a scale. By turning the milled head the pressure of the spring on the carrier-plunger can be varied.
Whatever may be the pressure within the tank or pipe to which the device is applied, the roller, A, will close the inlet, the pressure being sustained or supported by the carrier and its rollers, B. Upon turning the milled head, the spring is made to press upon the carrier-plunger, so that the roller, A, is moved to uncover the inlet, and to allow an amount of gas to pass which is proportionate to the degree of compression of the spring. When the pressure becomes excessive, the diaphragm, C, will be forced outwardly, thereby moving the carrier and causing the roller, A, to close the inlet. When the pressure falls again the diaphragm moves the roller, A, away from the inmove

The novel feature of this reducing valve is the rolling closure, which is far more delicate in its opera ion than the ordinary sliding closure. For it is evident that as the roller, A. moves the inlets are opened or closed in a constantly increasing ratio. Hence a very slight movement of the diaphragm is so considerably multiplied at the roller, that the least increase or decrease of pressure is sufficient to close or open the inlet.
Another pre-eminent feature of this valve is its ability to maintain automatically a uniform low pressure independent of the varying high pressure

THE LARGEST CAMERA IN THE WORLD.

 Photographic progress has been so rapid in the last few years that we have arrived at the point when we are not surprised at any new developments in processes, but the idea of a negative 8 by 10 feet, or 96 by 120 inches, is certainly startling. The camera which we illustrate is by far the largest ever constructed, and in all probability it will hold this distinction for many years to come. During the summer of 1899 , the workmen at the Pullman Works at Pullman, Ill., were busy building two trains, the plans for which differed materially from anything which had hitherto been built. These trains were for the Chi cago and Alton Railway, and they were to be the handsomest trains in exist ence. The company desired fine photographs for exhibition at the Paris Exposition and elsewhere, and Mr. George R. Lawrence, their photographer, was requested to build the largest camera in the world, especially to photograph the "Alton Limited." Mr. Lawrence was given carte blanche, and in two and a half months the great camera was completed. It was designed and built in Chicago and it is finished throughout in natural cherry. The bed is composed of four 2 by 6 inch cherry beams, and is about 20 feet long when fully ex tendeã. The bellows is made with an
an automatic reducing valve
wood were used. The bellows is divided into four sections, as shown in our engraving, and between each section is a supporting frame mounted on small wheels which run on a steel track; the back supporting the plate-holder is operated as easily as in an ordinary camera. The instrument has doubleswing front and back and at the rear is a small track on which two focusing screens are moved back and forth like a sliding door. The plate-holder is of the roller-curtain type. This curtain contains about 80 square feet of ash $\% / 4$ of an inch thick, and is lined with three thicknesses of light-proof material. Over ten gallons of cement were used in the construction o this curtain, and it is mounted on a ball-bearing roller.

CAMERA AND PLATEHOLDER.

"focusing" the camera.

Ball-bearing rollers are also mounted every 2 inches in the grooves in which the edge of the curtain slides, thereby reducing the friction to almost nothing. The weight of the camera is 900 pounds and the plateholder when loaded weighs 500 pounds, making the total weight 1,400 pounds. The camera is so constructed that after a long journey the plate may be dusted in a unique manner. The holder is put in position, the large front board, or front door, as it may be called, is swuns open; the operator passes inside, the door is then closed and a ruby glass cap is placed over the lens, the curtain se is drawn and the operator dusts the plate in a portable dark room, after which the slide is closed and he passes out in the same way as he entered.

The Zeiss lenses for this camera are the largest photographic lenses ever made, one being a wide angle lens with an equivalent focus of $51 / 2$ feet and the other being a telescopic rectilinear lens of 10 feet equivalent focus, the latter being the one used in taking the photograph of the Alton Limited.
Early one morning last spring the camera was transferred from a padded van to a flat car, and the start was made for Brighton Park, at which point the first, exposure was made. The services of no less than fifteen men were required. The day was clear and a perfect negative was secured after an exposure of two and a half minutes, on a Cramer isochromatic plate, this special plate being used to pre serve the color value of the train. The first three prints were sent to the Paris Exposition. One of them was placed in the railway section, another was hung in the photographic section, while a third was accorded a place of honor in the United States government building. The stir which the immense picture created in Paris is shown by the fact that affidavits were required before the Exposition officials consented to label the exhibit the largest photograph ever made on one plate The picture of the Alton Limited was to visitors at the Paris Exposition what the exhibition of English trains was to Americans at the World's Fair, Chicago.

Boat for South Polar Expedition.-The ship which is to be used in the coming South Polar expedition, organized under the pat ronage of the Emperor William, is now being built at the Howaldt works at Kiel. The boat is to be 150 feet long and 36 feet maximum width. It will be provided with a triple covering of wood no less than 30 inches thick; this has been found necessary in order to resist the pressure of the ice. It will have no port-holes or windows. At the start the coal provision will be 400 tons and this is to be replenished at Capetown and Kerguelen by coaling vessels which will go to meet the ship A full rigging of sails will be provided, besides the engine, and a speed of 7 knots an hour is allowed for. The ex pedition will include four scientific men, and for these two laboratories will be provided, which will be fitted up with the best available instruments The personnel includes 5 officers and a crew of 20 men. The boat is to take along a captive balloon and 50 Siberian dogs for the sleighs; the kennels for the dogs are placed on deck. It is ex pected that the boat will be finished by May 1, 1901, and that the expedition will be enabled to start for the South Pole in the early part of next August

An Expedition to Labrador.-A geo logical and geographical expedition to Labrador, Iceland and Greenland is be ing planned for the coming summer Last summer five Harvard men wen to Labrador with Dr. R. A. Daly, of the University Museum. This year's ex pedition will also be in charge of Dr Daly, and will be larger than the previ ous one. The expedition will embark on a large steamer, and sixty men will probably be members of it, including students of geology, geography, botany zoology, mineralogy, and all branches of natural history. The expedition will visit Iceland and the glaciers of West Greenland. A hunting party will be landed on the west coast of Greenland and in Labrador. The expedition will start June 26, and return September 20.

Srifutific Amrricam

THE POTTER OF "OLD BERRY" AT THE EXPOSITION The tools of the potter have remained the same through ages, says Lectures pour Tous. It may be said that they are as old as the world. This is doubtless because, in their simplicity, they are admirably adapt ed for the use for which they are designed. The Egyptian potter who lived 2,000 years before Christ made use of nearly the same lathe and of the same whee that was employed by the potter who was installed in

the potter of "OLD berry."
that part of the Exposition reserved for the exhibit of the French provinces of "Old Berry." A placard that swung from a nail in front of the shop gave the name of its occupant as:

$$
\begin{aligned}
& \text { "Alaphillipe, dit Charliton. } \\
& \text { Potier,-à Verneuil (Indre)." }
\end{aligned}
$$

Upon entering, the potter was seen seated upon a wooden bench, in his shirt sleeves, and in trousers soiled with clay. He was in the act of working upon the wheel of his lathe (which was actuated with his foot) a large ball of clay that had previously been tempered with water and kneaded in such a way as to form a very homogeneous mass. Giving the wheel a rotary motion, he seized the ball of clay between his fingers, under the pressure of which it was seen to elongate, turn around, and assume thousands of varied forms. It became successively a pot, a cup and a slender flagon, and then again a large-bellied pot. It was with this last creation that he stopped. Then he arrested the motion of the wheel, detached the object with a spatula, and added handles to it.
After allowing it to dry for two or three days, he glazed it with a mixture of ashe and clay, and baked it for thirty-six hours in a kiln. Such pottery when finished, is somewhat dull of aspect but excellent for do mestic purposes. The potter avoided giving it that brilliant aspect that attracts the pur chaser, since to that effect it would have been necessary to employ harmful sub stances.

A New Grain.

A new grain which has been grown to a limited extent in Manitoba this year is cobled this year is called spelt. It is said to be a Russian grain and is ground in that country and in Germany. The seed was obtained from a foreign settlement in Da kota. It was sold in Winnipeg last summer to a number of farmto a number of farm-
ers, and they all speak ers, and they all speak
favorably of it. Though the season was a try

THE STAGE TOWER OF THE TEMPLE OF BEL-WORKMEN ON THE TEMPLE OF SARGON. an expedition to excavate Nippur, an ancient city of Babylonia. It is situated midway between the Tigris and Euphrates, about fifty miles to the southeast of Babylon. All that remains of the city is an extensive group of mounds, which rise on an average of about sixty feet above the plain. The mounds represent the accumulations of millenniums, the lowest stratum of which is found thirty feet below the present level of the plain, owing to the gradual filling in during the past ages.
For eleven years, including interruptions, the "deathlike stillness" which brooded over this ancient city (the probable site of Calneh, Genesis, 10: 10) with its treasures of long-forgotten millenniums has been dispelled, and the place has been the scene of much activity on the part of the American expedition. Though much has been accomplished in the laying bare of ancient buildings and the gathering of the exceedingly rich harvest of antiquities, yet at the present rate of operations, although on an average several hundred Arabs have been employed, it will require fully one hundred years to excavate thorough ly this ancient city

The staff of the recent campaign, which has been the most remarkable for the richness of its finds and for the importance of its far-reaching results, consisted of Prof. H. V. Hilprecht, Ph.D., D.D., LL.D. Scientific Director: J. H. Haynes, Sc.D., Field Director; Messrs. Valentine Geere and Clarence Fisher, architects. Concerning the results of the campaign Prof. Hilprecht has been able to report that the most sanguine expectations have been realized.
City Wall.-Several years ago a trial trench was cut through the wall of the city, but recently a con-

SACRED CORN GROWN BY A NORTH AMERICAN INDIAN TRIBE (ABENIKIS)
siderable portion of the wall was thoroughly ex cavated. It was ascertained that the first wall was built in the early pre-Semitic period (prior to 4000 B. C.). Upon this structure Naram-Sin (3750 B. C.) raised up his wall to a considerable height, using the characteristically large bricks of his period. Upon the remains of this splendid structure lie the bricks of Ur-Gur (2800 B. C.). The uppermost stratum contained the remains of a Jewish settlement, belonging to the late period. Rooms or shops for traders were built on the inside of the wall. From business records discovered Prof. Hilprecht infers that they were occupied during the third millennium before Christ.

The great city gate, known as abullu rabu in the in scriptions, which was sought for, was discovered. It had been built originally by some pre-Semitic builder in a very substantial manner, who laid up his bricks in bitumen. It has three divisions or entrances; the one in the center which was the larges', was for animals, those on either side were for the people. While the whole structure was considerably above the plain, approachable by a gradual ascent, the middle entrance was lower than the side passageways, which were reached by steps.
Pre-Semitic Palace.In tracing the southern limits of the city a large palace of the preSemitic period (prior to 4000 B. C.) was dis covered. No mound marked its site. It was clearly below the pres ent level of the plain. Only one façade of the building was cleared It is nearly six hundred feet long, built with two stories, having small windows near the ceilings. A large open terra-cotta vase several tablets of the earliest known period a substantially constructed well, and many other antiquities were discovered. Prof Hilprecht is of the opinion that the com plete excavation of this
enormous palace will reveal many important antiquities as bronze and marble statues of the type of those discovered at Tello by De Sarzec. The fact revealed in connection with these and other investigations is that the city invthe earliest known period had the same enormous extent as in the late Neo-Babylonian period, and the territory embraced within the walls was at that time more fully occupied.
Temple of Bel.-One of the highest points of Nippur is the conical mound, called Bint-el-Amir ("daughter of the prince") by the Arabs who live in the neighborhood. It rises about 95 feet above the plain and covers the ruins of the ziggurrat Imkharsag, the stage-tower of the temple Ekur. About the tower on all sides are the buried rooms and collapsed walls of the temple proper. Considerable time in the past has been devoted to the excavation of this structure. The uppermost stratum of the mound, not unlike nearly all the others examined, was found to be a cemetery, where in the period from about 200 A . D. the residents of Nippur buried their dead over the place where their ancestors worshiped their gods. Beneath this stratum were found the operations of those who built during the Parthian period, when a complete change in the form and character of the structure was made, upon which Prof. Hilprecht will write in the near future.
Beneath this structure was found the temple that had been built by Ashurbanapal (668-626 B. C.). Whether out of his great regard for the Temple of Bel, or for some political reason we do not know, but this or for some political reason we do not know, but this
Assyrian monarch restored and greatly enlarged the Assyrian monarch restored and greatly enl
temple which had existed prior to his time.
The next great builder, going backward in the order of time, was Kadashman-Turgu (1250 B. C.). The work of Kurigalzu, Bur-Sin II., Ishme-Dagan, Bur-Sin I., Ur-Ninib and Dungi, of the third pre-Christian millennium was also cleared away after being examined in all details, when the ziggurrat as it was seen in the time of Ur-Gur (2800 B. C.) was laid bare.
in the time of Ur-Gur (2800 B . C.) wim Ur-Gur built On the ruins of what preceded him Ur-Gur built a
large pavement or platform, on which he built his temple and ziggurrat. The base of the latter formed a right angled parallelogram 200 feet long by 130 feet wide. It was built with three stages or stories, the lowest being 21 feet, the second 13 feet high, while the third was so while the third was so
much ruined that it much ruined that it
was impossible to secure its original dimensions. In their primitive conception the Babylonians spoke of such temple-towers as "reaching unto the heavens." Though they were not very lofty, yet were not very lofty, y
in this very level coun in this very level coun-
try they had an imposing and mountain-like appearance. Surrounding this complex was built an immense wall called Imgur-Bel, or the inner wall of the city.
About eight feet below the level of Ur-Gur's pavement was found another consisting of two layers of burned bricks. They were 20 inches square by 4 inches thick, most of which were stamped with the legend "Naram-Sin, builder of the temple of Bêl," while a few were stamped with his father's name "Shargani-shar-ali (Sargon) King of Accad, builder of the temple of Bêl."

Until recently these rulers, who lived about 3800 B. C., were regarded as legendary characters, largely on account of their great antiquity, but the excavations revealed the fact that the founding of the temple was several thousand years prior to their time. Down the excavators went through "the accumulations of 'débris from ruined buildings, partly preserved drains, broken from ruined buildings, partly preserved drains, broken pottery and many other remnants of human civiliza-
tion" not less than 31 feet before virgin soil was tion" not less than 31 feet before virgin soil was
reached. Above Naram-Sin's pavement were 36 feet reached. Above Naram-Sin's pavement were 36 feet
of accumulations, representing over 4,000 years of Babylonian history. Below this pavement were 31 feet representing a period, how long? There are no reasons to think that the accumulations were more rapid prior to that period than later, and to add Prof.. Hilprecht's words, "I do not hesitate, therefore, to date the founding of the temple of Bêl and the first settlethe founding of the temple of Bêl and the first settle-
ments in Nippur somewhere between 6000 and 7000 ments in Nippur somewher
Belonging to the temple at different periods prior to Sargon's time were found in this early strata an altar covered with ashes of animal sacrifice; several large sacrificial vases made of terra-cotta; a perfect keystone arch, hitherto considered Roman, and many other interesting works of antiquity in bronze, stone, and clay.

To this early period belong the fragments of inscribed vases of about a dozen Babylonian rulers scribed vases of about a dozen Babylonian rulers
which have been translated by Prof. Hilprecht, and
again introduced by him into Babylonian history. The vases were used in the temple service for centuries until the time the Elamites went through the land under Kudur-Nakhundi (about 2285 B. C.), who sacked the temples, carried off to Elam what appeared favorable in their eyes, broke up and scattered what they did not desire. At that time the Temple library and other buildings were destroyed. Some cities were other buildings were destroyed. Some cities were
never rebuilt after this invasion. Nippur never fully never rebuilt after this invasion. Nippur never fully
recovered after this vandalism of the Elamitic hordes. ecovered after this vandalism of the Elamitic hordes.
Temple Library.—On his first visit to the mounds of Nippur, about eleven years ago, Prof. Hilprech pointed out the place where he thought the temple library ought to be found. In that identical place the library was found. During the recent campaign a portion of the mound was carefully excavated in addition to what had been cleared formerly. Altogether there have been taken thus far from the rooms of the library about 25,000 tablets, mostly unbaked. As only about one-twentieth part of this extensive group of hills has been excavated, in view of the peculiar topo graphical indications and the history of the temple Prof. Hilprecht estimates the probable number of tab lets yet buried in the library to be from one hundred to one hundred and fifty thousand. They are almost entirely of a didactic character, and belong to the third millennium before Christ. Of the manifold character of the tablets only an exhaustive examination can give a clear idea. Ledges or shelves were built in the walls of the rooms, upon which the tablets were laid in rows. As stated above, the Elamites threw the building into ruins the century prior to Abraham's birth. The importance of this find can scarcely be estimated at the present time, as it will throw so much light upon the history of this early period.
Court of Columns.-Considerable time has been devoted in former years to the excavation of the so-called "Court of Columns." It is situated on the western side of the Shatt-en-Nil in an upper stratum of the highest mound. It belongs to the late occupation of Nippur, about 300 B. C., as determined by Prof. Hil-
which have important bearing upon the religious ideas and customs of the daily life of the Babylonian peo ple, upon which he will write in the near future.
What science owes to the labors and undertakings of all on the staff and the unselfish generosity and interest of the gentlemen who furnished the means to carry on the work can only be properly estimated by posterity. It is expected at no distant date to resume the operations in this land of primitive civili-zation-the cradle of the universe.

Electro-Capillary Action.

The Constantin Zahrzewski describes in the Bulletin of the Academy of Cracow a series of experiments which he has recently made upon the electromotive force produced by capillary action. He uses for this purpose an apparatus consisting of two large glass ves sels united by a capillary tube of glass, silvered on the interior. The vessels were half filled with water; each vessel contained a metal electrode placed in the water at a short distance from the opening of the tube. The movement of the water through the capil lary tube was produced by compressing the air in one of the vessels. The experimenter found that the movement of water through the tube gave rise to an electric current, the direction of this current depending upon that of the water. It was found that the electromotive force depended upon the difference of pressure at the ends of the tube and also upon the distance of the electrodes from the opening; when the electrode contained in the vessel toward which the current flows is removed farther from the end of the tube the effect is diminished. The thickness of the layer of silvering seems also to have an effect upon the electromotive force, this being diminished as the thickness of the layer is increased.

Windmill Electric Plants.

M. Gustave Conz, who has recently been making a study of the winds in the northern coasts of Germany, finds that the utilization of windmills for small electric plants will be practicable in these regions. He has already set up a small plant at Kappeln, in Schleswig-Holstein. The windmill is of the Neumann type, having a diameter of 35 feet and a surface of 90 square yards. The speed of rotation of the wheel is regulated automatically and reduced to 11 revolutions per minute; with a current of air of 8 feet per second the 8 feet per second the
windmill will give windmill
about 30 horse $\begin{array}{r}\text { give } \\ \text { power. }\end{array}$ about 30 horse power.
It is connected to a
precht. It was a government building. There were many rooms on three sides of the building around an open court of columns. Some of the rooms were used for the storage of grain and other kinds of merchandise, doubtless representing the tithes or taxes of Nippur's inhabitants. Architectural plans of this building as well as the others excavated have been prepared by the architects who accompanied the expedition.

Additional Results.-Important inscriptions on clay and stone belonging to all periods of Babylonian history were found during the last campaign in great numbers. In removing the upper stratum of mounds over one thousand sarcophagi, mostly of the slipper shaped pattern characteristic of the late period (300 B. C. to 700 A. D.) were opened. In these were found gold and silver jewelry in the shape of bracelets, finger rings, nose rings, brooches, clasps; also pottery and many other things. Quite a number of representative specimens of the different burial modes were preserved for exhibition in the museum. Seals and seal cylinders, such as the Babylonians used in their business transactions; several hundred inscribed Hebrew and Mandaic bowls, showing the influence of Babylonian wizardry upon the Jews who continued to live at Nippur as late as 700 A . D., great numbers of vases in enameled and plain pottery, images of gods; playthings in terra-cotta; bass-reliefs, weights; utensils and coins in bronze and iron, etc., were found. Another important feature was the studying of all types and forms of pottery with a view to determining the age of many specimens excavated in former years. As regards portable antiquities of every description having special archæological value for the restoration of Babylonian history this expedition stands prominently in the lead of those at the present time engaged in Babylonia.
These are a few of the important finds without mentioning the numerous minor facts ascertained, and the many questions solved through the personal inspection and study of Prof. Hilprecht while in the trenches

It is connected to a
dynamo running at 700 dynamo running at 700
amperes at 160 volts; a revolutions and giving 120 amperes at 160 volts; a storage battery is connected in parallel with the dynamo. When the wind reaches a speed of 8 feet per sion of the lighting circuit is maintained constant by a rheostat with automatic regulation. To provide for a plant of larger size, capable of furnishing light at a considerable distance by the use of a storage battery, M. Conz recommends using a number of windmills similar to the above, each operating its own dynamo; the dynamos are to be grouped in parallel and are connected to a common storage battery.

A Curious Copyright Decision

A curious decision as to the right to rebind books, which also involves the question of copyright, was recently given by the United States Circuit Court of Appeals. The court announced that to trim old books, to cut off the edges of the leaves and to rebind them is no invasion of the rights of the person holding the copyright of the books. The court in its ruling put in a proviso that a book so rebound, recovered and offered for sale should have prominently displayed and stamped upon its cover notice that the book was a second-hand copy. The American Book Company have complained that the defendants were selling old school books on which they owned the copyright. They were then revamped and sold. The court in its decision says: "We think that, so far as respects the copyright laws of the United States, no legal right of the appellee was invaded by so doing. What was done was merely the restoration of the books to their original condition when sold by the appellee, or so nearly so as could be done."

An Austrian medical paper states that a physician named Jaz has discovered an anti-typhoid serum which has been applied successfully in fifty cases. The serum is not injected, but is drunk by the patient.

Sorrespondence.

Wood-workers, Competition at the Pan
To the Editor of the Scientific American:
The statement is often made that the number of The statement is often made that the number of
all-round" men in the mechanical trades is decreasing, and this statement is, generally, accompanied by an expression of regret for existing conditions in this respect, together with the plea-particularly in the case of those who claim to have the interests of the many at heart-for the maintenance of a broader knowledge of allied trades on the part of skilled workers.
That our present commercial organization is such as to lead to a differentiation of trades and do away with the all-round man is generally conceded, and, I believe, it will be generally admitted that the best interests of the workman, individually, demand of him all-round ability with a high degree of skill in several branches of work.
The question has often been asked, How may we promote "all-round skill" on the part of the mechanic? The answer to this question is to be found in part in my opinion, in the following: Through competi tive trials. I suggest, and I am prepared to enlarge upon, the desirability of competitive trials between all round skilled men.
Would it not be interesting and of value to have at the Pan-American Exposition a wood-workers' con test in all wood-working specialties such as: Manual training wood-work, pattern making, carpentry, joinery, cabinet work, stair building, turning, car wood work, mill-wrighting, machinery wood-work, carving etc.? Design to be included in all cases. Would have each man that enters put up a substantial entrance fee.
I would be very glad to enter in the all-round and possibiy some of the specialties.
W. R. Bradford.

Agricultural College, Michigan,

February 18, 1901
Are the New Armored Cruisers up to the Modern To the Editor of the Scientific American
The discussion in your columns of the designs of our three new armored cruisers of the "Milwaukee" class and the six of the "California" and "Maryland" classes has aroused considerable interest in a subject which is near the heart of every true American citi zen. The letters published February 9 and 16 seem to hit the nail on the head. There can be no question at all that these ships are lamentably weak in offensive power; and the answer from the Department, easily recognized as such by its customary reference to "a compromise among several opposing interests," by no means explains the matter satisfactorily. "Trial displacement" may be an "indefinite term," but the weights required by the various governments, to be carried on ships of similar class and design, are not so widely different as to rule out such displacement as a basis for comparison. Furthermore, it is certainly "begging the question" to discuss this point, when the displacements mentioned for the foreign ships are 2,000 , or even 4,000 , tons below ours.
Our department friend mentions the fact that the machinery designed for the new vessels develops only 11 horse power per ton. This is but too true. The "Oregon," designed in 1891, has machinery weighing, all told, $1,009.2$ tons. This developed, on trial, 11,111 horse power, or just 11 per ton. This was with Scotch boilers, and was ten years ago. Has steam engineering stood still during the decade? Not if its status in other lines is any index. The introduction of watertube boilers into warships was loudly hailed as effecting a vast saving in weight. One evidence of this appears on page 253 of "General Information Series," No. XIII., published by the Navy Department in 1894, where the boilers of the "Hekla" and the "Geiser," two Danish cruisers of 1,280 tons, are compared. The official report says:
Another great advantage which the (water-tube) boiler possesses is its small weight as compared with ordinary boilers. This can best be seen by comparing the weight of the boilers in the "Geiser" with the weight of the boilers in the "Hekla." Its ("Hekla") six cylindrical boilers are proportioned to the same horse power (3,000 indicated horse power) as the "Geiser," both ships being of the same type and displacement.

Thus 60 tons, or over one-third of the total weight of the boilers in the "Hekla," are saved in the "Geiser." It is well to note that this comparison is between boilers of the same date.
Another comparison on the same page, between locomotive boilers of 3,500 horse power and Thorny-
croft water-tube boilers of 4,500 collective horse powe (designed for the same class of work) shows weights of boilers and mountings to be 82 tons for the former and 71.52 for the latter; corresponding water weights were 30 and 12.78 tons; total weights, 112 and 84.5 tons. Reducing the water-tube figures to a basis of 3,500 horse power, we have 65.6 tons, a saving of more than 40 per cent over the older type.
Turning to our own navy, we find the "Chicago," completed in 1889, with engines and boilers of 5,000 horse power. In 1896-98 she was overhauled, fitted with new engines and boilers, and now develops 9,00 horse power. Part of this increase is attributable to the substitution of triple expansion engines for com pound engines; but to the substitution of Babcock \& Wilcox water-tube boilers for cylindrical boilers must be credited a large percentage of the saving in weight which enabled her to obtain an additional 4,000 horse power and a considerable increase to her coal supply on the same weight as that before required for 5,000 horse power. This is the result of about ten years' progress. Where is any evidence of this saving in the new designs?
Admiral Dewey's famous flagship, "Olympia," designed in 1889 and completed six years ago, has machinery weighing $1,162.5$ tons, which has developed 17,313 horse power, or 14.9 per ton, and this with cylindrical boilers. The new battleship "Maine" has machinery designed for $16 ; 000$ horse power, and weigh ing 1,130 tons, or 14.16 horse power per ton. This showing will undoubtedly be exceeded on trial. Examples might be multiplied indefinitely, but enough has been said to show that the machinery of the new cruisers does not by any means satisfy reasonable expectations.
Taking 14 horse power per ton as a conservative es timate, we find that for both classes of armored cruisers a saving of from 425 to 450 tons might be effected. This would enable the carrying by each of four additional 8 -inch guns (as suggested by Mr. Hoole, in your issue of February 9), at a weight of 115 tons for guns and mounts, and 90 for ammunition; and would still leave some 225 tons for additional machinery power At the above figures this would mean some 3,000 horse power, or enough to add a knot to the speed of each ship. In case further protection were required for these guns, this would eat up a large portion, if not all, of the 225 tons, but even then the ships would be a vast improvement on the present designs
To those of us who recognize the fact that our astounding victories during the war of 1812 and in the late Spanish war were in very large measure due to the superb guns and gunnery on our ships, the importance of an overwhelming battery is at once apparent, without need of argument. The large amount of ammunition carried by our new ships has been mentioned. This includes 200 rounds for each 6 -inch gun. With due regard to the necessity for an adequat supply of ammunition, yet when we consider the vital importance of striking a first crushing blow, it would seem preferable to have a broadside of (say) 10 such guns, with 120 rounds behind each, than to have guns with the same total amount of ammunition. The chances are very strong that the former battery would disable the latter long before its ammunition was exhausted. In the engagement off Santiago de Cuba the 'Brooklyn". fired 473 rounds of 5 -inch ammunition or less than 40 per cent of the amount above men tioned. The proposed addition of four 8 -inch guns, however, was estimated at the full government rat of ammunition supply- 125 rounds
The department letter says: "The difficulties in the way of strictly true and impartial comparison are extremely great because of the inaccuracy of information as to details of the foreign vessels which is available to any one writing as your correspondents do." I beg to say that all of the data I have used in the above comparisons comes from official reports of the United States Navy Department; and that the data offered in both Mr. Brown's letter, published February 16, and Mr. Hoole's letter, agrees exactly with what I have obtained from foreign official and semi-official sources. The general features of size, speed, battery, and armor are very easily obtainable, with a high degree of accuracy, by private citizens.
These new ships of ours are important, and we can ill afford to have another "Denver" fiasco on our hands. Sidney Graves Koon.

Cornell University, Ithaca, N. Y.

February 18, 1901.

A Disingenuous Request.

We are in receipt of a communication from a correpondent in the city of Boone, Iowa, who sends $\$ 5$ and some sketches of a table he is building, evidently intended for some gambling establishment in that town. A plate of soft iron is located about the middle of the board under the cloth. and electric wires pass up the legs of the table and connect with the plate. By pressure of the foot, or by some similar means, the electric current may be established, and the plate becomes magnetized; the loaded dice can thereby be
manipulated at the will of the operator. The corre spondent has had some difficulty in carrying out his plans successfully, and desires us to assist him in overcoming the defects by specifying "the amount and sizes of wire or ampere turns and size and shape of magnets necessary." We have returned the amount of the bribe offered, and take this opportunity of informing him that we do not care to become an acces sory in his crime, and for any further enlightenment he may require in overcoming his troubles we would espectfully refer him to the Chief of Police of the city of Boone.

Tunis is shortly to have an automobile service for the transportation of passengers over the roads between some of the important localities. Among the projects is a line from Tunis to Bizerte and Medjez el Bab, and from Sousse to Sfax. A syndicate of Parisian apitalists is at the head of the enterprise, and they ave lately sent M. Fernand Dubois, a prominent en gineer, to Tunis in order to study the routes. If the lines which are already projected prove a success they will be followed by others. The speed of the vehicles which are to be used for this service will be about 12 miles an hour.
One of the great races of the season will be the Paris-Bordeaux, which is now being organized by the Automobile Club of France and the Bordeaux Club; he date of the race was announced for the latter half of May, but the day has not as yet been definitely fixed. It is known, however, that the race will in clude four classes of vehicles: 1. Machines above 1,450 pounds. 2. Light vehicles from 880 to 1,450 pounds. 3. Voiturettes up to 880 pounds. 4. Moto-cycles. The price of engagement has also been decided upon; these are as follows: Heavy machines, $\$ 40$; light machines, $\$ 30$; voiturettes, $\$ 20$; moto-cycles, $\$ 10$. The engage ments will be received by the Automobile Club of France and Bordeaux Automobile Club. After the arrival at Bordeaux is to be held an aeronautic fête organized by the Aero Club of Paris.
It is stated that the Belgian army is to be provided with a series of heavy automobiles for traction and the transportation of heavy material; the Minister of War is at present actively occupied with the ques ion. The tractors are to be used in times of wa as well as of peace; in the latter case they will be used for the various services of the army, in the grand maneuvers and for the rear train of wagons. The horses will not all be sold, however, as the Minister has decided to keep a certain number as a reserve in case of conflagration. In times of peace, the automobile will economize 3 or 4 horses, and in time of war 6 horses per ammunition wagon. For each horse the xpense of maintenance is estimated at $\$ 100$ per year, and a considerable economy will result from the use of the tractors. Each machine is sufficiently powerful to draw a load of 3,000 pounds; its cost per hour is estimated at $\$ 0.15$, and as the machines are to be in regular use, it is expected that the cost of purchase will be covered in the first year. If the tractors are well constructed they should make about 10 years of service,
The electric cab system which was organized at Paris by the Compagnie Générale des Voitures has been discontinued. From this it must not be argued that electric cab systems in general are a failure; there is no doubt that in the present case the result would have been successful from a financial point of view if the subject had been more carefully considered be forehand. In the first place, the company, instead of choosing one of the types of electric vehicle which had already made its record at Paris. decided upon an English type which was very heavy and ungraceful in appearance; its chief advantage was that the accumu lators were contained in a box swung underneath the cab and could thus be removed and replaced easily, but this advantage was offset by its many disadvan tages, and it was undoubtedly inferior to many of the French types. The company erected a plant at Auber villiers, in the neighborhood of Paris, at a much greater expense than was warranted by a system which was only in the experimental stage. The plant wa at least three miles from the city, and the cabs wer obliged to make thus an extra trip of six miles a day and over a very bad pavement, taking a consequent amount of energy from the batteries, not to speak of their increased deterioration. The different cause of the failure of the present system may be summed up: Heavy vehicles, of moderate efficiency, accumula tors badly hauled, the capacity reduced by extra trips, waste of energy, and great first cost of plant. From this it will be seen it would have been difficult to ob tain a success. It is to be hoped that this will not discourage electric cab systems in Paris, and that fresh experiments will be made with one of the well-known tynos of electric vehicles, whose construction has been steanily improving. A number of other cities of Europe are installing automobile cab systems, and the results of the trials will be interesting.

new york in 1891，with tall buildings erected in the decade 1891－1901 indicated in dotted lines．

March 2, igoi.

THE KRESS AEROPLANE

The most recent attempt to solve the problem of artificial flight has been made by W. Kress, a German engineer, who for twenty years has patiently labored on an aeroplane in which he has embodied his ideas.
The Kress aeroplane consists of an ice-boat having two keels and a long stem. The keels serve as runners when the machine is traveling over ice or snow. Two resilient sail-propellers, rotated by a benzin-motor in opposite directions, drive the apparatus. Above the boat, arched sails, constituting resistant kite surfaces, are carried, one sail being mounted somewhat above the other, so that it will receive an impinging body of air without interference from the other sails. The aeroplane thus constituted is guided by a horizontal and a vertical rudder, both of which however are used only in flying
Owing to lack of funds the inventor could not equip his air-ship with a benzin-motor of the special construction and power desired, and was therefore compelled to use an ordinary automobile-motor. Thus fitted out the aeroplane was first tried on water. For it is Mr. Kress' opinion that water-trials should first be made in order to ascertain whethe the motor, propellers, rudders, and other parts have been properly ar have been properly ar
ranged and are trust ranged and are trust worthy and perfectly efficient in operation Only when the safety of the machine has thus been proven should aerial flights be taken. The sense of security obtained by numerous water-trials and the in creased speed attained with each trial will finally give to the aeronaut that confidence which will enable him to soar aloft. That mo ment, according to Mr . Kress, may come unawares; the ship may of its own accord leave the surface of the water
So far as the preliminary water-trials are concerned, the Kress

THE VERTICAL GROWTH OF NEW YORK CITY
It is a fact that no one in the closing years of th past century left the imprint of his hand so clearly upon the surroundings and conditions of modern city life as the engineer. If anyone doubts this, we invite his attention to the two accompanying photographs showing the sky line of the city of New York, taken, one at the beginning, and the other at the close of the last decade of the century. In the year 1890 the art of composite steel-and-stone building construction was becoming firmly established, and, indeed, in the city of Chicago, to whose enterprise the development of the lofty office building is mainly due, a dozen or more giant structures, ranging from twelve to eighteen stories in height, were to be found in that year scattered through the business portions of the city. New York, ever conservative in municipal matters, whether it be in electric lighting, electric transit or underground construction, was only commencing in 1891 to erect at the southern end of Manhattan Island those towering structures which, to-day, render this portion of the city one of the most marvelous

THE KRESS AEROPLANE.
able office floor space, and by common consent it seems now to be agreed that the limit of economic height lies somewhere between sixteen and twenty stories.

The two views of the lower end of Manhattan Island were taken from the New Jersey side of the Hudson River, and in order to make clear the extra ordinary height and mass of the new structures, we have indicated upon the sky line view of 1891 in dotted lines the buildings which have been erected subsequently to that date. Commencing from the Battery, we see first the huge western façade of the Bowling Green building, a sixteen-story structure, which had the reputation at the time of its construc tion of being the largest office building in the world, a claim which we believe has not even yet been challenged. On the opposite side of Broadway, and a little further north, is the Standard Oil building, while to the northwest of it are seen the upper stories of the Johnson building. Facing east on Broad Street is the twenty-story Cable building, conspicuous by reason of the rather shapely twin domes which surmount its eastern façade. To the west of the Cable building, fronting on Broadway is the Manhattan Life building, one of the first lofty office structures to be erected in New York city. The dome of the Manhattan Life structure was for several years the home of the Weather Bureau Service in this city, and from its flagpole were displayed the storm and weather signals that nave come to be so highly appreciated by people both ashore and afloat. On the op posite side of Broadway is the magnificent way tw-one story twenty-one story Em pire building, and a lit tle further north, at the corner of Broadway and Pine Street, rises the tower-like pile of the American Surety build ing, whose coping, like

the start of the aeroplane.

the kress aeroplane sailing on water.
aeroplane seems to have met its inventor's expectations. In the presence of an officer of the aeronautical division of the German army, the flying-machine was taken from its housing and carted to a nearby lake. Kress seated himself in the boat and pulled the start ing lever. The propellers drove the machine along at a uniform speed, according to the accounts which have been received. In order to test the maneuvering power of the contrivance Kress is said to have per formed various evolutions and to have succeeded even in making headway against the wind. The steering apparatus seems to have acted efficiently. The motor however, proved inadequate. With a motor of less weight and greater horse power the inventor believes that his flying-machine would be an assured success. Lack of funds may prevent him from car rying out his plan with an improved motor.

The Italian government has purchased the statues and paintings in the Villa Ludovisi. It has Guercino's "Aurora," one of the best works of the master of the decadent schools. The ancient statues are most important, including the Ludovisi "Juno" and other famous statues, busts, and bass-reliefs.
spectacles in the world. Architecture of the com posite steel-and-masonry type has helped to solve posite steel-and-masonry type has helped to solve
the most difficult problem with which New York city is confronted. The shape of the island is such that a business center such as that represented in our engravings has no possibility of enlarging its borders, being shut in by the broat waters of the Hudson and East rivers. If room was to be found for the rapidly multiplying financial interests which gravitate to the district lying between terests which gravitate to the district lying between
City Hall Park and the Battery it could only be secured in a vertical direction by building story upon story and utilizing that free space to whose occupation there was no limit except such as might be imposed by conditions of a structural and operative kind. The limit to the height of these buildings has been determined indeed far more by the conditions of their operation than by any difficulties of a structural kind; since it would be perfectly practical to construct office buildings 500 or 600 feet in height, if there were any advantage in so doing. It was found, however, that the space occupied by elevators became so great, when a building exceeded a certain number of stories in height, as to reduce very seriously the avail
that of the Empire building, is over 300 feet or more above the sidewalk. To the northeast of the American Surety building, and at the corner of Nassau and Cedar Streets, is the National Bank of Commerce building, an eighteen-story structure, while on the opposite side of Cedar Street is a lofty building whose proportions would be more impressive were it not so greatly overtopped by its bulky neighbor. Coming back to Broadway, we see fronting us on th western side of the thoroughfare the stately pile of the Washington Life Insurance building, which can boast of sixteen stories to the cornice, with four adboast of sixteen stories to the cornice, with four ad-
ditional floors in the roof. Opposite this, at the corner of Liberty and Broadway, is the Singer building Looking down upon the venerable St. Paul's churchyard from the opposite side of Broadway is the slender pile of the St. Paul building, whose sheer height of 308 feet would look more impressive were it not en tirely overtopped by that nearby mammoth structure, the Park Row building, whose topmost office floors are 340 feet above the street level, while the top of the cupolas on the two towers lack only 10 . feet of being 400 feet above the same level.

The third view of our series is taken from Grant
wood, on the New Jersey side of the Hudson River, and gives a comprehensive view of the northern portion of Riverside Drive and the vicinity. It is strongly illustrative of the rapidity with which New York city is growing that all but one of the large public build ings shown in this view have been constructed within the last decade, the one exception being the Teachers College, which was erected some twelve years ago Commencing at the right of the picture we see one of the massive arches which will carry the tower over 400 feet in height of the new Cathedral of St . over the Divine. To the north of it is St Luke, St To the north of it is St. Luke's Hos pital, while the imposing pile of buildings in the center of the picture is the new home of Columbia Un versity. To the northwest of the University is Barnar College, and to the north of it Teachers' College and the classic pile of Grant's Monument. At the extreme left of the picture the high ground begins to slope toward the Manhattan Valley, over which the River side Drive is carried by a broad steel viaduct to a high level connection with the Washington Heights beyond. This portion of Manhattan Island may well be called the Acropolis of New York; for by the time the Cathedral has been completed plans for the beau tification of this locality will also have been com pleted which will render it the site of one of the most imposing collections of public buildings in existence.

A SIMPLE DOOR LATCH FOR REFRIGERATORS

In a patent recently granted to Anton Larsen, o 134th Street and Brook Avenue, Manhattan, New York city, a novel latch is described, by means of which a refrigerator-door can be hermetically sealed when in a closed position without effort on the part o the operator. The figures show the positions assumed by the parts in closing and opening the door
Secured to the jamb is a keeper having a keeperpin. On the door a lever is pivoted, formed with a forked or slotted end to engage the keeper pin. A spring presses upon a shoulder on the inner side of the lever so as to hold the lever in an open position and the slotted or forked end, when the door is closed, passes upon the keeper-pin, so that a further closing of the door will cause the lever to turn on its pivot, owing to the engagement of the pin with the slotted end. When the lever is swung during the closing of the door, the spring is compressed; and when the door has moved nearly into a final closing position, the spring presses on the lever and by its tension close the door hermetically without the aid of the operator. Thus the spring has two functions-to hold the slotted lever in proper position to engage the keeper-pin and to force the door finally to its seat.' In opening the door. the handle is grasped and swung outward, so as to compress the spring until the lever has passed a central position. The door is thus partly opened by the bearing of the lever against the keeper-pin. On a further outward pull on the lever, the door finally swings open, the slotted end leaving the keeper-pin and remaining in position by the action of the spring.

The door-lock is simple in its construction, and herefore cheaply manufactured.

It is stated that Marconi has at last succeeded in solving the problem of transmitting telegraphic messages by his system across great distances. From the results of his experiments which he has just completed, he hopes to be able to place Great Britain and America in communication by this means before the lapse of another twelve months. The high mast which constituted the most important difficulty which militated against the realization of such an accomplishment has been solved. The masts now will not be more than 200 feet in height. Marconi has discovered a process by which he can lengthen the waves to any desired extent, and they will travel the full distance without losing their potentiality to any appreciable extent. The waves travel close to the surface of the
water, thus smoothly following the curvature of the earth. Particulars regarding the new apparatus by which Marconi has achieved this end are not yet ob tainable, owing to the patents not having been secured, but Marconi is optimistic of the complete practicability of the scheme.

A TRIPLE-JAWED PIPE-WRENCH

A perfectly uniform grip on a pipe without marring or indenting the metal cannot be attained with every pipe-wrench. But in the device illustrated, the in ventor, Mr. Christoffer Peterson, of Los Banos, Cal has provided the necessary means for securely gripping the pipe without the usual attendant disadvantages mentioned
In the threaded stock of the wrench a spring-pressed pivot slides, on which two main jaws are mounted to turn. By reason of the sliding movement of the pivot,

THE PETERSON THREE-JAWED PIPE-WRENCH

the jaws can readily grip large and small pipes. The two main jaws are actuated by a slide in which a nut turns, having cut-out portions whereby it can be dis engaged from the threads of the stock to permit the free movement of the slide and nut on the stock. By means of pins on the nut, the cut-out portions can be brought in register with the threads on the stock.

In order to engage the pipe midway between th gripping points of the two main jaws, a third, aux iliary jaw is employed, which is held in place by a tongue engaging an inclined groove in the stock. Springs, adjustable in tension by screw-caps on th stock, press against the tongue at bottom and top.
When the three jaws engage the pipe and the handle of the wrench is swung in one direction, the pipe is turned. On the return swinging motion of the handle. the three jaws glide over the pipe without gripping, to permit a fresh hold to be obtained. The auxiliary jaw readily adjusts itself on the pipe to take up any slack in the main jaws, so that the three jaws operate in unison and bear at different points to prevent undus marring or indentation

AN IMPROVEMENT IN CAPSULING-MACHINES

In order to cover the stoppered ends of bottles an jars, soft-metal caps are used, which are affixed to the neck by machines of special construction. An improved and highly efficient machine of this type has been devised by Eli D. Harrington, of Westfield, N. Y
To the base of a substantial frame a stationary jaw is firmly secured, which coacts with a movable jaw. Both jaws are provided with rubber gripping surfaces The movable jaw is carried by a lever fulcrumed in the frame, and is normally spring-pressed to open the frame,
jaws.

Movement is imparted to the lever by means of a shaft mounted in the upper part of the frame and pro vided with an eccentric which, by means of a ball and socket connection, actuates the lever and consequently the jaw. The ball and socket connection, it is evident, readily accommodates itself to the swinging movement of the jaw. The connection is, furthermore, adjust able, so that the movable jaw can be pressed more or less in contact at its side edges with the fixed jaw.

By reason of this adjustable connection the jaws can be set to accommodate the bottle-neck; and by reason of the ball and socket, the cap is properly pressed around the bottle-neck.

Edward Tregear, of Wellington, N. Z., sends an interesting letter to The Spectator, which we quote in full:
A fish of curious habits exists in New Zealand, and as it has apparently hitherto escaped the notice of naturalists, you will perhaps admit a brief account of it. The fish is called by the Maories the kakawai. Its habitat is very extensive in the North Island, and it may be found on the Wairarpa Plains, the FortyMile Bush, etc. It is generally discovered when a man is digging out rabbits or making post-holes in the summer-time, and it lies at a depth of a foot or wo feet under the soil. The character of the soil, whether sandy or loamy, does not seem to matter. The fish is from two to three inches long, silvery, shape like a minnow, but rather more slender and tapering.

It appears to be dead when exhumed, and if dug up in the summer, and put into water, it dies at once. If, however, it is brought to daylight in May or early June (the end of autumn), when the rains are beginJune (the end of autumn), when the rains are begin-
ning to make the soil thoroughly wet, and put into a tub of water, a curious thing happens. After a day or two it casts its skin, which sinks to the bottom, and the fish plays about, bright and lively. When dug up in summer, there appears to be a growth of skin, or perhaps of a dry, gummy exudation, which seals up the head and gills. Apparently this enables it to æstivate through the dry weather, and seals the fish as an Indian fakir is sealed up before he goes in for a long fasting burial. Of course, in winter there must be marshy spots or pools in which the fish can swim and propagate, but often all evidence of such natation disappears in summer, and the hot, dry, waterless plain seems the last place on earth in which to find a fish. When the skin is cast off, vivid little spots of red appear on the body, so that some people have said that the fish is a small trout. This is not the case (although they are now used as bait for trout) ; the kakawai was well known to the natives ages before trout were introduced from England; well known, although the name by some chance has been missed in making the Maori dictionaries, just as naturalists have missed noticing the fish.

The Building Edition for February

The Building Edition for February is the most important number of this handsome magazine which has ever been issued. It is the first number to contain the new features to which we referred in our last issue. In addition to the usual collection of interest ing houses, we present several views of the Architectural League Exhibition, now in progress, and also a number of rooms arranged particularly for exhi bition purposes by a well-known establishment. The literary contents includes, in addition to editorials, an interview with Bruce Price, Esq., architect of the American Surety building. This interview is most interesting, and the information conveyed is entirely new. "Notes and Queries and Correspondence" and "New Books," "New Buildins Patents" and "Technical Review of the Month" are a few of the new features The number is as handsome as it is readable.

The Current supplement

Among the interesting articles in the current issue of the Supplement is "Dock Equipment for the Rapid Handling of Coal and Ore on the Great American Lakes," an elaborately illustrated article of which this is the first installment. "Foreign Locomotives at the Exposition of $1900^{\prime \prime}$ is accompanied by seven engravings. "The World's Pig Iron and Steel and America's Supremacy", gives a graphic representation of the proSupremacy" gives a graphic representation of the pro-
duction of steel by the principal countries from 1873 duction of steel by the principal countries from 1873 to 1899. "Some Links Between Natural History and Medicine" is by J. Arthur Thomson. "Progress of Agriculture in the United States" is by George K.

A NEW CAPSULING-MACHINE.
Holmes, of the U. S. Department of Agriculture. "The Optics of Trichromatic Photography" is by F. E. Ives "Model System of Water Works" is by F. O. Jones, and describes the system which is within the reach of th smallest towns. The usual "Trade Suggestions from United States Consuls" and "Trade Notes and Receipts" are published.

RECENTLY PATENTED INVENTIONS. wheel attachment.-Edward C. Fr maux, Rayne, La. Wheels of machines used
in rice-fields are usually provided with lugs to grip the soft, muddy soil. These machines when drawn over hard roads or ground, are
jarred so much that injury may result. jarred so much that injury may result. The such wheels to overcome this difficulty. The such wheels to overcome this difficulty. The
inventor surrounds the periphery of the lugged wheel with a band of novel construction which enables the machine to be drawn over hard ground as readily as any ordinary wheeled ve hicle.
SUB-SOIL ATTACHMENT FOR PLOWS.hobert T. Miller, Decherd, Tenn. The suboinary plow, whether it to to almost any or dinary plow, whether it have an iron or wooden
beam, or whether it be a right or left hand low. The sub-soil attachment consists of ong standard having a blade fixed at it lower end at right angles. A bent brace pivoted at its lower end to the lower part of he subsoil standard, is extended up to th rear of the standard and provided with series of holes. A right-angular bracket
bolted to the brace and to the lower side of bolted to the brace and to the lower side of an be changed by bolting its upper end in any one of the holes in the brace.

Mechanical Devices

Stopiring device.--Williant Finn, Man hattan, New York city. The object of this invention is to provide a device for use in
factories and mills to stop the machinery in particular part of a building when an accident occurs. The stopping device comprises a carriage on which is a belt-shifter to shift
a belt from a fast to a loose pulley. Travel ng motion is imparted to the carriage by screw-rod, driven by an electric motor. The ircuit of this motor is closed by the at notor and impart a traveling motion to th arriage to shift the belt. A signal and alarm evice is controlled by the carriage to giv signa
bottle-washer.-Eaill Kersten, Rich mond, Va. The machine is designed for soak ing and sterilizing bottles and consists of a nd a wheel mounted to turn and adapted to supports on the face of the wheel are a ranged at an angle to support the bottles to be soaked and sterilized. While on the supports the bottles are warmed and tempere yfter leaving the liquid the heated liquic in a moist or wet condition by sprays in orde reduce the temperature The wheel is sec tionally constructed so that it can be trued by bolts or nuts.
windlass.-David B. Conclin, Highland, Ky. This windlass is designed for use in coop erage and particularly in tobacco cooperage.
The inventor has provided a device of great The inventor has provided a device of great
strength and simplicity, which is adapted to trength and simplicity, which is adapted to ail kinds of cooperage. The rope and stick now commonly used to twist the joints to-
gether are dispensed with. Simply by turning a handle or releasing a pawl the operator is enabled to tighten or loosen the work. The evice reduces the labor, since it holds the work just where it is desired.

Vehicle accessories.

anle-box.-Andreas katona, paul Varga, and Johann Krompecher, Buda-Pesth, Aus tria-Hungary. The usual axle-journal of rail way cars is modified so that its front disk is removed and a separate sleeve mounted on the
journal. For its major portion the sleeve is journal. For its major portion the sleeve is
of simple cylindrical shape to give the axle of simple cylindrical shape to give the axle
increased thickness at its bearing surface. The sleeve is shrunk on the journal. In order to provide a new wearing surface it is necessary erely to renew the sleeve
extensible axle.-Perley w. Carney, Portsmouth, Va. Since crops have different intervals between the rows or hills, the width between the rows of one crop does not corre spond with the width of another; hence the
desirability of a vehicle which can be adjusted desirability of a vehicle which can be adjusted to the various spacing of rows down the growing crop. For his purpose Mr. Carney employs a vehicle-axle comprising a bolster having along its edge a
strip of metal provided with fulcrum seats or ockets, and two metal axle sections provided with bearing-notches for a tool along thei dgeses or clips the fuld the parts strip. Clamping justed position. The invention cother in a sentially an extensible axle.

Miscellaneous Inventions.

ASSAYing DEVICE. -- Archibald Campmain purpose to provide a sand or ore assaying device which can be conveniently carried in the pocket, and by means of which an assay can be
made with very little water. The assaying deice comprises a bottle-shaped receiver, with rif fles on the inner side of one of its walls. The riffled wall is provided with an opening having
a removable cover. By rocking the device back and forth, the heavy part containing the gold sinks to the bottom, and the water and sand How out at the open end. The crushed ore
or sand remaining in the device is then allowed
to run down, and is evenly distributed over the
smooth side, where the particles of precious metals may be easily distinguished by breciouk ing through a magnifying or a plain glass ormed in one wall of the device.
FIREBOX FOR BOILERS OR FURNACES. -George Chantler, Chicago, Ill. The coal is retained at a point near the front of the has been exhausted. Air is freely supplied o this mass of coal in such a manner that the best possible results are obtained. The bed of coal is supported on an inclined support, so that the coke can pass down to the ower point of the inclined support to be sup
olied with oxygen in order that it may be fur ther consumed. The waste gases are conduct ed from the firebox to a point below the sup port for the fuel and out through and beyond the structure
Nail-GRIP.-Hasbrouck Alliger, Kings-
on, N. Y. When nails are driven with their eads flush with nails are driven with their hammer cannot be used to withdraw them. The purpose of this invention is to provide mean whereby such nails can be readily withdrawn The nail-grip used has two pivoted section, spring tends to push the jaws apart, and thumb-screw works with the sections oppositely to the spring. The device is to be used in

SPIKE. - Thomas J. W. Hick, Victoria,
B. C., Canada. This railway spike comprises wo diverging shanks located in the same plane. he upper ends of these shanks are connected fush with the shanks. A lip projects from the front of the head. The under surface of the head and the lift are inclined beveled from the front edge of the lift to the rear face of the head. The diverging shanks enable a perfectly tight fit to be obtained in the wood. Consequently moisture is not liable oo enter at the shank, and untimely decay driven home, the shanks do not tear spre driven home, the shan
the fibers of the wood.
pencil-holder.-James f. Call, Felchville, Vt. The invention combines a holder ordinary lead-pencil and a rule to measure ac curately and quickly the thickness of lumber
or other materials. The invention is chara erized by the simplicity of its construction WINDMILL.-Thomas S. Barwis, Vancou ver, B. C., Canada. Mr. Barwis has devised simple and effective construction of whee adapted to be operated by either wind or wate in his minl, salls or wings are employed mounted that they automatically feather and water, and offer the least possible resistance when in the wind or in line with ebbing or discharged water
AUTOMATIC CUT-OFF VALVE FOR GASES.-Ralph E. Vail, Mount Vernon, Ohio. provided with an inlet communicating with one nd of a cylinder provided with a peripheral perture. A piston fits in the cylinder tightly and is movable beyond the aperture, so that ne latter will be between the piston and tine aperture leads into a connecting
inlet chamber provided with an outlet. A valve controls the outlet; and between the piston and the outlet valve is a tripping connection. By his means the supply of fluid can be regu ated and its free flow insured as long as it is under pressure. But as soon as the pressure ceases the flow is at once shut off. Whe the pressure returns the valve must be moved
off its seat with the hand.
ANIMAL POKE.-WILhelm Specht an Dietrich Tieken, near Clear Springs, Texas
To prevent cows from tearing down fences the inventors have devised a poke comprising a body portion, at the front end of which the poking device is carried. A pin is carried on the under side of the body near the front; and yielding protector is arranged under the ofyy at the pin to hold the pin normally out instant that pressure is applied to a fence the animal is pierced by the pin.
COMBINATION KEY AND AUTOMATIC STOP-COCK.--Charles T. Randall and Edward G. Holden. Dallas, Texas. The purpose of this invention is to provide an automatic
arrangement for cutting off the water supply from hydrants when the temperature falls below the freezing point. To this end the inventors employ a device for actuating a cut-
off valve, which device is controlled by the expansion and contraction of metals.
CUFF-HOLDER.-ELbert
CUFF-HOLDER.-Elbert F. Hawkins, of spring metal, and is so simple in its con struction that it can be cheaply manufactured. easily applied, and arranged to hold the cuff
in a desired position relatively to the sleeve.
FISHING Divice wian W. Dwigan
arkadelphia, Ark. This invention provides novel attachment for a fishing-rod and line, which insures the hooking of a fish when the with the pull of the fish on the line sounds his fish.
shoelace fastener.--Hengy A. Frye Manhattan, New York city. The fastener for shoelaces comprises a tubular body provided
with holding prongs at the center of its bot-
tom, and a longitudinal slot at the top of the
body extending from one edge. The prongs body extending from one edge. The prong
are driven through the leather and are then bent or clenched. The upper end of the slot is placed outwardly. The lace is passed is thus clamped in place sufficiently to resi he ordinary pulling strain to which it is sub jected.
in place.
mattress-support.-Charles L. Fried ERichs, Hancock, Mich. In some sleeping-car the ordinary cushions of the seats. The mat edges of the cushions. To overcome this objection a mattress-support is shown in this patent, which comprises a flat board placed over the meeting edges of two adjacent cushions, so as to form a kind of brige between the point.
plumber's appliance. - Herbert N Kirk, Keene, N. H. The invention seeks o clear the passages of sinks and bathtubs of solid matter. The device comprises a tap ering nozzle, on which a yielding sleeve fitted. A yielding washer is removably se cured to the end of the nozzle adjacent to ted in the end of a nozzle and is inserted in the discharge opening. By turning on water charge-pipe.
CLASP AND BELT-HOLDER.-Dr. WIL tan W. bruce, 1307 West Fayette Street, Bal timore, Md. The inventor has devised a elt-holder for out the invention a main plate is provided hav ing keepers for a belt ; a clamping plate on on waist and main plate for securing the shi plate on the opposite side of the main plate which lever operates the clamping-plate and also forms a cover for the belt.

Designs.
DESIGN FOR SILVERSMITH'S STOCK.The leading features of the design consist rococo scroll and fuchsia flowers.
Paper CliP.-Charles W. Mowen, Plai field, N.J. The body portion of the paper-clip as opposite members longitudinally curved and joined at the top. The lower ends are turned
inwardly and rearwardly and are connected with a twisted tang, having a longitudina
curve reverse to that of the body members and terminating in a ring or eye. bottle.-Moritz Rheinaler, Manhattan New York city. Mr. Rheinauer has devised a pocket-flask divided inate outlet or neck. Th three necks are each provided with independent caps. Three different kinds of liquids can be carried in a flask of this construction
box-blank.-Carl Evgberg, St. Joseph, Mich. The designer has devised a box-blank which can be folded so that the parts interlock form a strong box
BUTTON. - John D. Phillips, Milford, Mich. The button is to be used in tying fodder
and is fastened on the end of a cord which and is fastened on the end of a cord which
is wrapped around the bundle and then held by winding it beneath the button. An end slit in the button and a face depression at the inner end of the slit receive a knot on the end of the cord.
LEATHER CHATELAINE-BAG. - Louis provides a circular formation of the side faces of the bag; a semi-circular gusset at the bottom and lower side portions of the bag; welts for the gusset and its junction with its portion of the bag; and inclined surfaces where the ends of the gusset meet the frame.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each.
Please state the name of the patentee, title of the invention, and date of this paper.

NEW BOOKS, ETC

The Story of Nineteenth Century Science. By Henry Smith Williams. Illustrated. New York: Harper \&
Brothers. 1900. Pp. 475. Price $\$ 2.50$.
The story of nineteenth century science is a well-written, lucid account of what has been done in the past one hundred years and what The chapters are each devoted to just begun branch of pure science, and set forth the deve opment of that branch from its condition a day. The of the 18th century to the present opment of mathematics during the century may perhaps be attributed to the impossibility of presenting the subject to the average reader tions.
Technologisches Lexikon. Handbuch für alle Industrien und Gewerbe Uebersicht der gesammten Technologie der Jetztzeit, zum Gebrauche ur Treibende. Kaufleute u. s. w. Unter Mitwirkung von Fachgenossen redigirt von Louis Edgar Andés. Parts

Business and Personal WUants.
READ THIS COLUMN CAREFULLY,-You will find inquiries for certain classes of articles facture the consecutive order. If you manusend your name and address to the party desiring the information. In every case it is necessary to give the number of the inquiry. MUNN \& CO.

Marne 1 ron Works. Chicapo. Catatogue ree.
Inquiry No. 56. - For manufacturers of plow
Inquiry No. 57, For shops that cut or stamp steel
Water wheels. Alcott \& Co., Mt. Holly, N. J.
Inquiry No.
ments other than stone. - For manufacturers of monu-
Everlasting monuments of white bronze made by the
Philadelphia White Bronze Monument Co., Philadelphia, Pa.
Inquiry No. .59.-For manufacturers of appliances
for light mining such as gold pans, portable smelters,
etc.
, Buton Co., Waterb'y,Ct.
cient writing duplicators.
Ten days' trial given on Daus' Tip Top Duplicator
Inquiry No. 61.- For manufacturers of special
lathes or machinery for turning axe handles, pick
handles, hammer handles, etc.
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St.,
Inquiry No. 62 . - For manufacturers of centrif-
utal sand pumps.
Inguity No. 63. - For manufacturers of machinery
Rigs that Run. Hydrocarbon system. Write st.
Inquiry No. 64. - For manufacturers of coffee
A fine line of coffee mills manufactured by Logan \& Strobridge Iron Company, New Brighton, Pa.
Inquiry No. 65.-For manufacturers of motor bicy cles.
Automobiles built to drawings and special work done promptly. The Garvin Machine Co., Spring and Varick Inquiry No. 66.-For manufacturers of gasoline Palmer Brothers, Mianus, Conn. Gasoline engine
 The celebrated "Hornsby-Akroyd" Patent Safety Oil chine Company, Foct of East 13sth Street, New York. Inquiry No. 68. - For manufacturers of hoisting
machinery and tools suitable for building purposes. For hoisting engines, J. S. Mundy, Newark, N. J.
Inquiry No, 69. - For manufacturers of matchThe best book for electricians and beginners in electricity is "Experimental Science," by Geo. M. Hopkins.
By mail. $\$ 4$. Munn \& Co.. publishers. 361 Broadwar. N. Γ. Inquiry No. 70.-For manufacturers of machinery
for making tooth-picks. For woodworking machinery of all kinds, The Fay \& Inquiry No. 71.-For manufacturers of machinery ng candles.
for catalog
 Turbine Water wheel catalogues on application to Inquiry No. 23. - For fluoring mill boilers and
engines. engnes.
Wanted-Revolutionary Documents, Autograph Let. ters, Journals, Prints, Washington Portraits, Early
American Illustrated Magazines. Correspondence Solicited. Address © A, M. Box 773, New York.
Inquiry No. 4 .
Inquiry No. 7.5.- For manufacturers of small Inquiry No. 76.-For the manufacturers of an ap-
paratus for heating water for bathroom use to be
heated by gasoline or kerosene.
 Cortlandt street. New York city. Wanted by party who
has oneof their engines and desires repaiss.
Inquiry No. $78 .-$ For manufacturers of roller bearInquiry No. 78.-For manu facturers of roller bear-
ing and ball-bearing for wagons and carriages. Inquiry No. 99.-For the address of the Conti-
nental Manufacturing Company, perfumers. Inquiry
iron houses. lnquiry No. N1. - For information
handling steel by the Tropanis process

 cinairy no. si.-ror manuacures or soemios

Inquiry No. 9\%.-For a manufacturer willing to Inquiry No $\mathbf{9 3}$. For a manafacturer of slicing
machines for making potato chips. Inquiry No. 94.-For manufacturers of cigar cut-
ters to complete smoking sets. Inquiry No. 95.-For manuf
leather tufts for mattresses. etc.
Inquiry No. 9 角.--For manufacturers of complete
brick-making plants with a capacity of about one milThe latest brick-making machinery can be had from
Henry Martin Brick Machine Manufacturing Com-

HINTS TO CORRESPONDENTS
Names and Address must accompany all letters or
no attention will be paid thereto. This is fo Referene insormatotion to form articles or or answicats shon.
date of pald give quiries not answered in reasonable time should be
repeated;
soorrespondents sile bear in mind that soone answers require not a little research, and
though we endeavor to reply to all either by
thoter Buyers wishing to purchase any article not adver
tised in our colunns will be furnished with
addresses of houses manufacturing or carrying the sames.
thenses manufacturing or carrying
secial Written Information on matters of persona Special Written Information on matters of personal
rather than general interest cannot be expected
 inerice. sent for examination should be distinctly
marked or labeled.
(8071) C. F. S. asks: In talking in a telephone, how does the sound get from one
end of the line to the other? Does the sound travel or does it not? A. The sound is not other. Sound waves strike the diaphragm of a transmitter, which vibrates under their impact. These vibrations cause an electric current to
vary in strength. This current flows to the rewich varies just as the current varies. This auses the diaphragm of the receiver to vibrate
just as the current fluctuates, that is, just as he diaphragn of the transmitter vibrates The vibrations of the diaphragm of the receiver set the air into vibration. This strikes
the ear, and is changed into sound by the

(8072) J. McG. R. writes: A claims

 that a watch movement with ordinary stee a steel case, either open face or hunting, can be held in the field of the most powerful ynamo or motor, without the movement be will you kindly let me know why the steel fact will you kindly let me know why the steel cas to surround a watch movement with a steel rom external magnetism. The steel would be come permanently magnetized in the field of the ynamo or motor, and would then affect the teel springs of the watch. The usual protec because it cannot be permanently magnetized. ron presents very little opposition it far pas than air or any other substance presents. When the iron-cased watch is placed within a mag netic field, the lines of magnetic flux leave the re the the then. The, works of the watch inside do not enter the hey must traverse air in its iron case, since ovement is thus screened from the magnetism the dynamo. For complete protection th creening case of iron should be of greate Iron is the only substance known which can(8073) D. B. T. asks: Does the atent heat of a solid vary with its temperature? A. No. The latent heat of a solid is is not given to the solid except at the tem perature at which it melts. When a solid-i heated to its melting point, its temperature is spent in changing the condition of the solid the liquid. A solid has no latent heat. It liquefied by heat, and this heat bocome atent. The term latent is going out of use it is no longer found in the best text-book e simply say the "heat of liquefaction
(8074) F. P. asks: 1. Would it be pos Sible to run the electric motor in Supplemevt
No. 1195 for say 120 miles by putting in extra ells? A. We do not think it possible to run ens for 120 mie under ordmary road cond does it take to charge the cells in Supplement Several hours, 3 Would eithe of these motors be able to travel the roads just fouth of Lakes Erie and Ontario at all seasons disadvantage during the muddy season in th pring.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending

FEBRUARY 19, 1901

ANDEACHBEARINGTHATDATB.
[See note at end of list about copies of these patents.

	${ }_{668,}^{688}$	
omobile boil		
		Food ${ }^{\text {Foding }}$
Batery contact, elec		
Battery plate, storage		Fur
	68	Furni
bottoms, mackine for making		
cle botom bracket A. Weedili.i. 6		
clee saldele post ard pump, J. H. Rast.: 6	${ }_{668}$	${ }_{\text {Gas }}$
${ }^{\text {Bililiard }}$ cue, J ,		Gas yen
Block. Boilee cee cleaner, Wulley		
trim		
Bottle stopper, J. Harris................ 6		
(eashing machue, Jihayser........: 6		
atamin for		
6		thereto, W. O. Bailey Grinding machine, ball, R. \& L........ Schulze...
		ca
		на
6		
6		
Cameras, multipiving plate holder for, F. J		
can exhausting and testing machine, I. .\%. 6		
6		
washing mac celing and p		
		Horse de
		Horse ral
Car brake		Horsestoe
L. Stev		
		Ho
coupling, B. F. F. Neeil.............. 6		Hub faste
Car,		,
		Russel1 1 vernead wires, machine for, 0 .
sition, for rendering, \mathbf{N}. V. Randolph.. ine pocket, A. R. Belt		Insuluting support for electrical conductors,
		Iron ore and making same, brick fiom,
	$\begin{aligned} & 668, \\ & 668, \\ & 68 \end{aligned}$	
ins.		Jen
		Kniting machine attachenent, F. B. wild
Chair back support, adjustable, J. Luppino.. 6 Chair foot rest, C. F. Streit............. 68	668,2	Knittan machine take -up mechanism, F :
Hice Hei	$668,352$	Knob and bell, ${ }^{\text {a }}$
Stere, device for		
		xyg
Clasp.		
See Ritte		Last,
ee Cartr		Letter
	668,	Leverage p
friction, carboys, etc., comp		
e, apparatus f		
Coking furnace, P. B. Elikins	${ }_{668}^{668}$	Looging venicle st
Convesor, Korth \& ¢arriti.................: 6	$\begin{aligned} & 668, \\ & 668, \end{aligned}$	Loom shutte
		Lumber
Copying pad,		
	668,584	
		${ }_{\text {Mal }}^{\text {Ma }}$
C. Andrews.		
Cotton yin, w	668,47	Mateb machin
		Matches, macha
ne hook,		
	${ }_{668}^{668}$	Metal ben
Curtain		Metatlict white
pit		
ter head,		
	668	Milk amd obta ining same, cond
orative f H		
tal chair seat raising		$\xrightarrow{\text { Mine }}$ (uorn
		Min
Dish pron, M. C. Fram Fox. Hioughy \& Fischer 6		
kt		Mole
\cdots		
		Mo
6		Mowinq M
and		Musical instruments, dameer de
tester, '(.it S . Jowell.		hanical, Wacker \& Boc
ric circuit testing		
light for show windows, s. Hirsh lighting anparatus, A. J. Wurts.		
ctric		
Ele		
Sive engine, S. M,	668,33	
t matter and glue,		
$\mathrm{t}, \mathrm{I} \text { I }$	668,27	
Fence truss Ferruginous		
		Ph

Tells About Tools

SIMPLICITY
ECONOMY

OLDS MOTOR WORKS, 1328 Jeff. Ave., Detroit, Mich ARMSTRONG'S NO. 0 THREADING MACHINE

1

TRADE MARKS.シ

LABELS.

 PRINTS.

"Profitable Poultry Keeping

 PERFORATED METALS
FOR ALL USES. MADEAS REPURED
HARRINGON KING PERFORATING C.CHBCBGO:

VŪE®S 10 DAYs' TRIAL
 DAUS' TIP TOP FELIX DAUS DUPLICAIOR CO., 5 Hanover St., NewYork
 STEDS DATTONS SUN PROOF PAINT

 MALRATHGAS\&GASOLINE

 Neat in iesign, simp le in in onstruction, economical in operation, seelf.
 ELEVATING - CONVEYING
POWER TRANSMISSION MACHY
COAL WASHING MACHINERY
 GAS and GASOLINE MARINE and STATIONAR
 Cliflow Mor part Works.
233 . Clifion Ave. CAUSE OF OF OMINOSTY IN THE

 Economical Gas Engine Igniters

 hars been pur besthasing omers are those who
starm the time we
stau direct finess 15 years ago. We sell to

 quarters when visiting Cincinnati. It will be a pleasure for us to show you through, wouther roin

THE WILBER H. MURRAY MFG. CO. los. 323 to 329 East Fifth Street, CINCINNATI, OHIO.

"PERFECT BRAND" Asphalt Ready Roofing.

 Also a full line of our one, tin or shingles. t thee ply Asphatt
twd Coal 'Tar Rootings. THE CORK FLOOR AND TLLE CO.
139 Congress PHYSICAL AND SCHOOL APPARATUS TOEPLER HOLTZ
SELF CHARGIN MACHINE For school, Colleg
Circular free.
E. Circular free.
B. RITCHIE \& SONS,
Brookline, Mass.

American Sheet Steel Company Battery Park Building New York
Manufacturers of all varieties of Iron and Steel Sheets
Black and Galvanized
Plain and Painted
Flat, Corrugated and
" V "' Crimped
Apollo Best Bloom Galvanized Sheets W. Dewees Wood Company's Planished Iron
W. Dewees Wood Company's Refined Iron
Wellsville Polished Steeel Sheets

Powerful, Responsive. "The Reeves" Variable Speed

Countershaft

 REEVES PULLEY CO. COLUMBUS. IND,, U, S. A.

METHODS AND INSTRUMENTS USED

Towners of Horses

- Everywhere

NOTICE:

Conveying an offer probably never before
paralleled in American horse matters.

\rightarrow OME:

The new composition of rubber specially invented for horse shoes by the Goodyear Tire Rubber Com any, is the most remarkahe rubber product ever created. This recently perfecte naterial is destined to prove one of the most useful productions in the world. It is put out by this concern in shoe pads called the Goodyear-Akron. This shoe is undoubtedly the greatest im provement the world has ever evolved for the benefit of the horse. Do not consider this exagger ation before you realize what is meant by it.

Relief to the feet on an economical basis is now in a practical way made possible for an horses.

The Goodyear-Akron Shoe Pad is cheaper than steel shoes. It wears longer than any stee shoe ever put on the horse. It is a neat HORSE SHOE-not a "pillow" or clumsy contrivance They make slipping impossible. Balling with snow is also prevented.

They deaden the jar which so soon bows the knees or disables the horses of to-day on the modern hard roads. They keep him always "on soft ground." His footing on any road is alway firm and confident. He strikes out free and fearlessly. They improve his action beyond possible belief until you see it. They are a complete, unqualified, triumphant success.

OUR *******
REMARKABLE
OFFER $* * * *$
It is doubtful if an article put out by a large responsidle concern was ever before pre
the public with a proposition equaling this:
Send us your horse-shoer's name and have him send for a pair of the Goodyear-Akron Rubber Shoe Pads and try them on front or hind feet of your prices to you.) If, afterward they are not considered simply a boon to both horse and driver and a very great economy in shoeing bills-and a thing you wish never to be without, we will promptly refund full cost of same

THE GOODYEAR
TIRE \& RUBBER COMPANY,

Carroll Street, Akron, Ohio.

ree book, "Horse Sense on Horses Feet." It's dollars in the pocket of every horse owner wh eads it. Sent free on receipt of your name and addres

Upon the Specially constructed
Twin screw
cruisising Yacht Prinzessin Victoria Luise."
st CRUISE.-To England, Ireland and Scotland, leaving Hamburg, May 23rd. 1901 . Very Duration of trip 21 days. Rates from $\$ 137.51$ per adult, upwar
2d and 3d CRUISE.-TO Norway and the North Cape, leaving Ham burg. July 2 and July
25th. Hond interesting itinerary-beautiful scenery.
per adult, upward.
4th CRUISE.-TO the Baltic and the Principal Cities of Norway, Sweden, Russia
 Rates from 150.00 upwars

 shining at midnight.

In refer ence to connecting steamers from New	
fork for the cruises of the yacht starting	Also the regular sailings to Plymouth (London),
from Hamburg. and further information	Cherborg (Paris) and Hamburg by Twin

HAMBURG=AMERICAN LINE

EAGG工E Acetylene Generators ARE PERFECT.
Over 10,000 Machines Sold.

Send for prices.
Handrometry illustrat catalogue
District Representatives all oveI
EAGLE
GENERATOR
COMPANY, 319 N. 4th Street,
St. Louis, Mo.
ACETYLENE APPARATUS

Makes The Lawn Beautiful.

HARTMAN STEEL ROD LAWN FENCE
 Box HARTMAN M'F'G CO. Box 69, Room 99, 309 BROADWAY, NEW YORK. If you want the best CHUCKS. buy Westcott's

Lathe Chucks, Geared
Grmbination Lathe Chucks, Plain Universal Lathe
Chucks, Indendent LLathe Chuks. Made by
Westcott Chuck Co., Oneida, N. Yi,

ROOF YOUR OWN BUILDINGS Warren's Natural Asphalt Stone Surface Ready Roofing.

Warren Chemical \& Mig. Co., 85 fulton St., New York.
THE ORIGINAL AND GENUINE ::

ate livin A keep white. They go to all parts of the Globe. Write for Catalog. We want Agents Windsor Collar \& Cuff Co. Windsor, Conn.

KROMSKOF
Color Photography
Nature's Reftex! "It seems a amost a miracle!"
"The the already long list of marvesous deviees which
will come into common every-day use must be adcied
 IVES KROMSKOP COMPANY, Incorporated,
1324 Chestnut Street. Philadelphia.

SENSITIVE LABORATORY BALANCE By N. Monroe Hopkins. This "built-up", laboratory
balance will weigh up to one pound and will turn witha
bat

 SEND 2c. STAMP FOR VIEWS OF NEW YORK

Photographs made of Models and Machinery. 15\% Fulton St. and 212 Broadway, New Lorko

ELECTRICAL ENGINEERING TAUGHT BY MAIL． CAN I BECOME AN ELEC TRICAL ENGINEER

PSYCHRATISM

The New Discovery of the Age． THE VERNON ACADEMY FREE OF CHARGE

 an．It is absoultely FREE．Address
VERNON ACADEMY OF MENIAL SCIENCES．

Genuine Japanese Silk Letter Press Copy Books．

BICYCLE TIRE REPAIRING．－THE

STEEL PENS

 best－known pen in the world． Works，camden．N．J．THE ESTERBROOK STEEL PEN CO． 26 John St．，New York．

ZJde have an Inquiry for Your Goods

 by the hundred that come pouring into our office dailyRead the＂Business and Personai duant＂Columns． There you will find inquiries numbered．Read them carefully every week，and if you can furnish the goods required，write us at once，GIVING THE NUMBER OF THE INQUIRY every time，and we will put you in communication with the parties desiring the information．You may get an order or many orders by simply read ing our Business and Personal Want Columns every week．

DRILLING Machines dover sizes and styes．for drilling either deep or
shallow well
in an v kind of soil or rock．Mounted
 ocke Moupted
or herse ountrs
menanic ean WILLIAMS Sor catal Ithac g， $\mathbf{N} . \mathbf{y}$

ESTABLISHED FIRM

Cinematorgaphis

Lawn Mower Grinders．If your competitor is

VOLNEY W．MASON \＆CO． Fine Experimental and Model Work Friction Pulleys，Clutches \＆Elevators EDWARD KLEINSCHMIDT． 122 Fult．nst．，New York．
Imake a Specialty of Developing Eliectrical Invention

$\$ 1,000$ A YEAR FOR LIFE， six per cent．guaranted．

A．LESCHEN \＆SONS ROPE CO．
TRAMWAY
｜CE MACHINEs，Corliss Engines，Brewers＇
 MODELS \＆EXPERIMENTAL WORK， NOVELTIES \＆PATENTED ARTIGLES

WANTED

INVENTIONS PERFEGTED． Accurate Model and Tool work．Write for circular．
PARSELL $\&$ WEED， $129-131$ West 3 Ist St．．New York．
 FAGTORY FOR SALE．${ }^{- \text {Thrree－story，}}$ ，brick
 DAMOUR \＆LITTEDALE NAOHINE CO PATTERN AND MODEL MAKERS． HOW TO MAKE A DYNAMO

EVERY BICYCLE RIDER，DEAYERE REPAIRER should write us for full information concerning our

Scientific American．
 MUNN \＆Co．${ }^{361}$ Broadway，New York

DO YOU KNOW AN ENGINEER

BABKUS GAS AND GASOLINE ENGINE Simple E Eonomical．Durable．

 Write for circular and prices．BACKUS WATER MOTOR CO，，Newark，N．

LIGHT MANUFACTURING AND EXPERIMENTAL WORK．
SPECIAL MACHINERY．AUTOMOBILE PARTS． otto konicslow，cleveland，Ohio． W Magical Apparatus．
 Experimental \＆Model Work

LUXURY OF LOCOMOTION

Handsome, Durable

Practical
 Metallic
 SHEETING, GASKETS. TAPE and PISTON PACKINGS

Carbide Feed
OLT

GENERATORS

 Made from the best material
chanics.
easy of operation
J. B. COLT CO., Dept.s. 108 Fulton Street, New Yor 146 Franklin Street, Boston. 189 La Salle Street, Chicago. 421 Chestnut Street, Philadelphia.

JAMES MEANS' FE $\$ 25$ SHOE
 \$2.5OSHOE. SOLD BY LEADINO RETAILEFRES. \square MOE. Made in a variety of styles and leathers. Sewed. Smooth innersoles

DENSMORE TYPEWRITER CO.
The New England Watch Co. artistic specialties
for the Season are shown
In Our Blue Book for Ladies, In Our Red Book for Men's Watches. Either or both sent on application ${ }^{37}$ Maiden Lane, 149 State Street, $\begin{gathered}\text { Chicago, Ill. }\end{gathered}$

$$
\begin{aligned}
& \text { New York, N. Y. } \\
& \text { Spreckels Buiding, San Francisco, }
\end{aligned}
$$

 CHARTER ENGINE
 Fuel-Gasoline, Gas, Distillate
Stationaries. Portables. Engines and Pumps, Hoisters
State Your Power Need
 Mi UFWFRLER \mathbf{R} doesthe work

ACETYLENE MEXICO A Permanent, Profitable and Legitimate Business ortunes are being made in Tropical Ag icuture MEXICAN MUTUAL PLANTERS CO., 1015 New York Life Bldg., CHICAGO

Typewriter Record

Paris Expositions 1878 Gold Medal
1889 Gold Medal 1900 A Grand Prix Hifhest Form of Award

WYCKOFF, SEAMANS \& BENEDIC 327 Broadway, New York.

Warren's
Pulley Cover. Will Give Your Pulleys
Leather=Like Surfaces. Keep Belts From Slippin Allow Belts to Run Slack
RED UCE COAL BILLS.
Sent on Thirty Days' Irial. Will send a case of Warren, s
Pulley Cover (125 sq. ft.) with everything veressary for frapplity
ing, for \$12.00, iess carrying charges.

$$
\begin{aligned}
& \text { Need Not Remit, if the coyer does no } \\
& \text { THE WAR reve as repested. } \\
& \text { THEN CO. (Inc.), Mfrs., }
\end{aligned}
$$

$$
\begin{aligned}
& \text { THE WARREN C0. (Ine.), Mfrs., } \\
& 16 \text { Jackson Street. } \quad \text { Chicago, Ill. }
\end{aligned}
$$

HOW TO MAKE AN ELECTRICAL urnace for Amateurs Use.-The utilization of 110 volt

After Eighteen Years

CRUDE ASBESTOS
AND ASBESTOS FIBRE THETFORD, P. O. R, H. MARTIN, CANADA. 220 B'way, New York.

