
a WeEkly Journal 0f practical information, art, science, mechanics, chemistiy, and manufactures.

	NEW YORK, JANUARY 26, 1901.	

sitientifir Ammericam

ESTABLISHED 1845
munn \& Co., - - - EDItors and Proprietors.

pUblished weekly at

No. 36I BROADWAY, - - NEW YORK.

TERYS TO SUBS RIBERS
 the silentific american plblications.
 The combined subscription rates and rates to foreign countries will
be turnisued upon appliction.
Remit by postal or express money order. or by bank draft or check.

NEIV YORK. SATURDAY, JANUARY 26, 1901.
EFFECT OF FORCED DRAUGHT ON COAL CONSUMPTION Trials carried out last year of the system of in duced draught which is installed on the steamship "Inchkeith" have shown that in this vessel the coal consumption, per indicated horse power, per hour has been reduced to 0.99 pound. Briefly described the installation is as follows: The furnace gas on leaving the smoke-box passes through air superheater immediately over the tube sheet, and then to exhaust ing fans which discharge directly ints the smokestack The superheaters are heated by the gases on their way to the smokestack. With this method of draught, it is possible to use the open stokehold; and in th present instance the stokehold temperature durin the trial was 74 degrees. The average temperature the air on entering the furnace was 284 degrees, and the temperature of the waste gases at the smoke box and at the fan was, respectively, 650 degrees and 380 degrees. With a boiler pressure of 260 pound to the square inch. the water evaporated per pouni of coal from and at 212 degrees Fah. was 12.9 pounds. The "Inchkeith" is a vessel of 5,700 ton dead weight, and her engines develop ordinarily, when using Pocahontas coal, about 1,300 indicated hors power.

THE TWENTIETH CENTURY SAILING VESSEL

It was thought that the day of the sailing vesse was past, the development of the tramp steamer to its present economy of fuel and large cargo capacity having apparently rendered successful competition by the sailing vessel impossible. During the past few years, however, two types of ships have been buil in increasing numbers which bid fair to equal, if no exceed, the tramp steamer in cheapness of cost and operation, and at the dawn of the new century ther are two vessels, one in each class, which are about to be constructed, that are more distinctive than any that preceded them. One, the contract for which has just been signed, is a huge, square-rigged sailing ship, having five masts, and a tonnage of 8,500 which is over 2,000 larger than that of any previou sailing vessel. The determination of the Germans o build a vessel of this size may be taken as evidence that the preceding " monster" sailing vessel owned by German firms have proved to be paying nvestments. The other type to which we refer is the multi-masted sailing schooner. The success of the six-masted schooner "George W. Wells," which capable of carrying 5,000 tons of coai, has led the builder to predict that she will be followed by a seven-masted wooden schooner, with a carrying capacity of not less than 6,000 tons of coal. Such a essel would be well on to 400 feet in length over all, and in her the cost of carrying a ton of coal would be brought even lower than in her predecessors. t is more than likely that as the century advances e shall see square-rigged and fore and-aft vessel esigned for the carrying of cargoes in bulk whic will rival in size all but the largest of the steamships of the century which has just closed.

PUPIN'S LONG DISTANCE TELEPHONY

In view of the great interest which has been arouse' in Dr. Pupin's system of long-distance telephony by the announcement of the sale of his patents to the American Telephone and Telegraph Company, for the sum of about $\$ 500,000$, we republish in the curren issue of the Supplement the illustrated article, descrip tive of his system, which appeared in the Scientific American of June 2, 1900. The article referred to describes the line of investigation followed by Dr Pupin, which consisted, first, in formulating a math ematical theory of the propagation of eiectrical waves in long wire conductors, and, second, in the con struction of an experimental cable that should verify the theory and open the way for the construction of a cable suitable to commercial use.
The history of this investigation, which has involved five years of painstaking experiment, would make interesting reading. It is the weakening of the electrical current in an ordinary wire conductor that
limits the distaines over which such a wire can trans mit a message. The loss of energy is due to the mperfect conductivity of the wire, and it is regulate by the inducta ice and capacity of the circuit. If a conductor has a high inductance, a given quantity of energy will be transmitted with less loss than over a conductor with a smaller amount of inductancefact that was well known to the English mathematical physicist Oliver Heaviside. It was known that the introduction into the circuit of inductance coils shouli theoretically give improved results; but, although such coils had been used, for want of an underlying mathematical theory to govern the experiments, they ended in failure
Dr. Pupin set out to develop sucı a mathematica theory, and its main features were shown in a serie of experiments in the vibrations of flexible cords, the same elements being present in the transmission of wave motion along a cord as in the transmission of electrical waves. If one end of a cord be fastened to one end of a tuning-fork, the other end to some fixed object, and the fork vibrated a wave motion results, whose amplitude will decrease as the dis tance from the tuning-fork (the source of vibration) increases, the energy being dissipate : by the frictiona resistances in its progress as the wave advance along the cord. This "attenuation" (to adopt thi electrical term) is diminished if a string of greater density is employed, because a larger mass require a smaller velocity in order to store up a given amoun of kinetic energy, and a smaller velocity occasion a smaller frictional loss. Experiments with balls o wax ttached to the string at certain regular, de termined intervals, secured the desired result in pre venting attenuation. The mathematical theory an law for the vibration of a cord under such conditions is exactly the same as that governing the distribution of the electric current over a wave conductor under the influence of similar forces. For kinetic or mass reaction, tensional reaction, and resistanc reaction in the case $o_{\text {. }}$ the cord are paralleled by electro kinetic reaction, capacity reaction and ohmic re sistance reaction in the case of the wave conductor This being so, it is easily understood that if inductance coils are introduced along the wave conductor, at periodically occurring intervals, the efficiency of the transmission of electrical energy is increased.
The next step was from theory to an experimenta investigation, in the course of which Dr. Pupin con structed three separate experimental cables before he brought the results into agreement with the theory The first cable was 235 miles, the second 500 miles, and the third and successful cable 250 miles in length. In the last cable double coils, 6 inches in diame ter by 5 inches high, with 1,160 turns, but having no iron cores, were used, and with this apparatus it was founi that if these inductance coils were placed at inter vals of about one-sixteenth of the wave length of 17 miles, the non-uniform conductor was like a uniform conductor to within two-thirds of one per cent. It was found, indeed, that if the coils are properly placed, $21 / 2$ per cent of the current generated at the transmitting end reaches the receiving end of th cable; but if the coils are cut out, and the cable is used in the ordinary way, then only one two-hundred and fifty-thousandth part of the current sent in at th transmitting end reaches the receiving end. The in sertion of the coils enables the cable to transmit six thousand times as much current
The work done by Dr. Pupin since the publication of the article above referred to consisted in an investi gation of the question of the best form of coil for commercial purposes. The coils used on the experimental cable, although they are effectiv or an air line, and have, indeed, been used on a Bell telephone air line of 700 miles, are too large for sub arine or underground cables; and for the latter pur pose Dr. Pupin has produced an inductance coil with an iron core which provides a large magnetic mass and enables the size of each conductor to be reduce to the external dimensions of about 2 inches by' 2 inches by 3 inches. For submarine cables thes coils would be placed at intervals of an eighth of mile, and for land cables at intervals of 2 miles The introduction of the iron core in the inductanc coils, by considerably reducing the bulk of the coils, has rendered their installation thoroughly amenabl to the arbitrary constructional requirements for lons distance cables, particularly in submarine work; fo the whole device can now readily be included withi he sheathing of the cable. We are informed by D Pupin that the extreme distance over which the pre nt system of telephony will be fully available is 3,000 miles.

THE KRESS AIRSHIP

Herr Wilhelm Kress has completed his model of a irship, and he is now working on a large vessel. Ir ris consists in an aeroplane operated light benzine engine. Great wings of silk or hemr
are extended by means of steel ribs, resembling the spokes of a bicycle wheel. These would in themselves act as parachutes and allow the car beneath to descend gently. This car rests on runners like those of a sled which would enable it to glide on ice, snow or glass, and it is arranged so that it can also rest on water The machine is to be raised and moved by two propellers similar to a ship's screws. These, while pro pelling the vessel, will make the wings or sails face the air. With these latter, or part of them, directed upward, a power will come into action which will first support the weight of the boat and then raise it in the air as it grows stronger. The screws are to be actuated by a benzine motor of 20 horse power of great lightness. The first experiments with the full-sized airship will be made in the spring on the Lake of Neusiedel, on the Hungarian frontier.

THE INTERNATIONAL CONVENTION FOR TH PROTECTION OF INDUSTRIAL PROPERTY

The Convention for the Protection of Industrial Property was drafted at a conference held in 1880 at Paris, France, and it was signed in the same city, March 20, 1883, and the United States accepted it in 1887. The Convention, to which every first-class power in Europe, except Russia and Turkey, has now adhered or given notice of such intention, relates on the one hand to patents for inventions, industrial models, and designs, and on the other tc trade marks, trade names, and indications of origin. The Convention provided for periodical conferences for revision. The first conference was held in Rome in 1886, and was without substantial effect, the propositions not receiving unanimous ratification. The next conference was held in Madrid in 1890, where some agreements relative to trade marks, to which the United States is not a party, were entered into. The next conference was that of Brussels in 1897, and the meeting held in December, 1900, was the adjourned meeting. This last session will take rank with that which framed the Convention, if the Act (amendatory of the original article) which has just been signed by the delegates accredited to it, is finally ratified by those countries whose laws, like those of the United States, require ratification before they take effect. We have already referred to the original Convention on several occasions, and the conference at Brussels has remedied several defects which were thought to exist in the patent laws of many of the countries in the Convention. In brief, the following results were arrived at: First: Concerning the independence of the patents in the different countries, it is well known that the validity of patents has been endangered in many cases by the fact that in some countries a patent lapses if, for any cause, the patent lapses in another country, as, for example, for the non-payment of fees. This is a hardship, and compels the owner of the patcnt, in more than one country, to look not only to keeping the patent in his own country alive, but also those in other countries. Second: The Convention has also extended the time of filing applications from six or seven months to a uniform period of one year, and the shorter period for four months for in dustrial designs, models, and trade marks. Third: The conference agreed that the Convention should be amended so that American inventors who had taken out patents abroad need not woriz their inventions in those countries which are members of the Conven tion for a period of three years afte: the application for the patent. This feature, if adopted, will enable our inventors to develop their business in the United States before working their inventions abroad, thus in many cases saving a considerable sum.

As to trade marks, there was a great deal of discussion on the amendment of Article VI., which requires the registration of marks good in the country of origin in all the other countries. This met with such opposition that the article was left un touched. The period of delay for trade marks simila: to chat of patents was made uniform, being four months, instead of three and four months, as at present. This is of little interest to citizens of this country, as it refers to trade mark laws which are not similar to our own, and under which it is expected that trade marks should be registered before use in stead of after, as in this country. The provisions of the Convention against false indications of origin are extended to agricultural products, thus protecting our fruits. A new article was inserted granting the same protection against unfair competition to citizens of the Unite: sates as is granted to citizens or subjects of any ofrer us the countries of the Convention. This inclustm Tithin the Convention of protection to agri culturists and of the doctrine of unfair competition may be regarded as a distinct advance
The personnel of the Convention was of the highest character. The delegates, of whom forty-five were in attendance at one time, were the ministers oi the sev eral members of the Union, supported by the heads o the offices of the different countries which are con-
cerned with industrial property, professors of universities, members of legislative bodies and lawyers of recognized standing and authorities $0: 1$ the subjects discussed. The United States was represented by Mr Walter Chamberlain, Assistant Commissioner of Pat ents; Hon. Lawrence Townsend, United States Minister to Belgium; and Mr. Francis Forbes, of New York

ORBITS OF REVOLVING DOUBLE STARS

by dr. edward s. holden, late director of the lick obser.
Sir William Herschel observed toward the close of he last century that many stars, seen as one body co he unassisted eye, were double in the telescope; and his measures of the relative positions of the two ob jects led him to the important discovery that, in many cases, one of the stars was revolving about the other in an orbit, or, to speak more accurately, that each of he bodies was revolving about their common center of gravity. It was not until the first third of our own century that the orbits of some of these revolving double stars were calculated, and the calculations showed that their revolutions were performed in obedience to the law of gravitation.
Newton's law of gravitation was thus demonstrated to extend to the stars; it was shown that gravitation was, in fact, universal. The universe was everywhere subject to one fundamental law. This was a great step forward because in Newton's time it had not been proved that gravitation extended further than to the confines of the solar system. Saturn was then the outermost known planet (its distance from the sun is nine and a half times that of the earth). In 1781 Herschel discovered the planet Uranus (nineteen times the distance of the earth), and in 1846 the planet Nep tune was found (at a distance thirty times as grea as the earth's). Both the new planets obeyed the law of gravitation in their motions round the sun. It was indeed by minute departures of the observed positions oi Uranus from its calculated positions that the exist ence of an exterior planet-Neptune-was suspected, and subsequently verified.
The distance of the stars is almost infinitely greater han that of the earth. The nearest of them is some $20,000,000,000,000$ miles from the sun. It was a great step then to have brought such distant systems under obedience to the same law that governs the fall of heavy bodies on the earth.
During the present century tens of thousands of new double stars have been found, as telescopes have been improved and as observers have become more assidu ous ard more skillful. Of these thousands many hundreds are, in all likelihood, binary-that is, they form a physical system, and are not merely perspectively projected on the background of the sky at the same spot. Such perspective doubles have no special interest. They are, as it were, the results of accident. The physical systems are, on the other hand, of the highest interest. Here are two suns (for stars are suns) for ever linked together by gravitation; forever revolving about the same center. If they are accompanied by planets (and who shall say that they are not?) the conditions of life on such planets are strangely different from our own. Days and nights and times and seasons in such a system depend on complex configurations not readily to be conceived.
Not only have revolving double stars been detected by the telescope, but the spectroscone has stepped in t.? aid in such discoveries. A double star in the telescope appears as two. separate stars, often so exceedingly close together as to appear single, except to the most searching vision under the most favorable circumstances. There is a limit of nearness below which a given telescope cannot separate two stars into two im ages, but at which it will present them as one. A telescope one inch in diameter, for example, will show two stars as one image, unless the angular distance apart of the two exceeds four and a half seconds of arc. A telescone thirty-six inches in aperture cannot separate two stars close together unless their angular istance from each other exceeds one-tenth of a sec ond of arc; and so in other cases. If we were obliged to depend upon the telescope alone, it is clear that there might be a whole universe of very close•double stars that would forever remain sealed to our sight. The stars are so exceedingly distant that the distance between the two components of a binary, while large if expressed in miles, is yet very small when expressed in its angular dimensions as viewed from the earth.
When a single star is looked at through the spectro cope its light is spread out into a narrow brilliant band of prismatic colors-the spectrum-crossed by a number of narrow dark, or, it may be, bright, linesthe Fraunhofer lines, so called. When a close double star is viewed, only one spectrum band of prismatic color is seen, but that band is crossed by two sets of dark lines. One set of dark lines belongs to each star. If the stars are revolving about each other we kncis that their distance apart, as seen from the earth, wili change; but the unaided telescope can show nothing of this motion. In the spectroscope, however, it is
shown by the distance apart of the pairs of lines in the spectrum. A certain line in the spectrum comes from the presence of hydrogen, let us say, in the atmosphere of one of the stars. It is always accompa nied by a comparison line due, in its turn, to hydrogen in the other star. If the distance apart of the two stars changes, the distance apart of the two hydrogel lines will change. The changes in the distance of the lines can be measured in millimeters; and from them be motion of the two stars can be calculated in miles. By methods like those which have been here sum marily described, and by other methods based on the measurement of the light of a star around which a dark body is moving, so as to periodically obscure and occult some of its light, our present knowledge of the universe of revolving double stars has been amassed. It is far from complete, but it is now possible to form some kind of a general view and to enumerate the dif ferent species. The minute study of particular stars will be one of the researches of the coming century.
One class of revolving stars is typified by the vari ble star Algol, whose brightness varies periodically in such a way as to make it certain that the variations in brilliancy are caused by the revolution of a "dark star" about the bright Algol. Algol is commonly a star of the second magnitude. After remaining of this brilliancy for ab it two and a half days it falls to fourth magnitude (that is, it loses seventy per cent of its pristine light) in a short time-about four and a half hours. It remains of the fourth magnitude for about twenty minutes, and in about three and a half hours it regains all its light and remains at this brilliancy for two and a half days, and so on. These changes have been observed since 1667 . They are caused by the revolution of a dark satellite of large dimensions about the principal star. The bright star is bout a million miles in diameter, and the dark sat ellite about eight hundred thousand. Their distance apart is about three million miles. Each of these stars is, then, about the size of our own sun, but the mass of both of them combined is only two-thirds of the sun's mass. Their density is thus much less than that of water. They resemble spherical clouds, one brilliant, the other dark. Other systems of the sort have lately been discovered by spectroscopic means. One of them, Mu Scorpii, has a period of thirty-five hours only. Mizar, one of the stars of the Great Bear, has a period of fifty-two days. Others have periods of a year or more.

Binary stars discovered by means of visual observel tions with the telescope all revolve in much longer periods. To be seen at all, it is necessary that the prin cipal stars should both be bright, and that they should be separated by large distances. Gamma Virginis, for instance, has a period of one hundred and ninety-fou years, and its components are situated at a distance of four seconds. Other systems of shorter period ar known, but until very recently the binary star of the shortest known period (excluding stars of the Algo class) was Kappa Pegasi, whose periodic time is ove eleven years.
Prof. Hussey, at the Lick Observatory, has recently printed the results of his calculations on Delta Equu lei, and his conclusions are that the components of tnis star revolve in the remarkably short period of five and seven-tenths years. Otto Struve, among others long ago, suspected the short period of this star, but the results of Prof. Hussey, although given out with cautious reserve, seem to bear out the conclusion which is of especial interest, as it bridges the interval between stars of the Algol class with periods of a year or less, and telescopic binaries with periods of a dozen years up to several hundred years. It appears to show that revolving double stars exist having periods of all lengths from a day or so up to several centuries. A priori this was to be expected. At the same time the actual discovery of a telescopic binary of very short period is a matter of uncommon interest.

A PRIZE FOR BEER-COOLING MIXTURES

A first prize of $\$ 375$ and a second prize of $\$ 125$ are offered by the German Brewers' Association for the best cooling mixtures for beer. The conditions speci fied are that the mixture shall not contain anything that may be injurious to health, and it must not cost more than twelve cents for a cooling capacity equal to that of 100 pounds of ice. It must also be capable of maintaining the beer, when treated, at a tempera ture of 45 deg . to 47 deg . F. The formula must be sent to the president of the association, Herr Henrich Neue Zei, No. 68, Frankfort-on-the-Main, Germany.

While plowing in á field upon a farm near Leighton Buzzard (England), an old earthen vessel was turned up in a furrow. Upon examination, the vase v , as found to contain sixty-three ancient British gold coins, each measuring about $11 / 2$ inches in diameter. It was in this same district, a few years ago, that a rich haul of nne thousand two hundred gold pieces of the period of Bing Cymbeline, B. C. 55, was discovered.

SCIENCE NOTES.

The late Prof. Marsh, of Yale, bequeathed his house and grounds for a botanical garden. They are to be made the home of the newly created School of Fores try.

Prof. E. W. Scripture, head of psychological labora tory of Yale University, has been awarded a gold meda at the Paris Exposition for his lantern for testing colol vision.
Prof. C. H. Eigenmann has discovared a new type of ave salamander, an active creature about four inches long, with protruding eyes and a tail longer than its body, speckled brown and yellow, and the peculiar for mation of its feet enables it to climb vertical walls o glass and even move like a fly across the ceiling.
M. Camille Flammarion, the French astronomer does not place the slightest credence in the idea that the inhabitants of Mars are trying to signal to our earth. He considers that the lights observed in the Icarium Mare were, in his opinion, simply the reflec tion of the rays of the setting sun on the clouds over that sea.

Chippendale's workshop adjoins No. 60 St. Martin's Lane, Charing Cross, London. It extended a cois siderable way to the rear, and was approached throu.gh a long entry. His rival, Cobb, in the making of aris tic furniture, had workshops not far away, at the corner of St. Martin's Lane, at what is now known as Garrick Street
The London Lancet calls attention to the fact that canned tomatoes are now being extensively colored, in order to make them look attractive and as if made from ripe fruit. Among the colors so employed are coal-tar colors and cochineal. The subject of artificial coloring and preservation of food is now receiving great attention in England.

A penny lunch room was recently opened in Chicago. The average amount received for each check was $33 / 4$ cents. Every article on the bill of fare is one cent, and for three cents a man gets a good, whole some breakfast. The projectors intend to operate twenty rooms, and expect to feed from 25,000 to 30,000 persons a day. The experimental lunch room has proved to be a great success.

A national Physical Science Laboratory, in connection with Kew Observatory, is to be established at Bushey House, Bushey Park, which has been placed at the disposal of the Royal Society for this purpose by Queen Victoria. In view of the controversy between the observers at Kew and the London United Tramways Company, it is also rumored that the observatory will possibly be removed from its present location to Hampton Court.
The scarcity of agricultural labor in Yorkshire, Eng land, has resulted in the widespread introduction of mechanical appliances in order to cope with the work. One of the most novel is a mechanical milking device, but which, however, has not been employed with very great success. The results of mechanical milking are far below those obtained by hand, which is principally due to the fact that no two udders are alike, and also because the animals object to the tubes.

The fourth Cloaca Maxima has been discovered in the Forum. Signor Boni has been very successful in exploring the great sewers of ancient Rome and in preventing the flooding of the Forum whenever the Tiber rises, and also has been enabled to explore the Cloaca Maxima itself. This led to the discovery of three other cloacæ maximæ, each older and larger than the one hitherto known. They have been found to contain many fragments of Etruscan vases and other interesting relics. It is possible that the recent over flow of the Tiber may result in more discoveries of value to the archæological world.
Further valuable discoveries of antiquities have been made in the course of the excavations in the Forum between the Temples of Vesta and Castor, the most important of which is the unearthing of the fountain of Juturna and a shrine. The altar of the latter has a bas-relief depicting the final meeting of Juturna with her brother Turnus, before the latter met his death in single combat with Eneas. In close proximity to the shrine a suite of rooms lavishly decorated with mosaics was also discovered. Investigations point to the fact that this was probably the Statio Aquarum, the headquarters of the administration for the water supply of Rome. In the outskirts of Pompeii a magnificent bronze statue about four feet in height has also been unearthed. Signor Orsi, of the Archæological Museum, has examined the relic, which represents a nude male of Greek workmanship, and has concluded that it dates from the fifth century before Christ. He also considers it to be the most valuable discovery made since the excavation of the famous bronze Faun in 1870. The figure is in perfect condition, save for one arm, which, however, was found close by. The statue is estimated to be worth $\$ 100,000$.

A WONDERFUL PIECE OF CLOCRWORR.

At the upper part of the Mareorama building, at the Exposition, there was exhibited a wonderful piece of clockwork in the form of a small house constructed of copper and bronze. It was the work of I. M. Goldfadoff, a Russian clockmaker. The façade, which was 5 feet in length and 3 feet 6 inches in height, repre sented a Russian railway station, with its telegraph office, station agent's office, ticket office, and even a buffet. Opposite the station there was a garden, with fountains, trees and flowers, and, surrounding the garden, a railway, with gates, semaphores, lubricator's box, water tank, etc.
In the cupola that surmounted the station was housed the clockwork mechanism. This, in the first place, controlled several dials that indicated the time at various points of the globe, the season, the month, the day, and the phases of the moon, and, in the second, a system of pulleys and wheels that gave life to the station once a day. When noon sounded, a lever was set in operation and the teleg. raphers, who were bustling around their office, received the announcement of the arrival of a train. A guard rang a bell, a whistle was heard, and the train entered the station. It stopped at the tank to take on water, while the red disk of the semaphore gave place to a green one in order to protect it. The station agent came out of his office, on the platform, of his office, on the platform,
the lubricator examined the the lubricator examined the
axles of the car wheels, and the axles of the car wheels, and the
passengers, who had come out of the waiting room, passed in front of the ticket office. The guard rang the bell three times, and the train, announced at the following station by the telegraphers, got ready to start again. The conductor of the train whistled, the locomotive responded, and the train left the station. There were passengers in the cars who seemed to be making their farewells from behind the curtains. After the lubricator had re-entered his bos the gates closed and a gendarme upon the platform made a military salute to a portrait of the Czar, which was unmasked by a dial; while, at the same time, an invisible orchestra played the Russian national hymn. Finally, the station agent re-entered his office. and all this little world relapsed into quiet. We are indebted to La Nature for the engraving and description.

A RUNNER FOR VEHICLES

The accompanying engraving represent a vehiclerunner patented by Frank G. and George L. Scott, of

NEW VEHICLE RONNER.

Newport, R. I. To the recessed front socket-sections of the runner the lower ends of braces are secured. the upper divergent ends of which are fastened to the lower, forward members of bifurcated connectingblocks. To the rear, lower members of the connecting blocks the upper ends of rear braces are attached The lower, converging ends of the braces are received by rear, recessed socket-sections on the runner. The connecting-blocks are tied together by a cross-bar, which is in turn united by a longitudinal brace with the forward end of the runner.
In connection with each runner a box-bearing is employed. (Figs. 2 and 3.) This box-bearing consists of upper and lower sections hinged together, so that one can close upon the other to form a complete box. The tapering portion of an axle-spindle is received by the correspondingly-shaped central portion of the inner chamber of each section. The spindle is provided with the usual collars where it joins the axle.

When an axle-spindle is placed within a bearing box, the lock-nut remains on the spindle, so that the nut will not be lost; and, therefore, the end of each bear ing-box section is enlarged. The inner end of the upper bearing-box section is open; while the inner end of
on the fertile tract which lies near Charleston, S. C. Some Connecticut capitalists have negotiated for the purchase of 4,000 acres of land near Charleston, where 300,000 pounds of tea could be raised annually for the American market. The cultivation of this product in the South is expected to yield rich returns. We published an article upon the subject of the Pinehurst industry in the Scientific American, August 19, 1899.

Injury by the X-Rays

The question as to whether the application of the X-rays to the human body causes any pain to the patient undergoing the treatment has aroused widespread discussion, but according to a recent case that happened in England, it is evident severe suffering is occasionally inflicted by their application. A lady 68 years of age, while cycling, met with an accident, which was supposed to have fractured her thigh. Shortly afterward an eruption broke out in her stomach, and to diagnose the case the Roentgen ray apparatus was brought into use. The lady eventually succumbed to the malady, and at the inquest which followed, a letter was read in which she stated that she had suffered untold agonies by the "cruel over-exposure of the X rays." The photographer stated that he made two exposures of thirty-five minutes and fortyfive minutes respectively. The surgeon who was present at the exposures, and superintended the operations, stated that death was due to the exhaustion from shock produced by the fracture of the thigh and the application of the X-rays. Expert evidence
the lower section is provided with a square jaw for the reception of the rectangular portion of the axle. This jaw prevents the runner from working detrimentally on the spindle; and the box-bearing effectually prevents the runner from working off the axle and protects the axle-spindle. The sections of the bearingbox may be connected either by bolts or by a springcatch such as that shown in Fig. 2.

THE BURTON PLASTIC PRESSURE TUBE EXPANDER.
At the Thornycroft works a new tool for expanding boiler-tubes has been successfully used, which may supersede the old taper mandrel and rollers. It is a well-known principle that certain metals, such as lead can be made to flow when subjected to pressure; and upon this principle the operation of the invention depends. The tool consists of a phosphor-bronze cyl inder containing a piston provided with three pistonrods which pass through the cylinder-cover and are secured to a bearing-block. The rear end of the cylinder is fitted with a valve. At the forward end of the cylinder, in the center of the cover is a mandrel, enlarged at its forward end to fit the boiler-tube.
The piston having been drawn back to the rear end of the cylinder, a lead-bush is placed around the mandrel. After the mandrel has been forced as far as possible into the tube, the bush will fill the space between the tube and the mandrel. Water under high pressure, when admitted to the cylinders, will draw the mandrel back, whereby the lead-bush will first be wedged into the space between the tube and the mandrel and will then flow past the shoulder of the mandrel. Simultaneously the tube will be expanded. Finally, when the mandrel-shoulder enters the tubeplate, the lead is thrust between the face of the bear ing-block and the end of the tube. The mandrel can be easily taken out of the tube and the thin sheet of lead still remaining scraped off. The amount of expansion can be regulated by varying the length of the bushing. Tubes can be readily expanded into flanges for steam - pipesand into tube - plates. The tool is the invention of Dr . C. V. Burton, of Lond.
land.

Two syndicates

 have been formed to raise tea in large quantities upon the subject was given by Dr. Lewis Jones, the medical officer in charge of the electrical department of St. Bartholomew's Hospital, London, who said he considered that the exposures had been normal. He had discovered in the course of his investigations that some people were sensitive to the rays while others experienced an immunity from their effects. This was believed to be due to the condition of the skin at various times. There was always a risk of skin burn where the exposures were prolonged, but he had never heard of death being attributable to the X-ray burn. The jury, however, returned a verdict that the woman died from shock and exhaustion, fol lowing an accident and the effects of the X-rays, upon a weakened system. The photographer and surgeon were exonerated from all responsibility.

Large Gushing Well in Texas.

The great gushing well near Beaumont, Tex., is cre ating considerable interest in the Soutnwest. The well far eclipses any ever drilled in the United States, and the output is $7,00 \mathrm{u}$ barrels daily greater than the largest gushing well in Russia. It is estimated that this flow exceeds 25,000 barrels every twenty-four hours, and the flow is constantly increasing in volume. This is due to the fact that when the oil was struck the iron casing was blown out of the hole, and the size A : the hole gradually increased. A solid six-inch stream of oil shoots into the air to a height of 200 feet. It is thought that the only way to save the oil is by dirt reservoirs, and they are being constructed n rapidly as possible, in order that none of the oil may be wasted. As is usual in such cases, almost fabulous prices are being paid for almost waste lands. The well is attracting great attention, and is being visited by thousands of people. The new well has served to depress prices in the oil market.

January 26, 1901.

IRRIGATION FARMING IN THE SOUTHWEST. by d. Allen willey.

In 1884 and 1885 a few farmers from the Northwestern States settled on the great Southern prairie which extends along the coast from the parish of S. Mary, in Louisiana, to the Texas line-a distance of about 140 miles. Finding that rice, which had beer: grown for many years for home consumption, but by Oriental methods, was well suited to the conditions of agriculture here, they commenced immediately to adapt the agricultural ma chinery to which they had been accustomed to the rice industry. Wherever prairies were found sufficiently level. with an intersecting creek which could be used to flood them, they were surrounded by a small levee thrown up by a road-grader, or by a plow with a strong wing attached to the moldboard, extending it by 4 or 5 feet. These levees were usually 12 to 24 inches high, and
the interior ditch was 12 to 18 inches deep, and 4 or 5 feet wide. Very few interior ditches were made for drainage. The land was so level that fields of 40 and 80 acres were common. The prairies were practically free from injurious grasses, and the creek or river water was soft and bore no damaging seeds to the fields. The rice fields were handled like the "bonanza" wheat farms of Dakota, and fortunes were made. Levees were cheaply constructed; little attention wa; paid to drainage, more than to remove the surfaci water; shocking, stacking, and thrashing were done in a vory careless manner, the main object being, apparently, to plant a large acreage and secure a certain number of bushels, regardless of quality. Ultimate
failure was certain, but it was hastened by drought. A succession of dry years followed. The creeks failed, and reservoirs were found to be expensive and unreliable.
To provide a reliable supply of water, pumping plants for raising water from the streams were gradually put in. The elevation of the prairies above the streams varies from 6 to 38 feet, the larger portion being from 15 to $\Sigma 5$ feet. At first farms along the

Excavating Channel for a Lateral Canal.

streams and lakes were irrigated; gradually large surface canals were constructed. Irrigating canals were started in a small way in Acadia Parish, La., in 1890. Ln 1894 a canal 40 feet wide was built for 15 miles with 10 miles of laterals. This was followed by the Crowley Canal, which is now 35 feet wide and 8 miles in length, and has 10 miles of lateral lines. Then followed the Riverside Canal, which now has several miles in operation. These enterprises have grown steadily until there are now 9 canals in Acadia Parish, with an approximate length of 115 miles. There are about 25 irrigating canals in Acadia, Calcasieu, Cameron, and Vermillion parishes, with a total length of over 400 miles of mains and probably
twice that extent of laterals. The illustrations show one of the principal canals owned by W. W. Duson of Crowley, which might be called the Metropolis of the Acadia district. A view of the pumping plant whioh furnishes the main supply to this canal is also given. The same general plan is followed throughout the district in canal construction. In nearly every township there are one or more ridges slightly above the surrounding land. The sides of the canals are raised from 4 to 5 feet with plows and scrapers or with grading machinery. Grading machines work very well, as the soil is a loam or a clay free from stones. Side gates are inserted in the embankment as fre quently as necessary. Laterals are run from the main canal to accommodate remote farms. The pumping plants are usually erected on the bank of the supply stream at the head of the surface canal. In several por tions of Louisiana it is necessary to construct flumes to feed the canal owing to the uneven character of the ground and the fact that the supplying stream or well is at some distance from the irrigation ditch. The flumes are constructed of 2 -inch plank, thoroughly seasoned and supported on a trestle work of beams. The flumes are built of various sizes, depending, of course, upon the size of the canal to be supplied. Few of those in the South west range over 10 feet in width or 5 feet in depth. The pumping stations are generally constructed of wood. owing to the cheapness of this material. Many of them are built partly over the stream on pile supports in order that the piping system may be as short as possible. The plants recently erected are equipped

Pumping Station. Capacity $\mathbf{6 0 0 0 0}$ Gallons Raised 28 Feet per Minute.

Lateral Canal of Irrigation System Running Through a Rice Field.

Harvesting the Rioe Orop.
with the most modern machinery for lifting water and nearly all are operated by steam power
Of recent years the supply from the streams of water has been sufficient to meet requirements eve: during the season of the greatest drought. In South western Louisiana, however, are strata of gravel at 125 to 200 feet under the surface of the entire section, con taining a generous supply of water, which will of its own pressure come so near the surface that it can be readily pumped. Repeated tests have proved that here is a bed of gravel nearly 50 feet in thicknes: underlying this section of Louisiana, which carries large amount of soft water with sufficient pressur to bring it nearly to the surface
A 6 -inch well will furnish a constant stream from 4 to 5 -inch pump. A system of such wells may be put down 30 to 40 feet apart, and each one will act independently and furnish as much water as if it tood alone. Such a combination of wells may be united just below water level, and all be run by one engine and pump. Water rises naturally in these wells to within 20 feet of the surface, and a number of flowing wells have been secured. The lift is not greater than from rivers, lakes, or bayous into canals Eight 4 -inch wells united at the top can be run by one 16 -inch pump and a 50 -horse power engine, an will flood 1,000 acres of rice. The total cost of an irrigating plant sufficient for flooding 200 acres is from $\$ 1,500$ to $\$ 2,500$. It requires about seventy days pumping for the rice season.
These canals where well constructed and operated ave proved entirely successful, and have made the rice crop a practical certainty over a large section of country. They range in irrigating capacity from 1,000 to 30,000 acres. The usual water rent charged the planter by the canal company is 324 pounds of rough rice per acre watered.
The operations of harvesting and threshing the rice crop in Southwestern Louisiana are performed with the self-linder and the steam thresher. The use of the former is favored by the size of the fields, and by the character of the soil. The use of the lat er, while it frequently involves the breakage of con siderable grain, is a cheap. rapid, and effective method of separating the rice from the straw. Without the use of such machines the large cultural operations of this section would be impossible. In fact, the em ployment of machinery in the rice fields of the South west similar to that used in the great wheat fields of California and the Dakotas is revolutionizing the methods of cultivation and greatly reducing the cost The American rice grower, although employing highe? priced labor than any other rice grower of the world will ultimately be able to market his crop at the least cost and the greatest profit. If, in addition, the same relative improvement can be secured in the rice itself, if varieties which yield from 80 to 90 per cent of head rice in the finished product can be successfully introduced, American rice growers will be able to com mand the highest prices for their product in the markets of the world.
So extensive have become the interests engaged in rice anl other cultivation in Louisiana and Texas that a number of companies have been organized with ample capital, each company controlling areas rangin ${ }_{E}$ as high as 5,000 and 6,000 acres. The Duson Cana system is one of the largest in the Southwest; and supplies the necessary irrigation to a series of the most extensive rice plantations in the world. The in dications are that with the area recently placed under cultivation in the Southwest the United States will possibly in time supply more than the combined countries of the world. Although the cultivation has already assumed large proportions in Louisiana an.l Texas, it is claimed that the outlook for the further extension of the industry is very promising. Accord ing to the best estimates there are about $10,000,000$ acres of land in the five States bordering the Gulf of Mexico well suited to rice cultivation. The amount which can be sucessfully irrigated by present meth ods, using the available surface and artesian flows, does not exceed $3,000,000$ acres. The balance of the land could probably be brought into cultivation were it necessary, but the cost would, perhaps, be pro hibitive at present prices. The best results require rotation of crops; consequently only one-half of that amount, or $1,500,000$ acres, would be in rice at any one time. At an average yield of 10 barrels (of 162 pounds) per acre, $1,500,000$ acres of rice would produce nearly $2,500,000,000$ pounds of cleaned rice, near y six times the amount of our present consumption.
As already stated various products are raised through means of irrigation, but, of course, a large mileage of the canal system has been constructed principally for rice culture. In the same section, however, sugar cane, cotton, and corn yield largely, while the cultivation of garden vegetables has as umed quite large proportions, sufficient moisture be ing afforded by the irrigation system, which also fu: nishes drainage to the lower lands when necessary.

©orrespondence.

Caise of Transparency ror Heat and Actinic Rays.
To the Editor of the Scientific American
Is carbon in organic compounds the cause of their transparency for heat rays?
Nigrosine, a coal tar color used in dyeing $\left(\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{3}\right)$ and which is very rich in carbon, is dissolved in chloro form or alcohol by scientists and used as a ray filter to cut off all rays except the heat rays, which it trans mits freely.
All the other coal tar dyes have been found to be very transparent for the heat rays, but opaque for ultra-violet rays, and almost opaque for light rays (Proc. Roy. Soc., vol. 38, pages 77 to 83.) These dye all contain a rolatively large amount of carbon

Liquids which contain a high percentage of carbon are the most transparent for heat rays; for example carbon bisulphate, benzine, iodide of methyl and ethyl chloroform, alcohol, naphtha, amylene, xylol, essenc of lavender, essence of turpentine, etc.
Many of the lines of absorption in these compounds in the infra-red region coincide and are due to hydro gen. Bisulphide of carbon and several other dia thermanous substances, which do not contain hydrogen do not show these absorption lines, which are presen when hydrogen is contained in the molecule. (Proc Roy. Soc., vol. 31, Abney and Festing.)
Lampblack, which is almost pure carbon, when a thin coating is spread on a rock salt prism, cuts off al the rays except heat rays (it transmits long heat rays), and it has been discovered that this substance does not absorb all rays, as stated in most text-books, but is somewhat transparent for heat rays.

Substances containing a large amount of carbon are opaque to light rays, as is the case with some of the coal tar dyes, lampblack, charcoal, diamonds (when heated and converted into graphite), graphite, etc., but when hydrogen is added to carbon, as in the hydrocarbons, such substances are transparent for light rays
When hydrogen is added to the colored elements chlorine and iodine, colorless gases result.
When hydrogen is added to dyes, by reduction, what is known as leuco compounds of the dyes are formed, which compounds are colorless. They are converted into the dyes by oxidation; i. e., elimination of hy drogen and substitution therefor of radicals, etc. Al of the dyes of the triphenyl-methane group (rosaniline aurin, and eosin group), indigo, methylene blue, safra nine, and other dyes, are capable of yielding such leuco compounds. (See "Organic Chemistry," by A. Bernth sen.)

Water is highly transp arent for light rays and actinic rays, but absorbs more heat than any other liquid (Tyndall). The great absorption of heat by water is undoubtedly due to the fact that it contains no carbon. The transparency for light rays may be due to hydrogen, and transparency for chemical rays may be due to oxygen.
Is oxygen the cause of transparency for chemical or actinic rays?
The evidence on this point is very conclusive, and yet in no book or magazine is this fact stated.
Quartz (SiO_{2}) is used in the form of prisms when the ultra-violet or chemical rays are to be examined, as these prisms transmit the ultra-violet region more completely than those made of glass or any other material.
Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is highly transparent for these rays.
The normal alcohols and fatty acids, which all con tain oxygen, are more or less transparent for the ultra-violet rays.
The transparency for the ultra-violet rays is the greatest in those acids which contain the most oxygen Citric acid, which contains seven atoms of oxygen absorbs but a small portion of the ultra-violet spec trum, while acetic acid, which contains two atoms of oxygen only, absorbs nearly the whole of this spectrum. In the case of the sulphates, sulphites, and hyposulphites, the former contain the most oxygen, and are the most transparent for ultra-violet rays (See article by Dr. W. A. Miller, Jour. Chem. Soc., 1864.)

Hydrocarbons, which do not contain oxygen, appear to be unable to allow these rays to pass through them. Thus benzine $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$, terpenes with the composition $\mathrm{C}_{10} \mathrm{H}_{16}$ and $\mathrm{C}_{15} \mathrm{H}_{24}$; anthracene, and naphthalene, and other hydrocarbons are almost opaque for the ultraviolet rays. (See Landauer's "Spectrum Analysis" and Jour. Chem. Soc., 1898.)
There is a difference of opinion among investigators as to whether open chiain hydrocarbons, such as the paraffines, absorb the ultra-violet rays, but Prof. W. N. Hartley, who is perhaps the best authority on such questions, states in The Journal of the Chemical So ciety (1893), that all open chain hydrocarbons exer continuous absorption in the ultra-violet region.
Solutions of gelatine, starch, glycoses, and saccha roses are transparent for these rays. (Landauer's Spectrum Analysis.")
Oxygen gas itself, whether in the gaseous or liquid
state, has been found to be more transparent for the ultra-violet rays than for other rays. When this gas is under great pressure, or in the liquid condition, it is dark colored or bluish, and no doubt if it could be obtained in an absolutely pure condition it would be black. A very small amount of gas mixed with oxygen or hydrogen affects its absorption of light and other rays.

William Schusiter.
Chicago, Ill

Autpmobile News

Her Imperial Majesty Augusta Victoria, Empress of Germany, has been added to the list of royal chaffeuses. Chicago authorities have granted licenses to six women to operate automobiles. They were all for running electrical vehicles
It is probable that an automobile service will be established between Bologna and Modena. It is said that the cars will have a very large seating capacity.
The race from Paris to Rouen, in which fifty-two ve hicles used alcohol, has resulted in a decided drop in the price of gasoline; forty-one of the carriages succeeded in finishing.

The Committee on Sport of the Automobile Club of France has decided that the international club race will take place in the first week of May, and it will be run on the Paris-Bordeaux itinerary. The choice of the French team has not yet been made
The Central Passenger Association has decided that automobiles are not baggage and that they cannot be checked. Some of the theatrical companies thought they were entitled to have them checked, but the Passenger Association ruled to the contrary.
M. Lenoir died recently in Paris in poor circumstances. In 1860 he was granted a patent for an electrically ignited motor driven by an explosive mixture of air and gas. It was not thought, however, that the invention was of any value, but two years later his carriage made a number of short trips through Paris streets. On many accounts he may be regarded as the father of one type of automobile.
On December 21 a severe snowstorm visited Atlantic City, the fall being twelve inches. The result was that railroads, trolley cars and nearly all the public conveyances were unable to make trips; the electric automobiles, however, continued to operate with almost the same degree of regularity as under normal conditions. An automobile at Lakewood has also proved to be highly successful in snowstorms.
An interesting trial of electric cais for city use was recently held at Vienna. The tests, which were of an official character, were superintended by M. Peyron, Prefect of Police; Dr. Waas, M. Kienast, Councilor of the Prefecture, and the Chief of the Fire Brigade, M. Muller. They started from the city hall in two electric cabs, and made the tour of the main streets in the center of the city, and then after a number of detours in the narrower side streets came back to the starting point. These tests have given very satisfactory results, and the vehicles made a good showing. The batteries will carry a sufficient charge for a 30 mile run. The judges were especially impressed wịth the ease with which the automobiles went through their evolutions, starting and stopping instantly. There is some talk of constructing one or more electric firepumps for the city.
This year will see a number of important automobile races in Europe, among which may be mentioned that of the Gordon Bennett cup, the Paris-Amsterdam and the Paris-Berlin and the Berlin-Vienna races. For the Gordon Bennett cup at least three clubs will compete, the Automobile clubs of Great Britain, Americ:a and Germany; the former club will hold a series of preliminary races, and the winners alone will be allowed to compete for the cup. The German club intends to be represented by five vehicles, two Daimler, one Benz and two Canello-Durkopp. It is probable that America will be represented by the Winton machines. It is probable that Belgium will enter the race with Bollee or German machines. As will be remem bered, the cup was won last year by Charron, representing the Automobile Club of France, although ow ing to various misunderstandings the race was unsatisfactory, owing to the fact that all the competitors did not run. Another interesting event will be the ParisBerlin contest, which will be held in May. The Emperor William, whose interest in automobile matters is well known, is to give a prize for this race. Shortly after will be held the Berlin-Vienna contest, organized by the "Auto-Velo" in co-operation with the German and Austrian Automobile clubs. The distance from Berlin to Vienna is 350 miles, over a good road, and the run may be made in less than one day. A number of prizes of considerable value will be offered. If the competitors in the Paris-Berlin race continue to Vienna, they will have covered a total distance of 1,070 miles, and if they make the return trip to Paris this will make 2,140 miles; this will be a good opportunity to observe the endurance of the machines.

GERMAN EXPRESS LOCOMOTIVE WITH AUXILIARY DRIVING AXLE.

It may be of interest to note some of the details of a recently constructed German express locomotive which has been on exhibit at the Paris Exposition and which has been ridiculed by some prominent engineers. It may however, be wise to suspend judgment until care ful examination is made of detail drawings and full data is studied. It is a foliz coupled compound locomotive for express work and has a small pair of carrying wheels behind, two pairs of large, coupled, driving wheels, and a four-wheeled auxiliary driver truck act ing like a "donkey" assistant. This leading pair of small drivers can be raised from the rails or pressed upon them at will by means of a lever. It was built by the Locomotivfabrik Krauss \& Comp. Actien-Gesellschaft of Munchen for the Bavarian State Railways.
The object of the designer of this engine, as stated by himself, is to provide a locomotive which, in general, "has the qualities of a four-coupled engine, but is able to increase any time it is needed, its cylinder power, as well as its adhesive weight, in proportion of 3 to 2 , so that it can exert temporarily a tractive power corre sponding to six coupled wheels."

It may be wise to consider the reasons given for this consideration before criticising the design too severely.
The engine runs under ordinary conditions on five axles, viz., a four-wheeled truck in front, two coupled axles and atrailing axie carried in a Bissel truck. Be sides that, it is fitted with an auxiliary driving axle which is placed between the two truck axles, though it does not form part of the truck, having its bearings guided by horn plates extending down from the main frame plates outside the bogie frames. The center pin of the bogie, fixed on the casting forming the main cylinders, is placed just before the auxiliary axle. The latter takes its motion from two equal-sized outside cylinders fixed on the main frames in front of the leading wheels. The valve gear of the auxiliary engine is a modification of Joy's arrangement.
As already remarked, the auxiliary engine is not always in motion, but it is only used when starting and accelerating heavy loads, or when climbing steep gradients, in which cases the locomotive is able to exert the pull of a six-coupled engine. For by far the greater part of the run, therefore, the small engine is station ary, its drivers being not in contact with the rails but kept about 1.2 inches above them by the force of the two large spiral springs located immediately below the running board. These act upon the axle by means of a horizontal cross-shaft just behind the main cylinders and a vertical rod, which is attached to two trans verse plates connecting the axle-boxes. When the aux iliary engine is wanted to assist the main one, the action of steam admitted to two cylinders of 7 inches diameter, which can be seen directly above the leading bogie wheels, overcomes the tension of the springs and presses the axle down against the rails, at the same time, of course, discharging. the two bogie-axles of part of their ordinary load. As the bearing-springs of the three hind axles are connected by the compensating levers, their charge cannot be altered in any way by the depression of the pilot axle.

The diameter of the cylinders of the auxiliary engine is 10.24 inches, while the stroke is 15.75 inches. The wheel base of the bogie is about $31 / 2$ feet, while the total wheel base is nearly 30 feet. The engine has a total length over buffers of over 38 feet, and has a total weight of 68 tons. This weight is divided as follows: Leading bogie wheel, 14 tons; rear bogie wheels, 10.9 tons; main drivers, 14.1 tons; coupled wheels, 141 tons, and trailing wheels, 14.1 tons.
The diameter of the main cylinders is 17.3 inches and 25.6 inches respectively, the stroke 26 inches, and the diameter of the coupled wheels 0 feet $11 / 2$ inches.
The throttle valve of the main engine is situated in the dome, that of the auxiliary one in the smoke-box in the main steam pipe; as a result the small engine re ceives steam only when both regulators are open. To prevent any mistakes on the part of the driver, the han dle of the auxiliary regulator and that commanding the three-way cock (which admits a a_{ι} d releases the steam to and from the charging cylinders and is placed on top of the smoke-box behind the chimney) are made mutually interlocking in such a manner that steam cannot be given to the small engine unless the axle has been lowered before, and that the axle cannot be raised again until after the auxiliary regulator has been shut
In order to avoid excessive bulk and weight of the auxiliary gear, the wheel. diameter hats been chosen as small as possible, viz., the same as that of the carry ing wheels, 3 feet $31-3$ inches. This size is quite sufficient, considering the fact that the assistance of the small drivers is only wanted at relatively low speeds, of about forty miles an hour at most. The tires have no flanges.

The device has been in regular service on a singledriver express engine of the Bavarian State Railways since the year 1896, and has never given trouble. The switching in and out of the small drivers at a speed of
about 45 miles an hour is done without the slightest difficulty, and the wear and tear of the auxiliary gear is trifing.
The reasons why the builders prefer the described arrangement to the use of six coupled wheels are two the fact that the size of the main engine's cylinders can be better proportioned to the requirements of high speed, and the possibility of a free disposition of the boiler, especially the firebox and grate, granted by the absence of a third pair of big drivers.

The main engine, which actuates the four coupled wheels of 6 feet $11 / 2$ inches diameter, has inside cylin ders, whose center line has an inclination of 7 per cent to clear the bogie; while the valve faces and spindles are placed horizontally outside and above the cylin ders. The engine is compound, having a high pressure cylinder of 17.3 inches and a low pressure one of 25.6 inches diameter, the common stroke being 26 inches The valve gear is of the Heusinger-Walschaert type, but as there is no room for eccentrics, the motion of the expansion links is taken from the connecting rods.
The reversing screw is arranged vertically on the plate form, directly above the reversing shaft, and handled from the foot plate by means of a horizontal spindle and a pair of beveled pinions. The different sets of valve gears are connected with each other in such a way as to give for the forward motion the following coincident cut-offs:

As an experiment, the alternating parts of the main engine are perfectly balanced by bob-weights, whici are disposed in the prolongation of the inclined plane of the cylinder centers, and are hidden by the casing between the coupled trailing wheels. They consist of cast iron blocks guided like crossheads between slide bars and driven by special connecting rods.
The boiler, with a deep firebox laterally extended beyond the frames and wheels, is similar to those of the Palatinate express engines built in 1898, which have given every satisfaction. But it is somewhat larger and has the "extended wagon top" form, the hind ring of the shell, which bears the dome, having the same diameter as the upper part of the firebox casing. The tubes are supported by a third tube plate near the mid of their length. The chimney is prolonged into the smoke-box. The blast orifice of the auxiliary cylinders is annular round the main blast pipe. The spark arrester is of Sturm s patented system with an automatic flap, which is only shut when steam is on.
The length of the grate of this engine is 5 feet 3.18 inches, while its width is 5 feet 10.87 inches. Its grate area is 31.3 square feet, and frebox has a front height of 6 feet 1.62 inches and a rear height of 5 feet 5.36 inches
The boiler inside the largest ring has a diameter of $51 / 1$ feet, and inside the smallest ring, 4 feet 8.14 inches.

It has 238 tubes, ranging in diameter from 1.85 inches to 2.05 inches. The tubes are 16 feet 8.79 inches long, and give a heating surface of 2,134.3 square feet, while the total heating surface of the boiler is $2,265.3$ square feet, and the normal boiler pressure used is 200 pounds per square inch.
The engine is fitted with an automatic mechanical sander of the builder's system, with foiur pipes, leading to the main as well as to the auxiliary drivers. The Westinghouse air-brake acts with four blocks on the coupled wheels. The registering speed indicator, of Hausshaelter's system, receives its motion from the crank pin of the right hand couplea wheel. The tender, containing 3,970 gallons of water, runs on two trucks, and is similar to the Bavarian State Railways standard type.

The Carrara Quarries in American Control
The entire carrara quarries oi Italy, noted for the splendid quality of their statuary marble have passed into American hands. Senator rroctoi, of Vermont, now has a large portion of the marble output of the world under his control. Now the Carrara quarries, instead of being owned by a number of people who were warring with each other, will reap great benefit by the consolidation. The cost of production will probably be largely reduced, and the modern American methods which will be introduced will probably increase the output. We have already illustrated the primitive methods used in the famous Italian quarries.

A commission has been appointed to examine into the rapid death of the elm trees in New Haven, and it is found the trees are dying from lack of plant food in the streets, mutilation by horses, poisoning by iliuminating gas and by insects and elm tree beetles. Some time ago an attempt was made to attribute the death of trees to stray electric currents.

Engineering Notes.
We regret to note the death of Samuel T. Leake, who made a fortune by the invention of a cotton baie band.

Queen Victoria's new royal yacht, the "Victoria and Albert," is to be altered and completed under the direc tion of Designer Watson
The Pennsylvania Steel Company has successfully completed the Gokteik Viaduct in the Shan Hills, India, the highest railway bridge in the world, and it has been formally handed over to the railway company.

A thirty-story building is to be erected at the southeastern corner of Broadway and Thirty-third street The lot is 118 feet 6 inches wide on Broadway and 97 feet $71 / 2$ inches deep on Thirty-third street. It will be the highest building in the city.
Carrier pigeons will be used on the car ferries of the Pere Marquette Railway Company this winter. This plan of communication is to be used because of the dangers of the winter navigation, boats having been, in times past, caught in the ice, with no way of sending for aid.
An expert miner of Oakland, Cal., will soon start to Africa on a mission which is both romantic and emınently practical. He goes in quest of "King Solomon's Mines," which were made famous by a well-known story of an English fiction writer. Mr. Farrell goes to Africa as an expert for a large London syndicate.
The steamer "Sonoma," built for the Oceanic Steamship Company, has arrived in San Francisco, making the trip from Philadelphia in thirty-eight days nine hours, making no stops. The best previous trip was forty-three days six hours, made by a sister ship. The new vessel will be used between Honolulu and Australia.

A French engineer, named Levavasseur, has devised a new screw propeller which performs the dual offices of a helix and a rudder contemporaneously. It is portable, and can be fitted to any kind of craft, readily and quickly, a feature which recommends its adoption for river and coast navigation. Experiments with the device have been carried out at Trieste with conspicuous success. At full speed the propeller makes fifteen hundred revolutions per minute. It is actuated by a motor driven by petroleum and benzine.

The Secretary of Agriculture has established in the Division of Chemistry a laboratory for testing physically and chemically all varieties of road materials. The laboratory will be ready for operating about the first of December, and any person desiring to have road materials tested in this laboratory is advised to write to the Office of Public Road Inquiry or the Department of Agriculture for instructions in regard to the methods of selecting and shipping samples, and they will be tested in the order in which they are received.

A curious discovery has been made during the dredging operations at the mouths of Morlya and Shoalhaven Rivers in New South Wales. These rivers run through an auriferous district, and at the estuary sand bars and alluvium are deposited. This obstruction has to be constantly removed by dredgers in order to allow the channels of the rivers to be kept open for navigation. This mud was then taken out to sea in hoppers and discharged. A workman one day, impressed by the curious nature of the soil, panned a little off, and was surprised to find a small sediment of gold dust. He communicated his discovery to the authorities, and further investigations proved that the alluvium was freely charged with this metal. It was therefore decided to extract this gold, and the mud is now run through an automatic gold-saver before being dumped into the sea. It is anticipated that the quantity of gold recovered by this means will defray the total cost of the dredging operations.
Russia is suffering from a scarcity of coal, which threatens to severely hamper several of her industries. The deman'। for coal and fuel of all kinds considerably exceed" the supply, and the scarcity has resulted in a heavy rise in prices. The railway companies have had further concessions granted to them, with a view to overcoming the crisis, and also to develop the native supplies. They have had their term for importing foreign coal duty free extended for another twelve months from last September, and it appears that the period will be further increased. It is estimated that the output for the current year of European Russian coal will be over $1,600,000$ tons short of the demand. Russia during recent months has been a heavy purchaser of English coal, but the heavy rise in price of the English product has prevented the supply being continued. A cargo of American coal has recently been delivered at Cronstadt, at a freight of about $\$ 4.25$ par ton, and it is stated that inquiries have been made regarding the cost of shipping American coal to Odessa. Considering the vast quantities of petroleum to be found in Russia, it is surprising that more extensive use is not made of liquid fuel.

AN EIGHT-MILE HOUSE MOVING

In the spring of 1900 it became known that the Chicago, Milwaukee and St. Paul Railroad would build an extension of their road from Yankton, S. D., into Charles Mix County, and the announcement of this produced no little consternation in the three busy little towns of Platte, Edgerton and Castalia, which were situated too far from the projected line to lay claim to all the prospective benefits suggested by that magic term "railroad connection." The railroad surveyors had located on the short branch line two towns which were christened respectively Geddes and Platte, the latter place being the ter minus of the road. Immediately after they had been located and surveyed an auction of town lots was announced, to which the residents of the surrounding hamlets fiocked. The bidding was keenly competitive, and the very day after the sale the inhabitants of the above-named Platte, Edgerton and Castalia made preparations to move their homes and business buildings bodily to the new town sites. Following closely upon this determination there was witnessed upon those Dakota plains such an exodus as surely the world had never seen before. Buildings of all shapes and sizes could be seen moving across the prairie, some in solitary state, and others in groups of three and four.
The longest journey undertaken by any one building was from the town of Castalia to the new city of Platte, a distance of eight miles, the trip being complicated by the crossing of the Platte Creek and some rather rough intervening country.

The largest building to be moved was the Castalia House, a building forty feet long by 32 feet wide and 18 feet in height. To prepare it for its long journey it was stripped of furniture, the plaster was knocked from the walls, the doors
and windows taken out, and the house was trussed by means of planking, diagonally nailed on, and by iron tie-rods. The building was transported on four heavy trucks placed one beneath each corner, the wheels being $21 / 2$ feet in diameter with a 2 foot face Each pair of trucks was coupled to gether by a 16 -inch log which extended longitudinally beneath the sides of the building, and transversely across these logs were placed three 14 by 14 timbers, on which the house rested. The latter timbers extended on each side beyond the house, and a fourhorse team was attached at the ends of each timber, there being thus twelve horses on each side of the house. In addition to this, forty horses were hitched, in tandem, to the front end of the building, making thus sixty-four horses in all. At the first pull many of the chains and whiffletrees parted. Stronger whiffietrees were then cut out of stout fence posts, and heavier chains were used, with the result that at the next pull the house started on its journey.
The strange procession was accom panied by a wagon loaded with blocks, chains, jack screws, axle grease and barrels of water. Both the grease and he water were in frequent requisition as the great friction frequently caused the bearing surfaces to smoke. The chief difficulty experienced in the mov ing was the crossing of a creek, to accomplish which it was necessary to build two temporary bridges of heavy logs and loose dirt. One of our illus rations shows these two bridges in place and the building descending the slope leading to the creek. Here we see two teams of twenty horses each at the front, with a dozen horses hitched on each side of the building Owing to the soft nature of the ground difficulty was experienced on either side of the crossing; but as the horse by this time had been trained to pull
steadily together, the house was finally taken across and ultimately drawn to the new town site. The last three miles were covered with the assistance of eight more horses, making a total of seventy-two head. For making the pull across the creek, it was necessary to

HOUSE HAULED EIGHT MILES BY A 64-HORSE TEAM.
was jacked up, the trucks drawn out, and the structure allowed to settle down on its new foundations. Our correspondent, Cornelius van der Boom, informs us that the new home of this much-traveled house is a thriving little city, where nine months ago was a quiet farm, thirty miles from the nearest railroad.

TRAIN LIGHTING FROM THE CAR AXLE.

Tradition has it that the earliest instance of an attempt at car lighting occurred in the year 1825 on the Stockton and Darlington Railway, England. The company boasted of a single coach, whose accommodation consisted of a row of seats along each side and a long table in the center. To one Thomas Dixon, the driver of the "Experiment," as the car was called, belongs the credit of being the pioneer in the important field of car lighting on the rail. On dark winter nights, out of pure goodness of heart, he would buy a penny candle, we are told, light it, and place it among the passengers on the rough board which answered for a table. It is a far cry from the sputtering candle on the "Experiment" to the brilliant illumination of a modern, first-class, vestibuled train; and the history of car lighting would form by no means the least interesting section of a history of the development of railroad transportation.
The candle, no doubt, soon gave way to the oil lamp, whose undisputed possession of the field lasted so long that it is not by any means the oldest among us alone that can remomber the extreme discomfort of the old oil lamp-nay, it is possible even today, upon certain roads that lead out of New York, to wander into cars which are still lighted with the archaic kerosene lamp. The oil lamp in due course gave way to gas, and this in its turn should, in the natural order of events, give place
rearrange the teams. The twelve horses on each side of the house were brought up to the front and across the creek, the chains being lengthened and attached to the first transverse log as shown in the third engraving. As soon as the new site was reached, the building
to some form of electric lighting, the latter having certain manifest advantages in the way of efficiency, comfort, convenience, cleanliness and absence of risk, which are so self-evident as to need no reiteration just here.

Efforts in the direction of electrical car lighting have been confined to two different systems, in one of which current is furnished by a dynamo with a steam drive, located in the baggage car, the other being of the combined dynamo and storage battery type, in which motive power is furnished directly from the axle of the car. The first type is subjected to the manifest disadvantage that the separate cars can be electrically lighted only when the train is coupled up, and in some of the installations made there has been the serious disadvantage of severe vibration due to the steam drive.

The method known as the Consolidated Axle Light system, which has long passed the experimental stage both in Europe and in this country, is illustrated in the accompanying engravings, which represent the apparatus as applied by the Consolidated Railway Electric Lighting and Equip. ment Company to the overland trains on the Sante Fe route between Chica go and California. Under this system each car is provided with its own dynamo and storage battery. The dynamo is supported within the framing of the truck, by ineans of stout U straps, and it is so hung that the distance between the centers of the driving and driven pulleys respectively on the axle and on the armature of the dynamo can be adjusted. The dynamo is suitably encased in a cast-iron box, which protects it from the dust and fine gravel that are drawn along by the motion of the train. The drive consists of what is known as a flexible gear-a heavy elastic belt with V-
shaped pieces of leather or rubber riveted upon it at intervals, so as to adapt it for running in the grooved pulleys, as shown in our engravings.
Obviously the most important problem presented by this arrangement is the great variation in the speed of the dynamo, and in the voltage generated. There is also the necessity of lighting the car when it is not in motion. Railway cars run at any speed between ten and sixty miles an hour, and as the armature is driven directly from the axle, the speed of the latter will vary directly as the speed of the train. For reasons which are well understood, the voltage generated increases with the speed of the armature, and hence it is evident that if the constant electric volt age which is necessary at the lamps in electric lighting is to be secured, some kind of regulation of voltage or pressure must be provided. Moreover, as the car may run in either direction, provision has to be made for maintaining the current in a constant direction. Further more, as there will be times when the dynamo is not running at all, but when it will be necessary that the lamps shall remain lighted, there is a necessity for storing up the surplus current generated while the dynamo is in motion and yielding it when it is needed. Such an agency is found in the ordinary storage battery. Various means of regulating the voltage have been adopted. One method that has been attempted is to allow the belt to slip as the speed increases; but the impossibility of finding any means of automatically adjusting this slippage has rendered such a device impracticable. Another attempt at regulation is that known as the differential field winding, which is so arranged that as the magnetism due to the shunt winding increases with the speed of the train, the demagnetism caused by the reverse series winding comes into action, the result being a nearly constant pressure.
The Consolidated Railway Electric Lighting and Equipment Company has proceeded on the lines followed by the great electric lighting companies in the matter of regulating the pressure. Constant pressure is maintained by cutting out resistance in the field windings, shunt-wound machines beingemployed. Thus, if the current increases and the pressure falls, resist ance is cut out of the field windings, necessitating a greater flow of current through the field, the effect of which is to increase field magnetism and, therefore, the pressure. On the other hand, if the pressure rises, resistance is cut into the field winding, and the field magnetism and therefore the current pressure is reduced. This system of control is operated automat ically by means of a "Regulator" which contains a motor operating in connection with a rheostat and a double pawl and gear movement. The result is an absolute protection against the burning out of lamps or the overcharging of the battery.
In any system of electric lighting from the axle the problem of a proper drive from axle of car to shaft oî armature is necessarily a serious one. Attempts have been made to overcome the many and obvious objections to a belt drive by substituting, first, a gear drive, which was found to be unsuitable on account of the extreme vibration set up, and then a friction drive which, because of the vertical motion of the axle, led to heavy pounding of the driving pulley against the driv en pulley and an ultimate fracture of the armature shaft. In the gear which forms the subject of the illustration, the difficulty is overcome by combining the positive action of the gears with the flexibility of a belt transmission. The flexible gear consists of a suitably armored belt with V -shaped segments arranged on its inner side, so as to permit the use of a hollow pulley. With this belt, curves of a very short radius may we rounded without the belt slipping off.
Storage batteries are provided for the purposes of storing up the surplus cur rent and yielding it again when the dy namo is running below its whole out put, or not running at all. Thus, in the day time, the full output of the dynam passes into the batteries, and is stored This current is available when the train is standing on a siding or at a station or when the speed of the train is so smal as not to yield the current needed for the lamps and fans.

The results obtained with the overland train on the Sante Fe Railroad are stat ed to have been highly satisfactory, a decided gain being shown, especially when the superior nature of the illumin ation over that afforded by the ordinary gas system is taken into account. The weight of the installation on each car is less than 2,000 pounds, a very insignifl cant percentage of the total weight of a

THE LOOMIS GASOLINE RUNABOUT.
ment, although the dynamo runs at a speed of over 2,000 revolutions a minute, have proved to be very light.

RECENT GASOLINE AUTOMOBILES

The automobiles on view at the Cycle and Automobile Show in Madison Square Garden, of this city, last week, although comparatively few in number, were yet of considerable interest, and in but a few cases were shows.

The Loomis Automobile Company, of Westfield,

FRONT VIEW, SHOWING MOTOR, DRIVING BELT AND PULLEY ON FRONT WHEEL

Mass., exhibited two runabouts which are a great improvement over the one shown last year as far as propelling power is concerned. These carriages, which are built with and without a box behind (the box being
in this case so much spare space for carrying pack ages), are equipped with an air cooled Crest duplex nominal five horse power gasoline motor, neatly ar ranged on the running gear. The running gear is triangular in shape, and is made of a double frame of steel tubing horizontally pivoted to the front axle at the apex of the triangle. The Upton countershaft is used between the motor and the rear axle. This device permits two speeds ahead of five and fifteen miles per hour and one slow reverse. A chain drive is employed throughout. The steering arrangement of this vehicle is a newly patented device. The handle shown beside the seat, in the same position as the throttle of most steam carriages, is moved slightly back and forth to steer in either direction. The lever is pivoted on the under side of the carriage body and attached to a rocker which shifts the stearing arm of the wheel by means of a rod connection The universal ball joint generally used between the steering arm of the wheel and the lever on the carriage is dispensed with, and the arrangement of the handle, besides giving twice the leverage generally to be had, is such that access to the seat is unimpeded.
The Loomis runabout we illustrate was frequently seen running in the basement of the Garden, and it climbed the rather steep incline from the basement to the main floor. It is equipped with mufflers of a new design which effectually deaden the exhaust, and also with a novel carbureter, which we shall illustrate later.
Other gasoline vehicles noted at the show were the "Trimoto" of the American Bicycle Company, the "Warwick," and the "Rambler." We hope to illustrate these in a later issue.

THE ANNUAL BICYCLE SHOW AT MADISON SQUARE GARDEN.
The first impression made upon a visitor to the bicycle exhibition at Madison Square Garden was that the bicycle as such has unquestionably reached its final type. There is less difference between the wheel of 1901 and the wheel of 1900 than between those of any other successive years in the history of the bicycle. But having said this, it must be admitted that there is a marked improvement in the details and finish of many of the machines; and during a tour of the exhibits, we failed to find a single machine that exhibited roughness and clumsiness of design or carelessness in finish.
The chainless bicycle is evidently gaining in favor, if we judge from the proportion of this type that are on exhibition. Both the outside and inside drive are in evidence, the former being the type which was identified so largely with the Columbia bicycle, and the latter with the Spalding whee.. The price has come down, as was predicted, until it approaches that of the ordinary chain-driven machine.
The coaster brake has won its way in popular favor, until now every company is prepared to furnish it, as an extra, with new bicycles. Apart from its convenience in coasting it has the value of affording an absolutely reliable and extremely powerful emergency brake, as well as one that may be applied with any desired amount of pressure.
Another invention designed for increasing the comfort of riding is the well-known cushion frame, which may be purchased in preference to the rigid frame from most of the leading makers. Perhaps the most noticeable departure of the year, because of its conspicuous position on the machine, is the extension handle bar, which owes its existence to the present tendency to narrow the wheel base of the bicycle. This shortening of the wheel base brings the seat so near to the head of the machine.that it is necessary to carry the handle bars on an extension in order to clear the knees of the rider. The change-it can scarcely be called an im-provement-was introduced by the riders in paced races, and it is not likely that it will find very much use among the average road riders. Indeed, the roadster machines, in which class is included the vast majority, will still have the old wheel base of 44 inches.

Several designs of motor bicycles were shown at the exhibition, in most of which the motor is carried within the frame and either belted to a pulley attached to the side of the rear wheel, or fitted with an ordinary sprocket and chain drive. Among these may be mentioned the Thomas Auto-Bi, in which the motor is carried parallel with the bottom bar of the frame, and belt transmission is used, a half-round pulley being at tached to the left-hand side of the rear
wheel. The tension of the belt is regulated by means of a vertically-adjustable idler, attached to the seat post. This machine is manufactured by the E. R Thomas Motor Company, of Buffalo, N. Y. The Auto Bike built by the Holley Motor Company, Bradford Pa., is another rear-driven motor cycle, which differs materially from the one just mentioned in having a very much longer wheel base. The motor is carried n the lower bifurcated half of the seat-post, and a chain drive, located on the left hand side of the wheel, is used, an ordinary chain gear actuated by the pedals being carried on the right hand side, as in the com mon bicycle.
We present illustrations of an interesting type mad by the Fleming Manufacturing Company, of this city It differs from those already mentioned in the fact that the motor is carried upon a frame in front of the steering head, and that the drive is direct to the front wheel, power being transmitted by a five-eighth half-round leather belt which ailows of much flexibil ity and large bearing surface. The belt is tightene by an adjustable ratchet lever, which allows the wheel to be started with the belt somewhat loose, the belt being tightened up after the wheel is in motion There is an advantage in this arrangement in the fact that the momentum of the wheel and rider en ables the motor to be started with ease without any extra exertion on the pedals. The connection with the battery is made by means of the left-hand grip. After the machine is started, the belt can be slack ened somewhat by taking off the extra friction on the idler. The speed can be regulated by advancing or retarding the timing device, which changes the time of ignition in the cylinder. The speed can also be regulated by throttling the mixture before it enters the cylinder. The gasoline tank holds two quarts, which is sufficient for a continuous journey of from 50 to 60 miles. The tank is carried over the front wheel but if desired an auxiliary tank is provided which is placed above the rear wheel of the machine and holds one gallon of gasoline. The frame which carries the motor forms practically part of a specially constructed front fork, and it is so designed as to materially add to the strength of the latter. Not merely the motor, but practically the whole of the motor equipment, is carried on the front forks, only the induction coil and battery being hung from the top tube of the bicycle frame. It is claimed that there is convenience in this form of construction, arising from the fact that a complete motor and front fork may be provided by the makers, which is capable of being attached to any good, strong bicycle frame, in any reputable re pair shop, the only work necessary after assembling the front fork to the frame being to hang the coil and battery case to the frame, for which purpose clips are provided. The exhaust muffler is carried down in front of the supply tank, so as to insure warm gaso line at all times, and also insure that the burnt gases will be discharged below the forks, and as near the ground as possible.

ELECTRICAL ENGINEERS IN SOUTH

 AFRICA.The war in South Africa brought electrical engineers into prominence by the rôle they played in many interesting military operations. The services of the electrical engineers were freely tendered and accepted and special equipment was gotten together and shipped. Traction engines, dynamos, arc and search lights, twenty bicycles provided with reels for paying out telephone wire, were among the things shipped by a transport. The first work after arrival was a temporary electric light installation on the Bethulie road bridge. Six arc lights were operated by current obtained from a dynamo driven by a traction engine. The field telephone was first put into use across this bridge. Field telephones were also used to maintain communication with the flying column, copper wire No. 22 B. W. G. being used. The freight yard and locomotive shops at Bloemfontein were lighted with arc and incandescent lamps. The work of the electrical engineers was o this general class, arc and incandescent lights were in stalled at many places, the search lights were used for various purposes, telegraphic communication was re stored, and they also assisted in the work of repairing bridges, relaying track, etc. The engineers were also in a number of engagements, in which they showed that though volunteers, and volunteers of a special class, they were good soldiers as well

When Pretoria was reached, there was plenty of work in fitting up electrical apparatus which had been wrecked by the Boers. Elaborate construction work

PAYING OUT TELEPHONE WIRE IN SOUTH AFRICA.
in the cutting edge of a lever fulcrumed on the body bar so as to enter the space between the parallel mem bers. The lever is provided with a clasp knife. The point of the body bar may be inserted in crevices, so that the lamp can be supported from the looped han dle. The cutting edge of the lever serves the purpose of splitting a fuse; and the coacting recesses in the lever and body-bar doubly crimp the miner's caps. The uses of the knife are obvious.
On vertical guide-rods secured to the shield a slide is mounted, carrying a reflector and a bent wire which bears on and follows the candle as it burns away, thus
serving to adjust the position of the slide relatively to the burning candle so that the reflector will always be located behind the flame. In connection with the candle-holder a chimney support is employed which has a tubular base made to slip over the candle-holder and its supporting bar. The tubular base carries a mica chimney (Fig. 2) which is detachably held be tween upper and lower clasp-rings connected by meta straps.

```
A Pneumatic Tube Service.
```

A complete and exhaustive.expert investigation has been made into the cost, operation, etc., of the pneu matic tube postal service, with a view to determine whether the service should be owned, leased, extended, or discontinued by the government. The comıittee fully sustains the pneumatic method of mail trans portation as a valuable and mechanically successful system, and in the great cities can no more be discarded than the fast mail train. For New York the joint committee discusses a proposition for the instal lation of eighteen miles of new line. The proposition involves the connection of twenty-one stations and the main office. The annual rental proposed is $\$ 398,500$. The present service of 5.18 miles cost $\$ 167,100$. There will, of course, be a large reduction of wagon service, elevated railway service and incidental savings, which are reckoned at $\$ 101,052$. It is proposed to reduce the charge for special delivery if the service is extended. For Brooklyn 13.5 miles of new tubes are proposed with seven new connections at a cost of $\$ 172,097$. All proposals included the continued operation of the existing system. The House Committee on Post Offices and Post Roads has completed its appropriation bill, but there is no provision for the continuance of the pneumatic tube service. This will probably be added later in the discussion of the bill.

Helen Keller Makes a Speech at Radcliffe college.

Helen Keller, who was once deaf, dumb and blind, can no longer claim the second infirmity. She recently made a speech at the freshmen's luncheon at Radcliffe College, Cambridge, in which she is a student. Her words were heard clearly throughout the hall, and her little speech was met with long and enthusiastic applause. She is now taking besides his tory, French and German and an English course that includes daily themes. In the last course her productions are most remar:-able. In the lectures Miss Sullivan translates to her what the lecturer says. This is all that is necessary, for it is not needful for her to take any notes. Her style shows great individuality.

The Current Supplement.
The first page article in the current Supplement, No. 1308, is devoted to "Recent Excavations in the Roman Forum," and is illustrated by engravings made from photo graphs obtained especially for the Surplement. "Archæology in the Past Century" is by Prof. Flinders Petrie, and is the commencement of a most important and interesting article by a great authority. "Saturn's Rings" is by Prof. Harold Jacoby, of Columbia University. "Meteorological Instru ments" is by Prof. Hans Hartl, and is accompanied by a number of engravings. "Recent Science" is by Prince Kropotkin and is the second installment of this paper. "Anatomy and Physiology of Insects" is a lecture delivered at the Academy of Natural Sciences at Philadelphia by Dr. Henry Skinner. "Prehistoric Ostriches" is a curious article. "The Steam Turbine: Steam Engine of Maximum Simplicity and Highest Thermal Efficiency," by Prof. R. H. Thurston, is concluded in this issue, and is one of the most important articles on mechanical engineering which has appeared for a long time. "Dr. Pupin's Improvements in Long-Distance Telephony" is by Herbert T. Wade, and is referred to elsewhere. "New Wind-Recording Apparatus" describes some new instruments. The usual consular and trade notes are given.

RECENTLY PATENTED INVENTIONS. Agricultural Implements.
tedder attachment for harvest ers.-Wilian h. Mclleee, Dunkitk, ohio The attachment is so made that, althougb the tedder is free to perform all its functions, ing or mowing. The forks' can be instantly raised by the driver when an obstruction is encountered. and dropped when the obstrue
tion has been passed. The turk-carrving frame is pivoted on the main frame : and the main frame is readily attachable to portions of the
harvester. The driving mechanism of the harvester. The driving mechanism of the
shaft upon which the forks are mounted can be automatically thrown in and out of gear
as the adjustalle trame is raised or lowered harrow--Whiman m. Baker, Fortville, Ind. The frame of the harrow contains piv oted tooth-carrying sections independently ad
justable. The runners can be attached to the justable. The runners can be attached to the
main frame so that the harrow can be taken to and from the field without bringing the toothed sections. The outer en either uis toothed sections can be adjusted either in
or down. The rows of teeth are st, st
mounted that they receive different inclina. mounted that they receive different inclina-
tions. The various rows of teeth can lee ad tions. The rarious rows of
justed and held as adjusted.
rotainy maine-maktis a. Gees Land Title Building, Philadelphia. Pa. The rotary engine is designed to be operated by
steam., air. or vapor of any kind and can steam. air, use vapor of any kiter and can pump, or blower when forcibly driven in an opposite direction. The engine has an ec.
centrically-arranged hub. rotating within a casing. sliding piston-faces are carried b, the hub and slide in and out across the
space lying between the hub and the interior of the casing.
stebi-regilator for explosive ExGiNES.-Alibeire I. Yinnerinis, Valpa
ralso. Ind. A chest communiates with the ralso. Ind. A chess communicates with the
cylinder of the engine. An intet-valve con nects the chest with a mixing-chamber, fas a pump. Graduating devices are provided fo a the inlet-valve and for the pump to limit the opening movement of the inlet-valve and the
stroke of the pump. The graduating device for the valve consists of a sleeve turned by the action of the governor and provided with
a spiral groove into which a fixed pin extends a spiral groove into which a fixed pin extends
A collar on the valvestem abuts against the
sleeve. The graduating device for the pump plunger abuts, turned by the action of the gov ernor, and a fixed nut in which the screw-rod turns. The charge is rarefied according to the speed of the engine. from which it follows
that the explosions take place regularly, but that the explosions take place regularly, but
with more or less force according to the speed.

Mechanical Devices.

exhimitor--Chanles il. Whight, Eureka. Cal. This invention provides a novel
means for exhibiting goods, by which a single article is placed in vien and a second article similarly displayed, this end being automatically attained by the mechanism arrying the articles. Specitically, this mech
anism comprises a carrier having a step-b step rotary movement, and an elevator work ing in conjunction with the carrier to take
the articles individually therefrom and move them upward into exposed position. The ele dons it out of view, and subsequently return with a second article.
comirtingencale-Johy J. Sears, day Nuy. New south Wales. The object
 cate the weight simultaneously. Type is car-
ried on a revolving drum connected with a weighing haur. Means are provided for arrying paper adjacent to the type. A print
ing-lever is employed to press the paper against the type : and an impression-lammer is arranged to strike the printing-lever. The goois are placed on the platform. thereby causing
the drums to revolve. The lever corresponding with the rate at which the goods are to be sold are depressed. wherely a regulating.
stop is made to enter between two teeth on the drum, thus ensuring that the type indicating weight is held immovably in the right position while the impression is being taken.
lock-Alexiniber l. Diffendaffer, Canportion which impinges against the keeper on the door-jamb, comnected with the weight by the latch must ordinarily move a relatively
large mass of metal, thus opposing the quicklarge mass of metal, thus opposing the quick-
closing action and -reating much friction. The closing action and treating much friction. The
invention prevides a ver, li int and reversible latch-bolt, and combines with it a separate weight operated by the knob-shaft, so that the
action of the latcl-1-lolt in closing the door is action of the latcch-brit in closing the door is
independent of the weight. may be applied to lock the latch-bott if it be so desired.
derrick and draping detice-Win Field S. RRXEARSNO. Hoise. Idaho. The purFIELD
pose of this invention is to improve the con-
struction of derricks which are provided with
a mast mounted to turn on a base and with
a boom carried by the mast. The inventor has
devised a locking device capable of holding the devised a locking device capable of holding the soop in position to carry a load and to en load. The rastening device is so operated that
the scoop may be quickly brought to a dump the scoop may
ing position.
Voting-maciline-Andiew h. hart Winchester, Ky. Mr. Hart's invention is an he has already received letters patent The primary purpose of the improvement is to make the machine more complete in its detaits
and to extend its usefulness. Indeed. so far seeing has the inventor been that he has even
devised means for registering votes in those derised means for registering votes in those
sections of the country in which a person, in order he has paid a poll-tax before election day.

Vehicles and Their Accessories.
Carriage-iron.-Fred $\begin{aligned} & \text { J. Waginer, Dal- } \\ & \text { as. Ore. This fitting or corneriron is de- }\end{aligned}$ las. Ore. This fitting or corner-iron is de
signed to join the parts of the body or bed of carriage. The invention embodies a peculia y at their joints. and by which the side and end walls of the body are connected securely at their vertical beams.
himRICATMG-Jot RNAL.-sidner Wound has a cavity opening at its onto end and openings leading to the side of
the journal to lubricate the wheel. On th nd of the journal a hollow nut is fitted t hold the wheel in place. A cap is adjustably
fitted on the nut and contains a lubricant. To hold the cap at the desired adjustment hy these novel means, can be lubricated with out necessitating the removal of the wheel even adjustment of the axle-nut.
NECK-YoKe cexter.-Charles W. Me
Doxald. Gallatin, No. The pole-ring has an integral arm. A plate-spring is secured by ne end so as to project its body through the
pole-ring and thus be adapted to conte in con tact with a vehicle-pole on which the ring is placed. This neck-yoke center affords lateral and vertical movement to the neck-yoke for a mited distance, checks the
rocking, and prevents rattling.
Tire.-Charles F. Alles, Hueneme. Cal
The invention provides an improved construc ion of pneumatic tires for motor-carriages an other conveyances. An outer metallic or non-
puncturable sectional tire engages the ground and serves as a guard or protector for the pplied, and may be as conveniently removed

Rallway Appliances.

Car-ventilator.-Lewis H. Bowman Walla Walla, Wash. The ventilator is in the
form of a fan adapted by its rctation to cool the atmosphere and to drive floating dust from he car. In connection with the ventilating-fan motor is employed, which is operated by the
current of wind produced by the motion of the
tirain signaling apraratis.-Wil mam A. and Bevjamin S. II. Iharis, Green ville, S. C. This invention is an improvement in signaling devices for railway-trains employ-
ing automatic air-brakes. In the present ining automatic air-brakes. In the present in direct communication with the train-pipe, they do not form a part of that pipe or of the direct conduit for the air, so that the volume of the air as it passes back and forth does is important: for the signaling apparatus is not fouled by the deposit of dirt and dust. In the signaling apparatus means for trapping
the dust and air are provided. By means of this invention signals can be transmitted to the engineer by slightly reducing the pressure in the train-pipe without necessitating the use of a separate signal-pipe.

Miscellaneous Inventions.

head-gate--Imrace w. Elder, Dawkins,

 Colo. The object of the invention is to proide a new gate designed for use in irrigating land, and arranged to permit a convenient in sertion in a ditch without requiring the forma-tion of a dam. The head-gate comprises a body having an opening and a gate therefor. Side wings are movable on the body, and are adapted tout into the side walls of the ditch.
wings are huag on links pivoted on the body.
 FCSE-IIOLDER.-WARREN R. Cook, l'itts
burg, l'a. The fuse-wire holder is particularly adapted for use in electrically-operated stree ars. The holder contains a number of fuse wires. so that should one be burned out an ther may be quickly turned into place to complete the circuit. The fuse-carrier com prises a cylinder which is mounted to rotate in the carrier a number of fuse-wires are sup ported, between which separating plates are
arranged. Contact devices are employed to in order to bring a fusewire into the circuit when its predecessor has been burned.
medical himi,-Dr. Adolfo Idria, 291 West Ifivisian Street, Chicago, IIl. The bedand water. and provided with a downwardly-
extending pipe. The tank is supported directly
over and parallel to the bed. Its function is to
regulate the temperature of pyretic of febrile regulate the temperature of pyretic of febrile
patients, as, for instance, in cases of spinal meningitis, pneumonia; typhoid fever, and all forms of diseases where bodily temperature plays an important part.
TEMPORARY COVER OR TOP FOR OLNTERS. SALOON-bALS, ETC:- John J. Kontzeri, 120 on Delaware Avenue. Washing stores must be resurfaced at intervals: and since considerable time is neressaly for
varnish to dry sufticiently, serious inconvenience and perhaps loss is involved. Mr. Koetzner has devised a temporary cover or top for
counters which protects them while the var counters which protects them while the var
nish is drying. This cover is supported abover and is parallel to the fixed counter or bar, and is adapted for use in the same manner as th terruption of business.
Flite-Ebwis II. Messiter. San Luis Po osi. Mex. This dust-flue for furnaces comnds of the bars are seated: metallic devices metallic skeleton or frame-work: and a conrete filling. The tlue reyuires a smaller amount interial than the usual form and finds it sumke-flue is rarely used namely, for flues o bio to: 300 or more stuare feet area. and where
pipes of such great size could not be possibly employed on account of structural difficultie or heat in the gases on materials of whict ipes are made
INDEN-TAB,-Chables \mathfrak{V}° Hewkla, Man hattan. New York city. N. Y. The invention
provides a novel and simple tal, which can in orderably attached to the pages of books book words beginning with a certain of letter
may be found. The location of the tabs may be found. The
be readily changed.
 Mr. Clark has devised a simple means where br a printing-plate can be detachably secured
on a base-block so as to enable the clamp ing a burniture used in the lock-up of a form
ind when suitably adjusted, to draw the printingplate forcibly on the base-block and hold
firmly clamped on a base-block. The device can be produced in tlat or curved form and can be used on rotary or other printing presses. run at a high speed. In service an in-
definite number of impressions may be secured definite number of impressions may be secured,
fully equaling in appearance the best work sition is held.

Designs.

WATCILCHARM ANH CIGAR-CITTERJons F. Rawlings, Bloomfield. Iowa. The semi-bell shaped side members of concave-con vex cross sectiona form, connected at their
upper ends by a bridge-piece surmounted by an eye for attarment to the chain
Wall lapers.-Hariy Wearne, Rixheim, Alsace, Germany. Fight design patents have all noteworthy for their artistic merit. One of the designs represents an Egyptian lotus pictures a bunch of hyacinths tied with ribbons. In a third design trellis figures are lose. The fourth design represents a circlet of stems. foliage. and pinks. including a bow its leading features a lozenge-shaped panel upon which is a bouguet, and a network sur rounding the panel. Floral scrolls are ar ranged in the sixth design to represent a l.yre : and between the scrolls is a group of asters. basket of roses suspended by the garland are to be found in the seventh design. In the cighth design stucco-like, concentric, decorated
scroll bars are shown, all merging at their pads in broad leaf scrolls: while a mass if towers covers the space between the uppe
leaf scrolls and extends a cross a medallion. behts.-Lotis sanners, Manhattan, N. y of the three design patents issued to this
nventor, the first covers a belt having down wardly-curved, overlapping front terminals at the intersection of which is an ornament. The
leading feature of the second design is found in surface decoration in which two lines extend longitudinally, one above the other, the lower
line conforming with the contour of the lower edge of the belt, and the upper line conforming with the lower line except at the back central bortion of the belt, where it is arched. The verse plating on its outer face
PIPE-ILANGER.
Charlotte. $N . C$ The hanger is so constructed that it can receive several pipes. The leading pipes.
broom-Silield.-Horner W. Hodies. At anta. Ga. The shield serves the nurpose of Note.-Copies of any of these patents will pe furnished by Munn \& Co. for ten cents each.
rease state the name of the patentep, title Ilease state the name of the patentee.
of the invention, and date of this paper.

Business and $\mathfrak{W e r s o n a l}^{2}$.

Marine Iron Works. Chicago. Catalogue free. For mining engines. J. S. Mundy, Newark, N. J.
" c. S." Metal Polish. Indianapolis. Samples free. "C. S." Metal Polish. Indianapolis. Samples free.
WATER WHEELS. Alcott \& Co., Mt. Holly, N. J. Yankee Notions. Waterbury Button Co., waterb's. Ct. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St.
Chagrin Falls. \mathbf{O}. Rigs that Run. Hydrocarbon system
Lonis Motor Carriage Co., St. Louis, Mo. Gasoline Gas Lamps and Supplies. Catalogue fre , Gear Cutting of every description accurately done. The celebrated "Hornsby-Akrord" Patent Safety oil Suyine is built by the De La Veryne Refrigerating Ma
chine Company. Foot of East lisith Street, New York. 27- Send for new and complete catalogue of Scientift
and other Books for sale by Munu \& Co.., 361 Broadway,

(8031) G. E. M. asks : 1. Would you kindly advise me how to melt rubber, and add
the necessary chemicals which it requires to mold it into a certain shape or form: A. The rubber is not melted, but vulcanizable rubher is pressed in heated molds at a rela-
tively low heat, which results in vulcanizing it, or causing it to stay in a ixxed position. 2.
What is the best kind of a mold to be used (is plaster paris sufficient) for the said purpose? ing. 3. Should there be a special ingredient used in the rubber to make it soft and pliable? A. Sulphur is the material which is thoroughly
mixed with rubber to make it vulcanize. It is first softened by steaming. then mastlcated in a machine made for the purpose. The rubber
comes ready prepared for use. Articles on the comes ready prepared for use. Articles on the
preparation and manipulation of India rubber are contained in Scpplement, Nos. 249,251,
252 and 1204 ; price 10 cents each, by mail. (8032) E.S.B. writes: 1. I havebeenendeavoring to collect some data regarding the temperatures from files of your paper and other sources. but find so many vague and contradic-
tory statements. that I have decided to ask you tory statements that I have decided to ask you
to give me some information. A. Your perplexity is very natural. A periodical simply announces results, reports the news, with the the result, and leaves the matter there. The facts change, or rather, the determinations of various investigators change from time to time, different investigators reach dissimilar conclusions. Any conclusion published inust rest companies it. It is not man whose name acentific journal to decide what figures or facts are correct. We should adrise you to obtain work upon their statements, correcting their figures from time to time by the papers published by the men engaged in these researches. Larker"s "Physics." price $\$ 3.50$ or Ganot's
"Physics." $\$ 6$. Ioth are desirable io you would "Physics." \$6. Poth are desirable it you would
have the whole story. Itardin's "Liguefaction have the whole story. Ha Hase .. $\$ 1.50$. Sliqueraction "New Researches on Liquid dir"" Dewar After nals. would follow the principal scientific jourhas been done in any particular field. Progress is constantly being made, and one paper does you seek are given in the pages of the books listed, so far as they were known when those books were published. The figures for hy ogen October 7. 1899, from I'rof. Dewar. 2. If the rritical temperature of hydrogen is 35 deg. C. absolute and its critical pressure is 15 atmospheres, does it follow that with a given mass of
hydrogen under critical conditions, the least increase or decrease of pressure will cause it all to become liguid if it was a gas or gaseous if it was a liquid: Will the least subtraction or
addition of heat cause it all to become liguid ordition of heat cause it all to become liguid
or gaseous: A. The reading of the "Physics" to which we have referred you will fully inform vou on this point. We may answer the ques-
tion in the negative. No gas can turn liguid tion in the negative. No gas can turn liquid
instantaneously : no liquid can freeze instantaneously. The critical temperature is simply the temperature below which a substance must be
cooled before any liquefaction oí it can take
place. Further removal of heat will cause as much of the gas to liquefy as the heat removed
would cause to evaporate were that number of calories to be added to the liquid. The critical pressure is a pressure which is associated with the critical temperature as a minimum of pressure for the temperature. As the gas cooled below the critical temperature, the necessary pressure to hold it a liquid also di
minishes, until we may come to a temperature minishes, until we may come to a temperature or which the liquid will remain in a station in the open air. This is, of course, what is called its "boiling point." It apor pressure is then equal to atmospheric pressure. 3. Has any gas under critical conditions any latent heat? A. Yes. The answer to the last question implies this. The term "la tent heat" is disappearing from our books. It is not necessary and conveys an erroneous im theory which is false and abandoned. The heat of evaporation is the energy which is used in changing the condition of the sub stance from the liquid to the gaseous form, and this energy is still active in the gas maintain ing it in the gaseous form. When the heat removed the substance returns to the liquid orm. So long as the substance is a gas, the to a gas must be in the substance, and as soon as this heat is removed, the substance will re turn to its liquid form.

NEW BOOKS, ETC

American Trade Index. Descriptive and Classified Membership Directory of the National Association of Manufac
anged for the Convenience of For
eign Houses. Philadelphia: Na tional Association of Manufactu 190. 12mo. Pp. The index is printed in English and French, gratuitously among the principal bustnes houses of the world, and will prove an agenc for the foreign distribution of information concerning American manufactures. The arlist of articles produced by members of the National Association of Manufacturers will cer tainly prove of the utmost value, as this indes ed cable addresses are also given.
Commercial Organic Analysis. By Al
Hydrocarbons, Petroleum and Coal Tar Products, Asphalt, Phenol and
1900. 8vo

Pp. 330. Price $\$ 3.50$.
It seems almost unnecessary to do more than give the title of this book, which forms, with解 portant contributions ever made to the inter ature of chemistry. The present volume dea manufacturers.
School Chemistry. By John Waddell 1900. 12mo. Pp. 278 . Price 90 cents. The author has produced an excellent book hat many of the old classic illustrations which make their appearance with such re freshing regularity are in evidence. An en-
deavor is made in this text-book to help the pupil in the discovery of new facts whic nables them to see their connections, and to
show how facts lead to theory and theory aids n investigation in the discovery of further facts.
Petroleum in California. A Precise
and Reliable History of the Oil In
published by Lieut. Redpath and
Angeles, Cal. 8vo. Pp. 134. Price
\$1.
Nature has certainly been lavish with her gifts in California. Its gold and frutt have the production of oil is the third great industry. The pamphlet before us gives in conalmost everything that the reader is destrous f knowing about the discovery, exploitation and prospects of oil in California
Modern Perspective. A Treatise Upon and Cylindrical Perspective. By William R. Ware. New York: The
Macmillan Company. 1900. 12mo Pp. 336. Price $\$ 4$
The present work was first issued in 1882 and since that time it has been recognized a ne of the standard works on perspective. The author has taken advantage of the opportunity the text and to add in an appendix some mat ters of interest. The reputation of the Pro s so great Architecture in Columbia Universit is sure to be an excellent production.
Our Country. What It Is and What Has
Made It What It Is. By W. C. Dodge.
Office. 1900. Senate Document. 8vo. Pp. 98
The object of the present pamphlet is to facts relating to the growth, prospertty and future prospects of our country with which
every intelligent and patriotic citizen ought to
be familiar. The idea is an admirable one, and the amount of information which is given is very considerable
Cassell's Cyclopedia of Mechanics. end Ny Paul M. Hasluck. Londo 1900. Quarto. Pp. 384. Price $\$ 2.50$.

This volume presents in a form conventent processes and memoranda selected from the rich store of choice information contributed by a staff of skillful and talented technicians, upon whose practical experience and expert know edge the information is based. The natter in hlustrated has been carefunt digested, freel nced It aill made play to those Inexpe

The Principles of Mechanics. An ele Physics Exposition for Students of New York: The Macmillan Company 1900. 12mo. Pp. 299. Price $\$ 190$, uthors bes bee to ubject matter with close reference to eed of college students. The second, to bring the instruction into adjustment wha the actual speed of their training; and third, to aim continually at treating mechanics as y recognizable culture value. The author is Professor of Physics in the University of Cal
ifornia. fornia.
Elements of Mineralogy, Crystallography and Blowpipe Analysis from Practical Standpoint. By Alfred Lathrop Parsons, B., New York D. Van Nostrand Company. 1900 8vo. Pp. 414. Price $\$ 2$.
In this edition of the authors' text-book ion of 1895 , to present the facts leading to a useful knowledge of mineralogy in such a manner that the student in the technical school and the professional man in the field may readny learn to recognize, or at least to determine all important minerals. Their the result is a handsome contribution to the literature of mineralogy. The larger part of the illustrations do not appear in other worl:s. In all, there are 664 illustrations and diagrams and several tables.
Sanity of Mind. A Study of Its Condi tions and of Means to its Develop ment and Preservation. By David F
Lincoln, M.D. Mew York: G. P. P
Putnam's Sons.
1900.
12mo. Pp. 177
The author deals in his opening chapter with the attitude of public men; care and ducation which is favorable to sanity of mind, nature of mental derangement, degeneracy, ed ivic duties It is a most interesting dis civic duties. It is a most interesting dis.
cussion of the subject.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending JANUARY 15, 1901,
ANDEACHBEARINGTHATDATE [See note at endoflist about copiesofthese patents.] Acceleration limiting and recording device,

\qquad

 Bird-tran, E. F. Sylvis....
Borler, E. Joticard.
Boiler-furnace
B.

Rottl Rotl Bott

BABBITT METALS.-SIX IMPORTANT

Water Emery Tool Grinder
 W. Send for cataloque and prices
W. F. \& NO. BARES CO.

SENT ON TRIAL.
 THE CleANER THAT Clam fine cilicin
 The cogegestal wis. Co., 123 Lberty st, Neen rork.
 DESULPHURIZING FURNACE.

Acetylene Gas Burners. Schwarz Perfoction Lava Bufier.
Hitghest awards in all aceatylene Expo-
sitinns

Acetylene Gas Lighting
 Niagara Falls. N. Y. and Canada.

 1171
 \section*{路。}

Yalee, H. G. Glis Wask, A. M................
Washboardened A. R. S.sss, F. F. Wehin
Washing Washing-machine, C. E. Frick.
Watch-regulator,' L. Erickson.
Water-closet, F.' H. Paradice.
 Whitening or ok, finishing manchine, H .
Wind-wheel. W. H. Aldrich......
Windmill,

 Wire-drawing machin, T. M. Foote
Wire-fabric edging. H, J. Steffene:.
Wire-stapling machine, H. Weber.:

$\underset{\text { Wrench, }}{\text { Wrent }}$ A. S. Moneney.

DESIGNS.

\section*{| Stao |
| :---: |
| sto |
| sto |
| sto |}

\qquad

> TRADE MARKS.

 Clothing, ertain named, H. S. Peters........
Corsets, Warner Bros. Company
Cotton goods, certain named. A.
Dry goods, certain named, American Trading
 Leather, Wolff Process Leather Company
Medicine, certain named L Rover.....
Medicines, certain named proprietary,
Alling

Salt,
Shoes
Tea,
풀

\qquad

LABELS.

"Alma Rosa," for cigars, American Litho-

PRINTS.

A printed copy of the spocification and drayting of

 RIDE SEMOILERS-PEOEALET ONLY 35. ECLIPSE MANUFACTURING CO, ELMIRA, N.Y.

TO LAST TEN YEARS
 of the invention will be formardad
Address Capt, Stevedore,
Tacoma or Seattle, Washington. PERFECT - PUMP $=$ POW ER
is attanined only in the
TABER ROTARY PUMPS

 the mietz \& weiss KEROSENE

ALWAYS
 No tinkering and fussing. Just a turn of the
Wheel and she works. Achain is as strong as its
weekest link. An engine is as perfect ansits poorest
part. If your enginc has a poor oiler, a defective

STOVER ENGINE WORKS, FREEPORT, ILL

$\mathrm{W}_{\text {hat }} \mathrm{D}_{\mathrm{o}} \mathrm{Y}_{\mathrm{ou}} \mathrm{W}_{\text {ant }} \mathrm{T}_{0} \mathrm{~B}_{\mathrm{uy}}$?

Write us e can tell you where to buy anything you want. Novelties, Special Tools, Machinery, Equipments, New Patent LABOR SAVIING DEVICES.

sciennific American - . - Manufacturers' Index

[^0]Grand Prix, Paris, 1900

Now Another Proof of Superiority

 \mathcal{C}_{10} Smith Premier Cypewriterhas been adopted for the Official Work of the

PAN =AMERICAN EXPOSITION

Buffalo, 1901
The Smith Premier Typewriter Co. syracuse, N. Y., U. S. A.

Che Cypewriter Exchange

 432 Diamond Stivg, p 3 West Batimorist 5 St, 1 ,

to 508 ou Typewriters of ail makes. Senni for coutalogue.
THE BICYCLE: ITS INFLUENCE IN

ZEPHYR MAGNESIA

PLASTIC COVERING.

Guaranteed th cover 41s squre feet, flat surface, 1 inc
thick, and welghs only fic pounds per bag. Magresia Asbestos Moulded Sectional Coverin Wnol Felt Sectional Coverings. Asbestos Cement. and a complete line of insulat
materials of all kinds. For prices address THE CORK FLOOR AND Tlite CO.,
139 Congress itreet,

PHONOGRAPH

Perfect Reproductions of Sound re obtained by using EDISON RECORDS and Nine Styles. From \&10.00 iotision.00:
$\underset{\text { without }}{\text { One genuine }} \underset{\text { Trademas mat }}{\text { This }}$ NATIONAL PHONOGRAPH CO., 135 Fifth Ave., New York

Telephones,
 furnished. Agents wanted.
THE SIMPLEX INTERIOR

431 Main St., Cincinnati, Ohi

ROTARY PUMPS AND ENGINES

MORAN FLEXIBLE JOINT
 pressure.
Moran Fle
147 Thie Third Steam Joint Co.. Inc'd.

THE " QUEEN" DRA WING PENS

 THE AUTO-CARBURETTOR

 quickly ascending a sketch and description may quickly ascertain our opinion free whether an

Scientific American.

HOME, HOSPITAL, CAMP, YACHT
"Perfection"Air Matresses

\qquad

METHODS AND INSTRUMENTS USED in Astronombe An illustrated deseription of the tele-

ARTESIAN

 RUBBER STAMP MAKING.-THIS

DICKERMAN'S DURABLE DESKS Don't buy until you qet our catalogue-
100 pages of money saving values. Che Scientific American publications for lgol.
The prices of the dirferent publications in the United
States, Canada, and Mexico are as follows: RATES BY MAIL.

 COMBINED RATES

terms to Foreign Countries The eearlys subserition prices of of cientifics American
publications to foretign countries are as follows

Combined RatEs TO FOREIGN
Countrientific A merican and Supplement,
8.50
11411

 Scientific Amerian. Scientift Ammician The abore rates include postage, which af pay. Re-
mit ty posial ur express money order, or raraft to order of MUNN © CO., 361 Broadway, New York.

ARCHITECTURAL VOLUMES

Bound volumes of the Building Edition of the Scientific American for sgoo are now ready for delivery. Beautifully printed perspective: and floor plans of many houses of a wide range of architecture and cost; also a large number of cuts of handsomely furnished and decorated interiors, combine to make these volumes of great value to those interested in the subject. The semi-annual volumes are $\$ 2.00$ each : yearly volumes, $\$ 3.50$ each.

MUNN \& CO., Publishers, Scientific American Office, 36I B'way, New York.

Jaluable : Books!

EXPERIMENTAL SCIENCE

ELECTRICAL ENGINEERING

HOW TO MAKE AN ELECTRICAL

If Your Eye Could See

 Berkefeld Filter,
 Berkefeld Filter Co., 2 Cedar St., New York. BICYCLE TIRE REPAIRING.-THE

NICKEL Electro-Plating
Apparaus and
घateral Apoaraus and $\begin{aligned} & \text { anderal. } \\ & \text { REE } \\ & \text { Hanson \& VanWWinkle }\end{aligned}$
 as biver ietieriils, and incoosedina neat folding bo

MAGIC $\begin{gathered}\text { stage Illusions and Scientific Diver } \\ \text { sions, including Trick Photegrat }\end{gathered}$

ond orot igat so

BALL BEARING AXLES AND RUB

Our great $\$ 3.00$ blactory to Family by mailpost-paid,

 $\xrightarrow{\text { hides no kkin. }} \begin{aligned} & \text { han Folder." } \\ & \rightarrow\end{aligned}$ Wealso bugrawfurs.
THE CROMBY FRISIAN FUR COMPANY,
116 Mill Street, Rochester. N. Y.

\$1,000 A YEAR FOR LIFE

 six per cent. guaranteed. preferably frum previous emponoyiers.and by certificates, catracter,
habito of industry and sobicety and skill and experience
n work of the kind required.

NEW YORK SHOPPING by a responsible and
MRS. LORD,
experienced lady
b3 West $24 t h$ street, Nen
Sor
/2 H. P. GAS ENGINE CASTINGS

MODELS \& EXRERRMENTAAL Mork:

EVERY BICYCLE RIDER, DELPER

HOW TO MAKE A DYNAMO $\begin{gathered}\text { with fun } \\ \text { drawnas } \\ \text { ditce }\end{gathered}$

 ploy ers as ato character, batits of industry nand sobriety
and skill and experinence in work of the kind required.
JOHN D. LONG, Secretary of the Navy.

PALMER BROS.
gines.
MIANU for Catalog CONN
ACETYLENE APPARATUS

FOR SALE. - MachineSbop, brass and iron foundr

REDE才IOE,

MOVIMG PICTURE MACHINES ANO FILMS.

Shoe blacking.-FORMULAS for

By EDWARD W. BYRN, A.M.

-
Thr new volume, which worthily celebrates the close of the
century, as far as as the ants and sciences are concerned, has been
 Sook is scolarly and interesting, and records and describes ant the

 . MUNN \& CO., Publishers, scientific American office, 361 B'way, New York.

Corites riâ erans
 -MADE AT KEY WEST;-

These Cigars are manufacturesi under \} These Cigars are manufactures under
the most favorable climatic conditions and the most favorable climatic conditions and
from the mildest blends of Havana tofrom the mildest blends of Havana to-
bacco. If we had to pay the imported cigar tax our brands would cost double the \{ money. Send for booklet and particulars.

CORTEZ GIQAR CO., KEY WEST.

Beginning the Century
 most advanced and
complete eutomo-
bile. NN.thing so
good and complete
set the WINTON VINTON MOTOR
CARRIAGE Substantially built
best looking easi best looking, easi
est to control, has
many distintive
advantages,
and

 eastern Depot, $150-152$ East $58 t \mathrm{th}$ Street, New York.
No Noise, No Odor, - No Vibration.

THE HAYNES-APPERSON CO., - KOKOMO, INDIANA. CHARTER ENGINE
 Fu cl-Gasoline, Gas, Distillate Pumps, Holsters Charter gas engine co., Box 148, sterling, ill Bristol's Patent Steel Belt Lacing

 The Bristol Co. Waterbary Conn.

WATERPROOF GLUE

A NEW GLUE which is strictls WATER-
PROOF. Information and prices supplied by the
CASEIN COMPANY OF AMERICA,
74 JOHN ST., NEW YORK, N. Y.

OLT ACETYLENE

GENERATORS

Government, by the State of Pennsylvania,
and by all other disinterested authorities. They embody the latest and most approved
principles of construc principles of construc-
tion, and are guaranteed by the largest concern engaged in the business to be of perfect work-
manship. manship. Made from the best
material by expert mechanics. ECONOMICAL AND SAFE. EASY OF OPERATION.
J. B. COLT CO., Dept.s. 408 East 32d Street, New York. 146 Franklin Street, Boston.
189 La Salle Street, Chirago
421 Chestnut Street, Philadelphia.

WALTHAM WATCHES

Before 1854 there were no Waltham Watches nor any American Watches. To-day the tradition that one must go abroad for a good watch has been exploded by the American Waltham Watch Company.
"The Perfected American Watch", an illustrated book of interesting information about watches, will be sent free upon request.

The New England Watch Co. ARTISTIC SPECIALTIES forthe Season are shown
Our Blue Book for Ladies' In Our Red Book for Men's Watches.
Either or both sent on application 37 Maiden Lane,
New York,
Spreckels Buiding,
Nan $\quad 149 \begin{aligned} & \text { State Street, } \\ & \text { Cbicano, }\end{aligned}$

American Art

FOR AMERICAN HOMES. Many of our American Artists are to-day the equal of those of any country in the world. Per-
haps you do not know this and are not aware of the proud position haps you do not know this and are not aware of the proud position
occupied in art by the youngest country in the world, ranking
second only to France at the last Paris Exposition.

Know the Art of Your Own Country!
In order that you may do so, we have made a collection of the subjects are all copyrighted, and we own and control the copy-
right, so they can never become common, as they can be purchased and craftsmen to reproduce these paintings by the photogravure process. Their delicate and painstaking work has preserved all the elements of tone and texture. The photogravure is the nearest approach to the painting, and this collection represents an expenditury
many thousands of dollars.
Each subject is accompanied by a fine portrait and biographical sketch of the artist.
TWO WATER=COLOR PAINTINGS-Each collection contains two genuine water-color copies of the original oil paintings. These have been done by thoroughly competent artists, each
one inspected and signed by the artist who painted the original. These two paintings alone
are worth more than the cost of the entire set. one inspected and signed by the artist who pain
are worth more than the cost of the entire set.

DELIVERED FREE ON APPROVAL.
Simply send us your name and address (a postal card will do) and we will forward at once
circulars and full information concerning this magnificent collection; then if you wish to circulars and full information concerning this magnificent collection; then, if you wish to
examine the reproductions. we shall be pleased to send the complete portfolio absolutely without expense to you. If you do not like them return them to us, and will pay express
charges both ways. If you decide to add them to your home, you can pay for them in cash

OUR SPECIAL PROPOSITION.
reach ofder to introduce and advertise the collection, and at the same time place it within the Club " ${ }_{\mathbf{A}}$," ${ }^{\text {r }}$ and will send by express, prepaid, to the first One Hundred Subscribers one hundred complete sets of MASTERPIECESE OF AMERICAN ART for examination at just one-half
the regular price. Be sure and mention Club "A."
American Art Publishing Co., 36 East 21 st Street, New York.

 ACETYLENE

 $\xrightarrow{\text { ELECTRIC AUTOMOBILE. }}$ Hition Thar momomemement The Open Pipe

[^0]:

