
a WeEkly Jourinal 0f rractical information, art, science, mechanics, Chemistry, and manufactures.

Second-Class Cruiser "Suchet."

Second-Class Cruser "Cecille."
VISIT OF FRENCH CRUISERS "CECILLE" AND "SUCHET" TO NEW YORK.-[See page 278.]

§̌inutifir gmmeriaut.

ESTABLISHED 184.5
MUNN \& CO., - - EDITORS AND PROPRIETORS.
PUBLISHED WEEKLY AT

NEW YORK. SATURDAY, NOVEMBER 3, 1900.

IRRIGATION IN THE EASTERN STATES.

An important part of the work of the United States Department of Agriculture is the irrigation of arid lands, an undertaking which is being carried out by the Office of Experiment Stations in various regions of the United States. Owing to the great importance of the subject to the farmers of the Western States, for whose success irrigation is a positive necessity, the greater part of the experimental work of this office is being done on the arid lands which were formerly known as the Great American Desert, but which under the influence of irrigation have proved to be remark ably productive. It must not be supposed, however, that the need for irrigation exists only in the re gion west of the Mississippi River; for the many crop f:iilures which have occurred in the Eastern States have drawn attention to the necessity in this region also for storing the flood waters of the rainy season, or if that be not practicable, of erecting pumping plants to make pood the shortage in seasons of drought.
Although the losses due to drought are not anything like so serious in the East as in the West, they are stil sufficiently large to justify the installation of irrigation plants. Prof. E. B. Vorrhees, of the New Jersey Ex periment Station, estimates that as the result of his observations and experiments in 1899 he found the loss to the hay crop of New Jersey from drought during May and early June of last year to be $\$ 1,500,000$, while vegetables and small fruits suffered even more seriously. That damaging droughts are not infrequent s shown by the rainfall records in Philadelphia during the seventy years from 1825 to 1895, which prove that in eighty-eight per cent of these years there was a deficiency of more than one inch for one month; that is to say, in sixty-two years out of seventy, there was one month in the growing season in which there was so marked a decrease of rainfall that a serious shortage of crops resulted. For the same period there were thirty-nine years in which the deficiency extended throughout two months, while in twenty-one years the deficiency extended throughout three months, the average rainfallduring this growing period being deficient by one inch or more.
The investigation by Prof. Voorhees was made for the purpose of determining whether the increased yield resulting from irrigation during these three months would be sufficient to pay for the necessary storage or pumping plants. Careful records were kept of the yields of plots of ground which received the same cultivation, except that some of these were irrigated and others depended upon natural supplies of moist ure. The increase in the yield of the irrigated plotsover the others varied from 339 quarts of raspberries per acre, worth $\$ 22.90$, to 1,030 quarts of blackberries per acre, worth $\$ 93.42$.
The cost of plants of the size necessary to supply ten acres of swall fruits and garden crops has varied in the different experiments from $\$ 230$ to $\$ 500$. While returns have not been made from all of the plants which were under observation, the owners are in every case satisfied that their outlay has been returned with consider able profit; while in nearly every case they state that they have paid for the plant with the receipts of in creased crops during the first year it was in operation. creased crops during the first year it was in operation.
The results obtained by Prof. Voorhees are of unThe results obtained by Prof. Voorhees are of un-
questionable value; for the climatic conditions of New questionable value: for the climatic conditions of New
Jersey are fairly typical of the United States east of the Mississippi River. The report has greater practical value to-day than it would have had twenty years ago, for there are now upon the market many exceedingly economical forms of motive power, such as improved windmills and highly economical internal comi, ustion motors, which do not cost much to install, and the running expenses of which are light; the windmills indeed costing practically nothing after erection.

Quite apart 40-KNOT STEAM YaCht.

menal devt from its spectacular features, the phenomenal development which is just now taking place in the art of building extremely high-speed craft of the pleasure-yacht or torpedo-boat type is of the most vital interest to the builders of large, highspeed, ocean-going vessels, whether in the navy or
merchant marine. When Mr. Parsons with the "Viper" and Mr. Mosher with the "Ellide" succeed in attaining speeds of 37 knots and 34.73 knots with their respective craft, they are "blazing the way," as it were, in a comparatively untried field of investigation, for the production of ocean steamships which as the years go by will undoubtedly approach the same speeds.
The incredulity with which the mere suggestion of such speeds in ocean steamers is received is due to the recognition of the fact that the present system of steam boilers and steam engines involves such an enormous increase of weight for a relatively small increase of speed that the limit of speed with Scotch boilers and engines of slow revolution has been very nearly reached. But to state that higher speeds can never be attained is to assert that finality in marine engine and boiler design has been reached.
For obvious reasons it was impossible to take any indicator cards of the turbine engines of the "Viper;" but as the engines of the "Ellide" are of the reciprocating type, it has been possible carefully to tabulate the results of the trial on which she achieved her record speed. The results showed that by the use of water tube boilers, carrying a pressure of 390 pounds to the square inch, and engines of extremely light construction running at 822 revolutions per winute, an indication of 910 horse power can be obtained in a craft whose dis pacement is only 13 tons. This represents 70 horse power per ton. There is now under construction by the same designer a twin-screw steam yacht, which is to be of 60 tons displacement, and whose engines are designed to indicate 4,000 horse power and drive the craft at a maximum speed of 40 knots per hour. The success of the "Ellide," and the fact that the new yacht is an enlargement and improvement of the principles of design embodied in the earlier boat, render it probable that this speed will be attained.
In the current issue of the SUPPLEment will be found a lengthy article which gives a full description and drawings of the new craft, and all who are interested in the development of steaw navigation, whether for pleasure, war, or profit, will find the article of extreme interest. Of course, there is an enormous step from a 60 -ton river craft to a 20,000 or $30,000-$ ton ocean liner, but the fact that 4,000 horse power is to be developed frow two boilers whose combined weight is only 1286 tons may well demand the serious attention of marine architects who are now engaged in designing, or getting ready to design, the latest express ocean steamers. Horse power is the product of pressure and velocity. By the use of water tube boilers pressures may be enormously increased and weights reduced, while in the engines the speed of revolution may be quadrupled, with a corresponding reduction in weights.
Doubtless the fast-running engine and the water tube boiler would have been given a trial in one of the liners recently built or now building, had there been any successful application of these to a high-speed vessel say of 1,500 to 2,000 tons displacement; but the steamship companies naturally hesitate to make radical experiments on a vessel which represents an investof $\$ 3,000,000$ more or less. We hear that 30 knot Channel steamers are under consideration by one or more of the English companies, and if such a craft be built and successfully run, we may see the speed of ocean liners make a jump of three or four knots within the next decade.

the national memorial bridge at

 WASHINGTON.It will be remembered that as the result of a competition for a National Memorial Bridge to cross the Potomac River at Washington, the first prize was awarded to Prof. W. H. Burr, of Columbia University, N. Y., who was assisted, as to the architectural features of the designs, by Mr. Edward P. Casey. Prof. Burr presented two designs for this bridge, and the committee in awarding him the first prize decided to accept in general the engineering features of one design and the architectural features of the other. One of these designs was illustrated in the Scientific American of May 19. In the modified design the accepted features of the two plans are combined, and the result is an extremely dignified and beautiful structure.
The bridge may be broadly divided into the bridge proper, which consists of six 192 -foot concrete and steel arches, with a bascule span of 159 feet in the center, the bascule serving to span the navigable waterway, and the three spans on either side serving to reach across the river proper. The Washington approach to the main bridge consists of twelve 60 -foot seinicircular concrete-steel arches and 550 feet of embankment; while on the Virginia side the approach is made up of fifteen semicircular arches of the same system of construction and 1.450 feet of embankment, the total length of the bridge including the embankments being 3,440 feet. The architectural features shown in our illustrated article above referred to have been incorporated in the new design. In the original plan, the bascule piers were surmounted by massive Roman arches, which, while they were intrinsically admirable in design, were not nearly so well adapted to the site
or to the structure as
The judges have decided that it would be better to provide for street car lines on the main deck of the bridge, which instead of embodying an upper and lower roadway, will be constructed with a roadway 60 feet in width, which will perinit of the use of car tracks and two 12 -foot sidewalks on either side of the road way. An important modification, which greatly adds to the architectural appearance of the bridge, is the substitution of curved for straight lower chords in the bascule leaves. Good taste has been shown in adopting a flatter curve for the bascules than that employed in the three concrete spans on either side, the difference in curvature serving to emphasize the fact that the channel span is a bascule and not a permanent arch. The great arch towers at the center, and the ornamental towers at the shore abutments, will be enriched with emblematic groups of statuary and heavy bas-reliefs, which will commemorate men distinguished in the foundation and development of the Republic, the wemorial bridge being intended to serve as a tribute to "American patriotism." The completion of this magnificent structure will form a notable addition to the great national monuments not merely of this country, but of the whole world, ancient and modern. The memorial will be a fitting example of the best work of the American bridge engineer in the beginning of the twentieth century, and in architectural effect it will be a worthy companion to the Con. gressional Library.

OUR RAILROADS at the close of the century.
In respect of its size and phenomenal growth, the stupendous railroad system of the United States is to this country what the equally stupendous British merchant marine is to the mother country. In the case of both the wonderful growth has been confined to the last three generations, and each is by far the largest in the world. We have at hand the annual statistics which are published as a part of Poor's Manual, from which it is seen that there has been a healthy growth during the past year, which, while it is far below the records of some of the years of undue expansion, is still without a contemporaneous parallel in any of the world's great railroad centers. The length of the railroads completed on December 31, 1899, was 190,833 miles, and the net increase in mileage of all railroads in the United States for the last year is given as 3.981 wiles. The length of the railroads reporting traffic statistics, earnings, etc., was 186,590 miles. Upon this vast trackage there were carried about $538,000,000$ passengers, and the total tons of freight transported totaled about $978,000,000$ tons. The total traffic revenue was $\$ 1,336,000,000$. The operating expenses were about $\$ 888,000,000$, leaving net earnings of about $\$ 448.000,000$, which, with $\$ 66,000,000$ of "other receipts," brings up the total revenue to $\$ 513,879,443$. The total payments for valuable revenue was about $\$ 411,000,000$. leaving a surplus over fixed charges and miscellaneous payments of $\$ 103,000,0 c 0$.
Under the head of statistics of track mileage and rolling stock equipment, some interesting figures are given regarding the percentage of steel rails in the tracks of the United States from the year 1880 to the year 1899. Thus, in 1880, when there was 116,000 miles of track, twenty-nine per cent of it was laid with steel rails. In 1885 there was 160,000 miles of track, sixty-one per cent of which was laid with steel. In 1890 , when there was 208.000 miles of track (these totals including sidings and yard trackage), 80.4 per cent consisted of steel rail. In 1895 the total had risen to 235,000 miles, and the percentage of steel track to 87.8 per cent, while at close of last year, out of 250,000 miles of track, only $8 \cdot 3$ per cent was laid with iron rails.
The total number of locomotives has risen from 18,000 in 1880 to 37,245 at the close of 1899 ; the passenger and baggage cars from 17,000 to 34,000 ; the freight cars from 539,000 to $1,328,000$. In considering these figures of increase, we must remember that the loco motives and cars themselves have increased enor mously in carrying capacity, the heaviest passenger ocomotive having risen in the past twenty years from 45 tons to 90 tons in weight, the freight locomotive from 60 tons to 115 tons, while the largest freight cars, from carrying a maximum load of 15 tons in 1880, have now a total capacity of 55 tons.

SODA WATER FOUNTAIN IN GREAT britain.

It would be difficult to find a more neculiarly Ameri can institution than the soda-water fountain, or one which would act as a more immediate and powerful reminder of the scenes with which he is familiar in his native land than the marble-faced, many-fauceted and nickel-resplendent structure which is one of the numerous devices by which the American citizen tempers the fierceness of the periodical "hot wave." Hence the introduction of the soda water fountain into Great Britain, as referred to in a recent report by the American consul at Birmingham, may be regarded as a notable instance of the interchange of ideas and customs between this country and Great Britain which is grow-
ing more marked every year. It seems that in a window of a "chemist shop" in Birmingham there was exhibited during the summer months a sign advertising various sodas and phosphates. The proprietor, who is quoted as "an enterprising man who is ready to try new things," has proved his fountain to be a striking success. On a hot day he sold as many as a thousand glasses of various flavors, and on other days as many as six or seven hundred glasses, and this in spite of the fact that the "doctors called and denounced the use of soda water, fearing harmful effects from the dangerous ice-cold liquid, and then took it themselves, just as they do at home." It seems that an American soda fountain syndicate has taken up the matter of these hot weather necessities in England, and a number of cities now have fountains in suc cessful operation.

THE HEAVENS IN NOVEMBER.

The most important astronomical events of November are the annular eclipse of the sun on the 21st and the meteoric shower of the 14 th .

The first of these phenomena is of little interest to Americans, since it takes place when our side of the earth is turned away from the sun. The path of annular eclipse lies chiefly in the Indian Ocean, but crosses South Africa at one end and Western Australia at the other. The duration of the annular phase is quite long, varying from five to nearly seven minutes.

There is more hope that we may see a great showe of the Leonid meteors this year; but those who, like the writer, watched in vain for them a year ago, are dis posed to follow Hosea Biglow's advice, and not to prophesy unless they know. And there are several causes, any one of which, if fully operative, would prevent our seeing a conspicuous display.
In the first place, it has been shown that the orbit of that part of the meteor swarm which gave rise to the shower of 1867 has been so changed by the attrac tion of Jupiter and Saturn that it no longer exactly intersects that of the earth. If this change is great enough to keep even the outer parts of the meteor swarm away from the earth's orbit, there will be no more Leonid showers, unless at some future time their orbit is changed back again by some favorable planet ary action: But it is by no means certain that the actual change in the orbit is as great as this.
Secondly.-The great showers of Leonids recorded in recent times were in 1799,1833 , and 1866,1867 and 1868. Taking the middle of the last three as the main shower the interval between showers comes out 34 years, in stead of the previously supposed $331 / 4$, and the next great shower is due in 1901, with perhaps smaller one in 1900 and 1902.
This theory, which is due to Professor W. H. Pickering, seems to the writer of the present note to be the most probable explanation of the failure of the expected shower in 1899.
Thirdly.-Even if the shower occurs, it may be that the impressive part of it, which lasts but a few hours, may be visible only in the Eastern Hemisphere, and that we may thus miss it.
In spite of all this uncertainty, it will be well worth while to watch the sky on the nights of the 14 th and 15th. For the great shower, if it does appear, will be one of the grandest of all natural phenomena, and at the same time one of sufficient rarity to make it doubly mportant not to lose a chance to see it.
It will be hardly worth while to start the watch before midnight, as at that hour Leo has barely risen. Unfortunately, the waning moon is in this part of the sky, and only the brighter meteors will be visible. But even so, should many of them appear, the divergence of these paths in all directions from the "radiant point" inside the sickle of Leo will be conspicuous, and will afford one of the finest natural examples of a per spective effect.
At 9 P.M. on November 15 the most brilliant part of the sky is near the eastern horizon. Just south of east is Orion. The line of his belt is almost vertical and the still brighter stars Betelgeux (on the left) and Rigel (on the right) afford a striking contrast in color, the former being a strong red, and the latter pure white.
North of east, and also low down, is Gemini, marked by the twin stars Castor and Pollux, of nearly the first magnitude, south from which extend two lines of stars in which a little imagination sees the Twins themselves. Above Orion, Aldebaran and the Pleiades wark the position of Taurus, and to the north, over Gemini, is Capella, the brightest star of Auriga.
The great square of Pegasus is a little past the meridian. A conspicuous row of bright stars extends from its northeast corner through Andromeda and Perseus toward Auriga. The huge extent of Cetus fills most of the southeastern sky, and Aries is higher up. In the southwest the only conspicuous star is Fomalhaut. Vega and Altair are well down in the west, and Cygnus is higher up. Cassiopeia is almost above the pole, and the Dipper is opposite, skirting the northern horizon. To the right of Vega is the head of Draco, whose curving body extends for a long distance between the Great aud Little Bears.

THE PLANETS.

Mercury is evening star until the 19th, when he passes inferior conjunction and becomes morning star At this time he is very nearly in line between the earth and sun. In fact, if the conjunction took place but one day earlier, he would transit the sun's disk. He will be too near the sun throughout the month to be well seen with the naked eye.
Venus is morning star in Virgo, rising at about 3:30 A. M. on the 1st and $4: 30$ on the 30 th. She is receding from the earth and growing fainter, but is still much the brightest object in the morning sky.
Mars is in Leo, not very far from the meteor radiant and rises about midnight in the middle of the month and is steadily brightening toward his opposition next

February.

Jupiter is evening star in Scorpio, but is so low in the west at sunset that he will not be easy to see after the middle of the month.
Saturn is also evening star in Sagittarius, setting about an hour and a half later than Jupiter.
Uranus is in Scorpio near Jupiter, but too near the sun to be visible
Neptune is in Taurus, invisible to the naked eye. THE MOON.
Full moon occurs on the afternoon of the 6th, last quarter on that of the 13 th , new moon at the time of the eclipse on the 21st, and first quarter near noon on the 29th. The moon is nearest the earth on the 5th and most remote on the 17th. She passes Neptune on the evening of the 8th, Mars at noon on the 14th, Venus on the evening of the 18th, Mercury on that of the 21st, Uranus on the night of the 22d, Jupiter near noon of the 23d, and Saturn on the afternoon of the 24 th .
Princeton, October 19, 1900.

CONGRESS OF TRAMWAYS AT PARIS.

The International Congress of Tramways was held at Paris the 10 th and 13 th of September. It was organized under the auspices of the International Union of Tramways. A list of questions relating to the most important points, most of them to electric traction, had been previously sent to the members, and from the replies obtained, eleven papers or reports were prepared by leading specialists. These papers, with the discussions to which they gave rise, are of great value. The first paper, read by M. H. Géron, relates to the question of tariffs; the second, by M. de Pirch, shows the advantages of electric traction, being confined mainly to the subject of overhead systems. The results obtained have been an increase of traffic, lines and passengers; facility of extension; diminution of expenses and increase of profits, lowering of rates, etc. A paper read by M. Gunderloch shows the advantages and disadvantages of broad and narrow gages. The composition of central stations was an instructive paper by Messrs. Thonet and d'Hoop, treating of the installation of dynamos, engines and boilers. Compound engine, accumulators, and in some cases gas engines are recommended. Systems of current distribution is a paper read by M. Van Vloten, in which the usual direct current system is recommended for shorter lines, while for long lines accumulators may be used at the station. Accumulatr, traction may be used for lines of 9 to 12 miles. The polyphase system seems only adapted to railroads. M. Fischer-Dick read a paper upon the Falk rail-joint, and traction by accumulators was considered by Messrs. Broca and Jahannet, of the Paris traction companies, giving their experience and the deductions to be drawn for or against the system. The heating of cars was treated by M. de Burlet, who considered stoves, hot air, steam and electric heating, etc. Secondary railroad lines were considered by M. Ziffer. The methods of rating the power of dynamos and electric motors were treated by M. Macloskie. The question of brakes for tramways was considered by M. Monmerque, including the various forms of hand and mechanical brakes.

THE UNITED STATES NATIONAL MUSEUM

The annual report of the condition and progress of the National Museum for the year ending June 30, 1898, is made by Charles. D. Walcott, who has charge of the United States National Museum, and shows that the institution is in an excellent condition. During the fiscal year there were 441 accessions containing upward of 450,000 specimens. The total number of specimens recorded up to July 1,1898 , exceeds $4.000,000$. The attendance during the year under consideration was less than during the previous year, owing probably to the war and the presidential inauguration, which caused a large influx of visitors. Since 1881, 3,972,987 persons have visited the museum. Prof. Walcott is of the opinion that the National Museum should be enlarged at once. The present building was erected with a view to giving the largest amount of space with the least outlay of money, and in this respect it may be considered a success. It is, in fact, scarcely more than a shadow of such a massive, dignified and well-finished building as should be the home of the great national collection. There is needed at once a spacious, absolutely fireproof building, of several stories, coustructed of dur-
able materiaks, well lighted, modern in equipment and on such a plan that it may be added to as occasion demands in the future. A site for such a building is already owned by the government, and only the new structure needs to be provided. The galleries just completed have added 16,000 square feet of floor space, which will help to a certain extent to relieve the crowded condition of the exhibition halls and courts below. As an illustration of the present conditions, and the necessity for more room, the anthropological collection may be cited. If the material now in possession of the government in this department should be properly placed on exhibition, it would occupy the be properly placed on exhibition, it would oce
entire space of the present museum building.

In the present structure there is a great deficiency in laboratory facilities. Curators and assistants are hampered for want of room in which to lay out, arrange, classify, mount, and label specimens. There should also be rooms in which students could bring together and compare various series of objects, and have at hand books and scientific apparatus. The quarters for storage in the present museum building are also entirely inadequate. What is needed is a series of spacious fireproof basements for the less perishable objects and equally spacious dry lofts and rooms for those collections and stores which require protection from dampness. The present museum building was built with the cheapest materials and under the cheapest system of construction, so that it gives the appearance of a temporary structure and tends to cheapen the effect of really good cases and the very valuable collections which they contain.
The head curators, curators, assistant curators and aids constituting the scientific staff of the National Museum number in all sixty-three persons and of these only twenty-six are compensated, the remainder serving gratuitously, being for the most part connected with other Bureaus of the Government. Mr. Walcott says truly that the system of honorary curatorship, while admirable within restricted limits, is a disadvantage when carried to the present extent. Such a system has a disintegrating effect upon the organization, as the men are not entirely at the command of administrative officers, and are not obliged to serve at definite hours or under the ordinary restrictions of paid curators. The number of honorary officers should be re duced by the substitution of a larger number of salaried officers.
The National Museum has at present no regular fund for the acquisition of collections, and can only make purchases from a contingent fund, which rarely exeeeds $\$ 3,000$ or $\$ 4,000$. For this reason, every year valuable collections which should be in the hands of the government are sold abroad or to municipal nuseums, or pass into the hands of private citizens. The American Museum of Natural History annually expends $\$ 60,000$ for the increase of its collections, and the Field Columbian Museum, in Chicago, has spent for collections during the last five years $\$ 419,000$.
The floor space is far less than the American Museum of Natural History. The space on the ground floor is 140,625 square feet, and that in the gallery 16,000 square feet, and the exhibition space is 96,000 square feet. The total cost of the building was $\$ 315,400$. The American Museum of Natural History, on the other hand, has 294,000 square feet of floor space, of which 196,000 is given up to exhibition space. The total cost of the American Museum to date, including the completion of the new wings, is $\$ 3,559,470$, and the income for the present year is approximately $\$ 185,000$. The National Museum requires buildings which will give at least 300,000 square feet of increased accommodation at once, which with the present museum space, which could be devoted to the Department of Anthropology, would make in all 400,000 square feet. With suitable build ings provided, the immediate development of the National Museum into one of the great museums of the world may be looked for.

HOW RUSSIA CORNERS SUGAR.

In an interesting article on this subject a writer in a recent Fortnightly Review says that each year the Minister of Finance fixes the amount of sugar which shall be produced in the empire and sets the price at which it shall be sold. The average domestic consumption is about $1,000,000,000$ pounds. This is announced as the legal limit of production which shall be put upon the market during the year. In addition to this, it is allowed to manufacture $180,000,000$ pounds more, which is placed in storage. The $1,000,000,000$ pounds, as it is sold, pays an excise tax of $21 / 2$ cents a pound. If at any time through increased demand sugar becomes worth more than the price fixed by the government, the $180,000,000$ pounds in reserve are allowed to reach the market free of excise duty. If this does not supply the market at the legal price, the government itself will buy from foreign countries enough sugar to supply the need for a bear influence upon the price. This has been done by Russia twice during the past ten rears. This system, of course, precludes any export business in sugar, but the Russian government does not believe that the exporting of sugar from Russia can be made profitable or advisable; so it does not encourage it.

A NEW JPERATING TABLE FOR HORSES

To subject a horse to a surgical operation has always been a task which has required the utmost skill and unremitting care of the veterinary surgeon in charge of the case. Of course, the most imperative essential to ward the accomplisbment of a successful operation is that the patient should be completely under the control of the surgeon, and to attain this end the animal s generally subjected to a dose of some anæsthetic. But even before this can be accomplished the animal must be secured, so that it can offer but slight opposition. Hitherto, the securing of a horse has always been a difficult matter, owing to the animal's strength and unwieldy proportions. The modus operandi generally employed to bring a horse to the ground is that known as casting. The animal is led to a position beside a bed of straw. His legs are then hobbled and he is thrown over sideways by sheer physical force. The objections to this process are obvious. The animal is often frightened by the sudden fall, and consequently plunges and kicks to the best of its ability, often severely injuring itself by so doing. Very of ten, too, bones are broken by the fall.
We present illustrations of a device which enables even the most difficult operations to be performed upon a horse with absolute safety to the animal and with the greatest ease to the surgeon. This device is the invention of Mr. J. A. W. Dollar, the well known veterinary surgeon of New Bond Street, London.
The general design of the operating tabie can be comprehensively gathered from our illustrations. It mainly consists of a massive iron framework of sufficient dimensions to admit a horse being placed inside. This framework, which weighs about 784 pounds, is surpended upon a central horizontal axis, so that it can be turned round in either direction as required. The two standards upon which this frame rotates are sunk into the earth and surrounded by masses of concrete weighing about five tons, so that absolute rigidity
is so gradual that the animal can scarcely perceive it, and should it become at all restive, its struggles are limited and ineffective. The frame is then revolved, without the slightest shock, in either direction, according to the desire of the operator. If necessary, the horse can be turned completely upside down. By means of this table every part of the horse's body is rendered accessible.

A London Railway Controlled by Americans.
A few weeks ago it was rumored in London that Mr . Charles T. Yerkes, the well-known railway magnate, had arrived in London, and proposed to intersect the whole of the metropolis with street railways, somewhat similar to those with which the principal cities of this country are equipped. The scheme was entirely discredited on all sides as absolutely impossible, owing to the fact that it would not receive Parliamentary sanction. Nothing more was heard regarding the matter from either party, but now it appears that Mr. Yerkes' scheme is no more than a revival of a railway that was projected and sanctioned by Parliament in 1893, but which, for some reason or other, was never carried out. This railway, which was designated the Charing Cross, Euston and Hampstead Railway, proposed to establish communication between the SouthEastern Railway Company's terminus at Charing Cross and that of the London and North-Western Railway at Euston, and then to proceed on to Hampstead, thus giving this suburb direct and rapid connection with the Strand and the West End. The railway, which was to be $41 / 2$ miles in total length, was to run through two tunnels, somewhat similar to that of the new electric railway. The authorized capital of the company was $\$ 8,880,000$ in $\$ 50$ shares and $\$ 2,960$,000 in loans. From the first the scheme was unsupported. It was proposed to work it by electricity, and if it had been constructed, it would have been the first electrically equipped railway in London, but at that time the enormous possibilities of electricity as a motive power were but little known, and the majority of investors regarded the scheme as little more than the fertile conception of an inaginative brain, notwithstanding the fact that the directorate included one of the foremost electrical engineers of the coun-try-Sir David Salomons. So affairs drifted on, and the company, although they had not started the work, still remained in existence. Mr. Yerkes was not slow to recognize the vast possibilities that lay before such a line, and how extensively it would be appreciated. The old board of directors who were controlling the original scheme retired, and a new directorate has been composed.
Operations will be soon commenced upon the work. The lines will follow somewhat in the lines of the original scheme, and it is expected, if nothing un-

TABLE INVERTED.

and stability of the whole structure are assured. The main body of the table consists of two powerful endpieces of channel section connected at the top by a stout I-beam. These are connected at the sides and bottom by strong iron rods. The bars at the sides are made movable, so that they can be opened outward to admit the horse into the frame.
The animal's head is thrust into the front end-piece of the frame, the sides of which are padded so that no injury may be inflicted. This front carries attachments for the collar ropes. On the back end-piece are adjusted the crank arms, gear wheels, etc., by which the machine and its movable parts are controlled. The swinging of the frame to any position is actuated by a lever, and so beautifully is the machine balanced that a heavy horse can be rotated with the slightest effort.
The horse before entering the frame is fitted with a strong head collar supplied with two stout cords, while round its body is securely strapped the bed-piece, a kind of broad canvas belt which is wrapped round the animal's body, the upper side of which is attached to two chains depending from a compensation bar. The side bars are firmly secured, the head fixed into the front end-piece by means of the collar straps, and the feet are hobbled to a very stout and heavy iron chain, which is attached to a gear on the back end-piece. By a slight movement of this the feet are drawn slightly apart and kept from movement.

The hanging compensation bar is so arranged that the two chains which are connected to the bed-piece on the horse are pulled vertically at both ends, so that a regular tension is given simultaneously to each chain. When the horse has been placed in the frame the winch on the back end-piece is turned, and gradually the horse is lifted a few inches off the ground. The motion
foreseen occurs, that it will be
completed in two years. The length of the railway will be increased to $61 / 2$ miles, and it is estimated that its tota! cost will be between $\$ 15,000,000$ and $\$ 20,000$,000. The engineers are Sir Douglas Fox and Mr. W. R. Galbraith. The most noticeable feature of the enterprise is that it is to be controlled entirely by American capitalists. It is probably due to this fact that it is not creating much interest among Londoners, since the Baker st.and Waterloo Railway, at present in course of construction and rapidly nearing completion, will cover somewhat the same ground, while the other scheme, described in the Scientific American a few weeks ago, is also receiving the support of English investors.

The Imperial Tomb at Speyer.

The opening of the Imperial Tombs in Speyer Cathedral, in the Bavarian Pfalz, was begun on August 17, in order to see what historical relics were left after the rifling of

SHOWS HORSE STRAPPED IN TABLE AND SWUNG OVER UPON HIS SIDE.

A REVERSIBLE ENGINE OF NOVEL FORM.
The problem of supplying a simple reversible pe-troleum-engine for automobiles and launches has evidently proved an inexhaustible source of perplexity to inventors, if the many motor appliances which have been devised for the purpose of dispensing with the awkward reversing-gears commonly employed be any criterion. An invention has, however, been recently
it cannot bind or clog and enables the engine to develop more power with less friction.

ELECTRIC LOCOMOTIVE AT THE PARIS

 EXHIBITION.We illustrate an electric locomotive, intended for working a rack railway, as well as on smooth rails, shown at Paris by the makers, La Société Suisse, of Winterthur. The engine has been constructed for the Jourvière et Ouest-Lyonnais Railway; Lyons.
The firm has been occupied for many years in the construction of rack-railway locomotives, and has probably made the greater number of all such engines in service; they have also studied electric locomotives, and availing themselves of their experience in steam rack traction, they have already built a considerable number of electric locomotives, working on the Gornergrat, Stanstad-Engelberg, Jungfrau, Bex-Ville, and Aigle-Leysen Railways. The electric mechanism of these engines ha for the most part been supplied by Brown Boverie \& Company, of Baden, Switzerland.
The engine we illustrate is one of several constructed to work the traffic of the Western Lyons Tramway Company on the steep in clines between the city and the plain of St . Just. The engine must be able to haul 28 tons up an incline of 1 in $5 \cdot 2$ at a minimum speed of five miles an hour. The rack is on the Abt system ; current is supplied at 500 volts.

The rack mechanism is worked by a motor of 150 horse power running at 700 revolutions per minute. The motor, by means of two pinions and two spur wheels on two counter-shafts, acts on the two axles of the rack wheels. For working on the level, the carry ing wheels are driven direct by two 25 horse power motors. On the rack portion of the line ail three motors are worked ; on the level the rack gear is, of course, thrown out of use.
The locomotive is fitted with very powerful brakes. There are first two screw brakes independent of each There are first two screw brake
other, which act on the toothed driving wheels ; secondly, a simi lar brake acting on the carrying wheels; and, lastly, an auto matic brake, which is thrown into action whenever the maxiwum speed allowed is exceeded wum or broken by any cause wht is brcken by any cause what-
ever. The square tank, seen ever. The square tank, seen
above the engine, is intended to carry water to keep the brakes cool.
The principal dimensions o the locomotive are as follows :

Diameter of rack driving wheels.. 1 " 10Ýs Carrying dariving wheels 2 " 91/2 Speed, miles per hour......... .. 51/2 Weight of engine .. 12 tons. Total of base . .. 28 " Revolutions per minute of adhe motors, 300

acts as a dynamo, generating current; this is not wasted in a resistance, but is thrown into the main circuit. In order that the tension may be raised sufficiently, more current is thrown through the shunt into the field magnets. In order that the heavy current generated way not overheat the machine, great care has been taken to maintain efficient ventilation. As the motor is shunt-wound, it automatically adjusts the current to the speed, and the speed to the current, so that the velocity of descent is very little affected by variations in the angle of inclination of the incline.
The starting and stopping arrangements are very simple. The former is effected with minimum current : all variations of speed are obtained by altering the resistance in the shunt. One small handle suffices for everything but reversing, for which a special lever is provided; this last is so connected with the regulator handle, as we may call it, that the driver can make no mistakes.

Current is taken by three "archets," or trolleys of special construction, which work when nearly horizontal or nearly vertical. This is rendered necessary by the circumstance that ont in the open the line wires are some 19 feet above the level of the rails, while in the tunnels they are close to the roof of the vehicles.

The locomotive is furnished with various pieces of apparatus, such as a lightning arrester, fuses, and volt and ampere meters. A safety apparatus is provided which consists of a solenoid which carries an armature of soft iron; when this drops through failure of current, the brakes are applied and at the same time the safety switch is thrown, so that should there be a sudden return of current in the circuit, no damage may be caused by what has been termed electric momentum, which, as is but too well known, throws up the voltage enormously for a moment.

The lighting of the train is, of course, electrical.The Engineer.

A SIMPLE SULKY ATTACHMENT FOR HARROWS.
A sulky attachment for harrows so constructed that it can be turned from side to side, as occasion mo.y demand, without influencing the harrow is a rew inven-

THE HOWARD-WAITE SULKY ATTACHMENT FOR HARROWS.
posite dir
of Fig. 2.

The inventor states that the engine is reversible at any point without danger, even though running at full speed. The motive agent may be steam, gas or compressed air. Although designed primarily for small vessels, the engine can also be used on larger ships, since any number of cylinders can be used. Since the reversing mechanism is so simple and so easily operated, the engine could be used as a steam steering-gear.in larger ships and could be controlled, when thus em ployed, by a wheel in the pilot house. This rotary valve has a decided advantage over slide valves; for

The mechanism is inclosed
The m with plate glass, with plate glass panes, so that the driver can at all times see it at work. The two motors for the carrying wheels are of the usual four-pole type, series-wound. They are placed between the wheels. They develop together 50 horse power when the machine is running at 9 kilometers per hour, and the torque is then not sufficient to slip the wheels.
The principal motor will work up to 200 horse power It is shunt-wound. The armature is of copper bars, connected in series, connected in series,
carried in notched soft iron plates. To provide for the rough usage and high speed, the bars are very carefully secured by means of wedges of insulating material, which serve to interlock the bars with the iron plates. The motor is placed inside the vehicle, but it is not covered up, because it was deemed necessary to keep it cool, so that it has been left as open to the air as possible.
When the train is descending the incline, the motor

THE PARIS EXHIBITION-ELECTRIC LOCOMOTIVE.
tion, for which patents, controlled by the Howard \& Waite Company of Blunt, South Dakota, have been taken out.
The attachment consists of a single broad-tired wheel held in a U-hanger, to the upper portion of which a yoke is pivoted. To the lower ends of the hanger con-necting-rods are pivoted which are also pivotally secured to the harrow. Braces pivotally join the con-necting-rods with the yoke. It is evident that by reason of this construction the wheel can be turned to the right or to the left without moving the harrow, and that the pivotal connection of the rocking yoke with the hanger and with the connecting-rods and braces permits the harrow to ride over uneven places without interrupting the continuous action of the harrowteeth.
The driver of the harrow takes his position over the wheel in a spring-seat. The implement can be drawn either by a team or by a single horse, with slight modifications in the structure of the forward portion of the attachment. It is evident that the invention can be applied to any harrow

Spontaneous Combustion of Hay.

The question of the spontaneous combustion of hay has recently been investigated by one of the officials of the Weather Bureau, who states that fermentation within moist hay may raise the temperature to $374^{\circ} \mathrm{F}$., at which temperature clover hay will ignite. The best preventive to spontaneous combustion is a rapid and complete ventilation by which the oxidization and fermenting substances are kept cooled down below the point of ignition.

THE FRENCH CRUISERS "CECILLE" AND "SUCHET" AT NEW YORK.
New York city has just been favored with a visit from two of the best cruisers of the French North Atlantic Squadron. The vessels anchored in the Hudson River, near Thirty-fourth Street, and attracted not a little attention from the citizens of New York, to whom the long, projecting, ram bow and the tumble-home sides of the two vessels were a forcible reminder of the notable gathering of foreign warships in our harbor in 1893 in connection with the Columbian Naval Parade. By the courtesy of Rear-Admiral Richard we are en abled to present the accompanying photographs of the vessels, the two views, which show a deck view from the bridge and one of the broadside guns, being taken aboard the Adiniral's own flagship."Cecille."
These two cruisers being of the same class, but built at different periods (there being an interval of five years between them), represent to a certain extent the progress of ideas and construction in the French navy during the period 1888 to 1893. The tendency to increase the speed is seen in the fact that while the "Cecille," the earlier boat, has a speed of 19 knots, the "Suchet" is credited with 20.4 knots. It was during this period, moreover, that the rapid-fire system was introduced, and its effect is seen in the lessening of the total number of guns carried, the "Cecille" having eighteen rifles, while the "Suchet" has less than hal that number. The guns of the "Cecille" originally were all of the slow-firing type, although the eight 6.4 inch guns on the main deck have now been converted to the rapid-fire system. The particulars of the two ships are as follows:
"Cecille."-The "Cecille" is of iron and steel con struction and measures 378 feet 9 inches in length over all, 49 feet 3 inches in beam and 19 feet 9 inches in draught. She is propelled by twin-screw engines of 10,200 horse power at a speed of 19 knots an hour. Her displacement is 6,053 tons, and when she is at her mean draught she carries a normal coal supply of 940 tons. Her full complement of officers and crew is 486 . She is of the protected as distinguished from the arimored type, reliance for keeping out projectiles being placed upon a curved deck of 4 -inch armor. The armament of the "Cecille" is very numerous, and even for the day in which she was launched was extremely powerful. The guns are distributed on two decks; on the main deck there are eight $6 \cdot 4$ inch rapid-fire guns, six of them carried in sponsons on the broadside, while one is placed forward in the bows firing through a gun port immediately above the ram, and the other is placed aft on the quarter-deck to act as a stern chaser. On the gun deek below is arranged a powerful battery of ten $5 \cdot 5$-inch guns mounted in broadside. There are also six 6 pounders and fourteen machine guns, distributed on the bridges and in the fighting tops. The vessel is provided with four torpedo tubes. When the "Cecille" was launched, she carried a full set of yards on her masts and was one of the last of the French cruisers to be thus equipped; but during her reconstruction the topmasts and topgallant masts were removed and short pole masts for signaling purposes took their place. While the alteration has served to conform the "Cecille" to modern ideas, it has stripped her of much of her handsome appearance.
"SUCHET."-Although the "Suchet" is classed like her sister ship as a second-class cruiser, she is not much more than half as large: With a length of 318 feet, a beam of 43 feet 6 inches and a draught of 17 feet 6 inches, she has a displacement of 3,500 tons; she has twin-screw engines of 9,000 horse power which gave her on her trial a speed of 20.4 knots. Her normal coal supply is 480 tons, and she has a complement of 246 officers and men. The protected deck has a maximum thickness of 3 inches. Although this armor is 25 per cent less than that of the "Cecille," it is probably of equal resisting power, owing to the fact of the armor being of a five years' later date. The armament consists of four $6 \cdot 4$-inch guns on the deck above, one being used as a bow chaser, another as a stern chaser, and the other two being mounted in sponsons on the broadside. The "Suchet" was built at Toulon, and her design and construction may be taken as representing the best work of a modern French naval dockyard.

Anniversary of the Submarine Cable.
The 28th of August was the 50th anniversary of the first submarine cable. In 1850, upon this date, the first message was transmitted between France and England by the short section of cable laid between Dover and Cape Grisnez. The promoter of the first submarine cable was Jacob Brett, who had obtained the concession, in 1846, from King Louis Philippe. This was confirmed in 1850 and the project was carried out in three months, the constructor being the engineer Charlton Wollaston. The first cable was, however, of short duration, as the next year a Boulogne fisherman brought up a part of the cable with his nets and cut it, thinking that it was a sea-serpent. The French government then gave a new concession, and as the new submarine telegraphy had now convinced the skeptics, a company was formed in 1851 which laid a new cable; this was subsequently purchased by the Eng-
lish government. The first cable had a length of 25 nautical miles. The wire was the thickness of the little finger and weighed 440 pounds per mile; a series of lead weights attached every sisteenth of a mile held it in suspension at a maximum depth of 60 yards below the surface. The Birmingbam factory which supplied the cable could only deliver the.wire in sections of 200 yards, this being in marked contrast with the 200 -mile lengths which are produced to-day. The transatlantic cable was laid at a later date.

A Seaboard Line for the Iron and Steel Carrying Trade. by wa. GILBERT IRWIN.

Just now the project of Pittsburg iron and steel manufacturers to build a trunk line to the Atlantic seaboard, in order to establish independent rail connections with Pittsburg, Chicago and St. Louis, is receiving serious attention in railroad circles. In the construction and highly successful operation of the construction and highly successful operation of the new Bessemer road, the Carnegie Steel Company has
given an exhibition of the possibilities along this line given an exhibition of the possibilities along this line
for the big manufacturers. Since that time there never have been any difficulties in the matter of ore transportation, and while the Carnegie Company has many advantages through the operation of their own!line, other manufacturers have been able to obtain very satisfactory rates since that road has been in operation.
Just at this time the foreign markets are the object of all the big iron and steel manufacturers, and there is an unprecedented demand for our products abroad. It is in this export trade that the freight rates are felt, and in order to successfully compete with foreign manufacturers, who have so much the advantage in the way of distance, economy in the cost of shipment has become necessary. The present freight rates on iron and steel articles, such as plates, bars, channels and beams, pipe and other commodities, is $\$ 4.03$ per gross ton from Pittsburg to New York. Billets are sent to the same place for $\$ 2.90$ per gross ton. The manufacturers have demanded a uniform rate of $\$ 2$ per gross ton, and with such concessions they have figured that they will be successful in conquering the export trade of the world. As it now is, the manufacturers of the Pittsburg district claim that they are offered large orders for export steel that they are unable to figure on because of the excessive rates to the seaboard. They claim that freight rates are higher at present than they were twenty years ago, when steel was selling for four times the price now current. They protest that in the mean while the cost of railroad operation has been enormously reduced, and that while the average freight rates have been reduced the charges from Pittsburg are higher than they were many years ago. In fact, they claim an unjust discrimination against Pittsburg.
The Pittsburg manufacturers assert that steel is no harder to handle than other commodities, that the cars are loaded to their full capacity. They claim that it costs more to build a box car to, haul grain than it does to construct a gondola to carry steel, and that when a grain car is wrecked it means a loss of $\$ 1,500$, while in the case of a car of steel the product can be placed in another car and hurried to its destination. It is also pointed out by the Pittsburg manufacturers that the rate from Buffalo to New York by the Erie that the rate from Buffalo to New York by the Erie
Canal is only five cents per hundred, while that from Cleveland is only three cents more. Some Pittsburg exporters, by taking advantage of the roundabout way and paying the local rate of eleven and a half cents from Pittsburg to Buffalo, have been able to save one and one-half cents per hundred over what they would be required to pay on a direct all-rail haul to the sea coast. The regular summer rate was withheld this summer, in which fact the manufacturers have another cause for complaint. Summer rates have been customarily granted by the railroads in order to secure the trade of lake cities in competition with low-priced water hauls, and also to protect the shipper in the districts in which no water transportation is available.

Another reason given by the manufacturers why rates to the seaboard should be low is the high ocean rates now in force. The heavy inroads made on the merchant marine, first by the English government to secure transports for the Boer war and now the heavy demands made by the Powers for use or reserve in China, have taken many vessels out of the service from New York, Philadephia, Baltimore and Boston to European ports. It is also pointed out that five vears ago, when steel was selling for twice the figure now received, the rates were only $\$ 2.40$ per gross ton. lt is the claim of the manufacturers, and seemingly a just one, that Pittsburg above all other cities needs the fostering influence and protection of the railroads. Fuel is yearly, owing to the progress of engineering science, becoming less important, and its costs are being yearly reduced by invention and improved methods.
In view of these conditions there have been several conferences between the manufacturers and the traffic wanagers, and as a result the manufacturers have come to the belief that no aid will be extended to them. At a joint meeting held last month, the representatives of Pittsburg manufacturing concerns which pay an ag-
gregate of $\$ 100,000,000$ were present. The result was
far from satisfactory, and now Pittsburg manufacturers can see relief only in a great trunk line from Pittsburg to the seaboard with western connections. They have estimated that $\$ 30,000,000$ will easily build all the trackage needed, and this sum only represents five per cent of the $\$ 600,000,000$ invested in Pittsburg industrial concerns.
The manufacturers seem to agree that the Philadelphia \& Reading, which has terminal facilities in Philadelphia superior to the Pennsylvania or B. \& O., is the line to make the nucleus for the seaboard line. The plans are to use the Bessemer \& Lake Erie road of the Carnegie Company to a point near Unity, where the old Carnegie Company to a point near Unity, where.the old
Calvin Brice system crossed the Bessemer line. From Calvin Brice system crossed the Bessemer line. From
this point the new line would follow a natural divide this point the new line would follow a natural divide
up the Kiskiminetas and across the country to Me haffey. The west branch of the Susquehanna would then be followed to Williamsport, where the Philadelphia \& Reading road would be reached. The line to be thus built would have a length of one hundred and sixty miles and would cost about $\$ 50,000$ per mile, or between $\$ 8,000,000$ and $\$ 10,000,000$ for the great link. The plans of the manufacturers would be to obtain possession of the new road now being built up the west branch of the Susquehanna. The average grade of this line would be below one per cent. The Union road of the Carnegie Company, the Monongahela connecting road of Jones \& Laughlin, the McKeesport connecting road and other lines about Pittsburg would make a complete terminal chain of the Monongahela Valley, and a system of boat lighterage on the rivers would give a most comprehensive and perfect terminal in Pittsburg.
Just now the Lake Erie and Ohio River Ship Canal, which is to connect Pittsburg with Lake Erie, is receiving much attention. The American Steel and Wire Company is constructing a line of boats which will be used on the Great Lakes during the summer as ore carriers, and in the fall they will be sent across the Atlantic with steel for Europe and will be used regularly in the export trade on the Atlantic during the winter. With the construction of the canal, it will be possible for two or three thousand ton boats to make the trip to Europe by the Great Lakes, and thus the question of freight on foreign shipments from the mills of Pittsburg would be solved. But just now the matter of securing independent rail connections with the seaboard is the question uppermost in the minds of Pittsburg manufacturers, and the near future is certain to see some interesting developments in railroad affairs so far as Pittsburg is concerned.

Automobile News.

The Cooke Locomotive Works, of Paterson, N. J., have just finished a heavy motor wagon on the Thornycroft plan.
An interesting automobile suit was tried at Hackensack, N. J., where J. L. Guyre sued Dr. W. L. Vroom, of Ridgewood, for damages from a runaway, said to have been caused by the latter's automobile, and re sulting in the death of the plaintiff's wife, says The Western Electrician. Dr. Vroom's testimony was that the horse was frightened and turned when 275 feet away from the automobile, which he stopped upon seeing that the animal was afraid. He said that he had the machine under perfect control, and gave an exhibition in front of the court-house to show the court and jury his ability to handle it. During the trial and jury his ability to handle it. During the trial or exceptionally frightens horses, that would not make it a nuisance. In order to make it a nuisance, its common effect must substantially interfere with the people who drive horses along the highway." After being out a few winutes the jury returned for further instructions on one point, at the same time informing the court that it had agreed that the automobile was not a nuisance.
A large English constructor, J. Fowler, of Leeds, has recently furnished to the British government an armored automobile train, consisting of a number of cars towed by a road locomotive. This is the first of a series which is to be constructed upon the same principle; it will no doubt be of great service in the army. The first train has been tried in England not long since, and has proved satisfactory ; it can mount a 10 per cent grade when heavily loaded. The engine car ries a windlass mounted upon it, and, if necessary, can mount the grade alone and then pull the train up the grade by means of a rope. The locomotive is of the usual road-engine type; it draws three or four cars. Both locomotive and cars are protected by special plates to resist balls or bursting shells. Each of the cars is arranged to carry a howitzer or a machine gun of about 3 inches, or to transport men, ammunition, or provisions. The armor plating is built separately and may be taken off in sections to allow inspection or repairs. The speed is from 2 to 6 miles per hour. The locomotive has a set of transmission gearing by which three different speeds may be obtained. The water reservoir has sufficient capacity for a distance of 10 to 15 miles. The engineer is well protected and has at hand all the levers and valves for orerating.

Science Notes.

A new diamond field has been found forty-two miles from Griquatown in Cape Colony.
There has been a third trial of Zeppelin's airship which took place on October 21. It ascended at five o'clock in the afternoon, and after rising 900 feet it described a circle and then moved to the eastward and performed various evolutions to show that it was under full control. It then turned and went three miles to the south and afterward returned and descended There was not the slightest hitch during the trial.

It has been considered until recently that it was almost impossible to produce cheese from pasteurized wilk, but a short time ago a chemist of Stockholm suc ceeded in effecting a preparation that solved the diffi culties. Owing to this discovery, the product of which has been nawed "caseol," palatable and nourishing cheese, free of tubercular bacili, can now be made from pasteurized skimmed milk. This preparation has, noreover, the excellent quality of rendering cheese wore digestible. Several dairies in London have made experiments with "caseol" with the same favorable result.
Mr. Evelyn B. Baldwin is making preparations for a Polar expedition, the objective point being, of course the North Pole. He is being backed in his enterprise by Mr. William Ziegler, of New York. The expedition will start next summer, and it is expected that two ships will be equipped in order that one might remain behind while the other returns south for fresh supplies. By this plan the ship remaining in the Arctic could be used for headquarters of land expeditions. It is probable that the vessels will be specially con structed like the "Fram." Mr. Baldwin was with the Peary expedition of 1893-94, and spent the winter of 1898-99 in Franz Josef Land, as a member of the Wellman expedition.
The selection of names for the Hall of Fame on University Heights, New York city, includes a number of inventors and scientists. Among them are Benjamin Franklin, Robert Fulton, S. F. B. Morse, Eli Whitney, Peter Cooper, Elias Howe (?) Asa Gray, etc. There were ninety-seven judges, and the names given are from the first thirty. The order of precedence and the full list was as follows : George W ashington, Abraham Lincoln, Daniel Webster, Benjawin Franklin, Ulysses S. Grant, John Marshall, Thomas Jefferson, Ralph Waldo Emerson, Henry W. Longfellow, Robert Fulton, Washington Irving, Jonathan Edwards, Samuel F. B. Morse, David G. Farragut, Henry Clay, George Peabody, Nathaniel Hawthorne, Robert E. Lee, Peter Cooper, Horace Mann, Eli Whitney, Henry Ward Beecher, James Kent, Joseph Story, John Adams, William Ellery Channing, John J. Audubon, Elias Howe (?) Gilbert Stuart, Asa Gray.
The problem of supplying ink wells for schools, inurance offices, banks, etc., is much more complicated than might be at first supposed. If each employe till his own ink well, bottles of ink are broken, disfiguring property. A writer in Science and Industry describes an ingenious plan for distributing ink. It consists of a wooden carrier with four partitions, a handle and two little projecting shelves for supporting the inkstands. Three bottles of ink are put in the carrier, and a large tumbler is put in the fourth space to take the dregs. Each bottle has a combination stopper and puwp, which consists of a rubber bulb at tached to the stopper. When the bulb is pressed, the air forces the ink up through the tube and ejects it into the ink-well. The ink never drops from the nozzle after filling the inkstands, for the moment the hand is removed, the ink in the nozzle and tube drains back to the bottle, air being sucked in through the nozzle to take its place. Red, black, and copying ink is regularly kept in the carrier.
The new National Museum at Munich is one of the most interesting in Europe. The problem of arrangement was a most complicated one, and the difficulties have been solved in an admirable manner. The building cost about a million dollars, and contains a hundred rooms. The objects are shown, as they should be, in comparatively small galleries. The leading principle is that the ground floor should show, in strict chronological order, Bavarian life of different epochs, from the little circular room which in its architecture and its contents recalls the tenth and earlier centuries down to the blue and gold magnificence of the late King Louis. In the earlier rooms the sense of architectural evolution is greatly helped by the fact that the various castles of the Bavarian crown have contributed ceilings, windows, wainscots, etc., and in some cases the rooms have been planned specially to receive these. The museum contains an alwost endless number of specimens, large and small, of domestic art of the country in all ages ; of wardrobes caskets, iron utensils, beds, tables and chairs, the sup ply seems inexhaustible, and nearly all of them are in their original state. The Bavarian Museum neglects nothing which is of any historical interest, and is, in consequence, one of the most complete of its kind to be found in Europe.

Glass factories in.Germany now number 400, and the works give employment to 35,000 men.
The new waiting room of the Grand Central station has been opened to the public, and it is one of the finest rooms of the kind in the country.

The great Galerie des Machines is to be cleared away after the Paris Exposition. It is so large that it cannot be readily utilized for exhibition or other purposes.

A spiral chimney, 150 feet high, has been built near Bradford, England. The chimney is square in cross-sec tion, and each layer of brick is shifted three-sixteenths of an inch out of place, thus giving a peculiar twist to. each side of the stack.
The Gas Committee of the Manchester City Council, England, has appointed a special subcommittee to consider and report as to the desirability of recommending the council to purchase a coal wine. Nearly 500,000 tons of coal or cannel are annually carbonized at the corporation's gas works, and an advance of $\$ 1.25$ per ton on the new contracts would entail an increased annual outlay for the raw material of gas manufacture of $\$ 500,000$ for the current year.
The General Society of Mechanics and Tradesmen of New York city has added to its library a department of trade catalogues. These will be indexed and filed away and will be accessible at all times to those who wish to consult them. This is an excellent idea, and all public libraries should do the same, as the information which is frequently given in trade catalogues is of the utmost importance and represents the very latest practice, which cannot be obtained elsewhere.
The railroad bridge at Galveston has been restored, the work being completed twelve days after the storm. It was $21 / 8$ miles long, and most of the piles were found standing. says The Railroad Gazette, except at the draw opening, and where a large vessel was blown against the bridge in a storm. Considerable of the material for the new caps and flooring of the bridge had to be delivered on rafts, the track and roadbed having been destroyed for about 8 miles north of the terminus of the railroad at the bay.
A clever engineering feat has recently been accomplished at the Agecroft coal wine, not far from Manchester. This colliery is the second deepest in England, the shaft extending to a perpendicular depth of 2,175 feet. During the erection of the necessary machinery, three immense boilers were lowered down the shaft in a complete condition. This is the first occasion upon which boilers have been installed in this manner, since previously they have always been sent down the mine in pieces and then fitted together.
According to a German contemporary, artificial slate is tin-plate coated with a mixure of finely ground natural slate, lampblack, and a solution of water glass. The soluble glass solution is prepared by finely powdering 1 part by weight of solid potash water glass and 1 part of soda water glass in a mortar and pouring over this 12 parts of soft or distilled water ; after boiling 90 minutes, the water glass dissolves completely. Seven parts of slate ground with water to an impalpable pulp are mixed with 1 part of lampblack and added to the water glass solution; the rather stiff mass which results is brushed upon tin plates previously roughened with sandstone.
A diamond circular saw for cutting stone is described in London Engineering, and is said to cut hard sandstone blocks at the rate of five feet per minute. The saw has dovetailed recesses in which are fitted steel blocks, each containing a diamond. A hole is drilled into the block, but stopped before running through. A diamond is dropped into the hole, and a steel wire peg driven in behind it. The block is then put in an electric welding machine, and when it is softened, pressure is applied until the diamond is firmly gripped and the steel peg is welded into place. The front of the block is then filed away until the diawond is exposed, and the sides are milled to fit the dovetailed recesses in the saw. The positions of the diamonds in the blocks vary, so as to enable the saw to clearitself in making the cut.
The Swedish State Railways have recently placed a steam ferry at Copenhagen for the purpose of carrying on the trade between that port and Malmo. The vessel has been constructed at the Kockum Shipyard at Malmo and cost $\$ 250,000$. The boat is a screw steamer 268 feet in length by $521 / 2$ feet beam, and is capable of steaming $131 / 4$ knots per hour. The vessel is built of steel, and is an ice breaker, so that she may be able to force her way through the heavy and thick ice floes with which the channel is covered during the winter. The displacement of the boat when loaded with 18 railway cars is 1,600 tons, while she has accommodation for 900 passengers. There is an extensive deck, 150 feet by 46 feet broad, amidships. The vessel is illuminated with electric light throughout, and comfortably appointed. Should this vessel prove successful, several other similar type of craft will doubtless be placed upon this service, in order to deal with the rapidly developing traffic between these two places.

A telegraph line has been completed between Seattle, Washington, and Skagway, Alaska
Some experiments have been conducted at St. Paul, in which electricity at a pressure of 30,200 volts was sent through an underground cable three miles long. The highest voltage formerly obtained was 20,000 . The cable consists of three copper conductors, each being inclosed in a paper tube, the whole incased in lead and drawn through vitrified conduits. The cable is a part of the system by which the gas light and powe company will utilize the water power of Apple River, Wis., the other 24 miles of wire being overhead.
An electrically operated interlocking switch and signal plant is to be installed at Sixteenth and Clark Streets, Chicago. Electric motors and solenoids will be used for switches and signals. The semaphores will be operated by electric wotors of $\frac{1}{6}$ horse power, while the dwarf switch signals will be worked by solenoids. The switches will be thrown by one horse power motors. The system is said to work particularly well, as bad weather has less effect upon this system than it has upon mechanical or electro-pneumatic operated plants.

Marconi has made many new improvements in wireess telegraphy, and has now done away with the masts in certain of his experiments. He began as long ago as last January work on the cylinder plan, and he has already telegraphed 60 miles with a cylinder 4 feet high, instead of a mast and wire 125 feet high. The essential arrangement in working the cylinder plan is not greatly different from that of the aerial wire. The ranswitting instruments are practically the same, a battery, induction coil, earth wire, etc., being used The only change in this part of the apparatus is the introduction of resistance coils where needed, and an arrangement for sending "tuned" messages. The cylinder rests upon a table. Marconi has devised methods by which a number of installations may be worked together in the same room or building.
When a battery of cells is used as a source of elec ric energy, the constant element in the circuit is the E.M.F., while the current depends upon a variety of external conditions. The case is reversed on using an influence inachine driven at a constant speed, for then the mean current is the constant element, while the E.M.F. is a dependent variable. 'This fact has been util zed by M. Toepler for investigating the continuous discharge in air at atmospheric pressure as dependent upon the current. This continuous discharge may appear in four different forms, viz., glow, brush, brush are, flame arc. All of these may appear both at the positive and negative electrodes, but to simplify matters the author takes care nearly to suppress the effects at one electrode by covering it with a flat bad conductor such as a slate. He is thus enabled to study the effects at the two electrodes independently. As a general rule, an ncrease in the current strength brings about a transition from the glow to the brush, and finally to the brusin arc. But this transition is not continuous unless the capacity in the circuit is negligible. Otherwise the three continuons stages are separated by stages ot discontinuous spark discharge ; and as the capacity ncreases, the discontinuous stages encroach until the brush arc is almost entirely eliminated. Finally, the author deals at length with two forms of natura continuous discharge, viz., St. Elmo's fire and globular lightning.-M. Toepler, Ann. der Physik, No. 7, 1900.
There has just been introduced in the East End of London an enterprising system of selling electric light. The districts embodied are Poplar, Bromley and Bow, three of the busiest and most thickly populated localities in London, inhabited by the artisan class. The streets in this part of the metropolis have always been poorly lighted, but now they have been supplanted by large electric arc lamps. Altogether 195 arc lamps have been installed throughout ten miles of streets, but this s to be increased in the immediate future. The light is to be supplied to the inhabitants at such a low price that it will be cheaper for the working classes to avail themselves of electricity than the gas for lighting purposes. Then, again, the light is to be installed in the dwellings free of cost to the residents, so that actually the tenants have only to pay for the amount of electricity consumed. This scheme was first projected so far back as 1893. The tariff for consuming the light is extremely moderate and should recommend the universal utilization of this cleaner, cooler, and more efficient illuminant. For light consumption it will be supplied at 6 cents, 8 cents and 10 cents per unit, while for motive power it will be supplied at the purely nominal costs of 3 cents and 6 cents per unit. The present cost of the gas is 68 cents per 1,000 feet, and as about 5 units of electricity is equivalent to 1,000 feet of as, there is a considerable difference between the cost of the gas and the electricity. When the installation has been completed, 65 miles. of streets will be lighted by the electric lamps, and the houses corresponding to the same area of streets will be in a position to avail themselves of the electric light. The installation has cost about $\$ 500000$

THE RIEDER ELECTRO-ENGRAVING APPARATUS
On the first story of the Gallery of Machines of the Exposition there may be seen, in the German section the first specimen of a very curious apparatus invented by Herr J. Rieder, of Leipzig. It is a machine that permits of electrically sinking the steel dies employed for striking medals and coins or embossing sheet metal, leather, or cardboard. With the ordinary processes, the production of such dies requires special skill on the part of the artisan, and their net cost is consequently very high. So, for a long time, there has been sought a mechanical process of manufacture that should do away with, or at least reduce the manual labor. The object of Herr Rieder's apparatus is to solve the problem by effect ing the progressive corrosion of a plate of steel through electrolysis, that is to say, through the action of an electro-chemica bath.
The principle of the operation is repre sented in the diagram given in the accom panying figure.
The block of plaster (Gipsblock), bearing at its upper part a raised impression of the figure to be reproduced, is half immersed in a solution of chloride of ammonium. Upon the relief of the block of plaster is placed the steel plate (Stahlanode) that it is desired to engrave. This plate is connected with the positive pole of a source of electricity, and consequently constitutes what is called the anode. The negative pole, or cathode, consists of a sheet of copper im mersed in the solution and arranged beneath the block of plaster. The electric circuit is closed through the intermedium of the bath of chloride (electrolyte), which, as a consequence of the porosity of the plaster, soon ascends through capillarity to the steel plate. As soon as the current is turned on, the chloride is decomposed, and the chlorine that is set free attacks the steel plate at the points where it is in contact with the plaster relief. The chloride of iron thus formed is dissolved and the plate is gradually hollowed out. Other points of the relief come successively into contact with the metal, and there is finally obtained a steel mould of the plaster model.
We shall not enter into the details of all the difficulties wet with by Herr Rieder in the application of this ingenious process and which he had to surmount in order to reach the remarkable results obtained with his apparatus. It will suffice for us to make known the principle of it. The first experiments showed tha he steel to be engraved must not be applied to the model perwanently, since the insoluble ubstances, such as carbon, contained in the wetal deposit in the form of a black adherent powder that wust be periodically removed. To this effect, there is given to the apparatus a to and fro motion that separates the steel from the block of plaster every twelve seconds and replaces it, after the cleaning (which is likewise automatic), in the mathematically exact position that it previously occupied.
With the Rieder apparatus, the engraving of an 8×12 inch steel plate requires about fifteen hours, while it often takes wore than a month to do the same work by hand.
The apparatus permits of the reproduction of any model of plastic material, such as wax, plaster or wood, and preserves in the mould, with absolute fidelity, the most delicate details created by the hand of the artist.
At the Exposition, the opera tion of the apparatus is entirely electric, the machine being ac tuated by a motor that receives the current from the genera distribution of electricity
Let us add that since the sur veillance of the automatic opera tion is very simple, it is possible for one man to run several apparatus at once, and thereby effect a great saving in manual labor.
After the operation is finished, it requires but a few retouches executed by the hand of an engraver to remove all the traces left by the plaster model.
The field of the applications of this process is very vast, since it embraces all the industries that manufac ture ornaments obtained by stamping, and, in the first rank, the cardboard, leather and metal indus-tries.-L'Illustration.

TURNING THE RIM OF A 150 TON FLYWHEEL.
of 6,600 volts. Between the engine and the generator is a massive flywheel weighing 150 tons.
On account of their great size and weight, considerable interest attaches to these flywheels, and there are certain novel features in their construction and the way in which the massive rims were built up and finally trued up to form. Each wheel was cast in ten sections, each section consisting of an arm and a rim. The arms are bolted to the hubs, and the rim segments are connected by heavy links of steel, 5 inches deep by 10 inches wide, which were shrunk on in suitable recesses formed in the rim. After the wheel was

THE CONSTRUCTION OF A 150-TON FLYWHEEL.
We have already in a previous issue given a description of the great power house at Ninety-sixth Street and the East River, New York city ; and it will be sufficient to werely state a few of the leading features of this wost rewarkable installation, before describing the construction of the huge flywheels, one of which forms the subject of the accompanying illustration.
The power plant, which occupies an imposing struc ture measuring 279 feet by 200 feet, consists of forty-

METHOD OF ELECTRO-ENGRAVING AND SAMPLE OF WORK.
erected, the cast steel rim, which is 29 inches in depth by 10 inches in width, was widened out by building up on each side of it eight circles of $11 / 8$-inch steel plates which were riveted on with 3 -inch steel rivets. When the riveting was complete, the rim was in a necessarily rough condition, and it was turned to shape by means of a special lathe driven by a portable electric wotor. A heavy bed plate (see engraving), which surrounded the rim on three sides, was bolted to the floor of the engine room. On this was placed a lathe-carriage and tool-rest. The rest carried two tools placed side by side, the firs of which took off the roughing cut and the other the finishing cut. The flywheel was rotated by means of a large seginental spurwheel, which was clamped to the arms of the wheel, and a pinion mounted directly on the shaft of a portable electric motor. After the rim had been turned on both faces and the periphery, it was polished with a big emery block.
The arrangement worked satisfactorily, and the perfect truth with which these huge wheels are now running is one of the attractive features of these very imposing and handsome engines.

A Substitute for the Term "Indian."
There is no satisfactory denotive term in use to designate the aboriginal tribes of America. Most biologists and many ethnologists employ the term "American;" but this is inappropriate, since it connotes, and is commonly used for, the present pre-
eight boilers of the Babcock \& Wilcox type, and eleven Allis vertical cross-compound condensing directconnected engines, which have a capacity at 50 per cent overload of 6,600 horse power each, making a total capacity for the whole engine room of about 70,000 horse power. The engines are set up in two parallel rows, which extend the full length of the engine room, one row containing five units and the other six. The high-pressure cylinders are 46 inches in diameter, the low-pressure 86, and the common stroke is 60 inches. The engines are run ordinarily at a speed of 1.75 revolutions per minute, at which the piston speed is 750 feet per winute. All the wearing parts are of very liberal proportions. Thus, the main bearings are 34 inches in diameter by 66 inches in length, and the crossheads and crank pins measure 14 by 14 inches. Each engine is direct-connected to a three-phase generator whose normal capacity is 3,500 kilowatts. Current is transmitted to the substations at a pressure

The term "Indian," first used (in the Spanish form "indio") by Columbus, in the belief that the lands which he had discovered in the West were on the confines of India, in Asia, is universally used in popular speech and writing, and to some extent in ethnological literature, but is objectionable in that it perpetuates an error, and that it connotes, and so confuses, distinct peoples. Such an error was excusable at the time at which it originated, but there is no reason for its continuance, and it evidently would be well if the term "Indian" could be supplanted by some appropriate scientific designation.
During a discussion of the subject at a meeting of the American Anthropological Society on May 23 ot last year, Major J. W. Powell advocated the use of the name "Amerind," an aribitrary compound of the leading syllables of the frequently used phrase "American Indian." The proposed term carries no implication of lassific relation raises no wont ed question as to the origin or distribution of races, and perpetuates no obsolete ideas. S; ar as the facts and theories of ethnologists are concerned, it is purely denotive. The term is sufficiently brief and euphonious for all practical purposes, not only in English, but also in the languages of Continental Europe. It may be readily pluralized in these languages, in ac cordance with their respective rules, without losing its distinctive sematic character. Moreover, it readily lends itself to adjectival termination in two forms, viz., "Amerindian" and " Amerindic," and is susceptible also of adverbial termination; while it can be readily used in the requisite actional form Amerindize," or in relational forms, such as "post-Amerindian."
The term is proposed as a designation for all the aboriginal tribes of the American continent and adjacent islands, including the Eskimo.
The working ethnologists in the society were practically unanimous in approving the term for tentative adoption, and for commendation to fellow stu dents in this and other countries. As the working specialists form the court of last resort, it cannot be doubted that any term acceptable to them may be expected to come into use with considerable rapidity, and be eventually adopted by thinkers along other lines

The experiments which have been carried on by the South Metropolitan Gas Company with American coal are proving to be very satisfactory, and it is superior to the best English gas coal. It is found to be freer from sulphur and more easily purified. The cost of the American coal is, however, much higher, being \$3 a ton on boaru ship, and the freight is $\$ 4$.

November 3, 1900.
A RACK RAILWAY ON THE ISLAND OF SUMATRA. The island of Sumatra, in the Dutch East Indies, is the only country in Southeast Asia which possesses a rack railway. This line is the more peculiar as it does not serve for passenger traffic, but almost exclusively for the transportation of bituminous coal. At present about 25,000 tons of coal are carried over the line annually. The capacity of this railway could, however, be considerably increased; it is now only operated during the daytime, but in spite of this limited traffic, the line has greatly contributed to the development of the Dutch East Indian colonies.

Thirty-five years ago the Dutch engineer, De Greve, discovered rich and extensive deposits of bituminous coal in the mountainous interior of Sumatra. The distance from these deposits to the coast amounted to only 60 kilometers, but the tract was crossed by high mountains, the chain of Barissan, acting as a barrier to transportation. On account of this drawback, the exploitation of the coal deposits was long delayed. It was only in 1887 that the Netherlands Parliament decided upon the construction of a railway to connect the coal field with the great port of Padang, on the southwest coast of Sumatra. Branch lines were at the same time contemplated to Fort de Kock, to Payacombo, and to the coal fields of Lounto. The first part of the railway was completed in 1891, and the rest in 1896. The total length of all lines with their branches amounts to 130 miles, of which 97 form the main line, and of this no less than 36 kiloweters ($22 \cdot 37$ wiles) are of the cogged-wheel type. The greatest incline is 1:12.5, and the diameter of the smallest curve 150 meters. The railway reaches its highest between two volcanoes in the neighborhood of Fort de Kock, 1,154 meters (3,786 feet) above the level of the sea. Tunnels occur only at two places : one, 70 meters in length, in the valley of Anei, with rack track, and the other one, 826 meters long, with ordinary track. The great inclines which are to be overcome by the rail way necessitated at some places the erection of special structures; thus, for instance, of an arch bridge of a span of 59
meters, with an incline of 68 milimeters per meter The work on the line was carried out by natives of Sumatra and Java, and only for the heaviest work Chinese laborers and some 500 convicts were employed

LOOKING DOWN THE TRACK, SUMATRA RACK RAILWAY.

The coal is carried on this line at the rate of 0.76 cent per ton per kilometer. Cars of the American style are used, of 20 tons capacity. The gage of the railway is 1.067 meters, the same as that of the Netherlands State Railways of .Java. The heaviest locomotives running on the line have a weight of 35 tons. The rails, 7 meters in length, weigh $25 \cdot 7$ kilogrammes
per meter. The cost of the construction of the line was $\$ 40,000$ per kilometer.
H. L. G.

Making Bricks from Glass-Works Refuse in

England.

Dr. Ormandy, of St. Helen's, formerly master of science at the Gamble Technical Institute, that city, has recently discovered a process by which good furnace bricks can be made from glass-works refuse. St. Helen's, which is a few miles from Liverpool and within that consular district, is not only the center of the English chemical trade, but contains a number of large glass-works. The millions of tons of refuse which have accumulated around the glass-works heretofore have been treated as of no commercial value. The refuse consists mainly of spent sand, minute particles of glass, and about 3 per cent of iron from the various processes, and it has hitherto been considered that the presence of the iron prevented the use of the material for the manufacture of bricks. Patents have been taken out to protect the process, and a large firm has engaged Dr. Ormandy's services. After making various experiments, the firm is now putting up an extensive plant for the manufacture of the bricks. It is claimed that the bricks will stand a great amount of heat. They are about the color of silica bricks and can beglazed. Considerable secrecy is observed as to the process.

ThE temperature of the free air is the title of a paper communicated by Dr. Hergesell to Part V. of Petermann's Geographische Mittheilungen. The author's observations show that even at a height of a few hundred meters there is a very small diurnal range : at night time it anounts, in some ascents, to only a few tenths of a degree, and in the day time, at about 800 meters, to some 3° or 4° Cent., when solar radiation is unobstructed. On cloudy days, and in the mean values, the daily amplitude is much less. With respect to the vertical increase of temperature, the re sults of thirty sets of observations show that in all levels up to 10,000 meters an extremely varying temperature obtains, according to the season of the year and the conditions of weather. The decrease at that height reached or exceeded 40° Cent. in all cases, but no fixed rule could be laid down as to the regular decrease with altitude.

ALONG THE ANEI RIVER, SHOWING TRACK.

THE RAVINE OF THE RIVER ANEI.

©arrespondence.

Electric Fire Pumps.

To the Editor of the Scientific American :
The general introduction of the electric motor into buildings of all classes suggests an application which might, under certain conditions, prove to be of great value. A fire pump designed to be driven by an elecric motor would, it seems to the writer, have many decided advantages. In large manufactories and public buildings, where steam boilers are kept continually under pressure, there is no difficulty in maintaining fire pumps capable of supplying one or more streams with the necessary promptness. There is, however, a large class of buildings, in which may be included private residences, where steam power is not at hand, and where reliance must be placed entirely upon the local fire department, which may or may not be efficient, and which, at the best, must consume a certain amount of valuable time in getting to work. In such cases it is believed that an electrically driven pump would find its most useful application. Such a pump would be in constant readiness for action, and could be instantly started at any time by the simple pressure of a button, or could even be arranged to start automatically in connection with a systew of electric fire alarms, or by releasing the air in the discharge pipes, as in the well-known sprinkler systems. It should be provided with relief valves set at the desired pressure, so that, after once being started, it would run at full speed, the amount of water delivered being regulated at will by the hoseman up to the full capacity of the pump. The apparatus should, if possible, be installed in a small detached building or shelter, where it would not be disabled by fire or oy the cutting power of wires leading to a burning ,uilding. Willard P. Gerrish.
Harvard College Observatory, Cambridge, Mass. October 24, 1900.
['The suggestion of our correspondent is a good one. We believe that this method of equipment has already been installed and with success in some buildings in this city.-Ed.]

The Relations between Mathematical Physics.*

m. henri poncane before he conco

Role of Experimént and Generalization.Experiment is the only source of truth, and by its means alone can we learn anything new or certain. What place remains then for mathematical physics? The latter has rendered undeniable services, because it is necessary not only to observe, but to generalize ; it is this which has been done from all time, only as the remembrance of past errors has made wan wore circumspect, he has come to observe more and generalize less. Should we not be content with experiment alone? That is impossible, and would be to ignore the true character of science, which is built of facts like an edifice, but is not a mere conglomeration of material. A good experiment teaches us something besides an isolated fact; by its means we may predict and generalize. Thus each fact observed enables us to predict a great number of others, but we should not forget that the first alone is certain and all the rest are only probable. The role of mathematical physics is to guide the generalization so as to increase what may be
called the efficiency of the science. It remains to be seen by what means this may be accouplished.
The Unity of Nature. - All generalization supposes in a certain degree the belief in the unity and simplicity of nature. For the first there can be no difficulty ; if the different parts of the universe were not like the organs of the same body, they would not act upon each other, and we have only to ask how nature
is one. The second point is more difficult. It is not is one. The second point is more difficult. It is not but those who do not as formerly admit the simplicity of the natural laws are of ten obliged to consider them from this standpoint, otherwise all generalization and from this standpoint, otherwise all generalization and
all science would be impossible. It is clear that a given fact may be generalized in different ways. The choice is guided by considerations of simplicity : this is
illustrated by our method of drawing a curve between illustrated by our method of drawing a curve between a series of points. To sum up, every law is supposed the history of science, we find two phenomena of opposite character; at times simplicity is concealed under complex appearances, and at others apparent simplicity conceals a series of complicated phenomena. The
complicated movements of the planets and the law of complicated movements of the planets and the law of
Newton is an example of the first, and the kinetic theory of gases and Mariotte's law is an example of the second case. But Newton's law itself has perhaps only an apparent simplicity, and may be due to some unknown and complicated mechanism. No doubt if our means of investigation become more penetrant, we will discover the simple under the complex, then the complex under the simple.
Role of the Hypothesis.-Every generalization
is a hypothesis, and the hypothesis therefore has a ne-
cessary role which has never been disputed. It should, however, be verified as often as possible, and if not sustained, should be abandoned, and even in this case renders great service by the new outlook given. Then, under what condition is the use of the hypothesis dangerous? Those which are made unconsciously we are powerless to abandon; a service may be rendered here by mathematical physics obliging us to formulate all hypotheses. We should distinguish different kinds of hypotheses, those which are natural, and a second category which may becalled indifferent, as the results of calculations are not changed thereby; for instance, the continuous or the atomic constitution of matter. These are never dangerous if their character is not lost sight of, and they may be useful in calculation or to give a concrete idea. Hypotheses of a third category are veritable generalizations, and should be sustained or condemned by experiment.
Origin of Mathematical Pfysics. - The efforts of scientists have always tended toward resolving the complicated experimental phenomena into a great number of elementary phenomena, and this in different ways. As to time, each phenomenon depending upon that the preceding instant. In space, in an analogous manner, each molecule acting upon its neighbor.
The knowledge of an elementary fact permits us to put the problem into an equation, and integration becomes possible. The reason that generalization takes usually a mathematical form in the physical sciences is that not only are numerical laws to be expressed, but the observed phenomenon is due to a great number of elementary phenomena, similar among themselves, introducing naturally the differential equations.
Significance of Physical Theories.-It may be said that scientific theories are of an ephemeral character, but the role of such theories must be taken into account. The theory of Fresncl has giveni place to that of Maxwell, but the former has none the less its value in the prediction of optical phenomena. If the relations expressed by the equations are known, it relations expressed by the equations are known, it
makes little difference whether the image we give to makes little difference whether the image we give to
the phenomena change or not. The kinetic theory of gases has given place to many objections, but it has, nevertheless, produced valuable results, no matter whether its absolute verity is affirmed or not.
Physics and Mechanism.-Most theorists have a predilection for explanations borrowed from wechanics or dynamics. Some of them wish to explain all phenomena by the movement of molecules attracting each other wutually according to certain laws; others wish to suppress attractions at a distance, and the molecules would thus follow straight paths and be deviated only by shocks; still others, as Hertz, suppress also the forces, but suppose the molecules are bound in a system analogous to our articulated systems, thus reducing dynamics to a kind of kinematics. Phenomena may be explained by all these systems. As to the conception of the ether, some regard it as the only primitive, or even the only real matter, and what we call matter as constituted of vortex motions of the ether according to Lord Kelvin, or according to Riemann of points where the ether is constantly, destroyed; or with wore recent authors, Wiechert or Larmor, of points where the ether has undergone a special kind of torsion. The old fluids, caloric, electricity, etc., have disappeared, not only when it was found that heat was not indestructible, but the unity of nature forbids the creation of such independent fluids.

Actual State of the Science.-Two diverse tendencies are observed in the development of physics, that of co-ordination, in which science advances toward unity and simplicity; and that of variation, where, by the discovery of new phenomena, science appears to advance toward variety and complication. If the first on account of the wultitude of phenomena we are obliged to abandon our classification, it will be reduced to a mere registration of facts; as to this, we cannot reply, but we may compare the present state of science with the preceding, and draw some conclusions. Half a century ago, the greatest hopes were entertained. The discovery of the conservation of energy and of its transformations had just revealed the unity of force; heat was explained by molecular movements; their nature was not known, but the solution of the problem seemed near; for light, the question seemed solved. seemed near; for light, the question seemed solved.
Electricity, just annexed to magnetism, was farther behind, but no one doubted that it would take its place in the general unity, and for the wolecular properties of solids, the reduction seemed easier. In a word, great hopes were entertained. What do we observe to day? First, an immense progress; the domains of electricity, light and magnetism now form but one. The optical phenomena enter as particular cases of electrical phenomena. While they remained cases of electrical phenomena. While they remained
isolated, it was easy to explain them, but now an exisolated, it was easy to explain them, but now an ex-
planation to be acceptable must enter into the domain of electricity ; this is not without some difficulties. The theory of Lorentz is the most satisfactory; Larmor goes still farther and seems to add to the former ideas of MacCullagh upon the direction of ether movements. However, we have not as yet a satisfactory theory. We
should liwit our ambition and not seek to formulate a
mechanical explanation, but show that we could at least find one; we have succeeded in this, owing to the principle of the conservation of energy and that of least action, both constantly verified. The irreversible phenomena are more intractable, but are brought into order by Carnot's principle. The role of thermodynamics has greatly increased, and we owe to it the theory of the pile and of thermo-electric phenomena. To sum up, the old phenomena become better classi. fied, but new ones are constantly coming in, and we must now place the cathodic and X-rays, those of uranium and radium, etc. No one can predict the place they are to occupy, but no doubt they will fit into the general unity. On one hand, the new radiations seem allied to the phenomena of luminescence; above all, it is thought that in these phenomena are found the veritable ions, these being endowed with a great velocity.
We not only discover new phenomena, but the old ones appear under an unlooked-for aspect. Nevertheless, the relations which we recognized between the supposedly simple objects hold good when we learn their complexity, and this is the essential point. Our equations become more complex, but their form remains. Lastly, the physical efforts have invaded the domain of chemistry, whence the new science of physicochewistry, which, though recent, enables us to associate phenomena such as electrolysis, osmose and movements of the ions. From this rapid expose, what are we to conclude? Everything considered, we have approached a unification; though the progress has been less rapid a unification; thought the progress has been less rapid
than was hoped for fifty years ago, and the path laid than was hoped for fifty years ago, and the path laid
out has not always been taken, we have, in fact, gained considerable ground.

THE AEROSTATIC EXHIBITS AT PARIS

The aerostatic section of the Champ de Mars contains a centennial collection of great interest; the objects have been loaned by a number of persons who have private collections. The upper illustration shows part of a famous collection which has been loaned by M. Albert Tissandier. These objects, many of which date from the last century, all bear a representation of a balloon, either of the primitive hot air balloon of Montgolfier or the later form inflated with gas. Most of the porcelain and earthenware plaques and other pieces date from the last century, and are decorated with balloons or carry scenes of balloon ascensions wore or less artistically drawn. One of these plaques wore or less artistically drawn. One of these plaques
bears the date 1785 , and another is dated 1820. A large bears the date 1785 , and another is dated 1820. A large
collection of fans will also be noticed; they all carry scenes of balloon ascensions painted in miniature; and some of these have a considerable artistic value. Two of the fans represent ascensions which were made in the last century at the Tuilleries or at Versailles. In the foreground is a collection of miniatures in round orsquare metal frames, representing balloon ascensions, and several books with a balloon stamped in gold on the cover. Near it is a collection of miniature boxes in colors or of carved ivory, gold, or enamel, upon all of which a balloon is represented. Most of these boxes date from the end of the last century, and some of them are finely executed. In this collection is a miniature, inclosed in a square leather case, representing "the ascension of Pilatre de Rozier and De Romain at Boulogne, with a balloon filled with inflammable air, on the 12th of June, 1785." Another miniature commemorates an ascension made on the 2 d of March, 1784. At one end of the case is a collection of watches, medallions, rings, and like objects, as well as a number of miniatures. Among these is a button of the uniform worn by the military aerostatic corps of 1794 ; it bears the inscription, "Aerostatier, 1r. Brigade." An interbearing ich a wath angraved copper case presented to Captain Coutelle in 1794 . Another watch of the same period is of steel incrusted with gold, and bears a design of a balloon ascension.
One of the miniatures shows a gas balloon, and bears the date of December 1, 1783, and an engraving in a metal frame, representing an ascension made by Messrs. Robert and Hutin at the Tuilleries on the 19th of September, 1784. In the front of the case is a series of medals which commemorate the different ascensions made during the siege of Paris, 1870 to 1871 . In the center is a large medallion in bronze, bearing a figure of the Republic, with a balloon in the background. Surrounding it are a number of small medals which relate to different ascensions. At that time most of the large railroad stations of Paris were turned into balloon headquarters, from which the ascensions were made. The medals bear inscriptions similar to the following, surrounding a balloon in the center: "Depart from the Northern Station-the Torricelli-conducted by the marine Bely-the 24th of January, 1871." The other side of the case contains a large collection of engravings and documents relating to aerostatics Some of the oldest of these show different forms of Montgolfier balloons, most of which were of a highly ornamental character; among the books and pam phlets is one dated 1784 , relating to the experiments of Montgolfier and a copy of the proceedings of the
Académie des Sciences of 1828 containing a eulogy oi

Aeronaut Charles, one of the pioneers of the last century. Another copy of the proceedings of a much later date is that containing an account of an ascension made by the late M. Gaston Tissandier in the balloon "Zenith," in which he made the remarkable altitude of 24,000 feet. Another part of the collection shows a number of miniature photographic dispatches made upon films, which were used for the post established by carrier pigeons in 18.70 to 1871 between Bordeaux and Tours. Each of these films, which measures one by two inches, represents a reduction of sixteen folio pages, and contains more than three thousand dispatches; one hundred thousand dispatches of this character weigh only fifteen grains. The films were rolled in a goose-quill tube and attached to the tail of the pigeon.
Another interesting collection is that of M. Louis Bereau, a part of which may be seen in the second illustration. At the top are a number of very curious engravings relating to balloon ascensions or to different projects for flying urachines. One of the latter designed by E. Petin, contained four balloons with a amplicated rigring; under complicated t is a design of flying ma chine presented to the Académie des Sciences in 1851, by Emile Gire; the balloon was filled with superheated steam and carried a series of immens wings. Another of these machines, with a cigar shaped balloon carrying the propelling and steering mechanism, wade an ascension from the Champ de Mars in 1834. The most interesting of these engravings, the third of the top series, is that representing one of the first public as censions of Montgolfier, and the text merits a re production in full, as showing the state of the artat that period: "Aeronautic experiment made at Versailles on the 19th of Septewber, 1783 , in presence of their majesties the royal family and more than 130,000 persons, by Messrs de Montgolfier, with a bal oon 57 feet high and 41 feet in diameter. This splendid machine, with a blue background carrying the king's coat of arms and divers ornaments in gold color, displaces 37,500 cubic feet of atwospheric air, weighing 3,192 pounds, but the vapor which fills it weighing one-half less than the common air, there results a runture of equilib rium of 1,596 pounds, ow ing to which the machine and its cage, containing a sheep, a cock, and a duck, will rise, and could yet lift 696 pounds. At one o'clock a cannon stroke announced that the balloon was to be filled; eleven minutes after a second announced that it was full, and at the third stroke it started. It then rose majestically to a great height, to the sur-
prise of the spectators amid the acclamations of the public. It remained some time in equilibrium, and descended slowly eight minutes after in the wood of Vaucresson. The animals were not at all inconvenienced."
In the center of the collection is a curious tavern-sign dating frow 1678, representing a man flying by means of paddle-shaped wings attached to rods and sup ported over the shoulder. The lower case contains a great number of photographs and documents relating to the subject. A large marble tablet contains a dedicatory inscription to the Montgolfier brothers by the citizens of Dannonay, and bears the date 1783 and a design of a balloon. Another tablet relates to an ascension made by Prof. Charles Guy from the Champ de Mars in 1783. At the top is the roval coat of arms, and below is a balloon. The collection includes a number of books; one of these, dating from 1784, bears

aerostatic section of the paris exhibition-collection of m. albert tissandier.

aerostatic section of the paris exhibition-collection of m. louis beread.
the turf to pulp and destroy the niber, after which the mass is easily dried, getting quite hard and furnishing an excellent charcoal. There is no reason why this turf coal should not be used for electric stoves and in the manufacture of carbide of calcium. In distilling the turf coal, paraffin, ammoniac, and a strong iltuminating gas are found. In using it as a fuel for locomotives, a heat equal to that of 93.25 per cent of best coal has been attained, while it shows only 2.62 per cent of ashes, thus being equal in purity to high-grade Derbyshire coal. The cost of converting turf into coal has kieen calculated at 61 cents per ton.

Memoriai to John Ruskin

A simple and beautiful memorial, which has been subscribed for by friends and admirers of the late Mr. Ruskin, was recently unveiled at Friars' Crag, Keswick. The monument consists of a simple monolithic block of Borrowdale stone, rough and unhewn, as it came from the quarry. It is of the type of the standing stones of Galloway, which are the earliest Christian monuments of the Celtic people now ex tant. Upon one side is incised a simple Chi-Rho in closed in a circle after the fashion of these earliest crosses, with the following inscription beneath from "Deucalion," Lecture xii. par. 40: "The Spirit of God is around you in the air you breathe-His glory in the light you see, and in the fruitfulness of the earth and the joy of His crea-tures-He has written for you day by day His revelation, as He has granted you day by day your daily bread." On the other side of the monolith, facing the lake and the scene which Ruskin once described "as one of three most beautiful scenes in Europe," is a medallion in bronze, the work of Signor Lucchesi, representing Ruskin as he was in his prime, in the early seventies. Above the early seventies. Above the
portrait is the name "John Ruskin;" beneath are the dates MDCCCXIX. to MDCCCC. Beneath these again is incised the inscription, "The first thing that I remember as an event in life was being taken by my nurse to the brow of Friars Crag, Derwentwater."
The Current Supplement.
The current Supplement, No. 1296, contains many articles of unusual interest. "The Ferry Bridge at Bizerta" describes a very curious suspended bridge. "The Paris Exposition Awards" are analyzed. "Electrical Machines at the Exposition of $1900 "$ is a most elaborately illustrated article, giving illustrations of all of the large generators. "Chemical and Technical Education in the United States," by Prof. C. F. Chandler, is continu-
made upon films. A piece of the balloon "Washington" is shown near it; this being one of the balloons which figured at the siege; also a basket in which the carrier-pigeons were kept during the ascensions. The collection contains a number of photographs and engravings of ascensions made during this period.

Turf as Fuel.

Consul Hughes, of Coburg, September 6, 1900, says : At the present price of coal, says the Oesterreichische Zeitschrift fuer Berg und Huetten wesen, the use of turf commands our special attention. Hitherto, all attempts to use turf as fuel and for the production of gas on a large scale have failed, for the reason that no means existed to dry it cheaply and quickly, nor could it be pressed into a small volume. Turf contains about 75 per cent of water, of which it loses very little in ordinary "drying." It is now proposed to reduce
ed. This is one of the most important papers ever pub lished in the Supplement "The Twin-Screw Steam Yacht 'Arrow'" is illustrated by a number of engrav ings. "The Age of the Earth," by Prof. W. J. Sollas, is concluded in this issue.

Contents.

Aerostatic exhibits*.. Automobile news....

Rricks from plassworiss refuse.:
Bridge, national memorial
Cruisers, French ${ }^{*}$....... $\quad273$.
Electroal notes.
Engin engrink.
Engineering notes
Flywheel, construction of iarae*
Harrows, sulky attachment for*
Hay, spontaneous combustion
orse......
Horse. operating tabie for*:
Inventions recently parm.ene....
Irrigation in the Eastern States.
Iocomotive ele
ITrigation itve. electricar*
National Museum.......

	matr
	Pumps, ele
	Ruskin, me
	clance
$\begin{aligned} & 777 \\ & 80 \end{aligned}$	water fountain in Great
π	
	Submarine cable anniversary of
	Sugar, how Russia corners......
	hement.
$\begin{aligned} & 800 \\ & 84 \\ & 80 \end{aligned}$	Tombs, imper
9	mway

RECENTLY PATENTED INVENTIONS. Engineering Improvements. CARBURETER FOR EXPLOSION-ENGINES. Hubert C. Ray, Visalia, Cal. The carbureter comprises an exhaust-heated carbureting-tank and engine-heated
air-supply discharging beneath the oil in the carbureter air-supply discharging beneath the oil in the carbureter
An engine-supply pipe connects the carbureter and en ine. A combined oill supply and surplus-gas condense is also provided consisting of a tank having a pipe for conveying oil to the carbureter, and a pipe leading from the gas-space of the carbureter to beneath the oil-level in the supply-tank and provided with a safety-valve. With this carbureter crude oils can be used instead of refined petroleum or gasoline

Mechanical Devices.

aUtomatic cage-rest.-Martin Horst, North Lawrence, Ohio. The object of the invention is to provide a new and improved cage-rest which is simple in y into an active position in order safely to support the cage at the top of a shaft or mine. The invention comprises supports for the cage and mechanism controlled by the cage and connected with the supports to hold the latter in open position in its ascent. The supports immediately move into a closed position when the cage ha passed above them.
EleVator.-Parley D. Root, Wakefield, R. I Safety-doors for shafts have been devised, and a novel car which travels in the shaft. The doors at the floors
of the shaft aud the door in the elevator are independently mounted and yet so arranged that, while both sets of doors are closed, the car can freely pass up and down nd its door is opened, the door in the shaft at that floor will be simultaneously opened; for the two doors will at that time be brought into interlocking engagement, and one will operate with the other. The car cannot move p or down when a door is open.
CULINARY MASHER AND STRAINER.-Richard F. Hares, Manhattan, New York city. This device can be attached to any suitable support, and by its means food can be quickly mashed and soups clarified. The device is so constructed that the sieves through which the suit the different conditions of material to be treated and that the device can be operated with the use of but one hand. The parts can be easily disconnected and cleaned.
tYpe-Writer. - Robert J. Miner, Greenwich Conn., and Willis E. Miner, Roselle, N. J. This ma chine is a typewriter for perforation, so that by the
ordinary mauipulation of the keys a stencil-sheet can ordinary manipulation of the keys a stencil-sheet can
be formed from which any desired number of copies cau be taken by means of an inked roller, the ink being orced through the perforations to the paper beneath The machine is therefore part cury wher a lails or the like are equired. Fither the stencil-type or the ordinary type for printing can be operated by a single bank of keys.

Miscellaneous Inventions. GOLD - UNDERGLAZED KERAMIC DECORA ION.-Gen Yerk city. The purpose of this invention is to apply gold decoration to porcelain and glassware so that it will resist the action of alkaline and abrasive subtances and will last as long almost as the article to which it is applied. On the china or glassware precipitate of gold is first applied. The article is then fired and the gold surfaces burnished. A glaze is then ap-
plied to the gold surfaces and the article again fired at a temperature lower than that of the previous firing. The glaze is now fused and the gold made a corporate part of the ware. The inventor states that the glaze is mperious to alkaline substances and proof against abrasion This invention is applicable to the following: House hold and fancy china, toilet ware, bath tubs, wash basins, vater closets, tiling, false teeth, glass ware, etc.
FOUNTAIN-PEN.-Carl J. Renz, Manhattan, New York city. The invention is so conceived that the pen can be partially or entirely drawn within or without the nozzle by means of a key at one end of the barrel, to vary or feed is employed as an upper or an under feed. The barel is provided with a piston and stem, the latter having screw connection with the barrel. The stem has a pen carrying head which serves as a valve for the socket or nozzle, whereby when the piston is moved in one direction the ink is drawn by suction into the barrel from the pen, and when moved in another direction the ink orced from the barrel to the pen.

Designs.

Flask .- Jeremiah Quinlan, Manhattan, New York city. The design consists of a flask which in gen Mal contour and appery
MARINE PROPELLER.-CABL Rondell, Stillwater, Minn. The principal features of this design are, first, line around a cylindrical hub, and, secondly the form of the blades, the same being concavo-convex and straigh on their entering or cutting edges and convex on their opposite ones.
teapot. - austin F. Jackson, Taunton, Mass. This patent is for an ornamental design for a teapot, in foliated sprass, including daisies, wild roses, and a conventional rosebud.
SAW-set and gage.-Lewis Valentine, Claquato, Wash. The device is particularly adapted for setting cross-cut saws. An oval handle is adapted to be held in the hand while supporting the device with thre of its face projections against a saw-blade so that the fourth projection may gage the angle or lateral inclina device is held against a saw-tooth when the latter is struck with a hammer, for giving it more or less inclina tion.
Notr.-Copies of any of these patents can be fur nished by Munu \& Co. for ten cents each. Please state of this paper.

Business and Personal.
Marine Iron Works.
For hoisting engines. J. S. Mundy, Newark, N. J. "U. S." Metal Polish. Indianapolis. Samples fre Yankee Notions. Waterbury Button Co., Waterb'y, Handle \& Spoke
Book "Dies and Diemaking," $\$ 1$, postpaid. J.L. Luc ridgeport, Ct. Send for index sheet
Gear Cutting of every description accurately done The celebrated "Hornsby-Akroyd" Patent Safety Oil Engine is built by the De La Vergne Refrigerating Ma hine Company. Foot of East 138th Street, New York.
The best book for electricians and beginners in elec icity is "Experimental Science," by Geo. M. Hopkin, mail, \$4. Munn \& Co., pubhishers, 361 Broadway, N. Mexican Government Contracts, Concessions. Rail
ways, Lands, Mines, Patents, etc. Address Ernest Chavero, Attorney at Law, Member of the Mexica Federal Congress. 3d Colon 1020. P. O. Box 149, Mexico City, Mexico
18- Send for new and complete catalogue of Scientiftc and other Books for sale by Munn \& Co., 361 Broadway
New York. Free on application.

2huch Muriss

HINTS TO CORRESPONDENTS Names and A diress must accompany all letters
or no attention will be paid thereto. This is for our
information and not for information and not for publication.
References to former articles or answers should
give date of paper a and paye or number of question Inquiries not answered in reasonaber of quessiound some answers require not a will bear in in mesearch, and,
though we endeavor to reply to all either by letter or in this department, each must take einher turn letter
Bu yers wishing to purchase any article not advertised in our columns will be furnished with addresses of
houses manufacturing or carying the same. houses manufacturing or carrying the same.
Special \mathbf{W} ritten 1 In formation on matters of
personal rather than onenal inter
expected without remuneration. interest cannot be expected without remuneration.
Scientific American Supplements referred
to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of
Minerals sent for examination should be distinctly
marked or labeled.
(7985) R. N. T. writes : In my home I have two long distance telephones in series; one is a
wall and the other a desk phone. When I wish to use my desk phone, I short-circuit the wall phone by means of a switch that I have before me, and I have observed that the mere act of closing that switch calls central. Can you tell me why? Because of the novelty connected with it and because of its convenience, I use the switch entirely, instead of the generator, for calling cenral. A. We suppose your telephones are always in connection electrically with the central office, so that the hift the switch over for the purpose of cutting out the wall instrument and cutting in the desk telephone, you reak and make again the connection with the central office. This of course gives a signal at the office, just as you had broken and made the circuit for the purpose giving a signal.
(7986) R. P. A. asks: Have you the plans for a small motor to be run with about from 12 to 18 volts? A. See Supplement, No. 641, price ten cents.
for the plans of a motor which can be made cheaply and is just what you want.

NEW BOOKS, ETC.

Die Eisenkonstruktionen Der In-GENIEUR-HOCHBAUTEN. Ein Lehrbuch zum Gebranche an Technischen
Hochschulen und in der Praxis. Von Hochschnlen und in der Praxis. Von
Max Foerster. Third Part. Post Octavo. Illustrated. Leipsic : Wiltav E. Stechert, 9 East Sixteenth $\begin{array}{ll}\text { tav E. } & \text { Stec } \\ \text { Street. } & 1900 .\end{array}$
The third part of Prof. Foerster's admirable text-book anched roofs. The clearness and exhaustiveness which
and characterize Prof. Foerster's work have been more than once mentioned in our reviews of previous parts. This third part fully attains the high standard set in the beginning.
A Complete Metrical Reckoner. South Omaha, Neb.: Hermann Bro thers. 16mo. Pp. 208.
The book is divided into sections from 1 to 100 . Foldng manila cards at the front and back are turned into pace so that any figure from 1 to 100 sppears in an aperare which is cut in the card. It is by this means made the exact weight or quantity. The result is a very handy the exact weight or quantity. The result is a very handy
metrical reckoner. In going from the metrical system to the ordinary the card on the right-hand side of the book is used.
Photometrical Measurements and ManUal For the General PracReference to the Photometry of Arc and Incandescent Lights. By Wilbur
M. Stine, Ph.D. New York: The Macmillan Company. 1900. 16 mo . Pp. 270. Price $\$ 1.60$.
The rapid extension of the practice of photometrical measurements in this country, and the general interest in standards of illuminating power and allied subjects,
evidenced by frequent contributions to technical periodievidenced by frequent contributions to technical periodihas been the occasion for the preparation of this work. The author has produced a most valuable treatise, which will meet the requirements of a large number of readers. The explanations are lucid, and it is well illustrated by
engravings and diagrams.
TO INVENTORS.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week EndingOCTOBER 23, 1900,
and each bearing that date.

Bott
Bot
Bote
Bote
Bot

Can
Can
Car
Car
Car
ar

Can
Can
Car
Car
Car
ar
:---:
Car
ar
ar
Carb
arb

Catate
$\begin{array}{l}\text { Cllt } \\ \text { Cone } \\ \text { Cessp } \\ \text { Coss }\end{array}$

O20

Cute
cot
cole

Dish fieansing apd deondirizing apparatus, C
Disinfectine
Frese

Hectric batery. F. K. . Irviig.
Cecrice machine slot wedge, ory dyamo, H. H.

 660,160
 660,59
660,412
toting metai. . . inuieieier......... 660,222
660,262F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

 | 666,274 |
| :--- |
| 660,456 |

Fu
${ }_{6}^{6}$

 660,106
60,351

dicator., see Temperature indiciator. 866.1 .14
660.301
609

 | 660,532 |
| :---: |
| 60,295 |

 dinger.| 666,313 |
| :---: |
| 606,263 |
| 660,164 |

 $\stackrel{666.331}{60,350}$

: $\begin{array}{r}660,289 \\ 660,201\end{array}$
Motor control system, A. S. Garfield. $66,0.522$
660.153
600,428
60,

(Continued on puge 285)

TO PATTERN MAKERS

 FAY, \&is scotr,
SAVE Emmanmemy For Heavy Continuous Work

SENT ON TRIAL.

THE CLEREANER THAT TLELEANS CLEAEAN

TOOL MAKER'S ENGINE LATHE

PERFECT - PUMP - POWER.

 MORAN FLEXIBLE JOINT

MERITORIOUS INVENTIONS

|on

CUYER'S PATENT DESULPHURIZING FURNACE.

RESTFUL SLEEP
In Camp, on the Yacht and at Home.
"Perfection" Air Mattresses,

mechanical fabric co., providence, r. I.

BABBITT METALS.-SIX IMPORTANT

NEW BINOCULAR.

 1010 Chestrut street,

FREE! WHOLESALE BOOK

JUST PUBLISMED

THE

Progress * of *Invention

IN The

Nineteenth Century

By EDWARD W. BYRN, A. M.

large octavo. 480 pages. 300 illustrations. price $\$ 3.00$ by mail postpaid to any COUNTRY IN THE WORLD. HALF RED MOROCCO, GILT TOP, $\$ 4.00$.
 The Typewriter. XV-The Sewing Machine. XVI-The Reaper. XVII-Vulcanized Rubber. XVIIIChemistry. XIX-Foot and Drink. XX-Medicine, Surgery and Sanitation. XXI-The Bicycle and Auto-
mobile. XXII-The Phonorrap. \quad XXIII-Qptics. \quad XXIV-Pbotorraphy. \quad XXV-The Roentren or X -Rays. XXVI-Gas Lighting. XxNI-Civil Engineering. XXVIII-Woodworking. xxIX-Metal Working. XXX-Fire Arms and Explosives. XXXI-Textiles. XXXII-Ice Mach ines. XXXIII-Liquid
Air. XXXIV-Minor Inventions. XXXV-Epilogue.

MunN \& CO., Publishers, SCIENTİIC AMERICAN OFFICE, 361 bROADWAY, NEW YORK.

$\begin{gathered}\text { Gram-o-phone } \\ \text { Records }\end{gathered} 15 \leq$

A Marelous Discovery hasjust been made
in our Laboratory in the art of making records.
The results are so starting and the iniproveThe results a are so starting and the inprove-
ments so great that we have decided to qive
every owner of a Gram-o-phone one of theese evers owner of a Gramo-phone one of these
new records free. Send us the number of new records free. Sen wis tee you ber re-
your Gram-o-phone and we willsend you by mail a record that will surprise and please
turn mat you. A bove offer good for month of Nove
only. Write atonce for New Catalogue. New Gram-o-phone Prices \$3.00. \$6.00. \$10.00. \$18.00. \$25.00. Records 50c. each. $\$ 5.00$ per doz. Our factory has made all the penuine
Gram-o-phones sold in the world. CONSOLIDATED TALKING MACHINE CO. Philadelphia, Pa.

ZEPHYR MAGNESIA

PLASTIC COVERING.

 and GAS Engine

HIGHEST EFFICIENCY
STOVER
GASOLINE ENGINE

STOVER ENGINE WORKS, FREEPORT, ILL

SPEGIAL OFFER!
American \$10 Typewriter!

 Water closet flustining tank
Water qate. C. H. Baker.

Nax foid itatram

Work hoider wat cenelenind devicee

designs.

trade marks

Labels.
A. B. C. Metal Polish," for metal polish, m.

Stern... for canned apricots. United states
Pricotsing Compane.
Rartlett Pears.? for canned bartiet pears

Printing, Company.
Gallayber's Hain
Gallagber's Hair Elixir." for hair elixir. E. j
Gallagher.
Grapes." for canned grapes, United States Print
Green Gages, for canned qreen aages United
States Printing Company
La Flor de Victorious," for cigars, J. R isaac
 Match Company . Priout Butter," for butter.
Gleasten © Canty

 Small Siringless Beans." for canned beans,
Untee states Printing Company......
Strawberres, for canned strawberries, United Strawberries, for cannen strawberries, United
States Printing Company,
Sweet Cover Pure Butter, for butter, Gleasoin

 Broadway. New York. Special rates will be giv
a argenumber of coples are desired at, one tin
Ventors for any of the inventions named in the fore
voing list. provided they are simple, at a cost of \$40 ench
ver

SPECIAL OFFER

 to 500 " Scientific American" Subscribers
Zorrophare

THE NEW DISCOVERY that has elevated a Talking Machine to the Realm of Art.
\qquad

These superb results are largely due to the vast improvenents we have been able to make in the records.
By a secret process. recenty discovered, we register thousands of minute sound vibrations which are
entirely lost hy all other methods. To illustrate this to the eye:-

ァru~~~~~

 $=v / m / m / m / m m$ Minurations which have before escaped registration. In other respects also, the ZON-O-PHONE is a vastvimprovement over all other Talking Machines, including the Gram-o-phone, which we have abandoued,
imprest including its name. In one word, the ZON-O.PHONE is the only ARTISTII, and therefore the only en-
tirely satisfactory Talking Machine. Its repertoire of Records covers everything available in the amuse ment world; and as a source of lasting, varied and delightful Home Entertainment, it is without a rival.

SPECIAI, OFFER TO 5OO SUBSCRIBEIRS OF TLE "SCIENTIFIC AMERICAN. outfit complete, including Zon-o-phone, Amplifying Horn, Sound Boxand zoo Needles, with four super

 NATIONAL GRAM1=0=PHONE CORPORATION, 874 Broadway, New York.

"ABOUT OURSELVES"

VOLT $=A M M E T E R S$, pocket size.

American Sheet Steel Company Battery Park Building
New York
Manufacturers of all varieties of Iron and Steel Sheets
Black and Galvanized
W. Dewees Wood Company's

Planished Iron
Wellsville Polished Steel Sheets

The Pipe of the Century.
...the... "MALLINCKROOT" PATENT
NICOTINE ABSORENT ANO VETLLATEE SMOKING IS THE ONLY PIPE FIT
GENTEMAN'S USE.
You may appreciate the exquisite flavor and taste
of a pood smokivig tobacco, but you can never have that
enjogment with a dirty, foul-smelling pipe, thorouphly

If Your Eye Could See

A.W. FABER

LEAD PENCLLS, COLORED PENCLLS, SLATE
 78 Reade Street.

N. Y. Camera Exchange.

 Asortment arwars on hand. supplies of every description N. Y. CAMERA EXCHANGE, 114 Fulton St., NEW YORK CROOKES TUBES AND ROENTGEN'S

 Wery futo the erpof Crookes' erily lectures fetniin

MANUFACTURE OF BICYCLESS, -

GERE GASOLINE ENGINES

TOOKER'S PROCESS OF GILDING
China, Earthenware or Porcelain. China, Earthenware or Porcelain.

Teeth, Glass Ware, etc. For further particulars address
GEORGE W. TOOKER, 48 Murray Street, New York.

ACETYLENE APPARATUS

gmoricau.

CATALOGUE NOW READY. Adress THE JEFFREY MFG. Co.. COLUMBUS, OHIO. U. S.A.

 WANT FD-A man capable of desizning dies forspecial
for mo to be forged in Bull dizesind under Drop Harm-
mer, and capable of die sinking. To suilable party

DTAMOUR E LIT TLEDALE MACHIVECO. 130 WORTH 5 THNEW YORK. PATTERN AND MODEL MAKERS. FOR SALE. - Machine Shop, brass and iron foundry owners not active nor conversant with the business. A to manufacture, with some capital, can buy this plant Wh very east terns. Address Mo., Watertown, Wis. AMERICAN PATENTS. - AN INTEResting and valuable table showing the number of pater.ts granted tor the various subjects upo which peitions

AUTOMOBILE TRANSMISSION.

 |NVENTIONS Developed, Placed Designing Special Machines and business. ${ }^{\text {Dragh }}$ (riting.
ERNEST W. GRAEF, Mech. Engineer, 253 B'way, N.Y.

 KING MARINE ENGINES For immediate delivery in 4.9 and 16 H. P. sizes.
Special Prices.
CHARLES B. KING, DETROIT, MICH.
 S3 a DaySure

G5TM REVISED EDITION. MECHANICS and ENGINEERS POCKET BOOK

 TABLES, * RULES * AND * FORMULASFor Half a Century the Companion of Every Engineer.
Pertaining to Mathematics and Physics including Areas, Cubes, Squares, Etc., Logarithms, Hydraulics, Hydrodynamics, Steam and the Steam Engine,

Naval Architecture, Masonry, Steam Vessels, Etc. Compressed Air, Gas and Oil Engines.

By CHARLES H. HASWELL,

Member of the American Society of Civil Engineers, Member of the American Society of Civil
Naval Architects, Marine Engineers, Etc.

12 mo , Leather.
 Pocket Book Form. $\$ 4.00$.

HARPER \& BROTHERS, * FRANKLIN SQUARE, * NEW YORK.

Contes (ráars
 -MADE AT KEY WEST;-

$\left\{\begin{array}{c}\text { These Cigars are manufactured under } \\ \text { the most favorable climatic conditions and } \\ \text { from the mildest blends of Havana to } \\ \text { bacco. If we had to pay the imported } \\ \text { cigar tax our brands would cost double the }\end{array}\right\}\left\{\begin{array}{c}\text { money. Send for booklet and particulars. } \\ \text { CORTEZ CIGAR CO., KEY WEST. }\end{array}\right.$

THERE'S ONLY ONE "BEST"

snow and ice. strong enstruction, elegant design. THE HAYNES-APPERSON CO., \quad. KOKOMO, INDIANA.

A Handy Book for Handicrafts-Men.

There is a "pocket preceptor" about
coonceran encyclopedia of information
trade. with avery tool used in every
an ilustration of of it it
 MONTGOMERY \& CO.'S TOOL CATALOGUE.
The latest edition is printed from rew
type and contains lots nf new matter type and contains lots of new matter
and hundresoof new pictures. Copious
index. Pocket size. Free by maik 2 cos . MONTGUMeky \& CO., 105 Fulton Sto, New York City
CHARTER ENGINE Whff Any place $\begin{aligned} & \text { ay Any one }\end{aligned}$ FUEL-Gasoline, Gas, Distillate Stationaries. Portables, Engines and
Pumps, Hoisters
Charter gas engine co., Box 148, sterling, ill. MINERAL PRODUCT OF THE UNITED

 Bilack Gallow wayket Galskin, Poinders, other fur ourat
Galloway wholehide robes, Taxidermy and Head Mount-

WALTHAM WATCHES

Ralph Waldo Emerson in an essay on Eloquence said, in speaking of a man whom he described as a Godsend to his town, "He is put together like a Waltham Watch."
"The Perfected American Watch", an illustrated book of interesting information about watches, will be sent free upon request.

American Waltham Watch Company,
Waltham, Mass.
Watches! Watches! f you wish to see the latest
Ladies, Watches, send for
THE BLUE BOOK THE BLUE BOOK
Or if you are interested in
Watches, send for
THE RED BOOK. We will be glat to send either
of these attractive books, fre THE NEW ENGLAND WA! CH Maiden Lane,

$$
\begin{aligned}
& \text { 1aiden Lane, } \\
& \text { New York, } \\
& \text { Spreckels Bu }
\end{aligned}
$$

Acetylene Gas Burners Hiphest awards in all A cetylene Expo. faultesess and overy one teested land. Ar prav
anteed.
NO Blowing. Send for Price List.
Smoking. Sole Agents fo Perfect Alignment. Canada.
Acetylene Gas Lighting

BARNES
UPRIGHT DRILLS
Complete line, ranging from Light Fric-
ion Disk Drill to to $42^{\prime \prime}$ Back Geared SelfW. F. \& JOHN BARNES CO o Warren Street, New York
ROCKFORD.

ACETYLENE
 Write, inclosing 25 cents, for sample.
STATE LNNE TALC CO., Chattanooga, Tenn., U. S. A.
TAT

The "NEW GEM" ' SAEETY Fighest Mward Paris Exposition 190 shaves the nildest as well as the strongest
beards without the slightest danger of cutting The face. It is the simplest, Safest, and most
teerfeet thaving devicer invented.
practice required to get the best shaves the Auromatic Stroping Manchine t
Blades are always kept inkeen cutting order

INVENTORS' MEPCANTILE BUREAU

AUTOMOBILE PATENTS EXPLOITATION COMPANY

We Teach

wherever the mails reach

What The International Correspondence
Schools, Scranton, Pa., are doing: First - Teaching mechatics the theory of their work.
second-Helping misplaced peo Third-Enabling young peoplo to support themselves while pearnin 2j0,0,000 students and graduates in Me
chanicat, Electrical. Steam, ©ivil and Mining Engineeringan Architec
ture, etc.
which International Correspondence Schools,
Established 1891. Capital $\$ 1$, soo,000. Box 942, Scranton, Pa.

Che Cypewriter Exchange
 ROTARY PUMPS AND ENGINES. paeir Oripinand Development.-An amportant series or
pand encal resume of the roiary pump
and engine from t588 and illustrated with clear drawngs ssiowing the construction of various forms of
pumps and engines.
88
illustrations. Contained in
 rine Engine

motors from 1

Grand Rapids, Mich.

The Densmore,

The World's Greatest

TYPEWRITER.
The U. S. Government uses them.
Leading Schools use them.
Leading Bankers and Insurance Co.'s use them. Prosperous Merchants use them.
All because they stand the strain of steady, and worat on machine DENSMORE TYPEWRITER CO., 309 Broadway, New York.

the danor sink cleaner...

 A Perfect and completeHousehold Snecialty. A SINK CLEANER \&
SHOVEL COMBINED SHOVEL COMBINED. Tidy Houseke eners will
throw away tho firty sin
broom and buthe dAND
SINK NLFANER on sight. TIRY IT A AD BE
CONVINCED. For sale by all Wholesale
Hardware Dealers and, by
the patentee and manuf,r JoHN W. SU DLOW,
g86 Halsey St.. Brooklyn,N.,$~$

