
a Weekly joulinal of practical information, art, SCIENCE, mechanics, cIIEMistriy, and manufactures.

Pile Foundation for Ooncrete Monolith.

Spot at which Side of Dock was Burst In.

View Showing Portion of Old Wooden Dock and the Excavation for New Ooncrete Structure.

foricutific ${ }^{\circ}$ mmerican.

ESTABLISHED 1845

munn \& CO., - - - Editors and Proprietors.
No. 36I BROADWAY, - - NEW YORK.
 the soientific american publications.

NEW YORK. SATURDAY, OCTOBER $20,1900$.

THE MONO-RAIL FOR HIGH-SPEED TRAVEL.

The mono-rail railway has achieved a sufficient measure of success to entitle it to rank as a standard system of construction, at least for certain classes of work. At present the system is restricted almost exclusively to railways designed for the hauling of freight by draught animals or by manual power on plantations, or to light railways which act as feeders to the main lines of traffic. It has found its most extensive field of operation in India and some parts of South America. Only of late years has it attracted more than occasional attention as a possible means of passenger traffic, although the mono-rail line between Listowell and Ballybunion, Ireland, nine and onehalf miles in length, has been for some years in successful operation. In our issue of May 5, 1900, we gave illustrations of the Langen mono-rail railroad between Barmen and Elberfeld, Germany, which must be considered as the most important development yet made in this direction. This is a double-track, elevated line, carried upon steel posts and A-frames. The trains are made up of full sized cars, each with a seating capacity of fifty people, the average running speed of the trains being twenty miles an hour.
In both the Irish and the German lines above referred to, there is no attempt to obtain exceptional speeds, the operation of both systems conforming to the common practice of suburban and light railways. Rightly or wrongly, however, the advocates of the mono-rail construction claim to see in the system special qualifications for the running of abnormally fast express trains, and, as was to be expected, some highly absurd claims have been made and impossible methods of construction and operation suggested. The proposal which is just now attracting the most attention is the construction of an express railroad between the cities of Manchester and Liverpool upon what is known as the Behr system, in which the weight of the train is borne by a central elevated rail, and the cars are guarded against excessive oscillation by means of steadying rails placed below the level of the single
rail, one on each side of the structure. The first aprail, one on each side of the structure. The first ap-
plication of the company for the necessary parliamentary powers met with refusal ; but it seems that another effort is to be made to obtain the necessary powers, and as the project is backed by the powerfulinfluence of Sir William Preece, so long identified with the British Post Office, it is considered probable that it will be carried through. The "trains," which are to be electrically operated, will consist each of a single coach weighing 45 tons and seating 64 passengers. These cars are to be started at ten minute intervals, and traveling at the rate of 110 miles an hour, they will cover the distance of $341 / 2$ miles in twenty minutes. There will be no intermediate stations, switches, or crossings. In a paper published recently upon the subject, Sir William Preece seems to be perfectly satisfied that this high speed can be maintained, and that, although the fares will be slightly lower than those charged upon the standard form of railway, the enterprise will prove to be profitable.
In the interests of high-speed transit it is to be hoped that parliamentary obstruction will be removed and that the possibilities of extremely fast travel may receive the thorough testing which would result from the completion of the proposed road. No one who considers the wonderfully rapid development of electrical traction since its inception can affirm that a proposal to raise the speed of inter-urban traffic to 100 wiles an hour is chimerical either from the standpoint of the engineer or the capitalist. With a properly constructed track, transmission lines and motors, a mean speed of over 100 miles an hour could certainly be achieved; and if the company, as they state, can carry passengers between Manchester and Liverpool at about the same fare as is charged on the present railroads, and in half the time, it is certain that they will secure a sufficient volume of travel to render the undertaking profitable. We do not, however, for a noment believe that the mono-rail is indispensable to the realization of extremely high speeds, for it would be pos-
sible to run a train at equal speeds over a surface road, provided the proper superelevation of the outer rail were given. The advantages of the system seem to lie chiefly in the fact that by carrying the trains well above the surface, the risks that are incidental to all surface lines on account of crossings, open gates, broken fences, etc., are entirely rewoved.

THE WATER-TUBE BOILER ON TRIAL.

It cannot be denied that the disappointing results that have followed the recent wholesale introduction of the water-tube boiler into the British navy shook, for the time being, the faith of engineers in watertube boilers as such, and caused something of a revulsion of feeling in favor of the cylindrical boiler of the well-known Scotch type. The steam engineering world has awaited with considerable interest and anxiety the official report on the subject, and now that it has been some time before the public, and there has been an opportunity to weigh the evidence, it is generally conceded that the water-tube boiler, as a type, stands pretty much where it did before, and that its relative merits and dewerits have not been affected one way or the other. All that was claimed for the watertube boiler has been realized, and its failures in the British navy are not chargeable to the boiler, as such. In proportion to its power, it is considerably lighter than the Scotch boiler; it carries considerably less water; and it possesses the advantage (scarcely to be overestimated) of enabling a ship to raise steam and get under way in far less time than was possible with the older type.

According to the memorandum submitted by the British Admiralty, the failure of the Belleville boiler is to be attributed more to the inexperience of the boiler room staff than to any inherent defects in the boiler itself. There is no denying that it has proved to be an extravagant coal consumer; but it seems that after economizers were added, and the staff had become thoroughly familiar with the management of the boilers as thus equipped, the coal consumption per horse power compared favorably with that of the ordinary cylindrical boiler. It has been found that there is a strict relation between the economical results achieved and the degree of training of the crews. When in the course of this elaborate experiment (for it is nothing less) important defects occur in any part of the machinery of new ships, the best method of remedying the trouble is jointly considered by the builders, by the dock yard officials, and by the Admiralty engineers. It becomes necessary to determine whether the defect is to be remedied by a different method of handling the machinery, or whether it calls method of handling the machinery, or whether it calls
for some radical change in the plant itself. After a defor some radical change in the plant itself. After a de-
cision has been reached, it is frequently necessary to delay the changes until the ship can be laid off; and even when the alteration has been made, prudence dictates that it should be generally adopted only after it has been given a trial upon one or two ships selected for the purpose. All of this takes considerable time, and progress is necessarily slow.

That the Belleville boiler is not merely valuable for strategical and tactical reasons, but coupares favorably with any other type in efficiency, is shown by the recent trials of the sloop "Vestal," which, on her full power trial, with 221 pounds boiler pressure, an air pressure of 0.27 inch, and a total indicated horse power of 1,451 , showed a water çonsumption of 16.8 pounds, and a coal consumption of 1.52 pounds per indicated horse power per hour. At five sevenths of full dicated horse power per hour. At five sevenths of full
power, the water consumption was $15 \cdot 6$ pounds, and power, the water consumption was 15.6 pounds, and
the coal consumption fell to the remarkably economical figure of 13 pounds per indicated horse power per hour. At half power, with a water consumption of 15.53 , the coal consumption was 1.41 pounds per indicated horse power per hour. These results, it will be seen, compare favorably with those which are now obtained on the "Deutschland," whose equipment may be taken as representative of the latest merchant marine practice. This vessel, it will be remembered, showed a full power consumption of 1.45 pounds per horse power per hour.

THE "WISCONSIN" AND THE "VARIAG."
The builders of the "Oregon" are to be congratulated upon the fact that the excellent work which they put into that fine vessel has evidently been duplicated in the second battleship which they have built for the United States navy, the "Wisconsin." At a time when naval men were complaining of the wide disparity which existed between the speeds achieved by naval vessels on government contract trials and their subsequent performance on actual duty, the memorable trip of the "Oregon" around Cape Horn proved that this ship, at least, was an exception to the rule; and as a fitting climax to her performance, in the long chase after Cervera's squadron she showed herself to be the fastest of the battleships, and at least a match for the cruisers. Dispatches from the Pacitic coast state that on her trial trip in the Santa Barbara Channel, the
"Wisconsin," a sister ship to the "Alabama," whose excellent record of 17.01 knots an hour was recently mentioned in this journal, covered the trial course at a
speed of $17 \cdot 1$ knots an hour, thereby constituting herself the fastest battleship in the United States navy. The new battleship is a vessel of over 11,000 tons dis placement, and was required to show a contract speed of 16 knots with an indicated horse power of 10,000 . That she should have exceeded this speed by $1 \cdot 1$ knots is highly creditable, and suggests that in this vessel, as in a previous warship constructed at these works, the builders have voluntarily enlarged the capacity of the engines and boilers.
Only a few days prior to the trial of the "Wisconsin," the Williau Cramp \& Sons Shipbuilding Com pany achieved a notable success with the Russian cruiser "Variag," which by the terms of the contract was required to maintain a speed of 23 knots an hour for twelve consecutive hours. It will be remembered that during the first trial, held some two or three months ago, the "Variag" maintained the required speed for several hours, or until the failure of one of speed for several hours, or until the fallure of one of
the cylinders necessitated postponement. On the trial recently held, the "Variag" maintained a speed of $24 \cdot 25$ knots for twelve hours, a performance which, on account of the duration of the test, places this speedy cruiser anong the very fastest of the vessels of her class. While it is true that the two Chinese cruisers "Hai Tien" and "Hai Chi," of 4,300 tons displace ment, achieved a mean speed of 24 knots during four separate runs over the measured mile, this is certainly not more creditable than the maintaining of 24.25 knots for twelve consecutive hours.

THE LATEST DEVELOPMENTS OF WIRELESS

 TELEGRAPHY.At the recent annual gathering of the British Association at Bradford, England, Sir William Preece, who, as electrician to the English Post Office, rendered valuable service to Marconi in the introduction of his sys tem of wireless telegraphy into England, delivered a lecture upon his own experiments in the utilization of the Hertzian waves for transmission of artieulate speech without the assistance of connecting wires. The first experiments were conducted across Loch Ness in the Highlands of Scotland, as long ago as February, 1894, and they had in view the transmission of Morse signals by means of his electro magnetic method of wireless telegraphy. Two parallel wires, well earthed, were arranged one on each side of the lake, and the apparatus was so arranged that the wire could be systematically shortened with a view to ascertaining the minimum length necessary to record satisfactory signals. During the experiments an attempt was made to compare telephonic and telegraphic signals, and determine whether it was possible to transmit vocal sounds in the same manner in which the Morse signaling was being conducted. It was found that when the length of the parallel wires was reduced to 4 miles on each side of the water, it was possible to exchange, articulate speech across the loch at a distance of $11 / 2$ miles.
Shortly after this, however, Marconi's practical application of the Hertzian waves occupied the attention of the electrical world to the exclusion of Preece's experiments, but in 1899, after having identified himself conspicuously with Marconi's work, Preece returned to his former investigation. His new experiments were of a more elaborate character, and they
conclusively proved the fact that the maximum effects conclusively proved the fact that the maximum effects are produced when the parallel wires are terwinated by earth plates to the sea itself. The conventional telephonic transwitters and receivers were employed.
At this time a scheme was in contemplation for con necting the lighthouse of an isolated group of rocks known as the Skerries with the coast guard station at Cemlyn, which is equipped with a post office telephone systew. It was found, however, that the rough nature of the bottom of the chainel and the strong local currents were such as to prevent the laying of a cable, and it was decided to attempt communication by wireless telephony. A wire, 750 yards in length, was erected along the Skerries, and on the mainland another line was carried from a point opposite the Skerries to Cemlyn, a distance of $31 / 2$ miles. Each line terminated with an earth plate in the sea. The average distance between the two parallel wires was 2.8 miles, and with this installation telephonic comwunication was easily maintained between the two stations, and the service has proved to be practical and thoroughly satisfactory.

A similar system of wireless telephony is now in course of erection bet ween Rathlin Island, on the north coast of Ireland, and the mainland. The excellent results which have thus far been obtained prove that under existing conditions wireless telephony is a success, and may be easily and cheaply adapted to commercial needs. Although the system has not been applied to ships, there is no doubt that telephonic conmunication from ship to ship or from ship to shore could be carried out, the circuit being formed by means of a copper wire terminated at each end of the ship in the sea.
Another development of wireless telegraphy is that stration at the Crystal Palace, Iıondon. His system is
similar to that of Marconi with the exception that it embodies a slight but very important alteration in the coherer. The inventor claims that he can communicate up to a distance of 2 miles without making use of the vertical wire, while with the vertical wire he can transmit messages to a distance of 40 miles. He announces that he has completed an automatic repeating device, which presumably will be installed at intervals of 40 miles. Mr. Rosenberg has also devised a modification of his system on a small scale, which should have an important commercial application. It consists of a small box containing the receiving apparatus as used in the system. When absent from his office one may receive notification of his desired attendance there by the tinkling of a small bell. The office or business house may not be aware of the wherabouts of the person whom it is desired to call up, but so long as he is no further distant from the transmitting apparatus than 2 miles, he can be notified. Mr. Rosenberg has given practical demonstration of this contrivance with distinct success.
A few weeks ago we drew attention to the application of the Hertzian waves to torpedo warfare, the invention being that of a young Englishman, who is at present successfully developing his system. The experiments described in the article referred to consisted in the suc?essful steering of a small launch by means of the Hertzian waves. As a result of the fa vorable report given by Admiral Colwell, of the British government, the Admiralty have offered the inventor a large sum provided he can successfully manipulate a torpedo provided he can successfully manipulate a torpedo
while it is submerged. The German government, have made him a similar offer under the same proviso. We are informed that the inventor has accomplished the desired result, and that in private preliminary trials he has steered the vessel with as much ease when it is submerged as when it is at the surface of the water. The gyroscope, which ceases to have any raison d'etre in an electrically controlled torpedo, is removed, and its place is taken by a wireless telegraphy receiving apparatus, which, acting upon a set of magnets, manipulates the rudder.

CALCIUM CAK̉BIDE AT THE CONGRESS OF APPLIED CHEMISTRY.

Among the papers read at the International ConAmong the papers read at the International Con-
gress of Applied Chemistry, recently held at Paris, those relating to the carbide of calcium industry and the production of acetylene were of great interest. The present development of the carbide industry in Europe was shown by a series of papers read by different delegates, each of which described the carbide plants of one of the leading countries. M. Minet, in his opening paper, in which he treats electro-chemical processes from a historical and an industrial point of view, mentions the carbide industry in a general
way, and gives a resume of the installations in Euway, and gives a resume of the installations in Eu-
rope. The paper read by M. Gin gives some interest. ing details as to the developinent of the carbide industry in Austria-Hungary, where the abundance of waterfalls has led to the establishment of a considerable number of carbide plants. At present, seven large plants are in operation, and the total water power used is about 24,000 horse power. A number of projects are shortly to be put in execution, which will bring the total up to nearly 80,000 horse power.
The largest of these works, from the point of view of capacity, is that of Jaice, which has been erected by the Bosnian Electric Company ; the large falls of the River Pliva are here utilized. The river widens into a lake which discharges into a lower lake in a series of cascades. The dam has been placed shortly below the mouth of the upper lake, where the water is taken off in a canal about two miles long; the canal passes through fifteen tunnels of 12 by 15 feet section and ends in a large reservior near the station. From this point the water is brought to the turbines by two iron conduits of 5 feet diameter. The capacity of the hydraulic plant is about 9,500 horse power. Eight turbines are installed in the station, of 1,000 horse power each, connected to Schuckert dynamos. The electric furnaces for this plant have been installed by
the latter company. The plant situated at Paternion the latter company. The plant situated at Paternion
is of much smaller capacity, but presents many points of interest. It has been installed by the Venetian Electrochemical Society, and is located on the bank of the River Kreuznerbach. The lime is furnished by quarries of limestone which are found in the neighborhood. A head of water of 200 feet is obtained from a waterfall in this stream; the water is brought to the turbines by canals and iron conduits to the station, situated at 1,600 feet from the fall. Here are installed three turbines, of 400 horse power each, connected directly to a triphase alternator, working at 350 revolutions. The grinding machines will pulverize 8,000 pounds of lime and 5,000 pounds of coke per day. This material is transported to an automatic balance, and thence by a conveyor to a screw mixing tank: from here it falls to the doors of the electric furnaces by a series of conduits. The mechanical operations are carried out by two electric motors. Nine double electric furnaces are used, with space for three others

125 horse power.
The Meran works is one of the most important plants; it is operated by the Gin and Leleux process. It utilizes the water power of the Etsche, one of the confiuents of the River Adige. The fall has a height of confiuents of the River Adige. The fall has a height of
about 280 feet. The canal is less than a mile long ; it about 280 feet. The canal is less than a mile long; it
passes in a tunnel for a part of the way, and then two metallic conduits, 6 feet in diameter, bring the water to the turbines; there are five of these, of the Garry pattern, with horizontal shaft. To these are coupled five alternators of 1,200 horse power each. Of these, two are used for the carbide plant, to which the current is transmitted by two cables in subway and overhead line; these furnish 2,000 horse power to the plant. A deposit of crystalline marble, very pure, is found near the works. It is carried by an aerial transporter to the calcining furnace. The lime and coke are elevated by a bucket conveyor to the grinders, passing thence to the mixers and finally by a conveyor to the furnaces. The latter have a capacity of 260 kilowatts each; they are disposed in battery in a large room 35 by 130 feet. These furnaces are claimed to give, per by 130 feet. These furnaces are claimed to give, p
kilowatt day, over 11 pounds of crystallized carbide.

Among the plants shortly to be erected is that of Petrozeny. The fall of the Szill River here situated belongs to the Acetylene Company of Vienna. It is about 75 feet high at a maximum, and a mean of 4,800 horse power may be obtained. Another projected plant is that of Almissa, on the Cetina River. This large fall belongs to a syndicate, including Ganz \& large fall belongs to a syndicate, including Ganz \&
Company, of Budapest, the Belgium Aluminium Syndicate, and others. The fall is to be obtained by a derivation from the Cetina, using for the purpose a tunnel five miles in length, and in this way 50,000 horse power could be realized. Another fall on the same river is to be utilized by Descovics \& Gin, who have obtained the concession; a head of water of nearly 300 feet is assured, which will give 6,000 horse power. A central station is to be established below the fall, and the energy to be transmitted to the port of Olmissa by the high tension system at 12,000 volts; at the latter point will be located the carbide works.
The carbide industry in the United States was the subject of a paper read by Mr. John A. Matthews, who, after giving a historical resume of the subject, describes the Niagara and Sault Sainte Marie plants, and brings out the fact that the former works turn out and brings out the fact that the former works turn out
most of the carbide consumed in America. He gives most of the carbide consumed in America. He gives
the selling price of carbide as varying from $\$ 70$ to $\$ 90$ per ton, and estimates that it requires 300 horse power for twenty-four hours to produce a ton of carbide. The cost per ton he estimates at $\$ 38$. The carbide produced at Niagara is guaranteed to give 5 cubic feet of acetylene per pound, but the production of gas is usually greater. Mr. Matthews says that acetylene lighting is being extensively introduced in the Western States.

Another interesting paper was that read by M. A. Rossel, upon the state of the industry in Switzerland. Up to the time of the discovery of carbide of calcium, hydraulic power was but little used in that country, and there were only two important electrochemical works, that of Neuhausen, which utilized a part of the fall of the Rhine for the production of aluminium, and the Vallorbes plant, making various electrochemical products. The first carbide was made in the latter works, and soon after the Neuhausen plant followed its example, as also the Luterbach works. From this point the carbide industry developed rapidly, and a large amount of capital was obtained for establishing hydraulic plants for this purpose. The Neuhausen Company greatly increased its plant, and erected that of Rheinfelden; Siemens \& Halske, with the Wyman Rheinfelden; Siemens \& Halske, with the W yman M. Rossel then gave a short account of some of the leading plants. The Neuhausen works use hydraulic power to the extent of 2,000 to 2,500 horse power, from the fall in the Rhine. A part of the energy is utilized to generate direct current and another part for alternating current on the two-phase system. Both aluminium and carbide are produced at these works, which are in active operation. The Veriner factory takes its energy from the large hydraulic plant at Chèvres; it utilizes about 7,000 horse power in the shape of twophase alternating current. The primary tension is 2.000 volts and a series of transformers reduces this to 200 volts to operate the furnaces. There are thirteen of the latter, twelve using 500 horse power, and one of 1,000 horse power. 'The Langenthal works was destroyed by fire on June 5 last. It was erected in 1897 by Siemens \& Halske and operated by them in conjunction with the Societe Electrique de Wynan. Thestation at the fall produced triphase alternating current at high tension, which was brought by over-
head line to the carbide plant, 4 miles distant; it was head line to the carbide plant, 4 miles distant: it was
transformed here to 45 volts and 3,000 amperes by three transformers.
The three furnaces installed here produced about 500 tons of carbide per year. Another large plant is that established on the River Lonza, at Gampel, utilizing two of the falls of that river. The first fall. has a
head of 350 feet and operates five turbines of 500 horse power each, direct-connected to low-tension alterna
tors, while the second fall, of 680 feet, drives ten simi lar turbines with high-tension dynamos; the two phase system is used. The first fall gives 2,500 horse power, which is all utilized for the production of car bide ; the second fall gives 5,000 horse power, and one half of this energy is used for the same purpose. M. Rossel describes a number of other plants, including that of Vernoya, with turbines of 4,500 horse power 900 of which is used for carbide ; Thusis, using 3,000 horse power, with twelve furnaces of 250 horse power the Nidau plant, disposing of 5,000 horse power, and using 1,800 for carbide, etc. In the second part of his paper M. Rossel speaks of the raw material used. paper M. Rossel speaks of the raw material used.
Limestone of very good quality is found in Switzerland, which gives lime of 99 per cent purity and containing no trace of phosphoric acid. The carbide delivered to commerce is guaranteed to give 4.8 cubic feet per pound, but generally it exceeds this by 2 to 5 per cent. Acetylene lighting is being adopted for public systems as well as in some of the factories.

THE CONGRESS OF APPLIED CHEMISTRY AT PARIS. The Congress of Applied Chemistry has been one of the most interesting of the series held at Paris. It is the fourth international congress relating to this subject. The first was held at Brussels in 1894, with great success, and resulted in the formation of the second, held at Paris in 1896. The third was held at Vienna in 1898. The opening session of the present Congress was held in the amphitheater of the Sorbonne. M. Ber thelot was honorary president of the committee, and M. Moissan, president. M. Moissan delivered the opening address; he gave a short resume of the history of the previous congresses, and showed their great utility. In closing he thanked the delegates from the governments and various societies for the manner in which they had answered the invitation addressed to them. M. Berthelot, who was to have pronounced the main discourse of the session, was absent on account of indisposition, and the address was read by M. Moissan M. Berthelot went over the general history of chemica methods, and shows the ancient origin of the science In ancient Egypt the art of chemical transformations was practised, and this art was not merely experimental, as might be supposed, but was pursued with a well defined method, as is shown by the manuscripts. It is this ancient science, transmitted partly by traditional processes, and partly by the Syrians and Arabs who have not contributed greatly to it, which became the alchemy of the middle ages.
M. Berthelot passes over the succeeding centuries to the great discoveries of the end of the last century, which laid the way for the modern science. He laid stress upon the important role filled by the new processes of electro-chemistry, and showed how rapidly these industries were developing and what a great future was in store for this branch of the science After the address, the officers of the Congress were nominated, these being M. Berthelot, honorary presi dent, and M. Moissan, president. The honorary vice presidents included more than sixty of the delegates, and all of the leading countries were represented. A great number of papers were read at the succeeding sessions of the Congress; among the most interesting were those relating to acetylene, carbide of calcium production of ozone, production of metals and alloy by the electric furnace, methods of analysis, some of which will be reproduced in full or in abstract at a later date. At the closing session the next Congress was fixed for 1902, to be held at Berlin.

BORAX IN EUROPE.

The greater part of the borax which now enters into European commerce is extracted from borocalcite, a mineral which is formed principally of borate of lime. It is found in great quantities in certain parts of Asia Minor. The process of treatment depends upon the reaction of borate of calcium and caustic soda, which, when added, form borax and carbonate of lime. It has been found that the caustic soda may be replaced by bicarbonate of soda to obtain the same result, the best method being to use a mixture of the two. In the process which is now generally used, the native borocalcite is reduced to a fine powder in a mill. Of the powder, 15 parts by weight are taken, and 60 parts of water, and this is placed in a steam-heated vessel, adding 8 parts of bicarbonate of soda and 2 parts caustic soda, and the whole is boiled for about three hours. The mass resulting from this treatment is passed into large filter presses, and the hot solution which comes off is placed in crystallizing basins, and at the end of a few days the borax may be collected in crystals; these are put todry in a steain oven. They are of ten in irregular masses of large size, and these must be broken into sinall pieces, after they have been well cleaned. The small crystals thas obtained are assorted and put in barrels whose weight is from 100 to 800 pounds. The cake of carbonate of lime which remains in the filter-press is washed with water until the borax is completely extracted, and is then sold to glass, paper or cement works. It is estimated that 100 pounds of borocalcite will yield 100 to 105 pounds of crystallized borax.

A NEW MILITARY FOLDING BICYCLE.

The bicycle as a supplementary fighting unit is rapidly making headway in the various armies of the world. For years it was regarded more as a toy than an efficient mount, and consequently the nations, absolutely unaware of the capabilities of the machine for military purposes, did not regard its introduction with favor. But its advantages have now been so forcibly emphasized that those very people who at one period regarded it with resentment are now foremost in their recommendations for employing it upon the battlefield. For certain military duties, such as scouting and conveyance of dispatches, the cycle is absolutely without a rival. It is noiseless, occupies small space, and consequently offers but a very insignificant target to the rifle fire of the foe, offers great mobility, and is absolutely reliable.
In England recently, an army of cyclists numbering about 2,000 men in all was organized for the purpose of determining how far it would be possible for an army of such mounted men to temporarily repel the advance of an invading army until the main army were able to arrive and fight a pitched battle. It was supposed that the foe had landed on the southern coast of England and were advancing on London by the thirty-six roads leading to the metropolis, since the railways had all been destroyed. The cyclists had to dispute the advance of the foe, and they accomplished the object in such a convincingly formidable manner that their utility has been thoroughly established.
Other nations have also been equally zealous in introducing the cycle into their respective armies. France, Germany, Italy, Belgium and Russia all possess military cycling detachments, and recently the Japanese have made the innovation in their army. In the majority of the cases, however, the cycle generally employed is of a collapsible design. That is to say, the machine is so constructed that by means of some simple operation it can be folded up into small compass and be slung upon the back of the rider, out of the way. To satisfactorily accomplish this desideratum with the existing type of machine, however, is a very difficult matter. The majority of the devices by which the cycle may be folded are based upon the idea of hinging the frame in some manner. This principle, however, destroys the rigidity and strength of the machine to a very appreciable degree.

But a military cycle has now been devised which is said to bestronger, more rigid and lighter than the conventional type of machine: and lightness commensurate with strength and rigidity in a military cycle is a great recommendation toward its utility upon the battlefield.

It will be recognized that the frame is constructed upon the system of triangles, which principle is the most conducive to stability. The tubes of the frame are doubled throughout, whereas in the existing type of cycle they are single. A very important improvement is the front section of the frame, carrying the steering wheel. There is no fork. As is well known, this is one of the most serious defects inherent in the present diamond frame, since the system of triangles has to be abandoned somewhat in the front head. But in the Dursley-Pedersen this defect is efficaciously surmounted. There are a pair of tubes springing from the hub of the front wheel on either side to the head of the frame. The front tubes on each side are perfectly straight, but the second tubes are drawn back in the center, and an open steel crown plate holds all four in position. From the head of the machine the tubes dropping to the crank bracket are placed alnost vertically, while from the creak bracket two more tubes spring to the front fork, holding it firmly in position. From the head also drop the tubes to the hub of the back wheel, and annther pair of tubes radiate from the crank bracket to carry the saddle, which is one of the most conspicuous features of the whole machine. It does not consist of a shaped leather seat securely fixed upon a saddle pillar, but is a seat suspended hammock fashion between seven spiral springs attached to the adjustable saddle pillar and the top front fork, to which it is secured by means of a strap, which can be adjusted so as to tighten or

FOLDING BICYCLE, WITH RIFLE ATTACHED. WEIGHT, 15 POUNDS.
o slacken the saddle as desired. The recommendation of this unique saddle is that it adjusts, itself to every movement of the body, and allows perfect freedom to those muscles which cycling brings into play. By this means perineal pressure is entirely averted, while per-

fect ventilation, ease, comfort and softness of seat are assured. As the strain between the saddle pillar and the hub of the back wheel is purely tensile, they are connected on each side by wires in place of tubes. The joining of the tubes throughout the machine is accomplished by sweating instead of the more general brazng, the former method being considered to be stronger. The handle bar is passed through the front tubes, and is fixed at a low elevation, the handles curving upward to the desired height.
Someidea of the strength of this principle of construction may be gathered from the fact that the in-

THE DURSLEY-PEDERSEN MILITARY CYCLE, SHOWING PRINCIPLE OF CONSTRUCTION OF FRONT FORKS.

BICYCLE FOLDED AND CARRIED UPON RIDER'S BACK.
ventor's original machine was built of poplar sticks, in lieu of the steel tubes, secured together with twine, and represented a total weight of 18 nounds. - Yet this machine, primitive though its construction is, has been ridden no less than 5,000 miles without the slightest miphap, and is still in use.
The cycle is folded by slipping out the front wheel and tubes at the head and at the point where the two tubes radiating from the crank bracket join the front tubes. The front wheel then folds back upon the back wheel and is kept in position with a strap. It takes but twenty seconds to perform the operation and to sling it upon one's back, and it can be as readily put together again. The total weight of the machine. which is constructed of steel throughout, is ouly 15 pounds. Indeed, it folds up so compactly that one can climb obstructions and perform the ordinary military duties with the greatest facility and without the slightest inconvenience. The rifle is fixed vertically in a slot on the frame of the front wheel.

A COLLAPSIBLE LATHE-DOG.

A lathe-dog which can be wore conveniently and A lathe-dog which can be wore conveniently and
securely fitted to the work than dogs hitherto used, and which can be adjusted within a wide range, is the subject of an invention which George W. Schellenbach, of Joplin, Mo., has recently patented.
As shown in our illustration, the lathe-dog has a base, A, which constitutes a fixed jaw. From one end of the base or jaw, A, a tail, B, projects, which is to be used in the ordinary manner. Passing through one end of the jaw, A, and provided on its lower threaded end with a nut, is an arm, C, formed with notches. The arm. C, passes through an opening in a movable jaw, D, provided with a pin designed to lie in any one of the notches of the arm, C. A key carried by a spring secured on the movable jaw, D, extends into the opening mentioned and wedges the arm, C, and the jaw, D, rigidly together. The end of the jaw, D, is slotted to receive a screw, E, pivoted to the fixed jaw and provided with a duplex locking nut. By means of this nut the jaw, D, is forced down toward the jaw, A, since a slight rocking movement is permitted by the pin lying in the notch of the arm, C. The working faces of both jaws may be recessed to hold the work securely.

It is evident that the dog can be easily taken apart and packed in a very small space and that its range of adjustment is wider than that of ordinary dogs.

Petroleum in Japan.

The petroleum industry has reached a considerable development in Japan, as may be remarked from the reports recently published in The Japan Times relating to the province of Echigo. In this district as many as thirty companies now exist, some of these representing a capital of more than half a million, while the total capital engaged in the petroleum industry in this region is estimated at more than six millions. As an indication of the activity which now prevails in the petroleum region, it is stated that two of the principal banks of Japan are about to wake branch establishments in the cities of this district. There is some talk of installing a pipe line from the district of Echigo to Tokio, upon about the same plan as that now established in the Caucasus region. The plans for this work are soon to be drawn up, and it is to be directed by M. Miyagi, a prominent Japanese engineer, who is a graduate of the engineering college of the Imperial University of 'Tokio.

The 'Torpedo Boa
 - виiley."

The torpedo boat "Bailey" had her builders' test on the Hudson River, at Yonkers, Soptember 17. She made 30 knots , and it is thought she will show 32 knots on her official trial trip. Her contract calls for 30 knots. 'The builders' trial was made at a pressure of 165 pounds of steam and she developed a little over 5,000 horse power. Her capacity is in excess of 6,000 horse power.

During some excavations in the Forum at Rome, the laborers unearthed the head and part of the body of a marble horse. It is a magnificent piece of sculpture, and great value $h a s$ been placed upon it. According to experts, the relic dates from about the second century before Christ.

PARIS EXPOSITION-BUILDING OF THE GERMAN

 MARINE.At one end of the Champ de Mars, near the Seine, is the picturesque building which has been erected to represent the German marine. The photograph gives a good idea of its general appearance. The main portion of the building is in characteristic German style, and is decorated with marine emblems. The walls are finished in white staff, with an ornamental border in fresco representing various forms of steamships and sailing vessels. At one corner is an arched entrance, above which are two sailors in relief, each with appropriate emblems, supporting the national coat of arms. Above the main doorway is a small tourelle in the form of a lighthonse, carrying above a system of semaphore signals. The building is surmounted by a tower which rises to a considerable height, representing one of the German lighthouses; it is painted alternately white and brick red; a platform near the top is upheld by four projecting turrets, and from this rises the upper portion supporting the cupola, in which has been installed a powerful are projector of the Schuckert system; from this ele. vated point it sends its rays to all points of the Exposition grounds.
The building has three stories, not including the lighthouse. On the first floor are a number of exhibits of great interest covering a variety of subjects pertaining to marine architecture and life-saving apparatus. There is a large globe of bronze, about 12 feet in diameter; upon it the continents are represented in silver and the sea in light blue, while the routes of the principal (terman navigation companies are traced by lines of different colors. The genius upholding the globe is in repousse bronze, as are also the handsomely executed figures behandsomely executed figures be-
neath the globe. The total height of the globe from the floor is about 30 feet. Around the base are the signs of the zodiac represented in relief, and a series of tablets bear the names of the prominent navigation companies. Another illustration shows a model of the large office building of the North German Lloyd erected at Bremen; it was designed by the architect Poppe, of that city. The model is executed in plaster, and measures about 7 feet square at the base; under the model are a number of photographs showing interior views in different vessels of the company, and below these are a number of small models representing the principal vessels; anong the largest of these may be mentioned the "Kaiser Wilhelm II.," the "Friedrich der Grosse," etc. The great number of models shown indicates the size of the company's fleet. In front of each vessel i; a card giving the principal dimensions and data. Not far from this is to be from this is partial section seen a partial section
of the new steamer of the new steamer
"Deutschland," executed in one-third natural size. The front is arranged to be flush with the wall, and the spectator looks into the intor looks into the in-
terior of the vessel. terior of the vessel.
The main gallery is thus seen, with its three decks and its upper dome of

EXHIBIT OF THE NORTH GERMAN LLOYD-PAVILION OF THE GERMAN MARINE.
it a model of about the same size shows the "Kaiser Wilhelm der Grosse" of the same company; a swaller model, about 8 feet long, shows the "Friedrich der Grosse." The different war vessels are also represented by a number of models of smaller size; among these may be mentioned the armored cruiser "Weissenburg," also the "Yakumo," built for the Japanese service. These two vessels were built at the Vulcan Works at Stettin. The first-class battleship "Kar der Grosse" is represented by a model of fine work manship, showing the details of the armament.
The floating dock at Hamburg, of 17,500 tons, constructed by Blohm \& Voss, is represented in miniature ${ }^{-}$ it carries a derrick crane of 150 tons Upon the dock is the steamship "Potsdam"; a portion of the quay is seen, united to the dock by a number of bridges; a railroad runs along the water's edge. Another model shows the operation model shows the operation of
lengthening out the government lengthening out the government
postal steamer "Preussen" upon postal steamer "Preussen" upon
a floating dock, and the method of putting in the intermediate pieces at the same time the interior arrangement of the vessel may be observed. An interesting collection consists of a number of torpedo boats, constructed for the different governments by the Schichau works at Elbing. Among these is represented one of eleven torpedo boats of 27 knots built for the Russian marine, and another of 30 knots for Italy. A number of types constructed for the Japanese, Russian, and Chinese marine are to be seen, and torpedo cruisers built for Norway and Austria. The Vulcan docks, of Stettin, have also a num ber of models, among which may be mentioned the armored cruiser "Hertha;" the cruiser " Bogatyr," built for the Russian government, is also shown.
On the second floor one of the main objects of interest is a large model of the port of Hamburg built upon a platform. The buildings and streets of the city and the different docks with their vessels are well represented, giviug a good idea of the large amount of shipping handled by this port, which has become one of the most import. ant of Europe. Near it is a model of the boat which is to be used in the Antarctic expedition which is to take place next year; the boat is represented in ${ }^{\frac{1}{0}}$ scale. Its actual length is 138 feet, with a maximum width of 36 feet; it has 1,442 tons displacement. The engines are designed to furnish 275 horse power. ' Γ his boat has been built boat has been built at the Howaldts-
werke at Kiel. werke at Kiel.
Among the other models to be seen on this floor may be mentioned those of the principal yachts of 1899 . besides a of 189 m . of other vesnumber of other ves-
sels. On the third sels. On the third
floor is seen the floating crane, "Turgud Alb," built for Constantinople by the Bremen Company, and the armored cruiser "Vicmored cruiser "Vic-
toria Louise." A toria Louise." A
number of collections of ships' instruments are shown here; Schaffer \& Budenberg, of Magdeburg, have an extensive exhibit of extensive exhibit of marine pumps and
valves. D ifferent valves. Different
forms of diving apparatus are to be seen, and several improved forms of divers' suits.

RECONSTRUCTION IN CONCRETE OF DRY DOCK No. 2, NEW YORK NAVY YARD
The reconstruction of Dry Dock No. 2 of the New York navy yard, Brooklyn, affords a striking object lesson as to the defects of wood and the advantages of masonry in this kind of structure. The choice of timber in dry dock construction was determined entirely hy considerations of cheap first cost ; for not even the most sanguine advocate of wooden dry docks has suggested that they would compare in economy of maintenance and repairs with the stone docks.
Dry dock No. 2 was built in 1890, and after a useful ife of only nine years, it has failed so completely as to render its entire reconstruction desirable. Compare this with the record of the adjoining dry dock No. 1 , a granite structure, which is just as good to-day as when it was opened over half a century ago.
On more than one occasion we have described the constructive features of wooden dry docks, and the reader is referred to the illustrated article in our issue of February 20, 1897, describing the big dry dock officially known as No. 3.
Apart from the serious objections to wooden dry docks on the score of their rapid decay and the need of constant renewal, either in part or in whole, their construction is such that they are but poorly adapted to withstand the heavy hydrostatic pressure to which they are subjected when dry. The floor and walls of the wooden dry dock are nothing more than a comparatively thin shell of wood, bolted down upon a nass of piling which has been driven over the whole area of the dock; and while they are fully able to withstand the outward pressure due to the weight of a ship when the dock is empty, or of water when it is full, they are entirely unsuited to withstand the in ward thrust of water which may get in behind the altars and beneath the floor when the dock is pumped dry. In the case of a large dock 30 feet in depth, the hydrostatic pressure tending to burst in the floor and lower walls will approximate one ton to the square foot. Such a disaster is guarded against by driving several walls of sheet-piling entirely around the dock; but it frequently happens that carelessuess in driving the piles, or the presence of obstructions underground, will cause a break in the continuity of the sheet-pil ing, and permit the accumulation of water behind the altars.
In the case of the dock now under con sideration, it seems that during a heavy and prolonged rain storm last year, the culverts proving insufficient to carry off the storm water, it flowed over the surface of the navy yard and collected behind the walls of the dock, which proved unequal to the strain upon them, and bulged out at the point shown in one of our first page illus trations, to the extent of several feet, break ing off the 12×12 caps, and generally wreck ing the structure over a considerable por tion of its area. It was decided that the most satisfactory way to repair the damage would be to reconstruct the walls of the dock in concrete.

In carrying out the repairs, the steps, or "altars," as they are called, were first stripped to the level of the lower guide-wales of the sheet-piling, as shown in the lower engraving of our first page, and the backing was excavated to the same level. The wall of sheet-piling was then driven, the piles penetrating to a depth of 54 feet from the grou nd level. The stripping off of the timber structure and the excavation of the backing was then carried down until it was possible to put in position the shoring timbers, which will be noticed extending from the longitudinal wales to the old sill or bottom altar at the floor of the dock. The excavation was then carried down to the floor level and round piles were driven over the whole surface, the distance from center to center of the piling being 2 feet. The piles were then cut off about 6 inches above the ground, as shown in the accompanying transverse section of the dock. On this foundation, as thus formed, was built up the concrete monolith, its outer face abutting against the wall of the sheet-piling and its inner face being stepped into altars. It was originally intended to build the altars of granite : but to avoid the delay that would be caused by waiting for the delivery of the granite, it was decided to build them of concrete. To protect the altars, $11 / 2$ by $21 / 4$-inch brass nosing-strips were laid along their edges, and 3 by 12 inch pine fender-strips were let into the risers, as shown in the accompanying drawing.
It will be noticed that the slope of the side walls of the concrete dock is considerably steeper than that of the old structure, the two being in the ratio respec tively of 2 to 3 and about 1 to 1 . The result is that the new dock has a form which is very much better adapted to the docking of ships, inasmuch as it gives more room (22 feet on the floor) where it is greatly needed, and brings the upper edges of the dock closer to the sides of the ship-advantages which greatly facilitate the bandling of material and the general
operations connected with dry dock repairs. The old floor of the dock was left undisturbed between the side sills, but the transverse timbers were extended beneath the concrete for the full width of the new floor, in order to give increased transverse strength to withstand the upward thrust due to hydrostatic pressure.

The concrete monolith will be extended entirely around the dock to the inner of the two grooves provided for receiving the caisson gate. Here the timber groove will be replaced by one in granite. It is fortunate for these repairs that the dock was designed with outer and inner grooves, since by placing the caisson at the outer groove and shoring it from the floor of the dock, as shown in one of our first page illustrations, it was possible to build the new granite groove without any further preparation. Had it not been for this circumstance, it would be necessary to build a heavy cof-fer-dam across the entrance channel, whose cost would have added greatly to the total cost of the reconstruction. Advantage has been taken of the opportunity offered by the construction of the new groove to build a new caisson and enlarge the entrance to the dock, the enlarged caisson affording an entrance 72 feet wide on the bottom as against 53 feet, while a gain in width of 5 feet has been made at the coping, and a gain of 6 inches in the depth over the sill. The result of these changes is that the reconstructed dock will be capable of accommodating any ship in the United States navy

When it is stated that the cost of these repairs will be about $\$ 600.000$, it might seem that the advantages which we have outlined above were purchased at a rather dear figure; but when we consider the relative cost for repairs of masonry and timber docks already

Cross-Section Through side Wall of Old and New Dock, and Detail of Altar Protection
NEW CONCRETE DOCK, BROOKLYN NAVY YARD.
in existence in the United States navy, it will be real ized that the more durable structures are, in the long run, the more economical. The figures furnished by the Bureau of Yards and Docks show that during the seven years from 1892 to 1899 , the repairs on the thre tone docks at Boston, New York and Norfolk amount ed to only $\$ 4,543$, whereas the repairs on the three timber docks at New York, League Island and Norfolk amounted during the same period to no less than $\$ 426$, 073. The reconstruction of the dock has been carried out under Capt. P. C. Asserson, C.E., to whom we ar indebted for courtesies extended in the preparation of this article.

A New Use for Fogged Plates.

Dry plates that have been fogged before exposure in the camera by some means or other, can be utilized for the production of transparencies. Take the fogged plate and expose it to lamplight for a few minutes, in order that it may be fogged evenly all over. Then in merse it in the following solution :

The plate should be left in this bath for about ten minutes, and then thoroughly washed in water. The whole of the operations may be performed in orange light. When dry the plates are comparatively insensitive. To print, the plate is placed behind the nega tive in the printing frame in the usual manner, and with a negative of average density an exposure of from twenty to thirty seconds may be given in diffused day light; or from two to five minutes at a distance of about twelve inches from an ordinary lamp or gas burner. Any developer may be used, but care should be exercised to use rather a large proportion of bromide. piece."

Qarrespondence.

The Color Screen for Astronomical Telescopes.
To the Editor of the Scientific Amprican :
The article on the subject of the color screen in the issue of the Scientific American of September 22 contains some statements which are not in accord with the historical facts in regard to its development, and some conclusions in regard to the results which ar premature, if not erroneous. I am glad, in the interests of scientific and historical accuracy, which the Scientific American always aims to serve, to give fulier information in regard to the facts of the case. The color screen for the purpose described can hardly be called an invention, but an application to visual telescopes of a device well known in photo graphy, but used for a somewhat different effect. Its use on the 26 -inch equatorial of the Naval Observa tory was the result of successful experiments made by Prof. See and Mr. Peters to remove the violet-blu halo caused by the secondary spectrum, which is a source of annoyance in all large achromatic refractors. While its use for this purpose is effective, it ought not to be inferred that it causes a decided improvement in bad definition of the image due to atmospheric condi tion. It would also be premature to assert that the experiments show such decided effect in the reduction of the diameters as are indicated in the article in question, until further measurements shall have been made by other observers both with and without the color screen, in order to remove the probability of srs tematic personal error to which all observations of this kind are peculiarly subject.

At the time of the publication in the As tronomische Nachrichten, in April, 1900, o the description of the color screen and the preliminary results obtained by its use on the great equatorial of the Naval Observa tory, it was thought that the matter wa entirely new. The editor of that journal, however, in an editorial foot-note, called attention to a previous successful invest gation of the same character as follows

Concerning earlier successful attempts to eliminate the secondary spectrum, compare M. Mittenzwey, Astronomische Nachrichten, 2523 and 2524, 'On the Absorption of the Secondary Spectrum in Large Refractors.'" These earlier investigations do not appear to have been generally known, and the use of the color screen does not appear to have been carried beyond the experimental stage or practically tested by use on an instrument of large dimensions. A reference to Mittenzwey's communication on this subject in the Astronomische Nachrichten, 1883, shows, however, that he fully appreciated its advantages, as will be seen by the following brief quotation :
"A thorough spectroscopic investigation of the absorption of a large number of colored media has finally resulted in an extremely simple method, by which the secondary spectrum in the achromatic telescope is so far removed as to be imperceptible in an instrument of 6 inches aperture and 60 inches focal length with 400 magnifying power, while the brightest colors of the spectrum suffer thereby no perceptible diminution in intensity. The image of a bright star is shown as a little disk surrounded by a few diffraction rays, yet completely free from the strong violet-blue halo which in instruments of large dimensions forms such an objectionable feature. Upon the disks of planets, details of delicate markings are rendered distinct which otherwise are seen only with difficulty.
"The contrivance consists of a capillary fluid cell of blue-green fluorescent derivative of resorcin, fluorescein, which is inserted in the cone of rays close to the ocular system.
"A very weak alkaline solution of the same in glycerin, which will not dry up, was inclosed in a capillary cell of two plane parallel glass plates, and this cell in turn was fastened onto the plane surface of the field lens by a film of oil, or else to the cap of the eye-

By giving the above statement due publicity you will S. J. Brown,

Prof. of Mathematics, U. S. N. Astronomical Director. Washington, D. C., October 9, 1900.

At Altoona, Pa., the Edison Electric Illuminating Company strings its wires with the aid of an electric motor, which is carried by a truck. The current for the motor is obtained by tapping the company's three-wire system. The motor drives an ordinary stonemason's crab. The speed is reduced by a counter shaft, which gives a rate of rope travel of 40 feet per minute. A $3 / 4$-inch rope is used and a small four-jaw home-made clutch, to which the wire is fastened. The wiremen have no difficulty in pulling up 3,000 feet of large bare copper wire a day on street work, says The Electrical Wörld.

The Rothamsted experimental station, which was established by Sir John Bennet Lawes, was given to the nation before his death.
Lieut. Amsdrap's polar expedition has just returned. He examined and charted the region from Cape Dalton to Aggas Island, and thus obtained a chart of the whole coast of East Greenland from Cape Farewell to Franz Josef Land.
The failure of the "Windward" to return from the Arctic regions is thought to denote the fact that the explorer will not attempt to return this year. It is probable that the season was an open one in the far North, and if this was the case Lieut. Peary way have taken the "Windward" into some high latitude, hoping to use the ressel in an expedition next season.
Helen Keller, the interesting blind and deaf mute, has passed the entrance examination to Radcliffe College. She has chosen the French, English, and German courses, and in addition the course in history. The examination papers were made out, using the raised point system, and she wrote the answers upon a trpewriter. At the lectures she is accompanied by Miss Sullivan, who sits close behind her and gives her in the manual language whatever the instructor may be saying.
Prof. Robert Koch, the famous bacteriologist of Berlin, has returned to Europe. He has been conducting scientific investigations in the German colonies for a year, and has now reached Hong Kong. He states that he has discovered means for preventing the spread of malaria in malarial districts, and has found means of extirpating it. His experiments in this line were conducted in New Guinea, where large numbers of natives die yearly of malaria. He prnseribes a medicine the chief ingredient of which is quinine. It is said to be both curative and preventive. He also found it necessary to expel the parasites of malaria. Details are not given as to how this is accomplished, but it is known that he has carried on investigations upon the transportation of the malarial germ by wosquitoes. He considers that in temperate climates it will be more easy to stamp out malaria than in tropiwill be more easy to stamp out malaria than in tropi-
cal climates. His investigations will be completed in cal climates. His investig
his laboratory at Berlin.
When O. Lehmann announced his discovery of liquid crystals, ten years ago, he was greeted with a chorus of doubt and disapproval, but he has since succeeded in proving that all the characteristics of crystallization which his liquid crystals do not possess cannot logically be made part of the definition of a crystal. The only general characteristics of crystals are that they are not isotropic, and that they possess a molecular directive force which governs their shape and the distribution of accretions. The directive force is preserved by means of the surface tension, and crystals may, therefore, be liquid or solid, but they cannot be gaseous. Liquid crystals may be produced by depositing solid crystals frow a mother liquur on the cover glass of a microscope and gently heating the latter until the fusing point is exceeded. Their optical properties can then be conveniently studied. Their double refraction and dichroism indicate a difference in the dielectric constant and the electric conductivity respectively in different directions, but these differences cannot be placed in evidence owing to the electrostatic rotations which free crystals immersed in a liquid undergo in an electrostatic field. In a magnetic field, however, the crystals show a distinct tendency to place their axes of symmetry normal to the lines of force. The author expects to obtain valuable results by applying this dis-
Two Frenchmen, M. Balsan and M. Godard, recently made an ascent in a balloon at Vincennes with a view
to reaching the greatest altitude that could possibly be obtained: They did not succeed in lowering the record, however. During their journey they kept a record of their impressions and sensations at various heights. They first began to experience the nauseating effects of the rarefied air at 18,200 feet, when their temples ached and their vision was blurred. At 20.150 feet M . Balsan was rendered so ill that he could neither speak nor reach his bag of oxygen, and had to be attended by his companion. Shortly afterward the latter was somewhat paralyzed and could only move with difficulty. But with the application of oxygen they were restored, and they were but little inconvenienced. At 21,450 feet they described the cold as being intense,
and that their beards were covered with ice. When and that their beards were covered with ice. When
22,400 feet was attained, they were rendered so helpless, and the pain was so great, that they could hardly gather sufficient strength to open the valve of the balloon. When they reached the ground, they were in a very exhausted condition. Dr. Berson, in company with Mr. Arthur Spencer, ascended some months ago from London to a height of 27,500 feet, while Messrs. Coxwell and Glaisher ascended to the height of 35.000 feet, at which altitude one of the travelers was rendered unconscious, while the other only just succeeded in opening the valve by pulling the rope with his teeth.

At the new Orleans station, at Paris, a most elaborate system of traveling ramps has been devised for the transportation of baggage about the building. The pieces are taken from the low level of the tracks and are hoisted to the baggage room, where they are discharged at sorting tables.
There have been several instances in steel works of workmen being poisoned by water gas, which consists largely of carbon monoxide. The only remedy hitherto known has, we believe, been the transfusion of blood, but another is now announced by M. A. Mosso in a note to the Comptes Rendus of the Paris Aca-
demie des Sciences. Unfortunately, the rewedy is demie des Sciences. Unfortunately, the remedy is not an easy one to apply, as it consists in putting the victim in an atmosphere rich in oxygen and under pressure. Thus, of two woukeys, both poisoned by carbonic oxide, the one left to its own resources died,
while the other, being placed in an at owosphere of oxywhile the other, being placed in an atwosphere of oxy-
gen at a pressure of 30 pounds per square inch, recovered completely in half an hour.
In the course of the additional forthcoming trials by the English Admiralty with the old hulk of the "Belleisle" the naval authorities will endeavor to ascertain the resisting qualities of Krupp armor under varying conditions. One side of the vessel will be armored for a length of 20 feet with 6 -inch Krupp armor, and on the other side a similar plating of 4 -inch Krupp armor. Projectiles will then be fired at these plates from the different guns of a first-class battleship, at varying ranges, and the results will be carefully observed by the representatives of the Admiralty watching the tests. The work of plating the vessel for these experiments is now in progress, and it is estimated that two or three months will elapse before she will be ready.
In a letter to The London Times, Sir'W. B. Richmond, president of the Smoke Abatement Society, states that there are about 18 million tons of coal con-
sumed anudally in London, costing some 16 millions sterling, of which probably 3 million tons are consumed by gas and other manufactories. About two-thirds of the heat produced by the combustion of coal is lost in the ordinary grates by passing un the chimneys, and the loss thus incurred is about 8 millions sterling a year. It has been proved beyond dispute that factory furnaces can be quite easily rendered smokeless, and at a saving to their owners of from 10 to 20 per cent of the fuel consumed. With the use of the automatic feeder cheaper coal than anthracite can be adopted. The technical committee of the Coal Smoke Abatement Society has examined and approved grates which, while they maintain the open fire, consume all the carbon, and hence no appreciable quantity of smoke ascends the chimney.
The magnitude of potentiality of the maritime prosperity of Great Britain has been graphically illustrated during the past few months, owing to the state
of affairs - in China. When England went to war of affairs in China. When England went to war with South Africa, the whole of her 230.000 troops were dispatched from England in their transports without any appreciable interference with her mail services to the various parts of the world. True, some services to the various parts of the world. True, some
of the larger, more commodious, and fleeter vessels were commandeered to accelerate the passage of the troops to the seat of war, but their places upon the mail services were easily filled by other boats, and the international traffic has been carried on in its usual manner. Indeed, it was difficult to believe that the country was at war, since everything was accomplished so swoothly and without the slightest hitch. But the same cannot be said in connection with the maritime cominerce of other nations. The transportation of the troops from Germany to China was such a tax upon the young country that its ordinary maritime traffic was in danger of being absolutely dislocated. The solution of the difficulty was the chartering of English vessels, which were readily obtained. Russia was placed in the same dilemma, and when France was embroiled with Madagascar, the French troops were conveyed to the scene of operations in English vessels. Gigantic thongh the maritime commerce of Great Britain is, it is still rapidly increasing. At present that country's foreign trade is equal to one fifth of that of the whole world in value. According to Lloyd's Register of shipping for $1900-01$, no less than 7,020 steamers, aggregating 11,513,759 tons, and 1.894 sailing vessels, representing a tonnage of $1,727.687$ tons. are owned by various companies throughout Great Britain. Then the various colonies own 910 steamers of 635.331 tons and 1,014 sailing vessels equal to 384,477 tons between them. Therefore, it will be seen that the grand total for Great Britain and her colonies is as follows: 7,930 steamers, aggregating $12,149,090$ tons ; 2,908 sailing vessels, aggregating 2,112.164 tons; grand total, 10,838 vessels, aggregating $14,261,254$ tons. According to Lloyd's, the whole of the ivorld's over-sea traffic, with the exception whole of the vorld's over-sea traffic, with the exception
of the smaller insignificant states, is carried on with 28.422 vessels of all kinds, representing a gross tonnage of $29,043,728$ tons. Therefore, it will be seen that Great Britain and her colonies own about one-third of the world's vessels, amounting to nearly half the world's gross tonnage.

Mr. H. Edmunds, of London, has devised a means of insulating cables with paper. His idea consists of thoroughly impregnating paper with a mixture of re sinous material and oxidized oils, which are reduced to a thin consistency by the application of heat. The paper is then immersed in this solution, and allowed to become completely saturated with the mixture. When it is withdrawn frow this bath, the permeated paper is wound spirally round the conductor. The inventor claims that the paper when immersed in the resin and oil bath soaks up a sufficiency of the solutions to form a layer between the folds of the paper, between the conductor and the paper, and also outside the paper. These operations are conducted while the paper is still warm and the solution fluid. He then permits the treated conductor to cool. Instead of treating the cable in the above mentioned manner, strips of paper saturated with an oily matter or lubricant which is free from moisture and of good insulating qualities may be wound round the conductor alternately with the resin impregnated paper. The inventor, after he has covered the conductor with this paper, winds round an outer wrapping of braiding or some other material, such as jute or cotton, which has previously been immersed in a hot bath of a mixture such as diatrine.
The most economical light is that whose spectrum is confined to the visible rays, and which does not in volve the simultaneous emission of either infra-red or ultra-violet rays. Electric light marks in this respect a distinct advance on the older methods of lighting, and electric luminescence decidedly so. But no form of light hitherto produced equals that of the glowwarm in efficiency. The light of luminous organisus only contains an infinitesimal anount of heat. R. Dubois has been exhibiting sowe "photo-bacterial" pro ducts at the Paris Exhibition, and he now gives some particulars of the liquid medium which best suits their: development. The liquid exhibited at the Palais de l'Optique consists of water containing sea salt, glycerine or mannite, and either peptone or asparagine. cerine or mannite, and either peptone or asparagine,
with an addition of some phosphorated compound like nucleine, phosphorated lecythine, or potassium phosphate. The author gives no information concerning the species of bacteria used. He says that the permanence of the light varies with the purity of the ingredients and the ventilation and agitation of the liquid. It may last six months. A room may be lighted up with a luminosity like that of the full moon. It may be that these photo-bacteria will acquire the industrial import ance of the yeast fungus, but that will probably be eclipsed by some purely physical method of generating cold light.-R. Dubois in Comptes Rendus.
Mr. H. Bremer, of Neheim on the Ruhr River, has been conducting some exhaustive experiments with a view to obviating the blue color of the electric arc light. He has prepared some special carbon impres. nated with salts of calcium, silicon, and magnesia, especially with calcium, the reddish yellow flame proceeding from which considerably softens the color of the light. The oxide of calciun covers the inside of the globe with a thin coating of a white deposit which serves to diffuse the light in all directions, in the same manner as if a frosted glass globe were em ployed. By this means the glowing point of the carbon is not seen, neither are there any of those shadow lines upon the upper half of the globe and practically darkness beneath the lamp, but the globe is bright all over. Photometer tests have been taken of lamps over. Photometer tests have been taken of lamps
supplied with these carbons, and they prove all that supplied with these carbons, a and they prove all that
the inventor clains for them. With an arc lamp taking 12.3 amperes at 445 volts, the light was constant, over 6,000 candle power in the cone between 45° and 90° with the horizontal, and 1.000 candles on the horizontal itself. The electric current consumption of the lanp was 0.196 watt per candle without a globe and $0 \cdot 196$ watt per candle with the globe to yield a hemispherical intensity of 4,300 candles. The inventor places his carbons in a vertical position, but slightly out of alignument. The are is flattened out so that the light emission may be improved. The inventor states that his carbons are especially valuable in misty weather, owing to the yellow nature of the light. One of these arc lamps with four ares has been suspended at a height of 312 feet from the Eiffel Tower in the Paris Exposition, so that their various advantages and potentialities may be estimated. The four lamps are arranged in two series, and take together 55.8 amperes at $89 \cdot 3$ volts. Tests were carried out with these lamps at a height of 26 feet above the ground, first without a globe and then when fitted with the globe. In the first instance the light intensity was 80.000 candles, corresponding to a current consumption of 0.1 watt per candle, that is, with the hemispherical intensity estimated at 49,730 candles. But when the globe was fitted, the hemispierical intensity was reduced to about 26,900 candles, which is equal to a current consumption of 0.17 watt per candle. There is one drawback, however, to these carbons, and that is that they are consumed in about half the time it takes the ordinary carbon to burn.
A. MECHANICAL SCARIFIER. Probably no road paving is worse than a macadam when it gets uneven and is in want of renovation. But the repair of a macadam road is both slow and expensive, necessitating the blocking of the thoroughfare for several days. Then, again, pedestrians incur considerable risk by flying pieces of stone, which cannot possibly be avoided by the hand-picking process. Messrs. Marshall \& Sons, Linuited, of Gainsborough. England. hare placed on the market a scarifier which may be attached to a traction engine or steam roller. The scarifier is attached to the back end of the tender of the roller in such a manner that the weight and strain in connection with the same are equally distributed over the full width of the tender. The latter is constructed of extra thickness and strength, so that there is no possibility of the roller itself being pulled to pieces through the vibrations of the scarifier.

The scarifier itself works on a traversing motion. By this means it can be set to scarify any part of the road, from the gutter on either side to the crown, without having to turn the engine round. Then, again, it can be arranged to operate either backward or forward, and the depth of the cut into the road can be easily regulated by means of a hand wheel and worm gear. Under ordinary circumstances it will score the road to a depth of about two or three inches, but, of course. this depends upon the nature of the road upon which the scarifier is at work.

The scarifier consists of a dozen chisels mounted in a swinging frame, pivoted at its upper extremity and carrying two segments of worm wheels gearing into two worms. The tools are rigidly held in position in the frame by means of wedges, so that there is no possibility of their working loose while at work. They can easily and readily be withdrawn when required for sharpening or replacement. One set of chisels is intended for forward work and the other set for working backward. A lever actuates in a slotted sector, for the purpose of changing the scarifier from the forward to the backward motion, and vice versa.

When the roller has completed its work, the scarifier may be lifted from the ground to any desired height by means of the hand wheel and worm gear. This arrangement of gear is self-locking in any position.

By working with one of these scarifiers a macadam road way be scored in a very short time, and it performs the work much more thoroughly than the handpick, while there is also a considerable saving of material. The picking of a road is very destructive to the metal, but by means of this scarifier it is simply turned up regularly, and often only requires leveling and rolling in again. Then, again, the surface of the road is disturbed to a uniform depth throughout the whole section, which desideratum it is impossible to obtain by means of the handpick.

THE 16-INCH RIFLE AND 20-INCH SMOOTH-BORE COMPARED.
In our recent article on the new army 16 -inch gun, we described the construction of this powerful weapon and gave some particulars of its remarkable ballistic powers. It was shown that if the gin were set up at the Battery; New York, with an angle of elevation of forty degrees, and fired with a full charge of swokeless powder, the shell would reach a waximum height of $53 / 4 \mathrm{miles}$, and range to a distance of just under 21 miles. With a view to showing what a vast area would be
dominated by such a gun, we present the accom-
panying map of New York city and vicinity, from which our cosmopolitan réaders may readily determine whether their nightly ride of one hour, more or less, into the suburbs would be sufficient to place them beyond its zone of fire.
By the courtesy of the War Department, we are enabled to present the accompanying photograph

A SCARIFIER FOR MACADAM ROADS

showing a full-sized model of the new 16 -inch army gun, suspended above two of the largest coast-defense guns of the civil war period. The one to the left is a 20 -inch smooth-hore Rodman. the largest smooth bore in the world. The gun to the right of it, below the chase of the 16 inch gun, is a 300 -pounder Parrott rifle, which also is the only one of its size ever constructed, all the other Parrotts being of 8 -inch, 6 -inch and smaller bores. The 20 -inch Rodman closely resembles in outline and relative proportions the celebrated 15 inch smooth-bores, of which so many were used in the civil war. The iron used in casting the gun was
 BY FIRE OF 16-INCH GUN.
what was. known as a No. 2 warm blast hematite. The smelted pigs were remelted and cast into pigs, which were again melted in three air furnaces. The weight of the iron melted was 172,000 pounds, time of melting $71 / 4$ hours, time of casting 23 minutes. After the gun was cast, water was run through the core for the first 26 hours, after which air was forced into the bore at the rate of 20 cubic feet per migute from the 11th of February, 1864, the day of casting, to the 24th of the same month: 'The tenacity of the metal was found by actual test to be 28,737 pounds to the square inch. The length of this gun is 20 feet $31 / 2$ inches, the maximum diameter 5 feet 4 inches, the diameter of the wuzzle is 2 feet 10 inches, and the total weight 115.200 pounds. For the sake of comparison we recapitulate some figures of the new 16 -inch ariny rifle as follows: The length of the gun is 49 feet 2.9 inches, the maximum diameter at breech 5 feet and at muzzle 2 feet 4 inches, and the weight of the finished gun 300,000 pounds. The weight of the shot for the 20 inch smooth-bore was about 1,000 pounds, whereas the shell for the 16 -inch gun will weigh 2,370 pounds.

Phosphorescent Bacteria.

M. Raphael Dubois, in a paper read before the Academie des Sciences, describes a series of experiments in which he obtains a luminous source of considerable intensity by the use of certain microbes or photobacteria, which have the power of emitting light. These are allowed to propagate in a liquid bouillon of special composition. When the experiment is made with good microbe cultures to start with, and at the proper tewperature, the development is rapid, and the liquid soon contains the microbes in sufficient quantity to give the luminous effect. A glass vessel is used to contain the liquid, preferably with plain sides, and it is possible in this way to light a room strongly enough to distinguish the features of a person placed at several yards distance, and newspaper type may be read. The light has scarcely any calorific effect, and the properties of its chemical rays seem to be also feeble, as it requires several hours' exposure with an instantaneous plate to obtain a good image; on the other hand, the rays seem to possess considerable penetrating power, as impressions may be made upon the plate even though screens of wood or cardboard are interposed. A sheet of aluminium is, however, not traversed by the rays.
In these experiments it is important that the bouillon in which the microbes are propagated should be well prepared. It should contain water, salt, an aliment analogous to glycerine or mannite, another represented by the peptones or asparagine, and an aliment containing phosphorus, such as nuclcine or phosphates, as well as traces of the mineral compounds which enter into the composition of such organisms. The use of peptone is attended with some difficulty, as putrefaction is likely to set in and destroy the action; if it is used, it should be aerated by a current of sterilized air and slightly agitated.
With asparagine the best results have been obtained, and the solution keeps well, giving the phosphorescent effect in free air; its cost, however, is a disadvantage. If well prepared, the phosphorescent solution will keep for a long time without deteriorating; the experimenter has kept some samples in a basement at a low temperature for more than six months. He expects to be able to increase the luminous effect, and thinks that a practical outcome may result frow these experiments.

a center truss, and this is accomplished by cutting the great structure in two longitudinally through the center and building the new steel work into place. The new truss is three times heavier than either of the old trusses, and the work will increase the carrying capacity of the bridge by from 75 to 100 per cent. The reconstruction has been in progress since last winter, and is being done by men employed by the Michigan Central. Between the old piers at the water's edge two new stone piers have been erected on each side of the river, and each of these piers supports one of the new columns. . On ltop of these new piers iron shoes weighing 10 tons each have been placed. These shoes are heavier by four tons than the shoes on the old piers. Reaching up from the shoes to the bottom chord of the bridge are columns of steel, which were placed in 25 -foot sections, and weigh 12 tons to a section.
When the new columns had been carried up to their full height and riveted in place, they were capped by two massive 7-ton castings, whose duty it is to transmit the loads of the new truss to the new tower. Between these castings was placed the section of the botton chord of the new truss that extends over the tower, and above them were placed the vertical posts 55 feet long that extend between the bottom and top chords. On the top of these posts were placed other steel castings. In these castings in top and bottom chords are assembled the various eye-bars, posts, struts, etc., that cluster at these points, each series being connected by large, turned, and snugly-fitting pins. The center truss was then built out over the river, the various posts, ties, etc., being lowered
ONE OF THE TOWERS, SHOWING THE CENTER STRENGTHENING COLUMNS. from the floor of the bridge by into place from the floor of the bridge by means of a temporary "traveler," which was shifted from time to time' as the work progressed.
With the addition of so much dead and live load to the bridge it was, of course, necessary to increase the anchorages. The old anchorages were about 26 feet long, and extended down to the bottom of the shore abutments. The new anchorages are 40 feet long, and extend down into the solid rock 16 feet. The addition was made by opening the abutments and blasting out the rock to the required depth. At the bottom of the

VIEW LOOKING THROUGH CANTILEVER, SHOWING NEW CENTER TRUSS.
given way to the more modern steel arch, in order to meet the requirements of present day railroading and road traffic. This work has called for the exercise of unusual engineering skill and some daring originality, and, indeed, it is difficult to find any spot which possesses more interest for the bridge engineer than the Niagara Gorge.

The accompanying photographs draw attention to the latest difficult feat to be accomplished in this locality. They show the work of strengthening the steel cantilever bridge of the Michigan Central Railroad, which, completed in 1883 , finds itself quite unequal to the traffic demands of the year 1900.

This bridge, which is 910 feet long, and consists of two cantilevers and a fixed span in the center, the "cants" resting on towers 130 feet high, was originally designed to carry on each track a train consisting of two 65-ton locomotives followed by a train load of 2,000 pounds per lineal foot. When the improvements have been completed, the bridge will support two trains of over 3,000 pounds weight per lineal foot, headed by two 150-ton locomotives.

The work that is now being done is the insertion of

NIAGARA CANTILEVER BRIDGE BEFORE INSERTION OF NEW CENTER TRUSS AND TOWER COLUMNS.
bridge it was found necessary to cut 2 feet 2 inches out of the floor beams over the tower, temporary timber supports being inserted to support the severed parts of the floor beams. These timber supports rested upon the outer chords. In all about 1,700 tons of new steel have been placed in the bridge.

The work of rebuilding the cantilever has gone on undmindful of the traffic across it, which has suffered but little interruption or delay. A traveling derrick 28 feet long, 28 feet wide in the clear, 21 feet clear of track and 30 feet high, has been used. To lower the castings refeet of manila line $1 \frac{1}{2}$ inches thick, with 10 ton blocks on the traveler. The cantilever is a doubletrack bridge, and in order to lower the iron it was necessary to cut the ties betweenthe tracks, giving an opening 6 feet wide by 11 feet long. Some of the iron lowered was 50 feet in length. Material was carried out on the structure from both sides of the river.

When the cantilever bridge was erected, all riveting and drilling was done by hand. but in rebuilding the structure modern appliances were brought into service, and riveting, chipping and drilling were done
by compressed air, which was supplied by a plant located on the New York side. In the compressing station there are two gasoline engines, one of 24 horse power, the other of 12 horse power. A 2-inch pipe leads from the storage tanks clear across the bridge, and from this main, connection is made by hose to the points of operation.
Benjamin Douglass, bridge engineer of the Michigan Central, designed the new work, and it was carried on under the supervision of his office, with G. C. Tuthil as the assistant engineer on the work, and David Coughlin as superintendent of erection. The work will be completed during the fall of the present year

Transportation Exhibits at Paris.

Much space has been devoted to the transportation exhibits at Paris ; an international station is estab ished at Vincennes, covering an area of about 21,50 square meters. The station is a series of halls (says The Railroad Review) about 200 meters long and 120 meters wide. There are shown about sixty locomo tives, most of them being large machines, and also nore than 200 cars of various kinds. The United Stạtes is there " with its rewarkable wagons, its prac tical and comfortable luxury, and with six examples of its colossal and renowned locomotives." Austria with seven engines, Germany with six locomotives and with splendid coaches. Russia, which shows five carriages, attracts attention by the magnificence of the material and the finish of the construction, giving evidence of its great industrial progress. Switzerland shows, among other engines, an electric locomotive for working rack railroads. The French locomotives are seventeen in number. Around the international station are in stalled signals and various apparatus for protecting trains used by the great French companies and by ioreign roads. A German establishment is in operation Hijecting ties for preservation, and near by one may see a section of the Barmen-Elberfeld suspended electric tramway and a section 50 meters long of a Temperly transporter. Here may also be seen brakes, couplers, axles, wheels, switches, crossings, etc. Accordin: to the Journal des Transports, of Paris, the Exposition is a triumph of the compound locomotive and the American car. The long car with bogie trucks, so much criticised among us for twenty years, is no longer a novelty, and now the time of experiment is past. All of the great French com panies now use long cars with bogie trucks and corridors for inter-communication. The coloss machine shown in the Russian section seems to be only a Mallet compound locomotive, with two trucks and four cylinders. Germany shows a triple-expansion engine, in which the problem of condensation is courageously attacked. Finally, the electric locomotive is in force. The Paris, Lyons and Mediterranean Railway shows its stor age battery engine, and the Orleans Railway its Thomson-Houston trolley locomotive This latte company makes the most impressive electrical exhibit by the mere fact of putting in operation its city line, underground and worked by electricity.

The Age of the Earth

We commence our history with a rapidly-rotating molten planet, not impossibly already solidified about the center and surrounded by an atmosphere of great depth, the larger part of which was contributed by the water of our present oceans, then existing in a state of gas. At what period did these great cosmical changes occur? The answer to this question has long occupied the attention of geologists, and the opinions of the greatest lights of modern science are at variance. At the Bradford meeting of the British Association for the Advancement of Science, Prof. W. J. Sollas, one of the greatest geologists of the century, made a most iuportant address, dealing with the age of the earth. He first gives his attention to the estimates of others, Lyell, Kelvin, George Darwin, Joly and others, and then develops his subject with particular relation to the depth of those rock formations which are clearly of sedimentary origin. He takes them at their greatest thickness, which he finds to be about fifty miles. Naturally, great difficulty is experienced in obtaining even an approximately accurate average rate of deposition, but Prof. Sollas adopts one foot a century as the most satisfactory standard, and on this basis would place the age of the earth approximately at about $26,000,000$ years. His arguments tend to harmonize the estimates of others, as far as possible, and he more nearly approaches those of Lord Kelvin than those of other scientists. The estimates suggested by other data are as follows

1. The time which has elapsed since the separation of the earth and moon, $56,000.000$ years. This is the minimum estimate of Prof. G. H. Darwin.
2. Since the "consistentior status" of Lord Kelvin, $20,000,000$ to $40,000,000$ years.
3. Since the condensation of the ocean, $80,000,000$ to $90,000,000$ years, the maximum time which Prof. J Joly considers to have elapsed.
It may be at once observed that these estimates, It may be at once observed that these estimates,
although independent, are all of the same order of
magnitude, and so far confirmatory of each other. Prof. Sollas's arguments are most interesting, and his complete address will be published in the SUPPLEMENT, beginning with the current week.

THE PANTRY MOTH
 by b. frank andon.

This insect, which has also been called the Indian meal moth, and is known to naturalists as Plodia interpunctella, is, next to the cockroach, perhaps the most tronblesome pest of the housekeeper. It is a small in-

THE PANTRY MOTH AND ITS STAGES.

1. Caterpillar 2. Chre 3. Moth. (Magnified.)
sect allied to the clothes moth and the grain moth, and not unlike them in appearance. The pantry moth, however, is more showy in appearance and is bicolored, the outer half of the wings and parts of the body being of a chocolate brown, the rest buff or drab. It is about three-eighths of an inch long when the wings are folded or at rest. The larva is pale, varying from pinkish to gray blue, the tint being influenced by the character of its food. The eggs hatch in a few days after being deposited here and there upon suitable food by tihe female moth.
Nearly everything edible or nourishing serves for food

INJURY BY PANTRY MOTH.

1. Cake of chocolate, showing larva at work (natural size). 2. Millet seed after
to this insect, but the materials that it commonly infests are flour, corn weal, grain of all kinds, beans, seeds, dried fruits and vegetables, and chocolate. It is not the quantity the larva eats, however, that makes its presence objectionable, so much as the defilement it causes. Wherever it goes it leaves a silken strand behind it, adhering to its excrement and to the particles of food left uneaten, thus rendering the material utterly unfit for human use
When full grown, the caterpillar spins a flimsy ocoon, within which the pale yellowish or brown púp rests but a few days in warm weather before emerging

FLOUR INFESTED BY PANTRY MOTH. (MAGNIFIED.)

i.

as a moth. If, however, the surrounding temperature should be cold, the pupa may remain in the cocoon all winter. The entire period covering all the stages, egg larva, pupa and moth, averages, during warm weather about six weeks, and in artificially heated buildings that cool at night during winter, two or three months. There are, then, about three broods normally during the summer, and in well warmed buildings during winter about two broods, perhaps three. Thus, we
have from three to six broods annually, and in very warm climates as many as seven or eight may appear.
The pantry moth is practically cosmopolitan, judg ing from the infested food stuffs received from nearly all parts of the world. There are isolated sections where it does not occur, but in these days of vast commercial intercourse a pest having these food habits is certain soon to be carried everywhere. Only the great est care, most thorough inspection and fumigation can prevent this result, if atall.
'ro insure against the presence of this moth, the housekeeper or dealer must resort to storing his foo stuffs in insect-proof receptacles. With materials that must have air, a box with wire netting covering the openings for ventilation will suffice, but these open ngs should be at the side of the box, as it is probable that the moths would drop their eggs through the wire mesh if placed on the top. If material is already infested and only slightly injured, the only way to kill the insects within it is to fumigate with carbon bi sulphide, an inexpensive disinfectant. A wad of cot ton as large as a lemon of average size, and saturated with the bisulphide, placed in the top of a large can tight box or keg holding two or three gallons, care being taken to replace the cover quickly and tightly will destroy all insects and vermin infesting the ma terial previously placed therein. The vapor of carbon bisulphide is heavier than air and sinks to the bottom of a vessel containing it. It is extremely poisonous and so inflammable that on no account wust flame be allowed to approach it.
To insure successful fumigation, the receptacle must remain tightly closed for at least six hours. It can then be uncovered and turned upside down for a few minutes, after which the pungent odor can no longer be perceived. Another way to kill the larva of the pantry moth and similar pests in food stuffs is to subject them to a perfectly dry heat for at least one hour at a low even temperature.

Automobile News.

There are at present thirteen incorporated automobile clubs in the United States.

Experiments have been conducted in New York with electric vehicles for collecting mail from street boxes. It was found that fifteen minutes were saved per trip.

At the Paris Exposition a dinner was given to over twenty thousand mayors of French cities and villages. This is probably the largest number of persons who were ever served at one time. The tables, if placed end to end, would have been four miles long. Several motor cars and four motor cycles were used to increase the rapidity of service.
A new electric automobile has been brought out by the National Carriage Syndicate, of London. It is of elegant design, each of the wheels being 36 inches in diameter and the distance between axles 67 inches. The force is furnished by two small motors, which operate the rear wheels by a chain which passes from a pinion on the axis of the motor to a large wheel placed on the inside next the spokes. The motor is mounted upon an independent frame, which is supported upon springs. Two sets of accumulators are used, which are contained in two boxes placed under the front and rear seats. Each of the motors gives 2 horse power, working upon 40 volts; it gives 600 to 700 revolutions per minute. The motor is very light, weighing only 105 pounds; besides, it can, if necessary, be worked up to 3 horse power, and runs without noise. The motors differ from the usual type, as the armatures are at the exterior and revolve around the field. The winding of the armature is very simple, and is arranged so as to give a motior of small weight and high efficiency; it may be overloaded as high as 100 per cent wit! iout danger. The armature, being of large diameter, acts as ä fly-wheel and regularizes the speed. The fietds have twelve poles arranged in a circular crown on the inside of the armature. The motors are entire? y inclosed and protected from dust. The battery used is of the Rosenthal type; it has forty cells in all, which gives a total weight of 950 pounds. They will give a discharge of 20 amperes for seven hours, and will also stand a considerably higher rate, giving 40 amperes if necessary. The controller is arranged for five speeds, $3,6,8,10$, and 12 miles per hour, with a reversing speed of $\dot{3}$ miles. : The controller handle is pushed to the front and rear for forward and back movement; it is arranged to give the proper connections for charging the batteries. As the field is separately excited, the motors themselves serve as brakes by the reverse action of the armature upon the field, the motor tending to run as a dynamo. This machine will cover a distance of fifty miles at a single charge.

The Commissioner of Immigration has decided that tuberculosis is a disease which can subject the patient to quarantine. A Japanese with tu berculosis arrived at San Francisco and it was decided that the patient could not land and múst return to the port from which he sailed.

October 20, 1900.

RE-INVENTION IN THE WORLD OF SURGERY.

 by r. е. тномAs."Died of internal trouble" was the verdict which prior to the last half century, was the comprehensive term used to record the unsuccessful efforts of treatment of women's diseases. Up to that time gynecology, which has since revolutionized the surgical world, was practically unknown. The few rare cases in which an operation was performed were attended with such an alarming element of danger prior to that time, that even the foremost surgeons hesitated to resort to this last desperate measure. That gynecology was a lost art was an important fact unguessed at since the burning f the great library of Alexandria destroyed an incal culable amount of valuable matter upon this subject as well as of others of equally important bearing in the scientific world. There was, therefore, no scantiest ecord that such a science had not only flourished, but been brought to its present state of perfection more han two thousand years ago.
Yet such is the case, such the almost incomprehensible truth borne in upon the world of science when the excavations of Pompeii revealed the astounding collection of surgical instruments, mainly for use in gynecology, unearthed in the house of the surgeon adjoining the Temple of the Vestal Virgins.
These instruments, shown in the accompanying picture, now occupy one of the most interesting cases in the museum of Naples, where, for greater safety, the most valuable of the excavation finds are kept by the Italian government. What is far more incomprehensible than the mere fact that these instruments, after having been buried since the eruption of Vesuvius, 79 A. D., have revealed that gynecology was a science flourishing in its perfection long before that date, is that in every instance the instruments are almost in their minutest particulars, exact dupli cates of those in use by the most approved modern science of to day. Had there been a record upon which surgeons and physi cians could have built up this practical treatise upon the dis eases of women, the wonder would be less. As it is, with absolutely nothing to hint that gynecology was a lost art, or tha it had existed even, it seems nothing short of marvelous that modern minds should in the evolution of this century's in truments have traveled along dentical lines pursued by those marvelously skilled Pompeiian physicians to the Vestal Virgins ministering in the Temple, on the idyllic remnants of which the sun shines to-day from bluest of Italian skies, and the waters of the Bay of Naples lap their erulean waves almost to the gateways of that charmed place about which must ever linger so much of romance and poetry.
A difference between the sur gical instruments of to-day and those of the ages ago is that
while the latter were of the finest wrought iron, those of the former are of polished nickelplate. But ithe workmanship is as fine as anything to be produced in this line in the twentieth century. The instruments are hand wrought, the screws as threadlike and capable of as delicate manipulation as anything to be found in to-day's achievements.
It is not more than half a century since gynecology may be said to have had a place in modern surgical science. Dr. Marion Sims in the lead with his duckbill speculum has had a mighty rush of followers. Dr. Sims' treatment of vesico-vaginal fistula was a revelation at the time. To him the world is indebted for the suggestion and perfection of measures by which this almost untreatable condition has been rendered one of the most certain of relief within the field of surgery. From profound ignorance his duckbill speculum has brought gynecology to the front ranks of surgical skill and attainment.
In every particular, however, Dr. Sims had been anticipated, as in May, 1829, Dr. H. S. Levert in The American Journal of Science expounded the results of his experiments in the use of silver wire. This was followed on November 21, 1834, in The London Lancet, by Mr. M. Gosset giving a description of his method of using silver wire, and later in 1846 was published the method of Metgler
The first record which surgical science has in this country of the use of a speculum was of an ordinary teaspoon used by a Southern country practician to enable him to see a rent in the bladder of a woman patient. By this primitive means he was subsequently enabled to administer successful scientific treatment.
§rientific Ammricau.

Following Dr. Sims' trip abroad, when the value of his invention was recognized by the leading surgical authorities of England and France, he returned to this country to make a large fortune by this means. The speculum was then taken up and developed, and additional discoveries practically put to use by other eminent surgeons and physicians, eachl in turn giving to the instrument his own name. Among the best known of these are those of Meier, Cusco and Ferguson.
Following upon these inventions, together with others of similar nature, came those finds in the Pompeiian excavations of the house of the surgeon which told to the world a stupendous truth, that the instruments in use to-day, for the alleviation and care of internal troubles, are identical with those used by skilled practitioners when the world was younger by two thousand years.

Bat Guaino Caves in Southern New Mexico Southern New Mexico is a land of natural curiosities, and one at least of these has proved to have a high commercial value. A resident of that district had the good fortune a few years ago to accidentally stumble upon several bat caves, one of which is stated to be some six miles in length, and as he has shipped in the last two years $3,392,240$ pounds of phosphate or guano from these caves, for which he has received about $\$ 48$ per ton, it can be understood that the present and prospective value of these caves is considerable. It can be readily understood that bat guano possesses great value as a fertilizer, and the value of the caves is enhanced by the fact that beneath the guano is a con-

re-invention in the world of surgery -a group of instruments discovered IN POMPEII.
siderable deposit of phosphatic rock (the remains of defunct bats), which, when ground up and treated with phosphoric acid, is highly prized as a fertilizer.

Since the discovery of these ancestral homes of the bats, in which they have made their resting place for unnumbered centuries, the search for more such caves has continued intermittently, and it is probable that many more valuable finds of this nature will be made; for the section of the country in which they lie is literally infested with this obnoxious, but very lucrative, little creature. The caves which are frequented by bats are of lava formation, and carry evidence of having been subject to violent volcanic action. A remarkable bat-trait is mentioned by our correspondent, which has the effect of rendering the caves of permanent value. It seems that after the entire front of the first of these caves to be opened had been torn down to within a foot or so of the narrow openings through which for centuries the bats have come and gone, the little creatures continued, and still continue, to follow the ways of their ancestors. Flying upward past the large openings, they would squeeze in and out of the cares as of old. Since the first cleaning out of one cave seven tons of guano have been removed, all of which had been deposited subsequently to the first removal. It is estimated that from the deposits which have already been discovered, there has been taken an annual crop of about 1,500 tons of guano.

Hemodeling the Victorian Patent Practice
There is a movement afoot in the colony of Victoria, Australia, which has for its object the carrying out of certain drastic reforms in the patent laws, and the re-
rganization of the staff and office of the department patents in the interests of inventors. This movement has taken the form of a petition addressed to the Victorian legislative assembly, which is being extensively signed by leading men of all trades and professions in that colony. The petition has been initiated by a leading patent agent in Melbourne, and it is re ceiving considerable support from those mewbers of the profession who consider that a more liberal treat ment of inventors will ultimately lead to more extensive business in patents.
In reading the petition it is evident that the mainspring of the movement is to be found in the more liberal and advanced methods which are in vogue in our own patent system, and in a less degree in that of Great Britain. The most important point asked for in the petition is that the examination into novelty may be retained. It is claimed that this examination, which was prescribed by the patent act of 1890 , is now conducted by the department with sufficient completeness to be of great public benefit, and that it is, in a large degree, a deterrent of fraudulent and improper applications. It is claimed that the abolition of ex amination into novelty will throw the burden of search upon the inventor, and that if the examination is struck out, the patentee will be under increased expense of from $\$ 75$ to $\$ 150$ for an ordinary search, while it would be no uncommon thing for a heavy examination to cost $\$ 250$. The petition quotes the report of the Commissioner of Patents of the United States as afirming that it is because of novelty ex aminations that patents are so salable in this coun try. The petitioners are of the opinion that " to avoid grievous restraints of trade, encourage ment of impostures upon the public, the undue raising of prices of commodities, and the unnecessary multiplication of ruinous lawsuits, the granting of illegal monopolies upou articles of commerce without any investigation as to the novelty of such articles should not be permitted."
The petitioners also pray that the Patent Office exawiners' reports, as well as other documents in connection with patent mon opolies granted, should be open to public inspectiou in like man ner as in the United States of America. It is also requested that steps be taken to remedy the long-continued and grievous delay and shortcomings in respect to the issue of publications from the Patent Office respect ing new inventions and monopo lies: and the reasonableness of this petition will be understood when it is learned that the publication known as "Patents and Patentees," issued by the Victorian Patent Office, is nine years in arrears, and that after being printed it can only be obtained at a cost which is prohibitive to the majority of inventors interested in securing it. It is certain that in the judgment of American inventors, the au thors of this petition are making out a very strong case for reform.

The Current Supplement

The current Supplement, No. 1294, has many inter esting addresses and lectures. "Chemical and Techni cal Education in the United States," by Prof. C. F. Chandler. This is a most important paper, and deals with the subject in a masterly manner. "The Age of the Earth," by Prof. W. J. Sollas, is an address befor the British Association. "Australia: The Wonderful Island Continent" is a thoroughly illustrated article by Sidney Dickinson, F.R.G.S. The Opening Astronomical Address, by Dr. A. A. Common before the British Association, is concluded in this issue. "American Sun Myths" is an address by Dr. Franz Boas.

Contents. (Illustrated articles are marked with an asterisk.)	
th	Mon
Automobile news............ ... 250	Moth, pantry*
Bacteria, phosphorescent........ 246	Notes and queries
Bicycle, folding*................. 244	Patent practice, Victorian....... 231
Borax in Europe................. 243	Petroleum in Japan............. 244
Bridge, Niagara strengthening*. 249	Plates, fogred................... 246
Calcium carbide................. 243.	Rifle, 16-inch**................... 248
Caves, guano...................... 250	Scie
Chemistry, congress of........... 243	Scarifler*......................... 248
Dock, repairs to*..............241, 246	Supplement, current............. 251
Electrical notes.................. 247	Surgery, reinvention in*......... 251
Engineering notes 247	Telescopes, screens for.......... 246
Inventions, index of............. 252	Torpedo boat " Bailey ".......... 244
liventions recently patented.... 252	Transportation exhibits, at Paris 250
Lathe dog, collapsible*........... 244	Water tube boilers............ ... 242

RECENTLY PATENTED inventions.

Agricultural Implements.

 PLow.-Joni W. Restes, Morgan, Ark. The in by cultivator blades or teeth may be arranged at one o both sides of a " bull-tongue" "plow- blade or adapted fo nse in connection with the ehare of a turning-plow.. Thdevice is characterized by its simplicity and effective ${ }^{\text {deves. }}$

Mechanical Devices.

WATER-WHEEL--MARK A. Brown, Douglas, Ga
The water-wheel is of the type in which the water oper The water-wheel is of the type in which the water oper-
ates upon a series of blades or buckets. On the bottom ates apon a series of bladee or buckets. On the bottom
of a casing the motor-wheel is mounted to revolve. A shaft is held to rotate with the wheel, but is free to slide ball bearing below the bottom of the casing. Owing to the sliding connection of the wheel with the ehaft, the weight of the machinory connected with the other end
of the shaft is supported by the balls and the bearing. The operation of the wheel is not affected by axial vibra-combination-tool. - Frederick c. EngelHARDT, Manhattan. New York city. The tool is to be
used by machinists for repairing articles of metal or wood. In standards supported by a base, a lathe-spindle is mounted. On its inner end the lathe-spindle carries
lathe-chuck. A holder. mounted to slide on the base, in athe-chuck. A holder. mounted to slide on the base,
provided with a box-receptacle constiating a socket to recive dies for cutting bolt threads. The box-receptacle has vertical grooves in its side walls, extends out through the bottom, and has horizontal groovers in the walls at the bottom, intereecting the vertical grooves. Set-screws in
the side walls of the box-receptacle hold material in place.
Piceer mechanism for looms. - Ephratm M. Kiffrrr, Hespeler, Ontario, Canada. By means of this invention the picker-stick and connected parts are
prevented from being broken in case the picker-stick is prevented from being broken in case the picker-stict is
accidentally locked agaiisst movement by the ehutlees lodging on the top of the picker, thereby preventing the picker-stick from actuating the picker avd throwing the shuttle through the open shed.
CAN-LabELING MACHINE. - WhilinM H akhite or track and are successively operated upon. portiou of the adhesive material is appplied to the can;
and the can is then rolled upon a pile of labels, ricking off and the can is thein rolled upon apile of labell, picking of
theupper label by means of the adheeive material and then thenpper label hymeans of the adhesive material and then
wrapping the label about the can, the other end of the wrapping the label about the can, the other end of the
label being pasted so that, as it is wrapped about the can it will be secured in place. The novel features of the in vention are an improved means of feeding the cans to enables cans of difiererent sizes to be labeled ; a mechanism for regulating the rate at which the cans are fed; a deviec for applying a small quantity of paste to the can ;
a label-feding mechanism ; and a seaming appliance. HOISTING-GRIP. York city. The hoisting-grip comprises a caeing in which gripping-jaws are arranged and mounted to move toward or from each other in order to grip or release the
cable. The jaws are provided near their upper ends with outwardly-estending ears or lugs formed with In the casing cam-levers are pivoted, the cam ends of which are adapted to move into or out of engagement with the jaws to grip the eable or rope. Links pivoted to the outer ends or the evers are connected with
hoisting device. Upon an npward pull, the links caus the levers to move the jaws into gripping contact with
the hoisting rope or cable. The device is simple and durable in construction.
Grinding-machine. - Fred à. Nystrom, Cosmopolis, Wash. The invention is designed to grind the faces of band-saw wheels and to render these faces
true to insure proper running of the band. The machive comprieses two oppositely-extending swinging frames, in one of which a griuding-wheel is mounted and in the other of which a pulley is held. Between the grinding
wheel and the pulley, gearing is arranged, whereby the former is operated from the latter. An adjusting device
for the frame cariving the grinding. wheel is provided. clip-forming machine.-Grorge E. Sope Kankakee, III. The invention relates to improvemente in machines for forming or bending metal into U -shape to form clipe while the metal is cola, thus saving the ex-
pense of heating and the extra work of handling hot pense of heating and the extra work of handling hot
metal, Manufacturers flnd it neceasary to heat the stock before tending, so that when formed, the opposite members of the clip will remain parallel when cold ; for, in the ordinary method of cold bending, the ends of the members epring out of parallelism. According
to the present invention, the metala strip is so bent that when finished, the side members of the clip will be spaced apart equally throughuat their length.
Friction-brake. - Frignd N. and Harrf w.
Whicomb, Barre, Vt.
This friction-brake is designed Whrtcomb, Barre, Vt. This friction-brake is designed
for une on power captans and other machinery. The mechanism comprises a brake-wheel; a split brake-ring having one end forked and carrying brake blocks on its
outer face to engage the brake-wheei; and a shaft mounted in the forked end of the ring. An eccentric is mounted in the forked end of the ring. AR Aecentric is
secured to the shaft between the members of the fork of the ring, with its working face projecting beyond th ? end of the ring. The drum can be readily braked hy turning the shart to open or close the ring and move the
blocks into or out of engagement with the brakehlocks into or out of engagement with the brake-
wheel.
device for emptying tanning-leaches. - Benvamin Srkrs, Curwensville, Penn. The combined arms which radiate from a hab and which closely approach the inner face of the leach. Each stirrer-arm is
provided with collecting-blades, the shanks of which are adjastably bolted to the stirrer-arms. These collectingblades serve to plow the tan from the center of the leach and diriect it to the eidees, so that by means of the stirrer-
armes it can be pushed to a dischargeopening. arms it can be pushed to a discharge-opening.

Dental Inventions.

DENTISTRY. - Avevsr P. Jowsson, Ada, Minn.
attachment of pivot.teeth. The crown or artiicial tooth
has a symmetrical conoidal cavity. A post or anchor is baked in the crown and dixed in the center of the cavity. convex, metal cap, made separately or independently of the crown and poot, has a central opening adapted to recive the post and allow adjustment therein. The cap Is the cavily, whatever may be the adjustment of the crown. The crown can be eet at an angle to the root,
instead of in alinement with it, without affecting the ac-
curacy of the fit The crown has inteac of the fif. The crown has all the merith of the
curacl--
well. dentist's stool.-Georar b. McKinner, Barry in. This improved stool is so constructed that it will have a yielding or spring action laterally in any direction, the spring-section permitting this action being a
portion of the standard or upright of the stool. The eat of the stool can be conveniently raised, lowered, and held frmly in adjusted position.

Vehicles and Their Accessories.

TRACE-LOCK.-Thomas J. Halstead, Dallas, Tex. The trace-lock consists of a ferrule adapted for attachment to a whiffetree, and a button carried by the
ferrule, which button can be placed and held in either a horizontal or a vertical position and be operated by one and as readily in the dark as in the light.
thill-CoUPling. - Winston K. Pendleton, coee, Fla. The object of the invention is to provide thill-coupling of comparatively few parts, easily dethe shaft or pole can be coupled quickly and securely The pole is held by jaws having recesses at their upper ends. A base-plate extends beneath the axle, is connected with the jaws, and has an aperture near its rear end. A bolt extends loosely through the aperture near its rear end. A clip engages the bolt and extends over sses in the jaws. The shaft or pole is securely held om withdrawal.
HANDLE.BAR. - ALEEANDER BIEs, Schenectady,
V. Y. This bicycle handle-bar . Y. This beacle hande-bar comprises the usual stem futed pins are inserted. The gripping bars have thei tuted pins are inserted. The gripping-bars have their
tubular ends interiorly fluted and arranged to fit over the abular pins and into the tubular ends of the head. The gripping-bars can be readily raised or lowered and moved nearer together or further apart to suit the convenience of the rider.

Railway-Appliance

RAILWAY-CAR CHOCK. - Joun T. Condon, Le Mars, Iowa. When cars are switched to a siding, it
ometimes happens that, by reason of too great mo sometimes happens that, by reason of too great mo-
mentum or failure of the brakes, they will pass off the mentum or failure of the brakes, they will pass off the
siding and on the main track again. The invention provides a simple device for preventing the cars from pass ing off the side track. The device consists of a lever
controlled, hook-shaped beak which can be lapped ove the track to obstruct the car-wheels.

Miscellaneous Inventions.
FURNACE.-John S. L. Rodrick, 101 Fifth Street Washington, N. W., District of Columbia. A series o upright superheating-chambers encircle the flre-pot and
combustion-chamber and discharge at their upper end into pipes cor heating-fues. By this construction a large number of superheating-chambers is provided, the heat from which fues may be directed into any desired one of the main heating-flues to increase the heat supplied to the main fue and to induce the heat up through the flue. REFRIGERATOR.-Carl Sander, Brooklyn, New York city. In this construction a door, when opened, will occupy a position in the compartment out of the
way and will automatically cause a sliding support for way and will automatically cause a sliding support for
material in the compartment to be carried out of the re material in the compartment to be carried out of the re-
frigerator so that the material is readily accessible. When the door
the refrigerator.
cotton-ValVe.-George W. Williams, Waco, passaye of cotton from rese to a valve for controling the the elevator by which it. is carried to the gins. The valve may be used in connection with an elevator consisting of two divisions, so that one division may be cut
out while the other is in operation. COMBINATION REAMER, TAP, AND COUNTER-SINK.-Carl Boentaen, Astoria, Ore. Mr. Boentge
has devised an improvement in tools for boring and reaming bung-holes in casks and threading the edges on he holes to adapt them for the reception of screw The invention is embodied in two separable parts o tools which are constructed to be used separately and also co-operatively, so that one serves as a pivot-post or
guide for the other during the formation of the counter guide
sink.
ATTACHMENT FOR FIREARM - BARRELS. Reade M. Washington and Alfred W. Capt. Dallas, the noise made when a weapon is discharged and to sup press the smoke almost entirely when black powder used. The mechanism employed includes a deflecting plate, a discharge-chamber with a discharge-opening
and a apring-coutrolled valve. When the bullet is dis charged, the gases are deflected downwardly by the de flecting-plate, against the valve. The pressure of thes gases forces the valve against the discharge-opening,
that the smoke is imprisoned until the pressure in th barrel is sufficiently reduced to permit the spring to open SYRinge.-Cbarles a. Bucklin, Manhattan, Nen York city. At the upper end portion of the syringe
barrel a hollow, enlarged, and longitudinally-taper barrel a hollow, enlarged, and longitudinally-tapered container is formed. The barrel is extended beyond the
end of the container. A cup-shaped gland for the syringe-piston stem is adapted to engage with the barrel A flange on the gland serves as a cover for the container the flange and gland being integral.
boot-Heel.-Charles E. Keller, Los Angeles, Cal. The inventor has devised a yielding heel for boots $\rceil_{\text {spring is attached. The heel is thereby rendered more }}^{\text {and shoes }}$

durable than if constructed e provides an effective cushion.

gold-separator. - Frank P. Hopkins and Lodis Manzere, Spirit Lake, Iowa. Two rotary cylin ders are inclined in opposite directions, one arrange above the other. The upper cylinders have two cylin drical screens of different mesh, and a gravel-screen. interior screen of the lower cylinder upper cylinder to the rial from the npper cylinder is discharged into a rotar
ine pipe and is then passed into a series of receptacles. An air-blast separates fine sand from the values passing into

SURGEONS' CASE.-Emil A. Edlen, Moline, in The purpose of the invention is to provide a case for carrying surgical instruments. Special attention has
been paid to the provision of means for transporting the been paid to the provision of means for transporting the
instruments safely and for permitting their convenient instruments safely and for permitting their convenient
sterilization, as well as the sterlization of other material, such as gauze, bandages, and the like.
hose-coupling. - Sheldon Josepe, Columbua and William H. Clark and William J. Clark,
Salem, Ohio. The coupling is designed to be used where the internal pressure is less than the external
pressure. One section of the coupling has with its head a metallic tubular extension separated from the contiguous surface of the head by an annula chamber. The other mating section of the coupling is provided with a flexible tube adapted to enter the chamber of the first-named section
the head and the tabular extension.
InCUbator.--John Mabus, Minier, Ill. The pir pose of the invention is to furnish a means for turning gge in an incubator without opening the cover. The in-
cubator has a member movable longitudinally cubator has a member movable longitudinally to turn
the eggs and movable transversely to he passed in and out of the incubator. Combined with this apparatus is a reciprocating-bar to which fingers are attached, which engage lugs or projections on the members of the incubator.
hat-SIZE INDICAT'OR.-Abram B. Lustia, Manhattan. New York city. The indicator has separable in a box. If a hat be removed from the box, the coresponding section of the indicator may be detached, the emaining portion of the indicator thus showing not nly that one hat
sizes are still left.
SAW.-RAlph Rockwell, Oracle, Arizona Territor The top and front portion of this buck-saw are made of
a single length of material having a channel along it op or outer portion. A back or handle portion along above the top of the frame. To this upward extended portion a tie-rod is attached, which is carried through the
slot of the front and then through an opening in the ront near its lower end. A frame thus made is light and strong. The usual lateral vibrations are obviated, since
the frame consists of but two sections connected by the handle.
LIFE-PRESERVER.-Pasquale Angelilli, 27 Mulberry Street, Manhattan, New York city. The life-preperver consists essentialiy of two parts, a carbid recepta-
cle and a water compartment, communication between the two being cut off by a spring-pressed valve held in a ormal, closed position by some filling soluble in water normal, closed position by some filling soluble in water.
When the preserver is in use, sea-water dissolves the
filling, thereby removing the resistance to the valvefilling, thereby removing the resistance to the valve-
spring and opening the paseage between the carbid and water receptacles. The acetylene gas generated serves to inflate the life-preserver. The
whenever they are to be cleaned.

Designs.

bOOK-HOLDER.-Edwin S. Wokhr, Geneseo, III. he base of the holder is a parallelogram with laterally nd vertically extending supports for the books. GAME-BOARD.-James L. Robertson, Jr., Manhattan. New York city. The design providesa miniature foot-
tall game-board furnished with flgures upon which the tall game-board furnished with flgures upon which the
various plays are indicated, such as goal from the fleld various plays are indicated, such as goal from the field, end play, tackle play, center play, kick off, answer
kick off, goal play, return kick, and answer to kick.
Note.-Copies of any of these patents can be fur ished by Munu \& Co. for ten cents each. Please state of this paper.

NEW BOORS, ETC.

Peliminari Report on the Struc TUral and Economic Geology of
Missouri. Jefferson City, Mo. : Missouri. Jefferson City, Mo.
Bureau of Geology and Mines.
8vo. Pp. 259.
The reports of the Geological Survey of Missouri are the rule. We regret to note that Dr. John A. Gallaher the State Geologist, died recently
American Metal Mining-Gold. By
Theodore F. Van Wagen. E. M. Theodore F. Van Wagen, E. M.
Denver, Col.: H. R. Van Wagen \&
Company Compa
Tables of Plate and Rivet Values. FOR THE USE OF BOILER DESIGNERS, H. Craft, Cleveland, Ohio. Threefold table.
Engine Tests. By George H: Barrus,
S. B. New York: D Van Nostrand Company
Prive $\$ 4$.
The volume embraces the resulte of over a hundred eed water tests and other investigations of steam enines, conducted by the author. It is believed that the ata here presented will prove of value to the engineerof steam plants and to any who are interested in the economical production of power. The tests are fully de-
scribed and the data presented is elaborate. The book is scribed
a solid
ing.

MUNICIPAL IMPROVEMENTS. A Manual of Methods, Utility and Cost of Pub-
lic Improvements for the Municipal
Officer. By W. F. Goodhew, C. E.
Third Edition. Illustrated. New $\begin{array}{lll}\text { Third Edition. Illustrated. } & \text { New } \\ \text { York : John Wiley \& Sons. } & 1900 .\end{array}$ Price $\$ 1.75$.
The aim of the writer of this work has been to assis members of municipal councils, etc.. in obtaining a goo perspective view of the general plan and scope of va ministration. The trend of the education of all such persons has usually been along other lines, but there is no reason why they should not have an intelligent grasp of the broad facts relating to the municipality, so as to enable them to pass intelligently upon the various mea
sures proposed and enable them even to initiate such neasures.
Practical Hints on Joint Wiping For Beginners in Plumbing. New
York: David Williams Company 1900. 16mo. Pp. 66. Price 25 cents. A practical series of articles bave been combined and useful to all plumbers and also to those who have oc casion to do joint wiping on copper pipes, and on brass,

Mexican Custom House Tariff. Eng
lish Translation from the Official Edi lish Translation from the Offelial Edi-
tion. Translated and revised by J.
P. Tarlor. City of Mexico: F. P. Hoeck \& Co. $1900.12 \mathrm{mo} . \quad$ Pp. 180
Price $\$ 2.50$ United States currency. A very useful book for all who have business with A Hundred Years of German Bridge Building. By George C. Mehrtens.
Berlin: Julius Springer. 1900. Folio Pp. 135.
This book was published for the Paris Exposition of 1900 , by a nnmber of German firms of bridge builders, and the edition is intended for the use of engineers who Tisit the Exposition. 'The subbect is admirably treated,
the illustrations are good and there are 195 half-tone and ine engravings. A vast amount of information is give in the large volume. It is a very satisfactory contribu别 Acetylene. A Hand Book for the Stu dent and Manager. By Vivian B
Lewes, F.I.C. London: Archibald
Constable \& Company. New York The Macmillan Co
The author is a well known gas engineer who has con tributed a large number of papers of great merit to the scientiflc press. The book which he has produced is one been our pleasure to review. The author's style is lucid and his treatment of the subject is most thorough and subject. The publisher has done his part by printing th book beautifully, and the contents of the paragraphs ar deal yoted in red ink marginal notes, adding a grea deal to the value of the book. The half-tone engraving are excellent and well printed; in all there are $2: 8 \mathrm{en}$ tific, technical and a digest of legal enactments and Eng lish patents. One of the most interesting illustrations a lamp post for an independent generator. In countr districtz this will undoubtedly prove of great value
How to Make and How to Mend. By an Amateur Mechanic. London
Swan Sonnenschein \& Company,
Limited. New York: The Macmillan Company. $1900 . \quad 16 \mathrm{mo} . \quad$ Рp. 288 Price $\$ 1.25$.
The book has no Preface and the arrangement is en tirely alphabetical. It tells how to make a number of how to do bookbinding, how to make paint brushe butterfly cabinets, how, to clom curpets, plater cast how to draw curves, how to do dyeing, egg blowing, to kind. kind. The material is most heterogeneons, but the book
will probably prove of value to amateurs who wish to d little oad jobs around the house.
Prehistoric Implements. A Refer head, ascisted by others. Cincinnati Olio: Robert Clark \& Company
8vo. Pp. 429, 621 figures. Price $\$ 3$.
The author antagonizes the reader at once by stating that there are twenty-seven men who may be considere three stienic archæologists, and that there are twenty three others connected with museums, in various capaci-
ties, and it is from the reports and other publications o these twenty-seven authors that much of the information
printed in this book has been obtained. The book is printed in this book has been obtained. The book is
very well illustrated and the engravings show 3,000 spectvery well illustrated and the engravings show i,000 spech
mens. The antiar states that 5,450 persons in the United States and Canada are more or less interested in the kept a card index of such pogy, To them the boo will undoubtedly be of considerable interest, and it will tend to inform the student and beginner, and stimulate the stu
tione.
Hydradlic Power Engineering. By
G. Croydon Marks. New York : D. G. Croydon Marks. New York: D
Van Nostraud Company. liondon
Crosby Lockwood \& Son. 1900. Pp.
360,200 illustrations. Price $\$ 3.50$. 360,200 illustrations. Price $\$ 3.50$.
bis work may be regarded as a successor to a smaller lume of the same author on "Hydraulic Machinery" In the present book an attempt is made to give an out-
line discussion and description of the main points and principles requiring attention by engineers having the pliances of power. It is an elaborate treatise and is well illus trated. The author understands the subject thoroughly and is able to present recent practice.

(2) (8)

HINTS TO CORRESPONDENTS. Names and Address muut accompang all letters

 to may he had at the office Price 10 cents each
Books refred to prompty supplied on receipt o
 (7975) E. A. B. asks: Have you seen or heard anything of the new light given by radium? I an
anxious to get more information in regard to it. Radium is a substance recently derived from pitch blende
It has the strange property of giving off radiations whic affect photograph plates in the same manner as X -ray
do, and that without any apparatue such as is required to produce X-rays. But these radiatione do not affect the
eye. They cannot be detected by it, and to call them lisht is a misnomer. They are not proper light rays in

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending OCTOBER 9, 1900,
AND EACH bEARING THAT DATE.
ISee note at end of list about copies of these patents. 1$]$

Acid, making sulfuric, A. C. Jobnson,

 able, R. D. White et al. .toura device,

 WALWORTH PIPE VISES are the Heaviest and Renewable Steel Jaws. WAL WORTH MFG. CO.,
128 TO 136 FEDERAL STREET, BOSTON, MASS BARNES'
BNEW FRICTION DISK DRILL建第"

SUB-PRESS PUNCHES AND DIES

SENT ON TRIAL.

[^0]

NE
 NE


```
M,
```


miter madinioe e
Molders chapie

[^1]
N. Y. Camera Exchange.

 SENSITIVE LABORATORY BALANCE

Stimulating, Bracing, Healthful and Harmless Combination of
Electric Treatment with Physical Exercise. For headache, nervous weakness and exhaus-
tion, insomnia, heumatism, neuralgia and the Its Effect is Magical The machine is perfectly constructed, handsomely
finished and will wear indefinitely. The life of the
battery is about six months and it can be replaced SEND FOR DESCRIPTIVE BOOKLET Price, Complete with Foot Plate, \$7.50 THE BADGER BRASS CO.

SPEGIAL OFFER!
American $\$ 10$ Typewriter:
 low-priced typewriter on the market, on unusuall yat-
tractive terns. Write prompty for cattilatue and amb
ple work, and see if our offer does not interest you

EVERY BOY HIS OWN TOY MAKER.

 GUYER'S PATENT
DESULPHURIZING FURNACE.
 THE TIN PLATE INDUSTRY IN THE

 Railway accidents apparaius for autumaticaill

saling claini, L B. Reed

Brine
seeves or wheels. apparatus for makinur ribie

stam beiler Mallet. Mor Mos
Steam penerator fi. Durr
ttone dressing machine. A.
tool, fold

 ury can instrunent (i. W. Mhider

Tellurian, J. H. F. Otto. Oi. De. Isies.
Thermostat, electic,
Thill coupting. W. C.Shipherd........

Tire. rubber, J. I. Connable...

 Troley thenbacher..... it co willams

Truck for auterars. A. Mahberg.

Hlustrated Announcement
and Sample Copies FREE
The Youth's Companion,

A Handy Book for Handicrafts-Men

Acetylene Gas Burners.

Sole Agents f
the U .8 s .
Canada.

FRICTION CLUTCHES

Horseless Vehicles,
Automobiles and
Motor Cycles.

Steam, Hydro-Carbon, Electric and Pneumatic

> Motors.

By GARDNER D. HISCOX, M. E.
of "Gas, Gavolene and oil Vapor Engtnes,"
und "Mechanical Movementw, Devices
Price $\$ 3.00$ Postpaid
Thiswork is written on a broad basis, and comprises in it. scope a full illustrated description with details of
tieprogress and manufacturing advance of one of the most important innovations of the timese, contributing
to the pleasure and business convenience of mankind. The make-upand manarement of Automotile Vehicles of all kinds is liberally treated, and in a way that will be
appreciated by tbuse who are reaching out for a better The book is up to date and very fully illustrated with Mutor Cycles, with details of the same.
Large 8vo. About 400 pages. Very Fully
Illustrated.
MUNN \& CO. 36I Broadway, New York

\& THE LAMP OF LAMPS \%

The Pipe of the Century ...THE... " MALLINCKRRODT" PATENT
NICOTINE ABSORBENT AND VENTILATED SMOKING
PIPE IS THE ONLY PPPE FIT FOR A

Scientific Physical Culture

MERITORIOUS INVENTIONS

Scientific American.

MUNN \& CO. 3 bit Batatan. New York

REGEALD ICE MACHMES

LIFELIKE ARTIFICIAL EYES.

GAS ENGINE CASTINGS.

NEW METHOD for LIME BURNING WANTED.

S3 a DaySure

READY OCTOBER2O

TII PMOARES Of IWEETIOU *

By EDWARD W. BYRN, A. M.
Large octavo. 480 pages. 300 illustrations. price $\$ 3.00$ by mall, postpaid to any country in the world. half red morocco, gilt top, $\mathbf{\$ 4 . 0 0}$.
\qquad

-Rays. XXVI-Gas Lighting. XVM-Civin Fingineerine,
XXIX - Metal Working. XXX-Fire Arms and Explosives.
ne book will be r
MUNN \& CO., Publishers, Scientific American 0ffice, 36I Broadway, New York.

－MADE AT KEY WEST；－
These Cigars are manufactured under the most favorable climatic conditions and from the mildest blends of Havana to－ bacco．If we had to pay the imported cigar tax our brands would cost double the money．Send for booklet and particulars．

CORTEL CIGAR CO．，KEY WEST．

DON＇T INVEST
YOUR MONEY

 stand these ma－
chines best admit
that the WINTON CARRIAGE

Price $\mathbf{\$ 1 , 2 0 0}$ is superior to all
others in appear－
 THE WINTON MOTOR CARRIAGE CO．．．Cleveland．Ohio AUTOMOBILE PATENTS EXPLOITATION COMPANY．

CHARTER ENGINE
 FuEL－Gasoline，Gas，Distillate Pumps，Hoisters charter gas

ALVAN CLARK \＆SONS， YERKES，Makers of the famous
Q PLKOWA，WASHINGTON， PRINCETON，HARVARD and
Our new Equatorial

This Little Instrument plays the Organ better than most people after
ten years＇instruction and practice．It is called The Improved Maestro It will play Hymns，Popular Songs，Church It will play Mymns，Popular Sougs，Church
Voluntaries，Dance Musis，Overtures，etco，on
Any Good Cabinet Ocgan；and You Can Play It． $\underbrace{\text { Any Good Cabinet Organ；and You Can }}_{\text {Proftable PRICE，S40 Cusiness }}$ the maestro company，Box C，elbridge，n．y

CROSBY＇S

 CLOVES Ather industrated booklet aiglove Puinters，nd unw ards Galloway whole ehide robes．Taxidermy and Head Mount

WALTHAM WATCHES

Over twenty－five years ago the American Waltham Watch Company stated that＂ 350,000 Waltham Watches are speaking for themselves in the pockets of the people．＂ To－day EIGHT MILLION Waltham Watches are in use throughout the civilized world．

The Perfected American Watch＂，an illustrated book of interesting information about watches，will be sent free upon request．

American Waltham Watch Company， Waltham，Mass．

NICKEL Electro－Plating ${ }_{\text {dporatua }}^{\text {rand }}$ Materia

Furn TO MAKE AN ELECTRICAL

，mbum

Che Cypewriter Exchange

ACETYLENE

RESTFUL SLEEP
Re the Y St Home． ＂Perfection＂Air Mattresses，

Style 61．Camp Mattress with pillow attached．Also
showiny Mattress deflated． Clean and Odorless，will not absorb moisture． Can be packed in small space when n MECHANICAL FABRIC CO．，PROVIDENCE，R．

Christmas Present

 bile from old and pexper on earth．Buy your automo－
old buiders．We are the
order very．No Agents．
KOKOMO．INDIANA． JESSOP＇S STEEL Amapoin
for Excellence in Ruality and Wopkinalinh

ZEPHYR MAGNESIA PLASTIC COVERING．

Unequaled as a non－ronductor of heat for use on al

 Guaranteed t，cover 41 square feet．flat surface， 1 inch Magnesia Asbestos Moulded Sectional Covering， Felted Asbestos Air Cell Sectional Covering， Asbestos Cement，and a complet ing materials of all kinds．For prices address insulat THE CORK FLOOR AND$\mathbf{1 3 9}$ Congress Street， The＂Wolverine＂Three 真青
Cylinder Gasoline Ma－ $\begin{gathered}\text { Write }\end{gathered}$ rine Engine．

WOLVERINE

Grand Rapids，Mich

Acetylene Gas Lighting

A BOON TO BICYCLISTS

 Self Adjusting
Bicycle Saddle， Which is construct－ ed on hygienic prin．
ciplesand combinos
eaath，comfort and

[^0]:

[^1]: (Continued on page 25/4)

