
a Weekly journal 0f practical information, art, science, mechanics, Chemistiy, and manufactures.

"Edward Sewall"-Largest Steel Sailing Ship Built in America.


Typical Wooden Schooner on the Stocks.

" Dirigo "-First Steel Sailing Ship Built in the United States.


Five-masted Schooner "Helen Martin." Length, 281 feet 6 inches; beam, 44 feet 8 inches; depth, 20 feet 9 inches; tonnage, $2,265$.
THE NEW ERA OF THE AMERICAN SAILING VESSEL.-[See page 182.]

# §rientific Ammericam. 

ESTABLISHED 184.5
munn \& CO., - - - Editors and Proprietors.
published weekly at
No. 36I BROADWAY, - - NEW YORK.


## NEIV YORK, SATURDAY, SEPTEMBER $22,1900$.

AWARDS TO AMERICAN EXHIBITORS AT PARIS. The authorities of the Paris Exposition have made some amends for their delay in opening the gates to an incomplete World's Fair, by com:nendable promptness in the matter of making awards. The deliberations of 121 juries were conducted during the hottest months of the year, which added to the difficulty of passing upon eighty thousand entries in the time at their disposal. The question of the personnel of the juries, their organization and the value of the awards, while ipteresting subjects, need not concern us at the present time; but there is one phase of the matter which is remarkable: this is the high rank which the United States has taken both as regards entries and a wards.
The total number of entries was 79.712, France naturally cowing first with 31,946 ; then follows the United States with 6,674. Italy with 3.188. Russia with 3.113, Germany with 2.586 , and Great Britain with 1,688 entries. Strange to say, the largest exhibitors next to the United States were countries of minor importance as regards the general interest of their exhibits; thus, Hungary had 3,304 entries, Portugal 3,381 and Mexico 3,419, while sowe countries, such as Jamaica, Port d'Espagne, Singapore and West Australia, had only one or two entries.
Disregarding the lower forms of award, such as "honorable mention," bronze medals and silver medals, let us consider the two highest premiums, the gold medals and the much-coveted "Grands Prix," which is the highest distinction that any exhibitor can obtain except, possibly, by securing a decoration. Our 6,674 entries have obtained for the exhibitors no less than 200 Grands Prix and 642 gold medals. The "entries per award," as regards the Grands Prix, were $33 \cdot 3$, and 104 as regards the gold medal. While we were out-percentaged by some of the other nations, at the same time the showing is a good one when the enormous number of our entries is considered, for we follow France very closely. Her entries per award were $27 \cdot 3$ for the Grand Prix and $5 \cdot 7$ for the gold medal. The United States exhibitors have distinguished themselves in every branch of art, education, and industry. In education we follow France, the jury having given us in this class 32 Grands Prix and 63 gold medals, which is a wonderful showing. In the fine arts it must be said that our success is not as great as that of Italy, Germany, and Great Britain, but otherwise we have received the largest number of awards, namely, 5 Grands Prix and 14 gold medals. In the liberal arts we have also taken high rank, being excelled only by France and Germany, all other countries following the United States. In the classes under this general head we took 17 Grands Prix and 41 gold medals. In machinery we are also excelled by France and Germany, taking 10 Grands Prix and 26 gold medals; in electricity the same conditions prevail, France and Germany exceeding us only in the number of a wards, the Uuited States taking 6 Grands Prix and 23 gold medals. In civil engineering and transportation we took 16 Grands Prix and 65 gold medals, and we are again excelled only by France and Germany, both of which have wonderful exhibits in this class. In agriculture, the United States did exceedingly well, taking 22 Grands Prix and 64 gold medals, but in this class we have to bow before Roumania and Russia, these countries having succeeded in each carrying away over a hundred prizes. In horticulture, forestry and sport, the United States did fairly well, as they also did in food products. In mining and metallurgy the United States ranks next to France, taking 18 Grands Prix and 42 gold medals, in this case distancing Germany by more than 38 prizes. In furniture and decoration we also take a prominent position, coming directly after also take a prominent position, coming directly after
France and Germany. We are excelled by quite a nuruFrance and Germany. We are excelled by quite a nuru-
ber of countries in textiles and clothing. In the chemical industries we obtained 7 Grands Prix and 26 gold medals, this number being excelled only by Gerinany and Russia. In social economy and hygiene we take a very high place, receiving 28 Grands Prix and 106 gold medals, coming next to France. In the army and navy we did not have as good a showing as France,

Russia and Germany, but wo lead Great Britain and other countries.
We have every reason to feel gratified with the remarkable showing, for it must be remembered that to exhibit in Paris necessitates the expenditure of considerable money for transportation of exhibits and maintenance. The majority of the United States exhibits had, of course, special representatives to give inhibits had, of course, special representatives to give in-
formation relative to their display. It is much more formation relative to their display. It is much more
difficult for an American firm to install a satisfactory exhibit than a British or German firm. If there is another international exposition in the course of the next ten or fifteen years, we may expect that the United States will take even a more prominent part than she has heretofore, as she is now doing in the export trade of the world.

## POULSEN'S TELEGRAPHONE

On another page will be found a full description by our Paris correspondent of an invention which has not only added to our store of electrical apparatus an instrument destined to take its place in,our daily life, but also forcibly demonstrated that commonplace physical phenomena, so cowmonplace in fact that they are no longer remarked, when studied and fully grasped no longer remarked, when studied and fully grasped
by a masier mind, may be applied to ends little by a masier mind, may be applied to ends little
dreaint of. The invention in question is a phonograph which magnetically records the sounds converted into electric vibrations by a telephone.
In every college lecture room a simple experiment in magnetism is performed, which has been so often described that it should be familiar to everyone-an experiment which consists in writing with a magnetic pen upon a uniformly magnetized steel plate. At certain places the plate's magnetism is enfeebled, and at others strengthened; so that when the iron filings are distributed over the plate, the letters or words written by the magnetic pen immediately become visible. Upon this simple principle of variable magnetization Poulsen's "Telegraphone" is based. Instead of a steel plate, a steel wire or ribbon is employed, which is passed between the poles of an electro-magnet and permanently, though ununiformly, magnetized by the variable electric currents generated by the vibrations produced in the diaphragm of a telephone transmitter by acoustic impulses. The record thus magnetically transcribed can be reproduced at a telephone receiver by causing the wire or ribbon to pass again between the electro-magnetic poles, so that variable electric currents are produced in the circuit to affect the currents are produced in
Although the physical basis of the telegraphone ha long been known, it is none the less astonishing to find that the differences of magnetism in the wire or rib bon are sufficiently prouounced, and that the magnetic and electric forces entering into consideration are in tense enough to secure the result desired. Indeed, Poulsen was compelled to produce a working model in applying for his patent, in order to convince the skep tical authorities that his invention was based on physically sound principles.
A quarter of a century ago Bell invented a device which aroused no little interest by reason of an ex ceptional simplicity which contrasted sharply with the manifold phenomena of motion which it was its func tion to reproduce. Indeed, there is probably no other apparatus in the entire field of technology which trans mits such complex movements with such simple means A small magnet, an iron core or two, a steel plate, wire coils, and two conductors, that was all which Bell used in transmitting the extremely intricate and swiftly changing acoustic vibrations of the human voice. A careful consideration of the telegraphone proves that its Danish inventor has devised an instrument which is almost as ideally simple as that of Bell.
With the invention of the telegraphone, Poulsen may incidentally have solved a problem which has presented unusual difficulties. What the relay is to the telegraph, his instrument may possibly be to the tele phone. In telegraphy, as we all know, the very long conductors employed increase the resistance to such an extent that the electric current can be transmitted only to limited distances, for which reason a relay is used at the end of a circuit to serve as an automatic key for the next following circuit. The conditions are exactly similar in telephony. The longer the wire, the feebler will the current be at the terminals. For years it has been the self-imposed task of inventors to devise a telephone relay which would answer the purpose of the large telephone systems. Poulsen's apparatus seems designed to meet the requirements which can be exacted of a telephone relay.
But the telegraphone may play not merely the part of a relay; it may even perform functions similar to those of the duplex telegraph. For the last decade an apparatus has been used to send two, and even four or more messages over a single telegraph wire. In telephony, on the other hand, each conversation. as a general rule, must be transmitted by a separate circuit. In Germany, Sweden and England a device is used whereby it is possible to transmit three conversations over two circuits. The task of providing a duplex telephone is, therefore, nearing its accomplishment

The problem seems to have been completely solved by Poulsen's collaborator, Pederson, whose invention is described in the article already referred to.
Although we have not had an opportunity of exam ining Poulsen's telegraphone in this country, and although the account of our correspondent is based largely upon tests made at the Paris Exposition, we are, nevertheless, assured that the instrument has been used in the Danish telephone systems with no little success.
MECHANICAL STOKING IN THE UNITED STATES. Among the signs of the times in the world of steam engineering is the wonderful growth during the past decade of mechanical stoking. Not merely is this scientific method of firing being adopted for isolated steam plants of moderate capacity, but it is safe to say steam plants of moderate capacity, but it is safe to say
that mechanical stoking has come to be regarded as a that mechanical stoking has come to be regarded as a
sine qua non in the equipment of a large modern power sine qua non in the equipment of a large modern power
station. Just how extensive has been the growth of this industry may be judged from the fact that one firm alone in this city, who handle what is probably the most successful form of stoker in existence, are now installing at the power houses of the Metropolitan Street Railway Company of this city, mechanical stok ers for a total of 66.000 horse power of boilers, while they are, furthermore, equipping over 225,000 horse power of boilers in various parts of the United States.
These figures are particularly striking when we bear in mind that the era of the rapid growth of the indus try in this country has been confined almost exclusively to the decade which is now drawing to a close. As a matter of fact, at the commencement of this decade there were only three mechanical stokers manufac tured in this country, and the activity which is now manifest in the invention and improvement of existing forms is due to the stimulus offered by the excellen results achieved by the Murphy, the Brighman, and the Roney types. The later forms are almost entirely improvements upon designs which had been patented either here or abroad previous to 1885.
Equally curious is the fact that although the application of this industry on a large scale in this country is of such recent date, mechanical stoking. as such, is as old as the steam engine itself. The earliest records of this subject show that the first mechanical stoker to be patented was one designed by the inventor of the steam engine himself, and it is to the credit of James Watt that the design, crude as it may have been, embodies the essential features of any good mechanical stoker. The coal was fed at the furnace door, and as it became coked was pushed back over two sets of horizontal grate bars. At the front of the furnace it became coked, and the gases from the coking fuel passed over the partially coked and live fuel in the middle and at the back of the grate, where they were completely consumed. Such, in principle at least, is the mechanical stoker of to-day.

The popularity of mechanical stoking is to be set down to the relative obvious advantages over stoking by hand. In the first place, the feeding of the fuel is constant and even. The fresh fuel being introduced only at the front of the furnace is very gradually coked, the liberated gases meeting with a supply of fresh air led in by special ducts to provide the necessary oxygen for combustion, and the bed of incandescent fuel over which the gases pass serves to raise their temperature to the ignition point and secure their perfect combustion. A further advantage is the ease with which a bed of fuel of uniform thickness may be maintained over the whole grate surface. Furthermore, there is the prevention of a serious loss of beat due to the necessarily frequent opening of the fire doors in hand firing, which not only reduces the temperature of the furnace by allowing streams of cold air to impinge on the tube sheets, but subjects the latter to serious strain, and is a fruitful source of leaking tube ends. Other advantages are the great saving in labor in plants which require more than one fireman in firing by hand, and the abatement of the smoke nuisance, due to the very perfect combustion. A further improvement, which is readily appreciated in the engine room, is the uniformity of the steam pressure, rendering the boiler better able to respond to heavy demands for steam. It is stated by an inventor who has had more to do with the modern development of mechanical stoking in this country than any other man, that a well designed stoker, as compared with a hand-fired furnace, will save ten per cent in the fuel, while one man operating a stoker will do as much as two men engaged in hand firing; this last estimate referring to the smaller plants. Where the boiler plant is of such a size as to warrant the installation of coal is of such a size as to warrant the installation of coal
and ash handling machiners, the reduction of labor is and ash handling machinery, the reduction of labor is
estimated by the same authority to be about seventyfive per cent.

In view of the remarkable growth of the industry we are publishing in the SUPPLEmENT a series of illustrated articles, commencing with the issue of last week, in which some of the most representative forms of mechanical stokers will be fully illustrated and described.

## SEPTEMBER 22, 1900.

english vs. german atlantic liners.
It is ruwored in Euglish shipping circles thet the Cunard Steamship Cowpany are going to coustruct two new liners, with the object of lowering the records for "he transatlantic journey, recently established by the "Deutschland" and "Kaiser Wilhelm der Grosse." The rumor, however, is generally discredited, since the English shipping companies have abandoned the contest for speed records. The present tendency is not to build faster boats, but larger and more comfortable vessels. This fact has been irrevocably established by the White Star liner "Oceanic." This vessel was not built with a view to racing across the Atlantic at a trewendous speed, but was intended to carry a larger tounage and a greater complement of passengers at a steady speed with the maximum of cowfort. The "Oceanic" has been such a tremendous success that the White Star Line have another vessel, even larger than the "Oceanic," in contemplation, and the various
other companies, profiting by this experience, are folother compa
lowing suit.
There are several salient points which militate against the English companies attempting to lower the speed records. In the first place, the German steamship companies are heavily subsidized by their government. Therefore, they need not display that econowy which the Eng!ish companies have to observe. The latter receive not a farthing from their governwent, and if the German companies were deprived of their state subsidy, and were to continue their business on the same lines that they now practice, they would iucur a very heavy loss. Then again there is the question of coal consumption, which is troubling the English companies a great deal just at present. It is estiwated that if the "Lucania" or "Campania" were to ruu at 22 knots instead of 20 , which is their present averuu at 22 knots instead of 20 , which is their present ave-
rage speed, they would consume an extra 300 tons of coal a day. This would mean something like $\$ 2,250$ over and above the present daily cost of running. Consequently, it will be readily recognized that the English companies will not incur such an extra heavy ex-
pense for the purpose of saving a few hours upon the pense for the purpose of saving a few hours upon the journey.

## THE TEMPLE LIbRARY AT NIPPUR.

The remarkable discoveries wade by the Pennsylvania University expedition at Nippur under Prof. Hilprecht have awakened great interest, as by these diseoveries the history of Habylonian civilization has been carried back to a period more than 7,000 B. C. Prof. Hilprecht has now returned to Constantinople, and has described some of the chief results of this year's work in the old city. The library of the great temple was the most important discovery which was made. Prof. Hilprecht stated some eleven years ago that the remains of the library would be found at the very place where the discovery was made. In three months no less than 17,200 tablets bearing inscriptions in cuneiform characters had been found. They relate to business contracts, conveyances, letters, etc. The latest discoveries disclose the fact that the tablets are historical, philological, and literary, treating of mythology, cal, philological, and literary, treating of mythology,
grammar, lexicography, science, and mathematics. It grammar, lexicography, science, and mathematics.
is thought that when they have all been deciphered, is thought that when they have all been deciphered,
they will enable us to obtain a very adequate idea of life in Babylonia. None of the documents bear a later date than 2280 B. C. It is probable that the library was destroyed during the invasion of the Elamites, which occurred at this date.
Prof. Hilprecht considers that at the present rate of working, five years will be necessary to excavate and examine the contents of the great library. He considers that the unexplored part will yield 150,000 tablets. We know that the library was of great importance in early Babylonia, and was the chief college for instruction in law and religion, as well as in all other studies. It is probable that no example of a literary treasure trove in the world's history, not even in Egypt, will result in so complete a recovery of the records of ancient civilization. The work of exploration has ancient civilization. The work of exploration has
been stopped on the library in order to continue the work at the temple and to complete the examination of the southern and eastern lines of the walls of the fortifications. The numerous weapons were found along the fortifications in the lower strata. This affords material for determining the methods employed by the besieging armies in the bloody early period of Babylonian history. In the course of the present excavations the palace belonging to the pre-Sargonic periods was uncovered beneath an accumulation of 70 feet of rubbish on the southwestern side, which divided Nippur in two parts. Prof. Hilprecht considers that this palace, which has a frontage of 600 feet, will probably be found to be the palace of the early priest-kings of Nippur. The few rooms excavated have given valuable results in the way of tablets, cylinders and figurines. It is hoped that statues will also be found. A large building with a rewarkable colonnade, which was discovered in the first campaign, has been completely excavated.
An important tomb has also been discovered. The southeast side of the great canal connecting the Tigris

## (\%ixntific gmaricauc

with the Euphrates. The chief finds of the year are about 10,000 inscribed tablets. A third expedition that Gerwany arranged has been at work in Babylonia since the spring of 1899. The greatest success of the year is that made by the American expedition.

## DISTANT WATER POWERS. <br> \section*{by ALTAN D. ADAMs.}

Unfortunately for the average investor in schemes for long distance transmission of water power by electric methods, the dewonstration of financial success in this line has not been made as complete as that of engineering possibility. It seems timely, therefore, to call attention to a few facts in the interest of the man who pays the bills. An attempt is here made to show that the fundamental objection to the electrical transmission of energy at high pressures, over long distances, under ordinary conditions, lies not over long distances, under ordinary conditions, lies not
in the limits of practical voltage, but in the large cost of and material losses in the necessary equipment. The great problem that wust be solved in order to make electrical transmission of water power generally practical, over long distances, lies not so much in
the direction of higher pressures as in the discovery the direction of higher pressures as in the discovery of cheaper apparatus for its transmission to
Before the wholesale transmission of energy from falling water, over long distances, is generally adopted, it 山ust be shown that the transwitted energy can be delivered at the points of use for not more than the cost of the same amount of energy there developed from coal. When those who see great advan-
tages in the delivery of power at long distances from tages in the delivery of power at long distances from the place of its development have found their Utopia, in a source of absolutely free water power, they will still be unable to transmit it to far-away cities, in competition unable to transmit it to far-away cities, in competition
with the stean or gas engine, with coal at ordinary prices, because of the large investment for lines and machinery and the labor item of operation. So limited are the possibilities of electric power transmission, under the conditions imposed by long distances, that if cheap water power wereonly a single wile distant from large cities, it would not pay to transmit it, if the long distance equipment had to be employed for the purpose. In other words, the cost of, and losses in, the electrical machinery necessary for the transmission of power to great distances more than offset the usual difference bet ween the cost of water power at a cheap source and the cost of its production at the point of use from coal at ordinary prices. Again, the transmission of power on a large scale, between distant points, cannot be fairly confounded with the distribution of power over even great areas to small consumers, since widely scateven great areas to small consumers, since widely scat-
tered small power users are not in a position to have their power economically generated at the points of use. The measure of warrant for the transmission of power between distant points is the difference in the cost of power production at the points in question. If it is proposed to transmit the energy of falling water to a distant city or great manufacturing plant, the inducement to the project is the difference between the cost of unit energy from the water power and the cost cost of anit energy from the water power and the cost
of the same energy unit produced by fuel consumption at the point of distribution or use. The power of falling water is so easy to grasp, and apparently so cheap, that it has long been regarded as peculiarly suited to long distance electric transmission. It is a matter of history that many of the best water powers in the United States have cost sums to develop on which the power delivered furnishes but a poor return. Without discussing the actual cost of water power development whiscussing the actual cost of water power developmen from $\$ 100$ to $\$ 150$ per delivered horse power, a woderate yearly price for such power may be assumed at $\$ 15$ per horse power year. The combined efficiencies of the electric transmission equipment is 62 per cent, assuming 90 per cent each for dynamos and motors, 95 per cent each for two sets of transformers, and 85 per cent for the line efficiency. The cost of water power for each horse power year decost of water power for each horse power year de
livered at the receiving station is, therefore, $15 \div 62=$ livered at the receiving station is, therefore, $15 \div 62=$
$24 \cdot 19$ dollars. The cost of the electrical transmission equipment is 86.15 dollars per horse power of delivery capacity at the center of distribution or use at prices of $\$ 25$ per horse power capacity of dynamos and motors and $\$ 10$ per horse power for transformers, the total dynamo and motor capacity being $2 \cdot 45$ and transformer $2 \cdot 49$ times the power delivery. Allowing $\$ 60$ per brake horse power capacity for the machinery of a steam plant at the point where the transmitted power is to be used, the additional expense involved by the transmission equipment is $86 \cdot 15-60=26 \cdot 15$ dollars per delivered horse power. Taking 16 per cent of this extra outlay for the electric equipment gives $26.15 \times$ $0 \cdot 16=4 \cdot 18$ dollars, the annual charge for interest, depreciation, repairs, insurance, and taxes on the additional investment per delivered horse power. Adding the above cost of water power and the annual charges just found gives $24 \cdot 19+4 \cdot 18=2837$ dollars, and this sum, less the cost of coal per horse power year at the steam plant, or $28 \cdot 37-11 \cdot 25=17 \cdot 12$ dollars, is the excess in cost per horse power year delivered by the electric transmission over the cost of the same power from a local steam plant. In order that the electric trans-
mission may deliver power at the same cost as a local steam plant, the cost of water power per delivered horse power year must not exceed $11 \cdot 25-4 \cdot 18=7 \cdot 07$ dollars, and this reduces the charge per horse power year at the water power to $7.07 \times 0.62=4.38$ dollars, on the basis of no outlay whatever for line conductors.
This comparison assumes the same labor of operation and building cost for the two stations and electric transmission as for the single steam plant. Turninis again to the electric transmission equipment, consisting of dynamos, two sets of transformers, motors, and the line conductors, and omitting from the consideration the line loss, the combined efficiency of the other elements is $0.95 \times 0.90 \times 0.95 \times 90=0.73$, so that for each horse power delivered by the motor, $1 \div 0 \cdot 73=137$ horse power must be supplied to the dynamo. The capacity of each. element now is, making that of the motor as 1 , step-down transformer $1 \div 0.9=1 \cdot 11$, step up transformer $1 \cdot 11 \div 0.95=1 \cdot 16$, dynamo $1 \cdot 16 \div 0.9=$ $1 \cdot 22$. On the same basis as above the cost of the elec trical equipment is now, motors and dynamos $(1+1 \cdot 22)$ $25=55 \cdot 50$ dollars, transformers $(1 \cdot 11+1 \cdot 16) 10=2270$ dollars, a total of $78 \cdot 20$ dollars for each horse power of delivery capacity. The yearly charges on this sum for interest, insurance, taxes, depreciation and repairs, taken at 16 per cent, as above, amount to $78.20 \times 0.16$ $=12 \cdot 51$ dollars. As the cost of coal at $\$ 3$ per ton is only $11 \cdot 25$ per horse power year, for a first-class steain plant, the delivered power from a system of long dis tance electric transmission is $12 \cdot 51-11 \cdot 25=1 \cdot 26$ dollar: per horse power year more expensive than the same power from a local steam plant, it being assumed that the transmission line costs nothing and that there is no power lost in it. Or, to illustrate the case, suppose that great central power stations could have free water power if they would use it to drive dynamos, send the resulting energy through two sets of transformers and then into electric motors to be used in driving their regular electrical equipment for local service, the interposed dynamos, transformers, and motors being paid for at above prices. Should the central stations accept such a proposition, power delivered to their regular electric generators would cost $1 \cdot 26$ dollars more per horse power year than the value of the fuel outlay they would save, though there would be no line loss or cost.
These figures are based on the operation of steam engines; if gas engines, which only consume about two-thirds of the coal for an equal output, are used, the result is still less favorable to the electric transmission. It is thus evident that no possible increase in practical voltage, which can only decrease but never do away with the cost of and losses in line conductors, can ever warrant the long distance electric transmission of water power to points where coal can be had at common prices, since such transmissions would not pay if the line dissipated no energy, cost nothing, and water was free at the generating station.

## EXPORTS OF AEEETEAN COAL.

Exports of coal from the United States during the year 1900 are likely to reach $\$ 20,000,000$ in value, year 1900 are likely to reach $\$ 20,000,000$ in value,
against $\$ 10,000,000$ in 1896 and $\$ 6,000,000$ in 1890 . The against $\$ 10,000,000$ in 1896 and $\$ 6,000,000$ in 1890 . The
figures of the Treasury Burcau of Statistics show that the exports of coal from the United States during the 7 months ending with July, 1900, are 50 per cent in excess of those during the corresponding months of last year and double those of the corresponding months of 1898 . In the 7 months ending with July, 1898, the exports of coal from the United States were $2,375,451$ tons; in the same months of 1899 they were $3,006,032$ tons, and in the corresponding months of 1900 they were $4,601,755$ tons. During the period from 1890 to 1900 the exportation of coal from the United States has quadrupled, but the principal growth has been in the years 1898, 1899, and 1900 . While this growth is observable in the exports to all parts of the world, it is especially marked with reference to our exports to the American countries. To British North America, the exports in the 7 months of 1898 were $1,788,398$ tons and in the 7 months of 19C0, 3,253.803 tons. To Mexico the exports in the 7 months of 1898 were 243,938 tons and in the corresponding months of 1900,415 ,834 tons. To Cuba the exports have more than doubled, being in the 7 months of $1898,114.655$ tons and in the 7 months of $1900,241,712$ tons; while to Porto Rico the exports increased from 2,621 tons in the 7 months of 1898 to 15,313 tons in 7 months of 1900 . To the Hawaiian Islands, the exports of the 7 months of 1899 were 10,381 tons and in the corresponding months of $1900,21,001$ tons, thus more than doubling in a single year. To the Philippine Islands the exports in the 7 months of 1898 were 4,810 tons, and in the 7 months of 1900,$41 ; 068$ tons, or eight times as much in 1900 as in 1898.

The experiments with American coal which the Europeans have made in the last two or three years seem to have proved successful, as the exports to Enrope, which in the 7 months of 1898 amounted to only 4.507 tons, were in the corresponding months of 1900. 278.572 tons. Of this, 187 tons went to the United Kingdom, 4.028 tons to Germany. 77,407 tons to France, and 196,950 to other European countries.

THE SPIRAL-GLOBE LAMP.
The employment of incandescent lamps having bulbs of plain glass leaves much to be desired from a hygienic point of view, because the intensity of the dazzling light radiated by the filament is certain to injure the eyesight. Hence shades are often employed to intercept the rays of light, or ground glass bulbs to conceal the filament. But these remedies both involve an-increase in the cost of current since a large percentage of the light is absorbed. It is necessary, in order to obtain the same illuminating effect, to have lamps of higher candle power with consequent increase in consumption of current. It is the object of the inventor of the lamp which is herewith illustrated to remedy the defect and to enable the consumer to use a plain glass lamp without liability of injuring the eyesight; and to utilize all the current instead of partially ob scuring or absorbing the light in order to ren der the lamp serviceable.

The new lamp consists of a plain glass bulb surrounded by an envelop composed of a spir ally-wound rod of plain glass inclosed within an outer protective plain glass globe. The effect of this combination is twofold; for although the main object, as above stated, is to conceal the filament without loss of light, the result is, as a matter of fact, to increase the effective illumination of the lamp, the spirally wound glass rod constituting a double conve lens throughout its entire length and serving so to refract and diffuse the rays as not only entirely to prevent the outline of the filament from being perceived by the eye, but also actually to increase the photowetric value of the lamp in the direction in which it is most desirable that the light should be rendered available.

These lamps, which have a most pleasing and beautiful effect, are now being manufactured in England by the Spiral Globe Limited, of 28 Bush Lane, Cannon Street, London, E.C., and on the Continent by Johann Kremenezky, of Vienna; while companies are in process of formation to manufacture the lamps under license of the Spiral Globe Limited in other European countries.

## AN AUTOMATIC OVAL WOOD DISH MACHINE.

Oval wood dishes are exceptionally good and inex pensive receptacles for butter, lard, cheese, berries, and the like, and are for that reason very widely used by grocerymen. A machine has recently been placed upon the market by the Defiance Machine Works, of Defiance, Ohio, which is designed to make these dishes as quickily and neatly as only a good automatic machine can make them.
The machine is supported by a massive frame cored in the center and pro vided with a broad floor- base. The knives employed consist of a revolving cutter which cuts the dish by a single continuous cut and two facing knives for shaving off the surface of the block between each cut of the dish-knife and making the dishes of uniform size, with straight edges.

The carriage by which the wood block is held is gibbed to the main frame and fitted with and fitted with a powerful chuck which grips the block. The chuck is opened and closed by a handwheel and screw to receive blocks of different sizes A screw extend ing through the frame is connect ed with a quick opening and clos ing nut to engage and disengage the feed. When the
nut is opened, the carriage can be moved horizontally in either direction by rack and pinion, which is used to save time in moving the carriage forward when commencing the cut or moving the carriage back after the last dish has been cut ready for the next block.
The screw-feed is driven by cut gears and is auto matic. After the block has been placed in the chuck the carriage is fed forward by hand-wheel to the point where the cutting is to begin; and the nut is then en caged with the screw by a convenient hand-lever. When the block is fed ford produces a dish, until the entire block is consumed When the last dish is cut, the nut is automatically
placed with appliances for permitting the water which it contains to flow into the trough in any required volume, so as to exactly imitate the even flow of a river. The trough is filled with sand, and the course of the river is laid out at angles down the trough through the sand, and various experiments are tried. The banks are protected by small bags of shot. The water flows at a certain speed, and the places where the bottom is washed out can be easily studied. The sand, which is carried mechanically by the water, is run over ribs, behind which the sand is deposited. The water is then pumped back into the tank
Sand of various colors is used for showing the exact position of the deposit of the sand wash in the rivers. This affords an easy means of determining the rate of erosion and deposit. The effects of freshets, or the sluggish flow of dry autumn, can be imitated at will. New channels can be produced artifically by a sudden flushing of water. Dams, breakwaters, piers, docks, bridges, etc., can be built 'and the effect noted when the water is turned on. The sånd washed out of the trough can be caught by the tin ribs, gathered up and measured ; the quantity of water being known, it is a simple matter to determine the amount of sand carried per cubic foot. The tank can then be cleared of sand and gravel and stone substituted, thus giving another class of phenomena. With the aid of maps and contours, various sections of more important German rivers can be laid out. Prof. Engels, the director, duplicates every curve, builds every crib and breakwater, and then turns on the water at the ordinary rate of flow of the river under investigation
According to The New York Sun, a miniature stretch of the Elbe has just been completed, and the cribs are all accurately placed and their banks are held in placo with bags of shot. After the water was turned on, Prof. Engels showed how. bars were built up and when the channels were deepening, where hollows were being fllled in, etc. He was then able to determine where a new crib might serve to preserve a deep channel and at the same time cause the river to dcposit its sand in shallows, and where the river might well be filled up and add to the asefulness of shore property. In each case where a change was thought to be desirable, experiments with piers and cribs were made to see if they were effective. By this means all of the rivers of Germany can be studied in turn on a swall scale at practically no expense, and saving the cost entailed by a great engineering work which proves use less. The special aim of the experiments is to regulate the rivers in such a way that they will keep their own channel clear and deep enough without dredging. It is believed that there is, a great future for work and it is thought that the time will come when all rivers will be regulated by the advice of river experts who have studied in this or similar la boratories.

TEN new style motor cars are to be placed on the Fifth Avenue ele vated branch of the Brooklyn Rapid Transi Company's sys tem as soon a they are equipped with the electric motors. One re ceived a trial re cently, which seeméd to be sat isfactory be sat built on lines similar to the cross-seat car now run on the East New York line, except that each seat holds only one passen ger. Aisle room is saved by plac ing the seat about a foot be hind each othe at a slight angle.

## POULSEN TELEGRAPHONE

by bphial pari correspondent of the solinntio ame One of the most interesting devices exhibited at the Paris Exposition is the telegraphone invented by the Danish engineer, Valdemar Poulsen. The principle of the apparatus will be understood from the diagram, Fig. 1, in which $E$ is an electro-magnet of small dimensions, placed in a telephone circuit including the battery, $B$, microphone transmitter, $M$, and receiver, $T$. The poles of the electro-magnet are very near together, with just sufficient space to allow the steel wire, $a b$, to pass; the wire may be drawn forward so as to bring its successive portions between the poles. The wire used is steel piano-wire of about $\frac{1}{50}$ inch diameter, and it advances at the rate of seven or eight feet per second. The arrangement resembles that of an ordinary phonograph in which the wire, $a b$, replaces the wax cylinder, and the magnetic flux between the poles, the stylus. The sound is recorded in the following manner: when the microphone is spoken into or otherwise receives a series of impulses, the electric impulses set up in the circuit cause variations of current in the coils surrounding the electro-magnet, and in consequence the magnetic flux between the poles undergoes a series of variations corresponding to the original sound waves. These magnetic pulsations act in turn upon the steel wire as it passes along in front of the poles, and mag. netize it trausversely; each part of the steel wire thus preserves its part of the magnetization, which depends upon the strength of the flux at that instant. The magnetic trace upon the wire thus corresponds exactly to the original sound waves. It remains only to reproduce the record; this is done by connecting the receiver to the terminals of the electro-magnet and passing the wire again between the magnet poles, in the same direction as befor and at about the same speed. As its magnetization varies from point to point its movement between the poles causes a variation in the magnetic flux and sets up a series of pulsating currents in the circuit, corresponding in form of wave with the preceding, and thus a sound may be heard in the telephone receiver which corresponds to the original.
M. Poulsen had constructed several different types of the telegraphone before reaching the form now shown at the Exposition. With this instrument, the sound as heard in the receiver is very distinct and is entirely free from the disagreeable scratching noises generally heard in the phonograph. The illustration and diagrams, Figs. 2a, 2b, and 3, show the general appearance of the instrument and the disposition of the various parts. A drum about 15 inches long and 5 inches in diameter revolves between two supports fixed to a metal base; at one end of the cylinder is a pulley which receives a cord passing below to the motor. In this case an electric motor is used, connected with the main lighting circuit. The drum is of brass and has a spiral groovc in its surface in which is wound a continuous layer of steel piano wire about $\frac{1}{50}$ inch in diameter : the wire makes about 380 turns. The carriage containing the electro-magnet slides upon a rod which extends across between the brackets. The electromagnet, shown in section in the diagram, has its cores formed of soft iron wire about $\frac{1}{25}$ inch in diameter, surrounded by electro-magnets about $\frac{2}{6}$ inch long, wound with fine wire. The poles are brought near together and the ends are sharpened and slightly curved on the inner surfaces so as to partly embrace the wire. The coils are surrounded by insulating materic,l, which consolidates the whole. The magnet, $M$, is helc above the wire upon a support, $\mathcal{S}$, and into it is fitted a con-tact-piece, $C$, carrying a flexible cord for the current. To guide the magnet along the wire by the points alone might injure these, as they are somewhat delicate, and accordingly a guiding arrangement has been provided which consists of a steel knife edge, $K$, fixed to an arm in the rear; the arm is fixed to a brass sleeve, $B$, which slides upon the main rod. In this way, the carriage, which rests also upon the sleeve, is guided by the knife-edge. The arrangement devised by Poulsen to bring back the carriage to the starting point is simple and ingenious. As the cylinder turns the carriage is thus guided to the end of its course ; at this point is fixed an inclined plate, $S$, carried on an arm, seen also to the left of the illustration. The projecting piece, $T$, of the lever, $H$, strikes the plate and the magnet carriage is tilted back in the direction of the arrow ; the lever then engages with a catch, $E$. It will be seen that if the carriage is now moved to the right, the rear arm, $A$, will be lifted by the weight of the carriage around $\boldsymbol{R}$ as a center. This causes
the button, $R$, to engage with a wire, $P$, which is wound spirally around the rod, $O$, and as this rod is revolved by a pulley the carriage is brought back to its starting point. The chain, shown at $L$, serves to hold the magnet off the wire when not in use.
In order to reproduce conversations with the utmost distinctness, the wire-wound drum múst be rather
this time is far too short. Longer conversations ar recorded and reproduced by means of the apparatu shown in Fig. 4, in which a very thin, flat steel ribbon, resembling a telegraph tape, takes the place of the wire. The ribbon, $A$, passes from one roll over a standard mounted in the middle of the apparatus to a second receiving roll. Upon the standard the electro magnet-not shown in the illustration-is mounted, the two poles. of which are ar ranged transversely to the ribbon. The principle is the same as that of the in strument previously described. Although the layers of the ribbon are tightly rolled in a coil, the magnetisin of one layer exerts no influence whatever upon the magnetism of the adjacent layers.
A conversation once magnetically recorded can be repeated indefinitely. Experiment which have been made show that a con versation can be reproduced from one to two thousand times without any perceptible diminution in clearness.
To efface the record, it is necessary only to pass a current from a few cells of battery in the circuit of the electro-magnet, when the magnetization of the wire is equalized and it is ready to receive another record Poulsen recently presented an account of the telegraphone to the Académie des Sciences, in which he explained its principles. He also noted an interesting experiment which has been made by his assistant, M. Pederson who has charge of the instrument at the Expo sition; this is the registering and reproducing o two separate conversations on the same wire. Two electro-magnets are used, whose windings are combined so that each is insensible to the record produced by the other. The first electro-magnet has its windings con nected in series, and the second in opposition; under these conditions the records produced by the two mag. nets may be superposed and separated at will. The superposition of the two magnetic curves has the effect of a resultant in each point of the steel wire, but as one of these components is always neutralized by one or the other of the receiving magnets, it is seen that by using one or the other set of magnets, the first or second series of components may be received, that is to say, the first or second conversation
The telegraphone is already in practical operation in several telephone stations in Denmark, and by its use telephone messages may be received and kept indefinitely. A subscriber mạy thus receive messages which have been sent in his absence.

## The Majert Accumulator.

A new type of accumulator, designed by Dr. Majert, of Berlin, is coming into use in France, and is now being made by a firm near Paris. In this battery, the negative plates are of the Faure type with lead grid upon which the oxide is pasted; a second form has a grid formed with horizontal projections, which are bent up after the active matter is applied, thus holding it in place. The construction of the positive plate is the main characteristic of the system; it is of the Plante.type, being of solid lead upon which a layer of peroxide of lead has been formed; this form is considered as more solid and will permit of discharging at a greater rate, while at the sane time a great capacity is obtained; however, to realize these advantages, a great surface must be obtained within small dimensions. The usual method of doing this is to make a plate with a greac number of crooves, but this is somewhat difficult in practice. With the plate made by the Majert process, for a battery of one to three hours' discharge, the grooves are about $\frac{2}{5}$ inch deep and $\frac{1}{50}$ inch wide, separated by $\frac{1}{50}$ inch. A plate of this kind cannot be obtained by moulding, and the method of forcing is through a die by hydraulic pressure involves too great an outlay for dies and power. In the Majcrt process a traveling cutter is used, of special form, traich cuts the required speove in the hich cuts the required groove in the plate; an arrangement is used to take out The plate is placed on a perfectly plåne table, and to keep the lead flat a roller passes over it in advance of the cutter. The plate is thus cut on both sides; the tool can make ninety courses in one minute. The arrangement is automatic, and one workman can attend to two plates. To cut a plate having 100 square inches surface requires about ten minutes, making fifty to sixty plates per day.

Prof. HaEckel, of Jena University, and David J. Walters, a law student, are about to start to find the pithecanthropus. Mr. Walters intends to pursue his inves tivations in Java and will arrive in tha isle before the great evolutionist. The pithecanthropus if found will be of great value, as it will tend to supply the miss ing link in the evidences of evolution.

## Sarrespondence.

## Tip from an Inventor

To the Editor of the Scientific American
Under the heading "Tips for Inventors," the matter in your issue of July 21, 1900, reminds me of a very clever all-round inventor of the name of Alexander Burr, with whom I had the benefit of being intimate wuile. serving wy apprenticeship as mechanical engineer in Glasgow, Scotland.
Mr. Barr, or "Sandy " Barr, as his intimates used to call him, styled himself "Inventor for Manufacturers," and had a large clientele of manufacturers who used to come to him with their sorrows, and Barr generally invented some device to help them out.
I was in his sanctum one day, when a large egg shipper called and told Barr he wanted a better way of packing eggs. Barr talked over the existing methods of egg packing with him, and before he went promised to show him something new in that line inside of a week.

After the packer left, Barr turned to me and said, " What would you select in nature to hold an egg?"
"I don't know," said I.
You would never select a sun-flower, would you?" said Barr.
"I think a tulip would be better, as far as shape is concerned," I replied.
"All right," he said. "Make a three-leaved tulip out of wire, with springs at the base of the leaves for adjustment, and of such a size to hold an egg of ordinary dimensions comfortably."
I set to work under his instructions, and the result was called "The Barr Patent Ovifer." Ovum-egg, and fero-to carry-thus derived.
Three wire tulip leaves were fastened at an angle of $120^{\circ}$ on a piece of board, and held an egg very securely. From the time the egg shipper left Barr's office till we had the first experimental egg holder finished was sollething like two and a half hours. The holder was subsequently bought by the egg shipper, who paid £250 for it.
Since then I see it has been improved upon by substituting two oval wire leaves, without any spiral spring at the base, but the first idea was gotten from nature. $\quad$ E. A. Suverkrop.

Philadelphia, Pa., August 21, 1900.

## THE NEW ERA OF THE AMERICAN SAILING VESSEL.

Basing the conclusion on the development of the past few years there is nothing extravagant in the prediction that American sailing vessels will ere long have fully regained their supremacy awong the world's wind-propelled craft. Statistics how, to be sure, that the de crease of Awerican sail tonnage has been, during the past few years, proportionately as great as that of other maritime nations, but this is due almost solely to the passing from existence of old wooden hulks, which are now arriving at the termination of their period of usefulness in great numbers. The other side of the picture is vastly different. The problems presented by hish priced fuel and other conditions have proved that there is yet a field of work for the sailing vessel, and five- and six-masted wooden schooners and steel sailing vessels are being constructed to meet the new requirements, and doubtless to prove, in their way, quite as successful and profitable as their predecessors.

These new vessels are considerably larger than the clipper ships with which Aimerican shipbuilders startled the shipping world about the middle of the century. In fact, most of the steel sailing vessels now being turned out at Bath, Me.-long famous as the home of the clipper ship-are in excess of 350 feet in length; whereas the "Great Republic,"thelargest of the old clipper ships, was but 325 feet long and carried but 4,060 tons as against 5,000 tons, which is the average capacity of the new vessels. The sailing vessels of recent construction, both wood and steel, have made some wonderful speed records and have easily discounted the performance of that one-time pride of the shiphuilders, the "Red Jacket," which sailed frow New York to Melbourne, 12.720 miles, in $691 / 2$ days, or the "So vereign of the Seas," which covered 5,391 miles in 22 days.
It must not be supposed that the sailing vessel of steel construction, or rather metal construction, is an absolute innovation. Early in 1883 there was launched at the shipyard of John Roach, at Chester, Pa., the "Tillie E. Starbuck," a full rigged iron ship, the first metal sailing ship built in the United States and one "f the first turned out anywhere in the world. The "Starbuck" was also the first sailing vessel in the world to carry metal masts. She was 273 feet in length, 42 feet beam. and 26 feet depth of hold. She was of somewhat over 2,000 tons burden and cost $\$ 150,000$. The seaworthiness of the iron sailing ship was early proved seaworthiness of the iron sailing ship was early proved
by the behavior of the "Starbuck" in a terrific gale around the Falkland Islands, when her iron wasts neither broke nor stranded, and the general efficiency of this class of craft is attested by the fact that the vessel in question is to-day trading around the world.

As to whether the lately renewed activity in the construction of sailing vessels is to be permanent or temporary there is a wide divergence of opinion, even among men in the shipping world, and consequently it is equally uncertain whether the steady decrease in the sail tonnage owned in the United States can be stemmed. To present figures showing accurately the extent of this decrease is well-nigh impossible because of the manner in which the governmental statistics are prepared. For instance, whereas there are owned in the United States 13,300 sailing vessels, aggregating the United States 13,300 sailing vessels, aggregating
$1,825,000$ tons burden, in all comparisons they are in$1,825,000$ tons burden, in all comparisons they are in-
cluded with the unrigged craft, such as canal boats, and thus the total appears as 15,891 vessels of $2,388,000$ tons. Regarding the iron and steel sailing vessels, the statistics are, however, presented in detail and show that there are owned in America 120 vessels of this class, aggregating upward of 174,000 tons burden. This is about one-eighth the tonnage of the steam vessels of iron or steel construction owned in the country.
The full meaning of the discovery of new usefulness for sailing vessels is in no wise better attested than by a glance at the condition of the shipbuilding industry on the coast of Maine-long the center of this branch of the industry. Shipyards which had been closed for years have been re-opened during the past twentyfour months and other plants have been improved in equipment and materially enlarged. In 1890 there were completed at Maine yards vessels aggregating almost 75,000 tons burden, but the industry gradually declined until in 1897 the total output was but 5,000 tons. In 1898, however, the revival set in and the year closed with a showing of almost 30,000 tons. The tota passed the 50,000 ton mark for the calendar year 1899 and during that year the port of Bath alone turned out almost 40,000 tons.
Indeed, the port of Bath has, since the renewal of ac tivity, regained the first rank among the shipbuilding centers on this side of the Atlantic. During the fiscal year which ended June 30, 1899, Bath built more mer chant tonnage than any other customs district in the United States, and moreover she built more tonnage of this character than was turned out in any entire State of the Union, save Maine. Only three districts in the United States turned out wore than 20,000 tons. The showing is as follows: Bath, 43 vessels, aggregating 46,693 tons; Philadelphia, 37 vessels, aggregating 37, 625 tons ; Cuyahoga (Cleveland, O.), 13 vessels, aggre gating 34,467 tons. Bath is also, in proportion to popu lation, the leading ship-owning city of America, ther being 12 tons of shipping per person owned in that being
city.
Th
The steel sailing ships, which are, of course, by far the most interesting of all the craft of this character, have all been built by the firm of Arthur Sewall \& Com pany, of Bath. The Sewall yard was first established in the first quarter of this century, and since the launch ing of the brig "Diana" in 1823 more than a hundred vessels have been turned out. About six years ago the Sewall yard was transformed to a plant for building steel ships, and the "Dirigo," the first vessel of this clas which they completed, bore the distinction of being the first steel sailing vessel ever built in America. The steel for this initial vessel was imported from Glasgow, but the material for the later vessels has been secured in America. The "Dirigo" has already made some re markably speedy voyages.
The steel sailing ships "Erskine M. Phelps," "Arthur Sewall," and "Edward Sewall," which followed the "Dirigo" from the yard of Sewall \& Company, are each upward of 3,000 net tons burden. In general design all three are practical duplicates. The "Arthur Sewall" may be taken as a fair example. She is 354 fee in length over all, 45 feet beam and 25 feet depth of hold. When loaded she draws about $221 / 2$ feet of water. The whole construction of the vessel is stron and rigid, and she will fully meet the requirements of any of the classification societies. She is a two-decked vessel, and both the lower and main decks are continuous, extending throughout the entire length of the vessel. The main deck is plated throughout, and the lower deck for about 200 feet amidships.
Two commodious steel deck houses are provided One is 46 feet in length and the other 26 feet, wherea each has a width of 18 feet. In the former, which is located forward, are the crew's quarters, consisting of twenty berths, the galley engine and boiler room-and coal bunker. The other deck house, located amidship contains six rooms for the petty officers, and a carpen ter's shop. In the poop, aft, is a large, handsomely furnished cabin for the captain. Here, also, is the din ing room, and adjoining it the main saloon. Opening off the main hallway also are the officers' staterooms and lavatories and bath-rooms. On the poop deck above is still another house, with accommodations for several passengers. The "Arthur Sewall" will carry 5.000 tons dead weight on the draught above mentioned. She has a neat sail plan and each of her four masts is 100 feet or over above the main deck. The lowe masts and topmasts are of steel in one length. Some of the spars are also of steel, including the three lower yards on each mast. The vessel cost over $\$ 150,000$ and
is sailed by a captain, four mates, engineer, sail maker cook, steward, tweuty seameu and eisht boys-thirty seven men in all

The "Ed ward Sewall," the fourth and last of the steel ships to be turned out up to date by the Sewalls, is only slightly larger than the ship "Arthur Sewall" just described, but is thus entitled to rank as the larg est steel sailing vessel ever built in America. She also is shipentine rigged and is 355 feet in length, 45 feet beam, 28 feet depth and 23 feet draught. She is a two decked vessel with poop and forecastle and two deck houses for the crew and donkey boiler. Her lower mast and topmasts are of steel, each in one piece, and measure 110 feet above deck. The vessel carries total of thirty-four sails and cost over $\$ 160,000$.
The wooden sailing craft have in their recent increases in size fully kept pace with the development which has characterized their steel prototypes. When it was proposed to build a five-masted schooner as a successor to the three- and four-masted craft winich had been in service for many years previous to 1898, the suggestion was laughed at in many quarters. Never theless five-masted vessels were constructed and proved a success. The same prophecies of failure greeted the plan, later, to construct a six-masted schooner, but the fall of 1900 will see the entrance into commission of the first latter class of carrier.
The pioneer five-masted schooner was the " Nathaniel T. Palmer." She is 285 feet in length, 44 feet beam and 22 feet deep, and spreads 10,000 yards of canvas. A vessel which, when she went into commission early in 1899, was the largest fore and aft schooner ever con structed for ocean service, was the five-masted craft constructed by H. M. Bean, of Cariden, Me., for Capt J. G. Crowley, of Taunton, Mass. A number of capi talists are interested with Capt. Crowley in this large vessel which cost $\$ 90: 000$, and the vessel men who have been talking of the speedy decline if not total disappearance of wooden sailing vessels have had some difficulty in reconciling with their theories the fact that such men as Henry W. Cramp, of the large Phila delphia shipbuilding firm, are among tho-e who have put money in this and other similar ventures.
The five-ruasted schooner constructed at Camden, Me., is 318 feet in length, 44 feet beam and $211 / 2$ feet depth. The spread of canvas aggregates 10,000 yards and the vessel will carry 4,000 tons of coal on a draught of 23 feet. The frame of the vessel is of Virginia oak, and the planking inside and out of Georgia pine. There $e^{\text {"e }}$ five Oregon pine wasts, each 112 feet long. The diameter of the foremast is 29 inches, while each of the other four masts is 28 inches in diameter. The vessel is lighted throughout by electricity and heated by steam, and has all the latest improved equipments, including steam steering gear aud two 6,000 -pound anchors. Like a number of other large schooners of this class, she is engaged in the coal trade between Philadelphia and New England ports.
The five-master had scarcely been completed ere Capt. Crowley opened negotiations with Mr. Bean for the construction of a six-masted schooner, and work on this monster craft was commenced in the autumn of 1899. The vessel, which will cost when completed $\$ 100,000$ and will have a capacity for carrying 5,500 tons of cargo, will be ready to enter service late in the summer of 1900 . The huge schooner is 330 feet in length, 48 feet beam, 22 feet depth of hold, and $\cdot$ will draw 24 feet of water when loaded. Her lower masts of Oregon pine are each 116 feet long, and her topmasts are each 58 feet in length. Wire rigging will be used exclusively and four commodious houses are provided on deck. The puinps on the vessel are capable of throwing 1,000 gallons of water per minute, and the chains and anchors are exactly the same size as those placed on the new battleship "Kearsarge."
Perhaps the subject of the new era dawning for American sailing craft should not be dismissed withont a word regarding the increased attention which the Navy Department is devoting to training ships. The remodeling of the "Hartford" has lately attracted considerable attention, but of far greater moment is the new training ship "Chesapeake," lately completed at the yard of the Bath Iron Works, at Bath, Me. The "Chesapeake" is the first sheathed vessel built in this country, and the only sailing vessel that has been built for the United States Navy since the sixties. The ship, which is full-rigged, is 225 feet in length, 37 feet beam, has three decks and $161 / 2$ feet draught and $1 ; 200$ tons displacement. She will spread 20,000 square feet of canvas.

The Meeting of the Association of Official Agricultural Chemists for 1900 .
In harmony with the vote of the executive committee, the seventeenth annual meeting of the Association of Official Agricultural Chemists will be held in Washington, D. C. beginining Friday, November 16, and continuing over Saturday and Mondar, 17 a $\cdot$ d 19 , or until the business of the association is completed.

The authorities of Columbian University have extended the courtesy of the University lecture hall for the various sessions.

A factory for liquid air is being erected at Los Angeles, Cal., for refrigerating purposes.

The monument to Lavoisier, erected by international subscription, was unveiled at Paris, July 27, in the presence of a large number of scientific men.
The superintendent of Yerkes Observatory, G. W. Ritchie, has recently perfected a device which renders it possible for astronomers to use the ordinary visual telescope for photographic astronomy. The device consists of a color screen that can be adjusted to the lens of a powerful telescope, thus adapting it for photographic use.
Among the American firms which received the -Grand Prix" at the Paris Exposition was the Smith Premier Typewriter Company, for their machines. The Prix was awarded at the highest rating of the jury, the machine leading all the others as regards the number of points allowed. "Jessop's Steel" was also number of points allowed. "Jessop's steel" was also
a warded a Grand Prix. The firm's exhibit was much awarded a Grand Prix. The firm's exhibit was much
the same as that made at the Chicago World's Fair. the same as that made at the Chicago World's Fair.
The famous tool steel has taken over twenty highest exhibition awards. 'The Jeffrey Manufacturing Company, of Columbus, O ., have been awarded a gold! medal at the Paris Exposition for their elevating, conveying, and mining machinery.

At a recent meeting of the Socieţ Française de Physique, M. Henri Villard announced that he had succeeded in giving a radio-active property to bismuth, by submitting it to the action of cathode rays in a Crookes tube. The best result is obtained by taking the metal as the anode, and the regions which are most exposed to the action of the cathode rays are found to be the most active. The experiment may also succeed by using the biswuth as the cathode, and in this case the region frow which the rays depart is found to be the least active. Lastly, the bismuth disintegrated and carried to the walls of the tube is also radioactive. The activity communicated to the bismuth by an experiment which lasted about one hour is very feeble, and is quite inferior to that of uranium. It is nevertheless sufficient to permit of verifying by photonevertheless sufficient to permit of verifying by photo-
graphic means the fact that the rays from the bismuth will traverse black paper or aluminium, or the two together. This action appears to be permanent, for at the end of a wonth it had not appreciably diminished.
The color reaction of Klunge, obtained by the addition of cupric sulphate and sodium chloride solution to an aqueous solution of barbaloin, has been regarded as characteristic of aloin. E. Léger finds, however, that the red color developed is not due to barbaloin at all, but to the accompanying iso-barbaloin; pure barbaloin obtained by repeated recrystallization does not give this reaction, but the iso-barbaloin thus separated gives an intense violet-red color. Léger goes further, and employs the reagent of Klunge to purify barbaloin from its accompanying iso-compound, heating the aloin with solution and collecting the crystals which separate on cooling. In this way an aloin is obtained which ceases to react with Klunge's solution, and is, according to the author, pure barbaloin. When recrystallized from methylic alcohol, it is of a paler color than the impure aloin; it gives no color reaction either with Klunge's reagent or with $\mathrm{HNO}_{3}$. Its triacetyl-triclorocounpound melts at $1648^{\circ} \mathrm{C}$. The author is examining Cape aloes, which he finds to contain barbaloin, as well as another aloin differing from those hitherto described by him.-Comptes Rendus.
The Rev. J. M. Bacon, of England, has invented a dot and dash system for the purposes of signalling from a balloon, and has recently been carrying out some interesting and exhaustive experiments from the car of a balloon, to endeavor to establish communication with the earth beneath. He ascended, in company with two other aeronauts, to a height of 2,000 feet. Suspended at the end of a wire, some 300 feet below the car, was a large cracker, such as is employed in prrotechnic displays. This cracker was fired from the car by the passage of an electric current. The aeronauts observed the fiash and then timed the seconds that elapsed before the echo was heard. About five seconds passed and then reverberating rolls of thunder were distinguished, lasting some twenty seconds. The noise, owing to the clear, rarefied atmosphere at that height was deafening. The balloon, at a height of 6.500 feet, then drifted over Aldershot, and attempts were made to communicate with the military camp beneath. Slung below the car was a concertina-shaped contrivance, controlled from the car by strings. These were suddenly jerked in a manner similar to that in which a telegraph operator actuates his key, and loud. intermittent sounds were transmitted from the instrument. Owing to the tendency of sound to travel upward, some time elapsed before the signals reached the ward, some time elapsed before the signals reached the
earth below, and then the soldiers transmitted their replies by means of the heliograph. Once the communication had been established, no difficulty was experienced in the transimission of the signals. The aeronauts, however, were puzzled somewhat in reading the bright heliograph flashes at that altitude, owing to the flashos following each other somewhat rapidly.

There are 120 firms in Germany engaged in the acetylene industry. Most of the burners are made at Nuremberg. There are no less than 26 small towns in Germany lighted by acetylene gas. The first plant of this kind for lighting swall towns in Germany was erected at Hassfurt, a town of 2,500 inhabitants.
The United States monitor "Wyowing" was launched on September 8, at the Union Iron Works, San Francisco, Cal. 'The event was made a feature San Francisco, Cal. 'The event was made a feature
of the semi-centennial celebration of California's adof the semi-centennial celebration of California's ad-
mission into the Union. Little more than the hull of the "Wyoming" is finished, but work is being pushed forward rapidly.
For some little time the air cars on the Twenty-eighth Street and Twenty-ninth Street cross-town lines of the Street and Twenty-ninth Street cross-town lines of the
Metropolitan Traction Company, of New York city, have not been in use, and the old horse cars were resurrected. Now, however, the rails on these streets have been replaced by heavier ones, and a new roadbed is being built. When the work is completed, the horse cars will be taken off, and new and heavier air motor cars will be substituted. In the new cars the heaters are much larger than in the old ones, and the machinery lies low down in the truck, thus giving great stability to the car. A number of new cars have arrived in New York, and are being tested on the Eleventh Avenue tracks. The storage battery cars on the Thirty-fourth Street line are run in considerable numbers, and the service is fairly satisfactory. At places there seems to be some difficulty in starting the car when there is a heavy load.
It has long been known that wood dissolves in concentrated acid, and that the solution on further dilution and boiling passes into dextrose. One could not start with diluted sulphuric acid, however, as then by-products would form, which prevent the isolation and subsequent fermentation of the dextrose. Alexander Classen has, however, now made the observation that ordinary chamber acid may be applied under certain conditions, and the observation has a inore general interest. If one part of sawdust is mixed with $3 / 4$ part of acid of $55^{\circ}$ or $60^{\circ}$ Baume, a greenish mass results, which, on extracting, does not show any sugar. But when we compress this mixture, the reaction begins, and a good deal of dextrose is formed. The pressure is kept on for half an hour, until the mass has turned dark and hard. Four parts of water are then added and the broken-up pulp is boiled for about twenty minutes to complete the inversion. This method thus avoids the necessity of having to use concentrated acid, and there is, further, a saving in acid. The resulting dextrose is described as very good.
Fuel is now being manufactured in London out of mud, street refuse and sewage, for sale to the poor. A chemical process has been invented by which all this waste material is so treated that it is rendered combustible. Mud has been withdrawn from the Thames at Millwall, treated chewically and compressed in briquettes, that in appearance closely resemble blocks of dull ebony or bog oak. This mud has been proved to have a calorific value of $7 \cdot 52$ pounds. It burns readily, exhales a minimum of swoke, and leaves only 25 per cent of firm ash. The street sweepings are mixed with a swall percentage of cheap chemicals, pressed into blocks, and sterilized by being subjected to an intense heat of about $400^{\circ}$ Fahrenheit. This fuel produces great heat, burns freely with little swoke, and leaves very little ash. The sewage when subjected to this chemical process and pressed into briquettes looks like the best coal, so deep and rich is its sable character This last fuel can be manufactured at the low cost of two dollars per ton, and is equal in every way to the cheaper coals. Licenses have been granted to manufacture the fuel from these hitherto waste materials, and works are shortly to be installed upon the river's banks at Barking.
Montan wax is one of the distillation products of lignite, which Von Boyen now seems to have obtained in a fairly pure state. The raw material can be prepared in two ways. The lignite is heated woderately and slowly, and steam of $250^{\circ} \mathrm{C}$. is passed through the retort ; the product, carried over with the steam, melts at about $70^{\circ} \mathrm{C}$. Or the lignite is extracted with benzene or mineral oil, when a black or brown mass is obtained. When this raw material is again heated up to $300^{\circ} \mathrm{C}$. and treated with steam of $250^{\circ} \mathrm{C}$., a crystalline yellow substance results, which was, so far, the best Montan wax known. It resembles paraffin, but is very easily saponified. With potassium chloride it forms a salt, which, dissolved in ligroin, yields a fairly pure substance, melting at $84^{\circ}$. At any rate, redissolution in alcohol, and distillation over acetate of magnesia, does not raise the melting point any higher, and the analyses which Von Boyen made agree pretty well with the formula $\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{O}_{2}$. The wax would thus essentially represent a fatty acid of an exceptionally high order. Von Boyen calls the acid cerotinic acid. Its occurrence seems to be restricted to lignite. The acid can be distilled without undergoing decomposition, which is noteworthy, considering the 59 carbon atows in the molecule.

Consul Hughes reports from Coburg, July, 1900: In the Mittheilung des Vereins fur Local und Strassenbahnweseu will be found an interesting paper giving details as to the way in which goods traffic is managed in three German cities-Gera, Frost, and Spremburg. They are not large places, but industrially very active, especially in textiles. The power used on the tramways is electricity or steam; the goods are transferred at the station onto swaller trucks, or the railway cars are taken over the town lines. At Frost there are three morning and three afternoon deliveries. At Gera perambulator cars, with flangeless wheels apart frou guide wheels, have been tried with indifferent success. All these plants have been worked with a profit for several years, and though people have grumbled, the utilization of tramways for the goods traffic has points which cannot be dismissed without due consideration.
While the new Electric Railway in London is working smoothly and without the slightest hitch, the Undergound Railway in Paris is experiencing many vicissitudes. There have been several accidents, fortunately unattended with any loss of life. The other day recorded a veritable chapter of disasters. First the current broke down, and the train had to stand still in the tunnel for about an hour and a half. A little later the first carriage of a train running frow Vincennes to the Porte Maillot caught fire at the Bastille Station, through a spark from the electric motor. The woodwork blazed merrily for about a quarter of an hour, but the company's servants succeeded in subjugating the fire. In the evening another and wore serious accident occurred, also at the Bastille Station, through the derailment of the end carriage of a train. There was a panic among the passengers, of whom about ten were bruised and shaken.
According to The Electro-Technical Gazette, German electrical works show great increase. On March 1 last, there were in operation 652 electrical works, against 489 the previous year. One hundred and twenty-two works were in progress of construction, of which 17 were to be ready foroperation ou July 1. Twenty-seven of all the works were completed before 1890; all the others were constructed within the last ten years. The number of places with electric light exceeds that of places illuminated by gas-900 against 850 . The largest electrical plant is at Rheinfelden, with 12.360 kilowatts. Then follow one at Berlin, 9,230 kilowatts ; one at Hamburg, 7,290 kilowatts ; one at Munich, 6.110 kilowatts ; two others at Berlin, of 5,452 and 5.312 kilowatts, respectively; one at Strasburg, 4,955 kilowatts; two others at Berlin, of 4.676 and 4,655 kilowatts, respectively ; one at Chorzon, 4,310 killowatts ; one at Frankfort, 4,152 kilowatts ; one at Dresden, 3,580 kilowatts; one at Stuttgart, 3,208 kilowatts; and another at Hamburg, 3,150 kilowatts. All the electrical works supplied last year $2,623,893$ incandesceut lamps, 50,070 arc lamps, 106,688 horse power for electrowotors, etc.
Polyphase alternate current machinery, which has been so wuch used on the Continent and in America, is slowly making its way into England. It has already been introduced to a swall extent in coal mines. The polyphase motor was worked out in the first instance, because, when the early electric lighting stations for towns had been laid down, it was found that while those which had been installed with alternate currents could distribute energy very conveniently, they were at a great disadvantage in the matter of power supply. The alternate current motor of those days was like the gas engine; it was necessary to run it up to a certain speed to get it into synchronism with the current it was to make use of before it would work, and hence would not start without special arrangements. So a machine was designed into which two currents, each alternating, followed each other at intervals of a small fraction of a second, producing a magnetic field, which revolved, and which dragged a properly designed armature after it. This was followed by a motor, in which three currents followed each other in the same way. Diphase and multiphase generators were also designed to generate the curreuts in succession, as required. The great feature of the polyphase apparatus, so far as coal mining is concerned, says The Colliery Guardian, is the fact that the motor has no commutator, and no brushes bearing on it, and breaking circuit. There is, therefore, no sparking in the same way as there is with the con-tinuous-current motor. F'or starting purposes, however, the machine requires the insertion of a resist ance in its armature circuit, in order that the starting torque may be sufficient, and this necessitates the addition of slip rings on the shaft. simiiar to those through which the current is taken from the alternating current machine. The resistance is gradually removed as the motor gets up speed, just as the starting resistance of the continuous-current motor, and is entirely cut out when the motor is in synchronism. It is possible for sparking to take place at the contact between these rings and the conductors, but the chance is never so great as with the continuous-current motor commutator.

## PARIS EXPOSITION-AUSTRIAN PALACE.

The Austrian Palace is next to that of the United States in the group of national buildings facing on the Seine. It represents a type of architecture which prevailed in Austria during the eighteenth century, known as the "Barocco" style. The portico above the main entrance has two columns on each side, and above the balustrade rise a corresponding pair of pilasters supporting the roof cornice; on either side of the portico is a narrow window, with ornamental iron work, having in front a richly ornamented vase. The main façade has also a very handsome fountain on each side, which adds greatly to the effect; the upper basin, sur mounted by a sculptured group is of shell-form, and from this the water falls into a large basin below. On the sides and rear of the building the lower windows are semicircular form, surmount ed by grotesque heads; above, a series of pilasters rises to the upper cornice. The roof is bor dered by an ornamental balus trade, interspersed with trophies, with the Austrian eagle on each corner; in front, upon the cornice, is seen the national coat of arms. Ornamental shrubs are placed around the building; in the front is a handsome balus trade at the edge of the quai with a large group at either end. The sub-structure consists of several arches of solid construction, ornamented with grotesque heads.

A flight of steps leads to the main vestibule; on each side is a piece of ancient tapestry, in front of which is a large bronze bust. That on the left represents the Emperor Francis I., and that on the right the Empress Maria Theresa; both busts were executed by Messerschmidt, in the eighteenth century. A second flight of steps leads up to the main rotunda, from which rises the handsomely ornamental staircase, shown in the illustration, leading to the upper story. To the right of the main rotunda is a circular reception room, richly ornamented and furnished; the mantel is in-carved onyx and the central table has a top in polished onyx five feet in diameter. The room contains a fine marble bust of the Emperor Francis Joseph, surrounded with ornamental plants. The corresponding room to the left is finished in Empire style, with mahogany panels rising to the ceiling. It has a frieze in oil, representing allegorical subjects, and contains two paintings by Austrian artists. On one side of the rotunda are two cases containing manuscript music of Beethoven, Mozart, and other musicians; here are also a number of fine bronzes, including an equestrian figure of the Fmperor of the Emperor Leopold I. in an tique bronze. In the rear is a handsomely furnished room containing views of Vienna; the corresponding room on the right contains a collection of the headings of all the principal Austrian journals, arranged in cases, and also a collection of ancient newspapers; one of these, the "Dia rium" of Vienna dates from 1758. On the right side of the rotunda are a number of cases representing the postal and tele graph service of the Austrian gov ernment. In one of these are seen various models of city letter boxes,


THE PALACE OF AUSTRIA, "STREET OF NATIONS," PARIS EXPOSITION.
from Spain has resulted in a great falling-off of the in dustry, which would have probably declined entirely i it had not been for the discovery of iodine, which saved the kelp trade from extinction for a time, but finally iodine was obtained in large quantities from Chile as a by-product of sodium nitrate, and this succeeded in materially. decreasing the commercial value of kelp. Kelp was formerly made of two kinds of weed the fuci and the laminaria. Kelp is now made entirely from two kinds of drift weed, of which "tangle" is less susceptible to deterioration than the other varieties. It is torn up and driven ashore during the winter gales. It is collected and stacked in heaps usually on foundations built of stones rounded by the action of the waves. It is arranged so that air will have free access to the heaps.
The burning usually begins in May, provided there has been no wet weather, and continues during the summer months. The kilns are made of sods or stone and, according to The English Mechanic, vary from 12 to 20 feet in length, and from 2 to 3 feet in breadth, and 1 foot in depth. They are usually built on a plot of grass and are fed with the dried weed which yields about a fifth of its weight of kelp. The fuel is placed in the kiln and the seaweed is spread lightly over it. The seaweed is stirred constantly until the kelp is in a semi fluid state, glowing like molten metal. It is then allowed to cool, and when taken out of the kiln appears as a hard, heavy substance of a dark gray color. It is then broken into pieces of suitable sizes and it is shipped to market. In Norway the kelp is burned to ash and it realizes its full value.

The Movement of Swiss Glaciers in 1899.
Prof. Forel, Prof. Lugon and Herr Muret have just completed a report upon the movement of the glaciers in Switzerland during last year. Seventy-three glaciers in all were observed; in ten cases there had been an advance, and in sixty-three cases a retreat. The tendency of glaciers to diminish is thus rendered evident. The glaciers which had increased in 1898 remained stationary in 1899 . The only Swiss glacier which manifests a steady and certain increase is the Glacier de Boveyre in Canton Valais. The two Grindelwald glaciers, which until recently were decidedly stable, have begun to decline. The lower Aar glacier, which remained stationary until 1893, has now retreated 75 feet. On the Eiger glacier, for the first time since it was measured, a diminution was observed; it has retreated 230 feet. Out of thirty glaciers observed in the Valais twentytwo have shown a decided retreat during the year, three a probable decrease and only four an evidence of increase.

The first trip over the third-rail line of the Albany and Hudson Railway, of Hudson, N. Y., was made on August 20 Power for operating the road was obtained from the company's new waterpower plant at Stuyvesant Falls, Stuy the ralls, satisfactory in every respect. It is stated that a speed of 60 miles an hour vas made at tines.
models in austrian section of the paris exposition.
In the civil engineering section of the Paris Exposition are to be seen a number of models showing the public works which have been carried out in different countries of Europe. The Austrian exhibit contains two models of this kind, which illustrate a series of improvements lately inaugurated in Vienna. The first of these is the Metropolitan Railway system, which is now practically finished. For several years the need of a rapid transit system was felt in that city, and a number of projects were studied. The Emperor Francis Joseph, in his annual discourse of 1891, expressed the wish that the affair might be carried out in the near future. This led, in fact, to active preparations on the part of the government. The idea of the Metropolitan was not only that of transportation within the city limits, but also to make connection with the suburbs, even those at some distance; it was to be used for freight transportation and to supply the city with provisions. With this in view, the work was carried out on a large scale. The line is double track throughout, with an extensive sigual system. Two large main stations have been erected; the first of these is at Heiligstadt, on the Francis-Joseph line, and the second at Hütteldorf-Hacking, on the West line. The system includes four different sections, which have a total of about 16 wiles. The first is a suburban line which passes from Heiligstadt to the western part of the city and thence to the suburbs. The Belt line, the second, runs parallel to the first as far as Nussdorf, then skirts the city to Gumpendorf, joining the lines of the Vienna valley and that of Vienna-Trieste. The third section, that of the Vienna valley, leaves from Hütteldorf and follows the river to the Custom House, with a junction to the Praterstem Place; it makes connection with the Vienna-Warsaw and other main lines. The last section is that of the Danube Canal, starting from the Custom House station; it follows the canal to Heiligstadt, with a branch line to the Belt railroad. The first branch line to the Belt railroad. The first
three of these lines are now completed and the fourth is to be finished next year. The construction was carried out with great difficulty and expense, owing to the nature of the ground to be passed over and the necessity of satisfying the different conflicting interests, but the work of the first three lines was finished in the beginning of 1897. According to the configuration of the ground to be passed over, the line over, the line is in some places elevated, and in others it runs in a tunnel or cut. The elevated portions are generally supported upon a viaduct on a viaduct, and it is only in a few places in the outlying districts where it runs on an embankment. Over certain wide streets metal bridges metal bridges structed; these are ballasted to deaden the sound.

In the illustration will be seen a well-exeseen a well-exe-保 the locomotive and train used on the Metropolitan. The road has been


THE BOYTON CENTRIFUGAL RAILWAY, SHOWING THE CAR AT THE HIGHEST POINT OF THE LOOP.
tive power, sufficient adherence and capable of going around sharp corners. As will be noted the locomotive has three pairs of driving wheels and a front and rear truck; it has no tender the supplies being carried upon the locomotive; its design is in general that of a modern type of European heavy locomotive, with all the recent improve ments. In order to decide what kind of train it was best to use, the committee examined the sys tems in use at present in Berlin, London, Liverpool and New York, and came to the conclu sion that the cars used on the New York Elevated present the greatest advantages, the stops being but fifteen seconds, while at Berlin and London, where compartment cars are used, the stops are thirty seconds. Accordingly the American type of car was adopted. The train is made as short as possible, the
id out under conditions which differ considerably from those of a main line; the grades reach two per cent and the stations are very near together. It is necessary to provide heavy locomotives, having great trac- ass cars being suppressed. A system of vacuum t-class cars is used. The trains run from 5:00 A. M. to 11:00 P. M., and when the system is entirely finished, the interval between trains will be from 3 to 6 minutes,


A VIEW OF THE CAR. Th minutes on the Belt line.
The erection of the various stations of the road was carried out in consultation with one of the leading architects of Vienna, M. Otto Wagner. Besides the two main depots of Hutteldorf and Heiligstadt and that of the Custom House, are those of Gersthof, Hernals and Ottakring, for passengers, and that of Michelbeuern for market products. There are numerous way-stations upon all the lines. At the main stations five or six platforms are provided, one for each line; they are joined by underground passages in most cases. For the lines below the level, the superstructure is relatively light, and contains only the different offices; for the overhead lines a structure of much larger size is erected.

CONEY ISLAND'S CENTRIFUGAL RAILWAY.
That discoveries and inventions of great scientific importance are often applied to the purpose of contributing to the pleasure of the amusement-seeking public is proved clearly enough by the mechanical toys and scientific curiosities sold in the shops of our large cities. One of the most remarkable of such applications of scientific methods, remarkable chiefly for the size of the apparatus employed and for the curious phenomenon presented, is to be found in the Boyton centrifugai railway, which has been added to the attractions of Coney Island. It can be safely said $t h a t$ those who have ridden in one of the cars of $t h i s$ odd road of Boyton's have been very strongly ircpressed with the meaning of the term "centrifugal force."

The railway consists of an elevatedinclined track cuirv. ing upward and downward near its middle to form an oval loop, the vertical or major axis of which is 24 feet long and the horizontal or minor axis 20 feet long. The cars used are 6 feet long by 3 feet
wide, and are supported by two driving wheels 1 foot in diameter, arranged in tandew to run upon a single central rail on the upper surface of the ties. Four auxiliary wheels 6 inches in diameter, running upon two rails secured to the under surface of the ties, are also ewployed. When in motion a car retains the upright position exactly as would a bicycle, the auxiliary wheels being used only to steady the car when the velocity is very small.
The highest point of the railway is 35 feet from the ground; and between this point and the beginuing of the oval loop is a stretch of track 75 feet in length.


## CROSS SECTION OF THE TRACK.

The car is hauled up by a cable to the point of maximum elevation and is then cut loose. With a constantly accelerating speed it plunges down the incline of 75 feet, dropping a distance of nearly 35 feet in this brief interval, whirls around the loop, and reaches the station after running up a heavy grade, whereby its speed is considerably reduced. So great is the velocity of the car when it reaches the end of its downward plunge of 75 feet, that, at the highest point of the oval, it is held against the track in opposition to the force of gravity, by the centrifugal force alone. If a bucket of water be swung around at arm's length not a drop will be lost, provided the motion be swift enough. And the passengers in the car can no more fall headlong from their seats than the water in the whirling bucket.
The six-inch auxiliary wheels running on the under rails would prevent the car from falling when it reached the top of the oval. But such an accident, even without the auxiliary wheels, could hardly occur, since the centrifugal force is always greater than that of gravitation.
A representative of the Scientific American who rode in the car stated that although a chain was stretched across his body while seated in the car to hold him in, in case of accident, at no time during the ride was he brought in contact with the chain, but that at all times he felt himself held firmiy in the seat by centrifugal force alone.

The ${ }^{6}$ Deutschland" Again Breaks the Eastward
Each successive trip of the "Deutschland" seems to carry with it a new record. The most memorable ocean voyage, so far as speed is concerned, was that of the "Deutschland" and the "Kaiser Wilhelm der Grosse," which left New. York September 4, in close company, and for a considerable portion of their voyage were in plain sight of each other. Although it was not a race in name, it was in fact. The it was not a race in name, it was in fact. The
"Kaiser Willielm der Grosse" left an hour earlier than the "Deutschland," and the latter overhauled and passed her, and made a record passage of five days seven hours and thirty-eight minutes, the average speed being 2336 knots, and she would probably have done better had it not been for the fact that in the first day's run there was a moderate sea and a slight fog. The succeeding days she logged $535,540,549,545$, and 306 knots. The "Deutschland" beat the "Kaiser Wilhelm der Grosse" by five hours and twenty-seven minutes between the Sandy Hook lightship and the Lizard. The previous record of the "Deutschland" was five days eleven hours and forty-five minutes, consequently the eastward transatlantic record was lowered by four hours and seven minutes.

The Princess of Wales has presented to the London Hospital the wonderful apparatus which has been employed in Copenhagen for the cure of certain intractable skin diseases by means of light. As is well known, it is the chemical rays-the blue, violet, and ultra-vio let-which exert this curious beneficial effect. To use the apparatus the patients simply lie on couches, while the light of the sun, or, failing that, the ravs from an electric arc lamp, are focused upon the affected part of the skin. To obviate the heat which is always generated by focusing the sun's rays in this manner, the rays undergo concentration and cooling by means of a curious "reversed telescope." The rock crystal lenses, which are impervious to heat rays, inclose a column of distilled water. The patient is subwitted to this treatment for about an hour at a time, but the treatment being quite painless, not the slightest inconvenience is experienced, and the operation has been proved to be eminently successful.

KमaKI neckshields are now worn in sunny weather by the London police force.

## COLOR SCREEN FOR TELESCOPES.

The color screen for improving the definitina of refracting telescopes, recently invented by Prof. 'I'. J. J. See and Mr. George H. Peters at the United States Naval Observatory, has already led to discoveries of the highest interest. This apparatus consists of a small cell containing fluid through which the light of the stars passes in reaching the eye. The cell is at tached to the eyepiece of the telescope, as shown in the figure.
The fluid used in the cell is deadly poisonous, and so corrosive that if a drop of it were to get into the eye, total blindness would follow. The scientists use the following mixtures, each of which has its advantages :

1. Bichrowate of potash, dissolved in water, which is a brownish solution. This removes the blue halo which usually surrounds the stars, but allows the out standing halo of reddish light to pass through. This fluid performs very well on most of the stars and the bluish planets, but does not act so perfectly on reddish objects.
2. Picric acid and chloride of copper in water, which has an intensely green appearance. This solution re moves the blue rays, and also the red ones, very perfectly, while the green and the yellow are transmitted as if the fluid were perfectly transparent. This is the best combination yet made and yields splendid results.
3. Chromate of potash dissolved in water; this is very good for most objects, but it has not yet been used so much as No. 2.
4. Chromic acid dissolved in water, an intensely red solution, which removes all the violet, blue, and most of the green rays, but transmits the yellow-green, yel low, orange, and red. This fluid is of especial use in the study of Mars, and shows the canals beautifully sharp. The canals are usually of greenish or bluish color, and when viewed through the color screen, filled with chromic acid, appear as dark lines on a yellow or reddish background.
Prof. See has only begun his work on Mars, but it will be continued through the coming opposition of the planet in February next, and doubtless some im-


The illustration gives a vertical section of the cell; $e$ is the aperture for the eye; $a$ and $b$ the two parallel planes of glass confining the fluid; $g$ the
ring of glass upon which the plates rest; $h$ thin rings of rubber inserted to make the joint tight; $f$ two small holes in the ring of glass by which the cell can be filled after the case is screwed down with the metal cap; $\boldsymbol{c}$ is the head of the eyeprece, and $d$ a brass collar holding
the cell on to the eyepiece.
portant additions will be made to our knowledge of Mars, which of late has attracted so much attention.
All these researches on the color screen grew out o Prof. See's discovery, October 10, 1899, of some faint belts on Neptune, when the atmosphere about Washington happened to be quite swoky from West Vir ginia forest fires, and the smoke of the sky cut off the blue light like a color screen in the tailpiece of the tel escope. It then occurred to him to construct an artificia cell which would reproduce the condition which accidentally arose from the smoke in the air, and he and Mr. George H. Peters then constructed the first color screen ever applied to a telescope. The color screen removes the blue halo about the planets and allows the astronomer to measure the diameters more accu rately than has hitherto been possible. Prof. See has been hard at work all spring and summer on the diameters of the planets and satellites, and already has results which will add no little to the fame of the Government Observatory. The diameter of Neptune has been found by previous astronomers to be about 35,000 miles ; the measures made with the great equatorial of the Naval Observatory indicate that the real diameter is nearl! 8.000 miles simaller, or 27,190 miles.

In the case of Uranus the diameter is diminished from 34.000 miles to about 28,500 miles. Saturn has his diameter diminished over 1200 miles; while that of Jupiter is reduced some 300 miles.

Venus has been subjected to elahorate investigation, and the diameter found to be 7.553 wiles, with an uncertainty of only ten miles.

This is probably the most exact determination of the diameter of a planet ever made, except that of the earth, which is found by geodetic measurement within about a quarter of a mile; and shows what future investigation with color screens will do for exact astronomical measurement.

In the case of Mercury, Prof. See finds a diameter of only 2,460 miles, which is about 570 miles smaller than
the received value. This indicates that the planet nearest the sun is in reality very little larger than our moon, which it resembles in many respects.
This new determination of the diameter of Mercury has led Prof. See to adopt a new value for the mass of this planet which has heretofore been in great doub among astronomers. The Government astronome thinks he has new evidence that the mass of Mercury is one fifteen-millionth that of the sun, which is only one-half that generally used among scientists.

A Simple Photographic Printing Paper Formula
A photographic printing paper which closely resem bles platinotype has been recently used in Belgium. To prepare the sensitizing solution, the following form ula is used :


These proportions should be kept as indicated : if, for instance, more than three parts of nitrate of silver is used, the image will lack detail in the shadows and the half-tints will be wanting. The printing of the paper is carried out in the same way as for platinum paper ; that is, until the image is well distinguished upon the sensitive surface. After printing, the paper is placed in a developing bath composed as follows :

Water...
Borax...
Borax..............
Trartrate of soda..


The ingredients are dissolved, and a few drops of a 20 per cent solution of bichromate of potash are added; if more bichromate is used, the image will be hard and full of contrast ; and if less, the image will be gray and feeble. A certain latitude is thus obtained. and negatives of different intensity may be provided for. After development, which lasts five or six minutes, the prints are washed for a few minutes in running water and then toned in the following bath :

Citric acid..
they have reached the desired intensity. They are then fixed in a two per cent solution of ammonia; the fixing lasts a two per cent solution of ammonia; the fixing lasts
about ten minutes, after which the prints are well about ten minu
washed as usual.

## The Yellow Invasion.

From time to time our French contemporary, Le Monde Illustre, devotes an entire number to such subjects as a hypothetical war, in which the Chauvinistic tendency of the French press to magnify the deeds of their countrymen is very manifest. The issue of August 25 is given up entirely to "La Chine et l'Europe en l'an 2,000," by that versatile writer, M. Henri de Noussanne. Such fictions as these, while not particularly novel at the present time, are quite suggestive, especially as we are now actually menaced by the yellow peril. The author goes on to describe how the yellow peril. The author goes on to describe how the empip in the year 2,000 . A quarrel finally arises and the European ambassadors retire ; there is discord between the Powers, and some torpedoes are exploded in Hong Kong Harbor. The result is the commencement of war on the largest possible scale. The success of the Chinese is immediate, and European women and children are sold as slaves. The most formidable naval battle in history follows, and the Chinese march upon Russia as an objective point. Siberia is conquered; the Chinese win a battle at Moscow, and all Europe has a panic, and, finally, Germany is occupied. Then follows an account of a thrilling battle on the Rhine. Atwospheric electricity is put into service by the European artillerists, science thus coming to the rescue of the overwhelmed Europeans, causing the Chinese to flee. The Chinese troops were immediately set upon by the remains of the armies of the allies, their communications were cut, and for six months Germany, Austria, and Asiatic Russia were inundated with the dead and dying Chinese. A great naval battle also takes place, in which the maritime power of the Chinese was broken. Japan was definitely separated from China. Europe organized for the universal welfare and took for its device that of industrious Belgium, " L'Union fait la force."

## The Benzine Risk.

In most printing offices benzine is used to wash the ink from type. Some weeks age a boy in such an office, while handling a can of benzine, set it down with unusual force, causing some of the benzine to fly out; it fell on a gas stove, and this resulted in serious damage to the printing office, but fortunately no one was injured. It is surprising that more accidents of this nature do not occur. With the use of such an inflammable and exnlosive substance as benzine the greatest precantion should be used, and in no case should any benzine or naphtha be used for cleaning or other purposes in a room whioh has any light or fire, except, of course, the eleetrie light.

## §rientific \& Amrricau.

REBUILDING NIAGARA'S RESERVATION BRIDGES. During the last session of the New York State Legis lature the sum of $\$ 122,000$ was appropriated for the construction of new bridges to connect the mainland with Green Island and Green Island with Goat Island at Niagara Falls. This is a part of the State Reservation at the Falls, and the site of the bridges is right through the upper rapids not over 500 feet back from the brink f the American Fall. In due time the commissioners of the State Reservation, who have charge of the expenditure of the appropriation, awarded the contract for the work to W. H. Keep ers \& Company, of New York, who are now engaged in carrying out the provisions of the agreement.
This piece of bridge construction is unequaled for interesting conditions by any similar work ever car ried on at Niagara, a locality rich in interesting features of bridge erection. It is made worthy of considerable attention by the were and remarkable fact of its location so near to a precipice of the height of the American Fall, and right in the midst of the upper rapids, where the current runs all of 30 miles an hour. The distance back from the Fall. and the speed of the current, are only too suggestive of the pro babilities of death for any of the workwen who might, by accident, plunge from the bridges into the water. Then the fact that these tumultuous waters are to be span-
ned by concrete bridges is an important feature. The placing of a concrete arch over quiet waters is a task requiring engineering skill, and doubly true is it when a 30 -mile current and a maximum depth of 11 feet of water are to be encountered.
This new concrete arch, to connect the mainland with the island that is termed Nature's Temple, will be the fourth bridge built on the river near the site. It was in 1817 that the upper rapids were first spanned by a bridge, which was carried away that winter. With the coming of spring in 1818 another bridge was built. and in 1855 the third bridge was thrown across the riotous waters. It is this last bridge that will give way to the concrete arch. The old bridge was an iron structure resting upon three piers in the river, and there is every reason to believe that the style of the concrete bridges will do much to add to the beauty of this already magnificent section of the State Reservation and river. The design selected is in keeping with the general plan to beautify th cality about the Fall, on whe ocality about the Falls, on which o much progress has been made since the State took possession of the lands in 1885 . No work yet done in beautifying the lands bas cost so much as this individual step in bridge erection, and it is but continuing the im provements, so praised by all, on truly magnificent lines.
The work of building the new bridges naturally forced a sus pension of all carriage traffic to Goat Island, but pedestrians have been provided with a means of crossing by a temporary bridge erected below the old bridge be ween Green Island and be ween Green Island and the wainland, and by another ternporary bridge erected above the
old bridge between Green Island and Goat Island. These tempo rary bridges are about six feet wide. They are formed of frame trusses resting upon rock-filled cribs or piers.
The length of the bridge between the mainland and Green Island will be 371 feet, and in this length is included the finishing panels. There will be three spans. The end spans will have a length of $1031 / 2$ feet, while the center span will be 110 feet long The rises of the end spans wil be 10 feet and that of the center span $111 / 2$ feet. The piers will have a width of $131 / 2$ feet and length of $531 / 2$ feet. On the upstream end the piers will have a granite nose or ice breaker. The width of the roadway wiil be 20 feet in the clear, and on each
side of it will be granitoid walks $91 / 2$ feet wide The length of the bridge between Green Island and Goat Island will be 198 feet, including the finishing panels. This bridge will also have three spans. The length of the end spans will be $501 / 2$ feet and that of the center span 55 teet. The piers will be 8 feet wide and 50 feet 5 inches long. They will also be fitted with granite ice breakers. The roadway and walks will be identical with those on the bridge above referred to.


WORKMEN PREPARING A FOUNDATION FOR A NEW BRIDGE AT NIAGARA, WITHIN 500 FEET OF THE AMERICAN FALLS. LIFE-LINES ATTACHED TO THE WORKMEN

The structure is to be stone-faced throughout, and it is expected to have it completed before winter sets in. To accomplish this, work will progress night and day. The mixers and pumps are operated by electric motors. The piers for the arches will be built in cofferdams surrounded by shields in order to break the force of the current and keep the water out. Life lines and buoy rafts are stretched along the work or float where deemed necessary for the safety of the men engaged on the work. A cableway has been stretched between the mainland and Green Island to facilitateoperations, while derricks will handle the material for the bridge frow Green Island to Goat Island.

building anchorage in the rapids for the cofferdam.


BULLDING A-TEMPORARY BRIDGE TO GOAT ISLAND
ng down by accident. The assistant succeeded in comadil列號 the body of the balloon, ecame entangled in the cords and was burned and ruised, though not seriously hurt. It was two hour before the firemen could get the flames under control.

Inclined stairways for the New York Elevated. An inclined stairway or rawp has been built at the Fifty-ninth Street Station of the Third Arenue Elevated Road, with a view of adopting it on a majority, if not all, of the stations of the road. It is of the Reno type, which we have already illustrated. The time has arrived when the traffic is so heavy on the elevated and the stairways are so narrow that sowe means must be employed for raising the passengers to the level of the platform. Both the elevator and the inclined stairway wil be fully tested before anything definite is decided upon. When the roads are equipped with electrical power it will be a very simple matter to put in motors at each station to run either an inclined stairway or an elevator The inclined stairway now in use has a capacity of three thou sand passengers per hour. The receipts at the ticket offices have already increased since the new improvement was introduced.

## A New Gutta-percha

The English acting-consul fo Zanzibar reports the discovery of a new gutta-percha. This sub stance is derived from a tre which grows principally at Dunga. When tapped with a knife ga. When tapped with a knife,
a white fluid emanates, which, when placed in boiling water coagulates into a substance which in character bears a very strik ing resewblance to gutta-percha As the material cools it become exceedingly hard, but while sof it can be woulded into any re quired shape. The fruit of the tree resembles a peach in shape but grows to the size of a smal melon. Experts have experiment ed with this new product to see if it in any way possesses the quali ties of gutta-percha and al though it is not expected to prove equal to the genuine article, it is considered that it will be quite suitable for some purposes for which gutta-percha is at presen utilized, and it will thus become a marketable article. It is said to abound in Zanzibar, and will be a very, cheap product.

Mr. John Automobile News.
. John Brisben Walker ascended Pike's Peak, Col., September 8 by an automobile. He did not go to the very top, but made an ascent of 11,000 feet, thus making an automobile record. The road was in very bad condition or the top would have been reached. The descent was an exciting one.

A steam vehicle belonging to a Newport resident was recently put in the stable at night, and the owner neglected to turn off the fuel supply. Steam was gen erated rapidly, and the safety valve blew off at inter vals. This continued until all the water in the boiler had evaporated; a fire then started, and the machine was rendered worthless.

At a meeting of the Executive Committee of the National Association of Street Railway Employés, heldi at Detroit, Mich., September 7, the president was instructed to draw up a plan by which local unions are to be assessed in order to raise a fund with which to purchase automobiles for use by the street railway men in the cities where strikes are in progress.

The Emperor William of Germany has now become a devotee of the automobile. It was constructed under the instructions of the German War Office, and after completion was carefully examined by two engineers from the Daimler manufactory at Stuttgart. The automobile weighs thirty-two hundredweight, and is propelled by a benzine motor capable of imparting a speed of sixty miles an hour, and the vehicle cost $\$ 9,000$.

The Greater Inter-State Fair of Trenton, N. J., which will be held September 24 to 28 , will have some interesting automobile races. The Automobile Club has accepted the cup which the Trenton Fair Association has tendered to the club for a road run from New York to Trenton. A motocycle race of 10 miles has also been added to the programme. All the floor space originally assigned to the Automobile Exposition Department of the Fair, comprising 25,000 square feet, has been taken, and the erection of an annex is in contemplation. The entries for the race close on September 20.
Consul-General Guenther says: On July 25 the motor factory of Oberursel, near Frankfort, exhibited in the presence of a number of experts its new alcohol plow locomobiles. The plow locomobile is a 20 horse power one, and confidence is expressed by competent judges that coal can in some cases be substituted by alcohol, which can be procured everywhere and at a low cost. The alcohol plow is said to have performed its work fully as well as a steam plow operated simultaneously. The problem of using alcohol for power purposes has been solved by the motor factory in evaporating denaturized alcohol of $90^{\circ}$. The construction and operation of the motor is, after this gasification, the same as that of a gas motor. The machine uses about a pint of alcohol an hour for one horse power. It is clained that the operating expense is 25 per cent lower than that of steam plows.
The question of automobile traction for military service is now being studied in the different armies of Europe. In Germany and Italy especially a number of experiments are being made, and two principal so lutions of the problem have been examined. In the first case ten automobile wagons would be used, these being of the normal type, weighing 30 tons, of which 12 constitute the load; the distance to be covered by the automobile is about 47 miles per day. In the second case a large tractor, self-contained automobile, or locomotive with tender would be used, to draw wagons equally of 30 tons, and covering the same distance per day. The main difference bet ween the two systems is that in the first case there are ten motive apparatus to look after, while in the second there is but one. According to circumstances, these two systems have been adopted in several armies. In England two types of automobile wagons are used. The first is an armed automobile used for scouting purposes; this type was constructed during the Egyptian campaign and is adapted to run on a railroad track ; it carries a Maxim gun, two officers and one man. The other model is used on ordinary roads and is armor-plated, carrying two Maxim guns and a dynamo which supplies an arc-projector; a device enables the current to be sent into the armor-plate itself, which is a good means of defense when attacked at close quarters. The motor used is of the petroleum type, with electric ignition. As to the lighter automobiles for military use, an in creasing interest is being taken in this question. The Emperor William, who has given great attention to the subject for some time past, has just accepted three automobiles from different manufacturers, with the intention of trying them during the grand maneuvers in order to determine personally the services which they may render. The automobile is already playing an important part in the Austrian army, and its efficiency has been tested in the recent military maneuvers Twelve automobiles have been used for the sanitary service and a great number of motocycles placed at the disposition of the officers. Major-General Maurice followed the cycling maneuvers which were recently
held in England, on a quadricycle with petroleum mo tor of the De Dion type. The opinion as to the service rendered by this vehicle is quite favorable, at least as concerns the transportation of the superior officers at times when combat is not actually engaged.

## The Home of the Krupp Gun. <br> y c. e. carpenter.

A remarkable record of commercial enterprise and colossal industrial development is contained in the annual report for 1899 of the steel works of Friedrich Krupp, the great German ironmaster. Krupp, as is well known, occupies the position in Germany that Andrew Carnegie does in the United States. There is much of resemblance between the two men. Each possesses the wonderful executive ability and tireless energy for carrying out, without heed of odds, the in ventions of his active brain. Krupp's millions have been piling up with a speed and steadiness equal to the Pittsburg iron king's, and although his business has grown to a degree the magnitude of which would seem to belie the possibility of further increase, the bounds of his prosperity are by far not yet in sight.
In the United States, the general public's knowledge of Krupp pertains almost entirely to his reputation as a maker of war materials. Few people are aware that his huge steel works turn out every variety of iron and steel products, from railroad trains to machine tools. Cannons and guns form merely a small part of his output. A fair idea of the amount of business captured yearly by the Krupp plant is given by the figures of labor employed during the calendar year 1899. These consisted of no less than 49,679 persons, 3,559 of whom were engaged in the offices alone ; 27,462 men were em ployed in the main steel plant at Essen; 3.475 at the Buckau branch (near Magdeburg) ; 345 at the Germa nia shipyards in Kiel; 6,164 in the coal mines and 6,128 at the various ore mines and trial shooting grounds.
One would rightly think the caring for so larg body of wen to be a most difficult undertaking. And yet no army is under better management than the men who turn out the grim instruments of war that find their way to every quarter of the globe and dea death to many thousands of all nationalities annually The workingmen live in settlements, in dwelling erected for their comfort by their thoughtful employer At the Essen plant alone Krupp had erected up to the first of April, 1900, 4,853 family dwellings for the hous ing of his married employes. The houses are rented to the men at a very nominal rate, the firm receiving no profits therefrom and stipulating only that the buildings shall be kept in good condition by the tenants. Besides these homes, there are two large lodg ing houses for the accommodation of single men, a hospital, two barracks for epidemic cases, a convales cent home, a workingmen's eating house, a club house for clerks, a casino for works' foremen, a housekeeping school for girls, an industrial school for adults with three for children, a library and several minor institu tions. The "Wirthshauser".(beer restaurants) are un der the direct supervision of the officials, and intoxication is a rare sight among the laborers.
The form of protectorate thus exercised over em ployes outside of the works, strange as it•may seem in this country, causes no friction in the community, Krupp's idea not being to exercise a rigid restraint ove his men, but merely to build up their daily life on lines that will in the end prove most beneficial to them. His success in this is amply attested by the general content and cleanliness of the settlement.
Returning to the actual business of the plant, it should be mentioned that the firm of Krupp proper comprises the steel works at Essen and at Annen, in Westphalia; the blast furnaces near Duisburg, Neuwied, Engers and Rheinhausen (the latter possessing three furnaces each of 230 tons capacity per diem); a plant near Sayn ; four coal mines near Hanover and shafts at Salzer and Ncuack, besides part ownership in various other mines; mure than five hundred iron ore mines in Germany, of which eleven are deep borings fitted with mechanical-equipment; various deposits near Bilbao, Spain : shooting grounds near Meppen 10 miles in length with a possible firing distance of 15 miles; three ocean steamers; several stone quarrie and clay and sand deposits, besides the control and operation of the shipbuilding and wachine company "Germania" at Berlin and Kiel
The principal articles of wanufacture at Essen are cannons, guns, ammunition, gun barrels, armor plate and sheet armor for all protected parts of warships, as well as for fortifications, iron and shipbuilding material machine parts of every sort, sheet iron and steel, rollers tool steel and scores of other articles, the enumeration of which would occupy too much space here.
The Essen plant is divided into the following departments : 2 Bessemer works containing altogether fifteen converters; 4 Martin works; 2 steel casting works; pud dle works ; crucible steel plant ; welding mill ; iron cast ings works; works for casting guns and brass; glowing rooms; hardening halls; crucible chambers; block rol ing mill ; rail rolling mill ; sheet rolling mill; bolt and spring steel works; spring machine shop; mill press and armor plating rolling mill ; hammer works; wheel
foundry ; open sand and hoof foundries; tire rolling mill; boiler foundry ; fleld rail way construction shops; mechanical workshops (with file factory) 4 repair shops; railway machine shops; testing laboratory ; 2 chemical laboratories; 1 chemi-physical testing laboratory; shops for construction, mechanics' saddlery and cutting; a boiler house; electrical plant; gas works with one plain and two telescoped gas tanks holding respectively $5,700,17,500$ and 37,500 , altogether 60,700 cubic meters; water works with three separate water sources; factory for fire-proof brick and briquettes; brick kiln; lithographic and photographic establishments, together with a book bindery, freight office, telegraph, telephone, fire and safety departments and food supply stores.
The most interesting estimate of the size of the plant, however, is gained from the figures bearing on the consumption of gas and water, the telegraph and telephone lines, etc., inside the works. For example, the consumption of water at the steel plant amounted in 1899 to $15,018,156$ cubic meters $(49,054,468$ cubic feet), or as much as the city of Cincinnati. The combined length of the subterranean water conduits was 107 miles, that in the buildings 66 miles, with 451 hydrants and 604 fire plugs. The use of gas for lighting purposes amounted to $60,708,045$ cubic feet (or as much as the city of Leipzig, Gerinany), the same supplying. 2,596 street lights and 41,745 lights in the buildings of the plant. The total length of the underground conduits was five and a half miles; that of the interior conduits 145 miles. The Krupp gas plant is the seventh largest in size in the German empire.
The electrical plant of the steel works possesses three machinery rooms with six distributing stations, eighteen miles of underground and fifty-odd miles of overground cable for lighting, and feeds 877 arc lights, 6,724 small lights, and 179 electro-motors.
As regards means of transportation, Krupp's plant is singularly well supplied; a standard gage railway net is in direct track connection with the Essen railway station, North Essen and Berge-Borbeck. Communication with these three stations is effected daily by fifty complete trains. In all, the net comprises 36 miles of track, 16 tender locomotives and 707 cars; furthermore, there is a narrow-gage rail way net with 28 miles of track, 26 locomotives and 1,209 cars.
Even more suggestive than the foregoing are the figures relative to the telegraph and telephone systems connected with the works. Krupp's telegraphic net contains 31 stations with 50 Morse apparatus and 50 miles of wire. It connects with the imperial telegraph office in Essen, and the yearly business between the factory and the city amounts to no less than 22.787 sent and received dispatches. The long distance telephone possesses 328 stations with 335 apparatus and 200 miles of wire, while the daily usage averages 900 to 1,000 conversations.
The fire department is composed of ninety-five men. The works proper contain 347 and the outbuildings 121 hydrants; while in addition there are 35 extra water sources for use in case of necessity, 82 electric fire alarms, besides the 330 -odd telephone call stations, the latter being also used for alarm calls.

Lastly the statistics of coal and ore are of sufficient interest to deserve mention. At the wines, an average of 1,877 tons constituted the daily output of ore, whilc the production of coal in the mines proper averaged 3,738 tons per diem. Coal and coke were consumed at the steel plant to the extent of 952,365 tons-an average of 3,174 tons daily, or eight railway trains of 40 cars holding ten tons each. The total consumption at the remaining works was 622,118 tons, or in all $1,570,-$ $483-5,000$ tons daily.

The Current Supplement.
The current Supplement, No. 1290, has many articles of great interest. The first page illustrates and describes the "Tour du Monde" at the Paris Exposition. "American Engineering Competition-X." deals with stationary engines. The second article on "Mechanical Stoking" treats of the Roney Mechanical Stoker. "The Oldest Library in the World" deals with the wonderful discoveries at Nippur, which are referred to elsewhere. "The Mycenæan House of the Double-Ax" is an interesting archæological article by Louis Dyer. " The Mission of Science in Education," by John M. Coulter, is concluded. "The Coal Trade of the United States and the World's Coal Supply and Trade" is illustrated by a graphic diagram.


RECENTLY PATENTED INVENTIONS.

## gricultural Implements.

PEA-THRESHER AND CLEANER.-SAMUEL H. Wiluisms, Barnardsville, Tenn. This machine threshes peas on the vine just as they are mowed and raked in the
field, and cleans them with little waste, or breakage. One field, and cleans them with little waste, or breakage. One
portion of the concave is adapted especially for cutting the portion of the concave is adapted especially for cutting the
pods from the vines, and the other portion for threshing the peas from the pods. Any pods which may pass
through the machine without having the peas removed from them are automatically returned to a portion of the concave and cylinder especially adapted to finish the
threshing. The vines are completely separated from the unthreshed pods and shelled peas; and the shelled peas from the pods after the vines, peas, and
between the concave and the cylinder.

## Engineering Improvements.

explosive-Engine.-Samuel F. Beetz, Mendota, Ill. The main cylinder has a partition forming separate cylinders. Pistons reciprocate in unison in the cylinders and are connected with the main driving-shaft.
A rotary valve is driven in unison with the pistons and A rotary valve is driven in unison with the pistons and
has an inlet aud an exhaust port arranged alternately to has an inlet aud an exhaust port arranged alternately to
connect the working.chambers with the motive agent connect the working.chambers with the motive agent
and with the exhaust. At the ends of the cylinder are and with the exhaust. At the ends of the cylinder are
valve-casings, each provided with a chamber leading to the port and connected through valved openings with the motive-agent supply and with the rotary admission-valve, so that the compressed charge from the compressionchamber of one cylinder can pass into the workingchamber of the other cylinder.

## Mechanical Devices.

MECHANICAL MOVEMENT.-John Schies, Anderson, Ind. The invention provides a novel construction whereby a plunger within a revolving carrier or body is caused to move longitudinally within the body or carrier as the latter is revolved. The device is to be employed
in glass-making. The plunger is used on the top and in glass-making. The plunger is used on the top and
partly makes a bottle or jar in connection with the necespartly makes a bottle or jar in connection with the neces-
sary mold. When this first operation is completed, the sary mold. When this first operation is completed, the
carrier is to be turned half-way over, whereupon the carrier is to be turned half-way over, whereupon the
plunger will be out of the way, so that air can be applied to allow the next operation to be effected by blowing and the bottle or jar completed.
ROAD-MAKING MACHINE.-Septimus T. WilLisus, Beaver Dam, Ky. The machine requires only
about one-half the team power ordinarily employed. It belongs to a class of machines employing a gang of concave disk-shaped plows in connection with a seraper-blade In this particular machine, however, the gang is made adjustable as to the angle of inclination to the line of draft.
And the trailing scraper-blade, fulcrumed about a vertical axis on the side opposite the gang, is made adjustaable as to inclination to the line of draft to neutralize the lateral thrust of the gang of disk-cutters
WALL-PAPER TRIMMING. PASTING, AND MATCHING MACHINE.-Wiliam 1). Taber, Cranston, R.I. The trimmed or slit paper after leaving drawton, R.I. The trimmed or slit paper after leave dred or
ing-rolers, passes over an upright table, the printed
ornamental side of the paper being on the table and the orramental lide of the paper being on the table and the
back of the paper being in contact with a revoluble brush back of the paper being in contact with a revoluble brush
which serves to apply paste to the back of the paper. which serves to apply paste to the back of the paper.
The brush receives its supply of paste from the peripheral surface of a fountain-roller, the lower portion of which extends into the paste contained in a receptacle.
The trimmed paper with the paste applied, after leaving the table, reaches a traveling apron by which it is carried along. By providing side-rails with graduations, the
operator is enabled readily to match the paper by cutting operator is enabled res
it in proper lengths.
reversing-gear.-Elgan S. sloan, Elk City, Penn. This gear, by means of which a pulley or other
revoluble member can be driven in either direction conrevoluble member can be driven in either direction con-
sists of a clutch member adapted to engage the clutch sists of a clutch member adapted to engage the clutch
member of a loosely mounted pulley so as to turn the member of a loosely mounted pulley so as to turn the
pulley with the shaft. In order to drive the pulley in pulley with the shaft. In order to drive the and is pro-
the opposite direction another clutch member vided, which, when thrown in, turns the
desired direction by intermediate gearing.
Wrench. - Thomas h. Brosniban, Livermore Falls, Me. On the shank a bearing is held, in which a
screw-rod, engaging the movable jaw to adjust it on the shank, is held to turn and slide. The screw-rod is turne by a head normally separated from the bearing. A spring is held in opposing recesses in the head and the bearing to move a cheek-piece on the movable jaw into engagement with the work. The wrench can be quickly adjusted to grip the object, especially a pipe, without lipping.
Match-machine.-Frank L. Van Dusen, Hull, Canada. This machine is the invention of a match espert. It automatically cuts splints from a wooden block,
dips the splints, dries the tips, and then ejects the comdips the splints, dries the tips, and then ejects the comof improved means for intermittently feeding or advancing the endless chain which receives and carries the
splints; a construction whereby the vertical traverse splints; a construction whereby the vertical traverse
of the splint-cutter and connected devices is shortened. of the splint-cutter and connected devices is shortened,
the friction lessened, and the rapidity and efficiency of the friction lessened, and the rapidity and efficiency of
the operation of the machine increased ; improved mechanism for effecting the movement of the cutter; an improved form of the sockets for receiving and holding the perfect ones retained ; improved means for pushing the perfect ones retained; improved means for pushing therefrom ; improved match-ejecting mechanism; an
improved heater for the match composition ; and an imimproved heater for the match composition; and an im-
proved arrangment of composition vats or pans in the proved arrangment of composition vats or pans in the
heater, whereby removal and substitution or change of the vats may be quickly made, in case one becomes ignited, or other necessity for it arises.

## Railway Appliances.

ANTIFRICTION-BEARING FOR CAR-TRUCKS.Jimiss S. Patten, 403 Equitable Building, Baltimore Md. Mr. Patten has, among other things, provided a
special construction of the casing of the lower portion of the outer bearing. by which the bearing casing readily wears off with the ordinary wear of the bearings, thus
maintaining a tight fit to exclude dust without interfermaintaining a tight it fo exclude dust without interfer
balls held in the outer bearing. The bearings are pro-
vided with a separate socket for each ball, so that the balls will be maintained generally in the desired position and will not roll together by the tilting of the lower bearing portion in one direction or the other.

Vehicles and Their Accessories. FIFTH-WHEEL.-Hiram C. Fouts, Emory, Tex. The ifth-wheel comprises a turn-table with two circular
raceways and series of balls, and a raised series of balls in the middle. The inner series of balls is in a plan with its under surface on the outer series of balls and at its inner edges against the inner series of balls. A cap-plate bolted to the central boss overlaps the in-
ner edge of the ring-shaped plate. The wheel thus formed is simple, strong, and sensitive.

Miscellaneous Inventions
JOINT FOR PIPING. - Join W. Wiagins, 118 improvement in joints for plumbing. A tapered ferrule is used provided with longitudinally-extended ribs and an end-flange. The ferrule is inserted in one of the pipe-sections and fitted therewith in the fitting of the
other pipe-section. Calking completes the joint. When the counection is completed the joint is perfectly smoot on the inside. The longitudinal ribs prevent the ferrule
from turning; while the tapered exterior enables the ferrule to be readily fitted to any size of lead pipe
ANTISEPTIC BROOM.-Oscar S. Kolman, Sava nab, Ga. The invention is an improvement on the in the Scientific American for June 24, 1899. The improved broom contains in its straws a bag filled with of stitching by a bow or loop. The arrangement is such
that the broom is rendered as flexible as the ordinary that the broom is rendered as flexible as the ordinary
broom, which flexibility is extremely desirable, since it broom, which flexibility is extremely desirable, since it
allows a slight lateral motion of the antiseptic bag in sweeping, to feed the antiseptic material. The bag whe mpty can be replenished.
HANGER FOR BATTERY ELEMENTS.-JAMES I Hayes, Salida, Colo. Wooden hangers become satu-
rated with the a battery jar. Moreover their clumsy structure inte a battery jar. Moreover their clumsy structure inter
feres with free access to the jar when renewing the blue stone or other chemicals. To overcome these objections,
the inventor employs a hanger consisting of two inte twisted pieces of wire having a central eye to receive th element and hooked divergent ends to engage the jar so pord the parts in place.
PORTABLE CABINET.-Cbarlotte G. Simpson,
59 West 88th Street, Manhattan, New York city. The 59 West 88th Street, Manhattan, New York city. The
cabinet is of the portable type used for holding family cabinet is of the portable type used for holding family
medicines. It may readily be carried about or held stationary, as preferred, and is well adapted to receive posed in compact order for ready access.
FISH-TRAP.-John O. Sharpless, Fairbaven, Wash The inveution is a peculiarly-constructed fish-trap adapt to cause the fish to enter the trap. The trap may changed as the tide changes, thus permitting it to be used at all times. The lead, it shonld be remarked, is
entirely flexible and can accommodate itself to all vements.
HYGIENIC BEER-PRESSURE APPARATUS. Charles Peters, Brooklyn, New York city. The in vention provides a uew hyglenic beer-pressure machine
arranged to cool and purify the air before passing it into a arranged to cool and purify the air before passing it into a
barrel or keg, to keep the beer in a natural condition, and to prevent raising its temperature by the compressed air faucet being cooled to the desired degree, so that whe nally drawn it is in perfect condition
FORM FOR BOILING MEATS. - Frederick A Lansing, Brooklyn, New York city. In boiling hams it is the common practice to remove the jone before boil-
ing and to tie the meat with strings to ing and to tie the meat with strings to keep it in shape.
The several steps consume much time and render it necessary to trim off portions of the outer part of th ploying a casing of the general form of the my ploying a casing of the general form of the meat, the
casing having a longitudinal opening in its upper portion, permitting expansion and contraction. Clamps are pro vided for drawing the edges of the opening together. adjustable nailless horseshoe. - har riet R. Fenley, Dallas, Tex. A tread-plate is employed provided with a superposed hood, both bisected at their front; the tread-sections are hinged together
Upon the tread-plate a wear-plate, comprising two sid Upon the tread-plate a wear-plate, comprising two side-
plates and a toe-plate, is secured. The hood is fitted on the exterior of the animal's hoof, so that the tread-plate is drawn against the bottom when the hood
All injury is avoided to an animal thus shod.
CIGar-boX OR PaCKing. - Louis and Morri Berger, Manhattan, New York city. The inventio
provides a simple means in connection with a box provides a simple means in connection with a box to
prevent fraudulent refiling or partial refiling with cigars from another box. Arranged in the boz are strips o paper attached alternately in pairs at opposite sides of
the interior of the box, one edge of each strip being fre and each strip being adapted to cover a layer of ciga in the box. As the cigars are sold, each strip is to be orn off, thus indicating that no cigars other than those the presian
ADJUSTABLE COMBINED GATE-HINGE AND ROLLER. - George O. Couver, Quarryville, N. J ported by rollers mounted upon posts. One of thes rollers-the main supporting roller-is pivotally mount ed, so that the gate, after having been pushed back, can be swung around. The gate can be adjusted vertically to permit the passage of small stock, or in time of winter when snow or ice may clog the gateway. The gate is so nicely balanced that little effort is required to operate it. Cattle cannot interfere with the operation of the gate nd there is but little strain upon the posts.
Note.-Copies of any of these patents can be fur
ished by Muni \& Co. for ten centseach nished by Muni \& Co. for ten cents each. Please state
the name of the patentee, title of the invention, and date of this paper.

Business and Wersonal. Marine Iron Works. Chicago. Catalogue free. Yankee Notions. Waterbury Button Co., Waterb'y, C For bridge erecting engines. J. S. Mundy, Newark, N.J. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St Most du
Most durable, convenient Metal Workers' Crayon
made by D. M. Steward Mfg. Co., Chats Machine Work of every description. Jobbing and re The celebrated "Hornsby-Akroyd" Patent Safety O East 138th Stret, Neing Ma The best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins.
By mail, \$4. Munn \& Co., publishers, 361 Broad way, N. Y.
ET Send for new and complete catalogue of Scientific and other Books for sale by Mu
New York. Free on application.

## 

hints to correspondents.
Names and Address must accompany all letters
or no attention will be paid thareto. This is for our
information and not for publication References to former articles or answers should
give date of paper and page or number of question.
nquiries not answered in reasonable time should give date of paper and paye or number of question.
nquiries not answered in reasonable time should
be repeated; correspondents will bear in mind that
some answers require not a little research, and, or in this deepartment, to reply to all either by byst take his turn.
uyert Buyers wishing to parchase any article not advertisc
in our colung will be furnished with addresses o
houses manufacturing or carrying the same.
Speclal Written In ormation on matters of personal rather than general interest cannot be
expected without remuneration. Scientific American Supplements referre
to may he had at the office Price 10 cents each.
Hooks referred to promptly supplied on receipt of Mrice.
Minerals sent for examination should be distinctly
marked or labeled.
(7959) W. E. H. asks: Where can I find particulars for making an electric machine? How much would one cost that has power enough to run the electri top or the electric motor which you give a description of You whll find a full description of a Holtz muchine with working drawings guite powerful enough for your ex periments in the SCientific Ameriuan Supplement tails of 249, zas phice ails of the machine, many experiments are described,
which may be performed with it. Its cost depends en thich may be performed with it. Ts cost depends en
tiren how much of the work you can do yourself. he materials will cost but a few dollars.
(7960) H. B. S. writes: Some time ago saw an account of an elcctrical invention that could he simply reversing the current. What I wish to know is is it is possible to obtain a low degree of temperature by
thc electric current, and if so, how? A. We have not known anything of the invention to which this refers. I is, however, possible to produce cooling by means of the electric current. If a current of electricity is sen hrough a thermo-electric junction in the direction oppo cooling of the junction takes place. Whather this has been or can be carried to the extent of freezing water we do not know. It is doubtful if it can be done eco nomically.
(7961) P. S. D. asks where was the first lectric railroad operated 9 A. The first electric ral
was from Port Rush to Giant's Causeway, Ireland.
(7962) R. E. asks : 1. Does the substance elenium lose its conductive power for electricity in stantly as it is surrounded by darkness ? A. The action
of light upon selenium is instantaneous. 2. Does it by light nstanty to a conductor when again surrotalis by light? A. Selenium does not become like a metalli
conductor when light trikes it. Its resistance is greatl reduced, but is still much greater than that of metals 3. What is its cost, and where can I obtain it? A. We are not able to quote you the price. Any dealer in
chemicals can furnish it. 4. I wish to make two disks isolated from each other, turn in perfect synchronism Is there any simpler way than the use of an alternating
current dynamo for one disk connected with a motor fo the other disk? A. You can connect two disks by a ro of insulating material, hard rubber, for instance, and iun them together. 5. Where can I procure so small a dy-
namo and motor, single phase alternating? A. Small ynamos and motors can be obtained from any builde of dynamos.
(7963) D. D. S. asks : 1. Can electric lights berun by hatteries which go by blue vitriol ? A
A smallelectric light of one or two candles can be lighted by a copper sulphate battery, but it is a most expen horse (Eaverions mode of obtaining light. 2. Are not horse (Equns caballus) and an ass (Equas asinus) neces-
sary for the production of a mule? Are not all mules nd a mare. The offspring of a stallion and an ass is called a hinny. See Webster's Dictionary. These hy(7964) H. N. asks: Will you kindly inorm me through Notes and Queries the composition of a liquid which, when applied to metals such as brass the market called silver-all which does this by applying the liquid on a rag and rubbing the article, which pro duces the silver effect. A. Small articles may easily be coated with silver by dipping them first into a solution of common salt, and rubbing with a mixture of one part of eight parts of common salt, and the same quantity of
cream of tartar. The article is then washed and dried
with a sott rag. (7965) J. N. H. asks : 1. If a magnet be applied to the end of an iron bar of indefinite length.
how far along the bar will the magnetism extend and how far along the bar will the magnetism extend and
what is the formula for determining what the magnetic what is the formula for determining what the magnetic
strength would be at any point along the bar ? A. We in not know. The subject of magesic ," price $\$ 3 \mathrm{by}$ mail. 2. Where can I get information on the relation between magnetism and light ? A. Consult any of the larger text books of physics, Barker or Ganot. The
works of Clerk Maxwell contain the original presentaton of the subject.
(7966) W. W. P. asks: 1. What will prevent films and plates getting soft during develop-
ment and fixing? I use cold water with ice in the fixing bath. A. Use a cold developer. It is too late to apply the remedy when the plate has reached the fixing bath.
The acid fixing Bath, now commonly prescribed in all The acid fixing bath, now commonly prescribed in all
circulars of instructions, will harden the gelatin and circulars of instructions, will harden the gelatin and
usually prevent trouble. 2 . What will prevent holes usually prevent trouble. 2. What will prevent holes
forming in the film on the plate during drying. While drying the last plates I set some down face up on a table where nobody touched them, but several hours later they werefull of holes varying in size from $\frac{1}{2}$ to $1 / 3$ inch. Can you explain the cause? A. Transparent spots or pin
holes arise from a variety of causes. Dust on the plate holes arise from a variety of causes. Dust on the plate when exposed, air bubbles on the plate not detached when it is put in the developer, impure water used in making
the developer, are the principal causes. Each of these the developer, are the principal causes. Each of these
causes has its obvious remedy. The principal plate makers issue small manuals for the guidance of those makers issue small manuals
nsing their plates. Write to the maker of your favorite plate and ask for a copy. You can then study the mode plate and ask for a copy. You can tsible to save any ni-
of handling the plates. 3. Is it possibe
trate of silver from the first washing and from the hypo trate of silver from the first washing and from the hypo
bath? If so, please tell me the method? A. Precipitate the silver from the solution by adding sodinm bicarbonate or sodium chloride. Then reduce by any of the processes for reducing silver, for which see the chemistries.
4. In a recent issue of the Scientific American I saw that gold could be saved from the toning bath by means of sulphate of iron. It said to dissolve two onnces of iron sul phate in a quart of hot water, so Itried it but the iron sulphate would not dissolve but turned red and sank to the bottom of the bottle. Will you please tell me the reason? A. Use ferrous sulphate with which to precipi-
tate the gold in a finely divided state. Tie ferrous sultate the gold in a finely divided state. Tie ferrous sul-
phate absorbs oxygen very rapidly and changes to the phate absorbs oxyge
red ferric compound.

NEW BOOKS, ETC.
Physics of Thermo-Chemistrix.
Gustaf M. Westman. New York.
1900. Energy manifests itself in many forms, and universal science has adopted the name of potential energy for
the absorption of kinetic energy. Physical energy can be stored in matter; for ezample, in the form of latent heat, but we have another form which is dealt with particularly in this treatise, namely, the potential energy,
which is called volume energy, and which in chemistry which is called volume energy, and which in chemistry takes an important part. The purpose of this work is to find a relation between the change of volume, which takes
place in the matter, and the potential energy, which is libor taken up by such change. The anth ions are based entirely upon the values of heat and matnematical expression for the latent heat. He uses the ordinary adiabatic formula, in which the inner as well as the outer work takes place. The application of
the formula perfectly agrees with values of latent heat, the formula perfectly agrees with values of latent heat,
which for certain bodies have been experimentally found. which for certain bodies have been experimentally found.
For as many reactions as complete data in regard to specific weights and combination heat have been found, the author shows that his formula either directly or indirectly applied, will give a correct mathematical exent part of the changes in volume which the constir cht parts in the reaction are subjected to. It is, therefore,
clat his formula represents the general law for chemical mechanism, and moreover that by analogies the heat of the reaction can be determined, which could not

A Frfinch-English Military Techn Cal Digtionary. By Cornélis De Witt Willcox. First Lieutenant of
Artillerv, U. S. A. Washington:Ad-
jutant General's Office. 1900. Octavo. jutant
Pp. 492.
Lieutenant Willcox has performed a task for which he deserves the thanks of every scientific translator. He has compiled a technical dictionary of French-English military terms, which for scholarly completeness and ac-
curacy of definition merits unstinted praise. We have used the first two parts of his work for the past year and found them trustworthy guides. In these parts a few cerms have been omitted which might possibly have been age, chasse-corps, commutatrices, métal deployé,

The Universal Solution for Nu MERICAL AND Literal Equations.
By which the Roots of Equations of By which the Roots of Equations of
all Degrees can be Expressed in
Terms of their Coefficients. By M. A. McGinnis. Kansas City, Mo.: The
Mathematical Book Company. 1900 . Mathem
Pp. 195.
By an ingenious combination of geometry aud algebra, Mr. McGinnis seems to have considerably simplified the problem of solving biquadratic and the higher algebraic
equations. His explanations are not always perfectly equations. His explanations are not always perfectly
clear; nor are his definitions faultess. The explanation of an imaginary quautity (definition 22) is decidedly obscure. It is difficult to understand what advantage the definitions on page 5 of his book have over those ordinarily in use, or what a "proposed proposition " may be (definition 33). On page 239, section 2733 , an equation is given in which an $x$ is clearly missing. These gaucheries are pointed out, not for the sake of being
hypercritical, but because they materially detract from
hypercritical, but because they materially detract from
an otherwise very valuable contribution to mathematical
an otherwise very valuable contribution to mathematical
science.

| INDEX OF INVENTIONS <br> For which Letters Patent of the United States were Issued for the Week Ending <br> SEPTEMBER II, 1900, <br> AND EACH BEARING THAT DATE. <br> [See note at end of list about copies of these patents.] <br> Aging alcoholic liquors, J. A. H. Hasbrouck... Air and gas conpressing apparatus, E. Gobbe. <br>  <br> A larm, see Bridge alarm <br>  <br> Attrition mill, A. Heine...... Automobile vehicle, L. H. D Axle box. car. T. J. Norgan. Axle gage. B. F. Knobloch.. <br> w. H. Luther <br>  <br>  <br>  $\qquad$ <br> Borin Bottle Bottle Beuq <br> Box. Brai 3 Brak Bradin <br>  <br>  <br>  <br>  <br>  <br>  <br> Cigars, cityarettes, etc., lighter for, Butcher Wood <br>  <br>  <br>  <br>  <br>  <br> Guadidididijividide <br>  $\qquad$ <br> Drili repairing apparatus. P. L. Crossman........ Dye and making same, blue cotton sulf ur Gussmann.....................................768 <br> Fgg packing apparatus. H. D. Cripps..... Eloctic onndut coupling. E. Francis.. Electric elevator, J. W. Mabbs.......... $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ | EAITHETM <br> HAVE THE LATEST IMPROVEMENTS $\square$ (10) <br> ASHLEY PATENT NIPPLE HOLDERS $\qquad$ <br> of light weight and compact form. WALWORTH MANUFACTURING CO. BOSTON, MASS. <br> WORK SHOPS <br> BARNES' FOOT POWER MACHINERY $\qquad$ $\qquad$ <br> MAXIMUM POWER-MINIMUM COST. <br>  <br> The Perfection of Pipe Threading <br>  $\qquad$ <br>  <br> GERE GASOLINE ENGINES <br> IF YOU HAVE A SHOTGUN $\qquad$ <br> TOMLINSON CLEANER. $\qquad$ |  | ACETYLENE APPARATUS <br> STOVER ENGINE WORKS, FREEPORT, ILL. EVOLUTION OF THE AMERICAN LO- $\qquad$ $\qquad$ <br> AMERIGAN-MONITOR <br> NOW READY. <br> Gas Engine <br> Construction <br> By HENRY V. A. PARSELL, Jr., Mem. A. I. Elec. Eng., and ARTHUR J. WEED, M. E PROFUSELY ILLUSTRATED. Price, $\$ 2.50$, postpaid. $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ <br> otber powers. Every illustion in this hook is new and original having been made expressly for this work. Large Large ©vo. 296 pages. Send for Circular of Contents. <br> MUNN \& CO., Publishers, 361 BROADWAY NEW YORK. |
| :---: | :---: | :---: | :---: |

## The Grand Prix, <br> $\mathcal{C b s}^{2}$ Smith Premier cypewriter,

Paris Exposition.

This award, made by an International Jury
of twenty-five members, was, at a rating on
points, HIGHER THAN ANYOFTHE
OTHERTWENTY TYPEWRITERS
IN COMPETITION, and quoting from
the jury's report, was given "for general supe-
riority of construction and efficiency, at the
highest rating."
The Smith Premier Typewriter Co.,
SYRACUSE, N. Y., U.S. A.

Che Cypewriter Exchange


 3 West Baltimore stit, PA. 536 California St.s. Mo. ELECTRO MOTOR, SIMPLE, HOW TO




SENT ON TRIAL.
 Telephones,
 THE SIMPLEX INTERIOR
TELEPHONE CO., ACETYLENE GAS AND CARBIDE OF



N. Y. Camera Exchange.



## DESIGNS.



LABELS.



## PRIN IS.

Board of Trade, for tobacco, cigars, and cigar.
s.tise A.
Split." for winis.
Spiti, for wines. liquouss, ete... A. Werner \& Com:
pany............. 255
A printed copy of the specifcation and drawing o


$\qquad$

## n iberunswich 3

Have a good Cigar. It's just as easy to have a good smoke as a poor one
They cost you the samnc. The Brunswick is good. You will like it and buy again. Look for Arrow Head on Every Cigar JACOB STAHL, JR. \& Co., Makers, 168 th St. and 3rd Ave., N. Y. City



## Scientific American.

## 

STMVE


## A.W. PABER




MERITORIOUS INVENTIONS




MODEL \& EXERRMENAL MORK:
GAS ENGINE CASTINGS.
 TURBINES AUTOMATIC MACHINERY RBUILT
to order. Our faccilitee and experience in this line are
excent


BALLS S3a DaySure $=$ Etat
 REVERSING STEAM TURBINE.-PAR-


## 

I HAVE A NEW ROTARP ENGINE, endorsed
 address, H. M. HAAR DIE, 34 findia street, Boston.
 to manyfate with not woital can buy this plant On very eass terms Address $\mathbf{W}$., Watertown, Wis.

 12,500 RECEIPTS. 708 PAGES.
Price, $\mathbf{\$ 5 . 0 0}$ in Cloth; $\mathbf{\$ 6 . 0 0}$ in Sheep; $\mathbf{\$ 6 . 5 0}$ in Half Morocco. Postpaid.


be found answered edag in almost any branch
of inde wustry arill find in this bools much that of industry will find in this books much tat
is of pratcical arue in their repeetive callings.
Those who are in scarch of independent husiness Those who are in search of inderendent husiness
or emponment. reltino to the omeme manutacture
of salable articles, will tind in it hundreds of most

MUNN \& CO., Publishers, scientific american office 361 Broadway, NEW YORK.


## Götrüciantis -MADE AT KEY WEST;-

\{These Cigars are manufactured under the most favorable climatic conditions and from the mildest blends of Havana tobacco. If we had to pay the imported cigar tax our brands would cost double the $\{$ money. Scnd for booklet and particulars. CORTEZ CIGAR CO., KEY WEST.


Those Competent To Know


AUTOMOBILE PATENTS EXPLOITATION COMPANY



Che Lightning Calculator


 $\rightarrow$-ffler pennsylvania raileon cisi -

 the book-keeper pub. co., Ltd.. detroit, mich.
Queen Transits and Levels
 QUEN Stion. ENGINEERS' AND DRAFTSSEN'S SUPPLIES
QUEEN \& CO., Piticaland Scientific 59 Fifth Ave., New York. 1010 Chestnut St., Phila


## WALTHAM WATCHES

The Waltham Watch Company was the first company in America to make watches; the first to be organized (half a century ago), and is the first at the present time in the quality and volume of its product.

> The Perfected American Watch", an illustrated book of interesting information about watches, will be sent free upon request.
> American Waltham Watch Company,
> Waltham, Mass.


CO


ACETMPLEENE
 SENSITIVE LABOR ATODY BALANCE


 | cents. For sale by MUNN\& Co, 361 Broadway, Ne |
| :--- |
| York ity, or any bookseller or newsidealer. |
| $\mathbf{N}$ |

## N $\underset{\text { N GUN }}{ }$ Will be mailed on receipt of two-cent stamp. <br> THE H. \& D. FOLSOM ARMS C0., 316 B'way, New York.

 JESSOP'S STEEL AWARDED for Excellence in Ouality and Workinanstip:

FACTS ABOUT FACTORY TOOLS.


Anything and everything you want to know about factory tools or
any other tools will be found fully explained in the new and enlarged edition of

MONTGOMERY \& CO.'S TOOL CATALOGUE. Thoroughly up-to-date, with hundreds of new pictures and lucid descriptions of tools for all purposes. A book for study and reference, chuck-full of useful and technical information. Everybody should have it. Free of useful and technica
MONTCOMERY \& CO., 105 Fulton Street, New York City. MUNN \& CO. 36I Broadway, New York
SURVEYORS !
If the optical performance of your instruments is not
satisfactory write to $\mathbf{G} \mathbf{E O}$. WXLE,





This Little Instrument
 The Improved Maestro

It will play Hymns, Popular Songs, Church Voluntaries, Dance, Music, Overture, etce,
Any Good Cabinet Organ; and You Can Play It Any Good Cabinet Organ; and You Can Play Proftable Business for Good Agents.
THE MAESTRO COMPANY, Box 0 , ELBRIDGE, N. Y


RESTFUL SLEEP
In Camp, on the Yacht and at Home.
"Perfection" Air Mattresses, cuSHIONS and PILLows.


Style61. Camp :iat tress with Pillow atta
Clean and Odorless, will not absorb moisture. an be packed in small space when not in use. Send for Illustrated Catalogue. MECHANICAL FABRIC CO., PROVIDENCE, R. KING MARINE ENGINES Special Prices.
CHARLES B KING, DETROIT, MCH.


NOW READY.
Horseless Vehicles,
Automobiles and
Motor Cycles.

Steam, Hyaro-Carbon, Electric and Pneumatic Motors.
By gardner d. hiscox, m. E.
and "Mas, Gasolene and Ot Vapor Engines," "Mechanical Movementa,
and Applianees."
Price $\$ 3.00$ Posipaid.
This work is written on a broad basis, and comprises
in its scope a full illustrated description witb details of in its scope a full illustrated description witb details of
the progress and manufacturing advance of one of the mestimportant innovations of the times, contributing to the pleasure and business convenience of mankind. The wake-up and management of Automobile Vchicles
of all kinds is literalls treated, and in a way that will be appreciated by tbuse who are reaching out for a better appreciated by tbuse who are reaching o
knowledge of the new era in locomotion.
The book is up to date and very fully illustrated with various types of Horseless Carriages, Automobiles and

Large 8vo. About 400 pages. Very Fully Allustrated.

CK ECREVCF FIILERR
hadee, and is tough elastie adhenive and
the world stopping the cracks so completer
tienic in


