
a Weekly journal 0f practical information, art, science, mechanics, chemistir, and manufactures. Vol. LXXXXIII.-No. 8.]

NEW YORK, AUGUST 25, 1900.

Detail of the Panoramas.

The Wreck Scene in "Ben Hur," Showing we simple Mechanism Employed.

The Chariot Race in the Circus of Antioch-Ben Hur Destroys Messala's Chariot and Wins the Race.

Snientifir smmericam.

ESTABLISHED 1845
MUNN \& CO.,
No. 36I BROADWAY, - - NEW YORK.

NEIV YORK, SATURDAY, AUGUST 25, 1900.

PROGRESS OF THE NEW YORK RAPID TRANSIT

 TUNNEL.Although five months have passed since the contract for the construction of the New York Rapid Transit Tunnel was signed, there is as yet but little evidence of the general upheaval of the streets of this city, which it was popularly supposed would follow immediately upon that event. This has not been due to any lack of zeal upon the part of the contractor-inchief, or the sub-contractors, but it is to be laid to the charge of the steel works which have undertaken the task of supplying the 78,000 tons of structural steel and steel rails which are necessary for the tunnel. The plans of the tunnel call for a subway, the side walls and roof of which consist of steel posts and girders embedded in and backed with enncrete. With the exception of three or four miles of straight rock tunneling, the whole of the excavation will lie so near the surface that it will constitute what is known as cut-and-cover work; that is to say, the excavation will be made from the surface down, and the side walls and the roof will be built in the deep cut thus opened up through the middle of the various thoroughfares. As work of this class demands more or less complete suspension of traffic, a clause is inserted in the contract by which no section of the tunnel below Sixtieth Street is to be kept open for more than thirty days at a time.
From the very nature of the construction of the tunnel, it is necessary that the steel should be on the ground if only thirty days is to elapse between the breaking of the ground and the roofing in of the tunnel ; and it is mainly for this reason that the sub-contractors have so far devoted their efforts merely to the lowering of the sewers, and the building of storage sheds for the accumulation of the excavating and other contractors' plants. It is stated by the engineer-inchief for the contractor, that the question of the rapidity of the construction of the tunnel will be a question of the rapidity of the delivery of the steel; and just as soon as this material begins to arrive in any quantity the people of New York will see immediate evidence that this, the largest undertaking of its kind in the world, is being vigorously prosecuted. At the present writing the whole of the sub-contracts have been let, and the work of lowering the various sewers, which at present intercept the line of the tunnel, is being pushed forward. The most important diversion is that of the Canal Street sewer, which is more than half completed. The sewers at Mulberry Street, Eleecker Street, and Tenth and Twenty-second Streets, have been lowered, while the change of the sewers at One Hundred and Tenth Street, One Hundred and Twenty-fourth Street and One Hundred and Fiftyseventh Street is approaching completion. In spite of the serious delay which has already been occasioned by the non-delivery of steel, the contractors express themselves as perfectly satisfied that the road will be finished before the contract date set for completion.

HIGH-LIFT LOCKS FOR THE ERIE CANAL,

The question of the introduction of high-lift locks on the Erie Canal, in place of the low-lift locks at present in use, is being investigated by a special board of encineers. Three different types have been considered The first of these is the Dutton pneumatic balanced lock, illustrated in the Scientific American of Feb ruary 3,1900 , which was reported upon favorably by the canal officials in 1896. This system contemplates the use of two balanced lock chambers, placed side by side, with a lift in the case of the locks at Cohoes of 150 feet, and of the locks at Lockport of $661 / 2$ feet. Each lock chamber is carried on a huge inverted airtight caisson, which works vertically in an excavated chanber filled with waier. The system is so arranged that when one lock chamber is elevated to the upper level, the adjoining chamber is at the lower level. The air caissons are connected by a system of pipes and intersecting valves, so arranged that when an excess of weight is placed upon the upper tank, it will descend, driving the air from its own air caisson through the driving the air from its own air caisson through the
connecting pipes into the adjoining caisson, which
in its turn is raised to the upper level. Plans were also inspected, which have been presented by Messrs. Morse \& Brown, for two distinct designs of locks; one worked on a cable counterpoise system, and the other calling for a system of hydraulic-lift locks. The design provide for balancing one lock chamber with another which is exactly similar, the two being connected, not as in the case of the Dutton system by large air pipes, but by a number of wire cables which pass over a system o sheaves and are provided with safety appliances to pre vent a sudden drop in the case of the failure of any part of the balancing gear. The plans for the hydraulic lift call for two lock chambers, each of which is raised and lowered by means of three hydraulic plungers and cylinders, the locks being arranged to counterbalance each other by means of the suitable manipulation of connections between the two sets of cylinders. There is also under consideration, by the Board, plans of Mr . William R. Davis for a counterpoise lift lock, in which a pair of counterbalancing tanks are raised and lowered upon a dozen steel towers, at the top of which are 24 foot sprocket wheels, on which travel the flat link chains which support the tanks. The latter, which weigh about 5,500 tons each when loaded, are to be raised and lowered by electric power, which is to be developed by turbine wheels operating under the head of water due to the total difference of the level of the canals. One of the most important subjects under consideration by the Board is the question of the amount of water and the total time which are required for effecting the entire lift with locks of the different kinds above described.

Whether the proposed enlargement of the Erie Canal is carried ont or not, it would certainly be of enormous advantage to the canal system, as it now exists, if the low-lift locks could be abolished at Cohoes and Lockport and a system of high-lift locks established. At Lockport there are five locks with an average lift of $111 /$ feet, while at Cohoes there are no less than sixtee locks with an average lift of 9 feet. At these two locks alone it is estimated that over half a day is lost in the passage of a single tow.

RECENT ARMOR PLATE BIDS.

The Secretary of the Navy has rejected the bids which were made for furnishing armor for the fourteen battleships and armored cruisers which are either building or authorized, and for the three authorized cruisers of the protected trpe. Advertisements for new bids have been issued, and the opening will take place within about a month. The bids were rejected, not on the question of price, but because of the somewhat complicated nature of the three proposals which were submitted to the Department. The three bidders were the Midvale Steel Company, and the Carnegie and Bethlehem Companies. The Midvale Steel Company stated that it would not accept a contract for less than 20,000 tons of armor, while the Carnegie and Bethlehem Companies stated that they each would not accept a contract for less than 18,250 tons of armor. As the total amount of armor asked for by the Department was about 35,000 tons, to give a contract for 20,000 to the Midvale Company would leave about 15,000 tons only to be divided between two companies, who had each refused to accept a contract for less than 18,250 tons. This would have involved that new bids for at least 15,000 tons must have been advertised for. While this could have been done, and would have been more liable to satisfy the Department, there was a difficulty in the way due to the fact that the Midvale Company asked for twentysix months in which to perfect an armor plant, and begin making deliveries.
In view of the fact that the armor for the three battleships of the "Maine" type will have to be delivered at an early date if the Department is to avoid delay in their construction, it will be seen that the acceptance of the bid of the Midvale Company was altogether out of the question. The Carnegie and Bethlehem Companies agree to begin making deliveries of armor in six months from the date of the contract, and the Department has, therefore, rejected all the bids in the hope that they will procure satisfactory bids for an amount smaller than 18,250 tons each from the last named companies.
There is much satisfaction to be derived from the fact that the bidding came well within the limit of the price laid down by Congress. The Secretary is authorized to buy the best armor procurable for $\$ 445$ a ton, but if he could not get it at that rate, he might accept a bid as high as $\$ 545$ a ton, and if he could not get it at the higher figure, he was authorized to erect a government armor factory. On opening the bids it was found that both the Bethlehem and Carnegie Companies asked the same price for their armor, namely, $\$ 490$ a ton, with the royalty paid by the bidder, or $\$ 445$, with the royalty paid by the government. This is a considerable and a very satisfactory drop from the $\$ 545$ per ton formerly demanded by these two companies. The bid of the Midvale Company was somewhat less than that of the others. It is gratifying to know that a third large steel concern is prepared to undertake the manufacture of armor plate
with the stipulation that if it undertakes to supply armor, it shall receive a contract for the large amount of 20,000 tons. This reservation is due to the very natural desire of the company to make sure that, as soon as it erected its costly armor plate mills, it would be enabled to make sufficient armor to recoup itself for the outlay. At the same time it was simply impossible for the government to tie itself up to a delay of twentysix months in the receipt of this particular consignment of armor. We sincerely trust that the new bids will include some provision which may include the Midvale plant and be mutually agreeable to the company and the government.

LOWERING OF THE ATLANTIC RECORD.

Not a little excitement is prevalent just now in shipping circles over the steady reduction which is being made in the time of trans-Atlantic passage. The "Kaiser Wilhelm der Grosse" and the new "Deutschland" have been cutting down the time of the passage between New York and the English ports by hours at a trip. The former vessel, which prior to the advent of the "Deutschland," held all records across the Atlantic, made a magnificent run on her last trip to the eastward. She left Sandy Hook at 12:23 P. M. on Tuesday, August 7, and arrived at Cherbourg at 13:57 P. M. on the following Sunday, covering the course of 3,184 miles in five days nineteen hours and course of 3,184 miles in five days nineteen hours and
forty-four minutes, at an hourly average speed for the whole trip of $22 \cdot 79$ knots an hour. On her best previous record run her average hourly speed was 22.61 knots per hour. The "Deutschland," which, it will be remembered, on its first return trip attained a speed of exactly 23 knots an hour, left New York on Wednesday, August 8, passing Sandy Hook at $3: 35$ P. M., and arrived at Plymouth at 8:30 A. M., on the following Monday, having covered the course in five days eleven and three-quarter hours, at an average speed of 23.32 knots an hour. The best day's run was 552 knots.
An interesting fact in connection with these records, is that the "five-day-boat" is now an accomplished fact, for a speed of 2332 knots an hour, if maintained over the route from Sandy Hook to Queenstown, would bring the record down below five days, or to be exact, to four days twenty-three hours and six minutes. The record over this route is now held by the " Lucania," which covered the distance of 2,778 miles in five days seven hours and twenty-three minutes. The "Lucania," however, is now a relatively "old boat," having been built in 1892-1893; and as the interval between "Lucania" and "Deutschland", is about eight years, we may say that the reduction in the time of the trans-Atlantic passage has been proceeding at the approximate rate of an hour a year.

COMPRESSED AIR TRACTION IN NEW YORK CITY. An important change is being effected in the compressed air system of traction on certain lines in this city, by the substitution of what is known as the Hardie motors for those now in operation, whicb were built under what are known as the Hoadles patents. What might be called the modern development of compressed air traction in New York dates from about the year 1897, when the promoters of the two types of motor mentioned above were engaged in active experimental work, the Hardie system being tried on the Third Avenue Railroad, and the other on the lines of the Metropolitan Street Railway Company. Both motors operate under extremely high pressures of frow 2,000 to 2,500 pounds to the square inch; but here the difference ends. In the Hardie system two longstroke, single-expansion engines are employed, which are directly connected to one axle of the car, the other axle being driven by side rods. The air, after being reduced to the working pressure by a reducing valve, passes through a tank of hot water, and is then led in a super-heated condition to the cylinders. The Hoadley motor differs from this mainly in the fact that a complete two-cylinder, compound engine is carried on each truck and drives a sliaft which is geared down to the car axle. Instead of passing the air bodily through the tank of hot water, a small jet of water is sprared into the air pipe between the re ducing valve and the cylinders.
The Hoadley system was adopted by the Metropoli tan Street Railway Company, while the Hardie systern has been for some time in successful operation on the North Clark Street Railroad, Chicago. The recent amal gamation of the two companies has resulted in the adoption of a motor designed chiefly upon the lines of the Hardie system, which will shortly replace the inotors now in use upon the crosstown lines of the Metropoli\tan Street Railway system. The present compressing station, which is located at the foot of West Twentyfourth Street, will be utilized, and it is expected that before very long the new motors will be in operation Mr. Hardie, who is the chief engineer of the Consolidated Compressed Air Company. which now has control of the patents covering both systems is one of the oldest and most indefatigable workers in the field of compressed air traction, and the success of the new

(Incintific American.

These figures give the complete transmission system, from engine shaft to motor shaft, an efficiency of $0.90 \times 0.95 \times 0.85 \times 0.95 \times 90=0.62$. For each horse power delivered at the motor shaft, the engine must, therefore, supply $1 \div 0.62=1.61$ brake horse power, costing for fuel alone $3.75 \times 1.61=6.03$ dollars. As the plant located in a large city consumed fuel o a value of 1125 dollars per brake horse power year, the saving as to fuel by the power transmission is $11 \cdot 25-6.03=5.22$ dollars per horse power year delivered by the motor. To effect this saving in the cost of fuel, the capacity of the steam plant has been increased 61 per cent and the entire electrical equipment added. The items of interest, depreciation and repairs should now be computed for these additional investments. As the idea seems to prevail, in some quarters, that electrical transmission on a grand and general plan will be commercially practical, if only a sufficiently high working voltage can be employed to hold in bounds the weight and cost of line conductors, the cost of connecting wires and supports
is entirely omitted from the following estimate, this is entirely omitted from the following estimate, this
being more favorable to the long distance electric transmission than any increase in pressure can possibly be. This omission is made with confidence that the necessary investments and losses, aside from the line, are so heavy as to forbid the delivery of electric power, from a great distance, in competition with that from coal at ordinary prices. Counting the brake horse power capacity of the motor at the point of delivery as one, the capacities of the several other elements in the electrical transmission are as follows Step-down transformer, $1 \div 0 \cdot 90=1 \cdot 11$; step-up trans former, $1.11 \div(0.98 \times 0.85)=1.38$; dynamo, $1.38 \div 0.95=$ 1.45 ; and engine, $1.45 \div 0.90=1.61$, as found above. The combined capacity of the dynamo and motor in terms of the brake horse power delivered by the latter is, therefore, $1 \cdot 45+1=2 \cdot 45$, and the combined capacity of the transformers in the same terms is $1 \cdot 38+1 \cdot 11=$ $2 \cdot 49$, so that $2 \cdot 45+2 \cdot 49=4 \cdot 94$ times the rate of power delivery must be installed in capacity of electrical apparatus. A moderate price for the dynamos and motors installed with necessary attachments is $\$ 2 \overline{\text { per }}$ horse power capacity, and on this basis their cost per brake horse power delivered at the motor shaft is $2 \cdot 45 \times 25=61 \cdot 25$ dollars. Allowing $\$ 10$ per horse power capacity of transformers, installed, their total cost per delivered horse power at the motor shaft is $2.49 \times 10=$ $24 \cdot 90$ dollars, making the total investment for electrical equipment, apart from the line, $61 \cdot 25+24 \cdot 90=86 \cdot 15$ dollars per available horse power at the point of use or center of distribution. But the engine at the generat ing plant is shown above to require a capacity 1.61 times that necessary if it is located where the power is used or distributed to local lines, and the investment in steam plant is, therefore, increased 61 per cent to make up for losses in the electrical transmission. A fair price for a first-class steam power plant may be taken a $\$ 60$ per brake horse power capacity, exclusive of buildings, making the value of 0.61 horse power capacity $0.61 \times 60=36.60$ dollars. The total additional investment for machinery equipment in a long distance elec tric transmission system, over that for a local plant, making no charge for line conductors or buildings, is $86 \cdot 15+36 \cdot 60=12275$ dollars per each horse power de livery capacity at the receiving station. To compen sate for this great increase of investment, there is a yearly saving of $5 \cdot 22$ dollars per delivered horse power Assuming the very low figure of 16 per cent on the investwent, to cover depreciation, repairs, insurance, taxes, and interest, makes the annual charge for these items $122.75 \times 0.16=19.64$ dollars for each horse power delivered at the point of use or distribution. As the a mount saved in the yalue of coal consumed is only 5.22 dollars per delivered horse power, the yearly out lay of 19.64 is nearly four times the saving.
This comparison is very favorable to the transmission system, because no charge is made for the additional buildings necessary with it or for the line. It should also be noted that, while the labor of operation for the generating and receiving stations and the care of the line will no doubt require more expense than the labor of operation in a steam plant at the place of use, no charge has been inade for this increase. As the total cost per brake horse power in a first-class steam plant, using a fair grade of steam coal at $\$ 3$ per ton, about its cost in many cities, was found to be only $11 \cdot 25$ dollars per year, the extra expense resulting from the equipment for long distance transmission from free fuel is $19 \cdot 64-11 \cdot 25=8 \cdot 39$ dollars per delivered horse power per year. That is, if absolutely free fuel could be had at a point 100 miles from some of our great cities, the electric transmission of steam generated power from this fuel to the cities would involve a yearly loss per delivered horse power of more than. $8 \cdot 39$ dollars. So much for long distance transmission from dillars. So much for long di
the coal mines to great cities.

THE CHEMISTRY OF SOOT.

The impression generally prevails that soot is simply carbon, but although carbon is its chief constituent, there are present many other elements among which are hydrogen and nitrogen. Soot may be considered as
an impure hydrocarbon, containing a very large proportion of carbon relatively to the amount of hydrogen The smell of soot suggests ammoniacal compounds, and The London Lancet states that a recent analysis has shown that soot contains no less than 7.4 per cent of ammonium salts. This fact amply accounts for the value placed on soot for agricultural purposes. Soot on burn ing in a confined area, as in a chimney on fire, evolve a characteristically persistent and nauseous smell. This characteristic is probably due to the presence of nitrogenous organic compounds.

PARIS EXPOSITION NOTES

The United States Publishers' Building, which has been erected in the grounds adjoining the main buildings of the Esplanade des Invalides, contains a number of exhibits which characterize the printing and other industries of this country. The building itself presents a handsome exterior ; it is of square form, and the different facades are constructed of a series of arches resting upon columns. Two doors at each end give access to the interior. A number of exhibits are grouped in the center, surrounded by a passageway, leaving space for a considerabie number of exhibits leaving space for a considerable number of exhibits
around the walls. The center is occupied by the Pubaround the walls. The center is occupied by the Pub-
lishers' Headquarters, containing a number of desks and chairs for the use of publishers and others; the building is under the immediate charge of Mr. Charles Simms, Assistant Director of the Liberal Arts Section; Mr. A. S. Capehart is Director of this department. Nearby is the installation of The New York Times, which prints a Paris edition on the large Goss printing press, driven by an electric motor in the basement; a model printing office is shown in actual operation, the most interesting feature of which is the series of Morgenthaler linotype machines; there are five of these in actual operation, each being driven by an electric motor mounted directly upon the machine. To the right of the entrance is the exhibit of the Mutual Life Insurance Company of New York; the cases are finished in hard wood and ornamented with reliefs and statuary ; the walls are lined with framed charts showing either by figures or graphically the different statistics relative to insurance and kindred subjects, with charts showing the growth of the United States in its various resources. Near it is the exhibit of the Equitable Life Insurance Company, which also shows a number of charts, besides photographs of its various office buildings. A number of typewriters, including the Yost, Remington, Smith Premier and Century, are shown in actual operation. A number of printing presses are also shown, most of which are running; among these are the Campbell, Babcock, the Mickle, which prints in colors, and others. Among the phonographs the American graphophone and the Columbia Phonograph Companies are represented, with a number of machines. The United States Express Company has an exhibit showing the system by a number of photographs or charts. Outside the main building is a model stereotyping pavilion, containing the melting furnaces, presses and all the necessary appliances. Another small building contains the reading room ; most of the principal American newspapers are on file, and the cases contain bound volumes of illustrated journals. All of the Scientific American publications are to be found here.

EXPERIMENTS WITH X-RAYS IN ELECTROSTATIC FIELD.

The well-known fact that light movable bodies, when placed in a Crookes tube, enter in movement under the action of the cathode rays, is used to support the hypothesis that these rays are formed of material particles moving with a certain velocity. Nevertheless, it is remarked that the presence of cathode rays is not necessarily connected with the production of the movements, for these are observed to commence before the rays appear, and to cease when the rarefaction is pushed to a certain point, even though the cathode rays are still very intense. It is more probable that the movements are due to electrostatic action, especially if they are compared with those which have been studied by Groety in the case of Roentgen rays. This experimenter disposes a very light movable body, carried on the point of a needle, between the two plates of a charged condenser. In this constant field the body remains at rest, but when Roentgen rays are body remains at rest, but when Roentgen rays are
brought into the field, it enters into rotation, which brought into the field, it enters into rotation, which
lasts as long as the rays continue to act. With conlasts as long as the rays continue to act. With con-
densers of small dimensions and a movable arrangement formed by two disks of coppor foil united by. an insulating cross piece, the direction of rotation is found to change with the direction of the electrostatic field. The position of the tube emitting the rays also affects the sense of rotation. The two plates of the condenser are not indispensable in the experiment; they may be replaced by a small sphere, or even suppressed alto gether, and the vanes placed in the air in the neighborhood of a Crookes tube. The rotation is not a direct effect of the Reent gen rays, for it ceases when a sheet of ebonite or aluminium is placed between the tube and vanes, the rays still passing through this screen.

SUPER-HEATED WATER MOTOR FOR RAILROAD

 Traction.We present illustrations of a standard railroad car now undergoing trials on the New York and Putnam Railway, which is equipped with a motor that is an interesting development of the class of engines operated by super-heated water. In the earlier systems, the storage tank was charged with water at a temperature corresponding to a pressure of several hundred pounds to the square inch, the steam from this water being utilized in the cylinders of the motor in the same manner as steam from the locomotive boiler is expanded down in the locomotive cylinders. The operation of those motors was based upon the laws of temperature and pressure which govern the vaporization of liquids, and as the steam which forms at the top of the storage tank is drawn off to the cylinders, the water in the tank boils at the lower pressure, producing more steam to supply the loss. The reduction of the temperature and pressure proceeds until the pressure falls to a point at which it is not available for use in the motor, when the tank has to be blown off and recharged.
In the operation of the earlier storage wotors it was found that the number of heat-units that was actually a vailable in the cylinders was considerably swaller than had been anticipated. Indeed, it was proved that when the pressure had been run down to about half its original amount, three-quarters of the original heat-units still remained in the reservoir, and
that something like nine-tenths of the water remained. It was found that only about one-ninth of the total energy contained in the heated water of the tank was available for useful work in the cylinders.
A few years ago it occurrcd to Mr. W. E. Prall that more economical results could be secured by withdrawing the heat from the tank, not in the form of steam, but of water, and allowing the hot water thus ab stracted to give up its heat within the cylinders of the engine itself. In certain experiments carried out at Washington, D C., in 1888, it was found that practical tests confirmed the soundness of his theories The motors which now are being tried upon the Putnam Railway cars are the first attempt to apply these theories to the operation of a standard railroad.
The advantages of taking water from the bottom of a storage reservoir, instead of taking steam from the
top, are indicated by a comparison of the conditions which will exist in each system.
The reservoir or storage tank is in either case filled with water at a certain temperature and pressure. It is covered by non-conducting material so that there will be very little loss of heat by radiation.
Steam drawn from the top of such a reservoir must have been developed by the vaporization of a part of the stored water; and as successive volumes of steam are withdrawn there will be successive conversions of water into steam.

STEAM GENERATOR FOR SUPPLYING WATER AT 700 POUNDS PRESSURE.

SECTIONAL VIEW OF HOT WATER TANK AND COMPOUND CYLINDER.
too low a temperature to permit the development of steam. The rate of reduction from a certain pressure and temperature may be readily determined.
The processes and conditions when taking water from the bottow of a similar reservoir are quite different.
The first step is the withdrawal of a certain volume of the heated water; but none of this withdrawn water is expanded into steam inside the reservoir. The conversion occurs in the cylinder, where a portion of the water becomes steam and the other portion, cooled by the abstraction of heat as above explained, is thrown away.

None of the cool water is returned to the reservoir. The volume of water taken from the reservoir at each withdrawal is small, and the only steam in the reservoir will be that which will occupy the space left vacant by the abstraction of the water. This volume is very much less than the volume of steam taken out at each withdrawal when, as in the first instance, steam and not water is ab. stracted. The only cooling process is, therefore, that due to the development of the very small amount of steam to fill the void-and as the temperature and pressure under these circumstances re main high, substantially all the water may be taken out of the reservoir at the bottom leaving still a residue of steam at high pressure.
The mechanical features of the system which is now undergoing test, are shown clearly in the accompanying drawings. The generator is a modification of the water tube boiler, and is composed of a nest of tubes coupled into manifolds at the top and

When a definite weight of water is converted into steam, the resulting volume of steam suust hold in itself more heat than was contained in the volume of water which was actually converted into steam. In the case of a boiler with fire burning under it, this additional heat may be supplied by the fire; but when steam is drawn from the top of a reservoir of heated water with no extraneous supply of heat, this required heat for the production of steam will be abstracted from the stored water. The temperature of the stored water will be correspondingly reduced and every successive withdrawal of a volume of steam and every consequent conversion of water into steam inside the reservoir further reduces the temperature of the water still remaining. Even when beginning with high temperature and pressure, the water cools so rapidly under these conditions as to be very soon at
bottom. The present working pressure is 700 pounds to the square inch. From the generator, water is drawn off into three carefully insulated storage tanks, carried beneath the car whose total capacity is 7,000 pounds The water is led from the bottom of the tanks to The water is led from the bottom of the tanks to two water chambers, which are arranged at each end of the
high-pressure cylinder, as shown in the accompanying section. From these chambers it is fed into the cylin der through three Tappet valves, each of which has a screw and nut adjustment by which the amount of feed may be regulated. As the piston travels through its strokes, the water, under the decreasing pressure, continually flashes into steam. From the high-pressure cylinder the steam, and that portion of the water which has not been evaporated, pass out through large ports on the bottom of the cylinder, and the water is drained off through suitable valves which are locater

in the lower face of the valve-chest. The exhaust steam from the high-pressure cylinder is conducted in the ordinary way to the low-pressure cylinder, from which it is finally exhausted to the atmosphere.
The valves which control the admission of hot water to the motors are so constructed that water may be fed directly to both cylinders, when it is desired to exert an extra effort in starting the car, a by-pass arrangement being used which is somewhat similar to that adopted in compound locomotives of the usual type. The method of mounting the cylinders upon the trucks is clearly shown in the accompanying engravings. The Stephenson valve motion is used, and a common valve stem does duty for the piston slide valre of each cylinder.
The car may be operated from both the front and the rear platforms, the starting, stopping or reversing of the engines and putting on the brakes being performed by means of three superimposed hand-wheels, arranged just hand-wheels, arranged just
above the dashboard of above the dashboard of
the car. One of these the car. One of these
wheels connects through a central shaft with a pair of miter wheels, one of which is keyed to the vertical shaft, and the other attached to the outer end of a length of flexible shafting. The other end of the fexible shaft is looped to a rod, on which is a worm that engages a segment of a worm wheel, which in its turn operates the reversing lever. A second hand wheel operates through a similar arrangement of miter wheels, flexible shafting, worm and worm wheel segment upon the throttle, the details of the throttle and worm wheel segment being shown in the accompanying sectional view of the cylinders. The third hand-wheel operates a brake and gear of usual pattern. Each truck is equipped with two compound engines which are coupled upon a common crankshaft, with the crank set at 90°. A pinion at the crankshaft engages a smaller pinion on the shaft of the driving wheel axle. It is estimated that with the three tanks charged with water at 700 pounds pressure, at a corresponding temperature of 500°, the car will be capable of running for forty miles at a speed of from thirty to forty miles an hour.

Telephone in Sweden.

Sweden is the country in which the use of the telephone is the most widely extended. The first long-dis first long-dis tance line was
established by established by
the S tate in the S tate in
1889 , between Stockholm and Gothe nburg, 300 miles distance. Since then the number of lines has been constantly increasing and at the end of 1898 the longest distance covered was 2,000 miles, between Hoparando and Ystod. The progress is shown by the fact $t h a t$ in 1890 there were 7,680 miles of lines 126 stations, and 4,950 instruments; in 1897 this had increased to $4.5,180 \mathrm{miles}$, 734 stations,
and 32,890 intruments struments. The rapid development of the State telephone lines has not prevented the extension of the systems installed and maintained by private companies, as will be observed by the fact that in 1896 there were 25,200 miles of lines, 387 stations,

WHARVES AT TIEN-TSIN-BASE OF SUPPLIES OF AMERICAN ARMY.

A Traveling Central Station.
According to the Technische Revue, there is in use on the French railroads a traveling central station consisting of a railway car bearing a dynamo and a petroleum motor, the latter serving for driving the former. One of the axles of the car is fitted with an electro-motor, which receives its current from the dynamo, so that the auto-car can go wherever there is work to be done. There the current generated by the dynamo is used either for running machines or for illumination. It suffices for feeding four to six are lamps or thirty to forty incandescent lamps. This "electric power house" has been found especially valuable for working in railroad tunnels.

PROBLEMS OF THE CHI-

NESE CAMPAIGN.

The military campaign in China will encounter graver engineering problems, particularly in connection with the maintenance of an adequate transport system, than have appeared in any similar operations in recent years.
In the first place, the water transportation of troops, animals, and supplies to the base of operations is a work considerably more arduous than was the corresponding task in either the Boer or the Spanish-American war. Russia, through the use of the new TransSiberian Railway, has perhaps the best means of access to the scene of conflict ; but the United States, Great Britain, Germany, and all the other nations participating in the movement, find it necessary to transport nearly all of their troops and practically all supplies distances equal to from one-third to one-half the circumference of the earth

In so far as this phase of the case is concerned, the experience of the quatermasters' departments of the American and British armies in the recent wars is of great value. Not only has a knowledge of the economical conduct of a transport system been acquired, but the troopships, fitted up to meet the emergencies of the past few years and remaining in service, formed the nucleus of a fleet which, under less favorable circumstances, would have required months for assemblage. It early became apparent that, owing to the length of the voyage to be mads, it would be necessary to provide a good sized fle t of transports; and the various nations, therefore, lost no $t i m e$ in chartering practically all the vessels on the Pacific available for such purposes.
Perhapsa word shonld be said with reference to the transport service of the United States War Depart ment upon the Western ocean, since it would appear to be nearly model in almost all respects. The fleet now in use for service between this country, China. and the Philippines consists of thirty-four ves sels, aggregat ing nearly $135,-$ 000 tons burden. Of this number four-
the film for development. The process of development merely consists in placing the plate in water, which softens the covering and dissolves the developer. A similar process has been applied to printing papers by the inventors.
teen vessels of 60,500 aggregate tonnage are owned outright by the government and are regularly in its service, the remaining score of steamers, the tonnage of which is in excess of 75,000 tons, are chartered from private firms and individuals, and more than half of them
have been secured since the outbreak of trouble in China. For these craft the Transportation Bureau of the Quartermaster-General's Department pays about $\$ 11,000$ per month, or in the neighborhood of $\$ 550$ per day. All of the transports which are owned by the government and which, between original purchase price and the outlay for refitting, have cost $\$ 10,000,000$, are employed in carrying troops; but all save two of the chartered steamers are used either as freight ships or for the transportation of animals.
The Navy Department in its preparations has been confronted with almost as many difficulties as have the army officers. There is no satisfactory naval base within a reasonable distance from the scene of opera tions. Manila is more than two thousand miles from Taku; and in case of a naval war the ordinary Chinese ports would be closed. About the only solution possible is a joint use of the coaling-station at Chefoo, with the British, or of the naval base at Port Arthur, with the Russians.
In a land campaign, much of which may have to be carried on in the dead of winter, with the thermometer below the zero wark, fuel will naturally be a primary requisite, but it is planned to resort to the scheme which proved successful in the Spanish-American war when the nation suffered from the same lack of coaling tations which now threatens to embarrass it. A fleet of colliers was then pressed into service to carry coal. Fortunately, a number of these vessels are still in the possession of the War and Navy Departments. The fierce competition for tonnage on the Pacific for war uses has, however, had its effect and the government is paying $\$ 9$ per ton for the transportation of fuel to the Orient, whereas a few months ago the service was performed for $\$ 7$ per ton.
In anticipation of a further advance in the freight rates to a practically prohibitive point the government has fitted out the colliers which were purchased during the Spanish-American war, and which have since been out of commission. The same plaz has been followed with water-ships, disinfecting barges and other adjuncts of warfare upon the sea. There are about twenty vessels in the collier fleet.
All the reports thus far recived by the government emphasize the difficulties of unloading pack and cavalry animals and supplies at Taku. The necessity for a change of the base of operations from Nagasaki to Taku consumed no little time; and some confusion has doubtless been induced by the strenuous effort to land every ton of fuel and supplies possible, owing to the fact that the rivers and bays in north China freeze as early as November 1 .
Although the authorities at Washington early decided to make use of the Pei-Ho River for conveying supplies to the successive camps of the American forces on their march to Peking and authorized Gen. Chaffee to purchase all the steam launches, drawing three feet of water or less, for the transportation of both troops and supplies, the value of this waterway as an avenue of communication is at best uncertain. Above TienTsin it is navigable only for light draught vessels; and the windings are so numerous and the bends so sharp that hawsers must be resorted to continually in order to facilitate the progress of the larger craft. Water transport via this river was, however, employed by the Anglo-French force in 1860, and the allies found at Taku and Tien-Tsin a large number of specially constructed and Tien-Thin a large number of specially constructed junks and light draught tugs whic
adapted for the purpose at hand.
The roads of China vary greatly in character, and the eight-six wile stretch between Tien-T'sin and Peking which constitutes the pathway of the allies is in some respects one of the best in the land. It follows the Pei-Ho River closely, and during the rainy season, which does not end until well into September, is nearly impassible in places, a circumstance which is by no means strange when it is remembered that the rainfall frequently exceeds ten inches por day. With the rainy season past, travelers on the road have the terrific dust storms to bear. Much of the country is open ; the soil is sandy, and the heavy traffic over the thoroughfare grinds the light soil into a fine dust that fills nose and eyes and mouth, and at times almost prevents travel.
The whole tract of country between the seacoast and the Chinese capital is usually flooded during the autumn, and this year the usual inundations were greatly increased by the breaking of dikes on the Pei-Ho River by natives who sought to impede the progress of the invading army. This circumstance has entailed no little inconvenience upon the allied forces, since it not only obliterated many roads and destroyed bridges, but destroyed a considerable portion of the bridges, but destroyed a considerable portion of the
crops in the territory between Tien-Tsin and Peking, a crops in the territory between Tien-Tsin and Peking, a
tract which has been denominated one vast truck garden, and which, under ordinary conditions, would have afforded ample sustenance for an army of almost any size.
size. was, unquestionably, the wretched Chinese roads which forced Admiral Seymour, the British commandor, to abandon his effort to relieve Peking before the er, to abandon his effort to relieve Peking before the
middle of the summer. His soldiers might have overcome the resistance which they encountered had
they not been compelled to put the road along which they were advancing in passable condition. The first sections of the roads, moreover, are much the best, being nearly level; whereas the highway, as it approaches Peking, winds awong hills and is frequently cut between bạnks from ten to twenty feet high. Here careful scouting is necessary, owing to the excellent opportunities presented for ambuscades.
According to the best informed military authorities who have visited the Chinese capital, the defenses of Peking have been greatly overestimated. The famous wall which surrounds the city is of great height and thickness; but it is composed mainly of earth dug from the adjacent moat, and this mass, although faced with brick and stone, would prove by no means imwith brick and stone, would prove by no means iul-
pregnable to modern engines of war. The defenses of the sixteen gateways are inadequate, and at some places painted cannon have been utilized to give a semblance of strength.
The great danger to the health of the foreign troops is found in the radical changes in temperature. From the intense heat of the summer there is a quick transition to the dampness of the rainy season. This, too, is followed by a period of cold nights, and finally by the winter season of bitter cold days and nights. Had not precautions been taken the drinking water would have constituted a source of great danger to the health of the soldiery ; but the United States government at the outset expended the sum of $\$ 14,000$ in the purchase of a distilling and sterilizing plant especially for use in China, which plant has a capacity of 32,000 gallons of pure water per day, so that the wants of the soldiers of pure water per day, so that the wants of the
of this nation at least are well provided for.
The arrangements are the best possible under the circumstances. Owing to the fact that China has never signed the Geneva treaty guaranteeing the consideration of Red Cross nurses as non-combatants, it is unlikely that any female nurses will be detailed for duty in the interior ; but the United States hospital ships "Solace" and "Relief," the hospital ship "Maine" fitted out in England for use in South Africa, and other similar craft are stationed at Taku and other ports to care for the wounded. Each of these vessels can accommodate from three hundred to four hundred patients at a time.
The railway and telegraph systems of China are not likely to play a very important part in the present campaign. If hostilities are prolonged to any extent they will almost certainly be destroyed beyond all hope of speedy repair. There are only 350 miles of railroad in the Empire.

Prior to their destruction during the past summer, telegraph lines connected Peking with the capitals of practically all of the provinces and extended far into
the dependencies, connecting also with the ocean the dependencies, connecting also with the ocean cables and with the Russian Trans-Siberian telegraph lines. The total length of the lines, according to statistics that were compiled but a few months ago, exceeded four thousand miles.
The Present Position of Roentgen-Ray work.
At the recent meeting of the Roentgen Society, Mr. Wilson Noble, in the course of his presidential address, said no very striking discovery with regard to the rays had to be recorded, but a steady improvement had taken place in general practice. It was now possible to shorten exposures and to get far better definition, both in sciagrams and on the screen. In the latter case there was much greater clearness, and, what was
of even more importance, an absolutely steady image. of even more importance, an absolutely steady image.
It was also possible to localize foreign bodies with certainty, and the importance of stereoscopic radioscopy, seeing objects in relief on the screen, was an accomplished fact. There were many things difficult to see, or, at all events, to distinguish with certainty, when seen as a flat surface, but which came out with wonderful clearness when seen in relief. One had only to look at an ordinary stereoscopic slide, first without and then with a stereoscope, to appreciate this.
More particularly was this the case with objects More particularly was this the case with objects showing but little contrast and ill-defined; such, for instance, as the early patches of tuberculosis in the lung. He could not but think that the diagnosis of this disease would be enormously facilitated when sterescopic radiography became general. Many minor improvements had been brought before the society during the past year. One noticeable feature of the present practice was the adoption of the influence machine by many workers. It was too soon to say whether that machine would ever supersede the coil. In South Africa the rays had rendered admirable service. It was a fortunate circumstance that the work for which they were most wanted on the battlefieldi. e., for the localization of foreign bodies-was the easiest to perform, for the employment of the rays anywhere than at a well appointed base hospital was accompanied with enormous difficulty. The number of cases constantly coming in, the necessity for hurrying through them, and the constant impossibility of keeping the tube in good working condition, the difficulty of charging the accumulators, and many other serious inconveniences, made it a marvel how any satisfactory work could be done.-British Journal of Photography.

Formosa produces by far the greatest quantity of camphor. The annual output amounts to between six million and seven million pounds, while the Japanese annual production is about three hundred thousand, and that of China two hundred and twenty thousand pounds.
Dr. S. Adolph Knopf has won a prize of 4,000 marks offered by the Tuberculosis Congress for the best essay on the subject "How to Fight Tuberculosis as a Disease of the Masses." Eighty-one essays were offered in competition. The award was made by a committee composed of several of the leading German physicians and two or three State dignitaries.
A letter has been published in Moscow from Sven Anders Hedin, a traveler, in which he mentions an excursion into Thibet in a direction never before attempted by Europeans. He succeeded in reaching Lake Lobnor, on the shores of which he discovered the remains of an ancient city. The ruins were magnificent and were intersected by broad roads.
The ice habit is making rapid progress in Great Britain largely owing to the calls of Americans. To-day all first class establishments put ice upon the tables in small tubs and guests pick out as much as they desire with ice tongs. Though few saloons and restaurants have refrigerators, many private houses are now provided with them. The consumption of ice would be much greater if regular companies distributed it, but the business is now largely in the hands of fishmongers. The yearly consumption of ice in England is 450,000 tons and in London 160,000 tons. Much of the ice is brought from Norway and a considerable quantity is manufactured.
London is at last to have a complete ambulance service. There is no place in the world where it is so wuch needed. The Metropolitan corps of the St. John Ambulance Brigade does excellent work, but their chief surgeon, Mr. S. Osborn, recommends that the service should be under the control of the London County Council. His idea is to graft an ambulance system for London on to the Metropolitan Fire Brigade, by whom it can be easily horsed, housed and supplied with alarm calls. The London Fire Department does not have any too many horses now for prompt responding to calls, and it would necessitate an increase of the number of houses if the new scheme is adopted.
It has for a long time been supposed that the mongoose was immune to snake bite, but an official report of R. H. Elliot states that the creature is not immune in the fullest sense of the expression, as it may succumb to a snake bite, if sufficiently severe, the same as any other animal. His researches show, however, that the wongoose enjoys a partial and comparative immunity from snake poison. That is to say, a mongoose requires from ten to twenty-five times as much cobra venow to kill it as a rabbit does, and from five to ten times as much as a dog. The mongoose was introduced into Guadeloupe and Barbadoes twenty-five years ago, and in this period there has been a very appreciable reduction of the animal's resistance to snake venom.
M. Pietro Pellegrini, an Italian scientist, has lately published the results of his researches upon mushrooms of the poisonous variety, of which the following resume may be given: The poison of mushrooms dissolves easily in water and the aqueous extract keeps its toxic properties for a long time, these having been strongly warked at the end of eleven months. The poisonous action is not diminished by the drying of the mushrooms by heat. Mammals and birds show a great sensibility to the poison, even in feeble doses, but on the contrary it is without effect upon coldblooded animals. The action is shown very clearly when it is injected under the skin; animals, when subjected to frequent injections of this kind, acquire a certain immunity, and the serum of these animals may be used as a remedy in cases of poisoning.
Mr. Joseph Jaubert has addressed the following note to the Académie des Sciences, relating to a halo of extraordinary appearance observed on the 22d of June at 10 h .45 m ., at the Observatory of Montsouris, Paris. Messrs. Besson and Dutheil observed an irised arc at the interior of the ordinary halo of 22° radius, of which the upper half was then visible. This are appeared to belong to a circumference having the sun as a center; about three-eighths of the circumference was represented. The two observers made drawings sepa rately, which were found to be concordant. According to one of these, the radius of the exterior halo was 17°; the second gave 17.5°. The duration of the phenomenon was about 10 minutes. From 18h. to sunset were also observed, besides the two ordinary parhelia, brilliantly colored; the summit of the halo of 22° radius crowned by a mass of white light; the halo of 46° radius, of which the whole of the upper half was visible at 18 h .20 m. ; and finally a luminous column which was already perceptible at 19 h . and which acquired at 19 h .30 m . a length of nearly 20°. It disappeared before sunset, on account of the thickening alter the layer of cirro-stratus to which it was due.

SOME STAGE EFFECTS IN " sEN HUR."

For years the public has been demanding more and more realism in plays. Managers have found great difficulty in satisfying this demand, owing to the time renuired to set elaborate scenery. The public dislikes long waits, and more than once a play or opera has proved a failure on this account; but after one has seen the production of an elaborate play from behind the scenes, he will never again be impatient at the length of the eutriacte. The only wonder is that the elaborate setting can be gotten ready in the five to fifteen winutes between the falling of the curtain at the close of one act and the raising of the curtain at the beginning of the next act. An excellent piece of work of this kind is shown in "Ben Hur," in which the scenery is shifted, in the dark, in from five to thirty seconds.
"Ben Hur : A Tale of Christ," by Gen. Lew Wallace, was first published in 1880, and has attained a wider sale than probably any other American work of fiction, with the exception of "Uncle Tom's Cabin." Notwithstanding this fact, twenty years elapsed before it was dramatized. We present some illustrations of scenes from "Ben Hur," as played at the Broadway Theater, New York. They represent some of the latest phases of good stage mechanism, and the chariot-race scene is probably unrivaled. Our readers are doubtless fawiliar with the story. It will be remembered that $B \in n$ Hur, the hero of the play, by accident dislodges a tile from the roof of the palace of Hur, in Jerusalem. The tile falls upon Valerius Gratus, the new Procurator of Judea, injuring him. The young prince is betrayed by Messala, his one-time friend, and he is hurried away to the galleys, while his family are thrown into prison and their possessions confiscated. The second act opens with the interior of the cabin of a Roman galley, or, rather, trireme. In the center sits the tribune, Arrius, on a raised dais, while in front of him sits the sailor whose office it is to strike a sounding-board with gavels, keeping time for the rowers. Along the sides of the cabin are rows of benches, which are really a succession of rising banks, and here are the galley slaves, who are each pulling at an immense oar. The tribune is impressed with the appearance of young Ben Hur, who is now a galley slave, and he gives orders that when they go into battle Ben Hur shall not, like the other galley slaves, be chained; for in case of the boat sinking, the slaves would all be drowned. Then comes an action with the pirates, in which the galley is comes an action with the pirates, in which the galley is
sunk. The crash and grinding of the timbers are admirably rendered by what is known in stage parlance as a "crash" machine. The lights are then turned out and in an instant they are lighted again, showing the wreck scene, which is reproduced in our upper engraving. The side scenes fold up instantly when the change is made and drop to the floor. The rowers benches are pushed out of the way and the borders and back-drop are raised from view. The galley slaves with their oars drop to the floor, and the men from the rear draw forward a painted cloth which represents the sea; it is secured to a batten and is laid down just back of the footlights. Men now step forward carrying the cloth which covers the raft, which rests upon the tribune's seat. The back-drop scene was in place before the back-drop of the galley was raised. It will be remembered that the galley slaves arelying upon the floor and they now throw up and down the canvas cloth, producing a most realistic imitation of waves. They are assisted by a number of men in the wings, who pull the cloth in unison. The raft itself consists of two cradles, which are each so hinged that a rocking motion is given in two directions. This is done by Ben Hur and Arrius themselves. The raft is in position in the previous scene, but is not allowed to move, being held by pins, which are removed by those being held by pins, which are removed by those
behind. With an electrical sun and proper elecbehind. With an electrical sun and proper elec-
trical effects, the scene is very realistic, and is interesting as showing how simply a good stage effect can be produced.
It will not be necessary to rehearse the subsequent adventures of Ben Hur, but in his wanderings he comes across his enemy, Messala, and deciues to humble him and ruin him by a chariot race in the circus at Antioch, and this scene is one of the wost realistic ever produced. It is a combination of several effects, some of them old and many of them entirely new. The new effects were invented by Mr. Claude L. Hagen, of the firm of McDonald \& Hagen, New York city, who is also the master machinist of this splendid production of "Ben Hur." When first introduced upon the stage, the horse race was a decided novelty, and it is doubtful if any stage illusion is more ingenious. The two ful if any stage illusion is more ingenious. The two
principal plays in which the horse race has been used principal plays in which the horse race has been used
are Neil Burgess' production of the popular play "The Country Fair" and the French play presented in Paris called "Paris Port de Mer." In both of these plays three horses, each ridden by a jockey, race upon the stage without going out of sight of the spectaiors. We have in these plays an illusion true to nature; the horses, appearing to be free from all restraint, are really galloping, the ground disappearing under their feet and the landscape as well as the fences fly past in the direction contrary to the forward motion of the
horse. This is accomplished by means of a treadmill, which the horses themselves actuate. In "Ben Hur," many radical improvements have been introduced, even in this part of the performance. Reference to our engravings will give an idea of the mechanism.
A large part of the illusion depends upon the back ground, which gives the idea of positive motion, and the one shown in our engraving, invented by Mr . Hagen, is very novel. It embodies means for mounting and driving traveling aprons at the rear and sides of the stage, so as to prevent any break in the scene, and this, of course, gives the audience the impression of change of scenery, as in the illusion the spectator follows the racing horses. At the rear of the stage is an endless apron, flanked on each side by smaller end an endless apron, flanked on each side by smaller end
less aprons, each of which is complete in itself, but are operated in unison. When not in use the side aprons may be folded back against the rear apron; but while the scene is being "set" for the chariot race they are extended to the position indicated in our engraving. Upon theso aprons are painted representations of the background of the scene; in this case representing the antique circus at Antioch filled with spectators. The mechanism will be understood by reference to our engraving. Directly below the chariots will be seen the electric motor which actuates all three aprons of the panorama. It is a five-horse power Lundell motor, and is operated at the proper time by the assistant, who stands at the switchboard and who receives the simnal of the stage manager by a flash of a colored electric lamp. The motor is started manually. A twisted belt imparts motion to a vertical shaft upon which are three pulleys, one to receive the power from

trick chariot in "ben hur."

the countershaft and the others to transmit the power to the two ends to vertical shafts, which each carry a cylindrical drum, around which the aprons are passed. Their rotation causes the apron to travel continuously, and gear-wheels are provided, as shown in our upper left-hand engraving, which impart motion to the side aprons, so that they are all driven in the same direction, and to the spectator the three aprons appear to be a continuous, unbroken scene. Notwithstanding the fact that the panorima is 96 feet wide and 25 feet high, the three panoramas are all rotated at a speed of 2.000 feet per minute by a two horse power motor. The ease with which this enormous extent of canvas is driven is largely owing to the method of suspension, which is also shown by a small inset in our upper lefthand engraving. There is an endless track mounted rigidly on and extending between the outrigger-structures at the two ends, and upon this wheels or rollers are mounted to run on the tracks. The wheels or rollers are secured to hangers which are attached to a belt which runs around the upper portions of the drum to which the panorama apron is fastened. By these means the apron is suspended in the proper position, and it is caused to turn true around the drums without crinkling or being subjected to other distortion. The lower edges of the aprons are provided with a belt mechanism, similar to that at the top, which serves to keep the bottow edge of the apron in a proper position. These belts also serve to receive the power transmitted by the drums, which arrangement avoids straining the apron, as would be the case were the apron engaged directly with the drums. These hangers are shaped as frustums of a cone and are mounted by ball bearings on the spindles which carry them.

To make the illusion complete, Mr. Hagen has provided an exceedingly ingenious means for representing the ground, causing the chariots to appear to be actually moving over it. This illusion is effected by a number of narrow, endless canvas belts, painted in low tones to represent the ground and placed edgewise on the stage between and in front of the chariots and extending across the stage. On being driven toward the rear of the chariot it appears to the spectator that the chariots are moving over the ground. To give proper perspective to this effect the speed at which the belts are driven is gradually decreased toward the rear of the stage. Suitable gearing is provided for driving these belts, which are actuated by an independent motor shown at the right of the picture. The belts themselves are carried on pulleys which are mounted on housings which may be readily placed in position when the scene is set. For connecting the pulleys which carry the belts with the gear for driving them, couplings are provided which pass through the floor of the stage and which may be readily taken up when the chariots are removed, leaving a clear and uninterrupted stage. We now cowe to the chariots themselves.
The treadmills are placed immediately beneath the stage and are covered by sections of planking which are removed and carried out to the wings when the race is to take place. There are eight treadmills, one for each horse, and the horses are brought up from the stables, a few blocks away, a short time before they are needed, and they take their places with the artists and supernumeraries awaiting their cue to go upon the stage. They seem to take huge delight in the performance, and seem to know to the minute the time when they are to run. The chariots are two in number and each is supposed to be drawn by four horses, and each chariot is provided with a pole. The chariot of Ben Hur is not a trick chariot, but that of Messala is arranged to go to pieces when Ben Hur is supposed to strike his cbariot, throwing him and causing him to lose the race. The chariot wheels do not rest upon the floor of the stage, but are supported upon metal yokes which are not noticed by the audience. The wheels are actuated by a small electric motor inside the body, and can be switched on by the drivers. Both chariots have these motors, and current is obtained by the aid of plugs which are inserted in the floor. The chariot of Messala is arranged so that at the critical moment when Ben Hur strikes Messala's chariot by dropping a catch, powerful springs on the axle throw the wheels off and the body of the chariot drops upon a yoke which is provided with springs. Of course, it is necessary to wake one of the chariots appear to go ahead of the other. This could, of course, be managed by allowing the horses to really advance, but with four horses this might prove dangerous. The same means is accomplished by having the four treadmills and the place upon which Messala's chariot rests on an independent section of the flooring, which can be moved back a distance of 15 feet. Underneath the stage joists support this movable section and it slides directly on top of these joists. Curtains simulating the color of the stage close the aperture at both "ends, so that it is not visible to the audience. At the extreme right of our engrav ing, behind the side of the panorama, will be seen wen working at a winch. This winch winds up a wire rope which is carried over a pulley at the extreme left underneath the stage, and is connected with the entire wovable section carrying Messala's chariot and horses, and three wen move the whole affair back with ease and give the appearance of Ben Hur winning the race. A stop is provided so that the treadmill cannot be operated by the horses until the panorama has begur to wove and the curtain is ready for operation. The horses are very securely fastened, so that there is little danger of an accident. To simulate the dust raised by the chariot wheels, a combination of powders is forced out underneath the horses' feet and behind the chariot wheels. This is accomplished by a blower in the cellar, driven by the same electric motor which actuates the belts. The dust is fed into a hopper and is blown through fourteen ducts arranged at proper intervals to produce the desired result. The "dust" is a combination of vegetabie products arranged so as to imibination of vegetabie products arranged so as to imi-
tate the dust of a road having the buoyancy of natural dust without its grit.
It requires about eight minutes to set this scene, and in that time the side panoramas are folded out into position, the sections of floors are removed, and the chariots are rolled into position and adjusted. The horses are hitched to the chariots, connections are made with the belts for giving the effect of moving ground, and the dust arrangements are put in place.
The telegraph was first established in Japan in 1869, when a line was built between Yokohama and Tokio by English engineers. In 1873 the Government Telegraph Department was organized. In 1879 the Empire joined the International Telegraph Union. There are now 1,267 offices in Japan proper and 112 in Formosa and there are 144,570 miles of line in service. In 1899 these lines transmitted 224,000 foreign and $15,275,623$ domestic messages.

THE PARIS METROPOLITAN UNDERGROUND

 RAILROAD.The opening of the first section of the Paris Metropolitan Railway, on July 19, marks an interesting event in the history of rapid transit, for certainly no city in the world has been so behindhand in trans portation matters or which will so soon be adequately provided. It is true that it was possible for any one to travel by the Ceinture Railroad from one great rail way station to the others, but the changes were numer ous and the line did not affect the transit problem.
Paris is very closely built, and large sections of it depend entirely upon ownibuses and street railways, but for many years the service has been slow and entirely inadequate. The Parisians understood the need for some rapid system of transportation, and in 1856 a project was agitated for connecting the center of Paris with the circumference. It was not until 1871 that the authorities began to study seriously the problem. A remarkable report was issued, and the scheme, as outlined, has been followed to-day as regards the main deas. In 1889 the need of a new line was strongly elt, and when the Exposition of 1900 was resolved upon the necessity for haste was apparent. In 1896 plans were formulated for supplying the insufficiency
ond to the project, it revised its decision and substituted the normal gage, but with this restriction, namely, that the cars should be smaller than those of the companies, and that the tunnels should be of such size that the cars of the Metropolitan could circulate only on the city system. In this way the city will always be master of the line, and the companies, if they intend to connect with the city line, will have to make their time-tables according to its wishes. This condition may become illusionary, however, for when the State gave the concession to the city, it reserved the right of letting the railroad companies make connections with each other in Paris if they found it convenient.

The Municipal Council approved the project on July 9, 1897, and on March 30, 1898, a law was prowulgated making the work one of public utility. The law of April 4, 1898, authorized the city to borrow $165,000,000$ francs and the modification in width required this sum to be raised to $180,000,000$ francs.
Only a small section of the projected system has been completed and not all the trunk-lines and branches have been authorized.
Following is a list of the lines in the order of construction: 1. From the Porte de Vincennes to the Porte

Boulevard Diderot, and runs parallel with the Vincennes road till it reaches the gate of the same name. Of the two otber lines in course of construction, the most important is that running from Place de l'Etoil to the Trocadero. This has a junction with the firstmentioned line, so that passengers from the Bastille and Rue de Rivoli can take the train directly for the Trocadero. The third line starts at the Porte Dauphine, and runs under Avenues Bugeaud and Victor Hugo to Place l'Etoile. It is the beginning of the great circular railway. The Place de l'Etoile is a kind of central station. Under its roadway the tracks branch out in all directions.

When the three lines which constitute the first section of the Metropoiitan Railway are entirely completed, the total length of them will be 26 miles, but at present only the Porte Maillot and Porte de Vincennes Lines have been finished, and the extensions to the Porte Dauphine and the Place du Trocadero are only partly completed. The total length of the main line and the two branches is $83 / 4$ miles, the main line being 7 miles long. The main line calls for eighteen stations, but now eight only are being used. There are three stations on the line which runs from the Place de l'Etiole to the Porte Dauphine, and four on

Tunnel, showing Third Rail

Station on Metropolitan, showing Bridge Across Tracks.

Vincennes Station and Tunnels.

Rolling Stock in Car Yard.
THE NEW PARIS UNDERGROUND RAILWAY.
in transportation facilities and also to attempt to build up outlying quarters. The gage was to be of such a dimension as would insure the autonomy of the line. Electric traction was to be used. The tunnels, viaducts, etc., were to be built by the city of Paris, and other expenses were to be paid for by a concessionaire.
One condition of success of the Metropolitan seemed to be the connection of its lines with the railroad stations of Paris. Such connection would offer great advantages, as it would perinit travelers to cross the city without going out of the stations, and would thus effect a great saviug of time. The greatest advantage was doubtless the possibility of going from any point in the city to the different stations of the suburbs without changing cars. This argument should have caused the Municipal Council to decide upon a junction, but it had the opposite effect. The Council feared that if the Parisians had such inducements for living in the suburbs, the population would decrease, and their octroi, or municipal tax, would diminish. It also feared that the railroad companies would some day have too decisive a voice regarding the Metropolitan, and would thus become the managers after having been evicted as tenants. After having decided upon a track one meter in width, which would have altogether put an

Dauphine, with a connection to the Porte Maillot. 2. Circular line starting from l'Etoile and following the outside boulevards. 3. Menilmontant to the Porte Maillot. It separates frow the two preceding lines at the Rue de Constantinople and passes through the Rue de Rowe, the Boulevard Haussmann, the Rues Auber, Quatre Septembre, Réaumur, Turbigo, and Temple. 4. From the Porte d'Orleans to the Porte Clignancourt. This is the north-south transverse line. 5. Boulevard de Strasbourg to Pont d'Austerlitz. It connects the Place de la Bastille to the circular line. 6. Boulevard de Vincennes to Place del'Italie. 7. From the Place Valhubert to the Quay de Conti. 8. Palais Royal to the Place de la Danube by the Rue Lafayette. 9. From l'Opera to Auteuil by the Place de la Concorde and the Invalides.

All the lines comprise two systems, a number of transverse lines and a circular line, with other short lines connecting them together at various points.

The part now actually finished consists of one complete line and the beginning of two other lines. The first is the main transverse east-west line, which connects the Bois de Boulogne with the Bois de Vincennes. It passes under the avenues of the Grande-Armee and the Champs Elysees, follows the Rue de Rivoli and the
the Trocadéro branch. In reality there are in all twenty-three stations only, for the central station on the Place de l'Etoile is really a single station composed of three distinct parts. The stations are of five different types. One station is open, seven stations have metallic ceilings, and seventeen stations are vaulted. At the terminal stations the trains go around a loop, so that no switching is necessary. The ordinary tunnel sections have a maximum width of 23 feet 4 inches, and the clear space above the rails is 14 feet 9 inches. The stations are 246 feet long and 45 feet wide. The platforms are 13 feet wide, and are raised 3 feet.above the level of the tracks. The total width of the cars is 7 feet $101 / 2$ inches, the gage being 4 feet $81 / 2$ inches.
At the Bastille Station, where the Metropolitan crosses the St. Martin Canal, there is an open cut and an open station, but with this exception the line runs entirely underground. The ticket offices are reached by stairs from the street, and all the passages, halls, etc., and the chief stations, are lined with white vitrified brick. The stations are well lighted, and the tunnel is also lighted throughout its extent. Some of the stations have their platforms connected by overhead bridges. The rate of fare on the road is five cents for first-class and three cents for second-class tickets.

Return second-class tickets are issued at an expense of four cents. There are no first-class return tickets, and even the use of the second-class tickets must be commenced before nine o'clock in the morning, as they are intended for the use of workmen. The distance is covered in about thirty-five minutes, including stops, which average twenty to twenty-five seconds. The trains will leave about every ten minutes, and each train has one motor car and two trailers.
The motor car is given up to second-class passengers. It accommodates twenty-eight persons and the trailers accommodate forty persons. The motor cars are provided with two hundred horse power motors, enabling a quick start to be made and a high-sustained speed while running through the tunnel. The track weighs 106 pounds to the yard. The current is conveyed by a third rail. The conductor rail is supported by insu lators secured to every third or fourth tie. The carsare brilliantly lighted by electricity. The trailers have ten lanps and the motor and the motor cars eight lamps and two head or
signal lights. At present twentytwo wotor cars have been delivered and more than double that number have been numberhave been
ordered. The ordered. The
motor cars have motor cars have
the usual fuse the usual fuse
boxes, lining, arresters, etc. Westinghouse airbrakes are used and the compressors are run by an electric motor. Contact is obtained with a third rail by means of two shoes, and in the car yards overhead wires are used. A fourwheeled trolley carriage running carriage running
on the wire reon the wire re-
ceives the current
and delivers it to a motor car by means of a cable and plug.
The electric power by which the cars are driven will be generated in a central power. house between the Quai de la Rapee and the Rue de Bercy. The boilers, engines, dynamos and auxiliary machinery have all been built by Schneider \& Company, of Creusot. The Beency power house will directly supply current for that portion of the road lying between Vincennes and the Louvre station. The other portion will also receive current from the main power house, but through the medium of a transforming sub-station at the Place de l'Etoile. The central station will consist of three batteries of six boilers each; a group of 1,500 kilowatt generators furnishing a direct current at a pressure of 600 volts; four groups of 1,500 kilowatt generators, fur600 volts; four groups of 1,500 kilowatt generators, fur-
nishing a three-phase current of 5,000 volts and 25 periods; various auxiliary machines, exciters, transformers, and a battery of accumulators. Normally, the direct current is used for the Vincennes-Louvre section; but, if necessary, the three-phase system also can be called into requisition. In the sub-station, nine static transformers of 250 kilowatts each will step-

TEN-INCH RIFLE ON HOWELL DISAPPEARING GUN CARRIAGE; FIRING POSITION.

When the gun is in its firing position, with the levers vertical, the counterweight, hanging freely by its upper end, from the main axle, lies in front of the gun levers, and is kept separated from them a distance of about twenty inches by the telescopic spring cylinders.

The hydraulic cylinder lies between the telescopic cylinders on the under side of the counterweight box, and is journaled to it by suitable bearings. The piston of this cylinder is attached to a cross shaft joining the ends of the levers, and in this position is withdrawn from the cylinder about twenty inches.

The general operation of the carriage is as follows : On firing, rotation of the system takes place about the main axle; the gun moves to the rear and downward, the gun levers being caught by a ratchet when the loading position is reached. The lower end of the levers moves forward and upward, compressing the spring cylinders, and forcing in the piston of the hydraulic cylinder, thus transwitting their rotation to thecounterweight. The relative motion of about twenty inches allows the counterweight to gradually acquire the full velocity of recoil and greatly reduces the shock due to the sudden accel. eration of so large a mass.
In the firing position nearly the total mass of the counterweight is suspended from the main axle, but during the recoil of the system, as the lever arms rotate from the vertical position, the weight is gradually transferred to them until in the horizontal position they carry practically $t h e$ whole mass.
expended on the various gun-carriages that are submitted to the War Department. The mount is of only less importance than the gun, particularly in that class of mount which is designed to withdraw the gun behind shelter immediately upon its being fired.
The disappearing gun-carriage, which forms the subject of our illustrations, is now undergoing tests at Sandy Hook and has given fairly good results. It belongs to that type in which the gun is mounted on the extremities of two gun levers that rotate about a fixed axis. To the other extremity of the levers is attached a counterweight, which brings the gun from the loading to the firing position and assists in checking recoil when the gun is fired.

The principal parts of the carriage are : Lower roller path, rollers, upper roller path, chassis, wain axle, gun levers, counterweight, wain recoil cylinder, auxiliary recoil cylinder, elevating gear, retraction gear, traverse circle and traversing gear.
The distinctive feature of the carriage is the method of attaching the counterweight, there being an hydraulic and two telescopic spring cylinders, interposed between the bottoms of the levers and the weight.

When the gun is loaded the ratchet holding the gun levers is released, the counterweight, due to its preponderance over the gun, moves downward and backward, carrying the system into the firing position; as the gun levers approach the vertical, the mass of the counterweight is again transferred to the main axle, and the telescopic springs force the lever arms away from the counterweight.
The wain recoil cylinder is mounted in trunnion bearings between the chassis below the main axle; its piston being attached to the counterweight. When the gun is fired the piston is withdrawn ; the oil passes through ports in the piston head frow front to rear, forming the hydraulic brake, which absorbs the greater portion of the energy of recoil due to firing.
Two independent chains of gearing mounted on the two cheeks of the chassis engage in circular racks on the gun levers and serve as a means of lowering the gun from firing to loading position during practice drills.
The gun is elevated and depressed, either in the loading or firing position, by means of a band and two arms connected with two racks; the racks, actuated by

spur gears, move in guides fastened to the inner faces of the cheeks.
In their report of the tests which have already been wade, in which 26 rounds were fired with a 10 -inch gun mounted on a carriage of this type, the Board states that, in the final firings for rapidity and accuracy, the general working of the carriage was satisfactory, although the loading angle was too great and the raversing mechanism was too slow and uncertain. The retraction mechanism was also criticised as being too slow, while the height of parapet required is twice as great as that of the service gun. "The great merit of the carriage," says the report, "is the absence of sliding parts."

A SIMPLE ROTARY PUMP FOR LIGHT SERVICE.
The Taber rotary pump, made by the Taber Pump Company, of Buffalo, N. Y., is an ingenious pumping apparatus which is intended for lignt service where a large amount of liquid is to be pumped against moderate pressure. It performs its work with but a small expenditure of power and in a comparatively short time.
The pump consists essentially of an outer shell inclosing a piston-cylinder which is provided with open ways or valve slots. Sliding valves, which are constructed with overlapping inner arms, are arranged in the ways so that they are forced through the piston by contact with the abutment and do not drop by gravity. Hence the pump can be operated at very slow speed to pump correspondingly as much liquid as at maximum speed.
Owing to the peculiar construction of the valves there can be no back lash and no lateral motion; as the driving shaft rotates, the valves pass in and out, back and forth through the cylinder, following the lines of the interior of the shell and creating a vacuum. The pistons are self-adjusting and compensating, and their operation is not dependent upon springs, cams, or similar devices.

A noteworthy feature in the construction is the absence of all gearing, the power being directly applied to the driving shaft through the medium of a belt and pulley or directly attached engine or motor. The pump is positive in its action and does not depend upon speed to create the necessary vacuuin. So large are the valve openings that the clogging of the moving parts is well-nigh impossible.
Pumps of this type are capable of discharging frow 25 to 600 gallons per minute depending upon the size of the pump, char acter of the liquid, and height to which it is to be forced. The pumps are adapted for use in connection with hot or cold, thick or thin liquids, and have been long success fully used in breweries, chemical works, soap factories, tanneries, creameries, oil mills, and packing houses.

The Diamonds of Steel.

It has not hitherto been suspected that our great metallurgic establishments were wanufacturing precious stones. Yet nothing is wore certain. It is true this has been done without intention, and without knowledge at the time.
Its possibility, however, might have been anticipated when M. Mcissan made his experiments, ending with the artificial production of the diamond. He obtained this gem by suddenly cooling under high pressure the cast metal saturated with carbon. The same couditions are realized to a greater or less extent in the blast furnaces for manufacturing special steels, by sudden cooling of the fused metal under elevated pressure. In this class of steels there must be diamonds, microscopic without doubt, and Prof. A. Rossel, of the University of Berne, has been conducting experiments in the laboratory of inorganic chemistry for the purpose of ascertaining whether such diaimonds really exist.
Already his conclusions have been presented to the Academy of Sciences, but one of his principal collaborators, M. Leon Franck, has recently prepared a detailed statement of the wethods employed and the results obtained.
A considerable number of steels of various production have been examined and treated in the same manner. They all yield the same evidence. From a piece of compact steel a portion of about three hundred grammes was cut out and treated with nitric acid. The insoluble residue consisted principally of carbon, especially in the state of graphite, combinations of silicium, etc. It was washed with water and then boiled three times with fuming nitric acid, which partially dissolved it. They even obtained a dilution of the deasity of $1 \cdot 8$ by washing and successive additions of fluor-hydric acid; then of fuming sulphuric acid. There remained only graphite, which was washed, dried, and dissolved with potassium chlorate. This long series of operations was commenced again, for it was deemed necessary to pass the residue through the
whole series of treatment that has been explained. At last, the chemist had the satisfaction, after a treatment of boiling sulphuric acid, of finding a deposit that could not be attacked.
The residue finally obtained with so much trouble fell to the bottom of a vessel filled with a heavy liquid as methyliodide. With the aid of a strong microscope, minute, transparent octahedrons were discovered, which burned on a leaf of platina, and in a current of oxygen, disengaging carbon, and almost without leaving ash. The proof was ample. M. Rossel had really discovered diamonds in steel.
The higher the temperature at which the steel has been made, the more diamonds it contains. This accords with the noted experiments of M. Moissan. It cords with the noted experiments of M. Moissan. It
is probable also that the hardness of the metal inis probable also that the hardness of the metal in-
creases with the number of diamonds it contains; in creases with the number of diamonds it contains; in
reality, they are the cause of its hardness. It is curious to observe that these diamond octahedrons are easily broken, so that in the steels worked, forged or rolled, only the debris of crystals were found.
In a still more interesting trial, M. Rossel believes he has ascertained that the ordinary casting is not the best dissolvent of the carbon and that, in view of the results, the method suggested by M. Moissan can be results, the method suggested by M. Moissan can be
improved and perfected. The trial to which we allude took place on a loup, that is to say, on a block of metal mingled with scoria, which is formed at the lower part of the blast furnace when the operation is not perfect. This loup has been brought from a furnace of the factory of Esch-sur-l'Alzette in Luxembourg. It contained, among other things, a large quantity of crystalized graphite, and the washings isolated a large number of diamonds; all wuch larger than those that had been found in ordinary steel. One, that re-

ROTARY PUMP FOR LIGHT SERVICE.

ceived the pompous name of the "Star of Luxembourg," measures more than five-tenths of a millimeter in thickness. Half a willimeter, perhaps, cannot yet compete with the "Star of the South," or with the "Regent"; but it must not be forgotten that it is a diamond procured artificially. Before long the blast furnaces of Luxembourg may be able to vie successfully with the commonplace mines of the Transvaal, where they are content to pick up what nature has already provided. -Le Diamant.

Utilization of Photographic Plates.

The following method has been given by which photographic plates, which have been fogged or accidentally exposed to the light, may be utilized for making glass positives or lantern slides. A solution is made up of 100 parts distilled water, 6 parts bromide of potassium, and 50 parts chloride of copper. The plate is exposed for one or two minutes at one foot distance from an ordinary gas flame and by orange or red light, is placed in the preceding solution for eight or ten minutes, then washed fifteen minutes in water and dried in the dark. Under the action of the bath, the bromide of silver in the plate is changed to chloro-bromide. The plate is then printed under a negative for twenty to thirty seconds in daylight, or from two to five minutes at one foot from a gas flame; it is then developed in the following bath :

The ingredients are dissolved in the order indicated. If desired, an ordinary hydroquinone developer may be used, adding a considerable amount of bromide. After development, rinse and fix in a 15 per cent hypo solu-
tion, or preferably a fixing bath of 1,000 parts water, 150 parts hypo, 50 of sulphite of soda, and 50 of common salt; the fixing lasts about ten or fifteen minutes, after which the plates are washed, as usual, and dried.

Incandescent Gas Light.

The Photographische Chronik warns its readers, says The British Journal of Photography, against tables of the comparative chemical action of various kinds of light, when an incandescent mantel is used for a standard light. "Lux," a Dutch contemporary, has given the following information concerning the solutions used for the preparation of gas mantels, and it will be seen that the light varies considerably according to the salts used.

FOR WHITE LIGHT.

Zirconium oxide.................................. 40 per cent.	
Lanthanum oxide.	40
Thorium oxide..	... 20 "
FOR ORANGE LIGHT.	
Lanthanum oxide. 40 per cent.
Thorium oxide.. 30 "
Zirconium oxide. 27 "
Didymium oxide.	${ }^{3}$
FOR YELLOW LIGHT.	
Lanthanum oxide..	.. 40 per cent.
'Thoriumı oxide..	.. 28
Zirconium oxide.	30
Cerium oxide.	.. 2 "
FOR GREEN LIGHT.	
Thorium oxide...	.. 50 per cent.
Lanthanum oxide	... $80 \times$
Erbium oxide.	30

The mantel is afterward stiffened with a solution of water glass. Concerning the intensity of the light which may be obtained with gas mantels, if we take 60 candles as the equivalent of a mantel, 1020 candle power may be had from 17 mantels, which, with suitable reflectors, may be increased tenfold, say 10,000 candles in round numbers. By diffusing the light with paraffin paper screens a loss of 20 per cent results, but if we place two rows of 6 mantels each on one side of the sitter, and a row of 5 mantels on the shadow side, there still remains sufficient light to obtain full exposure in a few seconds.

Aerial Telegraphy.

M. Tomassina, who has been making a number of experiments in aerial telegraphy, has invented a device to prevent the interception of a message by an intermediate apparatus, and has communicated his results to the Académie des Sciences. The fact that the message may be intercepted constitutes one of the chief drawbacks of the system. M. Tomassina proposes to overcome the difficulty by using a method based on the fact that the distance to which the electric waves may travel depends upon the interval between the two spheres of the oscillator, and by thus regulating the length of spark the liwiting distance of the signals may be determined beforehand. To the first. transmitter is added a second, whose manipulator sends an irregular series of waves quite out of connection with the waves sent by the first transwitter; the second set of waves is regulated for a zone of action which is somewhat smaller than that of the first. In this way a receiver placed on the zone of the second set will receive only a confusion of signals, and the message cannot be read. It is only possible to read the signals of the first transmitter when the receiver is placed outside the zone of action of the second. The security will be greater as the two zones approach each other.

Discovery of Standard weights of Ancient Rome.
The excavations that have been in progress for some months past upon the site of the ancient forum at Rowe have resulted in quite a curious discovery. Under a large, square flagstone there were found three weights of twenty, thirty, and one hundred Roman pounds dating from at least two centuries before our era. These weights, which are of irregular elliptical form, are of dark green marble and provided with a bronze handle in order to facilitate their manipulation. In the opinion of Signor Giacomo Boni, who is superintending the excavations, these are the most antient specimens of standard Roman weights known, and, since they are perfectly well preserved, without the least fracture, they will permit archæologists to reestablish the entire metrology of primitive Rome. They have already been compared with the weights now in use, and it has been found that the ancient Latin pound was exactly 325 grammes (10 ounces and 75 grains). The weights, moreover, are well proportioned according to the numerical indications that are engraved upon the stone and that are still legible. The 20 -pound weight represents exactly two-thirds that of the 30 -pound one and one-fifth of the largest, which weighs 30 kilogrammes and 250 grammes (about which weighs 30 kilogramm
$661 / 2$ pounds).-La Nature.

August 25, 1900.
GATHERING AND CURING CRUDE RUBBER.
Crude rubber is imported into this country from many widely separated sections of the globe, and in a wonderful variety of forms, the chemical characteristics of the substance changing widely under varying conditions of harvesting, curing, etc.
The first knowledge of rubber is said to have been secured through La Condamine, a French philosopher, who in 1730 was sent by his government to Pera to neasure an arc of the meridian, the specimens he secured going to form museum ex hibits. South America produces the best rubber in the world, as well as the most of it. The 'Amazon Val ley, embracing rubber forests in Brazil, Bolivia and Peru, is the center of the in dustry, the pro duct being ex ported from the city of Para whence the name Para rubber.
The tree which produces rubber or caoutchouc, as it is called by the natives of South America, is found chiefly in the trop ical zone. The rubber trees on
the Amazon rise without branches to a height of from 50 to 60 feet, being topped off by deep green leaves six or seven inches in length. Peru's product, lower in grade than Para, is known as "Caucho." The rubber rees of Nicaraugua and other Central American States, also found in Ecuador, Venezuela, Colombia an Mexico, produce rubber known as "centrale" The Atlantic States of Brazil, south of Para, produce rubber trees from which come the grades known as "Mangabeira," " Pernambuco," and "Ceara."
Africa comes next to South America in the amount of rubber produced, and in the interior of that country there are great rubber forests as yet untouched. Rub ber is to be found on the east and west coasts and also on the Island of Madagascar. The East Indies furnish comparatively little rubber, the first exported coming from Assam, one of the rubber trees of which distric shown in the accompanying il ustration.
Therubbe from the Camer oons is in the shape of little black balls, while hat from district farther up the Af ican coast come in the shape of lat, ugly frag ments, known as 'oysters."
Fine Para rub ber reaches this country in th orm of "bis uits," the excel lence of this grade being due in a large measure to the natives' meth ods of gathering and curing it They make a lon gitudinal gash in the bark of the tree with a nar row hatchet, in serting a wedge to keep the gash open, and placing a small earthen or clay cup beneath the gash to catch the thick, white, oily liquid which flows from the wound. In a few hours the milk ceases to flow, each wound yielding from three to five tablespoonfuls. The "Seringero," or gath erer, then empties the contents of the cups into an earthern vessel, as indicated in the accompanying illustrations. As the milk soon coagulates the gathering is quickly followed by the curing process, which is done by building a fire of Urucuru nuts, over which is piaced the bottomless earthen jar or pot shown in the illus-

HUGE BISCUIT FINE PARA RUBBER WEIGHING 1,120 POUNDS.
precipitate was filtered, dried, and burned in an old iron ladle; it was then a heavy brown powder. To this I added twice its weight of pearl-ash, and after much mixing in a moriar, put into a crucible and submitted to a strong heat for an hour, and this gold was in the bottom of the crucible and weighs $1 / 4$ ounce troy. I had it flattened out to what you see, just in the state in which gold-beaters use in the manufacture of gold leaf. The anount of gold recovered I estimate to be 70 per cent of the twenty-fur 15-grain tubes bought. I expected to h a ve found some silver from the albu menized paper toned, but I did not. The gold by assay is 235/8 carats of fine, or 996 in 1,000 .
This is a button similar to the first, only heavier. Of silver residues I have saved only the first washings and trimmings of albumenized paper. Common salt was used as a precipitate, and treated generally the same as the gold ; it weighed over 11 ounces when it was put into the srucible, now it

RUBBER TREES IN THE ASSAM DISTRICT OF EAST INDIA.
therefore, represents the slow and laborious accumula tion of hundreds of dippings, so that quite a stretch of the imagination would be necessary to arrive at the number of dippings required to form the huge Para biscuit illustrated herewith, which weighs 1,120 pounds and measures 4 feet 5 inches in height, 3 feet 5 inches in diameter, and 9 feet 4 inches in circumference. Such immense masses of crude rubber are said to actually re, resent a loss to the grower, being used principally by importers for exhibition purposes. Sometimes the natives use a stone as a nucleus, and, to prevent this method of securing an illegitimate profit, the biscuits are split in halves before shipment so as to reveal the stake hole running through the middle.

Residues, and what to Do With Them.*
Briefly, I may tell you that I found the residues of
weighs nearly 5 ounces. These products prove most conclusively the value of residues.

The Archæological Exhibit of the Department

f Fine Arts.
The archæolorical exhibit of the Department of Fine Arts at the Paris Exposition shows the different expeditions which have been made by the French Governwent. The Archæological College of Athens has been for some time engaged in excavations at Delphi, and the present state of the work is shown. The sanctuary of Apollo has been almost entirely uncovered; it includes the main temple, theater, and a great number of surrounding structures. But little remains, however, above the foundations, as is shown by a large water color sketch of the ruins; another sketch shows athe restor ber of small buildings or pavilions, which contain the offerings made by the different nations. The façade of one cf these, belungii to Cnidos, is produced in actu al size, being about 20 feet long and 25 feet high The portico is up held by two carya tides of singular form somewhat in the archai style, standing upon square pedestals; the cornice has reliefs representing battle scenes; those of the entablature represent a num ber of figures seated. Two ar chaic statues of Apollo are shown, and several fig ures of a more recent style. The column and the phinx of the Naxians and an
the gold toning bath so much resembling the residues I had to do with in my business of a goldsmith, that I determined to find what the value of the old toning baths really were. To that end I dissolved 2 ounces of sulphate of iron in a quart of hot water. This I put into a two-gallon jar, and as the baths were used up they were poured into the jar after two years. The

* Paper read at the Photographic Convention of the United Kingdom, July 1000, by S. B. Webber, reported in The British Journal of Photography. re shown in tions are shown, including that of the expedition of M. de Sarzec in Chaldea, completing the large collection already at the Louvre.

The Trans-Siberian Railroad will be completed at the present rate of working in about two years, the cost probably considerably exceeding the original estimate of $\$ 175,500,000$.

The Railroads of Europe 1875-1899.
The table which follows has been compiled and converted from l'Economiste European, of Paris, by the Philadelphia Commercial Museum
railroads of europe on january 1, 1875, and

We have submitted, says Photography, the new kachin developer to a most vigorous test ; we have developed over a hundred negatives with it, using the formula given.below. One cannot wish for a more satisfactory developer. It does not stain the plates or the fingers, and has no injurious action upon the skin. It gives good brownish-black negatives, quite free from fog, without the necessity of employing any browide or other restrainer whatever. Development with wide or other restrainer whatever. Development with
it took about six to ten minutes to complete, ample density being obtained very easily.
The formula which we adopted to secure so excellent a result is a simple one. Three solutions, each ten per cent, are required: One of sodium carbonate, one of sodium sulphite, and one of kachin. In making up the ten per cent solution of kachin, instead of water some of the ten per cent sodium sulphite solution is used. For each ounce of developer we took :

Kachin (ten per cent solution).................... 40 minims.
Sodium carbonate (ten per cent solution)........... 1/2 ounce.
Sodium carbonate (ten per cent solution)............ $1 / 2$ ounce.
Sodium sulphite (ten per cent solution).$\ldots \ldots \ldots \ldots$
$1 / 2$ ounce.
We got, as will be seen, a trifle more than an exact ounce, but such a difference is unimportant, and the composition of the developer is easier remembered in this way.
The solution, as we finally used it, will be seen to
contain approximately 4 grains of kachin, 26 grains $(22+4)$ of sodium sulphite, and 22 grains of sodium carbonate.
Another formula, given in a little book entitled "How to Develop with Kachin," is as follows :

For use, take equal parts of A and B. More diluted developer gives softer results The solutions should be used at a temperature of 60° to $65^{\circ} \mathrm{Fahr}$. Assuming exposure to have been correct, with this solution the image commences to appear in about one minute, and, when full density is required, development is completed in from four to six minutes. Softer effects are pleted in from four to six minutes. So
obtained in from three to four minutes.
For stand development, the plates are placed, a dozen or more at a time, in a grooved trough containing the developer, and development continues with a rapidity depending upon the strength of the solution. With the following solution normal development is completed in about ten to fifteen minutes. To prolong development add more water :

Kachin	British System. 115 grains.		Metric System.	
Sodium sulphite (cryst.).	560	"	36	\cdots
Potassium ferrocyanide	140	"	9	"
" bromide	23	"	1.5	'
" carbonate.	1,150	"	75	

Throughout these experiments we employed no bromide or other form of restrainer whatever. Our plates, having been exposed (on all sorts of subjects) with an exposure meter and not by guesswork, were all correctly exposed, and however much they differed in the nature of the subject they developed up well with the very simple solution we have named. Bromides seem to have little effect on kachin. This is well shown by the fact that three or four plates can be developed one after another in the same solution without any marked prolongation of the time of development. With most developers, as our readers well know, this is not so. The soluble bromide liberated from the plate into the liquid during development acts as a restrainer, and retards the action of the solution upon the next plate that is put into it. With each plate that is developed it will be seen, then, that the developer is not only getting weaker in the active agent, but is also getting stronger in restrainer.
On the subject of restrainers it has been found that a four per cent solution of ordinary borax used with kachin in the proportion of ten to thirty drops to each fluid ounce results in the production of enormously
increased contrast. Plates which have received an
exposure of many times the normal may be converted into satisfactory, and even brilliant, negatives by the judicious use of borax in the developer.

Building Loan Associations.

The secretary of the United States League of Local Building and Loan Associations has compiled the following statistics for 1899 , which will be found interesting, as no data of this nature is collected through any other source from year to year. It should be remembered that the figures do not include " national" associations; only those that are local and truly co-operative:

States	Associations.	Members.	Assets.
Pennsylvania.	1,174	281,456	\$12,120,436
Ohio	773	287,477	100,400,699
Illinois	599	100,000	54,104,602
New Jersey.	335	90,100	46,100,000
New York.	299	89,409	37.253,725
Indiana.	424	109,043	31,435,587
Massachusetts..	125	68,349	26,744,647
California	151	37,780	20,285,454
Missouri.....	191	38,000	13,835,817
Michigan....	72	32,775	10,159,562
Inwa....	79	23,000	5,12:3,769
Connecticut	15	12,773	3,774,526
Wisconsin.	52	13,450	358,902
Kansas..	46	12,000	2,880,764
Nebraska 60	13,813	3,332,781
Maine	32	8.115	2,975.716
Tennessee.	... 26	4,795	2,874,097
Minnesota	... 46	7.500	2,848,179
New Hampshire.	17	4,950	1,921.927
North Dakota.	...	1,000	364,130
Other States	962	267,800	97,137,800
Totals...	5,485	$\overline{1,503,625}$	$\overline{\$ 581,857,170}$

The Current supplement.
The current Supplement, No. 1286, is an unusually interesting issue. There is an excellent portrait of King Humbert, and also portraits of the present King and Queen of Italy. "The Borsig Engine" at the Paris Exposition gives a full-page engraving of this great engine. "The Future of the Automobile" outlines suggested improvements. "Excavations at Tell-el-hesy, the Site of Ancient Lachish, Syria," is an el-hesy, the Site of Ancient Lachish, Syria," is an
elaborately illustrated article. "Microbes-What Are They ?" is by Dr. Henry G. Graham.

RECENTLY PATENTED INVENTIONS.

Agricultural and Logging Implements.

 GUIDE AND SUPPORT FOR DRAG-SAWS. Edgar F. Lafayette, Sedro, Wash. This invention is a small device adapted for attachment to logs or felled trees for guiding or supporting a drag-saw while they are undercut. The device embodies spikes hinged to a barand adapted to be driven into the log and a slide ad and adapted to be driven into the log, and a slide ad
jistable along the bar to support the saw in proper justable along the bar to support the saw in proper
p;sition. The spikes can be folded flat upon the bar so that the entire device occupies but little space. Plow. - Richard h. Purnell, Rosedale, Miss, The beam of the plow is made of metal tubing. The with a concave or semicrrcular upper edge in which the beam fits. The beam and semicircular portion of the standard are bound together by a coupling-band. The
entire arrangement is such that great rigidity is secured, entire arrangement is such that great rigidity is secured,
as well as lightness and simplicity.

Electrical Apparatus.

Electrolytic apparatus. - Andrew PleCHEr. Habersham and Second Streets, Savamnah, Ga. any liquid into its constituent gases and especially for decomposing water into hydrogen and oxygen. The apparatus is spheroidal in shape and consists of two separ-
ate, closed cells having registering openings by which ate, closed cells having registering openings by which
they communicate. An encompassing band or jacket they communicate. An encompassing band or jacket
completely encircles and holds them together. The cells are provided with electrodes, circuit-wires, and gas-discharging pipes. The inventor has been particularly careful so to construct bis apparatus that it can be readily transported, that the greatest possible electrode
surface is obtained, and that repairs can be easily made surface is obtained, and that repairs can be easily made when desired.
GAS-BATTERY. - Andrew Plecher, Habersham
and Second Streets, Savannah, Ga. The surface action and Second Streets, Savannah, Ga. The surface action
of sponge-platinum causes two gases (oxygeu and hydrogen) to unite, as every one knows, and to heat the
platinum red hot so that the gases are automatically platinum red hot so that the gases are automatically
ignited. It is Mr. Plecher's purpose to prevent the production of heat attending the union of the gases and to get its equivalent in electric current. In a porous cell get its equivalent in electric current. In a porous cell
finely-divided platinum is placed. To one side of the finely-divided platinum is placed. To one side of the
cell hydrogen is conducted; to the other, oxygen. When the bydrogen and oxygen unite through the action of the platinum, suitably placed electrodes will gather the liberated forces of opposite polarity as union takes place and carry them off
extaneous circuit.
ELECTROMAGNETIC TELEPhone. - Andrew Plecher, Habersham and Second Streets, Savannah, Ga. The telephone includes in its construction an iron
to render the boxes magnetic an insulated wire is wound around the circuit-wire. The box is provided with two
diaphragms between which a variable-resistance medium diaphragms between which a variable.resistance medium
is suspended. A small bulb is nsed to increase or is suspended. A small bulb is nsed to increase or the amplitude of movement of the variable-resistance medium. The two diaphragme, as they vibrate in opposite directions in response to the vocal impulses,
augment the effect on the resistance medium one hundred per cent. 'The fluctuations are electrically transmitted. TIRE-SEPARATOR.-DElore J. Lahay, Nadeau, Mich. Ordinarily the two sections of a double tube tire adhere to each other so tenaciously that their separation
is a matter of no little difficulty. The present invention is a matter of no little difficulty. The present invention
provides means whereby this separation can be easily provides means whereby this separation can be easily
accomplished. The means in question comprise a frame or body portion capable of encircling the inner tube and the tire is compressed. The separator is movable between the two tubes to force them apart.

Vehicles, Harness, Etc.

DRAFT-EQUALIZER. - John A. Beltz, Buxton, N. D. This draft-equalizor, comprising broadly two doubletrees held to rock upon each other and also upon a wagon-pole, prevents any animal in a four-horse team rom shirking his duty; for the pull of one horse will be
thrown upon the neck of the delinquent animal. The hrown upon the neck of the delinquent animal. The
draft-strain is entirely disposed at the rear end of the raft-strain is entirely disposed at the rear end of the
pole, so that the animals pull with greater effect in movpole, so that the animals pull with greater effect in mov-
ing the loaded wagon than is otherwise possible. The evice is so constructed that the forward pair of animals vith the rear pair of animals and must pull equally with them, an arrangement particularly serviceable in roundng corners.
Bit.-Michael McNalley, St. Louis, Mo. The bit invented by Dr. McNalley is designed to induce a horse
o carry his head outward and away from the chest rather than to drop his chin in the direction of the chest. The bit is simple and durable, and is so made that it will not irrit
mouth.

Industrial Apparatus.
magnetic separator.-Charles F. Courtney and Robert Butterworth, Broken Hill, New South through a highly-concentrated magnetic field in the form of a film, so as to prevent the paramagnetic particles from becoming prematurely detached from the magnetic poles and swept away by contact with the passing stream of matter of lower magnetic permeability with which
they are associated. The material is prevented from they are associated. The material is prevented from
falling freely until it enters the magnetic field, that the particles, however low their magnetic per
meability, are not lost. The invention is also adapted to of magnetic permeability. For, by regulating the intensity of the magnetic field and the time during
 which the material is acted upon, a substance having
a certain degree of magnetic permeability can be obtained.
CURTAIN FOR DUST-COLLECTING APPA-Ratus.-Arthur S. Dwight, Kansas City, Mo., and Rudolf Ruetschi, Argentine, Kans. In order me chanically to precipitate and collect metallic fumes and flue-dust in metallurgical establishments, the inventors employ curtains, the members of which present oblique
surfaces or facets to the longitudinal currents of the surfaces or facets to the longitudinal currents of the rent into a larger number of smaller oblique currents and to form eddies or whirls near the facets. Thus is insured a thoroughand rapid mechanical precipitation of the solid matter in the gases on the surfaces or facets. The inventors obtain a large frictional surface for a very short

Railway-Appliances.

SPRING-SEAT.-William Borchert, Carson, Nev. The seat is particularly adapted for use in locomotivecabs. It is provided with such equalizing devices that it will always be parallel to the base, so that all springs
will be equally compressed whether a man sit on a corwill be equally compressed whether a man sit on a cos ner or edge.
conditions.

Miscellaneous Inventions.

SASH-HOLDER.-John Bohlen, Big Rapids, Mich. The sash-holder is designed to be used in connection
with a rack of any kind and is so constructed that it can be locked in or out of engagement with the rack and supported in such a manner that the window to which it is applied may be conveniently operated when the latch out of engagement with the rack.
LOCK. - Thomas Churchill, Hampton, Va. Mr. Churchill has already patented a lock in which the outer knob is made incapable of turning the spindle except
when temporarily locked thereto by a key which is in. when temporarily locked thereto by a key which is in-
serted concentrically through the knob and is made to serted concentrically through the knob and is made to
act upon clutch devices which cause the knob to be coupled to the spindle. The present invention comprehends further improvements relating more especially to the locking or clutch mechanism which connects the knob with the spindle and which is applicable to any of the ordinary forms of locks, having the usual squared spindle.
SIGN OR SIGNAL FOR CALLING CABS.-Arthur G. R. Nichol, Manhattan, New York city. The invenon provides a simple means whereby a clerk in a hotel or theater may call cabs or other carriages successively
used, which are flashed by inserting plugs in proper penings. In order to prevent mistakes, the plugs are
made to fit only the contact plates for which they ade to fit only the contact plates for which they are in-
tended. And in order still further to guard against mis takes, plugs of like shape are connected by strings Hence the operator can not inadvertently leave one plug of a set in a contact-plate; for the entire set must be re moved before the connecting-string can be taken off the switchboard.
VENTILATED BOOT OR SHOE.-James J. Pearson, 40 Wall Street, Manhattan, New York cit.y. This ventilated shoe is provided with a ventilating mat inter-
posed between a perforated insole and the outer sole The mat is of elastic rubber and iz connected with a chaunel leading to the heel-vent of the shoe for the inress and egress of air. The most prominent feature of sessed by any a feature, which, it is claimed, is not posping air in the sole. The air circulation is free, longitudinally and laterally. The cushioned tread, reinforcing devices, and cheapness of manufacture are other features which deserve to be mentioned.
COMBINED HEATER-SHIELD AND VENTILA-TOR.-Allan B. Shantz, Walkertown, Ontario, Can-
da. Much danger is izcurred by improper ventilation ada. Much danger is incurred by improper ventilation
and especially by arrangements which draw air into a oom from a point naar the ground ch draw air into a ing from decaying animal and vegetable matter must also be drawn in. The present invention provides an apparaus by which air is received from an elevated point, the The novel feature of the invention is an ingenious doujle-walled shield used in connection with a heater. tape-measure attachment.-Cornelius h Eleskamp, Telluride, Colo. The inventor has busied himself with the production of an attachment for the end of a tape, which attachment can be readily applied to readily rune, post, or the like, so that the tape can be an eye in out. The end of the tape is provided with construction that it can be readily driven into of such tree, or the like.
picture-frame--Albert F. Messinger, Pbonix, Arizona Territory. The inventor has devised a
novel construction which enables him to mount extariorly on the frame a picture representing a building, and o move this picture out of sight so that a second picture is made to appear, which represents the interior of the building shown on the first picture. The device is particularly useful for advertising purposes, since it combines in one arrangement views of the exterior and inDUPLEX PENHOLDER
ongenecker, Bolder. - Harvey and Frank ains a simple mechanism which permits a ready pro-

the retraction of another socket to enable the writer to make use of separate pens for different inks, without

 make use of separate pens for diferent inks, without penholder a right and left hand screw is mounted, the threads of which are engaged by pen-sockets. When one socket is moved in one direction, the other is caused to travel in an opposite directionFEED-RACK.-James Morris, Westchester, Bronx, New York city. This rack is so constructed that it can be easily put up in a stall and taken down and folded for transportation, thus particularly adapting it for racing
stables, in which it is desirable that each horse should have his own rack to avoid danger of contagious dis caser.
Chair-seat support. - Hezeriah Morton, Thomasville, N. C. The support comprises crossed
straps extended under the chair-seat in order diagonally to connect a front leg with a rear leg of the chair. Each strap consists of two spaced pieces connected at the
ends. Adjusting and supporting bolts extend from the legs through openings in the end connections; and nuts on the inner ends of the bolts abut against the end connections and are prevented from turning by engaging with the members of the straps. A very firm brace is ing and the parts of the back from spreading.
FRAME FOR BAGS, PURSES, SATCHELS, ETC., Louis B. PraHar, Brooklyn, New York city. A lock-catch-button has a rocking and guided movement on a member of the frame. The button can be released from a locking stud or studs on any number of members of the frame by a simple rocking moveme
bread or cake-pan.- Marie Vossbeck, Trinidad, Colo. The pan is made so that the parts can be quickly and conveniently detached, buttered, and as-
sembled. When the loaves have been baked the body sembled. When the loaves have been baked the body and bottom of the pan can be removed from engage-
ment with the partitions, which partitions serve to hold the baked loaves apart and yet permit them rapidly to
cigar-wrapper. - Francisco E. Fonseca, 22 has recived a patent for a Yorel paper cigar wrapper, the ends of which exteud beyond the cigar and are twisted to form cords which are wound back upon the cover and secured. No matter họw roughly the cigar may be handled, the wrapper will always maintain
its position to protect the cigar. The twisted ends serve as cushions, which prevent the cigar from being damaged. One object of the invention is to enable the The invention has been practically applied and seems to fulfill its inventor's expectations. For presentation this cigar is specially adapted. Each cigar may bear the name of both the donor and recipient.
Fire-EXTINGUISHER. - John Braunwalder, Davenport, Iowa. This fire-extinguisher is of a type in
which a container for an extinguishing liquid is designed to be broken so that the liguid can escape. The inven Hon seeks to furnish a means for breaking the container, which means are actuated by fire. These means consis of a powder-chamber and a fuse. Wher the fuse is ig-
nited, the powder will eventually be exploded and the nited, the powder will ev
liquid-container shattered.
VIOLIN.--Louis H. Hail, Hartford, Conn. The top and a bottom are secured. The edge-portions of the op and bottom at certain points are under a strain and tend to separate from the ribs. This tension is beneficia in more than one respect. It improves the tone; it opposes the pressure produced by the bridge and strings and, therefore, strengthens the body of the instrument, tone simply by giving more or less curve to the bottom nd top.
amidosulfonic acid.-Joseph Turner, Huddersitil. York, England. Amidosulfonic acids, accord ing to this invention, are produced from nitro bodies of dium bisulfite. The products obtained combine with phenols, are slightly soluble in alcohol, insoluble in benin, form crrstallized diozo compounds with nitrons acid and all the sodium salts, and are very soluble it
baby-EXERCISER.-Charles E. Latshaw, Lincoln, Neb. The exerciser is a " baby-jumper," consisting of a spring-suspended frame of novel construction, in which the baby is supported. The elastic support
enables the child to use its legs freely in springing or jumping, thus combining the benefits of exercise and amusement without requiring close watching
NON-REFILLABLE bottle.-José M. Urgellés, 81/2 Ricla Street, Havana, Cuba. Two balls are held in a
val ve-seat arranged to be locked in the neck beneath the cork. The larger ball acts as a valve to permit the out flow of liquid, and the smaller acts as a back bearing to follow up and hold the larger ball to its seat.
Trunk-handle. - Bertnie M. Wilitite and frank A. Hoyt, Gordon, Neb. In the handling of trunks, the pinching of the fingers between the handle and the the handie above noted is so connected by its ends that when gripped it slides outward in diagonal slots in the securing devices and so as to stand out from the trunk
TRAP. - Thomas H. Taylor. Luzerne, N. Y. This trap is designed to kill small animals instantly, and to one end turned up to form a jaw, and a spring with ne end turned up to form a jaw, and a spring frame striking the animal and causing it to be caught between the frame and the jaw of the bait-plate.

Designs.

PLate. - Artiur S. Higains, Manhattan, New York city. The border of the plate is a ribbon of tulips with their leaves. A second and inner border of fancy foliate figores is also employed.
Note.-Copies of any of these patents can be fur-
nished by Munn \& Co. for ten cents each. Please state the name of the patentee, title of the invention, and date of this paper.

Business and Personal.
Marine Iron Works. Chicago. Catalogue free. For logging engines. J. S. Mundy, Newark, N. J. "U. 8." Metal Polish. Indianapolis. Samples free. Handle Notions. Waterbury Buttonco., Waterby, Handle $\& \mathrm{Sp}$.
hagrin Falls,
Most durable, convenient Metal Workers' Crayon
ade by D. M. Steward Mfg. Co., Chattanooga, Tenn. Inve by D. M. Steward Mfg. Co., Chattanooga, Tenni.
Inventions developed and perfected. Designing an Inventions developed and perfected. Designing and
machine work. Garvin Machine Co., 141 Varick St., N. Y. Ferracute Machine Co., Bridgeton, N. J., U. S. A. Full The celebrated "Hornsby-A kroyd" Patent Safety Oi Engine is built by the De La Vergne Refrigerating Ma chine Company. Foet of East 138th Street, New York. The best book for electricians and beginners in elec
ricity is " Experimental Science," by Geo. M. Hopkins, mail, क4. Munn \& Co., publishers, 361 Broadway, N. REF Send for new and complete catalogue of Scientific New York. Free on application.

Humblenain

HINTS TO CORRESPONDENTS.
ames and Address must accompany all letters
or no attention will be paid thereto. This is for our information and not for publication
oren to former artices
References to former prticles or answers should
give date of paper and paye or number of question quiries not answered in reasombable of quesestionld
be repeated; correspondents will bear in mind that be repeated; correspondents will bear in mind that
some answers require not a little research, and,
though we endeavor to reply to all either by letter or in this department, each must take his tarn.
Bu $\begin{aligned} & \text { yers wishing to purchase any article no advertised } \\ & \text { in our columns will be furnished with addresses of }\end{aligned}$ houses manufacturing or carr ying the same.
Special Written Informat ion on maters of
personal rather than general. interest cannot be expected without remaneration.
Scientific American Supplements referred
to may be had at the office. Price 10 cents each. Books
price
Mincerals sent for examination should be distinctly
marked or labeled.
(7940) C. R. asks : If it were possible to build a tower 100 miles high and from the top of such a exactly toward the center of gravity? Would the motion of the earth imparted to the ball throw the ball out of a direct line toward the center, not considering the attraction the tower has for the ball. A. A ball dropped from a height strikes the earth to the east of the vertical line in which it started. All parts of the earth move with the same angular velocity, but not with the same linear ve-
locity. The smaller the circle of rotation the slower the velocity of motion. As the ball drops it maintains the velocity of motion toward the east, which the point had from which it was dropped. As it approaches the center of the earth, it comes to points which have a slower velocity than it has. It will, therefore, be moring to the east faster than the place to which it has come. This
has been proved by dropping balls into deep mines.
(7941) W. G. asks: 1. Could $\frac{1}{32}$ inch bass be used instead of $\frac{1}{16}$ inch for the spool of the ammeter described in Supplement, No. 1215. A. Any hickness of brass can be used which will hold the wire without bending. 2. How many pounds of No. 31 copder wire does it take for the high tension transformer pounds by calculation. You will probably not at 48 much in as you cannot wind it perfectly true. 3. How many layersis there on the secondary of high frequency transformer. A. One.
(7942) B. U. S. writes: I desire to know what size and amount of wire to use to convert eight
light dynamo in Supplement, No. 600, pages 9586 to 9590 inclusive of July 2,1887 . I wish to change to 500 volt motor. Have you a Supplement with this information? A. It is not feasible to change the eight light dynamo into a motor to run upon a 500 volt circuit. The commutator could not stand it. You would need to wind each of the armature coils with about 40 turns of No. wire and use a resistance of about 400 ohms with the it is not desirable to make the change. It would be far better to build a new machine.

NEW BOOKS, ETC.

Ein Lenkbarer Flugapparat. Von Dr. Constantin Danilewsky. Char-
kow, Russia: Author's Edition. 1900. Octavo, 82 payes. Illustrated. Price paper 75 cents.
Danilewsky's experiments in aerial navigation have The present monograph contains a very thorough, and it must be confessed, convincing account of the possibilities of mechanical flight. Dr. Danilewsky writes with the confidence of one thoroughly versed in his science. He claims much for his experiments, but not too much.
His monograph is valuable becanse it contains the only exhapstive account of what he has really accomplished. yMBoIISM OF The Huichol Indians. By Carl Lumholtz. Memoirs of the
American Musenm of Natural Historv. Volume IJI. Anthropology
II., May, 1900. Quarto. Pp. 228, plates and illustrations.
During the years 1890 to 1898 the author made three xpeditions to Mexico under the auspices of the Maseum. 1895 and obtained valuable information on the state of their culture. The author has produced a most solid and satisfantory contribution to ethnological research and the Musenm is specially to be commended for the substantial and sumptuous manner in which the book has been clothed. 'The illustrations are good and the
plates are specially fine.

Technologisches Lexikon. Hand buch für alle Industrien und Gewerbe. Redigirt von Louis Edgar Andés. Hartleben. Large Octavo. Price per part, 70 cents.
The parts of this new lexicon which lie before us ex en." Long articles are to "Ausdehnungskoëftizienten verschiedener Körper," "Baumwollgewebe," "Bleigewinnung," "Desinfek tion," etc. The illustrations which accompany the tex are, for the most part, excellent woodcuts. The part which, up to the present, have come to our notice de author has taken in their preparation.
Die soctalen Aufgaben des Ingeneurberufes und die Berechtig NGSFRAGE DER HÖHEREN SCHU LEN. Eröffnungsrede zur 40. Jahres von Gas-und Wasserfachmännern Von Generaldirektor W. v. Oechel haeuser, Dessau. München : R Oldenbourg. 1900.
Die Elektrische Vollbahn Burg DORF-THUN. Separat-Abdruck aus Zürich: Ed. Rascher, Meyer und Zeller's Nachfolger. 1900.

TO INVENTORS.

An experience of over ifty years, and the prepara for patents at home and abroad, enable us to understand the laws and practice on both continents, and to possess anequaled facilities for procuring patents everywhere all foreign countries may be had on application, and per sons contemplating the securing of patents, either a
home or abroad, are invited to write to this office fo our extensive facilities for conducting the times and our extensive facinties for conducting the business. 361 Broadway. New York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Issued for the Week Ending

AUGUST 14, 1900.
AND EACH BEARING THAT DATE.
Isee note at end of list about copies of these patents.

Annunciator. W. Mr Davis. Arm rest or support, L. C . Ne Automobile. F.

Burner. Sue Hydrocarbon burner. Smoke and
gas burner.
Cables. manuacture of chain. J. Jerity.
Calcium, etc., producing carbid of, W. S. Horry.. 6

 Electromedical vacuum apparatus, G. \mathbf{W}. Winc Elevator saiety appiaince, A.......................
Engine. See Explosive engine. Gas engine.

 $\underset{\substack{\text { rant } \\ \text { reat } \\ \text { reet }}}{ }$

然

xis

: 655897

"Star" 른um " Lathes FINE, ACCURATE WORK ENECA FALLS MFG. CO 695 Water Street,

AMERICAN PATENTS. - AN INTERrant and to the various subjects upon wobich of patitions
rave been fled from tbe beginning down to December

 UNalworth's
Solid Die Plate Standard Walworth Manufacturing Co 128 TO 136 FEDERAL STREET, BOSTON, MASS.

MAXIMUM POWER-MINIMUM COST.

For Heavy Continuous Work

 , 01 Curtiss Street, MFG. COLEDO, OHIO

SENT ON TRIAL.

THE CLEANER THAT CLEANS CLEAN NO scale. Cleans from end to end. you nothing The Coggeshall Mfg. Co., 123 Liberty St., New York.
 rine Engine.

 motorsfrom 8 to $30 \mathrm{H} . \mathrm{P}$.
WOLERINE

HE MIETZ KERSNOSENE and GAS Engine

 HIGHEST EFFICIENCY STOVER GASOLINE ENGINE
est. Write for prices.
STOVER ENGINE WORKS, TREEPORT, ILL

Rootrip pait

 singaing anarata

 (Consinued on page 183)

L. ${ }^{\text {s }}$

-hb Brunswich

Always the same. We maintain the quality no matter what the market price of tobacco. Try them once. You will buy them always. Look for Arrow Head on every Cigar. JACOB STAHL, JR. \& CO., Makers, 168th St. \& 3rd Ave., N. Y. City.

IF YOU HAVE A SHOTGUN

move it TOMLINSON CLEANER.

GAS ENGINE CASTINGS.
 Daus' "Tip-Top" Duplicator 100 SHARP AND DISTINCT COPIES IN BLACK
FROM PEN AND, SO COPIES FROM TYPEWRITER
NO WASHING, NO PRINTERS INK, NO STENCIL. Price, COmplete, \$7.50. SENT ON TEN DAYS" TRIAL TO RESPONSIBLE PARTIES The Felix F. Daus Dupplicator Co. (Inc.), Ito 5 Hanover St, New Hork

MERITORIOUS INVENTIONS

Telephones,

 THE SIMPLEX interior
TELEPHONE Co. 431 Main St., Cincinnati, ohio.
NICKEL

GERE GASOLINE ENGINES

Acetylene Gas Burners.

12,500 RECEIPTS. 708 PAGES.
Price, $\mathbf{\$ 5 . 0 0}$ in Cloth; $\mathbf{\$ 6 . 0 0}$ in Sheep; $\mathbf{\$ 6 . 5 0}$ in Half Morocco, Postpaid.

in concise form,
convenient for ready use. Almost every inquiry
that can be thought of, relating to formule used in the various manufacturing industries, will here
be found answered. Those who are engaged in almost any branch
of industry will find in this book much that
is of practical value in their respective callings. s of practical value in their respective callings.
Those who are in search of independent business
or employment, relating to the home or employment, relating to the home manufacture
of salable articles, will find in it hundreds of most

MUNN \& CO., Publishers, scientific american office, 361 Broadway, NEW YORK.

THE BICYCLE: ITS INFLUENCE IN

ACETYLENE APPARATUS

THE whole history of the world is written and pictured week by week in Collier's Weekly. So well written and so well pictured that it is now the leading illustrated record of current events and has the largest circulation of any periodical in the world that sells for three dollars or more per year.

PRIN IS

DESIGNS

nge eate V . W. Hermich.
Hoof pat, W. Kent.

Scale beeam strandard A. A. Sekora. W . H .

LABELS.

An Invention of Great Importance For Sale.

CHICAGO REPRESENTATION,

EXPERIENCE

 dabe marigs

Anyone send ing a sifetch and description may
gickly ascert ain our opinion free whether an

Scientific American.

N. Y. Camera Exchange.

N. Y. CAMERA EXCHANGE, 114 Fulton St., NEW YORKEngineering Instrument Bayo D. MOGE City, NE J.
S.
Send for Catalogue.

OP A BIC INCOME

Brass Band oe

bands. LVON
B8 Adams 8 .

MODELS I Inventions deviloped. Special Wachiner. WANTED. ${ }^{-}$

 TURBINES

 FOR SALE ${ }^{- \text {Three }}$ ware ine. Valuable articiles in the hard

VOTING MACHINES PAIENSS

 any kind up to 12 inch. All Perfectly round $\begin{aligned} & \text { B. A. STEVENS, Toledo, Ohio. }\end{aligned}$ A.W. PABER

LEAD PENCILS, COLORHD PENCLLS, SLATE
 Colors and artist materials.

Manufactory Established 1761 .

ARTESIAN

THE ELITE COLLAR BUTTONER.

Every Rnown Cool in the ZUorld

or every trade and profession is correctly explained

Montgomery \& Co.'s Cool Catalogue,

which is printed from new type, and is full of practical Tool information from the frst to the last of the 5ro pages. Copious index. Pocket size, $64 \times 4 \%$ inches. Sent

MONTGOMERY \& CO., 105 FULTON STREET, NEW YORK CITY.

(0012, FOREN MEN ORARS -MADE AT KEY WEST;-

\{These Cigars are manufactured under \} the most favorable climatic conditions and \{from the mildest blends of Havana tobacco. If we had to pay the imported cigar tax our brands would cost double the \{ money. Send for booklet and particulars.
CORTEZ CIGAR CO., KEY WEST.

THOROUCH INSPECTIONS

for speed, for safe
ty strenth and
beaty is undoubt beauty isun
ealy the
WINTON INTON MOTOR CARRIAGE Price $\$ 1,200$ N $\begin{aligned} & \text { leader among the } \\ & \text { best of the auto } \\ & \text { moblles you }\end{aligned}$
 THE WINTON MOTOR CARRIAGE CO., Cleveland, Ohio Eastern Department, 120 Broadway, New Yort Oits.

AUTOMOBILE PATENTS EXPLOITATION COMPANY.

 CHARTER Gasoline Engine TCHE $\begin{aligned} & \text { ANY PLACE } \\ & \text { BY ANYONE }\end{aligned}$ JDU FOR ANY PURPOSE tationaries. Portables Engines and Pumps.
 Charter gas engine co., box 148 , Sterling, ill NEW BINOCULAR.

 QUEEN \& CO Mat ank wiviticic ins 1010 Chestnut Street New York: 59 fifth Ave. Philadelphia, Pa SUBMARINE TELEGRAPH.-A POP ular article upon cable telegraphing. SCIENTIFITAM
KRIANSUPPLEMENT 1134 Price 10 cents. For sale
by Munn \& Co.and all newsdealers.

GENERAL factory and offices:
Church Lane \& 37th St., BROOKLYN-NEW york.

WALTHAM WATCHES

The name Waltham engraved on every movement the American Waltham Watch Company makes, guarantees the movement absolutely and without any reservation whatsoever.
"The Perfected American Watch", an illustrated book of interesting information about watches, will be sent free upon request.
 W. F. \& JOHN BARNES CO

 SCd Ib

ACETYLENE

TEN=YEAR TEST.

The following letter from one of the largest cement manufacturers in the world proves positively the marked superiority of THE GRIFFIN MILL for pulverizing either rock or cement clinker.

AMERICAN CEMENT COMPANY,

 Messrs. Bradley Pulverizer Co.
Gentlemen:
Replying to your inquiry as to what we think of the griffin mile, we will say that the first Grifin Mill used in grinding Portland cement was erected in our Egypt works ten years ago, where it is still in operation. Since then, as from time to time we have buint
tion at our several works, thirty-seven mills.
We know all about the grinding machinery used in the various cement works in this country, but think the Griffin Mill superior to any other for grinding portland cement and the raw material from which it is made. What we think of the Griffin Mill is shown by the fact that within the last week we have given you an additional.order for more mills.
Yours very truly,
AMERICAN CEMENT
CO.
Yours very truly, John w. ECKERT, President.

THE BRADLEY PULVERIZER CO., = Boston, Mass.

Acetylene Gas Lighting $\mathbf{C h e}$ Cypewriter Excbange

Bristol's Patent Steel Belt Lacing.

