
a Weekly journal 0f practical information, art, science, mechanics Chemistiy and manufactures.

	NEW YORK, MAY 5, 1900.	\$3.00 Wexkit.

REVIVAL OF THE AMRRICAN MERCHANT MARINE-GROOP OF FESSELS NOW UNDER CONSTRUCTION AT THE CBAMP'S SHIPYARD, PHILADELPHIA.-[See p. 278.]

sxituntifir gmmerian.

ESTABLISHED 184.
munn \& CO., - - - Editors and Proprietors.
PUBLISHED weEkLT AT
No. 361 BROADWAY, - - NEW YORK.

terms to SUbSCRIbERS

 ene scientific american publications.

NEW YORK, SATURDAY, MAY 5, 1900.

REVIVAL OF THE AMERICAN MERCHANT MARINE.

At the present time the majority of the shipping trade of the world is in the hands of Great Britain. Less than half a century ago the leading position was held by this country, which not only possessed the largest tonnage, but was acknowledged to produce the fastest, nage, but was acknowledged to produce the fastest, the high seas. To-day, our deep-sea trading fleet is not only insignificant in comparison with that of the leading maritime nations, but it is ridiculously disproportionate to the resources, the skill and the feverish energy of the nation under whose flag it sails.
The decline of American shipping dates from the Civil War, when the depredations of the Confederate privateers drove into the hands of other nations that portion of our carrying trade which it did not destroy on the high seas. The failure to rehabilitate our merchant marine is not to be attributed to lack of enterprise, but to the diversion of capital into fields where there was a more pressing call and a promise of more speedy results. At the close of the war the energy of the American people was so completely devoted to the internal development of the country by the construction of railways and the building up of industrial establishments, that no attempt was made to save the wreck of our splendid werchant marine, which was left to be completely broken up by the storm of competition which beat upon it with steady persistency.
There was another agency which contributed to our decline, working less swiftly, but, perhaps, with even more potent effect; we refer to the change in the materials of construction and in the motive power of materials of construction and in the motive power of
modern vessels as exemplified in the steam-propelled modern vessel Great Britain was quick to adapt herself to the new order of things, and shipyards were reorganized, and multiplied with such rapidity that she at once assumed a position so commanding that it has never yet been disputed. Had the United States deferred her internal development for another decade, and put into the construction of rolling mills and shipvards the wealth and labor which she expended so vards the wealth and labor which she expended so
liberally in covering this country with a network of railways, we think it is not unlikely that we would have held to-day the position now occupied by Great Britain.
At the close of the century we have reached a point in our industrial developiuent where, great as is the extent of the country, large as is its population, production has overtakerr and far exceeded the demand. We have built enough, and more than sufficient, railWe have built enough, and more than sufficient, rail-
roads; our establishments in many lines of manufacroads; our establishments in many lines of manufac-
tures have a capacity considerably in excess of the demands of the home market; and we are now pushing out into a world-wide competition which, brilliantly begun, is full of even brighter promise for the future. Among the fields of national enterprise that excite our interest, we know of none that should appeal more strongly to our national pride than that of resuscitating our merchant marine and striving to regain, if not the leading position in the shipping trade, one that shall be at least fairly commensurate with our national importance. Anong the beneficial results of the late war is the stimulus which it has given to the shipping industry. Our over-sea possessions and our ever expanding foreign trade are creating a demand, the reply to which is seen in the fine fleet of vessels, illustrated in this issue, which are now being constructed trated in this issue, which are now being constructed however, is gratifying, we must not for a moment imagine that it is on a scale that will do much towards placing us as a maritime people where we properly be. long. This can only be accomplished by the adoption of some such sweeping weasures as have enabled Germany to advance her shipping interests so rapidly that in the matter of speed, accominodation and size, the ships of its leading companies are probably the best in the world. Germany's success is due, very largely, to the fostering influence of a judicious system of subsidies; and there is a growing conviction that similar means would produce similar results in promoting the shipping interest of the United States.
The schewe which is at present befure Congress pro-
vides that all American vessels shall receive a bounty of $11 / 2$ cents per gross ton for every 100 miles sailed up to 1,500 miles, and an additional 1 cent per gross ton for every 100 nautical miles additional. The building of fast vessels is to be encouraged by granting a subsidy of 1 cent per ton to vessels of from 1,500 to 3,000 tons measurement and 14 to 15 knots speed, and granting $\frac{1}{10}$ of a cent more for attaining a speed of 1 knot greater : while a steamer of 8,000 tons is to receive 2 cents per gross ton if she makes 20 knots an hour, and 23 cents per gross ton if she exceeds 21 knots per hour. It is provided that in earning these mileage bounties, a ship must carry at least half her full cargo, while the maximum amount to be paid out for speed premiums to vessels of over 20 knots speed is to be limited to $\$ 2,000,000$ per year. The bill contemplates the admisision to the United States register of vessels built in foreign yards, with the reservation that such vessels shall receive bounty rates only half as great as those paid to American-built vessels. They are also to be subjected to a limitation of ten years as the period for which the subsidies shall continue, whereas in the case of American-built ships, subsıdies will be continued for a period of twenty years. Taking it as a whole, we think that if the stimulus of government subsidies is necessary, the provision of the bill as thus briefly epitomized are about the best that can be made.
The day is rapidly approaching when we shall be able to build ships upon the banks of the Delaware and upon the shores of the Chesapeake and San Francisco Bays, as cheaply as they are now built upon the Clyde, the Tyne and the Thames. We can already produce ships' plates and general structural materia more cheaply than they can be made in England, indeed, we have already made shipinents of the kind to the other side. How far our remarkable advancement in the steel and allied industries is due to government assistance, we do not attempt to say, but the fact is incontrovertible that the industries which have been thus encouraged have had a growth that is absolutely without a parallel. As to the policy of ship bounties, we have yet to find any substantial reason advanced to show why government assistance will not prove as great a stimulus to our shipping interest as it has been to the flourishing industries above mentioned.

THE SINGLE-RAIL SUSPENDED RAILWAY.

The most striking feature of the curious railway which is illustrated elsewhere in this issue, is its novelty, for as far as we know this is the first instance of the construction of a standard elevated railway of the true inono-rail type. The other so-called "mono-rail" systems have requireu, in addition to the main weightcarrying rail, one or more auxiliary rails for the purpose of steadying the cars and preserving them in the vertical position; while in the Decauville system this duty is performed by laborers or draught animals. Whether this system will prove to be superior to the common type of elevated railway with which we are familiar in this country, has yet to be proved. As far as we can understand the chief advantage claimed is that derailment is practically impossible at high speed It is said that in the early experiments with the Langen suspended railway, hanging cars of the general type now in use were successfully run around curves of 33 feet radius, at a speed of $151 / 2$ miles an hour, with the cars swinging outward on the curves to the extent of 25 degrees from the vertical. This would seem to prove that derailment on the curves of a standard line would be a remote possibility, and, no doubt; the designer has produced a system which will be suitable for lines of excessive curvature over which it is desired to run trains at a high rate of speed. At the same time it is a fact that some of the sharpest curves in the world are to be found on our own elevated railways in New York city, and when we consider the enorinous traffic that passes over them, it must be admitted that derailment at these curves is an extremely rare occurrence.
As regards the weight of the cars, it is probable that the suspended type has some advantage over the ordinary car running on two four-wheeled trucks. The concentration of the rolling load upon a single rail should reduce lateral and longitudinal vibration, and tend in every way to smoothness of running. The fear has been expressed that the swaying of the cars would produce uncomfortable symptoms of nausea, intensifying the liability to that "train sickness" to which many passengers are liable when traveling over a crooked road. We think, however, that the fact of the center of gravity of the train being hung so far below the point of support will tend to increase the periods of oscillation so greatly that the lateral sway will be scarcely perceptible, especially if care is taken to eliminate all reverse curves by placing a sufficient length of tangent between them.

In point of appearance and general aesthetic effect it must be admitted that the Langen road, at least as buil through the Wupper Valley, is decidedly picturesque and is less obtrusive, whether in city or country, than the ordinary system of rectangular elevated structures with which we are familiar. Architecturally consid
ered the structure is another tribute to the skill of th German engineers, who have proved in many of their later bridges that most pleasing architectural effects may be obtained without violating the structural or commercial limitations which control, and very properly control, the best modern engineering works.

THE SEVENTH ANNUAL RECEPTION AND EXHI BITION 0

The seventh annual reception of the New York Academy of Sciences, with its accompanying exhibition of specimens, preparations and apparatus to illustrate the progress of science during the past year, was held in one of the new halls of the American Museum of Natural History on April 25 and 26 . There were about one hundred and twenty exhibitors and the number of articles exhibited ran up into the thou sands, classified under twelve sections or departments. The section of anthropology, in charge of Prof. Franz Boas, exhibited three cases of objects taken entirely from collections made by the Natural History Museum during the past year, and indicating incidentally, bat very graphically, the broad scope of the anthropo logical investigations now being carried forward by the institution. The material exhibited was brought from Southampton Island in the American Arctic re gions, Arizona, Caiifornia, British Columbia and the banks of the Amoor River in Northeastern Asia Among the articles exhibited here those which at tracted the most attention, perhaps, were a toboggan made by the Eskimo of Southampton Island from the baleen of a whale, and a series of beautifully em broidered garments made from salmon skin by the Golds of the regions along the Amoor River, and col lected for the museum by Dr. Laufer of the Jesup North Pacific expedition. The section of astronomy under the care of Prof. Rees, made its usual fine dis play of photographs showing the progress made in making negatives and measurements of stars, starclusters, nebulæ, etc. An interesting photograph was one of a rainbow sent on from Arizona.
The botanical exhibit, in charge of D. T. McDougal, was large and contained much of scientific, or popular interest in more ways than those merely botanical. Prof. Stone showed a set of new apparatus used in measuring the amount of force exerted by a plant in growing and in determining the effect of electricity upon plant growth. A series of remarkable photographs of plants by J. A. Anderson, attracted a measure of the attention it deserved. Some of the subjects were fungi on a tree-stump, cotton bolls, milk weed pods shedding their seed and dandelions gone to seed. The New York Botanical Garden showed, by means of copies of publications, examples of labels, etc., the progress that is being made in that part of Bronx Park, but the wost interesting thing in its exhibit from a mechanical point of view, was an exhibition micro. scope which has been recently devised by Dr. McDougal, and which consists of a simplified microscope inclosed in a small box of plate glass in such a way that visitors cannot throw the instrument out of adjustment, although at the same time the attendant can readily open the case and change the mount on exhibition.

The progress in chemistry the past year seems to have been largely in the line of synthetic work, and a large series of artificial perfumes and artificial indigo, both French and German, gave some hint of the skill being attained in the technical side of the science. On account of the interest excited in smokeless powder, through its extensive use in the South African war, a small exhibit of the explosive was instructive as showing the numerous forms in which it is put up and the widely varying appearance of the finished product. C. E. Pellew had charge of this department.

The electrical exhibit, which was in charge of G. F. Sever, consisted mainly of new and improved Watt volt, and ampere meters exhibited by some of the largest manufacturers of such machinery.

The department of geology and geography, under R. E. Dodge, brought together a considerable exhibit, the geographical features of which consisted of the books and maps issued during the past year by the United States Geological Survey, and the State surveys of New Jersey and Maryland. The geology was represented by some remarkably rich telluride specimens from Cripple Creek, Colorado, quicksilver ores from South western Texas, serpentine verdalite (verde-antique) from Easton, Pa., clays and shales from Michigan and Alabama, complete series of igneous rocks from Magnet Cove, Ark., and the Yellowstone National Park. Mention should not be omitted of a large volcanic bomb, or ejected block, from the island of Vulcano, near Sicily, and of a mass of curiously weathered eolian limestone, from the Bermndas, exhibited by the Geological Department of the Museum.

Alongside this section was that devoted to palæontology, which was in charge of G. van Ingen. and was devoted alnost entirely to the collections made by the Department of Vertebrate Palæontology of the American Museum. 'I'he explorations of this department in

Wyoming, Texas and elsewhere, have been wonderfully successful, important finds being made each year. This year the exhibition included a series of fine skeletons of Pleistocene horses and the mammoth, the skull and tusks of a Miocene mastodon and skeletons of the saber-toothed tiger and other carnivorous animals from the Tertiary. In this section the geological department of the museum displayed a portion of the recently acquired Jay Terrell collection of Devonian fishes, showing.their heavy construction and the formidable teeth with which they are provided. Passing to the section of zoology, in charge of C. L. Bristol, one of the features of special interest seemed to be the series of anatomical preparations from the morphological museum of Princeton University, including the circulatory systems of several animals, and a series of specimens showing the growth of the young opossums while still in the mother's pouch, Prof. B. Dean showed the last feature for the kangaroo of Australia, also. A fascinating exhibit was that of R. L. Ditmars, and consisted of a number of preparations of the heads of snakes, both venomous and harmless. A series of photographs showed the progress of the Zoological Park in Bronx Park and characteristic poses of many of the animals within the inclosure. The Kny-Scheerer Company made a large exhibit of formaldehyde and other preparations in various branches of natural history, and there was a fine series of corals, sponges, and mollusca which had been collected at Nassau by R. P. Whitfield.

The mineralogical section, with L. Mc.I. Luquer in charge, had about two hundred specimens on exhibition, ranging from the large showy pieces of calcite, fluorite, etc., to the crystallographic treasures of tellurium and other minerals shown by Prof. A. H. Chester. One noteworthy specimen exhibited was a diamond crystal, weighing $41 / 3$ carats, from North Carolina. The mineralogical department of Columbia University displayed some new apparatus and many rare or new mineral forms.
The department of metallurgy, in charge of H. M. Howe, had models of blast and Bessemer furnaces on exhibition, together with many diagrams and specimens showing the ductility of steel, the evolution of gas by metals during solidification and the effect of aluminium in preventing blowholes, the metallography of steel, etc. A series of specimens showed the alloys made by adding various substances to the molten steel, such as tungsten, manganese, molybdenum and chromium. Special stress was laid on the enduring hardness of tungsten steel. The experimental psychologists.have not been idle during the year, as was proven by the exhibit under the care of E.'L. Thorndike. The apparatus exhibited showed the improvements which have been recently made in the means for detecting and preserving a record of the various mental phenomena under investigation, and also for projecting the actual records onto the screen for class purposes.
The department of physics and photography, this year in charge of Willian Hallock, can usually be depended upon for something of interest. P. H. Dudley has continued his|work with his stremmatograph, showing graphically the high economy of solid railroad beds, heavy rails, and certain types of locomotives and cars. The assistance which photography can give to physics in certain lines was shown by photographs of manometric flames and of sound waves. The kinetoscope, too, has been called in by R. W. Wood, of Wisconsin State University, to unite in a striking manner successive views of wave motion to produce a harmonious and instructive whole. Apparatus illustrating his diffractive color photography process was also exhibited. Some excessively thin films of metals produced by A. C. Longden, of Columbia University, explained how the colors of certain metals appear by transmitted light. Gold is greenish-blue, silver bluishgray, and copper yellow in these films.
The officers of the Academy of Sciences for the current year are : President, Robert S. Woodward ; first vice-president, Franz Boas; second vice-president, Charles A. Doremus.

FLOATING DRY DOCKS FOR NEW YORK CITY.
In connection with the article which appeared in the Scien'tific American, April 21, on the large dry dock accommodation which is to be provided in South Brooklyn, it will be of interest to our readers to learn that the Tietjen \& Lang Dry Dock Company have under construction a litrge sectional dry dock built on the same system as the one illustrated. in that issue. The credit for the designing of this type of dock is due to Mr. Frederick C. Lang, whose name has for many years been prominently associated with dry dock construction in New York harbor. 'The new dock, which is being constructed at the Hoboken yard of the company, is of approximately the same size as the new dock at South Brooklyn. It is being built in 80 -foot dock at South Brooklyn. It is being built in 80 -foot
sections, with a clear opening between the wings of 90 sections, with a clear opening between the wings of 90
feet. Three sections have been completed and are in place at the yard, and two other sections are wellunder way. The length of the dock will be 468 feet, and it will be equal to the accommodation of a 500 -foot vessel Another dock of four sections is to be built adjoining
the five-section dock, and when it is desired to dock vessels of 700 feet or over, the whole nine sections will be coupled up, making a total over all length of about 800 feet.

THE HEAVENS IN , MAY.

All other astronomical events of May are incompar ably surpassed in importance by the total eclipse of the sun on the 28 th , which is of additional interest to us because it is visible in the United States. Though such eclipses occur at some part of the earth's surface rather oftener than once in two years, on the average, the path of the moon's shadow is: so narrow that it passes much more rarely through any given region. Only three other total eclipses have been visible in the East ern States during the present century-in 1806, 1834 and 1869.
The path of totality in the present eclipse begins in the Pacific Ocean, crosses Mexico and the extreme southern corner of Texas, passes out into the Gulf, and enters the United States again near New Orleans, whence it passes in an almost straight line to Norfolk, Va., and out to sea, as may be observed in the map pub lished in the Scientific American of April 21, 1900.
Crossing the Atlantic almost on the track of the Mediterranean steamers, it transverses the Spanish peninsula, crosses to Algiers, and follows the north coast of Africa into the Tibyan desert.
The shadow-path in the United States is about 50 miles wide. Its central line passes about 10 miles north of New Orleans, 25 miles north of Mobile, Ala., 10 miles north of Columbus, Ga., 5 miles south of Greensboro, Ga., Newberry, S. C., and Wadesboro, N. C., and 15 miles south of Raleigh, N.C., and Norfolk,Va.

These details are given in order to enable the approximate construction of the eclipse track on any convenient map. The duration of totality in the United States varies frow 1 minute 10 seconds at New Orleans to 1 minute 40 seconds at Norfolk.
Numerous astronomical expeditions will, of course, be sent to observe the eclipse, and the chances of fair weather at different stations have been carefully considered, and the most favorable ones chosen. The principal work will consist of photographs and drawings of the corona and prominences, and observations of the spectra of the corona and the lower layers of the solar atmosphere.
For those to whom the eclipse is a magnificent spec tacle, rather than an occasion for scientific work, the most striking phenomena will be the onrush of the moon's shadow with the tremendous velocity of 2,000 miles an hour, the sudden darkness, and the appearance of the corona surrounding the black disc of the moon.
At the time of eclipse Mercury is about 2° west of the sun, and Aldebaran about 6° S.S.E. Both should be visible during totality. Venus will be too near the eastern horizon, as seen from stations in this country, to be conspicuous.
For those outside the track of the shadow, the partial phase of the eclipse will still be well worth looking at. Along the coast near New York about nine-tenths of the sun will.be hidden, and the decrease of light will be conspicuous, the sun appearing through smoked glass as a narrow crescent.
However, since even one-tenth of sunlight is some 60,000 times as bright as the strongest moonlight, day will by no means be turned into night for New York, even at the time of greatest eclipse.

THE HEAVENS.
At $10 \mathrm{P} . \mathrm{M}_{\text {. }}$, in the middle of May, the splendid constellations which make the evening sky of April the most brilliant of the year have all set except Gemini in the west and Auriga in the northwest. Before the brightest star, Capella, of the latter constellation, is lost from the evening skies, it is worth while to note that it has recently been shown by spectroscopic evi dence to be double, consisting of two components of almost equal brightness which revolve about one another in an orbit comparable in size with the earth's in a period of about 100 days.
This "spectroscopic binary" is unusually interesting since on account of its relative nearness to the earth there is reason to hope that its components may be separated visually with the aid of the greatest of pres-ent-day telescopes, thus giving us an accurate knowledge of its mass and distance.
Leo is high in the west, and the Great Bear between him and the pole. Almost overhead shines Arcturus. and on the east is the semicircle of the Northern Crown, while further south, and near the meridian is Virgo, marked by the white star Spica.
The Milky Way lies low along the eastern horizon, with several fine constellations near its course.
In the northeast is the cross of Cygnus, now prone upon its side, and above is the blue-white Vega. Just rising in the east is Altair and in the southeast Scorpio lifts his claws well above the horizon, and the red Antares blazing in his heart, though his long curving tail is still out of sight.

THE PLANETS.
Mercury is morning star during the earlier part of the
month, but too near the sun to be well seen. It passes superior conjunction on the 29 th , and changes from morning to evening star. During the eclipse of the 28 th it will be conspicuous some 2° west of the sun. Observatious of its brightness at this time are planned by some observers, who will take advantage of the eclipse to observe it much nearer the full phase than has ever been done before.
Venus is evening star in Gemini, setting nearly four hours after the sun on the 1st, and about two and a haif hours after sunset on the 31st. It is apparently approaching the sun, and is in reality rushing forward to come almost between the earth and sun next July.

Its greatest brightness occurs on the 31st, when it is fully one hundred times as bright as an average first magnitude star. Toward the end of the month its crescent phase will be visible in a good field-glass, especially during twilight, when the glare of the planet is diminished.
Mars is morning star in Pisces and Aries, rising about an hour and a half before sunrise, and very unfavorably placed for observation.

Jupiter is in Ophiuchus, north of Antares, and moves westward about 5° during the month. It comes into opposition on the 27 th , rising about 7 P . M., but is in an unfavorable position on account of its great south declin:a, u.
I'he same statement applies with even greater force to Saturn, which is in Sagittarius, some 30° east of Jupiter, and about as far south as it can possibly get. It rises about $11 \mathrm{P} . \mathrm{M}_{\text {. }}$ at the beginning of the month, and $9 \mathrm{P} . \mathrm{M}_{\text {. }}$ at the close.
Uranus is in the Scorpio, about 212° east and 1° south of Jupiter on the 1st. It is in opposition with the sun on the 31st, and may be distinctly seen with the naked eye on a clear moonless night, but is hard to distinguish from faint stars. By making two or three sketches, at intervals of a few days, of the stars visible with an opera-glass southeast of Jupiter, the planet may be identified by its slow westward motion. Its greenish color, visible in a field-glass, aids the search. Neptune is in Taurus, too near the sun to be observed. THE MOON.
First quarter occurs on the afternoon of the 6th, full moon on that of the 14 th , last quarter on the evening of the 21 st, and new moon (accompanied by the solar eclipse) on the 28th. The moon is farthest from the earth on the night of the 8th, and nearest on the afternoon of the 24th.

The moon is in conjunction with Venus, though not closely, near noon on the 2d, with both Jupiter and Uranus on the afternoon of the 15 th , with Saturn on that of the 17 th , Mars on the morning of the 27 th , Mercury on that of the 28th, a few hours before the Mercury on that of the 28 th, a few hours before the
eclipse, and finally with Venus again on the afternoon of the 31st.

Princeton University Observatory, April 21, 1900.

PARIS EXPOSITION NOTES

The portion of the Paris Exposition at Vincennes is even more backward than the sections in Paris proper. Some of the buildings were only recently begun. The "Pauillac" accident interfered greatly with the American Machinery Hall.
The new hotels which have been built near the Trocadero have metamorphosed the entire quarter of Paris, and have very much improved it. One group of hotels has 1,800 rooms, and at least three times that number of guests can be accommodated.

The gates of the Paris Exposition are now closed at six o'clock in the evening. Then freight cars and wagons loaded with exhibits enter the grounds. Work is not interrupted during the time that visitors are on the grounds. The moving sidewalk is now in good working order and is crowded all day long. It makes a complete tour of the Exposition and will take the place of the Eiffel Tower, and of the Ferris Wheel of our own last Exposition.

We have already referred to a unique map of France made of precious stones which illustrates the enormous mineral wealth of the Ural district. The 106 chief towns of France are represented by precious stones set in gold. Thus, Paris is indicated by a rubellite of pink color. Other places are represented by such stones as emeralds, sapphires, tourmalines, chrysolite, beryls, aquamarines, amethysts, and chrysoberyls. The names of the towns are in gold and the rivers are made of platinum.

DEATH OF THE DUKE OF ARGYLL.
George Douglas Campbell, Duke of Argyll, died on April 24, after a long and active life as statesman and scientist. He was born in 1823, and succeeded to his father's titles in 1847. He took an active part in politics, and was well known as a theologian and public speaker. His works of a scientife nature dealt to a certain extent with theology. They include: "The Reign of Law," "Primeval Man," "The Unity of Nature," a work on religion and a sequel to "The Reign of Law;" "What is Science?" "Organic Evolution Cross-Examined."

A NEW FORM OF FIBER-CLEANING MACHINE.
An ingenious improvement has been made by Faustino Escalante, of Merida, Yucatan, Mexico, upon fibertino Escalante, of Merida, Yucatan, Mexico, upon fiber-
cleaning machines, which have a wheel mounted upon a central shaft and which are provided with peripheral, transversely-projecting bars coacting with a seg-ment-plate to crush and scrape manila fibers., thus

the EsCALANTE FIBER-CLEANING MACHINE

very considerably facilitating the separation of the fiber. Hitherto, transverse scraping bars have been attached to the outside of a wheel having a smooth periphery, the bars projecting at such a distance that the leaves are whipped over the edge of the bar, so as to break the fiber. Mr. Escalante has provided bars which project a lesser distance, so as to prevent the whipling of the fiber. He has likewise devised a very simple and effective means of centering the segment plate.
The wheel's periphery is formed with transverse channels, in which adjustable scraping bars are designed to lie with one edge projecting beyond the rim. The bars are bolted in place in the manner shown in Fig. 3. Copper or brass plates, cover the sections of the rim between adjacent scraping bars one end of each plate extending into the channel and being held beneath the scraping bars. Clamping plates, secured to the wheel periphery, hold down the other end of the coper or brass plates. The construction limits the projection of the scraper bars sot that there is no possibility of the fibers' being whipped. The manila leaves are introduced between the wheels and the segment plate at that edge of the wheel where the scraper bars are farthest removed from the segment plate, and are gradually worked across the wheel until they have been operated upon by the opposite edge of the scraper bars. The channels in which the bars are held are inclined, so that the manila will be moved transversely to the wheel.
The wheel, as shown in Fig. 1, is also provided with a dove-tailed channel, extending across its rim, which channel is designed to receive the centering device, illustrated in Fig. 2. In this channel a block is mounted to slide provided with a projecting head having a hole extending parala hole extending paral-
lel with the channel, lel with the channel,
and receiving the stem and receiving the stem of a tool. The block and tool are fed across the face of the rim by a threaded bar carrying a star wheel. In order to true the segment plate, the block and tool are put in place, and work is started with the block at one end of the channel. The tool is projected at such a distance as to take a small cut from the inner surface of the segment plate. The wheel is then turned and

AN IMPROVED ENGINE VALVE-GEAR
A simple form of valve-gear, designed to actuate multiple rocking valves, and to move these valves in either direction in order to cause the engine to run forward or backward, has been patented by Joseph H. Ansell, Fort Washakie, Wyo. Fig. 1 is a longitudinal section through the cylinder, showing the valves and steam ducts. as well as the piston at the forward end of its stroke. Fig. 2 is a side elevation showing the valvegear adjusted to open the live-steam valve when the piston is at the forward end of its travel.
Above the longitudinal bore of the cylinder is a livesteam chest, and below the bore an exhaust-steam chest. Cylindrical rocking valves in the steam chests are seated in transverse bores of the cylinder in the thick portions of the wall. The valves have flat sides to reduce their thickness opposite the openings of their
 be put to miles. On arrival they will railway and hauling freight. Should the experiment prove as successful as anticipated orders for a large number in addition will be given. The purpose is to use traction engines as feeders for the main line of railway in place of building branch lines. The shipment is considered significant as indicating the gradual increase of traffic and the hopeful outlook for future business between the Pacific States of America and the newly developed portions of Siberia traversed by the railway.
The new traction engines are not only the largest yet made on the coast, but they
large traction engine for siberia.
Weight, $131 / 2$ tons. Horse power, 50. Hauling capacity, 50 tons on good roads.
 combine certain improvements which insure greater economy in the expense of operating, with simplicity of construction. They are of 50 borse power and will haul a load of from 30 to 50 tons, depending upon the quality of the roadway. The boilers are upright with a diameter of 4 feet, and they were tested to 200 pounds. Each has 480 square feet of heating surface.
Attached to the boilers are wrought iron bed plates, 6×1 inch, which form the main frames of all the machinery. To these are attached twin engines, 9 -inch bore and 9 -inch stroke, geared to the main inner cogged periphery of the two large drive wheels. The height of the main drive wheels is 8 feet, with tires 26 inches in width. The steering wheel is 5 feet in diameter and 18 inches wide. 'The total weight is $131 / 2$ tons. An attachment allows the engines to be used stationary if required. The water tank is 40 inches in diameter by 80 inches long, with capacity for 500 gallons. Coal, oil or wood may be used as fuel.

England's recent purchases of horses for use in South Africa has affected the American horse market. Sever al thonsand have been sold in Texas to the British
government, at excellent prices. The armies of European countries are constantly increasing in size. With this increase comes the need for more horses. Roughly speaking there are a million horses required for military service upon a war footing in all countries. The Russian army requires 300,000 , France and German 200,000 and England and the United States 100,000 each stances is by diminishing the amount of meat taken, rather than by forbidding dark meats. They also asserted that among the extractives present in meat the most important ones are by no means harmful, if taken in small quantities as is ordinarily done. The same holds good as regards the other organic extractives which are nitrogenous.

THE IVES SYSTEM OF COLOR PHOTOGRAPHY.
THE KROMSKOP AND THE KROMSKOP CAMERA.
The development of trichromatic color photography appears to have superseded experiment along the older lines, by which it was sought to obtain photographs in natural colors in the camera direct, and this fact is due largely to the work and writings of Mr. Frederic E. Ives, who must also be credited with the attainment of the most perfect results by means of his Kromskop system, in which a "color record" is first made in a special camera, and then viewed in an optical instrument which is used like an ordinary stereoscope.
In view of the fact that the Kromskop system has now been reduced to a remarkably simple and practical basis, and that it yields reproductions which are astonishingly beautiful and realistic, we feel sure that our readers will be interested in a somewhat detailed explanation and description of the method and the special apparatus devised for carrying it out.
As long ago as in 1881, Mr. Ives made trichromatic color prints from half-tone process blocks in the printing press, but it was not until 1888 that he announced the new principle which is the basis of his perfected methods, and by the application of which he then first demonstrated the possibility of accurate color reproduction by an automatic process. This principle, very briefly stated, is that of making the three images of the color record by the action of mixtures of spectrum rays in accordance with Maxwell's color curves, and then optically combining the three images with pure spectrum colors, red, green, and blue, or by superposed prints in the complimentary colors, cyan blue, crimson, and canary yellow. The optical synthesis has always been Mr Ives' favorite method, and the application of his new principle to this method involved an important difference in the character of the color sereens em. ployed in making the photographs and in viewing them, whereas, all other experimenters had employed the same color screens for both purposes-a fatal defect, according to this inventor.
The first demonstration of the method was by means of triple lantern projection; but, with a view to obtain the results by the simplest and most reliable means, and to render them readily available to everybody, he has succeeded in designing an automatic camera that is an exposure camera for making the negatives, and a viewing device to show the perfect reproduction as readily as stereograms are seen in the stereoscope. Many years before, Louis Ducos Du Hauron, in France, had endeavored to do the same thing, but he failed to recognize the distinction which must be made between the taking and viewing color screens, and his viewing device was so crude and imperfect that there is no record of its ever having been exhibited in operation. Undoubtedly the first successful viewing device was Mr. Ives' "Helio-chromoscope," which attracted considerable attention when it was first shown at the Royal Society and at the Royal Institution, in London, in 1892. This device, however, proved too complicated and delicate in its adjustments to meet commercial requirements, and the evolution toward greater simplicity and practicability which has since gone on is a most interesting one. The present viewing device is called the "Kromskop," and the abbreviation of mechanical and optical complications is even

THE KROMSKOP, AN INSTRUMENT FOR VIEWING PHOTOGRAPHS in the colors of nature.
more striking than the abbreviation of the name from six to two syllables.
The Kromskop, although sufficiently elaborate mechanically to make it an instrument of precision, consists essentially of nothing more than a case and four pieces of colored glass. Nevertheless, it seems impossible that any reasonably simple construction could permit of showing an image which should appear
larger, or in any way more perfect. Another simpler form of instrument has been recently devised, but only by further optical complication, and by curtailing the apparent area of the image, both of which seem to be inseparable from any departure from the "stepKromskop" design.
Mr. Ives has also devised the only cameras for making three images of the color record, identical in

SECTIONAL PLAN OF TRI-COLOR CAMERA

THE KROMSKOP TRI-COLOR VIEW CAMERA.

size and perspective on one plate, at one exposure from one point of view.* His earlier cameras for this purpose, although efficient, were too delicate in adjustment for regular use. The perfected system is a "one-plate-one-exposure" process, as simple in actual operation as the ordinary black and white photography, and is carried out entirely with apparatus which appears to have realized the utmost possible degree of optical simplicity.
The Kromskop view camera, as shown in our en graving, contains, in addition to the essential parts of an ordinary camera, nothing more than two prisms and three color screens in one frame, blue, red, and green, designated G, R, and B. In making this construction Mr. Ives has very ingeniously taken advantage of the property of a body of glass to extend the focal point of the rays, which form the images on those parts of the plate furthest removed from the view point. The camera is provided with a hinged cover having a handle on the upper side and a flat spring underneath for clamping the prisms. Referring to the diagram A is a simple achromatic lens, fo cused by means of a slip tube or rack and pinion, with a diaphragm at B; the lens normally focuses an image at C, which is perfectly defined to the edges of the small image required, but in order to divide the light and form other images at D and E, the prisms, F and G, are so placed that their inner front edges partly cover the diaphragm aperture, which then appears like three juxtaposed slits, giving three practically, though not absolutely, identical points of view. The light passing into the prisms is twice reflected, producing unreversed images at D and E, which, owing to the greater distance from B to D and E than from B to C, would be of larger size than the middle image and much out of focus, but for the fact that
*The Du Hauron camera, recently described in oui columns has (optically) three points of view, one bebind another, thereby introducing diffe within a few feet of the camera
the greater refractive index of the glass as compared with air, extends the focal point, so that the images are equal, except for differences of light and shade intro duced by the selective color screens, H, H, H. It seems perfectly safe to say that no simpler optical device could possibly secure three images identical in size and perspective on one plate, from one point of view, at one exposure.
The time of exposure is dependent upon the time re quired to impress the red and green images on the sensitive plate; for this reason the largest section or central portion of the lens transmits the image direc through the red screen, while the blue violet and green pass through the side prisms. Referring to the view camera engraving there is located between the inner end of the prisms and the back of the lens pivoted diaphragm shutters which, when moved, one way o the other, by the extended levers over a gage observed on each side of the prisms, regulate the amount of light that is to pass through the prism. In this way the actinic value of the light on the plate is adjusted and proportioned so that the blue and the green rays will impress the plate in a given time equally with the red rays, the latter requiring the longest time. The plate holder, made of special lengtin to fit the camera will be seen on the left of the picture. Special chro matic plates are used.
With this camera, the exposures on a landscape may be reduced to five or ten seconds, under the most favorable conditions. Advantage is taken of the same property of a body of glass to extend the focal point in a somewhat more complicated camera, which, with a single point of view transmits enough light for por traiture in the studio.
From each triple negative made in these cameras, any number of positive color records, "Kromograms", can be produced by contact printing, as in making lantern slides, and when mounted on an ingenious folding cardboard frame, they are ready for viewing in the Kromskop, as easily as a stereogram is seen in the stereoscope; and the principal Kromskop, which is also a stereoscope, shows not only the colors but the effect of solidity as well, so that the very object itself appears to stand before the eyes.
Referring to the larger illustration, the general ap pearance and construction of the Kromskop, or view ing step instrument, will be noted. It is tilted at a suitable angle to allow the light to fall equally on all the duplicate images. When viewed without any color record transparencies in place, the screen of the combined colors has a bluish-white appearance. If one of the screens is shaded red, blue or green will appear. The red screen is located just above the viewing lens, on the next step to the right is the blue-violet screen and vertically below that is the green glass screen. Just in front of this is a green colored reflector which illuminates the green screen. In the interior, held in place by spiral springs, are two green glass reflectors located under the blue and red screens, which possess the quality of reflecting the colored images above, without the secondary reflection which occurs when a clear glass reflector is employed, and at the same time transmit the green lower image through them to the viewing lens. The green image in its passage upwar through the green reflectors blends, first with blue re flected image, and lastly with the red reflected image as the white dotted lines in the picture show. The three stereoscopic transparencies secured together by flexible cloth joints (partly opened in the engraving) are very readily placed on top of several steps and quickly adjusted to the proper position. At the ex-

THE MINIATURE KROMSKOP.
treme right corner of the picture is a ground glass screen for equalizing the light falling on the reflector when a clear sky cannot be had. The eye lenses not only magnify but cause the eyes to blend the two sets of images which constitute the complete stereoscopic pair, as in the ordinary stereoscope. The result is a single image in solid relief, and in the natural colors. The color record transparencies simply shade
or cut out certain portions of color, causing red or blue to predominate as the case mav be, and thereby in their various gradations cause a harmonious and pleasing intermingling of colors, photographically recorded, which reproduces an image in the natural colors of nature.
One of our engravings shows another modified form more simple, non-stereoscopic, which gives a smaller though equally as perfect a color reproduction of the step-Kıomskop, and is called the miniature Kromskop.
In this case the kromogram is made up of the three color record pictures on one plate, as will be seen at the right end of the picture, where one end of the transparency projects upward.

To avoid distortion in viewing these images at an angle of $45^{\circ}, \mathrm{Mr}$. Ives devised a special correcting combination, consisting of a prismatic lens and a prism, observed in the center of the diagonally placed board, and just below the view aperture. One side of the instrument forms a hinged door, so that access can be had to the interior.
R, B, G, are the three color screens respectively red, blue and green, in front of which the kromogram is placed. The light passes through the kromogram images and the color screens in the direction of the dotted lines, R, B, G, the green being reflected by the silvered mirror, marked P, and the other colors by the transparent colored glass mirrors, G and B, along one line, through the prismatic lens on diagonal board, and the prism fixed just below the eye aperture.

From a personal examination of these color record transparencies in the two viewing instruments just described, we have been more than satisfied with the remarkable natural blending of colors that were produced and were particularly interested in the quick, simple, yet scientific way in which all the adjustments and results are obtained.
Mr. Ives has constructed a color-projecting attachment for lanterns which is very effective and accurate in its adjustments. This we shall hope to describe at another time.
In the correct optical rendering of photographic pictures in the colors of nature, the Kromskop certainly can be compared in its effectiveness and importance to the phonograph as a reproducer of sound, or to the kinetoscope in the reproduction of motion.
A commercial use suggested for this instrument is that colored articles such as rugs, carpeting, and china, and other kinds of merchandise, can be presented in their original coloring to the prospective purchaser, and thus save the expense of transportation and display of actual samples by the manufacturer.
We are informed that Mr. Ives is regarded as being the first to invent and protect by patents the only practical photo-chromoscopic apparatus that has been placed on public sale, and that several medals have been awarded to him by important scientific societies at home and abroad.

THE UPBUILDING OF THE AMERICAN MERCHANT MARINE.
The public has heard a great deal recently about the revival of American shipbuilding, particularly as regards that branch of it which is devoted to deep-sea navigation, and we now take pleasure in presenting illustrations of a fleet of a dozen American freight and passenger steamers which are being constructed on the Delaware and the Clyde. Eight of these vessels are upon the stocks at the yard of the William Cramp \& Sons Ship and Engine Building Co., Philadelphia, while the other four are building at the shipyard of the Clydebank Engineering and Shipbuilding Co., Glasgow. By far the most important of these boats are four large steamers of 12,000 tons measurement and 17 knots speed which are being constructed for the Red Star Line service between New York and Antwerp; two of which, the "Vaterland" and "Zeeland," are being built by the Cramps, and the other pair by the Glasgow firm above mentioned. The boats will take rank among the largest afloat. They are 560 feet long, 60 feet wide, and 42 feet deep. They are, of feet long, 60 feet wide, and 42 feet deep. They are, of
course, fitted with twin screws, and the twin engines in course, fitted with twin screws, and the twin engines in
the case of the "Vaterland" and "Zeeland" will be of the quadruple expansion type, and in the case of the other two boats, of the triple expansion type. The maximum indicated horse power will be 10,000 . There will be accommodations for 300 first cabin, 250 second cabin and 750 steerage passengers. The cabin passengers, both of the first class and second class, will be carried in the bridge deck house amidships, and the majority of the rooms will be deck cabins. There will be a certain number of first cabin suites, each of which will include a sitting-room, a bedroom, and a bathroom. On the promenade deck, which will be of the generous proportions which are found on recent ships of this type, will be a large library and a smoking-room, while the first-class dining salon, which is situated amidships on the upper deck, will be large enough to accommo date all the passengers at one sitting.

The second cabin accommodations will be amidships, chiefiy in the deck house, so that wost of these rooms, also, will be deck cabins. The dining salon will have the added attraction that comes from being placed
near the center instead of, as is usually the case, at the stern of the vessel. A feature of these ships which is worthy of particular note is the successful attempt which has been made to render life in the steerage more comfortable. The accommodations consist largely of two, four and six-berth rooms, all of which are well lighted and ventilated, while ample lavatory accommodations have been provided. A distinctly modern innovation is the provision of a large social hall.
From the above description it will be seen that these fine ships hold a position midway between the modern ocean greyhound and the modern cargo and passenger ship of 14 and 15 knots speed. They will make, the trip from New York to Antwerp in eight days, steaming about 17 knots an hour. The International Navigation Company, or the American Line, as it is more popularly known, for whom these ships have been built, is also having two steamers of similar design and speed, but of 10,000 -ton measurement, constructed at speed, but of 10,000 -ton measurement, constru
Glasgow for the Philadelphia-Liverpool service.
The New York and Cuba Mail Steamship Company has under construction at the Cramp's yard thre freight and passenger steamships which are to carry cattle, fruit and merchandise between New York and Cuba. They will be ranked as second-class vessels under the Subsidy Act of March, 1891. The vessels, whose general appearance is shown in the drawing on the front page of this issue, will contain three on the front page of this issue, will contain three
decks, in addition to hurricane and shelter decks. decks, in addition to hurricane and shelter decks.
They will be built of steel with the usual cellular botThey will be built of steel with the usual cellular bot
tom and watertight compartments, and will be pro vided with bilge keels to give steadiness in a sea-way. It will be noticed from the illustration, they will have a high freeboard, a feature which will conduce greatly to good sea-going qualities and general comfort. One of these vessels, the "Morro Castle," will be of 6,000 tons measurements, 400 feet in length, 50 feet in width and $361 / 2$ feet in depth. On a draught of 20 feet she will have a deadweight capacity of 3,400 tons of freight and 800 tons of bunker coal. She will be driven by two four-cylinder triple-expansion surface-condensing engines with a combined horse power of 8,000 . With this maximum indication the engines will run at 100 revolutions per minute, when the boiler pressure is 170 pounds to the square inch. The sea speed will be about pounds to the square inch. The sea speed will be about
18 knots per hour. Two others are being built which 18 knots per hour. Two others are being built which
will be of 4,500 tons gross measurement. They will be 341 feet long, $471 / 2$ feet wide, with a depth of hold of 36 feet. The draught will be 30 feet on a deadweight carrying capacity of 3,000 tons of freight, and 360 tons of bunker cool. The twin three-cylinder triple-expansion engines will indicate 5,000 horse power at 97 revolutions per minute, when the boiler pressure is 160 pounds to the square inch. The largest of these three ships will accommodate 150 first, 85 second and 100 steerage passengers, while the two sister ships of 4,000 tons measurement will accommodate 125 first, 85 second and 100 steerage passengers. The speed of these three vessels will be about 17 knots per hour, as against a speed of 18 knots per hour for the "Morro Castle."
The Oceanic Steamship Company, which, for many years has maintained a service between San Francisco and Sydney, N.S.W., calling at Honolulu, at our newly acquired island of Tutuela and at Auckland, New Zealand, is having three handsome vessels con structed at the Cramp's yard, and these, like those above mentioned, are steel veseels, of first-class con struction with double bottom, bilge keels and extensive subdivision by watertight bulkheads. The new boats are 400 feet in length, 50 feet in width and on a boats are 400 feet in length, 50 feet in width and on a
draught of 23 feet have a gross measurement of 6,000 draught of 23 feet have a gross measurement of 0,000
tons. The twin-screw, triple-expansion engine will indicate 7,500 horse power and drive the vessels at an average sea speed of 17 knots an hour. The ships are specially designed for the requirements of the long trip across the Pacific Ocean, the larger part of which lies within the tropics. They are distinguished by the large port-holes and abundant means of ventilation which have earned for the old "Alameda" and "Mariposa," of this company, a well-deserved reputa "Mariposa," of this company, a well-deserved reputa-
tation. Because of the great distance between coaling stations on this run, the ships are to be provided with the liberal bunker capacity of 2,000 tons.
Although the American merchant marine has a long road to travel before it reaches the proud position which it once held, the fine fleet of vessels depicted in our front-page engraving is cause for justifiable pride and without indulging in over-sanguine expectations we may look upon it as an earnest of a great reviva of deep-sea shipbuilding in this country.

The Latest Work of the Palestine Exploration Fund
The Turkish government has granted the Palestine Exploration Fund a firman to excavate over an area of ten square kilometers, and the region marked out for the operations is on the borders of Shephelah, or old country. It was found that three promising sites for excavation, viz.: Tell Judeideh, Tell Zakariya, and Tell-es-Safi, could be brought within the limits of the permit. On October 26, 1898, work was begun at Tel Zakariya by Dr. Bliss and Mr. Macalister. It is a hil rising abruptly 350 feet above the Vale of Elah, and
the top of the hill the walls of a fortress, to which six towers had been added at a later date. A large part of the area enclosed by the walls has been excavated down to the rock. It has been proved that the fortress has been built after a considerable amount of debris had accumulated on the mound, possibly in the Jewish period. The fortress was simply an enclosure for protecting houses within, and the datable objects range from pre-Israelite to late Jewish times, with a swall proportion of later objects. It appears to be small proportion of later objects. It appears to be
probable that the place was inhabited when Joshua probable that the place was inhabited when Joshua
conquered the land; that it was fortified in Jewish times; that it was occupied until a later Jewish period, and that during the Roman period there was a brief occupation, after which it appears to have been deserted. Interesting potsherds have been discovered. Tell-es-Safi gives great promise and it is likely that it represents the Biblical Gath.

Automobile News.

It has been suggested that automobiles be named in the same way as a yacht.
An exhibition of motor carriages under the auspices of the Austrian Automobile Club will open at Vienna on May 31 and will continue until June 10.
There seems to be an excellent opening for the sale of motor cars in Spain. In many of the provinces there is not a very extensive railroad communication and there seems to be an excellent prospect for the introduction of motor car, passenger and goods services between many places in the provinces of Spain.

In a new automobile which has been designed for doctors' use, the doctor is his own driver. He sits inside and obtains an uninterrupted view through large glass windows on all sides, the steering and manipulating devices being readily accessible from his seat. Inside the body is also a space for instrument cases and other necessary articles carried by a doctor. There is a headlight, reading light and side lights. The vehicle is an electric one.
Gottlieb Daimler, the inventor of the Daimler motor, died in Germany a short time ago. He became associated with Dr. Otto some thirty years ago, and in their little workshop at Deutz, the Otto gas engine was constructed. Herr Daimler finally started in business for himself and undertook the production of an engine using gas made from petroleum. According to The Automobile the first attempt to construct an automobile at the Daimler works was about fourteen. years ago.
A series of eighteen questions has been prepared for the examination of Chicago automobile operatives. Regular examinations are required and the police are instructed to see that the ordinance is inforced. Good eyesight, sound hearing and a stable nervous system are required. The questions relate largely to the special type of vehicle which is to be used, aiso questions relating to the responsibility of operating a vehicle on the public streets, whether the operator has ever had any accidents or not, etc. The rules and regulations seem to be thoroughly common-sense and ought not to be objected to by anyone. Nothing will hurt the automobile industry more than a series of accidents.

At the recent German military maneuvers, fourwheeled automobiles containing an officer and driver were used, for the most part, for the speedy conveyance of the elderly staff officers, and some of them ran at a speed as great as 30 or 40 miles an hour. In the Franco-Prussian war a hard day's march of twenty-four hours for transport wagons was 50 miles. At the end of each march, the horses were useless. In the recent maneu vers motor wagons traveled at the rate of 7 miles an hour, and a day's work of ten hours was 70 miles. War authorities consider that the day is not far distant when train horses will be replaced to a considerable extent by petroleum motors. The Kaiser takes the greatest interest in this new development, and a number of officers have been set apart to study motors and impart instructions to their subordinates.
A bill was passed by the Wisconsin State Legislature on March 5, 1875, which virtually offers a prize of $\$ 10,000$ for an invention. The Motor Vehicle Review recently investigated the law, which was found on the statute books. The first section of the law enacts that the sum of $\$ 10,000$ shall be paid to any citizen of Wisconsin who shall invent and, after five years continuous trial and use, shall produce a machine propelled by steam or other motive agent which shall be a cheap and practical substitute for use in place of horses and other animals on the highway and farm. Any machine entering for the prize must perform a journey of at least 200 miles on the common roads of the State, on the continuous line north and south, propelled by its own power at an average rate of at least 5 miles per hour working time. The other sections provide that the vehicle must be of such construction and width as to conform with or run in the ordinary track of the common wagon or buggy and be able to run backward or turn out to accommodate other vehicles. It must also be able to ascend and descend a grade of 200 feet for a mile

The scientific results of the Norwegian Polar expedition will soon be published. It will edited by Dr. Nansen.
Miss Catherine Wolfe Bruce who gave most generously for the advancement of astronomical science, died a short time ago.
The Glasgow International Exhibition opens May, 1901, and application for space must be made not later than June 1, of the present year.
Prof. Alphonse Milne-Edwards, the distinguished French naturalist and Director of the Museum of Natural History of Paris, died suddenly April 21, in his sixty-fifth year.
Color photography will, doubtless, in time be of great use for reproducing the medical and surgical aspects of disease. Mr. Ives has experimented upon this subject with his "Kromskop." It is easy to see its usefulness for lecturing and teaching purposes.
The American Geographical Society will no longer hold its public meetings in Chickering Hall, New York, as the building is soon to be removed to give room for another structure. For nearly a quarter of a century the society has had the most celebrated explorers and traveler in the world to address them. The society will soon begin the erection of a fine building on will soon begin the erection of a fine building on
Eighty-first Street, near the Museum of Natural History.

A volcanic eruption has occurred at the southeastern extremity of the island of Luzon. There are several extinct volcanoes in this province, but Mayon has always been more or less active. The eruption took place on March 1 about 2:30 in the afternoon. Large stones were hurled up, and finally streams of red hot lava could be seen coursing down the mountain side, and one of them apparently reached the sea some 6 miles away. On March 4 the eruption seemed to be practically over, but steam was still rising from the hot lava and the mountain was obscured with smoke.
San Francisco has had quite an epidemic of fish poisoning. Oysters have been a frequent cause of ptomaine poisoning. Most of the oysters consumed are obtained from beds situated in or about San Francisco Bay, the waters of which, says The Pacific Medical Journal, are never thoroughly changed. There is considerable tide, but the stagnant water from the sewage of surrounding towns flows into bay. The oyster, as well as the lobster, crab and shrimp, are natural scavengers, and they should be raised or gathered only in waters baving no sewage pollution, and waters having free access to the ocean.
The engineers and workmen on the Jungfrau Railway, who are obliged to remain a considerable time at an altitude of about 10,000 feet above the sea level, are apt to develop a disagreeable coinplaint. After eight or ten days they are seized with violent pains in several teeth on one side of the jaw, the gums and cheek on the same side becoming swollen. The teeth are very sensitive to pressure, so that it is painful to eat. These symptoms increase in severity for three days and then gradually disappear. All newcomers appear to suffer from the same complaint and they do not have any recurrence of the trouble.
The London County Council has passed some bylaws which are interesting. 'One of them forbids the use of flash or searchlights for advertising purposes. By flashlight is meant a light used for the purpose of illuminating or exhibiting words, signs, etc., which alters suddenly in intensity, color or direction, and by searchlight is meant every light exceeding 500 candle power, whether in one lamp or lantern, or a series of lamps or lanterns used together and projected as one concentrated light, altering either in intensity, color or direction. The fine for every such offense is not to exceed five pounds sterling. Recommendations have also been passed requiring a sufficient support for every person standing on window-sills for the purpose of cleaning windows at all heights above 6 feet from the ground. Another by-law stops street shouting, and in a short time London will probably be the best regulated city in the world as regards street nuisances.

At the meeting of the Department of Superintendents of the National Educational Association, at Chattanooga, 'Tennessee, in 1898, a committee was appointed to propose a plan for prosecuting a scientific inquiry for the determination of the factors involved in the proper seating, lighting and ventilating of school buildings. This committee made a report and the council appointed a committee and $\$ 2,100$ was appropriated for prizes. For the best essays submitted on each of the following topics a prize of $\$ 200$ will be given: The seating, lighting, heating and ventilating of school buildings, and for the second best essay submitted on each topic, $\$ 100$ will be offered. Each essay will be limited to 10,000 words, and must be printed or typewritten, must not be signed, but the name of the author must be enclosed with it in a sealed envelope, and not mailed later than February 1, 1901, to A. R. Taylor, Chairman of the Committee, Emporia, Kansas.

The Pennsylvania Railroad Company is experimenting with nickel steel rails.
On a branch of the Northern Pacific Railway submerged water tanks are used, means being provided for forcing the water out of the well with the aid of steam from the boiler.
There are thirty-three jute mills in India, employing 94,540 persons. The mills contain 13,371 looms and over 278,000 spindles. Nearly all of the mills are in the neighborhood of Calcutta.
A British steamer is now being loaded at Sparrow's Point to sail for Vladivostock and will carry the largest cargo of steel rails ever taken from an American port by one vessel. The shipment will amount to 8,700 tons.
The importation of calcium carbide into Servia has been forbidden on the ground that acetylene would diminish the value of the government petroleum monopoly. It seems as though the same result could have been obtained by levying a heavy inport duty.
The largest smokestacks which have ever been manufactured in the United States are now being built by the St. Louis Transport Company. 'They will be 70 feet in circumference at the base and gradually taper to 40 feet in circumference at the top. They will be 200 feet high and will cost about $\$ 20,000$ apiece.
The French authorities have recently built a new armored train. The locomotive is encased by a conical hood which developes into the cylindrical envelope with which the cars are covered. At the ends of the cars the armor overlaps so as to give a rather serpentine appearance to the train as it winds around a curve.
There is to be a cordite factory built in India. Electricity will be used for motive and lighting purposes. The bulk of the cordite used in India has been heretofore imported, and the government factory at Waltham Abbey in England cannot supply it in sufficient quantities, so that orders have to be placed with private firms.
The question of the right to use a bicycle on railway tracks has just come up for decision. A Minnesota man devised an adaptation of a bicycle enabling its use after the manner of the regular railroad tricycle. The question of the right of the railway company to prohibit the use of such machines is involved. In making answer to the inquiry the Commission took the ground that the use of such a machine was in the nature of placing an obstruction upon the tracks of the railroad company and, therefore, says The Railway the railroad company and, therefore, say
Review, is expressly prohibited by law.
The Fountaine Marchand in Paris is to be demolished in a short time. There are now no fewer than eleven fountains in Paris at which water is sold by the bucketful, the price being one centime, In 1860 the amount received from this source was 700,000 francs, says The British Architect, but in 1882 it shrunk to 40,000 francs. Now, however, the guardians of the fountains probably sell a bucketful of water a month each. Their office, however, is maintained as a comfortable sinecure for superannuated servants of the water company who receive $\$ 100$ a year and gratuitous lodgings.
The problem of transportation across crowded waterways is modified by local conditions, among which one of the most important is the amount of rise and fall of the tide. Methods that are practicable for a small range of tide, are impracticable when the variation is extreme. Thus, the ferry floating pontoon landing system universally in use at New York is impracticable in such a place as St. Malo, France, where the daily variation of 40 feet is overcome by an elevated platform traveling on rails laid at the bottom of the harbor. Again, the medium rise and fall of 14 feet at Glasgow was overcome by Wm. Simons \& Company, of Renfrew, by the construction of the curious elevating platform ferry, illustrations of which were given in the Scientific American of April 7, 1900.
It is ordinarily rather difficult to sample pig iron, but a simple and effective device for doing this work has been presented at a meeting of the American Institute of Mining Engineers. It consists of an ordi nary plumber's gas T, over the leg of which is snugly fitted a small tin cup to catch the drillings which are made by a breast drill with a $1 / 4$-inch twist-bit working in the arm of the T. The forward arm of the T is filed down to a blunt edge, over which is stretched a shor piece of rubber tubing projecting a little beyond the end. The bottom of the inside of the front arm of the T is filed down at an angle to facilitate the passage of drillings into the cup. The rear arm of the T is fitted with a tin ring, which holds in place a stiff spiral spring which presses the tool firmly against the metal being drilled. The other end of the spring is supported against a shoulder of the breast drill. The pro jecting rubber prevents the loss of any drillings and prevents the filling in of sand. A number of pigs can be sampled by making small holes; thus the average can be obtained.

Electrical Notes.
The Chicago Electric Traction Company will possibly abandon the storage battery system for the over-
head trolley. The former system has proved successful on single lines.
A similar system could undoubtedly be used to great advantage in libraries and in many places where light weights have to be transported a long distance at a high rate of speed.
The Manhattan Elevated Railway Company, of New York, is considering a plan for providing its stations with inclined stairways. Such elevating means wonld have a capacity of 3,000 persons per hour. 'Ihe stairways will be run on the endless chain principle, and will be actuated by electricity.
The Street Railway Company, in Norfolk, has complied with an act recently passed by the Legislature
to provide separate cars for colored people. The comto provide separate cars for colored people. The company which has done this is the first street railway company to observe the law. By this arrangement the colored people are carried in trolley cars.
An electrically-driven saw has been found to be of great use in surgery. The shaft upon which it runs is connected with a motor by a flexible spiral coil enclosed in a braided sheath. The machine has been extensively used in the larger hospitals, and operations that have been usually fatal with the old hand-saw, have been very successful with the new ones.
Nearly all of the jute mills in India are now lighted with electric lights. It was found that the working people could work overtime under much better conditions with increased pay in the electric-lighted mill: the consequence was that the workmen flocked to the well-lighted mills so that those mills, which opposed the introduction of electric light were forced to provide it.
An electrical telpherage system has been used with satisfaction in the offices of a German insurance company. A box for the purpose of carrying papers is suspended from the car and the whole affair is driven by a one-tenth horse power motor. The current. is taken off from a bare copper wire by a trolley wheel, and the return current goes througb the wheels and rails. A car can be ran from 3 to 5 feet per second, and as the ends of the track do not form a part of the circuit, the speed of the car is decreased when it reaches the end.
The International Tramways and Light Railways Exhibition which will be held in London, June 2 to July 4 of the present year, offers two prizes; one of $\$ 125$ for the best device for securing a dry seat on the top of tram cars and omnibuses in all conditions of weather, and the other a prize of $\$ 125$ for the most practical and efficient life-saving guard or fender for street railway cars. The competitors must offer a fullsized model and pay a nominal fee. Applications are to be sent to The Tramway and Railway World, London, not later than June 1.
Liebenow considers that no attempts in the direction of making dry secondary cells are likely to be successful. Investigations into the action of the secondary cells have shown that there are electrical concentration currents set up, which tend to convey the acid in the pores of the plates from points of maximum to points of minimum concentration. These currents are necessary to equalize the'strength of the acid, and effect this far more rapidly than would be done by diffusion acting alone. When a gelatinous electrolyte, or a dry non-conducting powder is introduced between the plates, this equalization is prevented and the cell is soon exhausted.
The Shawinigan Falls will be utilized for the purpose of generating electricity, which will be transmitted to Montreal for use. The works consists of a canal, flumes, etc., which will develop 30,000 horse power, and this amount can be increased if necessary. The current will be delivered to manufacturing establishments at Shawinigan Falls during the coming summer. The power will not be transmitted to Montreal until the spring of 1901 . The transmission line will be a little less than 80 miles in length and will run will be a little less than 80 miles in length and will run ing completed. At first 5,000 horse power will be delivered in Montreal and this amount will be increased to meet the demand.
M. Marcel Delmas, 10 Bonlevard Emile Augier, ParisFassy, has charge of the report of the "Congres de Mecanique de l'Exposition Universelle," in the department of applications of electricity to the various apparatus of haulage, hoisting, etc. (including cranes, elevators, winches, swing-bridges, pumps and other such mechanisms), and particularly desires information regarding the economic side of the matter. He requests that all, whether intending exhibitors or others, who are willing to assist in the collection of this data, send him, at the address given above, statements of costs of installations, of exploitation and incidental expenses; especially where a comparison can be made with costs of the older systems under similar circumstances. All publications, and illustrations will be welcome, if authentic and exact in statements of facts and dation.

THE LANGEN SINGLE-RAIL SUSPENDED RAILWAY.
Among the many systems which have been proposed for the construction of a single-rail railroad, there is one which has been so far realized that it is to-day in partial operation, and is in a fair way to be completed. About half the system was in working order some twelve months ago, and the whole line, which
which they run. The girders, which are generally of about 100 feet span, are carried upon two different styles of support. Where the railway is located immediately above the Wupper River, the A-frame style of pier is used, while in the suburbs of towns through which the line passes the trusses are carried upon large inverted U-frames. The A-frames consists of two rectangular,latticed struts, which are united at the top by a rectangular plate yoke.

I'he railway throughout its entire length is doubletrack, with a loop at each terminus. The maximun grade of the line is $41 / 2$ per cent., and the sharpest curves have a radius of 295 feet. It should be mentioned that in order to give the whole structure longitudinal stability, rigid double A-frames, with a broad, fixed base, are introduced at intervals of about 900 feet, the intermediate A-frames being provided with ball and socket joints. By this arrangement the intermedi-
covers a total length of 8.3 miles, will be opened to the public during the present year.
We are all more or less familiar with the so-called single-rail systems which have in the past attracted attention, among which might be mentioned the Meigs system, the Lartigue, the Decauville, and that of E. M. Boynton, the remains of whose bicycle railway may still be seen in the vicinity of Coney Island, New York. Although the term single-rail is used in speaking of these railways, in reality they are dependent upon two, and in some cases, three rails for stability; for, although it is true that the carrying of the load is performed by a single rail, the designers have usually introduced one or more auxiliary rails, whose duty it is either to preserve equilibrium, as in the case of the Boynton railway, or to prevent oscillation, as in the Aframe system of Lartigue.
The Langen mono-rail railroad, which forms the subject of our illustrations, is named after its designer, Eugene Langen, who was led to turn his attention to the designing of a single-rail railway in the endeavor to overcome difficulties of transportation in connection with some sugar works, of which he was the owner. Strictly speaking, his system is the first to which the term mono-rail is applicable, for while it is true that the Decauville railway makes use of only one rail, in this case it is necessary that the cars be steadied by means of transverse shafts, which are supported by the operatives pushing the cars, or by the draught animals employed to haul them.
The railway under consideration extends between the towns of Barmen and Elberfeld, which are situated in the picturesque Wupper Valley. The superstructure, or railway proper, consists of a system of latticed longitudinal girders, one vertical and two horizontal, assembled into the form of an I-section, the main girders, forming the web of the I and the lateral girders, which give the necessary horizontal stiffness, serving as the top and bottom flanges of the I. Diagonal tie-rods extend from the upper panel points of the central girder to a connection with the chords of the bottom lateral nection with the chords of the bottom lateral
girder. The last mentioned chords consist of steel Ibeams, and upon their upon their upper flanges is laid the single T-rail, from which the cars depend and on
ate posts, or A-frames, as the case may be, are free to
move in a longitudinal direction and accommodate move in a longitudinal direction and accommodate
themselves to the expansion or contraction of the supported spans. The cars are suspended from two twowheel motor trucks, which are attached to the roof of the car, one at each end, the distance bet ween the trucks being $261 / 4$ feet. The truck frame, as will be seen from the illustration, tcurves closely around the longitudinal Ibeam upon which the track rail is carried, with a view to preventing the possibility of the wheels jumping the rail. The motor is carried on the outside of this truck frame and in position mid-
way between the two wheels, and it receives the current by means of a slip shoe and a contact rail, which is carried on the bottom of the lateral girder, a little to the inside of the main supporting I-beam.
The style of the cars is shown clearly in the accompanying illustrations. They can accommodate fifty passengers, and each car is divided into first and second class, and simoking compartments. The motors are of 36 horse power, and the maximum speed, between stations, is about 25 miles an hour. As it takes only about 15 seconds to reach full speed, the average speed, including stops, over the whole line, is about 19 miles per hour, and this in spite of the fact that there are eighteen stations on the road. The trains are ordinarily made up of two cars, but the station platforms are made sufficiently long to accommodate four-car trains whenever the development of traffic calls for them. As each car carries its own motor, the speed will not vary with the weight of the train. The system is fitted with an automatic block system, in which the signals are regulated by the car itself, and, consequently, the headway between the trains may be reduced, if desired, to two minutes. An efficient system of braking is used, chief reliance being placed upon the Westinghouse pneumatic brake, with which all cars are fitted. The speed may also be controlled by a hand brake connected up with the fittings of the Westinghouse brake, and also by an electrical brake; while an emergency stop may be made by reversing the motors.
In that portion of the line which is built above the river, the total weight of the structure, including the supporting struts, or piers, is less than 850 pounds to the foot, while the weight of the portion above the roadways, where the inverted U-posts are used, is 785 pounds.

THE INVERTED U-FRAME PIERS USED ON SUBURBAN STREETS AND HIGHWAYS.
ties. This result is not due to the action of acetylene on the mixture; this has been pr ved by the fact that when bleaching powder and sawdust are mixed with water, a considerable rise of temperature takes place. This is more or less rapid and is accompanied by the evolution of chlorine and water vapor in large quantities. That the action is due to the sawdust appears from the fact that when the latter is added to a cold solution of calcium hypochlorite the temperature rises to 95° after a short time. On the other hand, no change of temperature is observed when pure and finely divided cellulose is used in place of the sawdust. There is no doubt that it is the lignin of the latter substance, which reacts with the hypochlorite. This inconvenience resulting from the use of sawdust may be entirely overcome by mixing the bleaching powder with some inert substance such as infusorial earth, powdered coke, brick dust, etc.
lodine in Sea water.
In a contribution to the debated question as to the amount of iodine present in sea water, A. Gautier states that in the form of inorganic salts practically no trace exist in the water of the open sea. In the form of organic compounds, however, a considerable amount of iodine is found, amounting in an insoluble condition to 0.52 parts per million, and as dissolved organic iodine, $1 \cdot 8$ parts per million, giving a total of organic iodine of $2 \cdot 32$ parts per million.-Compt. rend., 128, 1079.

The United States Marine Hospital Service has a new disinfecting steamer for use at Havana. It is named the "Sanator," and has a formaldehyde apparatus, sulphur furnace and bichloride of mercury apparatus. There is probably not a harbor in the world where a vessel of this kind is much needed as so Havana.

EFFECTIVE DITCH-DIGGING MACHINE.

Judged by the test that "handsome is that handsome does," the ditch-digging machine which, by the courtesy of John A. McGarry \& Company of Chicago, we are herewith enabled toillustrate, is one of the most successful substitutions of hand for machine labor in excavation that have recently appeared. The company mentioned has recently been carrying out improvements on the Evanston Park addition to North Evanston, Ill., which involved the construction of several miles of sewer and water ditches; and in looking around for some more expeditious and less expensive method than that of hand labor in digging these trenches, they authorized Mr. Richard Dalton, of Willmette, to construct a ditch-digging machine for the purpose. Mr . Dalton had been experimenting for a considerable time with a wechanical ditch-digger, and the rough trial machine which was built for the contractors proved so satisfactory that it entirely superseded hand labor in such classes of materials as were suited to its operation. We are informed that, although it was somewhat clumsily built, as is evident from the illustration, the machine proved something of a revelation to the engineers of the city of Evanston, showing unexpected efficiency. The loosening ap of the material is performed by a set of plows which are attached to pivoted arims on a heavy wooden wheel, 12 feet in diameter. The wheel is driven by a sprocket chain which is carried around a smaller sprocket wheel, keyed on the shaft of a portable engine which forms part of the machine. The plows referred to extend a little beyond the mouths of a set of buckets, four of which are carried on each side of the wheel. As the wheel rotates the plows loosen up the earth, which falls from the plows into the buckets as they rise from the bottom of the trench.
The buckets are carried at the outer end of the pivoted arms, the inner ends of which are attached near the axle of the wheel. During the part of the travel of the wheel in which the buckets are filling with the loosened material, the arms are locked, but when they reach a point a little above the level of the top of the ditch, the catch releases and they swing out on each side of the machine, and a little later in the revolution of the wheel empty their loads on either side of the trench. Further on in the revolution they are thrown back by their own gravity toward the wheel, and are automatically locked in position, ready to take up another load as they swing through the ditch. The machine is mounted upon low wheels, and it is moved forward as the digging proceeds by means of 300 feet of chain, one end of which is made fast to a post which is driven into the ground for the purpose, the other end being drawn in by weaus of an arrangement of ratchet wheels and chain pulleys, operated by the engine that drives the excavating wheel.
Provision is made for varying the width of the excavation anywhere between 30 and 72 inches, and this is done by placing liners between the tire of the wheel and the radial arms. By means of a rocker-arm wechanism which is pivoted on the road wheels of the ditcher the trench can be dug to any depth up to $81 / 2$ feet with a machine of the size shown in our illustration. Some in our illustration. Some
idea of the remarkable capacity of the excavator may be gathered from the fact that when working in what is designated as a very tough kind of stony hard-pan, it has dug a trench 3 feet wide, has dug a trench 3 feet wide,
6 feet deep and 460 feet 6 feet deep and 460 feet
long, in a day of nine hours, only four or five wen being required to operate the digger. This, it will be seen, approximates a rate of 1 foot per minute ; and that this should be done under the superbe done under the super-
vision of such a swall workVision of such a swall work-
ing force, shows that the machine is a great saver of hand labor. From the end view, showing the excavated trench, it will be seen that the ditch is cut with exact alignment and a fairly regular cross-section.

machine for trench and ditch excavation.
the best material has been found to be Chinese pongee silk, which is a tissue both light and flexible; it is made imperimeable by a special varnish, this being very adherent and not a ttacked by the air; it besides does not injure the fabric to any extent.
The sphere of the balloon is made up in the usual way by segments, and at the bottom is a kind of sleeve used in filling it. At the top is placed a valve of special construction, designed by Col. Renard, which permits the areonaut to let the gas escape progressively
and in the desired quantity, in the case of a slow descent, or, on the contrary, to rapidly empty the balloon in case a grave accident makes it necessary to descend quickly. The network of cord of the usual form, supports the basket, which is made of osier, well consolidated and made indeformable by a frame work of iron and hardwood. It is arranged for two men, besides the ballast and the different instruments and appliances, among which may be mentioned a combined ladder and anchor. This consists of a metallic folding ladder carrying at intervals a kind of grapnel designed to catch upon the ground. When unfolded, the ladder has a length of 5 meters; it is used especially for landings which are attended with some risk. This event must be provided as the balloon may break its attaching cable and make a free ascension. The cable used is of steel, especially constructed for lightuess; it weighs only 115 grammes per meter, and on account of its swall weight a height of 1,000 meters may be given the balloon. The cable is rolled upon a revolving drum, operated by a horizontal steam engine which controls the maneuvers of mounting or descent. The drum and engine are installed upon a vehicle adapted for the purpose, and the balloon may be thrs towed behind a column of the army on march.
For the inflation hydrogen is usually employed. At the Calais station a process has been designed for its rapid production by passing a current of acidulated water over zinc turnings. Nevertheless, although the process is simple and cheap, it has the great inconvenience, for military use, of requiring an installation which, although portable, must be followed by the necessary supplies of acid, water, metal, etc., and besides, it takes a certain time to produce the gas in this way. This difficulty is avoided by conducting, behind the bai loon, the hydrogen cowpressed in steel tubes provided with a stop cock, at a pressure of 200 atmospheres. The tubes are carried on a wagon assigned for the purpose, which takes eight tubes as a load. It requires sixteen tubes for the normal charge of a balloon, and to give an idea of the rapidity of this method, the results obtained at the time of the annual maneuvers may be cited. The aerostatic section arrives at the point decided upon for the ascension, the balloon is equipped, inflated, provided with its basket and connected to the windlass upon the vehicle, ready to ascend, all these operations being carried out in half an hour:
The aerostatic equipage designed for use in time of war is placed in the different engineering establish ments of the army and at the central post of Calais. It is distributed in a certain number of aerostatic parks, specially equipped for the purpose. A park of this kind includes two balloons of normal type, one auxiliary balloon, a windlass vehicle, a tender for the engine, a wagon for the accessories, and six tube wagons. The personnel consists of a certain number of sections of field aeronauts, each section having three officers and 78 men . The first four regiments of military engineers have each a company of aeronauts, and
these are designed to furnisi these are designed to furnisin
the field sections, as well as those required at the magazine stations, etc. The central establishment of Calais has the general supervision of this department of the army, and is charged with the construction and keeping in order of the balloons, as well as the study and experiment relating to aerial navigation in general. A series of experiments is now being carried on under the supervision of a corps of officers who have made a special study of the question and to whom are due a number of inventions and ingenious dispositions which have contributed to the successful operation of the system.

In breaking calcium carbide small pieces are apt to fly into the eye. As calcium carbide is decomposed by water it becomes very hot in doing so and yields slaked lime as a product. Should an accident of this kind happen it has been suggested that the eye should be wiped out with oil, or with a solution of sugar. This advice is not particularly good, however, and probablv the most efficient means of cleaning the eye is to use large quantities of tepid water. The sufferer should plunge his head into a pail of water and open his eye if necessary, and if the pain is so great that he cannot open it very well, it may be stretched open with the fingers. Absolute cleanliness is very important.

Deep Bore Holes and sharts.

The deepest oil well which has yet been sunk in this country is about twenty-five miles from Pittsburg in the valley of the Monongahela River. A few months ago the hole had keen drilled to a depth of 5,532 feet, and then work was suspended on account of an accident; owing to a break in the rope, a thousand feet of it, with the tools, dropped to the bottom and at last accounts men were at work fishing for the lost supplies, says The New York Sun. It is intended to sink the well to a depth of 6,000 feet. This breakage is the chief difficulty in the way of making deep borings. When the artesian well was dug at Grenelle, Paris, When the artesian well was dug at Grenelle, Paris,
a length of 270 feet of boring rod broke off, and fell to a length of 270 feet of boring rod broke off, and fell to
the bottom of the hole after a depth of 1,254 feet had been reached. It required nearly fifteen months of constant labor to pick out the broken parts, and the drilling could not, of course, be resumed until they had been removed. At present there are only two borings in the world, which are any deeper than the Monongahela one and they were both sunk in Germany at the expense of the government to ascertain the thickness of the coal measures, and the greatest depth was obtained at Paruschowitz, in Upper Silesia, where the diamond drill has penetrated to the enormous depth of 6,570 feet, and the second is near Schladebach near Leipsig. The following is a list of the deepest bore holes.

	Feet.
Paruschowitz, Upper Silesia.	6,5i0
Schladebach, near Leipsig	6,265
Monongahela (thus far sunk)	2
Wheeling, W. Va.	. 920
Sperenberg (gypsum beds near	4.5:59
Lieth, near Altona	4,388
Eu, near Stassfurt	4.241
Lubthen, in Mecklenburg	3,949
St. Louis, Mo	3.843
Sennewitz, near Halle	3,644
Inowrazlaw, Posen.	3,24
Friedrichsaue, near Aschersleben	,

Most of the artesian wells in this country vary from 200 to 1,000 feet in depth, and the average depth of those sunk for irrigation in the western part of the country is 210 feet. When shafts are considered this country has the deepest. One on the Houghton Peninsula was begun in 1895 , and will not be completed until 1901. This will be the deepest shaft in the world, and will take that distinction away from the Red Jacket vertical shaft of the Calumet and Hecla mines, which is less than a mile away. This shaft is 4,900 feet deep.

The Solubility of Argon and Helium in water.

Mr. Estreicher has recently published an account of a series of researches which he has made in order to determint the solubility of argon and helium in water. The value given by Mr. Ramsay, in his preliminary note published in 1895, for the coefficient of solubility of helium, makes this to be 0.0073 at $18^{\circ} \mathrm{C}$, showing it to be one of the least soluble of the gases, but as a result of further experiments, Mr. Estreicher considers that this coefficient should be doubled or nearly so. The apparatus he uses is the same in principle to that devised by Ostwald, but has two considerable improvements, one of these consisting in the employment of a glass spiral to unite the recipients of measure and absorbtion, which permits him to make the apparatus entirely of glass, and the whole instrument can be immersed in the water. This envelope of water perwits the determination of the exact coefficient of solubility at temperatures varying from 0° to $50^{\circ} \mathrm{C}$. He has plotted his results in the form of a series of curves side by side with the curve of nitrogen for comparison. The curve of the solubility of argon is of the usual type, with a decrease as the temperature raises, the value ranging from 0.0578 for $0^{\circ} \mathrm{C}$. to 0.02567 for $50^{\circ} \mathrm{C}$
The solubility of helium varies but slightly with the temperarure, and the curve shows a minimum near $25^{\circ} \mathrm{C}$, the values being 0.015 for $0^{\circ} \mathrm{C}$.; 0.01371 for 25°; and 001404 for 50° C. The curves of nitrogen and of helium cross at about $30^{\circ} \mathrm{C}$, this being the temperature at which they have the-same solubility. Above this temperature, nitrogen becomes more soluble than helium.

The German Archæological Institute at Athens has just celebrated the twenty-fifth anniversary of its foundation, and the celebration was held in the presence of a number of members of the royal family of Greece. Addresses were made by Prof. Dörpfeld, M. Homolle and other archæologists. During the last quarter of a century the German Institute in Athens has rendered immense service to the cause of archæologseal science conducting researches at Menidi, Tegea, Corinth, Sunium, Thebes, Mitylene, Paros, Athens and Megara, besides participating in important excavations at Olympia, Troy, Tiryns, Orchomenus and elsewhere.

A CONVENIENT PANORAMIC CAMERA.

The amateur photographer, equipped with the ordinary 4 by 5 camera, many times sees, in the course of his excursions, opportunities for securing pictures embracing a wider range of view than his camera perivits, and generally arranges the instrument to rotate in such a way as to take a succession of separate views, covering an area of 180 degrees ; then, by joining the finished pictures in line together, a panoramic view is obtained. A picture of this kind requires a nicety of manipulation in matching to obtain satisfactory re sults, otherwise the joints will appear too prominent and render the scene imperfectly.
Since the advent of the rollable film and the subsequent improvement known as a daylight cartridge:film, different forms of cameras have been devised for making panoramic pictures. Our illustration is a type

SECTIONAL PLAN OF PANORAMIC CAMERA.
of one of the latest styles of a panoramic camera called the "Al-vista," just introduced by the Multiscope and Film Company of Burlington, Wis., ewbracing several improvements which make it very convenient and adaptable for several purposes; at the same time it can be easily and rapidly operated, loaded and un loaded.
The camera is made in two principal parts: first, the lens board, or front, and lens-moving mechanism and second, the back or box for holding the film, film spools, film punching and registering device, lens index, stop arm, finder, and level. This construction enables the operator at will to take a picture of a uniform width of 4 inches to $4,6,8,10$, or 12 inches long. The lens supplants the ordinary focal plane shutter by itself rotating over a half circle and throwing the image 4 inches wide by 12 inches long upon the semicircular film in the rear. It is pivoted rigidly midway between the front and rear lenses to a vertical shaft operated by clockwork mechanisin observed in a casing below the lens, and is protected by a flexible leather front. A flaring radial rectangular tube about 2 inches long projects rearward from the lens tube and carries the picture rays from the lens in the form of a narrow strip of light, something like the flash of a lighthouse lamp, continuously along the rear circular

A ROLL HOLDER FILM PANORAMIC CAMERA.
sensitized film. So it. is only necessary to control the extent of the revolution of the lens to determine the length of the picture desired. To set the lens, the key seen underneath is rotated, which in turn winds up the clock spring and turns the lens in the opposite direction until it is held by the release lever. At the rear of the lens tube is a small shutter whose projecting arm at the top is arranged to impinge against the stop plate arm to be seen just under the center of the top of the film box. This has an index pointer on the outside and can be quickly adjusted by rotating the knob with fingers. If an exposure 6 inches long is desired, the pointer is set at figure 6 ; when the lens is released, it rotates until the arm of the shutter strikes the stop arm and thus only exposes a 6 -inch section of the whole film. The finder is supported upon a revolvable plate, also beving an index pointer, and this
is set at the figure 6 so that the image viewed in it will be parallel to that covered by the lens. Adjacent to the finder is a circular level. A shaft from the clock work mechanisw projects slightly through the bottom of the lens board, or front, and to this may be attached different sized flat pieces of metals which act as fans and regulate the different speeds at which the lens can be made to rotate. There is also provision made for inserting different sized stops in the lens.
The sensitized film spool is put in the extensible spoo holder on the left hand and carried over a guide roller and on through the semi-circular channel to the other end, where it is wound up upon the winding spool against a suitable tension plate. The thumb screwhead for operating this spool is seen on the right hand end. In its movement the film also operates an index cylinder, which tells at the top the number of inches of filin reeled off, then on the left is a punch button for punching a hole through the film after each ex posure, as a guide to the separation of the pictures
The lens front is secured to the film box by two thumb screws, one at each end. Every part is accessi ble, and the matter of friction in the free movement of the lens is reduced to a minimum. The camera is in tended to be supported on a tripod, but is provided with a handle, and in emergencies can be held on the arm during exposures.
In an exposure without any fan attached, the lens rotates from one side to the other in $11 / 2$ seconds, causing the image to travel over a space of 12 inches, there by giving one-sixth of a second stationary exposure Fans lengthen the exposure $1 / 4,1 / 3,3 / 8,1 / 2$ seconds, ac cording to size used. In the rear is a compartment for holding the finder, fans, stops and extra spools of film From what has been said it will be noted that the camera is a very useful instrument, in view of the fact that panoramic or smaller sized pictures, time or in stantaneous, can be quickly and easily made, accord ing to circumstances.

A New Ore of Nickel.

A new nickel, believed to be of great commercia value, has been discovered in the copper ore district of Houghton, Mich. It has been named Mohawkite, from the mine in which it was found. It was at first supposed to be a copper sulphide, but chemical examina tion indicated that it was a new mineral. It possesses a silvery metallic lustre when freshly broken, with very irregular fractures. Chemical analysis shows that it is an arsenide of copper, similar to the domeykite, in connection with which is also found an arsenide of nickel. The possibilities offered by this combination are very great. Copper is more than ever a valuable metal and is now commanding a high price, and nickel is now used in a large number of industries wher twenty-five years ago a few tons only were used, in the subsidiary coinage of the United States, so that the discovery of new ores and new bodies of an ore o nickel, may be regarded as of the greatest possible im portance. It is, however, in the field of alloys that Mohawkite will probably be more valuable. The assays, so far as determined, reveal an almost ideal composition for an alloy of copper and nickel, for which there is already a good demand. The new mineral can also be turned into commercial products from the ore almost without waste.

The International Photographic

The Committee in charge of the Interna tional Photographic Congress which is to be held in Paris, has. recently established the following programme of the questions to be considered.

1. Photographic plates, classification and sensibility in various conditions of use. 2 Photowetry; the practical study of the sub ject as applied to photography. 3. Characteristics and classification of optical glass 4. Lenses and diaphragms; systems of numbering. 5. Questions relating to photographic shutters. 6. Classification of glass plates used in photography as to thickness 7. Dimensions of cinematograph bands. 8 Expression of photographic formulæ. 9 Project for decimal classification in the bibliography of the subject. 10. Legal protection. 11. Proprietary rights and licenses. 12. Questions relative to photo graphic documents and archives.
If it is desired to communicate any documents or researches relating to these or like subjects, a resume should be addressed to the secretary of the committee before the 15 th of June in order that it should be admitted to the sessions of the congress. The secretary, M. S. Pector may be addressed at 9 Rue Lincoln, Paris.

AN exhaustive exhibit of United States postage stamps will form a part of the Paris Exhibition. It is said to be one of the most complete ever made, embrac ing every variety issued since the inauguration of the postal service.

The World's Shipping.
The following figures show the condition of the mer chant. marine of the different countries, including steam and sailing vessels, at theend of the last year. The first table gives the gross and net tonnage of the steam vessels.

	Number.	Tonnage, Gross.	Tonnage,
England.	5,453	11,094.000	6,759,000
Germany.	900	1,873,000	1,167,000
France.	526	986,000	517,000
America.	551	971.000	673,000
Norway.	657	673,000	417,000
Spain.	377	552,000	350,000
Japan.	332	456,000	283,000
Italy.	258	443,000	2:8,000
Russia.	435	408,000	252,000
Denmark.	318	389,000	238,000
Holland.	224	366,000	251;000
Sweden.	497	340,000	232,000
Austria..	167	335,000	213,000
Belgium.	73	147,000	103,000
Brazil.	211	140,000	90,000
Greece..	108	140,000	91,000
Turkey....	79	78.000	47,000
Argentine Repablic.	68	52,000	38,000
China.	38	56,000	36,000
Yortugal.	29	54,000	33,000

By adding those of several of the other powers not given, a total of 11,456 vessels of more than 100 tons gross is reached, making a total of $19,771,000$ tons gross, or $12,165.000$ tons net.
The following table shows the number and tonnage of the sailing vessels.

	Number of	
England.	7,706	2,662,000
America.	3,997	1,292,000
Norway	2,306	997,000
Germany.	981	548,000
Italy..	1,557	492,000
Russia.	. 2,455	473,000
France..	. 1,371	309,000
Sweden.	. 1,423	277,000
Turkey..	... 1,380	262,000
Greece.	972	197,000
Spain...	... 1,052	152,000
Denmark	752	138,000
Holland.	663	118,000
Brazil.	364.	80,000
Chili	132	60,500
Portugal...	. 237	60,430
Austria.	142	49,300

By adding several of the smaller powers, a total of 27,867 sailing vessels is reached, the list including those of more than 50 tons capacity. The total tonnage, net, reaches $8,347,600$ tons.

REGENTLY PATENTED INVENTIONS. Agricultural Impiements.
PLOWSHARE.-Elmer E. Morris, Sarcoxie, Mo. The object of the invention is to constrnct a plowshare so that it will be self-sharpening and so that the cutting edge can be adjusted forwardly and rearwardly and likewire in a vertical section to a limited extent. The share
has an intermediate blade-section provided with a cut-ting-edge, and capable of being reversed. When the lower portion becomes uuduly worn and dulled, the share can be reversed, so that the worn portion is brought to the top and the unworn top portion brought to position at the bottom of the share.

Electrical Apparatus

SWITCH.-JAmes I. Gunther, Manhattan, New York city. The switch comprises a rotary part carrying a ratchet-wheel which can be engaged by a push-button. A spring-pressed impelling device engages the ratchetwheel, and contact-plates are provided on the rotary
part. By pushing the button, the ratchet-wheel is given part. By pushing the button, the ratchet-wheel is given
a quarter-turn, the button being assisted by theimpelling a quarter-turn, the button being assisted by the impelling
device. The circuit is then closed. To break the circuit device. The circuit is then closed. To break the circuit
the button is again pushed to give the wheel a quarterturn. The switch is positive and quick in its action.

Mechanical Devices.

MACHINE FOR PARING FEATHERS.-Joseph Loch, Brooklyn, New York city. The feathers are drawn over a bed constructed in sections vertically ad-
justable, one section being also laterally adjustable. A paring-wheel is mounted to revolve below the section of the bed, a portion of the periphery of the wheel being exposed at the space between the sections. A combined guide and pressure roller is movable to and from the exposed portion of the wheel. In operation it is necessary drop the roller on the feather, and draw the feather out from the machine. The operation can be repeatel very rapidly, and a large number of feathers can be properly treated in a short time.
GLASS-PIPE-MACHINE.-William P. Parsons and andrew Tuite, Albany, Ind. The pipe-machine comprises a mold in which a core moves, having longitudinal passages, one for conducting water and the other air under pressure. The air-passage leads out through the
ends of the core. Compressed air is supplied to the old ends of the core. Compressed air is supplied to the mold below the lower end of the core. The molten glass is poured into the mold, and water is poured into the
proper passage to keep the core cool. The core is proper passage to keep the core cool. The core is
then slowly raised and compressed air is admitted to the bottom of the mold, which, by filling the space left by the core, keeps the glass in shape while the core is being withdrawn.
Change-machine.-Charleg H. Row, Manbattan, New York city. This machine is provided with individual compartments for coins of different denomi-
nations, each compartment being independent of the others, and having a hinged section capable of exposing the interior, together with an independent extractor for
the discharge of the coins. The coins placed in the coin the discharge of the coins. The coins placed in the coin receptacle automatically form a column. The recepta-
cles are so mounted that, when touched, they will swing upon their axes in the drection of the coln-diacharging

mechanism, which mechanism at such time forces a single coin out from the operated receptacle.

KNITTING-MACHINE.-MAX SALDin, Manhattan, New York city. The invention is an improved attach-
ment to straight knitting-machines, whereby mittens ment to straight knitting-machines, whereby mittens,
sweaters, gloves, etc., can be knit so that either a singu lar tubular portion of the article or separate tubular portions can be knitted at the same time. For example, in thumb and fingers simultaneously; or, in the case of sweater, the body portion can be knitted, then the two sleeves simultaneously, and, finally, the remaining body portion to complete the garment, with the crotch at the joint of the single tubular portion, and the separate tubu ar portions knitted and closed automatically.

Railway-Appliances.

CAR STEP.-Nelson Gray, Louisville, Ky. This nvention is an improvement in car-steps of a type preent invention is a folding car-step section, pivotally supported and provided with a platform-section arranged approximately at right angles to the treads of the steps and adapted to form an extension of the platform when the steps are aajusted out of position for use. The vestibule door is provided near its swinging edge with a depending it in position for use. A latch is used by which to brace the vestibule-door in position to lock the step-section in position for use.
CaR-Holder.-Lee G. Repass, Cripple Creek Colo. The object of the invention is to provide a holde he rails, while holding the truck of the car in position on pair of curved, parallel hooks extend in a vertical plan and in longitudinal alinement with the track-rails and are arranged for removable connection therewith. Th hooks are adapted to receive the treads of a pair of op
posite car-wheels, to hold them to the track against up ward movement.
LOCOMOTIVE BUFFER-BEAM.-JAMES F. DUNN, salt wake cull , The buffer-beam has an unbroke pressed steel. The front and back walls are riveted to the top wall. Webs are secured within the bean be tween the front and back walls to prevent the collapse
of the beam. Two steel piates at the ends and bottom of the beam. Two steel piates at the ends and bottom
of the beam are riveted to the front and back walls. of the beam are riveted to the front and back walls. The beam is strong, yet light. The boiler-front. cyl inder-heads, and other vital
protected in case of collision.

Miscellaneous inventions.

Panoramic Camera.-Melvin T. Stowe, Mobile. Ala. The chief feature of the improvement is a for the sensitized film and the ground film upon which the image is focused, whereby the image thrown on the film by the lens may be rendered sharp at every
point. Such a holder is particularly ueeful with a len point. Such a holder is particularly ueeful with a lens
adapted for adjustment of focus corresponding with the distance of the camera from the object. The invention
is a departure from mont ilmullar apparatuan in mo fir
as the camera can be focused to prodnce a perfectly
harp image.
REVOLVER.-Christopher D. McDonald, Vance Colo. The purpose of the invention is to provide means
for breaking or opening the arm and ejecting the empty for breaking or opening the arm and ejecting the empty ing can be quickly and easily effected. The handle por ion has an upper and lower extension, between the forward ends of which the barrel carrying the cylnder hinged to swing sidewise. A spring-seated locking-bolt ocks the barrel and handle, and cam-lugs draw the parts together when in closed position
WAR-SHIP.-Ggorge W. Van Hoose, Tuscaloosa, Ala. In engaging an enemy upon one side a large proportion of the guns of the battery of a war ship must necessarily remain inactive. If the heavy guns could be
arranged so that all could be concentrated upon an enemy on one side the efficiency of a vessel would be greatly increased. The inventor has endeavored to attain the desired end by a coustruction of rising-and-falling and otating turrets, so that the guns therein contained have wo planes of fire, the lower plane being the normal posi-
tion when the guns are trained away from the center of he ship, and the upper plane of fire being above and
artificial comb foundation. - Hen ogeler, Newcastle, Cal. The artificial comb-founda ron has its cells constructed with thick beads extending round and constituting their rims or edges. Exper make.one pound of comb as to make ten pounds of honey; and this provision of surplus wax at the points most available for use by the bees is, therefore, of great
importance, since it adds to the time available for gatherimportance,
ing honey.
building Construction.-Marvin h. Jester, Manhattan, New York city. This system of construction embodies improved means of forming the floors and ceilings, such means being also adaptable to the building of
walls or partitions of the building. Strong main beams walls or partitions of the building. Strong main beams
are provided, on the lower flanges of which cross-ties are provided, on the lower flanges of which cross-ties
rest, extending from one beam to the next. Hangers are ecured to and depend from the cross-ties, and straps are traps extending across from one hanger to the next.
PROCESS OF MAKING LUBRICANTS.-JAMES M. EWETT, Norfolk, Va. The process consists in mixing cause the mixture to melt or dissolve, adding thereto resin at a temperature of about $225^{\circ} \mathrm{F}$., and then adding pea-nut-oil after discontinuing the application of heat. The lubricant keeps well, is not adhesive, and has great eat-absorbing or cooling power, rendering it particuarly applicable to bearings.
TWINE - CUTTER. - Charles E. Mclaugilins, Kanawha City, W. Va. The cutter is of that class deigned to be worn upon the fingers. One of the objects of the invention is to construct a holder for the knife, so hat it can be worn upon the third and fourth fingers, the thumb and the other fingers perfectly free. The lade is so and the other higers perfectly free. The maplatity.
drawing implement.-Arthur l. Patterson, China Grove, N. C. This drawing implement is de plement comprises a string, a ruler, two clips adapted to be slipped on the ruler (each being provided with string-clamp), a ruling-pen, and a plate adapted for at tachment to the ruling-pen and provided with a passage way for the string.
ROPE-TIGHTENER. - Carl A. Bertrang, Brook lyn, New York city. The rope-tightener is triangular in form. A lever is pivoted to one angle of the frame. the lever having one end extending outwardly and being ar ranged for the attachment of a rope. The inner end of the lever forms a clamping end or dog. Clamping-pul-
leys are journaled at the other angles of the frame, so as leys are journaled at the other angles of the frame, so a
to coact with the dog. With this device it is possible to take up the slack in the rope, and yet quickly free the rope when it is desired to slack off.
WATER-COLOR BOARD.-Louise H. Collins Manhattan, New York city. The board is provide at one edge with two hinged, adjustable legs which res on the ground, while the board itself is supported by the lap of the artist. A slide is provided, on which a tray or case of colors can be placed. The entire board can b readily folded and transported. A board of this kind can be very compactly, strongly, and yet lightly con artist who desires to work in the open air.
game apparatus.-Dalton Dorr, Cynwyd, Penn. The invention provides a game apparatus in
which triangular spaces are employed, differing in color, so that a number of pieces can be ar ranged in different ways to produce a great variety of geometrical designs. The inventor sometimes combine with this feature an arrangement of pips or dots, by which the blocks or pieces are adapted for use in a gam imilar to that of dominoes.

Designs.

HANDLE FOR SHOONS, FORKS, LADLES, ETC -Austin F. Jackson, Taunton, Mass. This paten design for the handles of ron both unique and the like, and rrovi
and artistic in character
horseshoe.-William Velden, New Orleans, La The feature of this design consists in interrupting a side outline of the horseshoo at the heel and connecting the interrupted
the shoe.
Coin-mat.-Hiram C. Underwood, Metuchen N. J. The leading feature of the mat consists of depres sions, rises, and saddles, whereby a coin can be co veniently picked up with gloved or ungloved ingers.
Trousers-hanger.-Archis L. Ross, Manhat tan, New York city. The hanger is made of a singl loops and a separaing betw odja loops and a separating-bar between adjacent pairs of
loops. The loope receive the trouser buttons. The hanger can be so adjusted that several pairs of trousers can be secured to the loops.
Note.-Copies of any of these patents will be furn
ished by Munis \& Co. for ten cents each. Please state ished by Muni \& Co. for ten cents each. Please state
the name of the patentee, title of the invention, and date of this papar.

SCIENCE SETTLES A GREAT PROBLEIT.

"Sober, he was the brightest, the most efficient, the most valuable man in his line I ever knew." Who has not heard this little tale from a dozen of his business ac-
quaintances? What employer of skilled labor, of clerks, quaintances ? What employer of skilled abor, of clerks,
accountants or salesmen, has not told it regretfully over and over of some prized helper, on whom he had come excusably infer some law of. nature condemning the uncommonly proficient to inebriety. At any rate, the fact is there. Eight out of every ten business men find it their personal experience,
Probably the truth lies in this axiom of mechanics: That the more delicate and complex a machine is, the easier it is impaired. A man's efficiency is determined by the quality of his nerve force. The finer the quality, the better his work, and the greater his danger; espe-
cially his danger from intoxicants. Your unskilled laborer cially his danger from intoxicants. Your unskilled labore
working with his muscles, putting no thought into his working with his muscles, putting no thought into his
work, is rarely a dipsomaniac. He may drink to excess periodically, he may be brutalized, coarsened thereby, and yet his efficiency, when sober, be not perceptibly impaired. His demand for stimulants does not, therefore,
become constant and increasing. The man of more delicate nervous fiber-the more valuable man to societymeets with greater dieaster. He is thrown further off, he feels it, he makes the effort to get back, and that very
effort makes him feel more keenly than ever the need of artificial stimulus. The problem is too pathetically simple after that stage. The business man's little tale is the answer to it.
This drink-evil has never been without its earnest students. Good men and women have devoted their method was that of appeal to the drunkard's reaso They preached to him that he was an immoral perso and urged him to give up his wicked ways.
Have they succeeded? With no intention to disparase, with every appreciation for the cobility of their aims. with the concession, indeed that they have actually achieved no small result, it must still be mainta ned that ably. They have ably painted the drink-evil in its true ably. They have ably painted the drink-evil in its true
colors, so that no intellegent man can to-day be ignorant of what excessive drinking will do for him. Yet, in spite of this presentment, men of the highest intelligence continue to go consciously along to the familiar doom. 'They know, yet do not stay. Why?
The old fashioned temperance worker says they will not. Science says they cannot.
Says the first: "They are wicked and perverse, deaf to the voice of reason, decency, self-respect, manhood. 'They do not exert their will." Says medical seience: "They are not wicked, they are not deaf to reason nor to decency. They hear, they would obey, and they suffer the tortures of the damned becanse they cannot.
They do not exert their will for a very simple reason ; they have no will."
For the will is not an organ, be it understood, a tangible thing with which we are all equipped alike. It is a this system is impaired, will power is no longer generated.
Should you, then, continue to urge a man to use something which his impaired system has ceased to produce. or should you repair his system to that end? If the lat-
ter appeared reasonable, there would be a problem worth solving; one that would place the solver in the front ranks of genius and humanitarianism.
The problem presented itself substantially in these terms to one Leslie E. Keeley some thirty years ago. The son of a physician and the grandson of a physician, his bent was for medicine. He became himself a physician of the regular school. But from his early school
clays he had been especially interested in the phenomena of inebrity. It may have been a fad, at first. It became a life-work. Serving in the Civil War, where he rose to the rank of Major, he found abundant opportunity to continue his researches. When he settled down in
Dwight, Ill., to the practice of bis profession, the sub Dwight, III., to the practice of bis profession, the subject still mastered hirn. How were those unfortunates to be relieved $?$ The old methods had failed. Was not a new method pointed to by the physiological facts? It
became a suspicion with him, then a belief, then a conbecame a suspicion with him, then a belief, then a con-
viction. The conviction once assured, he clung to it tenaciously. He searched, studied, investigated, experimented. For eighteen years he served his idea. Then he had his reward. His confident announcement to the world that drunkenness was a curable disease and that he had the cure for it in his treatment was of course scoffed at. But no new-discovered truth ever escaped this fate, so the scoffing had no effect on Dr. Keeley. He went about the work of demonstration with the discovery discovery. He founded an institute for inebriates at
Dwight, and the patients came. They were cured, to a degree that was at that time nothing short of miraculcus. The news flew always. In a little time the institute at Dwight could not accommodate the half that would come to it. Branch housss were established. They were made neither hospitals nor prisons, but homes of the most homelike charaster. No locks, bars, or padded
cells. Nor was the least restraint ever put upon pacells. Nor was the least restraint ever put upon pa-
tiente beyond the request that they should not leave the tients beyond the request that they should not leave the
town without permission, and that they would faithfully town without permission, and that they would faithfully
take the medicines prescribed. Neither were the patake the medicines prescribed. Neither were the pa-
tients treated as moral offenders, but the reverse. They tents treated as moral offenders, but the reverse. They
were made to understand that they were all right, except for their disease, which was to be cured.
To-day there are sixty Keeley Institutes in the United States as against the single institute founded by Dr. Keeley, at Dwight, in 1891. These are bare, dry figures. Who can read in them the service to the nation,
the family, and the individual, to the present and to all the family, and the individual. to the present and to all
future generations. Ana to the familiar tale of the employer, "He was my best worker until he went to pieces from drink," may now be added a sequel if he wishes it: "Then I sent him to one of those Keeley institutes, because I thought it was a good investment; and it was. He came out a sound man, having neither desire, craving. nor necessity for stimulants. And if we would all learn to do this we would save a lot of good men that can't be
duplicated." duplicated."

Pusiness and Personal.

Marine Iron Works. Chicago. Catalogue free.
For logging engines. J. S. Mundy, Newark, N. J. "U. S." Metal Polish. Indianapolis. Samples fre Yankee Notions. Waterbury Button Co., Waterb's, Ct Metal Novelties wanted. Bliss Metal Co., Prov., R. I. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St Chagrin Falls, 0 .
Inventions developed and perfected. Designing and
machine work. Garvin Machine Co., 141 Varick St.. N. Y. Ferre work. Gavin Machine Co., 141 Varick St., N. Y Ferracute Machine Co., Bridgeton. N. J., U. S. A. Ful
line of Presses, Dies, and other Sheet Metal Machinery. The celeobrated "Hornsby-Akroyd" Patent Safety Oil Engine is built by the De La Vergne Refrigerating. Ma The best book for electricians and beginners in elec ricity is "Experimental Science," by Geo. M. Hopkins,
By mail, \$4. Munn \& Co.. publishers, 361 Broadway, N. Y . ETP Send for new and complete catalogue of Scientifc ew York. Free on application.

3Must (0xis

HINTS TO CORRESPONDENTS
Names and A ddress, must accompany all letter
or no attention will be paid thereto. This is for oui information and not for publication. Itererences to former articles or answers should
give aate of paper and page or number of question.
inguiries not answered in reasonaile time should oe repeated : correspondents will bear in mind tha
some answers require not a little research, and
though we endeavor to reply to ail either by lette or in thiE departunent. each must take his turn
H yers wishng to purchase any articie not advertised
in our columns will be furnished with addresses of houses manufacturing or carrying the same.
ecial
personal ritteen Informantion on matters on on ecial in ritien Int ormation on matters o
personal rather than general interest cannot be
expected without remuneration. Scientitic American Supplements referre
to may be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt o Books referred to promptly supplied on receipt of
Mineralm sent for examination should be distinctly
(7881) F. W. G. asks: Can you give the chemical used to make paper such as was used in the old marking telegraph. The current was sent through the
paper from two metal points (or point and plate) and paper from two metal points (or point and plate) and
discolored the part tonched by the point. A. Make a solution of starch in hot water and put in a small quantity Moisten a strip of paper with this solution. Place thi paper npon a zinc plate which is attached to the positive pole of the battery. To the negative poleattach a wire which terminates in a platinum point. Draw or mark turus dark blue. The iodide freed by electrolysis colors the starch blue.
(7882) C. S. asks: What substances can be put in a full glass of water before it will flow over Can this be found in your chemical department? notice the water is above the glass rim and don't flow
over. Why is this thus? A. A considerable quantity of salt, sugar, or any substance easily dissolved in water Quite a large number of pins, bits of fine wire, a good deal of sand, or any fine powder not soluble in water. The level of the water is gradually raised till the surface tension of the water is broken by the pressure, and it then overflows the glase. The water will not stand so hig above the rim of a clean glass as of one which has bee greasy.

NEW BOOKS ETC

MACHINERY FOR REFRIGERATION. By Norman Selfe. Chicago: H. S. Rich 213 illustrations. Price $\$ 3.50$.
The author. who lives in Australia, is familiar with al with the subject since 1858. He has studied its progres both in the United States and Europe and, consequeutly his book may be regarded as most authoritative. Th ing establishments are, compared with many others in which machinery is employed, exceedingly simple,' bu they are dependent upon principles which are not so easy to comprehend, and perhaps no branch of engineer ing has been less understood in the past by those who ase machinery, thau that which is connected with ic making and refrigeration. The olly books, at one time which threw any light on the subject dealt with it sim ply from a thermo-dynamic aspect, and their due comrather than a refrigerating engineer. The author ha acquitted himself of a difficult task in an excellent man ner. It is one of the best technical books we have see in a long time, and it appears to be very thorough.
A Treatise on S'tair Building and
Hand Railing. By William Mowat
M.A.. and Alexander Mowat, M.A

London : George Bell \& Sons. New
York: The Macmillan Company
1900. 8vo. Pp. 368, 440 illustrations. Price $\$ 9$.
In preparing this book the authors have done a signa reir principles and practice of stair building and hand railin embracing all the technical information required in general practice It contains numerous trating the construction of the various classes of woo stairs, both for house and passenger ships, and of ston stairs, with a complete course of band railing, showing easy, accurate and economical methods of getting out and preparing wreathed hand rails. Also an appendix consist ing of a short course of plain and descriptive geometry
bearing on the su bject. It is a most valuable book, and bearing on the su bject. It is a most valuable book, and
both the text and the illustrations are of high order. Stair
building and hand railing are by no means easy subiects
to master, and the authors bave acquitted themselves of a difficult task in an admirable manner.
The Roof Framer; or, the Science of ton, Ill. : The Roof Framer Publishing Company. 1900 . Very large quarto. Price $\$ 10$.
A most valuable book for any builder, comprising nd prepared bevels, wlth specific instructions and complete system of rules for getting anything required in roof framing. It is fully illustrated with engravings, diagrams, scales, etc. With the aid of these diagrams nd instructions, which latter are couched in the working language of the trade, any good workman can do all the framing of the most complicated roof, on the ground, bution to thealready full literature relating to building The Photo Miniature.-We have received No. 3 cf this unique pamphlet form of literature devoted eutirely to all that can be said on "Hand Camera Doors:" each are fully illustrated and contain useful information on the subjects mentioned. Tennant \& Ward, formation on the subjects mentioned. Tenne
publishers, 289 Fourth Avenue, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending APRIL 24, 1900.
AND EACH BEARING THAT DATE. [See note at end of list about copies of these patents.] Aid and making same, nitrobenzylanilin sul-
fonic, Homolka \& Stock.
 Ait

 $\sqrt{4}$

 Wilto....................... allerday....
Brown.i.
abe poinder.
ube Don
 anifolding saies, w. Foree.ig

648,202

TiWALWORTH PIPE VISES are the Heaviest and
Strongest vises made. WALWORTH MFC. CO. WORK SHOPS ut steam power, equipped, with MACHINERY allow lower bids no jobs, and give
greater pront on the work. Machines
eent on trial if desired. Catalog Free.

The New Yankee Drill Grinder

THE HOMEMADE WINDMILLS OF NEBRASKA

NICKEL Electro-Plating Apparatus and Materia Hanson \& VanWinkI

E. S. Ritchie \& Sons, Brookline, Mass

Manufacturers' Models

ne every description made to order with prompt
ners, Typeision and economy Models of Typese
ters. Typuriting Machines, Cash Registers,

Che Pratt \& Whitney Co., Gartiord, Zonn

MILLS FOR AM MATERIALS

 ton.........isi

\qquad

\qquad

Rame

 Mid

Always the same. We maintain the quality no matter what the market price of tobacco. Try them once. You will buy them always. Look for Arrow Head on every Cigar. JACOB STA HL, JR. \& CO., Makers, 168th St. \& 3rd Ave., N. Y. City.
 LEAD PENCILS, COLORHD PENCLLS, SLATE
PENCLLS, WRITING SLATES. STEEL PENS, GOLD PENCILS, WRITING SLATES. STEEL PENS, GOLD
PENS, INKS, PENCIL CASES IN SLLVERAND IN
GOLD, STATIONERS' RUBBER GOODERS KULERS

BICYCLE TIRE REPAIRING.-THE

STOVER ENGINE WORKS, FREEPORT, ILL.
WOLVERINE"

and Gasoline Engines

wove Enve mo ior works.
Grand Raturide Mich.

BUSCOTT BOAT MFG. C0., St. Joseph, Mich., U. S.

BY J. E. CONANT \& CO., Auctioneers, OFFICE, LOWELL, Mass.
ABSOLUTEAUCTION
Atherton Machine Company, Lowell, Massachusetts.

LAW
TAUCHT BY MAIL
 students and artorneys
Easy terms. Begin now. NATIONAL CORRESPONDENCE SCHOOL OF LAW,
38 North Pa. St, Indianapolis. Ind.

MERITORIOUS INVENTIONS

MORAN FLEXIBLE JOINT

 for seam, Air or Liquidsi
 REVERSING STEAM TURBINE.-PAR-

न Dew Button

EINAIMIEL:

 Ma jolica Enamel for Ornamental Cast-Iron Work (Ne BALTIMORE ENAMEL CO., No. $\mathfrak{2}$,
Allen Street,
Baltimore, Md., U.S. The Perfection of Pipe Threading

 RESTFUL SLEEP
"Perfection" Air Mattresses,

Hallisi. w. Hösime
Waber
Whel
Whip.e.s.t.iek malirad

 Wrench. A. A. Wolfe. K . W. ...eers. Writing pad, manitold. A. W. Beers

DESIGNS.

TRADE MARKS

Apparel, certain named wearing, Koonn \& Baer.
Appari). Cortain named wearink, 1 Stowwasser
Company

IE

$$
\begin{aligned}
& \text { Gas enerators, acetylene, Helion Gas Generator } \\
& \text { Golf balls and clubs. Hartiey \& Grabam Com. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { pany. } \\
& \text { Gum, dewng. vew ion Guin Company.... } \\
& \text { Guns, Von Lenerke } \\
& \text { Hardware. certain articles of. Simmo. }
\end{aligned}
$$

 Medicampany. .i.................................
 Medicinai preparations, certain named, E. Aiv
redez Company.
Medicines for certain named diseases, Hamaz. Medicines for certain named diseases, Hamazoin
Druy Company,
Metals in bulk, crude. Co ina and Japan Tirading

 Remedy for the nerves, B. H. Baconl..............
Rotary enene, W. S. OOMNO...... Coith
Shoes. men's and women's, Geo. E. Keith Co

LABELS.
Baby Olives," for olives, Saville Packing Com-
pany..

Malvern Spring Water," for spring water, Charies
E. Hires Company.................. Minerva." for a medicine. E. C. Blanck...;

 $\underset{\substack{\text { Company } \\ \text { aruna.". } \\ \text { pany... }}}{ }$

PRIN IS.

 Broad wat, New Hork. Sececial rates will be biven
a large number of copies are desired at one time. Cunadian patents may now be obtined by the in-
ventors for any of te in inventions named in the fore
gind

> Company

Manufacturers of Black and Galvanized Sheets Battery Park Building New York

Automobiles
The Scientific American for May 13, 1899, scriptions of various types of horseless vehicles, ics of the bicycle and detailed drawings of an automobile tricycle. Price 10 cents.
The following copies of the Sciendific Amer-
ican Supplement give many details, of ICAN SUPPLEMENT give many details, of Auto-
mobiles of different types, with many illustrations of the vehicles, motors, boilers. etc. The series
make a very valuable treatise on the subject. The numbers are $: 732,979,993,1053,1034,1055,1056,1057$
nu58, $1059,1075,1078,1080,11182,1083,1099,1109,1113$ 1058, $1059,1075,1078,1080,1182,1083,1099,1100,1113$
$1122,1178,1155,1199,1206,1210$.
SUPPLEMENT 1122, 1178, 1155, 1199, 1206, 1210. SUPPLEMENT No.
1229 contains a highly interesting article giving
full data as to operating costs of horse and electric ull data as to operating costs of horse and electric
elivery wagons in New York City. Price 10 cents MUNN \& CO. Publishers,

When your
 Summer Tour

is decided upon, ask your ticket agent

Big Four

Magnificent through train service maintained in connection with the

NEW YORK CENTRAL, BOSTON \& ALBANY, CHESAPEAKE \& OHIO.

East, North, West.
W. J. LYNCH, Gen. Pass. and Ticket Agt

> W. P. DEPPE, Asst. G. P. and T.

A New and Wonderful Invention. A

The ERWIN STEAM RAM

For elevating water from tubular or other wells or from rivers, lakes or other supply
Guaranteed efficiencof of to 150 per cent overa duplex steam pump.
Fxtremely economical in amount of steam used.
 range from 400 to 3,900 gals. per hour for single rams; 800 to 7,800 gals. per hur for double
rams.

THE PENBERTHY INJECTOR CO.,

[^0]HENRY CAREY BAIRD \& CO.
810 Walnut St., Philadelphia, Pa., U. S. A.
Our New a nd Rev sed Catalogue of Practical a

TAN I BECDME AN ELECTRICANTR

Dew Century

The machine that does better work with
Tess fatigue than any other. That has a velvet touch and every pos- sible convenience. Catalogue free-send for it.
AMERICAN WRITING MACHINE CO.
3O2 BROADWAY, NEW YORK.

Che Cypewriter Exciange
 136 Barclay St.. NEW YORK
124 La Salle St., CHICAGO
388 Bromfield St... BOSTON KAte St citr, mo.
209 North 9 th th . 432 Diamond St.t.ist 3 Witsburgh, PA. 536 California St..

KROMSKOP

Color Photography

 IVES KROMSKOP CONMPANY, Incorporated

THE whole history of the world is written and pictured week by week in Collier's Weekly. So well written and so well pictured that it is now the leading illustrated record of current events and has the larg. est circulation of any periodical in the world that sells for three dollars or more per year.

[^1]

 -MADE AT KEY-WESTH-

These Cigars are manufactured under the most favorable climatic conditions and
from the mildest blends of Havana tobacco. If we had to pay the imported cigar tax our brands would cost double the money. Send for Booklet and Particulars. CORTEZ CIGAR CO., KEY WEST.

TME BALL-BEARING DENSMORE
with TABULATOR

MAIN OFFICE: 309 BROADWAY, NEW YORK
SCHOFIELD'S No. 2 Steel Frame Bi-Treadle
 EMERY WHELL:
Grinds twice as fast as any single
treadde emery wheel. Provided wwith
adjustable knife and toon lest and skate
and adjustable knife and to tron rest and sk
arinding rest.
ground to any accurate bevel desire
groun Discount liberal. SCHOFIELD \& CO., Mfrs Typewriters

Typewriter, casb or on installments, we can save you money. HAWTHORNE \& SHEBLE MFG. Co., 297 Broadway, New York. 604 Chestnut St., Phila.

Mechanical Movements,
Powers, Devices, and Appliances.
By gaidner D. Hiscex, m E.. Author
oline, and Oil Engines."
A Dictionary of Mecbanical Movements, Powers, De
vices, and Appliances, embracing an illustrated descrip
tion of the greatest variety of mechanical movement
and devices in any language. A new work on illustrate
and devices in any language. A new work on ilustrated
mechanics, mechan ical movements, devices and appli-
ances, covering nearly the whole range of the practical
ances, covering nearly the whole range of the practica
and inventive field, for the use of Macbinists, Mechan cs, Inventors, Engineers, Draugbtsmen, Students, an
all otbers interested in any way in tbe devising and
Large Svo. 400 Pages. 1,649 Illustrations. Price $\$ 3$. A full table of contents will be sent free upon

MUNN \& CO., Publishers,
361 Broadway, New York.

has typewriters that mark the very high est point of superior ity reached in writing machine $* * *$ mechanism. No
other typewriter so thoroughly holds its own, presents so many improvements, * shows less affect of wear from constant use or requires so little attention. It is always ready.

If your office is not a Smith
Premier office, write for our
Illustrated Catalogue, Free.
The Smith Premier is especially adapted 'o the "Touch System" of Typewriting.

Smith Premier Cudewriter lo. Syracuse, R. צ., 山. §. Н.

FOR SALE.

 River, including all machinery used by the a
tioued formpany for
For full particulars a man price pacture or pins.

UNITED STATES PIN CO.,
ICE MAchive TURBINES (1xye

INVENTIONS PERFECTED.

 ccurate Model and Tool Work. Write for Circular.PARSELL \& WEED, 129 -13। West 3Ist St., New York.
.... CORK SHAVINGS WANTED-An experienced Superintendent for an
mutomobile factory using the byyrocarbon system.
Must be capable orhanding men yand also understand intercbangeable manaufacturinen in all its branchess. State
what salary wanted and give reference. Address

SEND for list of Second Hand Wood and Iron WorkingMachinery, Good as new. Must be sold.
DON A. GILBERT, BAINBRIDGE. N. Y. MODELS $\underset{\text { Innentions developed. Special Wachinery. }}{\text { \& }}$ EXPERINENTAL

P

BOYS R1penges wavis

ready shortly.

Gas Engine

Construction

By HENRY V. A. PARSELL. Jr., Mem. A. I. Elec. Eng., OAD ARTHUR J. WEED, M. E.
Price, \$2.50, postpaid.
This book treats of the subiect more from the stand-
ooint of practice than that of theory. The princlples of peration of Gas Engines are clearly and simply de
ceribed, and then the actual construction of a half-horse First come directions for making the patterns; this is
followed by deli the details of tbe mecbanical operations illustrated with beautiful engravings of the actual work
in progress, showing tbe mode ot chucking turning,
ooring and finishing the parts in the lathe, and also
 The entire engine with the varception of the fly-
heels, is designed to be made on a simple eight-minct
 Every illiustration in this book is new and
original having veen made expresiy for this
work. Larke ovo. About 300 pages. work. Larke svo. About 300 pages

MUNN \& CO., Publishers, SCIENTIFIC AMERICAN OFFICE, 361 Broadway, NEW YORK.

$\tau_{b e}$ Peetry or IMotion

 feelslike fair
to be riding
in a
WINTON CARRIAGE Price \$1,200. No Agents. First cost is nearly
all the expense. Traveling costs less than y cent amile.
No expense when notin use. Hydro carbon motor. The best autoroobile on the mark THE WINTON MOTOR CARRIAGE CO.. Cleveland, Ohio CHARTER Gasoline Engine TORT $\begin{aligned} & \text { ANY PLACE } \\ & \text { BY ANYONE }\end{aligned}$ ar Engines and Portable State your Power CHARTER GAS ENGINE CO., B

OVER 25,000 IN USE. EASILY PUT ON. HAS PROVED PERFECT AND RELIABLE. FUILY GUARANTEED. Coasting becomes so safe and easy you do it
every chance you get. Your feet on the pedals gives perfect control of the wheel. Ladies' skirts
keep down when cossting. You can adjust it to keep down when cher
any make of cycle.
Our Acetylene Bicycl
construction to any made
llustrated any made.
Cegustrated pamphlet giving detailed information
regaraing Brake and Lamp, sent on application.
ECLIPSE BICYCLE CO.
Box X, ELITIRA, N. Y.

GeqRDNE FRTMAISURFATES Accurate ARPH

WITH THIS BRAKE YOU WON'T BREAK

 COASTER BRAKE

GAS and GASOLINE ENGINES Vertical2 to $10 \mathrm{~h} . \mathrm{p}$. 'Ta
For Stationary duty. We can ship from stock.
NORTHERN ENGINERING WORKS,

WHY

SWEET'S SEPARATORS

sold the last three years been on
DUPLICATE orders?
They do the BUSINESS and are right in WORKMANSHIP and FINISH.
For Steam and Oil. All styles. Send for list of users, Reports of Tests.

DIRECT SEPARATOR CO. 700 Geddes Street, Syracuse,

WOODS VEHICLES

The Woods Hansoms, Cabs, Station Wagons and other productions are the choice of the traveling public.

Price List and Colored Plates sent on request.
WOODS MOTOR VEHICLE COMPANY, New York: 44th St. and Vanderbilt Ave.

Steam Shovels ${ }^{*}$.Dredges

The VULCAN IRON WORKS COMPANY, TOLEDO, OHIO, U.S. A

U.S.sporiag

Shipped FULLY CHARGED and ASSEMBLED
THE ONLY STORAGE BATTERY which DOES NOT require expert electrical knowledge to put it in active operation.

URTE States batier co.
UNITED STATES BATTERY CO., 253 BROADWAY, NEW YORK. A Goodform Closet Set $\xrightarrow{3}$
will make your closet look like this picture. Try it six months. Money back then if you say so.
LADIES' SET- 12 Garment Yokes, 12 Skirt Hangers, 2 Shelf Bars and 2 Loops. (See loop on door.)
MEN'S SET-12 Garment Yokes, 6 Automatic Trousers Hangers, 2 Shelf Bars and 1 Loop.
Sets, $\$ 3.00$ each-two in one shipment, $\$ 5.50$, express paid. Our Trousers Hanger is much prized by gentlemen; sample

Sold in first-class dry goods stores and by clotbiers and furnishers. If
ou cannot buy tem from a dealer in your town, remit to us. Mention
年
you cannot buy them from a dealer in your town, remit to us. Mention
your deaier's name. We send free an illustrated descriptive booklet.

CHICAGO FORM COMPANY, 101 La Salle Street, Chicago

ALUMINUM PAINT.

Silve Wea Yam. nam. bott bott

 eas. Cars, stations, General Decoration, etcebottle, Brack THE AMERICAN PEGAMOID CO.. 339 B'way, New York. Queen's Patent "Triple Plate" Toepler-Holtz Electrical Machine.

GE SMALL

IMOTORS

MAY BE RUN ON THE FLOOR ON THE WALL FROM THE CEILING.

General Electric Company,

HIGH GRADE FOOT POWER LATHES

 Peter tr. austenn, Ph.d. Prest. and Manager Testing, Perfecting, Introducing and Disposing of Processes, Products, Patents, Novelties and Formulas ventions, Improved Processes or Novelties to Dispos 52 BEA VEIR STREET. NEW YOIRK

A Perfect Gas Lamp zor Carriages: fnd Hutomobiles

PRINTING INKS

[^0]: Branch Factory, Windsor, Can.
 DETROIT, MICH.
 SIITPLE.
 RELIABLE.
 over 20,000 in
 Rell
 DURABLE.

[^1]: On sale at all newsstands. Price 10 cents per
 copy. Sample copy free. Address COLLIFRR'S WEEKLY, 525 West.13th Street, New York City.

