a Weekly jourinal of practical information. art, science, mechavics, chemistiy, and manufactures.

NEW YORK, DECEMBER 9, 1899.

Srientifir Ammeriram.

ESTABLISHED 1845
munn \& CO., - - - Editors and Proprietors.
PUBLISHED WEEKLY at
No. 36I BROADWAY, - - NEW YORK.

TERMS TO SUBSURIBERS

One copy, one year, for the United States. Canada. or Mexico
One copp, one year. to any foreign country. postake prepaid.
$\mathbf{s i} 0$
its.
$\% \mathrm{~d}$. the scientific american publications.

NEW YORK, SATURDAY, DECEMBER 9, 1899.

AIRSHIP OR AEROPLANE-WHICH

The quest for a successful means of aerial navigation has been prosecuted along two different lines, according as the inventor aimed at the construction of a navigable balloon or airship, or a flying machine or aeroplane. The early flying machines, in which suspension and forward motion were attempted by imitating the flapping wings of a bird, were futile and tating the flapping wings of a bird, were futile and
wofully fatal. In later years they have given place to the scientifically conceived soaring machine and mothe scientifically conceived soaring machine and mo-
tor-driven aeroplane. On the other hand, the old pearshaped balloon, which depends entirely upon the wind for propulsion, has developed into the modern, cylindrical, screw-propelled airship. The progress of invention in aeronautics has been marked, sometimes by a preference for the aeroplane, sometimes for the airship type. To-day, it must be confessed, the latter is most in the public eye, chiefly because of the stupendous proportions of the Zeppelin airship, now nearing comproportions of the Zeppelin airship, now nearing
pletion on its floating dock in Lake Constance.
The popularity of the aeroplane, and the widespread conviction which was noticeable a few years ago, that this type would be the wachine of the future, were based upon the fact that it was built upon the principles which govern the flight of birds. Since we now understand the laws of flight, and improved materials of construction have enabled us to build flying wachines that are gradually. if very slowly, approachiug the bird in their ratio of power to weight, it was argued that the production of a successful flying machine was a matter of time merely. It is probable, how a matter of time merely. It is probable, how-
ever, that in coming to this conclusion, sufficient iusever, that in coming to this conclusion, sufficient inu-
portance has not been attached to the human eleportance has not been attached to the human ele-
ment, upoa which the successful operation of the aeroplane is absolutely dependent. It would no doubt be possible to build an aeroplane that would carry a person at a fairly rapid speed through the air, provided the occupant of the machine possessed that God-given faculty by which the bird is able to preserve its equilibrium, adjusting the position of its weight and the inclination of its wings to the ever-changing velocity and direction of the wind, and the varying speed and direction of its own flight.
This matter of equilibrium is determined, in the aeroplane, by the inter-relation of several factors, such as the speed, the inclination of the supporting planes, the position of the center of gravity with regard to the center of area of these planes, and the inclitiation of the guiding tail. It requires rare quickness of perception and judgment to keep all these factors in the harmonious equipoise necessary to equilibrium, even under the favorable conditions of a perfectly still atmosphere; but when we remember that every change in the direction and strength of the wind calls for an instant readjustment of the machine, and that a stant readjustiment of the machine, and that a
moment's hesitation might result in a sudden dive moment's hesitation might result in a sudden dive
earthward, the perils of aeroplaine navigation will be earthward, the perils of aeroplane navigation will be
evident. The fatal mishaps to Lilienthal, Pilcher and others were due to a failure to control the equilibrium, and the present indications are that as long as the balancing is dependent upon the sensations and voluntary control of the operator, aeroplane navigation will remain a very hazardous and fatill form of recreation.
It is evident that some method of automatic mechanical control is necessary, and the results achieved by Professor Langley on the Potomac River indicate that such control is within the possibilities of the future. In perfectly still air the Langley steau-driven aerodrome achieved a steady flight of three-quarters of a mile at a speed of thirty miles an hour. But although this was a truly wonderful result and speaks eloquently for the skill and unconquerable perseverance of the in ventor, the aerodrome is to-day nothing more than a wonderfully ingenious toy. It is a far step from that to a machine of commercial or military utility, capable of carrying its freight in any direction in all possible conditions of wind and weather.
The airship (using that term to include all gas inflated machines), though not by any means so attrac tive as a scientific problem, seems to be at present the more practicable. For iu this type the question of suspension in wid-air has no necessary relation to the
speed, as in the case of the aeroplane, and the efforts of the operator way be devoted entirely to steering and propulsion. Given a sufficient volume of gas and a containing cylinder of the proper strength, there is theoretically no limit to the weight which may be lifted. It is in providing a motor sufficiently powerful to propel the huge structure against a strong opposing wind that the difficulty lies. This has never been accompplished as yet, and there is no expectation that
even the mammoth Zeppelin airship will be able to even the mammoth Zeppelin airship will be able to
make headway against anything stronger than a make headway against anything stronger than a
moderate breeze. Its proposed speed is 22 miles an moderate breeze. Its proposed speed is 22 miles an
hour, and hence it will be helpless against a wind of that velocity. Nevertheless, if this distinguished German succeeds in achieving this speed with an airship capable of carrying a crew of several men, he will have placed the problem of aerial navigation on a practical basis which it has never hitherto reached.
The Zeppelin airship, which is illustrated and described in the Supplement of November 11, 1899, is of scribed in the SUPPLEMENT of November 11, 1899 , is of
unprecedented size. It consists of a conical-ended unprecedented size. It consists of a conical-ended
cylinder 39 feet in diameter and 410 feet long, carrying two parallel, boatlike cars below it, in which are placed two 15 horse power benzine motors for driving the propellers. The hull consists of an aluminium framework surrounded with a strong netting, within which will be 17 separate, independent, airtight gas balloons, the arrangement resembling that of the watertight compartments of a steamship. The ship will be trimmed by means of a weight sliding on a cable suspended below the cars. By sliding the weight aft, suspended below the cars. By sliding the weight aft,
the bow will be thrown up and the reaction of the air will cause the ship to rise ; the contrary movement of the weight will depress the bow and cause the ship to sink. Unless some unforeseen difficulty arises, we may expect to learn the results of the trials of this Brobdingnagian at any moment, and their publication will go far to determine the possibilities of aerial navigation on a practical and commercially useful scale.

THE DALMENY EXPERIMENTS.

The great problem for the British farmer, and in fact the farmer in any old country, is how to produce the best possible crop at the least possible cost, so as to compete with the enormous quantities of grain and other agricultural products which are sent in from the United States, Argentina, and other cereal producing countries. Artificial fertilizing is absolutely essential to successful farming in Great Britain, and the great importance of the subject was recognized early in the history of modern scientific agriculture. In 1843, the renowned Rothamsted experiments were started by Sir John Bennet Lawes, who has provided a heavy endowment fund, so that experiments can be carried on in perpetuity. For fifty-six years the same kind of grain crops have been grown on the same plots and the same kinds of fertilizers year after year, each section having one or more plots upon which crops have been grown continuously without any kind of wanure. The value of these experiments has been very great, and was an inspiration to make many public bodies, societies, etc., establish similar experimental stations.
In recent years bacteriological science has proved beyond the possibility of cavil that in the great cycle of change, from the organic matter in the soil to the elaborate products which are absorbed by the roots of elaborate products which are absorbed by the roots of
the plant, the bacteria of the soil are the great, and inthe plant, the bacteria of the soil are the great, and in-
deed the only agents employed. It is now a proved scientific fact that the decomposition of organic inatter in the soil is due to bacterial action and to the action of various crops of soil organisus. It is also a proved fact that the wart-like excrescences on the roots o leguminous plants are the camping grounds of myriads of bacteria which possess the property of being able to absorb the free nitrogen of the atmosphere and render it favorable for the use of plants. This science has also shown that caustic lime will destroy the nitrifying and other advantageous soil organisms, whereas carbonate of lime is highly beneficial to them, and, in fact, where the organisms are found in the greatest numbers and greatest activity. it is absolutely essential to the due discharge of their function. Therefore, the bring. ing about in the soil of those conditions which favor the development and action of those nitrifying and other advantageous organisms is the great aim and end of scientific fertilizing : for the farmyard and artificial manures applied to the soil are not taken up direct by plants, but go in the first place to feed the crops'o soil bacteria, which in turn provide the highly elaborated material to be absorbed by the roots of the plants For several years it has been held as a proved scientific fact that the oxidation of organic matter in the soil, which was formerly held to be a purely chemical change, was due to the action of soil bacteria. The Nineteenth Century has just published a inost interesting article by Mr. D. Young on the "Dalmeny Experiments," from which we obtain our information. Some eighteen years ago, the two founders of what is called "New Soil Science" were interested in the is called "New Soil Science were interested in the
study of soil bacteriology; one of them was John study of soil bacteriology; one of them was John
Hunter, and the other Professor M'Alpine. The Hunter, and the other Professor M'Alpine. The
discoveries of Pasteur and other investigators as to the paramount importance of having the right crops of
yeast plants in the production of beer was doubtless the means by which Mr. Hunter was led to recognize the equally great importance of having in the soil the right crops of soil bacteria. The nodules on the roots of the Leguminose were first investigated, and as a result. Messrs. Hunter and M'Alpine demonstrated the fact that the bacteria in these root nodules did possess the power of absorbing the free nitrogen of the atmosphere and render it available for the use of the plant. They then proceeded to carry out a series of investigations in regard to the nitrifying bacteria. At an eagly stage in their work they found there were several well-defined sets of bacteria concerned in the work whose final end is nitrification. They succeeded in isolating and cultivating the nitrous germ and they also isolated what they believed to be the nitric germ, but in the case of the latter they were for a time puzzled to find that they could not, from it in any ordinary culture media, produce nitrates. Finally they remembered the plan by which Napoleon was able to secure from the old mortar in the Paris stables a supply of nitrate for the manufacture of gunpowder. They accordingly added a swall supply of mild lime in the form of inortar to the culture media, with the result that the nitric germs produce nitrates quickly. The experimenters thought that the old dressings of hot lime were a mistake, but that a small annual or biennial dressing of lime compost to the surface soil was essential in successful and scientific fertilizing.
Naturally their views were bitterly opposed, but at last the time came when the doctrines of the New Soil Science could be tested under the most favorable conditions. The post of land agent on Lord Roseberry's estates becoming vacant, a pupil of Mr. Hunter's, named Drysdale, was appointed. The latter commenced experimenting on a small scale with various fields, and with such satisfactory results that Lord Roseberry decided to extend the work. In 1895 a well equipped experimental station was established on his lordship's farm at Dalmeny Park, with Mr. Hunter as scientific adviser. The results of the experiments were carefully tabulated and would fill - a good-sized volume. With a tabulated and would fill a good-sized volume. With a moderate dressing of farmyard manure supplerwented
with 4 cwt . of ground lune, applied at the working of the land, followed by 4 ewt . superphosphate, 1 cwt . of fermented bones, 2 cwt . of kainit and 1 cwt. of ammonium sulphate, the Dalmeny home farm produces crops which are the admiration of all.
The "Dalmeny Experiuents" are of far-reaching importance. There are now, at least, six lime works which are kept constantly at work grinding lime owing to the ever-increasing demand for that substance, and the scientific authorities who had at first considered the new soil science as a heresy have been obliged to admit that nothing succeeds like success.

the secrets of our success in the steel trade.

 When the statistics of the steel trade of the United States for the year 1899 are completed, there is every probability, judging frow the records for the past ten months, that this country will have produced a grand total of between twelve and thirteen million tons. This is equal to the total production of the whole world in 1871, and is fully one-half of the world's production ten years ago. We have not only outstripped every competioor, including Great Britain itself, but so rapid is the growth of the American industry, tinat the time is within measurable distance when even that country will be but a poor second in a comparative list of production.It is now nearly half a century since the Hon. Abram S . Hewitt. who has always shown a firm grasp of the economics of the industry with which his name is so closely associated, stated that the essential conditions to building up an iron trade commensurate with the importance of the United States and the enormous demands of the future, were three. First, there must be an adequate supply of the raw materials, ore, coal and limestone ; second, they must be so far contiguous, geographically, that they can be brought together at the furnace at small cost of transportation, and the product be cheaply placed at the various markets; and lastly, there wust be no stint of capital to build, equip and carry on the works. Now, in view of the fact that these words of Mr. Hewitt, spoken in 1855, do actually describe the present favorable conditions in the United States, they may be taken as being truly prophetic.
As a matter of fact, everyone of these conditions is not only present, but it is fulfilled with a completeness far beyond the wost sanguine forecast. In the first place, the United States possesses in the Lake Superior and adjacent iron mines the most extensive and most easily worked deposits in the world. Nature could not have placed the raw material in a more ideal and convenient form for cheap and expeditious recovery from its geological resting place; and science and art have nobly responded in providing the necessary exceavating tools for the cheap mining and transportation of the ore to the sluelting furnace. The iron wines of Lake Superior are matched by the vast coal fields of Pennsylvania, and the genius of the American engineer has devised a system of transportation by ship
and rail which enables the two raw materials to be brought together at the furnace at a low cost of transportation which cannot be matched in any part of the world. The lake steamer, with its engines placed at the stern and the whole of the hull available for carrying the ore in bulk, the vast systems of ore pockets equipped with labor-saving machinery in the way of hoisting cranes, cableways, etc., and lastly the American system of cars and locomotives, enabling vast loads to be hauled by single units of exceptional power, all combine to give to the industry a long lead in the race, even before the raw materials have been mixed ready for smelting.
But the econowies do not stop with the mining and transportation, but are continued throughout the whole process of smelting, blowing, and rolling into finished shapes ready for the market. European ironmasters who have come over to study the cause of our cheap production, have frankly admitted that by our peculiar system of management and persistent endeavor to substitute mechanical for manual labor, we have succeeded in producing a larger output from a given plant than is possible under their own methods. As to the last essential to success mentioned by Mr. Hewitt in 1855, the necessity for abundance of capital to build, equip, and carry on the works, it is enough merely to call to mind such vast industrial concerns as the Carnegie consolidated interests, representing an aggregate capitalization of $\$ 500,000,000$, to realize that our position in this respect is as strong as in every other. The commanding position of the iron and steel industry in this country in respect of its geological and geographical advantages alone would be suffical and geographical advantages alone would be suffi-
cient to secure a response to any possible demand for capital.
There is every reason to expect that our growth in the future will at least keep pace with that of the past. Of course, our competitors will gradually approach us in the matter of management and improved methods of handling; but in the wealth of our natural resources and the facilities due to geographical position, we shall always hold a commanding and unassailable position.

THE DANGER FROM THE IMPORTATION OF ANIMALS.

An abstract of J. S. Palmer's essay on "The Danger of Introducing Noxious Animals and Birds" appears in Our Animal Friends. There are several societies in this country for the express purpose of purchasing and importing European birds. One society in Cincinnati has contributed $\$ 9,000$ to this object, and other cities have raised considerable sums. Our contemporary thinks it would be well that all such experiments should be made under the sanction of government experts of the Department or Agriculture. In addition to voluntary importations, it often happens that animals are unintentionally brought into the country, as trading vessels have carried the European house mouse all over the globe, and the introduction of rabbits into Australia is perhaps the most striking exainple of the dangers of unconsidered importations. They were introduced for purposes of sport, and were liberated near Melbourne in 1864 . Within twelve years they had spread over the country and became a veritable plague, and millions of dollars have been spent or bounties, poisons and other methods of destruction. Thousands of miles of rabbit-proof fences have been buitt, and in 1887 no less than $19,182,539$ rabbits were destroyed in New South Wales alone, and the rabbits seem to be on the increase. The little Indian mongoose was imported into Jamaica to cope with a plague of rats and proved most effective, but after it had destroyed the rats it turned its attention to the domestic animals and poultry, so that the islanders would now be glad if they could get rid of the pests. Such are a few examples of the danger of disturbing nature's balauce.

WIRELESS TELEGRAPHY TESTS IN SWITZERLAND.
A series of interesting experiments in wireless telegraphy has been carried out between Chamonix and Mont Blanc in order to find out the effect of the high altitude and different atmospheric conditions of those regions. This work was undertaken by two French engineers, Messrs. Jean and Louis Lecarme, who afterward inade a report to the Acadewie des Sciences. ward made a report to the Academie des Sciences.
The experimenters wished to find out also the effect The experimenters wished to find out also the effect
of the atmospheric electricity, and whether the absence of moisture in the frozen soil would render the earth connection impossible. The tests were carried out for several days in succession, commencing with the 25th of August ; it was found that the signals were easily transmitted and read with a distance of two centimeters between the spheres of the oscillator. It was found that the absence of moisture in the soil did not interfere with the earth connection, and also that clouds interposed between the two stations had no appreciable effect upon the signals. The action of atmospheric electricity made itself felt at times, but on the whole the effect was not sufficient to prevent the practical working of the apparatus. It was also observed that the operation of the alternating current
dynamos of the Chamonix lighting station had a marked effect upon the apparatus, and it was impossible to work while the dynamos were running. These machines are of the three-phase type and give 2,500 volts.

IMPORTANCE OF PATENTS AND TRADE MARKS IN

 GERMANY.The afternoon session of the fifteenth day of the International Commercial Congress, at Philadelphia, was devoted chiefly to the question of international trade marks. Papers of great value were read by Commis marks. Papers of great value were read by Com of the sioner Duell and by Mr. Francis Forbes, one of the vise the trade mark laws so far as they relate to foreign commerce. Commissioner Dueli's paper was printed in the Scientific Americin of November 11. In the discussion of Mr. Forbes' paper on "Present Trade Mark Needs in International Trade," the Hon. J. C. Monaghan, United States Consul at Chemnitz, Ger many, referred to the value of patents in Germany as follows:

I do not know that just what I am going to say is exactly germane to any particular paper: but after long experience abroad, I have come to the conclusion that it would be wrong for me to omit so excellent an opportunity to call the attention of American inven tors and manufacturers to the importance, the very great importance, of securing letters patent in Europe, and particularly in the German Empire.
I have sometimes been accused of calling the Germans a race or nation of imitators. While they are one of the greatest nations of imitators in the world I would not be understood as saying that they are not great originators. Any person familiar with the fact knows that they have practically given gunpowder to the world through their monk Schwartz, and the printing press, the greatest probably of all inventions, through Gutenberg, Schoeffer and Faust, and that they are to-day in chemistry and in various branches of the sciences and arts, leaders among all nations.
I repeat, when one is familiar with these facts, it becomes impossible to deny to the Germans the credit of being great inventors and great originators. What has stood particularly in the way of their progress as a race of inventors in the past is this fact, that prior to the year 1878, when Germany had passed her Imperial Patent Law, it was absolutely necessary to take out Letters Patent in Saxony, Wurtemberg, Bavaria, Mecklenburg, etc., etc., and some twenty-eight or thirty petty states and sovereignties. The lmperial law has got away with that fact, and since 1878 , she being number fourteen among the inventive nations on the earth, has become, if I remember, mentioned among the first, second and third nations, being led by our own people. But the point I wish to make is this: That American manufacturers and inventors, being magnificent inventors, neglected patent rights in the German Empire, and the law is that the clever genius of that people, watching, as perhaps no other people on the face of the earth, the scientific progress of the world, took out patents. In my city I suppose there are dozens of men, manufacturers, who take the patent papers and the various technical papers of this country, and keep themselves posted as to everything that occurs here. The technical school of my city, the leading technical school, has on flle the leading patent papers of our country and the records which they give here, and they see our machines of all kinds. They buy more or less and take them home, where they take them apart and use them as models.
I had in my mind the case of a manufacturer in this city, one builder, who invented the finest gear cutter probably there is in the world. He sold the machine to the leading toolmaker in my city and sent a young man for the patent and set up the machine. They bought another, and then another, and had some cor respondence. I ain told-in fact, I know-they could not take one machine apart, and they are now con structing a machine for themselves and selling them.
Now, Mr. Chairman, I do not want to be understood as finding fault with that concern for doing that thing The point I want to make is that Mr. Fletcher, or any inventor in this country, who has taken care to ask an American patent lawyer to have the patent taken out in the German Empire, will be protected, and I think these gentlemen here who are more familiar with the patent laws than I am, know there is no patent coun try, except perhaps ours, where an inventor has bette protection than in the German Empire when he does get a patent.

THE AUTOMOBILE IN BUENOS AYRES.

The use of the automobile in Buenos Ayres is rapidly increasing, and vehicles of the electric and petroleum types are now frequently met with in the streets of that city. These include not only private carriages and tricycles, but also heavy delivery wagons for the use of large stores. The fact that facilities for making repairs are lacking has been hitherto a drawback in the use of these vehicles, but as a result of their adoption
there is no doubt that these facilities will soon be provided, and besides, the condition of the roads is beginning to improve. A further step in advance has been the formation of the Argentine Touring Club, which has been founded not long since by a number of influential amateurs and commercial men. The new society will devote itself to the question of automobile interests, and one of the first steps taken has been that of the establishment, in all the provinces of the Argentine Republic, of roads which are specially reserved for bicycles and light automobiles. These roads have bicycles and light automobiles. These roads have
already commenced to radiate from Buenos Ayres to a already commenced to radiate from Buenos Ayres to a
distance of 60 to 70 miles, and it is intended to condistance of 60 to 70 iniles, and it is intended to con-
tinue the work until a good system of roads is established throughout the country.

END OF THE CREUSOT STRIRE.

The Creusot Works, which has now recommenced operations after the recent strike, is one of the great European centers of production, and not only trans forms the ore received into iron and steel, but also produces in its extensive factories a great variety of manufactured products, such as cannon, shells, boilers, locomotives, armor plate, and also builds different types of dynamos and other electrical apparatus. As is of course necessary in a large establishment of this kind, everything is carried out upon an improved plan with an extensive and modern equipment; the great pieces are handled and transported with ease by the cranes arranged for the purpose, and a well studied system reigns throughout the entire establishment.
The factory covers an extensive area, and is situated in a plain or basin surrounded on all sides by hills, and under these the railroad penetrates by a tunnel to reach the extensive system of tracks which have been laid for the handling of the ore and finished products. The establishment was founded as far back as 1808, and started at that period as a glass works; from that date to 1818 it was under the direction of the Societe Perrier. The venture was not a paying one, however, and the losses of the company during the ten years of operation reached as high as $14,000,000$ francs. It then passed into the hands of M. Chagot, who came out of the affair with a loss of one million; an English company, Manley \& Wilson, then spent without success eleven millions upon the plant, and it was not until 1836 that under the direction of the Schneider Com pany the Creusot Works began to assume a prosperous condition. From that time to the present there has been a continual progress up to the flourishing condi tion which is now to be seen. There are over 9300 workmen employed in the different shops, and these are distributed as follows: Forges, 2827; machine shops, 2131 ; steel works, 1450 ; artillery, 568 ; blas furnaces, 513 ; mines, 388 ; electrical machines, 341 ; besides different auxiliary services, which are estimated at 1085.
The working day is of ten hours, and day and night turns are taken each alternate week. The wages paid vary from 2.50 francs to 3.75 for the laborers, which includes a quarter of the personnel ; from 4.50 to 8 francs for skilled labor ; and for special kinds of work as high as 10 to 15 francs are paid. These figures must naturally be compared with the cost of living, which is much lower in France than in the United States. The workmen have established six mutual aid societies and twenty or more co-operative establishments and stores; the bakery, for instance, supplies 3,500 families. Up to the time of the last strike the works were in full prosperits, with an abundance of orders from all quarters, and there is no doubt that within a short time the normal state of affairs will be restored. The production of electrical apparatus is now an important branch of the establishment, this being materially facilitated by the abundant supply of metal, and the attention which has been given to the production of magnetically good iron and steel for the machines. The production of armaments and ammunition of all kinds is one of the principal features of the establish ment, and orders are received from the home government and the different nations of Europe.
The company owns extensive mines, but these do not suffice for the supply of coal and minerals necessary to carry on the work, and in consequence, extensive importations are made; a large part of the coal, for instance, is brought from England. In order to facilitate the handling of materials, the company is now erecting a branch establishment at Cette, an im portant sea port of the Mediterranean, and from these works the heavy products may be put directly on board, thus eliminating railroad expenses. At the same time, coal will be landed from the Algerian mines as well as from those of other Mediterranean countries. The yearly consumption of materials may be observed from the following figures for 1898 : Coal, 510,000 tons ; coke, 150.000 ; ores, 200,000 ; pig or cast iron imported, 40,000 tons. As to production, the figures for the same year show cast iron of all kinds. 105,620 tons; steel, 125,680; wrought iron, 46,740. When the works at Cette are finally installed, the Creusot establishment will keep only the steel works, artillery, and electrica machinery.

Steam plows are to be used in South Africa for intrenching works.
An English physician has driven a motor carriage 5,000 miles at an expense of only $\$ 130$.
There is a regular service of automobiles between Newcastle and Sunderland, and other systems are projected in various parts of England.
In England the automobile has begun to figure so frequently at weddings, according to The Motor Car Journal, that soon little or no notice will be attracted by the use of the same.
President McKinley has at last ridden in an automobile, actuated by steam. Washington is an ideal place for motor carriages and should be a good field for companies dealing in them.
An unfortunate accident occurred a few days ago on a gasoline-propelled automobile. The tube connect ing the gasoline tank with the motor broke, and as might be expected, the escaping fluid took fire and enveloped the vehicle in a sheet of flame. The occupant was badly burned.
It is stated that automobile omnibuses will be substituted at once for the old horse-drawn stages on Fifth Avenue, New York city. We understand that the omnibuses will not be allowed to be crowded, and a little sign bearing the word "Full" will be displayed when every seat is taken. This is the general European custom.
The New York Medical Journal, speaking of the recent explosion of the gasoline tank of a motor carriage, says: "Some new danger is almost always to be expected in connection with novel devices of the kind, but, on the whole, the power carriage, whether propelled by gasoline or electricity, is probably less dangerous than vehicles drawn by horses."
A gold cup for international competition has been offered by the Automobile Club of France. The first test will be held as near May 1 as possible, the idea being to make the date coincide with the great automobile day at the exposition. The rules which will govern this cup have not been made as yet, and it is expected to arrange racing conditions which will be satisfactory to automobilists of all countries.
A test of a truck made by the Auto-Truck Company was witnessed by the prominent officers and stockholders on November 26. It was of the HoadleyKnight type and was built at the International Power Works at Providence. The truck was brought down by boat, and was run to the air-compressing station of the Metropolitan Street Rallway on Twenty-fourth Street with the charge which it had received in Providence. A fresh supply was taken on, and it was demonstrated that it could be satisfactorily run in the streets.

AN X-RAY DELUSION.

A Boston firm sells, under the name "X-Ray camera," an apparatus which apparently enables an object to he seen through any opaque substance. It is hardly :ncessary to say that the X-rays have nothing whatever io do with the phenomenon, which is really produced b: a set of four hidden mirrors, that conduct the light around the opaque object. I have recently devised and constructed a little apparatus, which is just as deceitful as the "X-Ray camera," but which is more readily made and gives results by far more astonishing for spectators who have not been told the secret of its construction. It apparently reproduces instantaneously and neatly the interior of the human body, giving to every organ its natural color. The whole operation is performed under the eyes of the bewildered sitter, who watches the X-rays in what seems to be the act of drawing and painting before his eyes his vital organs.
The apparatus looks like the objective tube of a camera, with the plate on which the image is to be produced in full sight of everyone. The apparatus is placed opposite the person whose viscera are to be photographed, and to heighten the effect a lamp may be solemnly placed behind the sitter. The operator invites everyone to look at the white sheet of paper, and presses the rubber bulb of the shutter. A colored image appears instantaneously on the paper. The lungs are of a bright red color, the heart is darker, the veins are of a bright red color, the heart is darker, the veins
are blue, the stomach and intestines are of a greenish are blue, the stomach and intestines are of a greenish
tint ; other parts of the body paint themselves in black tint; other parts of the body paint themselves in black
on the white paper. This sudden apparition generally on the white paper. This sudden apparition generally
startles the sitter ; but a few remarks on the healthy looks of his lungs will place him at his ease. The photograph is taken out of the apparatus and passed among the spectators.
Two distinct parts of the apparatus co-operate in the production of that X-ray trick; namely, the sheet of paper and the objective tube.
Before the experiment, the sheet of paper is treated as follows: It is pinned over any anatomical drawing showing the position of the principal thoracic and abdominal organs. If the sheet of paper is not too thick, the drawing can be seen through it. The space
occupied by the lungs is then painted with a diluted solution of sulfocyanide of potassium. A more concentrated solution of the same salt is used to fill the space outlined by the heart and principal arteries. A few big veins are painted with a solution of ferrocyanide of potassium. A more diluted solution of the same salt is used for the stomach and a few intestinal folds. The rest of the body is uniformly painted with a concentrated solution of tannin. The whole operation need not take more than five minutes. When the paper is dry, the drawing is absolutely invisible, for all the

INTERIOR OF THE OBJECTIVE TUBE.

apparatus for producing an x-ray delusion.
above named solutions are colorless. The sheet of paper is now ready for use in the apparatus.

The objective tube does not contain any lens, but werely a small atomizer filled with a solution of ferric chloride. When pressed the rubber bulb sends air, not as every spectator believes, into a pneumatic shutter but into the atomizer. As a result a fine and invisible spray of the perchloride of iron solution reaches for a moment the sheet of paper. What follows is easily moment the sheet of paper. What follows is easily
understood by every student of analytical chemistry. understood by every student of analytical chemistry. The reactions between ferric salts on one side, sulfo-
cyanide of potassium, ferrocyanide of potassium, and tannin on the other side, are among the most sensitive of analytical tests, owing to the extraordinary intensity of the red, blue and black colors which originate in these reactions. Hence the instantaneous production of the colored picture.

A SAFETY SWITCH-LOCKING MECHANISM FOR RAIL-

 WAYs.An invention has been patented by William Haney, of Lexington, Ky., which provides an ingenious weans for opening and closing railway-switches and for lock-

HANEY'S SWITCH-LOCKING MECHANISM FOR RAILWAYs.
ing the switch-tongue in its adjusted position, to prevent possible accidents.
The switch-operating mechanism comprises a shift-ing-bar, F, formed with two transverse notches, in which a spring-pressed locking-bar, A, is designed to engage. At opposite sides of the shifting-bar, camplates, B, are arranged, which are curved so that their highest points are on a plane with the top of the shift-ing-bar. The cam-plates, B, are connected by means of a link, C, with an operating rod, E, leading to a
switch-tower and can be moved independently and with the shifting-bar. Tue link, C, is connected with the rod, E, by means of a bolt passing through a longitudinal slot in the shifting-bar.
When the locking-jar, A, is in the first notch, as shown in Fig. 1, and it is desired to shift the switchtongue in an opposite direction, the rod, E, is pulled outward, thus drawing the cam-plates, B, longitudinally and causing the curved portions to raise the locking-bar, A, against its spring. During this motion the bar will remain stationary, because the bolt connecting the rod, E, and the link, C, is traveling in the longitudinal slot of the shifting-bar: but when the bolt reaches the end of the slot, the cam-plates and shifting bar will be drawn together, until the lockingbar moves into the second notch, thus locking the switch-tongue in adjusted position. The movements are reversed when the parts are shifted to their first position. Since the boxing in which the locking mechanism is contained is covered, the parts cannot become clogged by snow, ice or dirt.

Some Reminiscences of Larly Marine Steam Engine
Construction and Navigation in America. At a late session of the Institution of Naval Architects of Great Britain, Mr. Charles H. Haswell, the well-known engineer, who may be regarded as the Nestor of his profession, having recently completed his ninetieth year, presented a second paper on early marine steam engine construction and steam navigation in the United States navy from 1807 to 1850. Mr. Haswell's papers are of great interest in view of the following claims which are set forth in them. Accordfollowing claims which are set forth in them. Accord-
ing to them, Mr. John Stevens, of Hoboken, N. J., in ing to them, Mr. John Stevens, of Hoboken, N. J., in
1809 applied slides and a crosshead to guide the pis1809 applied slides and a crosshead to guide the pis-
ton rod of a steam engine. In 1824 James P. Allaire introduced the Woolf engine, the compound of the present day. The first introduction of steamboat towing was made in 1825 by a New York company. In 1826 a fan blower was introduced by Robert L. Stevens. In 1827 J. P. Allaire invented and patented the steam chimney. In 1836 sponsons were first constructed under the water-wheel guards of a steamer. In 1837 the under the water-wheel guards of a steamer. In 1837 the
first steam launch was designed and directed by Charles H. Haswell, Chief Engineer, United States navy. In 1839 Francis B. Stevens invented and patented the double eccentric cut-off. In 1842 F. E. Sickles invented the drop valve cut-off ; the same year Edw in A. Stevens designed and operated a closed fire-room. In 1844 Charles H. Haswell, Chief Engineer, United States navy, devised the application of zinc to the bottom of an iron vessel and in a marine boiler. In 1846 Capt. John Ericsson designed and applied a surface condenser to the engine of a United States revenue cutter. In 1848 Mr . Pierson improved upon it, and soon after Chief Engineer William Sewell, United States navy, further improved the construction, and in the same year Frederick E. Sickles devised the application of steam to the steering gear of a steamer. The Right Honorable the Earl of Hopeton in the course of some pleasant remarks said: "Gentlemen, may I remind you that Mr. Haswell, the author of this paper, is, I fancy, about the oldest practising engineer in the world. He was Chief Engineer of the United States navy at the time Her Majesty came to the throne, and that was not yesterday. I may also remind you that he was present at the International Congress held about a year ago, and was among the youngest of us. He was here, there and everywhere. . . I propose that the secretary be authorized to send our best thanks to our veteran friend for his kindness in sending this paper."

Insurance Against Earthquakes.

Dr. Barrata has advocated in the Italian parliament a compulsory insurance against earthquakes. Owners of vineyards and others protect themselves in this way against hail and, therefore, why not against another calamity even more destructive, as they average about 750 shocks a year and certain parts of Italy have occasionally suffered terribly. The idea of the insurance is a shrewd one from the point of view of public economy. It shifts the burden from the exchequer to private purses. The business would be of a peculiarly risky nature, for such an epidemic of earthquakes as has devastated Calabria between 1783 and 1786 might easily bring any ordinary company to bankruptcy. The risk would have to be widely spread, and actuaries would be puzzled to calculate the premiums for different places. Some parts of the peninsula enjoy practical immunity. The great plain of Venetia has never suffered. Rome and Naples are occasionally shaken, although as a rule not seriously, but disaster frequently occurs in volcanic districts, as in Ischia in 1881 and 1883, when the loss both of life and property was serious. Calabria is far the worst as an earthquake region. Over 1,400 people perished in one locality in the period mentioned above.

The highest observatory in Germany is situated on the Schnee Koppe, the highest summit of the Silesian Mountains, the elevation being 5,216 feet. It will be managed by the Prussian authorities.

December 9, 1899.

RAILWAY SIGNALS.
by c. francis jenkins.

no other corporate industry have organization and efficiency been wore highly developed han in the railroads of the United States. The most per fect illustration of this is the enormous amount of passenger traffic which is safely handled every year over the thousand of miles of rail-girded country. This has become possible only by the development of a system whereby accountability is clearly and accurately defined. Presiding over the great army employed are men of the highest order of ability-men competent to deal intelligently with the varied conditions incident to the smooth and safe movement of the

ฐrivntific Amrricau.

interval was the unit of safety between running trains, obviously it didn't protect.
In the telegraphic block system the operator is supposed to keep his signal set at "danger" until notified that the train has passed into the block ahead. But there is nothing to prevent a "clear"signal being shown through mistake or carelessness. This is more or less overcome in the "automatic" system, by which the passing of the train itself into the next block sets the signal at clear. It is necessary, however, to allow the following train to proceed after a time even against a danger signal ; for it is impossible to know whether the signal indicates danger because a train remains in the block or because of the failure of the apparatus to work properly.
The latest and by far the best system in use is a combination of the manual and automatic. In this system the signals are set by hand, but are locked and released electrically by the operator in the next tower as well as by the passing of the train itself, the track
mechanism. All the signals are interlocking, so that it is impossible to clear one without clearing the other two. And not only are the signals interlocking with each other, but they also interlock with the switches of all crossovers and turnouts
In the tower, where the operator, who is responsible for the safety of the trains, is stationed, are a number of levers attached to the signals by means of long pipes, a lever and a pipe for each semaphore. But none of the signals can be set until unlocked electrically from the next block by the passing train. It will thus be seen that a clear signal cannot be shown unless all s witches are properly set and the train has entered the next block ahead. A collision is, therefore, impossible if the engineers obey the signals.
The installation of the system represents a large invested capital, but so efficient is the apparatus and so reliable the service, that it has been found to effect a great saving as against the amount yearly spent in fighting suits for damages incurred by reason of faulty

Semaphore, Switch, and Machine Connectors.

The Interlocking Machine Controlling Semaphores and Switches.

"Distant" Signal Set at Danger.
trains. The recent establishment of a schedule of mile-a-minute trains between the Atlantic seaboard and the Rocky Mountains certainly indicates the utmost confidence by both railway officials and the traveling public in the devices employed to safeguard traffic.

These consist, so far as the public sees, of what is known as the "block system." That is, the entire road is divided into short lengths or blocks marked by towers, each under the immediate charge of a signal operator. Three distinct types of signals are recognized, i. e., telegraphic, automatic, and manual-controlled, the primary purpose of each being the same, namely, the protection of trains from derailment and collision. The earliest and now obsolete form was the " time block," in the operation of which a certain interval of time had to elapse after a train had passed into a block before another was permitted to enter the same block. But as a time interval and not a space

"Home" Signals. Top Blades for Passenger and Bottom Blades for Freight Tracks.
being divided into electrically insulated sections for the purpose. Thus, it will be seen that it is almost impossible for a signal to be improperly displayed.
The signals or semaphores are paddles normally standing out at right angles to the supporting pole, indicating danger, and variously known in railroad parlance as "home," "advance" and "distant" sig. nals. The home blade is square-ended, and, like the pointed advance blade, is painted red with a white band. The distant blade is "fish-tail" and painted yellow and black. The reverse of each is painted white with a black band. The opposite end of the blade has a little glass window which shows red at night. When the outer end is dropped it indicates clear track, and for the same purpose the light shows white at night. The light behind the distant biade is normally green, and means "caution." The signals are counter-balanced so that they always return to danger position, horizontal, if anything goes wrong with the controlling

"Advance" Signal, Dropped to Indicate Right Track Clear.
apparatus. This, too, aside from the consideration of human life.
When the third-rail system of power distribution has become universal, as it most assuredly will, the running of each train will be under the direct supervision and immediate control of the train dispatcher himself. The towers, signals, and operators will continue as now. but the train dispatcher will know from personal observation the exact location of each train. Thus, in the train dispatcher's office will be a working model of the entire division over which he has jurisdiction. On each track is a miniature duplicate of each train speeding across the country. These miniatures start, run and stop in exact synchronism with the trains on the big tracks, so that the speed, location, progress, and condition of every train on the division is known to the dispatcher at a glance. On the table in front of him are a number of "keys." If a train passes a tower against a signal, he is able to
bring it to a standstill by simply pressing the prope key, thus cutting off the current from the offending train and preventing collision. It is only anothe means by which the controlling mind is more effectively employed to still further reduce the number of accidents, which are now but one passenger killed to one hundred thousand safely carried.
For the illustrations accompanying this article, the writer is indebted to the Signal Engineer of the Chicago, Milwaukee and St. Paul Railway.

EDUCATION BY CORRESPONDENCE

The rapid growth and remarkable popularity of schools of correspondence prove that this new system of education meets a distinct want and has come to stay. Their raison d'etre is to be found in the desire of the industrial classes to meet the demand of the of the industrial classes to meet the dema
technical trades for skilled workmen and technical trades for skilled workmen and
foremen, whose education shall include someforemen, whose education shall include some-
thing more than the three " R 's" of the thing more tha
district school.
From among the many institutions that are giving instruction by correspondence, we have selected for illustration the International Correspondence Schools, of Scranton, Pa ., for the reason that they are the original institution of the kind, and the largest and most representative of the many that are now in more or less successful opethat are now in more or less successful ope-
ration. The Scranton establishment has ration. The Scranton establishment has
130,000 students on its books and is rapidly adding to this enrollment. Starting in 1891 merely as a school of instruction in wining, the scheme of education has widened to include practically the whole field of technical instruction, the intending students having the choice of some sixty separate courses, conducted by a corps of 226 professors and assistants. These figures are surprisingr and certainly go to prove that instruction by certainly go to prove that instruction by
correspondence forms one of the most valucorrespondence forms one of the most
able educational agencies of the day.
Although the roll of the Intersational Correspondence Schools includes the names of many people who are holding responsible positions in the various professions and are already possessed of a liberal education, the chief aim of the schools, as expressed by Mr. T. J. Foster, their founder and present manager, is " to enable people who are engaged in the industrial trades to supply deficiencies in their education due to lack of to supply deficiencies in their education due to lack of
opportunity or application in their younger days." As opportunity or application in their younger days." As
thus defined, it is evident that the movement is operthus defined, it is evident that the movement is oper-
ating in an entirely new field, being in competition ating in an entirely new field, being in competition
neither with the high school, the technical school, nor the university. There is no question that the ambition of the average American to become a wage-earner frequently leads him to exchange the school for the workshop long before the former has had the necessary time to give him his proper equipment; and while he may for the first few years consider himself financially the gainer, it frequently happens that his advancement in his trade is brought to a full stop by the lack of technical knowledge. It is too late for him to "go to school again," for he can neither afford the expense nor is he willing to give up a position which he may not again be able to secure. The night-school, of course, in many cases affords a partial solution of the difficulty; but there are multitudes of workers for whom these admirable institutions are not available, especially in the thinly-populated and rural districts. Another type that is beginning to avail itself of correspondence instruction is the professional man who wishes to acquaint himself with the principles of a kindred profession, whose work at times overlaps his own. Such a case is that of the architect, who finds that a knowledge of the principles of engineering as applied to the design of framed metal structures is necessary if he is to be full master of his own profession. Many of the students, again, are educated men who wish to study special branches of engineering, or make a thorough review of their former studies; and hence, while the bulk of the students of these schools are drawn from the artisan and farming classes, there is a considerable and increasing number of students of broad education who are taking special courses in the more advanced branches.
The test of eligibility to become a student is that the candidate must be able to read and write English. The schools, to use the language of their prospectus, undertake to teach him "whatever he needs to know." In taking him throngh a course, the instructor proceeds upon the curious assumption that his pupil linows absolutely nothing about the subject. The assumption is curious and original, but thoroughly philosophical ; for, if the student is acquainted with the earlier stages, he passes quickly through them, the earlier stages, he passes quickly through them, merely refreshing his memory, while the instructor is certain that in every case the student lays a proper
foundation for future work. Starting, then, with the assumption that the student knows nothing of the subject, the schools send him his first and second In. struction and Question Papers.

After studying the first paper, he returns his writ ten answers to the questions asked in the Question Paper to the schools, and proceeds with his second paper. At the schools the answers are corrected in red ink and returned to the student, accompanied by the third Instruction and Question Papers and a letter explaining the errors and corrections in further detail than is possible on the answer sheets themselves. If the student secures ninety per cent on his first paper, it is entered on the books as passed; but if he fails to get this percentage the paper is returned, and he is obliged to review the incorrect portion. This system is followed until the course is completed, when the schools' diploma is granted after a final examina tion. Although students are not limited as to the time required for the completion of a course, those that meet with difficulties are assigned to "special in-

DRAWING TO SCALE, MADE BY A SIX MONTHS' STUDENT.
the experiments included in the course. The accompanying photograph shows a student in chemistry experimenting.
The courses of study are laid out with a view to giving special training in subjects which in a school or college course merely form incidental features in what is known as a broad education. In the International Correspondence Schools system these courses are divided into two classes, one including a thorough training in the principles of the subject, the other class including courses for those who wish to make a more special and advanced study of the subject. Thus, under the first head may be mentioned the mechanical and electrical engineering courses, and under the second the stationary engineering and loco-motive-running courses. The last course includes the study of everything connected with the running of trains, including. besides the locomotive, the air brake, train heating and lighting and the kindred subjects. In connection with this course the schools keep three instruction cars on the road, the first of which is herewith illustrated. These cars are fitted up with complete aur brake and other equipments, in the manner adopted by the chief railroads of the country for the instruction of their own employes.
The corrected papers become the property of the student, and if at any time he should be in difficulties, he can turn to his old records and refresh his memory with the corrections made for him during his course. He is also furnished, as he progresses with his work, with a complete duplicate set of all the instruction and question papers, drawing plates and keys, covering the course, which are bound in half leather and form a valuable reference library for use in his future studies, or in connection with his trade or profession.
To the textbook department falls the important work of preparing the instruction and question papers, all of which are the work of the regular professional staff of the establishment. The selection of these gentle-
structors," who are skilled in dealing with such cases.

One of our illustrations shows a corps of women ex aminers at work, making preliminary corrections of such errors as occur in arithmetic, spelling, punctua tion, etc. The papers are then submitted to the principals and male instractors for final inspection and the correction of such subjects as the women examiners are not qualified to correct, before being returned to are not qualified to correct, before being returned to
the student. The transfer of papers is so arranged that the student has always something to study while the preceding papers are being corrected.
In describing a curriculum that includes no less than sixty separate courses, ranging from Arithmetic to Civil Engineering, it must suffice to take a single sub ject and let that stand for the whole. One of the most interesting and successful courses is that of Mechanical Drawing. In this, as in all subjects, it is presupposed that the student requires instruction from the ground up. He is furnished at nominal cost with a set of drawing tools, and his first lesson, consisting of exer. cises in drawing lines, circles, etc., is sent to him. Upon the receipt of his sheet, of drawings, corrections with elaborate pencil notes are made, indicating where a full line is ragged, or a dotted line irregular in length or spacing, or defects occur in the lettering. To pre-

RAILROAD INSTRUCTION CAR.

vent mere copving, the instruction charts are printed out of scale, and the students are at all times obliged to draw from scale. One of the last exercises of the course is to draw a complete steam engine from rongh pencil sketches of the parts which have the dimensions upon them. The prorress in this department is often remarkable, as may be seen from the accompanying drawing, made from rough dimensioned sketches, which was done by a student whose earlier drawings, made only six months before, are extremely crude and made o
In the chemistry, metal mining and electrical courses, as in that of mechanical drawing, the students can secure from the schools sets of apparatus which are put up specially to meet the requirements of the particular courses. Thus the student in telegraphy is provided with a telegraphic ontfit, and the student of chemistry with the necessary reagents and apparatus to cover
men has been made with a view to giving to the instruction that practical character which is such a valuable feature of the schools. In every case they have been actively engaged in business, either for themselves or in the employment of well known industrial concerns, and they are thus well qualified by their training to prepare textbooks adapted to the special and practical needs of the student. Most of the faculty are graduates of leading American and European colleges. Among them are to be found former city engineers, ex-chief engineers or ex-chief draftsmen of bridge companies, electrical companies, and general engineering firms, and to this practical experience is to be attributed the clearness, directness, and simplicity which characterize the instruction papers.
Mention of the instruction papers suggests the important matter of illustrating, to which the schools have paid special attention. The excellence of the cuts which appear in the papers is due to the care exercised in the selection of competent draftsmen, and a staff of fifteen (shown in one of the illustrations of the front page) is steadily employed on new work.
It will readily be understood that to carry on a correspondence instruction with over 100,000 students calls for an extensive printing establishment. This work is carried on in five divisions in a separate building. The press rooms, which are located on the first two floors of the building, contain ten cylinder and four job presses. The third floor is occupied by the bindery; and the fourth floor by the book composing room and the proofreaders' room. Work is about to be commenced on a new building. covering over an acre of ground, which will accommodate a printing plant capable of executing all the work of the schools, three-fifths of which at present has to be done in New York and Philadelphia.
From what has been said it will be evident that the new method of instruction as carried out by the Scranton establishment. is qualified to rank as one of the most important educational agences of the day. As long as it is prosecuted along the practical and very thorough lines above described, it cannot fail to exert a helpful and lasting influence upon both the characters and fortunes of thousands of students who devote their leisure hours to its work.

Dwarf Habit of Plants.

M. P. Gauchery has made an exhaustive study of tine phenomenon of "manism" in the vegetable kingdom. His qeneral conclusion is that the peculiarities which distinguish the external form and the internal structure of plants are, like other characters, largely dependent on the environment, and are displayed more strongly in the vegetative than in the reproductive organs. A dwarf plant is not a miniature of the species with all its organs developed in the same proportion as they are in a plant of normal size.-Ann. des Sciences Nat. Bot,

The condition of the obelisk in Central Park is ex citing considerable apprehension, owing to the fact that it has begun to disintegrate. It is very unfortunate that the obelisk was not set up in the court in the Museum building.
Prof. Andrew Gray has been appointed to the chair of Natural Philosophy rendered vacant by the resignation of Lord Kelvin. Prof. Gray was at one time assistant to Sir William Thomson, and is well known from his several treatises on electrical science.
A sanatorium for the treatment of officers and men of the regular army suffering from pulmonary tuberculosis will be established at Fort Bayard, New culosis will be established at Fort Bayard, New
Mexico, and hereafter transfers of eulisted men can be Mexico, and hereafter transfers of eulisted men can be
made to this hospital upon recommendation of the medical officers of the army.
According to The Pharmaceutical Era, out of 1,008, 500 prescriptions examined, only six per cent were written in the metric system. The information was ob tained from druggists in forty-two States aud Territo ries. This is not particularly encouraging, and shows that physicians do not seem to care much about try. ing the new system
M. Benard, the French architect, who won the first prize of $\$ 10,000$ in the international competition for plans for the University of California, which was established by Mrs. Phebe A. Hearst, has arrived at New York and will at once proceed to California, where he will place himself in the hands of the trustees of the University for the furtherance of their plans.
Barometric readings reduced to true atmospheric pressure are now required by the Weather Bureau, the approximate corrections for gravity being applied to all barometric readings. This correction applies to all mercurial barometers and is nearly constant at any one station. The corrected reading is a standard ineasure of atmospheric pressure and can be compared to similar corrected readings made at any place in the world.

One hospital in New York has adopted a camera to record minutely the action of patients in epileptic fits and similar afflictions, and many moving pictures have been taken showing the movements in walking of persons afficted with locomotor ataxia. They are produced slowly on the screen, so that physicians are enabled to study the symptoms carefully. Moving pic tures have been taken in Vienna showing operations being performed by great surgeons.
We have received "The Mussel Fishery and Pearl Button Industry of the Mississippi River," by Hugh M. Smith. forming an extract from the United States Fish Commission Bulletin for 1898. It will be remembered that we published an article upon the subject in the issue of the Scientific American for August 5, 1899, written by Mr. Smith, the author of the present monograph. The subject is one of the greatest possible interest, and Mr. Smith's treatment of it is thoroughly adequate.
Dr. William R. Brooks, director of the Smith Observ? atory, Geneva, N. Y., has been a warded by the French Academy of Sciences, Paris, the Lalande prize "for his numerous and brilliant astronomical discoveries." The Lalande prize is a gold medal worth 500 francs, or its value in money, as the recipient may select. It was founded in 1802 in honor of Lalande, the learned French astronomer, and is awarded for eminent achievement in astronomical discovery. It is regarded as one of the hishest astronowical honors.
Among the foreign exhibits at the Paris Exposition that of the Boers of the Transvaal will be most interesting ; 40,000 square feet have been allotted to the Buers. The pastoral life of this people will be shown by a Boer farm, which will portray in a most vivid way the life of the first colonists of the Transvaal. The National Pavilion of the Transvaal will be built in the Dutch style and will display geographical documents, mineral specimens and exhibits showing the methods of instruction in the schools. In the Boer farm will be exhibited the wild animals of the Transvaal. The means and methods of transportation used in the country will also be portrayed. The mining industry will be shown by a five-stamp battery.
It is believed that the recent damage to the great hall of Karnak was caused by a slight shock of earthquake. Eleven columns in all have fallen in the four or five rows north of the axis of the temple, and bet ween this and the wall of Seti I. They all fell in a straight line from east to west, the result being that the westernmost is still partly propped against the pylon of the temple. The ruin is terrible and should be repaired at once if the hypostyle is to be saved. The columns can, of course, be set up again, but the The columns can, of course, be set up again, but the
architraves above them are utterly broken and dearchitraves above them are utterly broken and de-
stroyed. M. Legrain, who has been engaged for the stroyed. M. Legrain, who has been engaged for the
last three sears in repairing and strengt hening the ruins of Karmak, has gone to Upper Egypt to see what can be done toward repairing the damage. The whole building is in such a critical state that it is hoped the Egyptian government will see its way clear to increas ing its fund toward the restoration of the temple.

A refrigerating and ice-making plant for the wellknown brewing firm of Allsop has been imported from the United States.
An Italian engineering periodical has published a method of sterilizing drinking water by means of peroxide of chlorine, which is so powerful a bactericide that three grammes will sterilize one cubic meter of water at a cost of less than $61 / 2$ centimes. This process has yielded satisfactory results at Ostend and elsewhere.
The Italians have added to their system of coast defense batteries of mortars similar to those used in Sandy Hook, which we have already deseribed. Only three, instead of four, mortars are placed in a pit The indirect plunging fire of the mortars is considered to be of great value in the defense of fixed points against an attack by sea.
The Carnegie Company has gained another point in its long-fought "metal mixer"patent case. The case is now only to be finally reviewed and adjudicated by the Supreme Court of the United States, and upon its decision will depend the validity of the patent cover ing the metal mixer issued to the late Capt. William R. Jones, assignor to the Carnegie Steel Company, Limited.
The Engineer states that with the electric supply stations in London the boilers and engines in use are divided as follows : Water-tube, 75.5 per cent ; marine 11 per cent ; Lancashire, $\delta \cdot 5$ per cent; miscellaneous, 8 per cent; while the engines are: High-speed, $62 \cdot 5$ per ceut; low-speed vertical, 25 per cent; low-speed horizontal, 625 per cent ; special, $6 \cdot 25$ per cent. Direct coupling is universal.
Several of the largest abandoned copper mines in eastern Maine will again be operated. The Maine copper mines were in successful operation in 1879 and showed good profits while copper was quoted at 14 cents. The mines could also be operated on a paying basis with copper at 12 cents, but the crash came when the Wisconsin mines put down the price of copper to 8 cents. Now that copper is so high, it will be very profitable to mine it.
It is curious that when China is just on the eve of introducing western methods of engineering she should threaten to demolish the greatest engineering work she possesses; that is to say, the Great Wall, erected 200 years B. C. for the purpose of keeping back the Tartars. It is stated that an American engineer is en route to China in behalf of a Chicago syndicate which is expected to take a share in the contract to be given out by the Chinese government for the demolition of the wall. The Engineer states that one French, two British, and three German firms are also bidding for the work, payment for which is to be in the way of rich concessions.
A central station for the production of acetylene gas is being tested at Tata-Tovaros, Hungary, a city of 12,000 inhabitants. Five miles of pipe covers the city and furnishes gas to 158 street lights and 250 burners in houses. The generating station is located over 600 feet from the nearest house. The gas is produced in four generators by the fall of the carbide into the water. The gas for each group on leaving the generators passes into a cooler and then into a purifier, and finally into two gasometers of 106 cubic feet capacity. The generating plant requires the services of only two men, and the total cost of the installation was $\$ 30,000$, of which $\$ 19,000$ went for the pipe system.
The new earthquake-resisting, steel-framed palace for the Crown Prince of Japan is now being designed, and the foundations are being laid, with the view of obtaining the structural steel in February. The palace itself will be built of granite and marble around the steel skeleton. It will be 270×400 feet and the height will be 60 feet, and will be built in the French Renaissance style. A Chicago engineer has been called upon to design an elaborate heating and venti lating plant. An American ice manufacturing and electric light system will also be added. It is thought that steel construction will revolutionize the building industry in Japan. The new palace will rest on four hundred deeply anchored steel columns embedded in concrete piers. The Carnegie Company will furnish the steel.
Some samples of the cement used in the antique water conduits of Ephesus and Sinyrna were recently subjected to chemical analysis, and the various samples were found to be similar in composition. The waterworks from which the samples of cement were taken were constructed from a period several centuries before Christ to three hundred years after. The chief constituent of the samples was calcium carbonate mixed with a small percentage of organic material This latter was found to consist of a mixture of fatty acids. Experiments were made with a cement such as burned lime and olive or linseed oil, but it was not found to be permanent. On the other hand. a mixture of two-thirds of either slag or lime and one third olive oil hardened readily and possessed such great enclurance that it led to the belief that this was the composition of the ancient cements which were analyzed.

A locomotive in Texas was recently decorated with 100 incandescent lights for use as an excursion locomotive.
A syndicate has been formed to build a single rail high-speed elfctric railway on the Behr monorail system, between Liverpool and Manchester.
The Third Avenue Railway Company has contracted with a storage battery company for $\$ 400,000$ worth of batteries for use in regulating the current.
It is said that successful trials of a telephonic apparatus without wire have been had in Italy. The instruments were installed on moving trains. The details of the experiments and apparatus are very meager.
It is said that the Executive Committee of the Erie Canal Electric Traction Company has adopted the storage battery for use as a motive power, subject, of course, to the approval of the Superintendent of Public Works.
It now appears probable that the Mont Blane Railway will eventually be built. The line is to be worked electrically, and is to start from Ouches and end at Petits Rochers Rouges. The Arve will be utilized to furnish the necessary power. The line will be 6.83 furnish the necessary power. The line w
miles long and there will be twelve stations.
A funicular railway has just been completed up to the Schatzalp, at Davos-Platz. It begins at the rear of the Kurhaus and is about 2.200 feet long. The power employed to propel the cars is electricity, which is generated in the valley by dynamos actuated by gas engines. This is one of the first funiculars in Switzerland to use electricity as a motive power.
At the meeting of the Metropolitan Street Railway Association, President Vreeland shows that out of every 5 cent piece which is collected from fares, the amount obtained by the stockholders is very small. Labor amounts to 0.0195 cent ; material. $0.00481 /$ cent; taxes, $0.0026 \frac{1}{2}$ cent; interest, 0.0144 cent. making a total of 0.0414 cent, leaving for stockholders 00086 cent. In other words, the stockholders of the company get less than $1 / 8$ of one cent out of every fare collected as net profit.
A new species of mountain railroad has been devised in Gerwany. It consists of an electrically worked rope railway, the railway being in sections, the cars being suspended on rollers. As it is not considered safe to allow a greater distance than 4,000 feet between the supports, intermediate stations are necessary, the passengers changing from the first to the second section and so on until the journey is completed. About seven minutes are occupied in traversing each of the 4,000 -foot sections.
At the recent Exposition in Como, the "Voltaic pile" was very much in evidence, not only as an architectural feature of the ill-fated Exposition buildings, but everything in the way of souvenirs was gotten up in the same form. Boxes of chocolate, pepper boxes, almanaces, etc., were all based on this design, and chromo-lithographs and silk handkerchiefs with pictures of Volta were for sale everywhere. These matters all testify to the appreciation of the greatness of this early electrical inventor.
Various methods have been provided for cooling tubes for use in the production of the Roentgen rays. One method is to connect the anti-cathode by an iron rod with a small flask of water at the tube. Another method is to bring the water in direct contact with the anti-cathode; a wide tube of platinum is soldered directly into the glass tube. Its end is cut at an angle suitable for carrying the anti-cathode, which seals the tube hermetically at that end. The other end projects outside the tube, which is bent outward and carries at its extremity a flask of water. This new device has its extremity a flask of water.
proved of great practical value.
A new telephone transmitter has been devised and is being manufactured in Pennsylvania. It is so constructed that the outer casing and mouthpiece may be removed for the purpose of cleaning without disturbing the diaphragm or its adjustment. This is accomplished by fitting the diaphragm and carbon parts in an inner casing independent of the outer shell. The diaphragm is held in place by a threaded ring which screws on the inner casing. It is, therefore, independent of the adjustment of the mouthpiece or any other condition of the outer casing. The manufacturers adjust the instrument, and no subsequent adjustment is needed.
Germany will make a large display of machinery at the Paris Exposition. Siemens \& Halske and Schuckert will each have a dynamo actuated by a 2,000 horse power engine ; the Helios Company, of Cologne. will have one of 1,900 horse power installation, and Lahmayer, Frankfort-on-the-Main, will have another of 14.000 horse power. The engines for these dynamos will be supplied by Borsig, of Berlin. the Augsberg and Nuremberg Companies. According to Feilden's Magazine, the crane which is to be used for transporting heawy machines in the central gallery will be supplied by Flohr, of Berlin, and will be capable of raising 25 tons to a height of 40 feet.

THE SUBMARINE BOAT AND ITS FUTURE.

 y waldon fawcett.The success of the tests of the Holland submarine topedo boat, recently iuade in the presence of an official trial board, composed of United States naval officers, at Peconic Bay, on the north coast of Long Island, assuredly marks the advent of a new era in the development of submarine craft designed for offensive operations in war. That the case of the advocates of the practicability of such an en gine of destruction has been somewhat advanced by the showing made seems probable, but that the element of opposition which has all along existed in official circles has by no means been obliterated is equally certain.

Certain of the naval officers who witnessed the recent test were so favorably impressed with the performance of the boat that they seemed disposed to believe that it would be wise for the Navy Department to build or purchase a number of the vessels for service in conjunction with harbor defenses on both the Atlantic and Pacific coasts. It must be admitted in all candor, too, that in many re spects the showing was rather more favorable than any previ ously made by any other similar boat in any part of the world.
The vessel was on several oc casions under water for inter vals of more than twenty minutes, and demonstrated ner ability to respond to a summons to sink beneath the surface, ap proach a ship, discharge a torpedo, wheel about in her course and return to a place of safety, all within a space of considerably less than half an hour. Tests were made at depths of about twenty feet, the deepest obtainable in the bay, and the boat demonstrated to the satisfaction of her builders her ability to remain submerged for a space of twenty-four hours without the crew of six men and the torpedo operator being subjected to any danger of asphyxiation, or even to inconvenience. Based on the result of the experiments is a claim that the radius of action under water is five miles per hour for almost six hours. The speed trial developed a speed of eight knots.
The Holland boat with which the experiments above outlined were made is 53 feet in length by 11 feet in width and weighs in the neighborhood of 11 tons. The storage battery, which is thoroughly insulated, is in a compartment amidships, while over this is the conning tower with steering gear, and under it the water tank. The air compressor and gasoline engine for driving the generator are located astern of the battery. Above is the dynamite torpedo be. The generator may be either driven by the engine to charge the batteries or thrown on to the batteries, running as a motor while the boat is submerged. 'The motor generator weighs two tons, and is capable of developing 50 horse power at 800 revolutions, or 150 horse power at 1,200 revolutions. There are sinall motors for the pumps, the air compressor, and ventilating apparatus.
The American boat, since the recent trials, has attracted renewed attention from several foreign naval attachés stationed in this country, and some of these officers have been sufficiently impressed to make the boat the subject of communications to their home governments. That the French authorities may seek to acquire one or more vessels of this type is much more likely than hat Great Britain will hat Great Britain wil British Admiralty has al-
ways been strenuously opposed to submarine torpedo boats in general, and when the inventor of the American boat visited London some months ago, he was wholly unable to interest them in the subject.
For the French, however, the submarine boat has ever been an alluring one, and during the years which

The career of the submarine boat may be said to have extended over fully three centuries, even if no regard be paid to the rather vague assertion of some histories, that Alexander the Great was once a passenger in a submarine craft, the character of which unfortunately is not described, King James I., of England, made a trip in a submarine boat which a Hollander of the name of Van Drebbel built in London in 1664, but the first craft which can be rightfully so designated was that designed in 1776 by a New Englander of the name of Bushnell. This boat, which was propelled by oars, was primitive in the extreme and was destroyed soon after going into commission by the shots of a British man-of-war.
Fulton wrestled with the problem and designed two different types of submarine boats, and there were numerous other attempts, all similarly unsuccessful, until, with the trial in 1887 of Prof. Tuck's "Peacemaker," the present era of experiment in submarine navigation may be said to have been inaugurated. The American boat last mentioned was by no means a marked success; but it served to direct to the subject more attention than it had previously been accorded. The "Peacemaker" was cigarshaped, 30 feet long, 8 feet wide and $71 / 2$ feet deep. She was lighted by electricity and propelled by a steain engine of fourteen horse power. The boat was submerged by filling her ballast tanks with water and raised by means of a rudder
boat, but it proved thoroughly impracticable. Then the "Morse" was taken up, but investigation proved that her range of action was quite as restricted as that of the "Zéde."
The French govermment is now experimenting with the "Narvel," a submarine vessel of recent construc tion. The displacement of this craft is 160 tons and she is fitted with a Forest oil engine, which not only drives the propeller when the boat is either navigating at the surface or with only her lookout and chimney exposed, but also operates a dynamo for charging batteries and accumulators, these being utilized to propel the boat when she is entirely submerged and the chimney unshipped. Sailing at the surface at 12 knots, the "Narvel" promises a range of action of 252 miles, and at 8 knots the range will be 624 miles. When submerged, the accumulators will propel the boat 25 miles at 8 knots, or 75 miles at 5 knots. The
"Narvel " is designed to carry two officers and nine men.
The sentiment of hostility to submarine craft of all kinds now so prevalent among British engineers has

PROPELLER AND STEERING APPARATUS OF THE HOLLAND SUBMARINE BOAT

which moved around a horizontal axis. The crew consisted only of an engineer and helmsman, the latter being stationed in a glass-inclosed dome which projected from the upper surface of the hull. There is no record of the boat's having attained a speed of more than 8 miles per hour when well submerged.
At about the sarie time the British engineers were watching with interest the experiments with the "Porpoise," a small electrically-propelled craft, and the various boats built by Nordenfeldt. The last of these was a vessel 121 feet in length and of 230 tons displacenent a vessel giving her a speed of 15 kuots when immersed, but a few years later she was broken up and sold as junk, and from that time forward British engineers had little faith in attempts at under-water navigation.
On probably no question are the officers of the United States navy more thoroughly divided in opinion than that of the utility of the submarine boat in warfare. The personality of the men who have ranged themselves on opposite sides of the discussion makes it impossible to disregard the arguments of either. On the one hand we have the advocates of this class of craft, who declare that its judicious employment would make it practically impossible for an enemy to successfully attack any of our principal seaports by water. The opponents of subinarine operations of the class proposed, on the other band, base their claims of the impracticability of all submarine craft on the contention that the difficulty of keeping to a course when the boat is submerged would make it impossible to discharge torpedoes with an accuracy in any degree dangerous.
Supplementing this lat ter argument is that of the British engineers who de clare that modern searchlights and other safe guards would insure the destruction of any subma rine boat by rapid fire guns before it could approach sufficiently near to a war vessel to do any harm
been induced, of course, largely by the failure of the French boats and other craft constructed in Europe during the past decade. and it must be admitted that the whole history of submarine navigation has not been such as to render a naturally conservative class of men optimistic.

Lieut. A. P. Niblack, U. S. N., one of the best in formed officers on the subject of torpedo warfare in the American or any other navy, recently declared that there was no real reason why the submarine boat should not be as successful as the automobile torpedo This certainly does not seem like an irrational view
when it is remembered that all the things done by a Whitehead torpedo may be done by a subwarine boat. Almost the only difference is that whereas in the tor pedo the opening and closing of valves, the regulation of depth, the steering, the various safety devices and the length of the run are all automatic, in the submarine boat the corresponding things are all regulated by hand.

One point about the submarine torpedo boat which might almost be considered a disadvantage is the tireless, unremitting care which is an absolute necessity in order to keep the delicate apparatus in condition. Then there is the ever-present danger when the boat is making a trip submerged that the propeller will foul a buoy rope, or chain or mooring, in which event the fate of the crew would be sealed with tolerable cer tainty, since it would be well nigh impossible to make the needed re pairs.

It is not generally known that the submarine torpedo boat "Plunger," building for the United States government at Baltimore, is of an entirely different pattern from the "Holland" (the trials of which at Peconic Bay are above described), although designed by the same inventor. The delivery of the "Plun ger," which is a vessel 85 feet in length and of 1,500 horse power, has been delayed between three and four years by a series of unfortunate circumstances and she is not even yet completed. Several changes in the machinery are, how ever, to be made, and it is expected that the vessel will then be pushed to completion. A congressional appropriation made some time ago for the construction of two addi-

water, should be an adaptation of this discredited de sign. For though she has considerable free-boardabout 20 feet in fact-forward, which will without doubt render her considerably more seaworthy and comfortable than a monitor pure and simple, yet from the foremost turret to her stern she is a very low freeboard vessel, with a long and high superstructure amidships.
For her displacement-8,948 tons-she will no doubt be an exceptionally powerful vessel both in attack and defense. Her main armament will consist of two long $10 \cdot 8$-inch guns, one of which is to be mounted in a turret forward at a considerable height above the water, while the other, which will be similarly mounted aft,
according to some authorities are calculated to give a ship half a nautical mile an hour more speed than if she were fitted with twin screws. She is very much cut away under water aft, and the central screw will be much further aft than the others, being outside the rudder, which will probably be double.
The boilers of the "Henri IV." are of the Niclausse type and her engines are expected to work up to 11,500 horse power and to give her a speed of 17 knots. Her normal coal supply will be 725 tons, but at a pinch she can carry 1,100 , which is calculated to give her a radius of action of 7,580 miles. Her complement has been fixed at 26 officers and 435 men.

Diamond Production of the Transvaal
According to the United States consul at Pretoria, the output of diamonds in the Pretoria district during 1898 amounted to 11,025 carats, valued at $\$ 43,151$. In December, 1897, the output was 166 carats, valued at $\$ 710$, and for the same month in 1898 the output was 3,100 carats, with a value of $\$ 11,626$. The largest stone found in 1898 was $381 / 2$ carats. Although the diamond industry is not developing with abnormal rapidity there is every cause for satisfaction, the first stone having been discovered at Reitfontein only in August, 1897. The average value of stones found in the Pretoria district is $\$ 3.89$ per carat, the average value of Kimherler diamonds $\$ 6.33$ per carat, and those found at Jagersfontein, in the Orange Free State, $\$ 8.27$ per carat. The diamonds in the Pre toria district are found in pipes, as on Schuller's mine and on Mont rose. A similar formation has been

THE "HENRI QUATRE." LATEST TYPE OF FRENCH BATTLESHIP.
Displacement, 8.948 tons. Speed, 17 knots. Maximum Coal Supply, 1,100 tons. Armor: Main beit, $113 / 4 \mathrm{inches}$; upper bet. 4 inches; barbettes, $113 / 4$ inches; casemates, 4 inches. Arinament, two 108 -inch; seven 55 -inch; twelve 3-pounders. Torpedo Tubes, two. Complement, 461. Date, 1899.
tional submarine boats will become available when the Navy Department shall have been thoroughly satisfied with a design.

THE NEW FRENCH ARMOR-CLAD "HENRI

 QUATRE."Fine fleet as have the French, it has been compared by one of their own experts to a museum of warships, so many and so various are its types. The armor clad " Henri IV.," launched on August 23 at Cherbourg to the strains of the Marseillaise and (to please France's reputed allies) the Russian National Hymn, will be yet another and a very unique "exhibit" for the collection of men-of-war which the French naval constructors have set afloat in their endeavors to find an ideal type before they commit themselves to any particular line of design. After the experiences of the American fleet in the late war with Spain in which the monitor class proved so very unsatisfactory, it is truly remarka ble that this, the latest French mąn-of-war to take the
quick-firing guns. Four of these are to be placed in a casemate or " box battery" amidships, protected by 4 inches of armor, another aft under a shield, high enough up to fire over the roof of the after turret, while the remaining couple are to be placed one on either beam on the top of the casemates. The "Henri IV." will carry in addition twelve light rapid-firing guns and two torpedo tubes. Her flotation is well protected by a very nearly complete belt of $113 / 4$-inch armor which commencing at her bow only stops short a little for ward of her ensign staff. Above this from the bow to the after end of the box battery there is another belt of 4 -inch plating. 'I'he armor on the two turrets has a maximuin thickness of $11 \frac{1}{4}$ inches. She has also an armored deck about 2 inches in thickness, and this is continued downward and inward below the belt with the object of affording some protection against tor pedoes.

Like most of the newer French ships of any size the "Henri IV." is to be fitted with three propellers, which
found on Roodeplaats on the Pienaars River, and another is also reported at Kameelfontein and Buffels another is also reported at Kameelfontein and Buffels-
duff. On the De Kroom farm, about 26 miles west of Pretoria, diamonds have been found, but according to the State geologist, not in a blue ground formation. At Byrnestpoort an alluvial deposit is being worked, also one on the adjoining portion of the Elandsfontein farm. The area of diamondiferous ground is very extensive though its thickness is not considerable. The total quantity of diamonds found in 1898 in the Transvaa was 22,843 carats, valued at $\$ 212,812$. At the alluvial diggings 12,283 carats, valued at $\$ 171,427$, were found ; while from the pipes 10,560 carats, valued at $\$ 41,374$ were obtained. The difference between alluvial and pipe diamonds consists in the fact that river stones are of a far better quality and are generally larger

The cost of repairing the damage caused by the re cent collapse of the columns in the temple of Karnak and strengthening the edifice is estimated at $\$ 250,000$.

Sorrespondence.

A Correction

To the Editor of the Scientific Americain
By a slip of the pen-I will not accuse the typesthe statement appears, at the end of my article on the "Heavens in December," in the Scientific American for Dectmber 2, that there will be a nearly total eclipse of the sun on the evening of the 16 th . Of course, it should read the moon
farrett P. Serviss

Krupp and Harvey Armor Compared.

To the Editor of the Scifintific American :
Will you kindly give me the following information First. How much more efficient is the Krupp armo believed to be than the Harvevized? That is, what thickness of Krupp armor is believed to be the equivalent in resisting qualities of what thickness of Harveyized?
Second. What is the proposed total displacement (a) of the battleships of the "Maine" and "New Jersey" classes, and (b) of the large armored cruisers recently authorized, and what proportion of the total displace ment in each of these classes will be taken up by the armor, and is this on the supposition that the armor is to be Harveyized or Krupp?
What I wish to show to a member of Congress, whom I hone to interest in the matter, is just what the in creased expense would be of giving one of these vessels Krupp armor over that required for Harveyized armo of the same efficiency, and also what saving in dis placement would be gained by this increased expens which could be devoted either to more complete armor protection or to increasing the coal, ammunition or other supplies.

I believe that you have already published these data or some of them, but I cannot at once lay my hand on the number of your paper containing the article. I you could simply refer me to the number, it would probably answer my purpose.

89 State Street, Boston

Edmund M. Parker.
[Krupp armor is about 20 to 25 per cent more effec tive than Harveved; a 6-inch Krupp plate being equivalent to a $71 / 2$-inch Harveyed, and a 10 -inch Krupp to a $121 / 2$-inch Harveyed, and others in same ratio This is probably more applicable to thick than to thin plates, the difference being less in thin plates
The displacement of the vessels of the "Maine" class is 12,500 tons, and 20 per cent of the same is allotted for armor, i. e., about 2.500 tons.
The vessels of the " New Jersey" class will have displacement of 13,500 tons and will be allotted about 2,700 tons of armor each, equivalent to 20 per cent of their displacement. The amount of armor will be th same whether Krupp or Harveyed is used, but, of course, the protection will be considerably better if Krupp armor is used, and the cost will also be greater.

The quantity of armor to be carried by the large armored cruisers authorized by last Congress is not yet definitely settled, but probably it will be 10 to 12 per cent of their displacement of 13,500 tons; that is, between 1,350 and 1,620 tons. It will be the same whether Krupp or Harveyed armor is used.
The armor plan for the "Maine" contemplates the use of Krupp armor for the thicker plates and a small quantity of Harveyed armor for the thin plating.. The total amount of armor called for is 2.492 tons, costing at $\$ 545$ per ton for Krupp and $\$ 411$ per ton for Harvey armor, $\$ 1,333,783$. To obtain the same protection using Harveyed armor exclusively would require 3.069 tons, costing $\$ 1.261,972$, an increase of 57π tons, which is no admissible. We may say, therefore, that the use o Krupp armor means a saving of 577 tons in displace ment, as compared with the use of the Harvey armor the saving being made at an increased cost of $\$ 71,816$ -Ed.]

Passenger Car Lighting.
At the last meeting of the Southern and Southwestern Railway Club, Mr. W. E. Symons, for a committee consisting of himself. R. H. Johnson and T. S. Lloyd, presented an extended report on the comparative value, efficience: cost and practicability of the various types of artificial lights for passenger cars. The report is taken up with descriptions of storage battery, axle light, direct dynamo, combination dynamo and storage, and Pintsch gas systems. In summing up, says The Railway Master Mechanic, the committee finds that the oil lamp, with its offensive odor, annoying heat in hot weather, damage from fire or explosion, either in train accident or otherwise, is fast becoming obsolete, except on some branch or local runs where it would be impossible to use the electric light, the cost prohibitive, or where, from the lack of storage stations, gas cannot be procured. While on all firstclass trains in main line service, it would appear that either gas or electric lighting of some system was the standard.
Electricity has passed the experimental stage, says the committee, both as a power and as an artificial light, "and even if stopped in its development where
it now is, it must be considered as one of, if not the, greatest invention of the age, and certainly one of positive and enduring utility. That the unknown capacity of the American inventive genius will doubtless cheapen the production to a degree that will practically make its adoption universal we all hope for and feel assured will be realized at a not far distant day. Owing to the developinent of electric and other means of artificial lights, none of these figures as to the cost should be considered as permanent or fixed, the cost should be considered as permanent or fixed,
for from the strides that have been made, particularly for from the strides that have been made, particularly
in the reducing of the cost of production, no doubt the cost of electric and other up-to-date improved methods of artificial light for trains will be still further materi ally reduced, until they will be equally as cheap as or cheaper than the oil lamp or tallow candle."
The committee gives the following memorandum as to cost of application and maintenance of mineral seal oil lighting on the Plant system: Cost of lamps, two chandeliers of two lamps each to a car, $\$ 172.50$; oil consumed for lighting periods of twelve hours, one gallon per car ; average cost per light per hour (twelve hour period) 0025 .

It also gives the proportion of the various systems of lighting passenger cars in the United States (Rail road Gazette statistics)
 also given by the committee

Figures as to the axle light and the acetylene gas were not available

THE CRIME OF A CENTURY

One of the most extraordinary events that has characterized the last half of the present century is the ex termination, the wiping out, of the American bison. There is little use in resorting to invective or endeavor ing to stigmatize those who are guilty of this crime but it would be well if the acts could be held up in a bright light, that those who committed them might be excoriated in the time to come, when a few bones and pictures will alone tell the story of a mighty race swep from the face of the earth by the civilized people of the nineteenth century.
"In 1870, and later," said an army officer to the writer, " the plains were alive with bison, and in crossing at places I had difficulty in avoiding them, so vast were the herds. If any one had told me then that in twenty or thirty years they would have become almost entirely extinct, I should have regarded the statement as that of an insane person." Yet the pho tographs illustrating the present paper fairly represent the last of the bison or American buffalo, as it is popularly called.

That so many of these animals could have been killed in mere wantonness seems incredible when their vast numbers are realized. We first hear of the bison from Cortez and his followers in 1521. Montezuma had one in a zoological garden, the specimen, in all probability, having been caught in Coahuila. In 1530 . Cabeza saw them in Texas; and in 1542, Coronado found a herd in what is now the Indian Territory one of his officers describing them as horrible beast that demoralized the horses. In 1612, Sir Samuel Argoll observed herds of bison near the national capital, and, in all probability, two hundred and eightyseven years ago herds of bison grazed on the site of the capitol building at Washington. In 1678, Father Hennepin observed them in what is now Northern Illinois, and in October, 1729, Col. W. Bird saw herds in North Carolina and Virginia.

These and other facts have provided data by which the early geocraphical distribution of the bison has been determined, and it is known that this grand ani mal, that is to-day represented by a few individuals formerly ranged in millions from the Atlantic seaboard to the Giulf of Mexico, from Texas to the Great Slave Lake, and as far west as Central Nevada. As to their numbers, they were like the sands of the seashore, and the accounts given by those who hunted them twenty or thirty years ago, to day seem like vagaries of a disor dered imagination. Mr. Hornaday, who has hunted in South and Central Africa, where game is remark ably plentiful. states that the bison of this country previous to 1870 exceeded, in all probability, all the African game of every kind. An army officer in ser vice on the plains in 1867 stated to the writer that on one occasion he was surrounded by buffaloes, and that from the top of a small hill he could see nothing but a black mass of their bodies. It was impossible to estimate their numbers, and the party were in great fear lest they should be caught in a stampede, the rush being irresistible. Col. Dodge, in his memoirs,
states that on one occasion he rode twenty-five miles in Arkansas, always being in a herd of buffaloes, or many small herds, with but a sinall separating strip between them. The animals paid but little attention to him, merely moving slowly out of the way or advancing, bringing the whole herd of thousands down on him with the roar of an avalanche. This he met by standing fast and firing when they came within short range the shot causing them to divide. In on day Col. Dodge killed twenty-six bison from his day Col. Dodge killed twenty-six bison from his wagon; not in sport, but as a protection. Otherwise
they would have run him down and crushed man, horses and wagon
This herd observed by Col. Dodge was later found to be fifty miles wide and to occupy five days in passing a given point on its way north. From a high rock from which points $t \in n$ miles distant could be seen in every direction, the earth seemed to be covered with bison. To make an accurate estimate of the numbers seen would be impossible, but. Mr. Hornaday, by a conservative calculation, estimates that Col. Dodge must have seen four hundred and eighty thousand, and that the herd comprised half a million buffaloes. A train on the Kansas Pacific road in that State in 1868 passed between the towns of Elsworth aṇd Sheridanone hundred and twenty miles-through a continuous herd of buffaloes. They were packed so that the earth was black, and more than once the train was stopped, the surging mass becoming a menace to human safety.
' You cannot believe the facts as they existed in the days of $1871-72$," said an army officer. "I was at that time on duty in the pay department, which made it necessary for me to travel on the Atchison, Topeka and Santa Fé Railroad. One day the train entered a large herd, which scattered and seemed to go wild at the shrieking of the whistle and the ringing of the bell. As we went on the thicker they became, until the very earth appeared to be a rolling mass of humps so far as we could see. Suddenly some of the animals nearest us turned and charged; others fell in behind, and down on us they came like an avalanche. The engineer stopped the engine, let off steam and whistled to stop them, while we fired from the platforms and windows with rifles and revolvers, but it was like trying to stay a tidal wave. We stood in the center of the car to await the crash, some of the men going to the rear. On they came, the earth trembling, and plunged heads down into us. Some were wedged in between the cars. others beneath; and so great was the crush that they toppled three cars over and actually scrambled over them, one buffalo becoming bogged by having his legs caught in the window. Such accidents occurred several times, and twice in one week were trains derailed by charging buffaloes, whose numbers it was impossible to compute.
Hunters have heard the roaring of buffaloes at a dis tance of from three to five miles, and that the earth trembled when they charged we can well imagine when the large bulls are known to weigh two thousand pounds, the cows twelve hundred pounds. Tne question of interest to-day is how was it possible to destroy so many animals in so short a time and what methods were employed. The natural fatalities were few compared to the enormous numbers. The cow bison displays little affection for her young, and many calves were lost every year; but all in all, the conditions were extremely favorable to them, and their increase was enormous. Many were destroyed by stampeding over precipices. In 1867 , two thousand buffaloes, or half a herd, became entangled in the quicksands of the Platte River. At another time a herd was lost by breaking through the ice of Lac Qui Parle in Minnesota. The coid winters sometimes killed many that remained in the far North; but these dangers were as nothing compared to marr. Man soon found that the buffaloes had a value. The Indians slaughtered them by the thousand for their skins, bone and for food; they killed one hundred oftentimes to secure five, and waste and prodigality were the rule. Yet so vast were their numbers that doubtless the Indian inroads upon them had little effect so far as extermination is concerned; but with the white man it was different. Some wished to make records, and killed for sport some killed for the hides and heads; some became professional buffalo butchers to provide the gangs of railroad men with meat, slaughtering a magnificent animal for its tongue alone. It has been estimated that previous to 1870 nearly three-quarters of a million buffaloes conll have been killed vearly and the herds kept intact; how many were killed and wasted will never be known. Each animal, however, had a value at this time estimated ber Hornaday at $\$ 5$: the robe, $\$ 2.50$; the tongue. 25 cents ; hindquarter meat. $\$ 2$; bones, horn and hoofs, 25 cents; and this was sufficent to attrac an army of destroyers. The hides were the greatest feature, and one firm in New York between 1876 and 1884 paid the killers nearly $\$ 1,000,000$, or to be exact $\$ 923.070$, for the robes and hides, which represents the final extinction of the animal. The govermment never interfered, owing to protests of interested legislators and the neglect of higher officials. Another firm paid $\$ 216,000$ for robes and skins, and there were scores of private traders in the field. The word went out to

December 9, 1899.
kill everything in sight, and from 1876 there was a wrice on the head of every buffalo.

It is a dark and disagreeable subject to probe, but it is interesting to note some of the methods of thes national calamity makers. A band of half breeds in two hunts, according to Ross, killed 47,770 buffaloes, 620 men being engaged in the sport, out of which about 30,000 animals were wasted or partly eaten. Hornaday estimates that from 1820 to 1825 five buffalo

buffalo calf

expeditions went out, composed of 610 carts each killing 118,950 buffaloes. From 1825 to 1830 , five expeditions, of 750 carts each, killed 146,250 buffaloes From 1830 to 1875 six expeditions, of 895 carts, killed 174,528 animals. From 1835 to 1840 , fifty-four expeditions, of 1,090 carts each. killed 212,550 buffaloes. Total number killed by the Red River half-breeds alone in twenty years, 652,275 , valued at $\$ 3.261 .375$. An inter esting table has been furnished the government by the firm previously mentioned, J. \& I. Boskowitz, showing the decline of the buffalo as an article of commerce. It shows that in nine years this firm handled 246.175 skins, costing $\$ 924,790$. In 1878 , they received 41,268 robes; in 1853, 5,000 ; in 1884, none. The end had come and the buffalo was a memory. Another dealer Joseph Ullman, states that in 1881 he handled 41.000 robes valued at $\$ 350$, and 12.000 at $\$ 7.50$. In 1882 , he purchased 40.000 hides at $\$ 3.50$ and 10,000 robes at $\$ 8.50$ The prices hunters received were: Cow hide, $\$ 3$; bull hide, $\$ 2.50$; y earling, $\$ 1.50$; calves, 50 cents. The expense of transportation brought the hide up to $\$ 3.50$ in New York. This dealer, in four years, paid out $\$ 310,000$ to these men, who killed buffaloes by the tens of thousands for $\$ 2.50$ per head. Both of the above mentioned dealers, in eight years, paid out $\$ 1,233,070$ to the exterminators.
That the real extermination of the buffalo was caused by the demands of trade there can be no doubt, aided and abetted by sportsmen, Indians, and others; but the blame really lies with the government that in all these years permitted a few ignorant Congressmen to block the legislature in favor of the protection of the bison, so that all the efforts of humanitarians were defeated and the bills when passed pigeon-holed.

There were many methods of extermination that are graphically illustrated by paintings and models in the Smithsonian Institution. The still hunter was the most insidious enemy of the buffalo, and a single man by sneaking upon a herd has been known to kill one thousand in a single season. One Captain Jack Bridges. of Kansas, has the honorable (?) record of having killed

bison and young.

צrinutific Amcricau.

1,148 buffaloes in six weeks. He took the contract to that effect and bagged his game. Up to 1870 there were undoubtedly several millions of buffaloes alive, but the lust for blood was on, and soon came the demand for robes and hides from the dealers, and men who could not make a living at anything else went out to kill buffaloes. In the different States there were regular killing outfits that cost, in rifles, horses, carts, etc.. from two thousand to five thousand dollars. Such methods developed some famous characters. Buffalo Bill was one. He contracted with the Kansas Pacific Railroad to furnish them with all the buffalo the men could eat as the road was built ; and according to Mr. Cody's statement, they ate 4,280 buffaloes in eighteen months, for which he received $\$ 500$ per month, the price he paid for his title.
Many buffaloes were killed by running them down; this was the popular method amous the Indians, who shot them with rifle or bow and arrow, or chased them over precipices. The great herds north of the Missouri were mostly exterminated by the Indians of the Manitoba Red River settlement, who hunted them in a regular army. One division of such an army of exterminators consisted of 603 carts, 700 half-breeds, 200 Indians, 600 horses, 200 oxen, 400 dogs. The movements against the buffaloes in Nebraska were often made by three thousand people, and as each man killed at least ten, thirty thousand buffaloes bit the dust. In this way Indians as above killed, it is estimated, 652,000 buffaloes.
The completion of the western railroads divided the buffaloes into two herds, northern and southern. In 1871, the southern herd was composed of an estimated $3.000,000$, and from now on the animals dropped away so rapidly that it was estimated that 3,000 or 4.000 a day were killed. It became evident that they were doomed, andappeals were made to the government by handreds. From 1872 to 1874, there were $1,780,461$ buffaloes killed and wasted ; $3,158,780$ in all killed by white people and the skins shipped east over the Atchison, Topeka and Santa Fé road. During the same time the Indians killed 390,000 ; besides these settlers and mountain Indians killed 150,000 , so that the grand sum total for these years was 3,(698,780. In the following year. 1875 , the deed was done. The southern herd had been swept from the face of the earth; the northern herd went in the same way. In 1882, it was believed there were $1,000,000$ buffaloes alive in the herd, but there were at least 5,000 white hunters in the field shooting them down at every point. Such a merciless war of extermination was never before witnessed in a civilized land. Then came 1883 ; thousands took the field this year, and Sitting Bull and some whites had the honor of killing the last ten thousand.

There were living at the last government census, made eight years ago, 256 pure-blooded buffaloes in captivity, the last of the untold millions that covered this continent during the past century. Some of them are shown in the accompanying photographs, which tell a pitiful story of the greed of the white wan and the extirpation of a mighty race within three decades.

A Tribute.

We have received the fourth number of Feilden's Maga zine, published in London Although this handsome pe riodical has been published only a few months, it is already in the front rank of technical journals, and by the breadth of its scope, the independence of its opinions and the splendid manner in which it is gotten up, it ha already obtained honorable distinction among the English echnical journals. We notice in the November number a handsome compliment to ourselves; it says, "We are not selves; it sars, "We are not paper in this country (Eng paper in this country (Eng-
land) which possesses the land) which possesses the
eclectic scope together with the editorial authority of the

Scientific Amprican. In the highest class of technical journalism we are more than able to hold our own; but in journals of a discursive nature as applied to scierce and mechanics we must look beyond the Atlantic for an example."

The National Export Exposition

It is said that the National Export Exposition has been a creditable, and on the whole, a successful enterprise. Half of the exhibits came from Pennsylvania, and a considerable portion of the remainder came from the States which immediately adjoin it. There were many classes of goods which were conspicuous by their absence, such as textiles and electrical machinery. The amount of running machinery was very small, a 200 horse power gas engine actuating it all. It is stated that during the last few weeks of the Exposition, the that during the last few weeks of exposition, the this is the case, it shows that the primary object of the this is the case, it shows that t
Exposition has been fulfilled.

A Shower of Bielids.

A well-marked shower of Bielid meteors was observed at Princeton on the evening of November 24. At ten o'clock the meteors averaged two or three per minute at times. Professor Young counted forty-two in the first half hour between ten and eleven o'clock, and there were many others which he did not see. After eleven o'clock Professor Young saw only three meteors in fifteen minutes. They were mostly small, but a dozen were above the second magnitute and two rivaled Sirius. 'They all left trains, but these were evanescen
Leonids.

The December Building Edition

The December number of the Builiding Editios: is fully up to the standard of its predecessors, and we are safe in saying that it is one of the most beautiful publications in the world. The houses are admirably selected and the engravings are reproduced with care

BUFFALO IN DEEP SNOW

and are finely printed. Those of our subseribers who are not familiar with our Building Edition should send for a sample copy: Each issue contains a number of special features, such as reproductions of European castles, villas, iron work, etc.

The Current Supplement.

The current Supplement No. 1249 has many articles of great interest and permanent value. "Engineering in the United States Nary--lts Personnel and Material," is the annual address of Rear-Admiral George W. Melville before the American Society of Mechanical Engineers, of which he is President. "The Modern Armor-Clad" is continued and describes minutely the system of military masts, torpedo tubes, barbettes. etc. "Some Physiological Effects of Hydrocyanic Acid Gas upon Plants" describes some most interesting experiments br Prof. W. G. Johnson, of Maryland Agricul tural College, and State Entomologist.

contente.	
(1llustrated articles are marked with an asterisk.)	
Airship or aeroplane-whic	Ed
Animals, danger from impo	
tion........................... 311	Engineering no
Armor-clad " Henri Quatre"*... 5 \%	Exposition. national
Armor. Krupd or Harvey 3 as	Habit. dwarf, plants.
Automobile in Buenos Ayres.... 371	Insi:ance. earthqual
Automobile news................ sit	Passenger car lightin
Bielids showe	Patents
Roat. submarine*. sint	
Building edition, December...... 359	Railw
Correction, a.................... sis 8	Reminiscences, marin
Creusot strikes, end. $\% 71$	Science no
Crime of the century*. :88	Steel trade.
Dalmeny experiments........... 370	Supplement, curre
Delusion. X-rav*......... 3 T 2	Switch-lockin
Diamond productions of Trans-	Tribute, a
	reless t

Recently patented inventions． Agricultural Implements．
MOWER，－Wiliam Newby，Pittsburg，P ． The revolving cutter－biades of this mower radiate from a common center．The stationary cutter－blade has its edge turned toward the rotary cutter and is held by a revolv－
ing support at an angle to the cutting edge．Both cutters have an adjustable support An auxiliary adjusting de stationary cutter；and ano：her device acts to separate the two cutters．The auxiliary devices are carried by
the adjustable support．The cutter by reason of this con－ struction may be adjusted at any desired angle relativ to the ground．
poison－Distributer．－Frank L．Richter， rero，rex．The invention provides a machine for dis complete control of one man and is arranged to distribute號 plants．The distributing－nozzle may be readily ad justed to pass over plants of different heights．The in－
gredients of the poison are thoroughly mixed in a rece tacle independent of the distributing－receptacle during the period in which the machine is in operation．Such preparations
employed．

Engineering－Improvements．

GOVERNOR FOR TRACTION－ENGINES．－CARL ．Thoe．Oslo，Minn．The inventor has devised an im－ provement on governors in which an eccentric is shifted
across the driving－shaft by centrifugal force．The gover nor is arranged to insure a proper distribution of steam
under varying conditions of operation，especially when reversing the engine，to keep the initial cylinder－pressur equal to the boiler－pressure and to cut off the steam in fect distribution of steam is obtained than with the valve ear now in use，especially as the lead of the valve varied according to the speed and to the cut－off and com－ pression．There is no lead when the engine is started engine
rotary grate－furnace．－Charles Groll Roubaix，France．The invention is an improvement in
that class of smoke－consuming furnaces in which the hat ciass of smoke－consuming furnaces in which the
combustible is automatically distributed upon a grate having a rotary movement which is either continuous or struction of the grate－bars which provides for the air series of broken passages，the effect of which is to it
SELF－FEEDING SMOKE－CONSUMING FURNACE Charles Groll，Roubaix，France．The fumace com－ in the foregoing notice；a casing located radially above vided with a spring－actuated coal－ejector．A coal－feeder is movably mounted in the casing and has inclined chan nels arranged to receive coal from the distributer and to deliver it upon the grate．A mechanism is provided for
shaking the coal－feeder．The distributer enables wet shaking the coal－feeder．The distributer enables we
coal to be used ；and the quantity of coal passing through of cells or by changing the dimencons The fur may be operated either with natural or forced draft．

Mechanical Devices
hyidraulic air compressor．－Lee E．Mitch ll，Buston，Mass．The purpose of this invention to provide a device which will be operated by a flow of
water to compress air．The compressor comprises a tank having an air－discharge valve an air－inlet pipe extendin upwardly within the tank and terminating in a valve－sea pon which is adapted to rest a valve guided in move ment by the pipe．A sleeve surrounds the pipe and
carries at ite upper end a float and at its lower end a carries at ite upper end a float and at its lower end a
water－pan．Connections are provided for securing oppo－ ite action of the valves．A rock－shaft having a counte－ roise is operatively connected with the water－controling
valves and the sleeves surrounding the air－inlet pipe．
Paperr Coating machine．－－William h．Wal Pron，New Brawick，N．J．This machine has a num and a turning device for the paper between the coat ing－rollers．The device serves to turn the paper after
it has passed over one coating－roller，to present its has passed over one coating－roller，to present it
other face to the second coating－roller．The apparatus to be used as an adjunct to a paper making machin STREET SWEBPR．A win Brow，Aus． STREET－SWEEPER．－Alvin Brown，Aurora，Ill
There are two principal features in this invention which There are two principal reatures in this invention whic
deserve to be emphasized．One is the peculiar construc ion of the main frame and the other is the spectal ar． rangement of the dirt－chamber and movable dirt recept－ acles，which are so constructed as to be arringed within
cach of the s veepers to receive the dirt．When filled， hey are rh out upo ralls to truck，apon which number of them are carried away to the dump；whirs
other empty receptacles are placed on the sweepers other empty receptacles are placed on the sweepers
The arrangement enables the sweepers to work con－ stantly，thus saving time and permitting one drive and one team to ta
dump at one time．
aUtomatic Fire－Sprinkler．－Leroy A．Wes－ ron，Adams，Mass．The fire－sprinkler is used in con－ or ceiling of a room and provided at intervals with open－ ings closed by a valve held to its seat by a support．The
support is made in sections held together by a fusible joint，so that when the temperature of a room becomes dangerously high，the joint will fuse，causing the sepa－ ration of the sections of the valve－support and the con－
sequent outlet of the water through the valve．The in－ vention is concerned with the provision of an improved
valve－support which increases the efficiency of the appa－ ratus by rendering the fusible Plunger－hiead For tile－presses．－Benja－ min D．Trattel and William C．Leiber．Mauhattan，
New York city．The purpose of this invention is to provide a tile－press with a plunger－head one face intt which the cement or bonding material is forced to
hold the tiles effectively in the setting．The plunger－
head is formed with a cavity and yieldingly sus－
tains a die－plate．A plug moves diagonally in the die－ plate，its upper end projecting in the cavity of the plung ransversely through the upper end of the plug and has its ends twisted to bear on the upper face of the die plate，whereby the plug is raised relatively to the die－

Fire－ESCAPE．－Dluarej N．Jerauld，Newpor y．The fire－escape comprises a reel on which a lower ge－rope is wound．A lever guides the rope from the reel to the outside of the building and has a brake－arn carrying a brake－band engaging the reel．A rewinding
device is provided for the reel，which device comprises a retl gear－wheel secured on the reel．a spring，and a second gear－wheel in mesh with the first gear－wheel and con－ nected with one end of the spring．The fire－eecape takes
ud but little room and enables a person to descend from ud but little room and enables a person to descend from
window with the utmost rapidity，the speed being auto－ watically regulated according to the weight of the per
Cloth－measuring device．－Jesse h．King Escatawpa，Miss．The device is intended for measurin ing off any required strip from a bolt，and is pro gided off any required strip from a bolt，and is pro end of the cloth is taken from the bolt and passed over a roller upon which it is held by a presser－plate．The
cloth is received by a reel supported by a standard，hing－ dat its base so as to swing away from the reel and the its end free，to permit the removal of the clotin The reel is rotated by gearing so constructed that the
peed of rotation may be multiolied．The roller has peed of rotation may be multiplied．The roller has
worm formed upon the outer end of its shaft，which orm engages a worm－wheel，to the upper side of which a regıstering－disk or dial is secured．

Rallway－Contrivances
Car－coupling．－Valentine Erbach，Scranton， Pa．The car－coupler is so constructed that a one－piece
draw－head will present all the adrantages of a draw－head f the pivoted－knuckle type．The draw－head is provided with fixed knuckles adapted to interlock with similar knuckles upon the opposing draw－head．A pin in the draw－hearl can be automatically operated during the act
of coupling and used in connection with a link when desirable ；by its means cars can be uncoupled even when RETALN
RETAINING VALVE．－Joseph S．Lapish，Ameri－ can Fork，Utah．＇This automatic retaining－valve for Westinghouse air－brakes comprises a cylinder forming
the escape for the brake－cylin ler and having connection by a triple－valve slide－valve with the ausiliary reservoir A spring－；ressect piston in the cy hinder is adapted to be forced outward by the pressure from the auxiliary reser－
voir to close the brake－cylinder escape．The piston is voir to close the brake－cylinder escape．The piston is
also adapted to return by the pressure of its spring to pen the brake－cylinder escape
ball－bearing．－Frederick h．Heath，Hote Brard，New York．This ball－bearing for car－ax omprises a spherical journal－bearlng upon which Balls are placed between the spacing－rings．Cage－ring are provided，having holes to inclose the balls partly． taples or loops carried by the rings further inclose
balls，and a suitable journal－box surrounds the balls． aERIAL RAILWAY．－MAurice Brochet，Levallo Perret，France．In the aerial railway devised by this in－ ventor，a train of cars is caused to travel overhead upon a
structure supported by pillars．The train is so construct ed as to form practically a rigid self－supporting beam or irder，so that the stationary parts connecting the pilla supports for electric wires，but are not strictly necessar for supporting the train．The rigid connection between the cars can be temporarily suspended to enable the train travel on curves or over points where the grade MAIL－BAG DELIVERER AND RECEIVER．－IIUGH A．Orchard，Roodhouse，Ill．The railway mail－bag a slide－rod．A catching－arm is provided with a sliding on the rod，the middle of the arm being detach－ ably secured to the inner upright by spring－operating catch devices．A stop on the slide rod limits the move－ ment of the bag－catching arm．The bag can be set to be ar seizing the ring，and sweeping the bag into the car ithout shock or danger of striking the car
guard for car－axle boxes．－James S．Pat TEN，Baltimore，Md．As the result of continued exper proved the wooden and metallic dust－guards which he has already devised．The present gnard comprises members slidable on each other and provided with outwardly er－ tending ribs along their semicircular inner edges，the entire portion of the latter，thus thickened and broadened being bevcled for the purpose of enabling the dust－guar baily and que the
RAILWAY－CROSSING．－George P．Keith，Ro－ rails and carries locking－bare adapted for engagement underneath the rails of the main tracks．An air nderneath the rails of the main tracks．An air
pressure actuated rod supports the crossing．Connec－ tions between the locking－bolts and the rod enable the bolts to be moved to their releasing position upon a ro－
tary movement of the rod．The rotative movement of he rud swings the crossing into the desired position． The crossing may be easily and quickly operated to
place the rails of either one of the two intersecting out undue jarring．
EXPLOSIVE SIGNALING APPARATUS FOR Railways．－William R．Svkes，Station Road，High tue comprises a gravity－operated cartridge magazine to be brought into firing position under the control of an escapement，one pair at a time．A pair of gravity ham－ mers normally held raised，explode the cartridges and are
automatically reset by the force of the explosion：The fall of the hammers is electrically controlled so as to render the cischarge dependent on the positon of the
signal lights．When the parts fail to act，an electrical
warning is given．The discharge and the operation o the cartridge－chan

Miscellaneous Inventions

picture－frame．－－Henry R．Turner，Helena， Ark．The invention consists in forming corner－piec for a picture－frame from a piece of tin or other metal
bending two edges of the sheet at right angles to it and punching a hole in the corner opposite to that in which the right－angled edges meet．Four of these plates are
slipped over the four corners of the picture and then wired together
inhaler．－Loveland m．Francis，Phœnix，Ari－ zona Territory．The inhaler has a cylundrical body por－
tion，in the ends of which tapering shields are carried The small ends of the shields are projected into the body portion to hold a sponge between them and to form space for the reception of liquid．Besides serving as means for holding medicınal preparations to the nostrils， the device is also applicable to respirators or devices for protecting persons from poisonous gases by placing over
the nostrils a means for purifying the atmosphere before is inhaled
mining－Caisson．－anthony F．Lucas，Beal mont，Tex．The caisson is made in cylindrical section hich are successively bolted one on top of the other orm a continuous，tight，vertical caisson，widich caisson is provided with a boring－face with means for extending the lower section into bed－rock and securing it therein with a watertight connection，and with special
neans for tuming the entire caisson to produce a boring means for tuming the entire caisson to produce a boring
action to facilitate its downward movement through the action to facilitate its
stiffer bodies of clay．
COTTON－PICKER＇S SPRING SPINE－SUPPORT ER．－SAmuel C．Potrs，Apple Valley，Ga．By means of
this device the back of a cotton－picker is relieved from this device the back of a cotton－picker is releved fron
the strain of a stooping position．The support comprises main bar of spring material which can be attache main b shoulders．A cross－bar fixedy o the hips．The main bar extends below the hip－ba nd is provided at its lower extremity with straps for at achment to the thigl．
RUNNER FOR VEhicles．－Charles S．Saxton， Blue Earth City，Minn．The runner is adapted for justed to both trang socillating axle－clamp is provide and likewise checks for lmiting the movement of the clamp，thus obviating the necessity of straps to prevent he body＇s turning over．A construction is provided whereby the draft will be below the center of the axle，
causing the ranners to travel smoothly and have but causing the runners to travel smoothly and
ittle tendency to tip or travel upon their nose
ball－bearing for bicycles．－－Frederick Heath，Hotel Gerard，Manhattan，New York city．Th presentl bearings，that is to say，bearings in which one of ball bearings，that is to say，bearings in which two members or surfaces between which the balls run is formed on spherical lines．The bearing con sists of a hub，a cup－member fitted therein，and spherical member carried by the axle．A cone member is fitted to the spherical member so as automatically adjust itself thereon．And a series of balls is fitted be ween the cup and cone．There is no binding or cram

FURNACE FOR HEATING SOLDERING－IRONS． george bickelhaupt，Manhattan，New York city．In he casing of the fing a conisting of a number of oppositely－extending arms．A suppor dapted to rock in the ceing and to be locked to hold the support in a central position relatively to the burner A furnace thus constructed is light and can be connecte y a rubber tube with a gas－pipe．
VENTILATING ATTACHMENT FOR WINDOWS， －George M．Wagner，Philadelphia，Fa．By means of panes can be simultaneously removed from the main sash and securely held in a position enabling them to be
readily closed．The ventilation is accompanied by objectionable draft．The attachment is especially adapt ed to all forms of windows having priem glass and serves to keep the prisms in the same position when
opened and when closed to obtain the full benefit of the deflected light．The atachment opens inwarily instea of outwardly，thereby permitting the use of bars tool－Mervin W．Tozer，Dunton，Colo．The in which a number of tool－bits are carried．The handle has separated jaws and multiple birs between hane Jaws and bits have holes for receiving a clamping and pivot bolt，through which holes another bolt passes hav－ ing an apertured head adapted normally to engage the
outer surface of one jaw to clamp the jaws together． The jaw in question has projections on opposite sides he bolt which are adapted to coact with the apertured
head to hold the tang of an extra tool，the holt－head meanwhile being raised from contact with the jaw，and the clamping－pressure being communicated to the through the tool－tang and projections．
Cabinet and Safe．－Daniel N．Shobmake Cainesville，Mo．The cabinet provides separate storage－
compartments for all materials used in baking，and safe t_{0} receive the bread or cake when baked，the safe being so constructed that it can be ventilated or tightly
closed．The calinet has a kneading－board and bins of simple construction，which can be locked with their tops uppermost and turned bottom upward for cleaning pur－ poses．
ay＇IICKet．－Grant S．Atherton，Bron provide a passenger，transportation，or theater ticket de signed to prevent so－called＂scalping＂on the part of ongitudinal edges folded over the central portion form three laycrs aud doubled transerssely about mid－ way between its ends．The sheet is also transversely
folded adjacent to one end in an upward direction， that the folded end portion is between the other end that he folded end portion is between the other end
portion and the central portion of the sheet．The over－
lapping folds are fastened or sealed thgether．The
wise void．
HYDRA
ft．－Charles L．Burkhart，Dayton， moved wholly below the ground surface，thus preventin any possibility of freezing．The hydrant comprises ydrant pipe is vertically movable through the upper an wer walls of the chamber and is adapted to rotate，an is provided with ports through which the water ma position and through which the water may discharg when the ports are below the chamber．
Water－filter．－Emil T．Dreier，Hanapepe aual，Hawaii．This water－filter for house use has tends within the casing and has a longitudinal bore outwardly from the bore．A carbon filtering－stick in passage．
knob attachment？－－Charles J．Ericson，Salt which will securely lock the knob on the screw－spu－ die and to prevent transverse play of the spindle in the lock，is the purpose of the present invention．The clutch member is longitudinally movable on the spindle but held from turning A forked plate is arranged to traddle the spindle in rear of the movable clutch－men－ ber and to be secured directly to the door in rear of the diameter of the parts of the fork are longer than plate alone holds the movable clutch－member from rea ward movement，thereby enabling the fastening to be used with any style of esc
Packing For STUFFING－BOXES．－Hermann asbestos threads in the form of rings，ropes，and the隹e．The invention secures simplicity in the mode of plaiting the asbestos threads by the help of a spiral or serpentine wire，attains greater elasticity，and
neck－yoke center．－Charles W．McDonald Gallatin，Mo．The invention is concerned with im－ spreader－bar with the p．lle of a vehicle．Connected with a neck－yoke and a clip－band having two projecting
spaced flanges is a cam－block pivoted between the fanges．A pole－ring also has two spaced flanges between which the cam－block is pivoted at rieht angles to the ther pivot－bolt．A clamping－dog is pivoted so as to lie sure from a toe on the cam－block．
mantle for electric－arc lamps．－Paul Mersch，Avenue Hoche 9，Paris，France．The purpose of this invention is to enhance the lighting power of an caroon and partly absorbed，whereby the mantle is ren－ dered incandescent and the arc－light given a milder and
warmer tint．The effect of the oxyen of the air is warmer tint．The effect of the oxygen of the air is
diminished by the greater rarefaction of the air thus pro diminished by the greater raref action of the air thus pro－
duced in the clcse neighborhood of the carbon electrode The mantle is made of clay，alumina，and kaolin．
combined rocking－chair and lounge．－ leck A．Brown，Lawrenceburg，Tenn．The combined at their forward ends by a fixed foot－board，and of an adjustable back．A fcot－rest is pivotally mounted be－ ble strip is connected with the pivoted foot－rest and back，whereby when the pivoted foot－rest is folded
back，the fixed foot－board may be used by a
ice cream freezer．－Frederick P．Burr． Midatown，Conn．When the ice－packea receptacle is partially filled with the cream to be frozen，it is rotated o flow up the inner wall of the receptacle to form a hollow center；at the same time the liquid freezing－mix－ the external surface of the receptacle to insure a thor－ ough cooling and final freezing of the cream．Since the reezing－mixture is several degrees colder than the ice， zing of the cream takes place， rhin layer of cream is opposite the layer of external
reezing－mixture．The rapid change in the direction of rotation causes a very quick freezing．

Designs．

broom－Rack．－Henry C．Bothwell．Mcarthur， Ohio．The leading feature of the design is a compart－
ment－receptacle，with standards，cross－bars，and aper－ tured longitudinal bars．The rack is designed for use in rocery stores．
PUZZLE－BOARD－－Jamen H．White，Bronx，New the puzzle consists in starting from a point near the edge and in endeavoring to reach the center along certain lines by jumping alternate spaces．The puzzle or，more pro－ perly，the game is played with a checker－like object． Lace－fastening．－Henry A．Frye，New York
city．The fastening for shoe－laces has its top or crown city．The fastening for shoe－laces has its top or crown
rounded transversely on its upper side and provided with a slot having a flaring end for the reception of the sines．
Shirt－Pat＇ters：－William Gerhardt，Manhat． tan，New York city．＇The essential features of the design
consist in the approximateiy straight side edges and the op edge having yore－like incisions，between which concave edge and outward of which are straight ${ }^{\text {edges }}$ running into concave edges．By meane of this pattern
a shirt can be cut from a single piece of linen，thereby onsiderably facilitating the making of the material into casing for water－heaters．－Charles O．f． Youngstrom，Phenix．Arizona Territory．The casing
constitutes a neat means for inclosing the heater and is constructed with a straight edge so that it can be placed against a wall．
Note．－Coples of any of these patents will be furn－ ished by Munu \＆Co．for ten cents each．Please state
the name of the patentee，title of the invention，and date the name of th．
of this paper．

NEW BOOKS, ETC
Forkign Patent and Trademark Laws. A Comparative Study, with Features of Such Laws. By Arthur
P. Greeley, Assistant Commissioner of Patents. John Byrne \& Company.
Price $\$ 5$.
No one has made a more thorough study of foreign
patent and trademark praciire than Mr. Arthur P patent and trademark praciire than Mr. Arthur P. Greeley, Assistant Commissioner of Patents, whose conCongress to revise the patent and trademark laws of erence to improving the practice within the Patent Ofice qualifes him especially for the work in hand. The above entitled work, therefore, commands the at-
tention of all those who are interested in patent practhce, and no work has yet been published which gives,
in so convenient a form and so thorough a manner an in so convenient a form and so thorough a manner, an
cxposition of foreign patent practice. The information to be obtained concerning foreign patent laws appears ordinarily in abstracts or in scattered notes which the attorney has made for his own use during the course of his practice. The work that we have before us represents an iminense amount of labor, and the tables have been put in such a form that the most important informa-
cion concerning foreicn patent practice may be obtained with a minimum of effort, owing to the comprehensive system of classifice' i of the book, the different systems of granting patenis are disclused, with special chapters on the questions of
novelty, subject matter of patents, who can apply for pat novelty, subject matter of patents, who can apply for pat-
eits, etr. In these pages the author has discnssed thedifference between the patent practice of France and the United States, and has illustraied the working of the
Euglish patent system as well as pointed out wherein the
$\left\lvert\, \begin{aligned} & \text { German patent laws resemble, in some respects, the laws } \\ & \text { of the United States and }\end{aligned}\right.$ of the United States, and in other respects the English
syste. WWith the laws of these four countries taken as
and standard, the practice of other countries is discussed of the systems first presented is set forth. Following this is found a set of tables where the principal coun-
tries are alphabetically arranged, with abstracts of the important features of their patent laws. These tables will be :ound of the greatest service to patent attorneys. Th
pages devoted to the .trademark laws explain the differ pages devoted to the .trademark laws explain the differ
ences between the laws in those countries where the roperty in a trademark is derived from itt registratio complete ownership, the first step to secure which wa aken when the mark was first used in trade in the coun-
try. The discussion of this subject is of the greatest value. The subject of the registrable forms of marks in
the different countries is also treated. Again, as in the irst half of the book, which is devoted to pateots, th principal features of the trademark laws are arranged in
table form so that information can be easily found. plete and adds greatly to the value of the work, will be found copies of the conventions and treaties to which the
United States is a siynatory. We heartily recommend
INDEX OF INVENTIONS

For which Letters Patent of the

 United States were Issued for the Week Ending NOVEMBER 28, 1899,AND EACH BEARINGTHAT DATE

Bit. See Bridle bit..................................
Black board componition, Blacknal \& Jordan
Block for building moles, dams. piers, etc., N.

Cair. w. B. Mcallister. N.........
Chainneling macline.
Chimney top. ©. E. Burress...
himney top. C. E. B
Chun, B. F. Crowde
Chun, J. Q .
Circuite
Cion

Clip. Seaner Sabel clip.
Clock, A. M. Lane.
Clock, electric. H. E. Andersson.

nutting machine. J. J. RiAney.
Recorticating naichine. A. Price
nental chair. Gi.Th Hi

2fovertisements. ORDINARY RATES.
Inside Page, each insertion, $=\mathbf{7 5}$ cents a line
Back Page, each insertion,
\$1.00 a line Higher rates are required.
The above are charges per agate line-about eirht
Tords per line. This notice shows the widtb of the ine.

VOOD OI metal workers
vithat stamem porere can save Footand Harid Power miactininery A-Wood-working Machinery. 6 SEIECA PALLS MPG. COMPANY,
LTMTM:

SUCCESSFUL MEN

THE FORBES PATENT DIE STOCKS.
 Send for illustrated catalogu
CURIIS \& CURTIS,
 The Coburn Patent Trolley Track

Store Ladders.

The Coburn Trolley Track Mfg. Co

THE OBER LATHES

 $:$

WE EXGEL AND UNDERSELL ALL!

Agents Wanted. Send for New Catalogue. just out.
OHIO ELECTRIC WORKS, Cleveland, Ohio
"NOT HOW CHEAP,

THE TAPER-SLEEVE PULLEY WORKS, Erie, Pa., U.S.A For Heavy Continuous Work

 A DESIIABLE HOLIDYY GIFT.
DRA PERR'
Recording Thermometer
Standardized and warranted.
 Write for particulars. THE DRAPER MFG. CO. MORAN FLEXIBLE JOINT

DON'T LEAVE YOUR KEYS

 WELL

DRILLING Machines
 operate them easily. Send for catalog. $\mathbf{W 1 L L I A M S}$ BROS., Ithaca, \mathbf{N}. \mathbf{y}

If you want the best CHUCKS, buy Westcott's ,

Variable Speed Counter Shaft

The Paint of the Future TOCH BROTHERS R.I.W. Damp Resisting Paint

moke consurner. Morris \& Norrman

Signol. see Blöck signail" visibibe añ aù àible
abmerged bearer. E. J. Byrne

Tabo.er. .i. Hituiuhi
Tank and tank heater,

Kres. etct. valive for pueumac.

${ }_{8}{ }^{2}$ Maynall...
Trunk, G, A Bovision

A HANDY TOOL
 Experimental \& Model Work

A FILTER THAT WILL NOT FAIL!

$=-2=$ BERKEFELD FILTER

 mhich pives a continuous fiow of pure water in large or small quantities. Thecillnderis made of INUSORIAL EARTH. which retains all minute germs and impurtites. The cylinder can be easily reached and cleaned as of ten as neces-
sary, and taken out and bolled for sterlization purposes. Rapid fltration and the pureat of water guaranteed.

Uncle Sam's Examinations 1 and Mavemex
 New Microscope for Nature Study QUEEN \& CO. ,
 Important Books.

 Cemiatry) outine of Industrian Chemittry
 Chimneys. Chimaney Design and Theory,

 Details of Ruilding Conatiuction ils
 spages. in T. Y, 8

 lectric Wiringitititing is fitenes and

 Mechanical Movementit Powers. Divices Operation Hacineor and the Mechanical

 Sanitary Enf ineoring A Pration Tratise

MUNN \& CO., Publishers, office of Scienti ic American, ${ }^{361}$ Broadway, New York.

THE UNIVERSAL HATCHER AND BROODER.

 ELECTRICAL SUPPLLIES Litrie or smanal paian

 MODELS ${ }^{2}$ EXP ERELMENTAAL WORK. DAMOUR \& IITTLEDALE MACHIEECO: NOVELTIES \& PATENTED ARTICLES Rankacureor \&ontract.

MACICAL Aplaraugs, sientitic dopenties
 (Ryy

FOR STEREOPTICONS AND SLIDES Moving pireter Machnesand fulms: write williamp

SITUATION WANTED Torevereent manitac

Zalcium Zarbide

E. A. NERESHE MER, 35 Nassau St., New York City.

 Stock Sizes 14 to 22 foot. PIERCE ENGINE CO., 17 N. 17th Street, Racine, Wis

minsomanvie
 It would be appalling to know in round numberrs how many millions of young chicks die
 and Marine Gasoline En- kinesand Launches, Motor Wason Engines. Pump- ing Engines. MIANUS, CON .

 Wanted

LABELS.

${ }^{1} 1010$ First Premiums

Address of a manufacturer of a prac tical machine for making empty gela tin capsules. Send communications and drawings to F. C. 8622, care of Rudolf Mosse, Berliu, S.W., Germany

EVERY BOY HIS OWN TOY MAKER
 WATRR MOTORS
S3a DaySure $=$

If Princelly Preasure

 Winton Motor Carriage istrong, safe and

Kodaks

do away with cumbersome plate-holders, heavy, fragile glass plates, and bothersome darkslides.
Just turn a Key-
All Kodaks use our light-proof film cartridges (which weigh but ounces, where plates weigh
pounds) and can be loaded in daylight. Seven pounds) and can be loaded in
styles use e ither plates or films.

Kodaks, $\$ 5.00$ to $\$ 35.00$. EASTMAN KODAK CO.

 SCREW THREADS.
 BLAKE \& JOHNSON, NEW ENGLAND WATCHES.

ALL SEWELERS, all sizes and styles
o the dinn nickel
designs for ladies' wear ena meled
Every watch is tested thoroughly every watch is guaranteed for quality and faithfulness of its
the new england watch co.
Send for catalogue.

 Extremities, Warm all over. Garm, Strong Durable Gandsome are our 8 S Large

OVER 25,000 IN USE.
EASILY PUT ON. HAS PROVED PERFECT
Coasting becomes so safe and easy you do it every chance you get. Your feet on the pedals
gives perfect control of the wheel. Ladies' skirts
keep down when coasting. You can adjust it to keep down when
any make of cycle.
Our Acetylene Bicycie
construction to any made
\qquad
elmira bicycle co.
Box X ELIIIRA, N. Y.

A GUN WITH INTERCHANGEABLE PARTS

 Air Rifle

Buffing and Polishing Wheels for manufacturers of Hardware, Bicycles, Brass, Stoves,
Silverware. Jewelers and Plating Trades and others. DIVINE BROS. CO., 92 Oneida St., Utica, N.Y

Carlisle \& Finch Co, Sixth St., Cincinnati, 0 Where's That Tool? No need to ask if your tools are al
laid out in order on one of our fa mou
PORTABLE TOOL RACKS.

 Nee Britiain machine co., New Britain, conn, U. S.A.
NOODWORKING MACHINRY,

LATHES Foot Power, High Grade

 ALUMINUM PAINT.
 the american pegamio co.. 339 B'way, New York.

SMITH \& WESSON REVOLVER

demont

 with all other makes. Gold Medal awarded by Chicago Police Department, for excellence in marksmanDepartment, for excellence in marksmship, with his SMITH \& WESSON.
Catalogue of latest models upon application SMITH \& WESSON,
14 STOCKBRIDGE ST., SPRINGFIELD, MASS.

Reisch's Foot Powe EMERY WHEEL KNIFE SHARPENER and TOOL GRINOER

 SF Send Jor Citcular and Prices.
BUFFALO EMERY WHEEL CO., BUFFALO EMERY WHEEL CO.
No. 10 Lock St., Buffalo, N.Y.
 The Fraction of a Hair's Breadth

Economy Drilling Compound

 THE WHITE \& BAGLEY COMPANY,
WORCESTER, MASS, IGNITION OF GAS or GASOLINE ENGINES

