
a WeEkly Journal 0F practical information, art, SCIENCE, MECHANICS, CHEMISTII, AND MANUFACTURES.

Vol. $\underset{\text { Establisizd }}{\text { L845. }}{ }^{\text {. }}$]	NEW YORK, NOVEMBER 4, 1899.	$\left[\begin{array}{c}\text { \$3.00 } \\ \text { WERELY. } \\ \text { A. }\end{array}\right.$

Mounting of the Siderostat.

General View of the Completed Telescope.
THE GREAT TELESCOPE OF THE PARIS EXPOSITION OF 1900.-[See page 298.]

stitutifir gmmitan.

ESTABLISHED 1845°

MUNN \& Co.,
Editors and Proprietors.
published weekly at
No. 36ı BROADWAY, - - NEW YORK.

terms to subscribers
 the scientific american publications
 5 = = = w
 The combined subscription rates and rates to foreign countries will be furnisthed upon application.
 munv \& Co... 361 Broadway. corner Franklin Street, New York.

NEW YORK, SATURDAY, NOVEMBER 4. 1899.

COMPARISON OF NEW YORK CABLE, ELECTRIC, AND

HORSE CAR LINES.

The extensive and excellently managed system of the Metropolitan Street Railway Company of this city af fords opportunity for a valuable comparison of the relative cost of operation of the systems of traction by horse, cable, and electricity. In keeping with the broad-minded spirit which has characterized the management of the company's affairs, the annual statistics of the cost of operation of its system are regularly pub lished for the benefit of the public, which is thus put in possession of data that cannot fail to be of great value in solving the problems of transportation with which our great cities are confronted.
On the thirtieth of June last the company had in operation $113 \cdot 4$ miles of horse railway track, $25 \cdot 3$ mile of the cable system, and $82 \cdot 1$ miles operated by the underground electric system. The table given below is a summary of the operating expenses per car mile for each system, and the figures given possess unusual value from the fact that the three systems are all operated under one management, and in the same city, and the results obtained, therefore, are not vitiated for purposes of comparison (as is so often the case) by dis similar conditions of location, wages, cost of supplies, and methods of operation.

Cable roads.	
Maintenance of way.	
Maintenance of equipment	$1 \cdot 13$
Power.	$2 \cdot 39$
Transportation.	$8 \cdot 43$
General expenses	5
Total per car mile.	$17 \cdot 99$
ELECTRIC ROADS.	
Mainteuance of way	
Maintenance of equipment................................. 1•17	
Total per car mile $11 \cdot 95$	
HORSE CAR ROADS.	
Maintenance of way....	
Maintenance of equipment $0 \cdot 42$	
Transportation............................. 8.24	
General expenses 162	
Fotal per car mile	17.96

The most surprising feature in this comparison is the high cost of operation of the cable system. It has long been known, of course, that the electric was much the cheaper system to operate of the two, but that the cable road expenses should actually exceed those of the horse car roads is quite unexpected and calls for expla nation. This is to be found in several facts, one of which is that the extraordinarily heavy traffic on the cable roads, where at times cars are run under a head way of only ten seconds, led to excessive wear of the cables, which was aggravated during the blockade of the electric roads in the snow storms of last winter, when the cable lines were kept in almost continuous operation. During this trying period a new cable would last only a little more than a week, and, as a matter of fact, the renewals of the cables alone during the year amounted to 230 cents per car mile. Another cause of the high cost of maintenance of way is found in the fact that the company, having in view the future substitution of electric for cable traction, is incurring heavy expenses in keeping up old equipment, which but for the coming change, would have been replaced by new material. On the other hand, the cost of operating the horse car lines has been brought to its presen relatively low figures partly by the economies resulting from the consolidation of these lines under one management and partly by the great reduction which has taken place of late in the cost of feed and general supplies.
The excellent showing made by the electric roads is very gratifying. The low cost of the maintenance of way is, of course, due somewhat to the fact that the tracks and underground construction are new, and
have not had time to show much appreciable deterio ration; although there is in the underground trolley no element so subject to wear as is the wire cable of the older system: indeed, the permanence, the absence of wear and tear, in the underground construction is an excellent feature of the system, which goes far to offset its heavy first cost.
In regard to the cost of power of the electrical roads it should be mentioned that it includes some items which are due to a short crosstown horse railway line which so joins several electric lines as to necessitate its being considered a part of the electric system. If these items are excluded, the cost of electric motive power is found to be 1.57 ceuts per car mile in 1899 . When the company's new r0,000 horse power power-station is in full operation, a further reduction of these figures will occur.
The percentage of operating expenses to passenger receipts for the three systems was 69.8 per cent for the horse, 50.8 per cent for the cable, and 383 per cent for the electric roads. In estimating their relative effi ciency, however, it must be borne, in mind that there is one important element left out of the above comparison which renders the superiority of the elec tric system even more striking-we refer to the comfor and dispatch with which the enormous passenger traffic on the electric lines is managed. The long. eight-wheel cars which are in almost exclusive use on the trolley roads are not only more commodious and smoother in their running than the cable cars. but they are run at a much greater speed.
There is one serious draw back to travel on the elec tric roads which cannot, however, be charged either to the system or the management-these roads are greatly over-crowded. The only possible remedy for this lies in the provision of other lines of travel, which will relieve the surface roads of the long-distance pas sengers and leave them to take care of the short-trave traffic. Such a provision can ouly be made by the construction of the rapid-transit tunnel road; and we are glad to note that the Metropolitan Street Railway Company is in favor of the construction of the tunnel as being the only and obvious solution of th present over-crowded condition of the surface roads.

WIRELESS TELEGRAPHY IN THE ARMY AND NAVY.

Among the many experts who were present upon the Grande Duchesse" during the yacht races to watch the operation of the Marconi system of wireless tele graphy (described and illustrated in our last issue) were representatives of the United States army and navy, and preparations are now being made for giving the system a practical test by both arms of the service We understand that the signal corps of the army is about to carry out a series of experiments in Washing ton in connection with the new automobiles which were ton in connection with the new automobiles which were
recently built for the War Department. The experiments are to be made in the country around Fort Myer An automobile wagon equipped with a set of Marcon sending and receiving apparatus will be dispatched several miles from the fort, and when it reaches its des tination it will send a balloon into the air which will carry a vertical wire to the proper height correspond ing with the distance over which the messages are to be sent. Another set of apparatus with a vertical wire will be installed on an automobile, which will be sta tioned at the fort
The naval experiments are to be carried out between the battleship "Massachusetts" and the armored cruiser "New York," both of which will be fitted with a vertical wire reaching from the masthead to a suitable operating room below, the installation being exactly similar to that described in our last issue. It is proposed to make these experiments very exhaustive, and an attempt will be made to duplicate and even ex ceed the performance of Mr. Marconi, who recently communicated between British warships engaged in the late autumn maneuvers which were at the time eighty miles distant from one another.

AERIAL NAVIGATION.

We regret to see that aerial navigation has recently claimed another victim, whose death was due to causes precisely similar to those which brought to an un timely end the experiments of the late Herr Lilienthal Lieutenant Pilcher of the Roval Navy, the latest vic. tim, had been for many years an earnest student of the subject of aerial navigation. His line of investigation was similar to that of Lilienthal and was directed to the development of the soaring machine. The aeroplane to which the accident occurred consisted of a light framework of bamboo and steel wire which car ried about 170 square feet of sail. It was provided with the usual rudder for maintaining equilibrium and steering. A machine of this kind is intended to be started from a slight elevation, and with proper manipulation of the rudder and adjustment of the weight it is possible to soar for a considerable distance The peril of these soaring machines lies in their liabili ty, if the weight of the body be not properly swung or the rudder properly controlled, to take a sudden dive earthward. It was a mishap of this kind that
killed Lilienthal, and the death of Lieutenant Pilcher was also due to his losing control of the vertical movewas also due to his losing control of the vertical move-
ment. These accidents emphasize the fact that the art of balancing on widely extended areas of sail, while it is performed automatically by a bird, can only be acquired by man as the result of much practice, and control even under normal conditions can only be maintained by the strictest watchfulness. It can readily be understood that a peril which is ever present in quiet air becomes imminent should the aeroplane be struck by a sudden and unsteady gust of wind. It must be confessed that the late tragedy seems to prove that the erat of safe artificial flight is yet a long way off.

STABILITY OF THE " NEW ORLEANS" AND THE

 " AL BANY."In our issue of July 1, we commented at some length upon the sensational rumors regarding the instability of the "New Orleans," which, emanating from the Washington press, were taken up and elaborated by the press of Philadelphia and other shipbuilding centers. As we pointed out at the time, inquiry at the Brooklyn navy yard, where the inclining experiments on the "New Orleans" were made, showed that these statements were based upon a misconception or a misunderstariding of the report of the inclining tests.

In the determination of her stability in light condition, the vessel was considered stripped of all consumable weights and was placed in the most unfavorable condition possible. She was entirely emptied of coal, water, and stores, the coal representing a lightening of 800 tons and the water of 220 tons. Not only were the boilers and tanks emptied of water, but all water was removed from the double bottom. The ammunition, representing 120 tons, was also removed, and neither the crew nor their supplies were on board. Indeed, the ship was put into a condition which, if she were upon the high seas, would constitute her a derelict.
When this process of stripping was completed, a certain number of cast-iron blocks of known weight were shifted across the deck, and from the angles of inclination of the ship so obtained the metacentric height, or stability, was calculated. The results showed that when the "New Orleans" is absolutely empty, she has a negative metacentric height of 0.48 foot. or about $53 / 4$ inches: which means in lay phraseology that she would not, in this condition, float upon an even keel, but would take a slight list, until by immersing a fuller waterline, she found sufficient bearings. Now there is in this nothing unusual. It occurs whenever an ocean liner is absolutely empty, and provision is made in all merchant steamers, as in the "New Orleans," for correcting the list by introducing water ballast into the double bottom of the vessel. The inclining experiments showed that when the "New Orleans" is fully equipped for sea, with all coal, ammunition, and stores on board, she has a positive metacentric height of 1.7 feet. Advantage was taken of the recent visit of the "New Orleans" to dry dock, preparatory to her voyage to the Philippines, to subject her again to a series of inclining tests, which showed practically the same results as those of last June.
In the report which was made to the Bureau of Construction and Repair, at Washington, it was suggested that whenever the ship at sea was approaching the light condition, because of depletion of her bunkers, ammunition, or stores, it would be advisable to introduce a certain amount of water into her bottom tanks. There is nothing new in this suggestion; it has been made before with regard to other ships of our navy, and as a matter of fact the "Philadelphia," which has considerably less metacentric height than the "New Orleans," has to keep water in her double bottom all the time to give her the desired stability.
Unfortunately, in transmitting the report of these tests of the "New Orleans" to the Secretary of the Navy, the bureau at Washington made the following comment: "This at once marks her as a dangerous vessel, requiring great care, when in service, on the part of the commanding officer." It is a matter of great regret, both upon the part of the officers who have commanded this fine vessel at sea and the officers of the construction corps, that such an unfortunate misconstruction should have been put upon the results of the inclining experiments. These gentlemen do not consider the "New Orleans" to be "dangerous;" ridicule the suggestion that she is untrustworthy; and they regret that any such impression should have been gathered from what was an ordinary routine inclining test, such as is carried out upon every new vessel of the United States navy
In this connection it may be mentioned that tests of the "Albany," sister ship to the "New Orleans," which have been made at the Armstrong works, where the "Albany" is completing, show that in the empty condition she has a positive metacentric height of $1 \cdot 22$ feet and a metacentric height when fully loaded of $2 \cdot 69$ feet. The difference in the results as found in the two ves. sels may be accounted for by the fact that the "Albany" was short of her full weight by an estimated amount of 321 tons, and that other estimated weights
had to be taken out; a slight error in these calculated weights, or the presence of bilge water in either ship, might affect the results sufficiently to account for the difference.
In any case, it is reassuring to know that in respect of her seaworthiness the "New Orleans" is indorsed both by naval constructors and by the line officers who have sailed her in every kind of weather. The captain of a ship is always particularly alive to anything in the motions of his vessel in a seaway that betokens a lack of stability. He has a quickness of perception, born of long experieuce, which would detect this unpardonable fault at the first indication of its existence: yet we are assured by those who have had charge of her that even in the light condition she has shown ample evidence of stability.

DOUBLE-DECK TURRETS.

We understand that at the last meeting of the Naval Board of Construction it was decided, after exhaustive discussion, to adopt the double-deck turret, as installed on the "Kentucky" and the "Kearsarge," for the three new 13,500 -ton battleships whose construction was authorized by the last Congress. There is no feature of our battleships which has been the subject of more heated discussion among naval experts than this form of turret. Both in the Bureau of Construction and among the line officers are to be found those who ardently ad vocate and others who are bitterly opposed to the system.
As we expect to discuss this matter more fully in a subsequent issue, we will merely state just now the leading arguments for and against this type. It is argued in its favor that it enables an equal energy of all-round fire to be obtained from a smaller number of guns; that it affords an unusually complete protection for the ammunition hoists and turning gear of the 8 -inch guns : and that it provides the same energy of gun-fire and protection for considerably less weight. On the other hand, it is contended that the placing of four heavy guns in a single structure is bad policy, on the ground that it is placing "many eggs in one basket," a single lucky shot being liable to put the whole four guns out of action. It is also urged that the 8 -inch and 12 -inch guns would be at all times trained upon one and the same part of the vessel, whereas it might be desirable to use the heavier guns for the attack of one part of the ship and the 8 -inch guns for the destruction of parts less heavily armored. We think that the board would have done better before arriving at a final conclusion of this most important subject if it had awaited the report on the trials of the double-deck turrets of the "Kearsarge," trials of the double-deck turrets of the "Kearsarge,"
which are shortly to be carried out. Only the actual which are shortly to be carried out. Only the actual
firing tests, carried out under all conditions of weather, firing tests, carried out under all conditions of weather,
can detect whether there are faults hitherto unsuscan detect whether there are faut
pected in the double deck system.

INTRODUCING MARINE ANIMALS INTO GREAT SALT LAKE.*

The possibility of introducing into Great Salt Lake fishes and other animals of economic value which normally have their habitats in the salt and brackish waters of the sea and its estuaries has been called to the attention of the United States Fish Commission at frequent intervals, but until 1898 the opportunity to make the inquiry did not present itself.
It was recognized that the area which would possess the requisite physical characteristics could not be very extensive, and that there was little hope of introducing marine fishes, for Great Salt Lake holds salt water of a density which could not be endured by ordinary marine organisms. Where fresh water flows in there is formed a narrow zone of a density approaching that of the sea, lying between the fresh water on the one hand and the salt on the other. This zone occurs only near the mouths of streams, and its limits are so circumscribed as to allow but small latitude for the wandering of marine organisms possessing active powers of locomotion, and they would be restricted in one of their most inportant functions, and be in constant danger of wandering into the surrounding water, where the conditions would be fatal.
The oyster, on the other hand, is a sessile organism and, if its immediate surroundings be favorable, a r :stricted area does not prohibit oyster culture of a certain character, except insomuch as it restricts the number of oysters which it is possible to raise. Oysters w ill live in water of a density or specific gravity between $1 \cdot 002$ and about 1.0024 , but near the limits mentioned they are inferior in quality and of but little value as food. In water of low density they become poor, flabby, and tasteless, while near the upper limits of their adaptability they become small and almost worthless, as may be seen in the mangrove oysters in certain parts of the South and in some of the West
Indies. To raise oysters of the best quality it is necesIndies. To raise oysters of the best quality it is neces-
sary to have the water of such salinity as will give a * Condensed from a Report to the United States Fish Commission, en-
titled : "An Inquiry into the Feasibility of Introducing Useful Marine titled: "An Inquiry into the Feasibility of Introducing Useful Marine
Animals into the Waters of the Great Salt Lake." Report for 1899, pp. 229 to 250 , with map.
specific gravity of between 1.010 and 1.020 . Preliminary experiments had shown that diatoms, which con-
stitute the chief food of the oyster, would grow in Salt stitute the chief food of the oyster, would grow in Salt
Lake water when it was reduced in density within the Lake water when it was reduced in density within the believed that they would be actually found in the lake under the same density conditions. This as sumption was afterward verified by the investigation.

The inquiry embraced the question of the feasibility of introducing not only the oyster, but also crabs and fishes.
From its configuration, and from the information which it was possible to acquire by correspondence, Bear River Bay was selected as the first and principal point for investigation, although, after the unfavorable result of the examination there inquiry was directed to all other places which offered any promise of success.
The proportional constitution of the saline contents of the waters of Great Salt Lake is not vastly different from that of salt water. Great Salt Lake is salt, and not alkaline. The physiological effect of its waters probably would not seriously differ from that of seawater were it not for its high density, but to attempt to introduce marine animals into water having a spe-
cific gravity of $1 \cdot 168$, when they have become adapted cific gravity of $1 \cdot 168$, when they have become adapted
by nature to a density of but $1 \cdot 025$, would be an utter by nature to a density of but 1.025 , would be an utter waste of effort.
During the writer's visit to Great Salt Lake, he several times heard the opinion expressed that the extraction of salts from the lake through the several agencies acting in that direction would, in time, result in a re duction of its density to a degree which would solve the problem of the introduction of marine forms. Seeing the great quantities of salt at the salt ponds, and not appreciating the vast stores of the lake, the mistake is not unnatural. About 50,000 tons of salts are annually taken from the lake for commercial purposes, but less than 84 per cent, or about 42,000 tons, of this is sodium chloride. Basing the calculation upon Gilbert's estimated accumulation period of twenty-five thousand years, the annual influx of salt from the tributaries is about 16,000 tons, making the net loss about 26,000 tons. The lake at present holds about $400,000.000$ tons of common salt with a water density of 1.168 . A greater density than about 1.020 is not favorable to the oyster, and to reduce the lake to that
degree of salinity, its volume remaining unaltered, would necessitate the extraction of about $360,000,000$ tons of sodium chloride, and at the present rate of loss this would require a period of nearly fourteen thousand years. It is not considered that the prospect is such as to require very serious attention at present and the niceties of computation have been neglected.
It is evident that as Great Salt Lake rises during an annual or a non-periodical elevation, the general density of the lake water must decrease, for the increased volume is due to the addition of fresh water, and the total quantity of salt in the lake remains practically the same. During a period of subsidence the contrary is true.
Even should there be found a limited area where the density conditions were such as could be endured by the adult oyster, it would, nevertheless, be impossible to establish self-sustaining beds-that is, beds annually replenished by young oysters produced thereon. The young oyster is, for the first few days of its independent existence, a delicate free-swimming organism, extremely sensitive to sudden changes in its environment. A density variation of but a few degrees is sufficient to kill it, and the eggs are not even capable of efficient fertilization in water differing very much in salinity from that in which the parents lived. It can be readily seen that with an organism so fatally responsive to changes of environment there could be practically no hope of securing a successful set of young oysters, and the bed could only be maintained by annual importations from the seacoast.
The objections to the planting of fish, oysters, etc., in Great Salt Lake are based on physical rather than biological conditions. There is an abundant food sup ply, the water teeming with brine shrimps and insect larve. The available fish food exceeds in quantity that usually found in the sea, its abundance being largely due, no doubt, to the fact that there are no fish to consume it. The lake is also exceedingly rich in minute plants, especially diatoms, which constitute the chief food of the oyster, but from a practical point of view this fact has no value when we are confronted by the absolutely prohibitive physical conditions which the present examination disclosed.
There is much greater probability of attaining valuable results by introducing cat-fish into the fresh sloughs near the mouths of the rivers than by attempting the introduction of marine species into the lake.

DEATH OF PROF. EDWARD ORTON
We regret to note the death of Prof. Edward Orton, who died at his home on October 16. Prof. Orton was one of the foremost of American geologists. It
will be remembered that he was President of the Ameri-
can Association for the Advancement of Science for the current year, the meeting being held at Columbus, Ohio, last August. Wegave an extended biography and portrait of Prof. Edward Orton in the Scientific american for August 19, 1899.

NEW YORE'S COAST DEFENSES

The annual report of General Wilson, Chief of Engineers, which has just been issued, deals exhaustively with the plans for coast defense around New York. The large appropriations of recent years have permitted rapid progress. Some of the batteries are to me lighted by electricity, and a plant for this purpose has been established. The mines planted during the war with Spain have been taken up, cleaned and stored. The report states that the experience of last year makes it essential that the engineer corps should have authority to prevent trespass on mine fields in New York Harbor, by shipping. At the southern entrance to New York Harbor emplacements are almost completed for the accommodation of sixteen 12 -inch mortars, two 12 inch breech-loading rifles on lifts, thirteen 10 -inch and five 8 inch guns on disappearing thirteen 10 -inch and five 8 inch guns on disappearing
carriages, besides minor artillery. The coast defense of the United States at present-consists of the following : Of guns mounted, there are twenty-seven 12 -inch, eighty-three 10 -inch, fifty-nine 8 -inch, forty-six rapidfire guns and one hundred and seventy-six 12 -inch mortars. Ready for armament, there are thirty-nine 12 -inch, twenty-seven 10 -inch, twenty-five 8 -inch, one hundred and fifteen rapid-fire and sixty 12 -inch mortars. Under construction there are nineteen 12 -inch guns, eight 10 -inch guns, ten 8 -inch guns, one hundred and twenty-two rapid-fire guns and one hundred and eight 12 -inch mortars. In addition to this there are twenty-five rapid-fire guns which are not yet begun. This will make, when all are completed and mounted, eighty-five 12 -inch guns, one hundred and eighteen 10 -inch, ninety-four 8 -inch, three hundred and eight rapid-fire guns, three hundred and forty-four 12 -inch mortars. It is assumed that $\$ 4,800,000$ will be required for the defense at Porto Rico.

A SEed testing plant.

The Agricultural Department is putting the finishing touches on a plant whereby it will be able to more thoroughly protect itself, farmers, and seedsmen generally against dishonest or careless persons who impose on their customers by selling bad seeds. A seed-testing house is being erected, comprising a store and packing house 30×20 feet and a hothouse 80×18 feet, in which germination tests will be made. For years these tests have been made by the botanists in various parts of the department's main building; but the work has so grown in importance and magnitude that a special building has become necessary. According to Botanist F. V. Colville, "From tests in the past it is evident that there is great carelessness in planting and harvesting seeds, and also, undoubtedly, much sharp practice is indulged in by dealers, who mix seeds of very inferior grade or of an entirely different variety with good seeds and sell the stuff as the best quality of seeds." For example: "A lot of meadow foxtail seed from Germany was only 27.5 per cent pure; it cost 35 cents a pound and was adulterated with seed worth only 10 cents. Of seeds purchased in the open market, the tests showed orchard grass 53 per cent bad; redtop clover, 73 per cent; a lot of crimson clover, 98 per cent bad ; and some Hungarian brome grass that failed to germinate at all." It is to defend our agriculturists against such frauds as this, especially, that the new system is being established.
recent applications of electro-metallurgy In a paper on this subject, read before the British Association by Mr. Cowper-Coles, says The Journal of the Society of Arts, an electrolytic process for the manufacture of reflectors was described, suitable for making parabolic reflectors for search-lights. The pro cess consists in using a glass convex mould, on whieh is chemically deposited a coating of metallic silver. The mould thus prepared is immersed in an electrolyte of copper sulphate, the mould being rotated in a horizontal position, the number of revolutions being about 15 per minute. The copper adheres firmly to the silver, and together they form the reflector, which is subsequently separated from the glass mould by placing the whole in cold or lukewarm water, and then gradu ally raising the temperature of the water to 120° Fahr., when the metal reflector will leave the glass mould, due to the unequal expansion of the two. The concave surface of the reflector obtained is an exact reproduction of the surface of the mould; it has the same brilliant polish, and requires no further treatment to answer all the purposes of a reflector, with the exception that it must be coated with a film of some suitable metal to prevent its tarnishing. Palladium is found to answer this purpose best, as a bright coating can be deposited rapidly to any desired thickness. Palladium resists tarnishing and the heat of the arc to a wonderful degree.

AN UNDERGROUND CONDUIT-CROSSING FOR ELECTRICAL CONDUCTORS.
Our illustrations represent a new crossing for underground conduits for electrical conductors, which has been invented by Victor Koch, of Scranton, Penn., and which is arranged thoroughly to protect the conductors from moisture and to permit the making of repairs.

The crossing is provided with a base having its top rabbeted along the sides. Oppositely-arranged longitudinal trough-sections have projecting tongues continuous along the bottom and sides, the bottom portions engaging the corresponding rabbets in the base. The transverse trough-sections which complete the cross ing are provided at one end with projecting tongues to engage the corresponding rabbets on the base. The sides of the transverse sections fitin the rabbets on the

PERSPECTIVE AND PARTIAL PLAN VIEWS OF THE CONDUIT-CROSSING.
sides of the longitudinal sections. Our small plan view of one corner of the crossing, with the cover removed, shows the arrangement of rabbets and tongues. Upon the longitudinal and transverse sections an arched, cross-shaped cover is fitted, and connected with the. sections by tongues and grooves so that moisture cannot pass into the conduit in a longitudinal or a transverse section or at the crossing. In making the various parts of the conduit the inventor employs glass or other material impervious to water so that the wires placed in a conduit are protected from the influence of moisture. Interruptions in telegraphic, telephonic, or other electric lines are therefore not likely to occur.

From Cable to Trolley on the Third Avenue

The work of changing the Third Avenue Railroad system in New York from cable to trolley has been actively prosecuted during the past year, and last week the first section of the road from Sixty-fifth Street to One Hundred and Twenty-ninth Street was put into electrical operation. The difficult work of making the necessary changes has been carried out without interrupting the heavy traffic which passes over this road. The improvement of the road has consisted in a general reconstruction, in the way of laying down heavier rails, in addition to the insertion of the appliances necessary for its operation on the underground trolley system. The old rails, which weighed 80 pounds to the yard, and were in 30 -foot lengths, were in 30 -foof lengths,
have been replaced by have been replaced by
100 -pound, 60 -foot rails. 100 -pound, 60 -foot rails.
A further improvement, having for its object a smoother, running track, was the uniting of the rails by means of cast-welded joints. The improvement re. sulting from this change sulting from this change alone has been very marked; the running of the cars being exceptionally smooth and noiseless.
The change to electric power necessitated the laying of the ducts for the electric cables, the construction of the construction of hand holes, 15 feet apart, at the side of the slot
rails, and the putting in rails, and the putting in
position of the insulaposition of the insula-
tors which carry the T. tors which carry the T. rail conductors. As this
work had to be done

Mystic Lake and Lake Cochituate. Though three distinct systems thus contributed to supply it, there was barely sufficient water to meet the needs of the people, which on a conservative estimate would in 1895 amount to $84,000,000$ gallons daily.
It was consequently deemed of the utmost importance that there should be no delay in augmenting the sources of water supply. By the legislative act of 1895 , the Metropolitan Water Board was created to act for the State.
The act constituted a metropolitan district to in clude the cities of Boston, Chelsea, Everett, Malden, Medford, Newton, and Somerville, and the towns of Belmont, Hyde Park, Melrose, Revere, Watertown, and Winthrop. By a special provision other cities and towns may be supplied by the Board, of which provision Nahant, Swampscott, and Quincy have taken ad vantage. 'The issue of bonds to the amount of $\$ 27,000,000$

assabet bridge, on line of aqueddct.
without interfering with the cables of the cable sys tem, the T-rails were not at first placed in the position they will finally occupy, but had to be placed fully 9 inches apart in order to make room for the passage of the plow on the present cable cars. This arrangement was made possible by providing oblong bolt how the insulator frames, with sufficient clearance to each rail to be moved back $11 / 2$ inches from its final permanent position.

The change from one system to the other on the stretch of track above mentioned was madeimmediately after midnight on Saturday, at which time a large force of men was stationed at the hand-holes and simultaneously moved the feeder rails to within half an inch of their proper position, leaving room for the cable plows to pass. At half-past two in the morning the cars were stopped, both feeder rails were moved to place, and all connections made. In removing the cables, they were cut and the sections were hauled into the power house by means of the main engines.

AN IMPROVEMENT IN ROTARY DRUM

 DRIERS.A patent has been issued to John Bishop, of Bartow, and Andrew P. Jerguson, of Hull, Fla., for an improved drier designed primarily for the handling of phosphate rock and such material as may be allowed to come into direct conta $3 t$ with the products of come into direct contast with the products of drier is of the rotary combustion. The drier is of the rotary drum
type, and is provided with longitudinal partype, and is provided with longitudinal par-
titions forming as many contracted longititions forming as many contracted longi-
tudinal channels through which the material to be treated is passed, thus providing a large amount of radiating surface and consequently increasing the efficiency of the drier. The feed end of the drier is furnished with a number of diagonal angle-iron flanges, which, as the drum revolves, feed the material toward the partitions. The stock is further advanced by angle-iron flanges on the partitions, which, however, are used only when the drum is horizontally mounted.

The inventors state that by the use of the continuous partitions a large increase of effective heating surface is obtained and that the material is more equally distributed, since it is divided into a series of sections sliding over the heating-surfaces. The continuous partitions applied to an ordinary, direct-fired rotary drier differentiate this apparatus from others of the same class.

WATERWORKS EXPANSION IN BOSTON.
 by J. A. strwart.

Few people realize, even in Boston, the importance and magnitude of the plans, which are at present under way, to give that city a pure and adequate supply of water for all purposes. Not ouly Boston is to be benefited, but also the various municipalities which lie within a ten-mile radius.
It was in 1893 that public attention was called to the inadequacy of the water provision and the imminent danger of deficiency in time of drought, by a legislative act authorizing the State Board of Health to present a plan for a suitable water supply for the city of Boston and its suburbs.
At that time Boston was receiving some 57,000,000 gallons of fresh water daily from a watershed of about 120 square miles. About five-eighths of the supply came from Sudbury River and its tributaries (constituting the Sudbury system) and the remainder was drawı from

AN IMPROVED ROTARY DRUM DRIER.
was authorized, the total cost of the extension being estimated at $\$ 20,000,000$. By the construction of the proposed works, the water of the Nashua watershed, an area of about 118 square miles, capable of yielding, even in a series of very dry years, 105,000,000 gallons of water daily, will be stored in a great reservoir, $61 / 2$ square miles in area, on the south branch of the Nashua River. This water is conveyed by the new Wachusett aqueduct to the new Sudbury reservoir in Southborough and Marlborough ; thence with the mingled waters of the present Sudbury and Cochituate systems of the city of Boston to the Chestnut Hill reservoir and to Spot Pond, whence it is distributed to the various cities and towns of the metropolitan district, insuring a daily supply of at least $173,000,000$ gallons, double that of all other sources combined for the use of the district.
The carrying out of the plans requires the erection of a large dam and dikes at Clinton, Mass., and the construction of a vast storage basin. The building of new pumping stations and the laying of great main distributing pipes are among the minor operations involved. As the first duty of the Board, however, was to furnish increased water supply at the earliest period, its efforts were at once directed to the completion of the Sudbury reservoir (a work half finished by the city of Boston) and the building of the Wachusett aque duct. The latter important work, begun early in 1896 and completed in 1898, embraces (1) a tunnel two miles long through rock so compact as not to require a lining for half its length, (2) a masonry aqueduct, seven miles long, with a bridge of seven spans and 360 feet in length across the Assabet River, and (3) an open channel, three miles long, following the course of a brook into Sudbury reservoir. The masonry aqueduct, which is 11 feet 4 inches wide and 10 feet 5 inches high, has a maximum capacity of $300,000,000$ gallons daily. It terminates at a point on the Sudbury watershed in the town of Northborough. Its waters then run for three miles through the open channel, which is 20 feet wide at the bottom, to Sudbury reservoir, from which a second aqueduct issues, branching at Weston into two great pipe lines, one taking a northeasterly
course to Arlington, the other running southeast to Chestnut Hill reservoir. The waters of the Nashua River were diverted into the Wachusett aqueduct by means of a temporary dam, which will also serve as an aid in prosecution of work upon the main dam. The completion of the Sudbury reservoir in 1898 and its con nection with the Nashua River by means of the Wachn

WACHUSETT AQUEDUCT-BRICK AND CONCRETE CONSTRUCTION.
sett aqueduct gave the metropolitan district an additional storage basin of nearly two square miles, averag ing 19 feet in depth, and having a capacity of $7,500,000$
COMPARATIVE TABLE OF AREAS, DEPTHS. AND CAPA cities of storage reservoirs, with height and LENGTHS OF DAMS.

Name and Location of Reservoir.	$\begin{gathered} \text { Area } \\ \text { (Square } \\ \text { Miles). } \end{gathered}$	$\begin{array}{\|l\|l} \text { Averague } \\ \text { Depeth } \\ \text { Deet). } \end{array}$	Maximum Height of Dam.		$\begin{gathered} \text { Length } \\ \text { of Dam } \\ \text { (Feet). } \end{gathered}$	Capac- (Million lons).				
			Above Ground.	Above Rock.						
Wachusett reservoir, Mass	6:36	46	129	158	1,250	63,068				
Nira, near Poona,	725	27	100	\ldots	3,000	41,143				
Tansa. Bombay, India.	$5 \cdot 50$	33	127	131	8,770	37,500				
Khadakvasia Poona,		32								
San Mateo, Cal.	$5 \cdot 50$	32	100 170	107	5,080	36,737 32,000				
New Croton, N.Y...	….		157	$\stackrel{3}{290}$	1,270	32,000				
Birmingham, Eng., watersix reservoir for	$2 \cdot 34$	43	98 to 128	\cdots	4,460	20,838				
All Boston watercombined.	$5 \cdot 8$	14	14 to 65	\ldots	15,867				
Vyrnwy, Liverpool,	1.75		84	129	1,350	14,560				
Ware River, Mass. (contemplated)	$1 \cdot 62$	33	71		745	11,190				
Sodom, N Y Y......			72	89	500	9,500				
Hemet, San Jacinto, Cai..			150		200	8,500				
Sudbury reservoir, Boston waterworks	1.91	19			1,865					
Titicus, N. Y		\ldots	105	115	1,865	7,000				
Hobbs Brook, Cam- bridge waterworks...	1.00	12	23			2,500				
Cochitate, waterworks.	135	8				2.160				
Hopkinton reservoir, Boston waterworks..	029				1,500					
Furens, France...			146	184		${ }^{1} \times 22$				
Note. - The heights of dams are given from the ground and rock up to the level of full reservoir. The lengths of dams are the distances across the										
valleye at the level of fuil reserovir on the line of the main dam. Thecapacities are given in United States gallon.										

gallons, thus increasing the daily supply from $69,000,000$ to $100,000,000$ gallons, and enabling the people to receive and enjoy to a large extent the better water which comes from the Nashua River.
Although the Water Board could rest upon its oars
at the termination of its primary task, the progress of extension has been persistently pushed. Preparations have been quietly and steadily going on during the past four years for the most important work and the climax of the scheme-the construction of the Wachusett dam and reservoir in Worcester County. This projected reservoir will supplement and cast into the shade all previous parts of the system. It is evident that it ex ceeds in vastness and engineering greatness anything ceeds in When ith will hold about be $800,000,000$ of $63,800,000,000$ allon times as much as all the present reservoirs, ponds, and basins in the Sudbury, Cochituate, and Mystic systems taken together. The accompanying table shows that the Wachusett reservoir exceeds in capacity the Nira basin, near Poona, Hindostan, by more than a third. The mammoth reservoir
Tansa in Bombay and the Kha dakvasla at Poona are left still further behind. The next largest further behin. Thes reservoirs yet completed, the Sa Mateo, California, and the Croton, New York, could both be almost contained in the Wachusett. With but one exception, the Periyar, now building in India, the Wachusett is the largest retaining reservoir in the world.

The site of this great storage basin is in one of the sightliest sections of Central Massachusetts, about 35 miles northwest of Boston, and about seven miles northeast of Worcester. On account of the rocky nature of the soil, very little opportunity is given for agricultural pursuits, and the population is but 69 to the square mile. The region was settled early in the present century. The scenery is diversified by hills, valleys and woods. Nearby toward the north siands Mt . Wachusett like a guardian sentinel. Wachusett like a guardian sentinel. of good quality. Merrimac schist, calcareous gneiss and the St. John's group, constitute the geological formation. West Boylston, a busy manufacturing village of 3,000 inhabitants, will pass out of existence
The entire area of the watershed is $118 \cdot 23$ square miles, and at its highest point its elevation above sea level is 2,002 feet. There are 2,000 acres of cleared land to be flooded : 1,801 acres of wooded land; 81 acres of stump land; and 313 acres of water surfaces. The elevation of the reservoir is 385 feet above Boston water works base, thus affording an adequate head to reach the highest buildings in Boston.
The great retaining chamber is created by building a masonry dam across the Nashua River just above the town of Clinton, and by constructing dikes to the north and south of the main dam to prevent overflow ing in certain other directions. The area to be sub merged is 4,195 acres or 6.56 square miles exclusive o margins. The length of the basin is $8 \frac{1}{2}$ miles, and the total length of shore line, exclusive of islands, 35 miles. As the shores are ex ceedingly steep by reason of surrounding hills, the average depth of the reservoir is 46 feet, which is an unusual depth, and in places it reaches 129 feet.

The new basin will submerge a small part of Clinton and of Sterling. A great deal of Boylston and almost all of West Boylston will be wiped out. The buildings now being removed include 6 mills, 4 churches, 6 schoolhouses, and 224 dwell ings. One thousand seven hundred and

SITE OF DAM, WACHOSETT RESERVOIR.
NORTH DIKE, EASTERLY PORTION MAIN CUT-OFF TRENCH
is made 50 feet wide. The slope on the reservoir side of the embankment is formed of a thick bed of imper vious gravel, covered with broken stone, and paving or rip-rap. There will be another dike on the southerly side of the reservoir one-half a mile in length, and ris ing 10 feet above the level of the water, consisting of an earth embankment with a concrete core wall buil upon the solid rock
The main dam is located across a narrow gorge about 3,000 feet above the dam of the Lancaster mills, at Clin ton. The general form of the cross section is the same as that adopted for the new Croton dam, in New York. It is similar in many respects to the Furens dam upon the Furens River, in France, built in 1866, and to the Tansa dam of the Bombay waterworks, constructed in 1891.

The dan will rise 10 feet above the level of the full reservoir. At the water level it has a thickness of 19 feet, and 145 feet below the water line the thicknes increases to $1191 / 2$ feet. It is composed entirely of masonry. Its total length is $1,2,50$ feet; but only 750 feet has a depth from high water to the rock exceeding 40 feet, and but one-fifth exceeds 120 feet in depth The maximum depth from high water to the rock at the down-stream edge of the dam is 158 feet.
Advantage has been taken of the favorable topo graphy at the northerly end of the dam to provide a very long overfall and a waste channel for wasting the water during floods without permitting it to flow over or near the hirh part of the dam. The overtall has a length of 450 feet, and will discharge a quantity of water equal to 8 inches in depth over the whole watershed in twenty-four hours. The greater part of the overfall is to have a masonry crest at the level of the full reservoir; but for a length of 120 feet it is proposed to keep the masonry crest 3 feet longer, and to retain the water at the full height by means of stop planks or movable gates.
Gatehouses are provided on the up-stream and down-stream sides of the dam, with four 48 -inch pipes connecting them, which are to serve the joint purpose of supplying water to the aqueduct leading to the Sudbury watershed and of conveying the waste water to the river below. These pipes below. These pipes, with the large head upon them when the eservoir is nearly full, have sufficient capacity to take the waters of a large freshet.
A part of the trench which is to be cut along the line of the north
dike and filled with mpervious material has been dug. It has a bottom width of 30 feet. The railway for removal of the soil scrapings has been constructed and a substantial and successful beginning has thus been made in the construction of the great reservoir.
As may be inferred, the water that will be stored in he Wachusett reservoir is the best that has ever been distributed in Boston. The Water Board at its wellappointed laboratory, through its biological department and in connection with the State Board of Health, makes scientıfic inspection each week of water drawn rom various points of the works. The building of a reservoir of extra large size permits the water to be stored long enough to bleach and improve by the decomposition and disappearance of the organic matter. The diversion and purification of sewage and manufacturing wastes and the drainage of swamps further aid in furnishing a good quality of water.

Antiquities at Ephesus.

There are many antiquities now on view at Ephesus having been unearthed by the excavation of the Austrians. A great theater has been dug out, the whole of the columns of the proscenium and the passage and anteroom, with mosaic pavements, have been opened up and work is going on still in the upper portions of the theater. In the street in front are the marks of chariot wheels along the pavement. There are also the whole series of buildings behind and underneath the gymnasium, including marble water troughs, sculptured with oxen and oak wreaths and fine marble doorways in situ. A semi-circular marble portico with its steps, which occupy the whole east side of the harbor, is now being excavated. It is believed St. Paul landed at these steps.

Prof. Nussbaum, of Hanover, has discovered that the plastering on the walls seriously affects the acoustic properties of a room. He finds that the best results are obtained by using pure gypsum that has been heated to a white heat.

MAP SHOWING LOCATION AND SCOPE OF THE NEW BOSTON WATERWORKS

more properly speaking, upheavals of the soil. The nature of these perturbations is evident at Nazli, where the ground rose five or six feet in some places, and subsided as many in others. The effects produced are most extraordinary.
The village of Haskieu looks as if it had been snatched up by some mighty hand, crushed in an all-powerful grasp, and then violently hurled back to Mother Earth. At Aidin a plane tree, which can with difficulty be encircled by two men, has sunk to the bole, the surrounding houses being little damaged
Between Aidin and Nazli the railway line for 800 yards was shifted seven feet and raised five.
Near Kocharli an enormous crevasse half drained the Meander, while at Yeni Bazaar so large a body of water was ejected from fissures in the soil that a thousand sheep were carried away and the shepherd drowned. In Karaja Su all the water has withdrawn and the wells have dried up, whereas at the Djinli Kava antimony mines, near Odemish, the volume has increased four-fold.
The pillars of the bridge at Seraikieu have turned round on themselves, but the embankments have suffered little. All the towns and villages in an area of 2,500 square miles have either been totally or partly destroyed, and at Seraikieu, once a busy center, now a heap of ruins, a fire broke out and completed the destruction.
Denizli has 2,700 houses and shops on a level with the ground ; Bouladan, 1,500; Nazli, 1, 200 ; Aidin, 500 to 600 ; Ortakche, 300 to 400 . Karaja Su, Bosdoghan and Turkass may be said to be totally destroyed, for the few houses still standing are so shaken as to constitute in themselves a source of danger. Honas, New Shamli, Yeni Bazaar, and Morali require rebuilding.
The loss of life is, comparatively speaking, small, being variously estimated from 1,200 to 2,000 . It is, however, impossible to give exact figures.

As is generally the case in earthquakes, the wounds are bad, but the number of the wo unded is, luckily, sma11, not exceeding 1,000 to 1,500 . Fully 100,000 persons are deprived of shelter, and disease will, ere long, count more victims than the earthquake, espe cially at Denizli, which, as its name implies, is a place of many waters. Wallace H. Turrell Smyrna.

Armored Glass.

Glass plates cast with wire gauze, or rather
when the sea over her is frozen, good, solid ice of unlimited streng th is to be met during four winter months -December to March-and the assistance of the pow erful ice breaker "Erinack" could be easily procured on very moderate terms.
In case you would bring this matter to the atten tion of your countrymen, and any of them are will ing to undertake it, I shall be glad to give all neces sary particulars in regard to the matter. I am in a position, owing to my connections with the Navy De partment, to assist in furthering the enterprise.
M. Poggenpohl.

St. Petersburg, 57 Liteinaia, Russia, October 13, 1899.

Recent Earthquakes in Asia Minor

To the Editor of the Scientific American
Commencing just above Hierapolis, the sacred city of the Phrygians, and ending in an abrupt promontory at Priene, once famous for its Panionian games, the range of Mt. Mastaurus traverses one of the most fer tile regions of Lesser Asia.
To the north extend the rich plains of Ionia and Lydia; to the south the Meander "winds its slow length" through loam tracts studded with towns and villages.
A long chain of hot springs, some of them chalyb eate, one or two small lakes of hot mud, as well as the formation of the rocks, clearly demonstrate the volcanic nature of this region.
On Wednesday morning, September 20, at 4:5, a strong earthquake shock, lasting thirty-five seconds, followed by a number of lesser concussions, sadly reminded the inhabitants of this province that the "latent forces" were by no means extinct. The seismic waves were, in the first commotion, long, and took a southeast to northwest direction, as is shown by the lines made by the seismograph and the zones in which the buildings fell-this, of course, in those centers where it was not felt in all its might, for there

n subs

In subsequent shocks the waves were short, being,
mesh, inclosed in its substance, submitted to tests at the Chemnitz Technical Institute and the Vienna Techno logical Museum, were found to possess great consist ency as well as resistance to pressure, shock, and the effects of heat, the resistance being 25.5 kilogrammes per square centimeter (361 pounds per square inch) and the consistency $255 \cdot 12$ kilogrammes per square centimeter (3,610 pounds per square inch) of the transverse sectional area. While plates of ordinary glass frequently broke under the sudden application of pressure, the strengthened glass was only cracked; and the cracks caused by rapid changes of temperature permitted neither damp nor flame to pass. It has al ready been proposed, says The Journal of the Society of Arts, to use the strengthened glass for protecting water-gage tubes; and the above named qualities would seem to indicate its use for the glasses of safety lamps.

Tobacco Plant Experiments

Dr. Albert S. Woods, of the Division of Vegetable Pathology, in the Department of Agriculture, is car rying on some interesting tobacco plant experiments. He is growing a lot of tobacco plants, and they receive their nourishment from a bottled mixture which he deals out to them at stated periods. The idea is to try various substances and find out whether they will thrive on a certain diet, or whether they are injured by the treatment which is given them. The tobacco plants are grown in pots filled with sterilized sand. Only boiled and filtered water is given them, so that the plants cannot receive any nourishment, either solid or liquid, which is not intended. At present a mixture of potash, iron, nitrogen, phosphoric acid, lime, etc., is being used. This liquid is diluted with 500 parts of water, and a certain definite amount is poured out on the plants. The condition of the plants is carefully examined under variations of the mixture.

A MONEY order department has been opened in Dawson City.

The Johns Hopkins University will have an impor tant exhibit at the Paris Exposition. It will include the celebrated concave gratings of Professor Rowland, instruments from their laboratory and examples of the work done with them.
The cultivation of fruit trees along the highways of France is being extended each year, the government having adopted this practice as a source of revenue, so that now roadside fruit cultivation has become an important branch of national industry. Statistics of it will be found in the current number of the Supple ment.
Grant Allen, the voluminous and versatile AngloCanadian author, is dead. He wrote many popular books upon scientific subjects, specially the Darwinian theory of evolution. His writings were not confined to scientific subjects, however, but included works of fiction, theology, guide books, and he also wrote some curious articles upon Italian art.
The United States Publishers' Building at the Pari Exposition is now being constructed. It is for the ex clusive exhibition of American printing machinery and allied interests and will be the headquarters for the publishers of the United States. A large number of the latter will exhibit bound volumes of their pe riodicals and current number's will be kept on file for the use of visitors.
A hard rubber steam acid pump is made by a New York firm. It is designed specially for conveying acids, chemicals or any volatile liquid. All parts which come in contact with such substance are of hard rub ber. These parts are held by and mounted on iron, which takes up all the strain incident to the work performed. These pumps are operated by steam like the ordinary steam pump or by electric motor.
Several months ago a bather was diving in shallow water and fractured several of the spinal vertebræ. He was taken to Roosevelt Hospital, New York city, and an operation was performed upon hiw for the removal of the fractured pieces of bone. The result of the operation has been very satisfactory and the improve ment from day to day is marked. He is now regaining the sense of touch and has some slight control of the muscles.

There is every indication that the Dewey arch will be perpetuated in stone. There is a considerable dis cussion as to the proper location of the arch. It is the opinion of many of the sculptor-members of the National Sculpture Society that the present location is the best which could be adopted. The arch is con sidered by some people to have the effect of dividing traffic instead of confusing it, and the efficacy of "re fuges" in London and Paris streets is conceded.
The Board of Health of New York city has re ceived a communication from the Board of Health in Michigan stating that twenty clerks of that State who were working over old volumes of records were taken ill with consumption and died. The books were examined by a bacteriologist and were found to be full of tubercules and bacilli, and it is thought they became infected from a clerk who had consumption and who had the habit of moistening his thumb with saliva when turning the pages.
A perpetual calendar has been constructed by a Frenchman named Jagot. It consists of five wheels having a total of ninety six teeth and of nine levers or catches. It indicates automatically, without any attention save winding, the day of the week, the date and the month, and shows the 29 th of February every four years, besides suppressing it in the centenary years that are not leap years and showing it in those that are. A further description of this device will be found in the current number of the Supplement.
New York undoubtedly possesses the finest morgue in the world. It was built two years ago, and has a capacity of 125 bodies, which are kept in cold storage. The bodies are not made a grewsome exhibition as in Paris, and the room in which they are kept is not more repulsive in appearance than a safe deposit vault. There are from twenty to fifty arrivals a day, and in 1898, 8,122 bodies passed through the morgue. The bodies of unclaimed persons are photographed and their clothing is preserved for a period of six months.
Amateur photographers will receive excellent treatment at Paris. The French Commissioners have made a ruling concerning the taking of pictures at the Ex position. Cameras will be allowed on the Exposition rounds after a permit has been secured from the Exposition authorities. A charge of ten cents will be made for this, and the applicant will be required to fur nish his name, age, and other personal data together with his residence in Paris. Only the buildings and general groups can be taken. Photographs of individual exhibits will not be allowed, as the patent laws of France guarantee the patentee against photocraphis of articles exhibited. A charge of $\$ 2$ was made for of articles exhibited. A charge of $\$ 2$ was made for
similar privileges at the World's Fair, in Chicago, and photographs were even then taken with difficulty. It is gratifying to know that the French Commissioners have made such a wise decision so early.

There are 1,135 miles of railway in Cuba, 551 miles of which are controlled by British companies.
The Pennsylvania Railroad Company has contracted for 100,000 tons of steel, and it is said the price to be paid is $\$ 33$ per ton.
An acetylene gas lamp exploded on the train which runs from Aix-la Chapelle to Berlin. The compartment happened to be empty at the time so that no one was in jured.
A record in shiphuilding has been established at Devonport, England. The first-class battleship "Bulwark" of the "Formidable" class is ready for launching after being in hand for only seven months.
"La Lorraine" of the Compagnie Generale Transatlantique will be ready in the spring. She is 580 feet long and her displacement is 15,000 tons. Her engines are of 22,000 I. H. P., and she will make 22 knots.

A glass factory has been started at St. Helens, England, in which the whole system of blowing is replaced by an automatic arrangement of molds and blowpipes worked by compressed air. The output has been much increased.
One hundred and twenty-seven establishments in Tokyo use gas engines and there appears to be a great field for American gas engines in Japan, as light power is needed for many industries. Gas is also used to a considerable extent for cooking and lighting. The gas plant at Tokyo has been increased 50 per cent during the past few months.
Admiral Crowninshield recommends the substitution of shore barracks for receiving ships in the navy, and estimates have been prepared for submission to Congress; these are for fireproof barracks for 1,000 sailors of the Brooklyn navy yard, to cost $\$ 800,000$. For barracks for 500 sailors each at League Island, Nor folk. Mare Island and Bosten, the cost will be $\$ 400,000$ in each case.
A 25 -mile railway for the Philippines was recently packed in the hold of a steamship at San Francisco. Everything needed for the railroad was sent except the ties, which will be obtained in the islands. It is said that the railway will be used to extend the 30 miles of railroad now controlled by the American troops. The engineering corps will build the bridges, etc.
First-class passengers in England have increased oaly 10 per cent in ten years, while the number of the third-class passengers has increased 41 per cent. Out of $1,063,000,000$, passengers traveling with regular tickets excluding commutation tickets, $963,673,996$ went in third class compartments; $66,199,930$ in second-class and $33,037,190$ in first-class compartments, so that out of 100 travelers, only three went first-class, six secondclass and ninety-one third-class.

Proposals are being entertained by the French military authorities for a new weapon called the pistolsaber. It is an ordinary saber provided with a small firearm lodged in the hilt. On encountering a resist ance surface the blade recedes and discharges the pistol, a recoil of about ${ }_{1}^{10}$ of an inch being all that is necessary. The shot will penetrate a steel breastplate. The new weapon will weigh only a third more than the ordinary saber, which of course, when the pistol is not loaded, can be employed in the usual way.
News dispatches from the Transvaal state that armored trains are being used to transport troops and passengers through the districts which are menaced. Such trains are nearly always improvised and are nothing more than a train of ordinary freight cars whose resistance to attack has been increased by plating the inside with sheets of metal. Holes are pierced in the cars through which rifles and small cannon could be used on the attacking party. Sometimes a freight cal mounting a piece of artillery forms a part of a train. These trains are improvised as needed and are fitted up with the nearest materials available, such as sheets of steel, sandbags or lumber. Such trains were used with great satisfaction in the Egyptian war.
A new Gierman canal is now proposed between Riesa and Leipsic, and the plans have now been completed. The canal will be 42 miles in length, and being built entirely in Saxon territory will in no way conflict with foreign state interests. It is estimated that the cost of building this canal will be higher than usual with canals of the same length. This is partly on account of the difficulty which will be encountered in getting over the watershed. The total cost of the crown and slope work, road and railway crossings, lift work, water feeding, etc., will amount to $\$ 9,044,000$. The cost of the harbor in Leipsic will amount to $\$ 2,142,000$, and to connect the canal with the Pleisse will require $\$ 831,000$. The project indicates Saxony's interest in helping its commercial and industrial people. Riesa is the grain center of this kingdom and Leipsic is its largest city The latter, for a long time, has been the center of an enormous trade, largely due to its fairs, which occur twice a year, one in April and the other in September

It is proposed to build 70 miles of trolley road between Buffalo and Erie, and a company has been incorporated with this end in view.
Strange to say, in England a church has not the legal power to substitute one method of illumination for another without obtaining an ecclesiastical license called a "faculty" for the alteration.
A series of experiments has been recently carried out under Prof. Carus-Wilson's direction on the three phase railway connecting Thun with Burgdorf, with the view of ascertaining the ability of polyphase motors to accelerate heavy trains on ordinary lines.
Telephonic communicaion between St. Petersburg and Moscow is obtained by a line 412 miles long. It is said to be the longest single line in Europe. Nearly all of the towns in Finland are connected by telephone: the rates are very low.
The best way of testing the balancing of armatures is to mount them in bearings which are free to move, then while the armature is running the heavy side can be found with a piece of chalk and counterweights adjusted on the opposite side until the cessation of movement of the bearings shows that the center of gravity coincides with the axis of the shaft.
An interesting bulletin board was mounted on the Thames Embankment of London to report the yacht races. A huge screen was fitted up in front of a newspaper office, and it was properly painted to represent the course. Small electric green and red glow lamps were used to represent the yachts, and they were pushed along thin copper rails once every ten minutes.
Prof. Bergmann, the great surgeon of the Berlin University, states that the healing power of the Roentgen rays are imaginary. The determination of the presence and position of foreign bodies has been extremely successful with the Roentgen rays, as is well known. Their use in connection with broken bones has also been very satisfactory. The hope of discovering, by the aid of the Roentgen rays, the position of bladder and gall stones has not been fulfilled.
A water-driven electric plant is proposed in Brazil to obtain 16,000 horse power from the Tiete River and transmit it electrically to the city of San Paulo, 24 miles distant. A masonry dam 1,000 feet long and 35 feet high will be built, and the water will be conducted by a steel conduit 12 feet in diameter and a half mile long to the turbines. The electric transmission is to be at 20.000 volts, three-phase, and the current will be used by a company which owns 104 miles of street railway in San Paulo.
The Dubois system of telegraph pole protection is described in the Moniteur Industriel. It consists of surrounding the portion of the pole in the ground with an earthenware pipe very similar to a small draiı pipe. The end of this pipe comes just above the surrounding soil. Into the space between the pole and the pipe the inventor introduces a mixture of sand and resin. The resin is poured in first, and when it solidifies the sand and resin form a watertight preventive against the rotting of the butt of the pole.

Soundings have been taken for rock bottom founda tions for the new dam to be built across the Housatonic River, five miles above Derby, Conn. The Housatonic Lighting and Power Company purposes to generate electricity enough to be conveyed in any desired volume to all the cities of western Connecticut, for the operation of factories and trolley cars and for the lighting of streets. The dam is to be so high that droughts are expected to cause no interruption in the transmission of power. The electrical equipment.will be placed close at hand.
The London Lancet gives an account of an instrument called the neurotone for applying a gentle electric current to the skin. The apparatus is contained on a base plate, at the bottom of which are mounted the two electrodes which are applied to the skin. They consist of polished metal plates $31 / 2$ inches long by 1 inch wide with a suitable gap between. The batteries are connected to the apparatus with a flexible cord. It is held in the hand and moved over the affected places about the same way as a flat iron is used in ironing clothes. The current can be varied to suit the different requirements of the patient by a regulator on the base.
The Orleans Railway Company is prolonging its main line into the heart of Paris as far as the Qua d'Orsay, as we have already shown in an illustrated ar ticle. The distance is 2.3 miles, and 1.9 miles of this road will be underground. At the Austerlitz station steam locomotives will be taken off the trains and electric locomotives substituted. The current will be generated as three-phase at 5,500 volts, 25) alternations per second. The generating station is over three miles from the terminal at the Quai d'Orsay. The sub-sta tions at the two termini will contain rotary converters and a large battery, which will deliver current at 550 volts to the line. Continuous currents will also be fur nished from other rotary converters for the lighting of the stations.

タriantific gmaricau.

Yachting on the great lakes. by waldon fawcett.

Every international race for the "America's" cup has had its effect upon yachting on the Great Lakes, both in the stimulation of additional interest and in influence upon approved design in yacht construction. The season of 1899 is sure to prove doubly producfive in this sense from the fact that the object lessons

Great Lakes in yachting as a sport. Yet on the five Great Lakes, and the connecting rivers, there are three great yachting associations, embracing upward of twenty-five separate clubs; the membership in several of which ranges from 500 to 600 .
The development of lake yachting has extended over about half a century, and the respective merits of centerboard and fin-keel have nowhere been more
modeled pretty closely upon the designs of ocean racers This resemblance may be traced in almost all the yachts which have captured championship flags of any importance for some years past. The lines of the "Gloriana" were followed in the construction of the "Neva." The "Sultana," of Toledo, which won the Inter-Lake Association championship in 1894, is suggestive of the "Vigilant." The designer of the "City of

"BEAVER," DEFENDER OF THE "CANADA'S" CUP IN 1899.

"GENESEE," WINNER OF THE "CANADA'S" CUP IN 1899.

"VENCEDOR" AND "CANADA," CONTESTANTS FOR THE ROYAL CANADIAN YACHTING CLUB CUP IN 1896. WON BY "CANADA."
afforded by the great contest off Sandy Hook are augmented by those derived from an international race on the lakes as well.
The fresh water yachtsman finds, therefore, suggestion of many ideas possible of embodiment in lake yacht building practice. On the other hand, he has before him a demonstration of the practicability of late innovations when governed by the peculiar conditions of the inland cruising and racing field.
It is perhaps not unnatural to find a pretty general lack of appreciation of the depth of interest on the
vigorously debated by verbal argument and actua contest. The appearance in a race for the "America's" cup of any new type or modification upon any existing one has been speedily followed by its advent upon fresh water, and, with a mere suggestion for a basis, the American and Canadian yachtsmen on the unsalted seas have worked out improvements and discoveries which have been deemed worthy the attention of the most capable designers on both sides of the Atlantic At the same time the boats with which these inter esting experiments are made are almost invariably
the Straits" and "Alice Enright," of Detroit, evidenced his admiration for the "Volunteer." The "Puritan," of Toledo, and the "Commodore Gardner," of Cleveland, are copies from the "Vigilant " and finally the "Vencedor," of Chicago, which was defeated in the in ternational race at Toledo, in 1896, has points of resemblance to both the "Gloriana" and "Wasp."
In years gone by, when the yacht designers were obliged to seek the Great Lakes for their data relative to actual trials between centerboard and fin-keel boats, the preference was manifestly in favor of the latter de-
sign for racing purposes; and this sentiment is still prevalent. At the same time the centerboard type has some warm friends on fresh water who can muste more or less evidence in support of their contentions that it is especially suited to lake sailing owing to local conditions.
The "Oriole," of Toronto, a centerboard yacht, a few years ago defeated the "Priscilla," which was built for a cup defender, and which, after passing from the hands of James Gordon Bennett, came into the possession of some Cleveland yachtsmen. It is also worthy of note that of the six yachts built by Americans and Canadians with a view to participation in the 1899 in ternational races for the "Canada's" cup, two were of the centerboard type.
Interest in yachting on inland waters should increase even more rapidly henceforth by reason of the practical certainty of international contests at reasonable in tervals. Contests between yachts of the two nations bordering on the Great Lakes have occurred frequently for several decades, and as late as 1880 two cups were won by the Canadian yacht "Rivet," which was famous in England as a racer long before the cup winner "America" was thought of, about the middle of the century.
It was not until 1896, however, that events shaped themselves so as to insure to the international contests that degree of permanency which characterizes the series of contests on the Atlantic. In the year men tioned a cup was offered for which the Lincoln Park Yachting Club, of Chicago, sent a formal challenge to the Royal Canadian Yachting Club, of Toronto. When the race was sailed late in the summer of that year off the port of Toledo, O., the "Vencedor," which had been built by a syndicate of members of the Chicago club, was defeated by the "Canada" the representative of the Toronto organization. The Royal Canadian Club decided that their capture should constitute a permanent trophy to be henceforth known as the "Canada's" cup. The race of 1899 marked the second race for this cup, and in the races which took place at 'roronto in August, the American yacht, the "Genesee," had no difficulty in besting her Canadian rival, the "Beaver," and the cup thus comes back into the possession of American yachtsmen.
British yachtsimen have several times dur. ing the discussion of the points of the contest between the "Shamrock" and the "Columbia" advanced the project of having a challenging boat built in Canada. The gentlemen interested in the sport who have in the past stood in support of this proposition have suggested that she be designed in England and the several parts put together at some port in the Dominion. They pointed out the handicap placed upon all designers of challengers for the "America's" cup by the necessity of constructing a strong craft in order to successfully withstand the trip across the Atlantic, and they cite these and contributory facts in support of the contention that the construction of a vessel in Canada would be the only way to overcome the disadvantages of building a strong and therefore weighty hull.
Probably there would be nothing to disqualify a boat built under these conditions from competition in an international race on salt water, because she could be put together at a port on the lower St. Lawrence;
but Great Lake yachtsmen, both Canadian and American, are debarred. The clause which limits challenges to those foreign yacht clubs which have for their annual regattas "an ocean water course on the sea, or an arm of the sea" would serve to blast the hopes of any Canadian sportsmen, while the provision that a yacht must come to the scene of the race on her own bottom and with her own power would exclude Americans on the Great Lakes who might wish to build a cup defender. No yacht could of course make the passage of the canals with her own power
No existent limitations have, however, retarded the popularity of the sport on the Great Lakes. Wealthy residents of Chicago, Cleveland, Buffalo, Detroit and other large cities have taken the most active interest in the building and sailing of yachts and the maintenance of club houses as well.
The three general associations, the Yacht Racing Association, of Lake Ontario, the Inter-Lake Yachting Association, and the Lake Michigan Yachting Association, are governed by general rules, universal in scope, formulated at a meeting of representatives of the various associations.
The Lake Ontario Association is composed of the Rochester, Oswego, Bay of Quinte. Kingston and Buffalo clubs, the Victoria Club, of Hamilton, Ont., the Royal Hamilton Club, of the samecity, and the Royal Canadian Yacht Club, of Toronto.
The Inter-Lake Yachting Association, which embraces the clubs on Lake Erie and the Detroit River, has in its membership the Cleveland, Erie, Buffalo,

Statuettes of Phœnician Type.

Fragment of a Bas-Relief.
RELICS FROM THE SUPPOSED "TOMB OF ROMULUS," ROMAN FORUM.
n this country. continue to figure in Canadian races, but most of the American owned yachts are from the designs of residents of the lake territory. It is interesting to note in passing that A. G. Cuthbert, formerly the well known Canadian designer and who was responsible for the famous "Countess of Dufferin" and the sloop "Atalanta," which raced ior the "America's" cup, is now a resident of Chicago, and designed an American boat for the race of 1899 . There has been little dishonesty in lake yachting since the affair of the "Ina," which, along in the seventies, defeated with ease everything against which she sailed. After the officials secured evidence that she shifted her ballast, the flier disappeared with a suddeuness that was startling.
The steam yacht fleet on the Great Lakes has increased within the past few years to quite respectable proportions. The "Comanche," of Cleveland, and the "Enquirer," of Buffalo, two of the best boats, were purchased by the government during the SpanishAmerican war. On the former, Senator Hanna and President McKinley had enjoyed many cruises. The "Peerless," owned by the Harkness estate, of Cleveland, is now probably the best yacht on fresh water. Detroit has a handsome fleet which includes the "Pathfinder," "Cynthia," "May Lily," and "Lily." The Wade yacht "Wadena" now on the Atlantic coast is Wounted alakeboat and W. J. White, of Cleveland, the counted a lake boat, and W. J. White, of Cleveland, the manufacturer of chewing gum, has the "Say When," a
very trim craft which he brought to the lakes from the very trim craft which he brought to the lakes from the coast. There are a number of steam yachts at Chicago, but they are unimportant. W. J. Conners, of Buffalo, who formerly owned the "Enquirer," will next year build a 250 -foot yacht which will be engined for 3,000 horse power and is expected to develop considerable speed.
Finally, with the lake fleet increasing at the rate of almost 100 per cent in five year:; with international contests assured, and with clubs increasing in number and membership, there would seem to be little risk in the most optimistic predictions for yachting on the chain of the Great Lakes. The deep waterway from the lakes to the sea is becoming each day a more salient possibility, and this may ultimately assure to the yachts from inland waters a standing on the coast.

RECENT DISCOVERIES IN THE ROMAN FORUM.

Archæologists and historians might well have doubted whether there could be any further prospect of discoveries of great importance to be made in the Roman Forum But the scientific and intelligent use of the spade works wonders, and Signor Baccelli, the Italian Minister of Public Instruction, has again brought the spade into play on the Forum with results which have as tonished even those who believed that the imperfectly explored portions of the site would vield interesting secrets. That the tomb of Romulas himself, the founder of the Eternal City, would be one of the dis. coveries seems incredible; but it is certain that in the pavemnt of black marble un covered near the arch of Septimius Severus, the excavations have laid bare the Lapis Niger-black stone-which was venerated by generation after generation of Romans as the place where Romulus was buried.
The "Black Stone" is referred to by Varro, who wrote in the century before Chrisé, and by Festus, three centuries after,
have one very marked advantage over devotees of th sport in the large cities on the Atlantic coast. Th owner of a boat on the Great Lakes can, with very few exceptions, reach his club house and his craft after a ride or walk of perhaps a quarter of an hour from his place of business, and he is thus enabled to take many a short spin over the water which is denied to his East ern friend, who finds it hardly worth while to think of yachting unless he has at least half a day to devote yacht

The Great Lakes have some excellent racing courses. Those at Chicago, Erie and Toronto are generally satisfactory, while that at Put-in-Bay Island, in Lake Erie, is invested with general interest by reason of it historical associations. It is triangular in shape and of a length of twenty-one miles, and with possibly two or three miles exception, the battle-ground where Commodore Perry won his memorable victory over the British is constantly in sight. Cleveland also has a riangular course where the water is fairly deep and the wind generally strong.
One thing which now adds materially to the pleasure of yachting on the Great Lakes is the large complement of accurate charts available. These are supplemented by carefully complied records, so that when a syndi cate of Chicago gentlemen, who were preparing a cup challenger for the 1899 race, wished to take into con sideration August weather conditions, they were able o consult full data extending over a period of mor han twelve years.
Boats designed by Watson and Fife, and put together
who says of it

Niger Lapisin Comitio locum funestum

The Comitium was an open lobby of the Roman Senate, and the Senate House itself, or Curia, wa where the church of St. Adriano now stands. There, then, in the place pointed out by the old historians and topographers, Signor Baccelli found the sacred site. The Lapis Niger is a pavement of thick black marble slabs, and is about 9 feet square, partly inclosed by a low wall of travertine slabs fixed in a stone socket or trough-proof of the care with which it was guarded.

Some of the archeologists claim that the Lapis Nige marked the spot where Curtius leapt into the gulf, and controversy, of course, rages around the question. However it may be settled-if it is ever settled-the important discovery of a mutilated stele beneath the Lapis Niger marks the place as one of great sanctity. The stele is inscribed with archaic Latin character: forming words so strange that the assertions of the later Romans of the empire that the ancient Roman tongue could not then be understood receives absolute confirmation.

The inscription, so far as it can be deciphered and conjecturally restored, seems to designate the spot as a peculiarly sacred sacrificial locality, and this is borne out by the objects found near the stele, small votive statuettes, vases, and objects in bronze, iron and marble. We reproduce, says The London Graphic, from photographs, some of these objects, the most ancient relics which have as yet been discovered in Rome.

the great telescope of the paris

 EXPOSITION OF 1900.Among the scientific exhibits at the Paris Exposition of 1900 the great telescope will undoubtedly be the most interesting and important object shown. We have already given a brief description of this telescope, and we are now enabled to present views showing the construction and how the telescope will look upon completion.
It consists of a horizontal tube 197 feet long provided with an objective $4 \cdot 1$ feet in diameter. The image of the moon or stars will be sent through this tube by the aid of a Foucault siderostat; that is to say, by a movable plane mirror. The focal length of the telescope of the Yerkes Observatory is but $65 \cdot 6$ feet, so that it will be readily seen that with a telescope whose focal length was 197 feet, it would be almost impossible to build a dome and mountings which would carry it. It is estimated that a 210 foot cupola would have been required, so the use of a fixed tube and a movable mirror for gathering the image may be regarded as an excellent solution of a mechanical difficulty. The siderostat is undoubtedly the most interesting part of the instrument. It consists of a large cast-iron frame and is proviced with clockwork and devices for causing the mirror to follow the celestial object which is being viewed. The frame is now under construction at the establishment of M. P. Gautier, a distinguished manufacturer of instruments of precision. It is $261 / 4$ feet long, and the height is the same as its length. It is provided with six leveling screws which enter into sockets fixed upon a stone base 5.57 feet high. The hour axis is actuated by clockwork through the aid of tangent screws. The part of the instrument toward the south carries the mirror which is mounted in a cast steel cell lined with felt in order to prevent any contact of the mirror with the metal. The equilibrium of mirror and cell is obtained by means of levers and counterpoises. The base of this mounting floats in a reservoir $61 / 2$ feet in diameter and containing about. 16 gallons of mercury. Owing to the application of the principle of Archimedes, the movable parts will be relieved of nine-tenths of its weight. . The system of the levers and counterpoises is so well arranged that all of
lever the movable paits can be actuated by hand even without the aid of the mercury. The total weight of the siderostat is 99,000 pounds; the movable part weighs 33,000 pounds, of which the imirror and its cell weighs 14,740 pounds. A weight of 220 pounds is sufficient to actuate the clock work.
The mirror has a diameter of 6.56 feet; it is 10.63 inches thick and its weight is 7,920 pounds, and it was, naturally, the most difficult part of the apparatus o construct. The glass was cast at the Jeumont Works, and a special furnace was constructed capable of holding 22.4 tons of glass. When the time for casting arrived, the mould, 6.72 feet in diameter and 12 inches thick. was brought to the furnace upon a truck, and then, after being filled, was introduced into the furnace, which had been raised to a high temperature. It was then walled up in this furnace, and the cooling required a nace, and the cooling required a
month. Notwithstanding all the month. Notwithstanding all the
precautions, several of the disks precautions, several of the disks that were cast broke in pieces with
a loud noise. The transportation of such a huge disk of glass to Paris was a difficult matter, and a special train carried it there without stopping. A crane deposited the gigantic block on a wagon, and it was carried to the optical establishment at night, in order to have a clear roadway.
To obtain a fine disk of glass of such dimensions was, of course, difficult, but to give it a perfectly plane surface was a much greater one, and M. Gautier is to be congratulated upon the success which he has attained in performing this difficult operation.
The polishing machine, shown in our general and sectional view, was placed in a special shop protected as much as possible from variations in temperature by a donble wooden wall. The grinding apparatus consists essentially of a large cast iron plate, C, covered with an inch of flannel, upon which the glass disk, A, was carefully laid.
This plate revolves slowly around a vertical axis by gearing, G, the whole being stepped in a cone. Above there is a stationary circular bronze rubber, $B, 471 / 4$ inches in diameter, which is given a reciprocating motion by a slider, I, thus passing across the face of the mirror traveling in acircle beneath it. The perfect revolution of the plate and the accurate adjusting of the slides and their parallelism resulted in the production of a perfect mirror. It required three months to adjust the slides alone. The grinding of the mirror was done with a mixture of emery and water. During this operation a workman always stood at a respectful distance from the apparatus so as not to change the tem-
perature of it. From time to time he injected a mix ture of emery and water by means of a syringe into a channel running through the grinding plate and ending at the center. This work was carried on generally from 2 to 5 o'clock in the afternoon, the time of day when the temperature does not change perceptibly. The entire morning was devoted to the cleaning of the machine, and to the verification of the parallelism of the grinding plate with the surface of the mirror, an operation which was performed with four scales which operation which was performed with
were accurate to $\frac{1}{000}$ of a millimeter.
As the grinding proceeded finer and finer emery was used, and the closer the grinding plate was brought to the surface of the glass. With the finest emery the distance between the plate and theglass was 0.008 inch. The grinding lasted eight months and was followed by the operation of polishing, which required two months. The lower surface of the polishing plate was covered with a sheet of albumenized paper like that used in photography, but unsensitized. The workmen spread upon this paper a smallquantity of the finest Venetian

EYEPIECE HOLDER.

The images of the mirror which are transmitted to the focus of the objective may be examined directly by means of an eyepiece or they may be thrown upon a sensitized plate or projected upon a screen placed in a hall set apart for that purpose so that several thousand people will be able to examine the celestial object at the same time. The tube of the telescope is a steel plate $3 / 4$ of an inch in thickness and 5 feet in diameter. It is made up of twenty-four sections joined with the aid of bolts. These sections when all mounted will rest upon a cast-iron base supported by stone columns. It is arranged so as to slide to take up the expansion and contraction. The tube plays no part in the formation of the images, nor does it serve for supporting the objectives in the eyepiece, but it prevents dust from introducing itself between the essential parts of the apparatus.
One of the objectives is designed for visual observations, and the other for photographic work. Both are mounted upon a carriage made to roll upon rails so that either of them may be easily placed in position before the tube. The weight of either of these objectives without its mounting is about 1,295 pounds and with the mounting 1,980 pounds. Each of the crown glasses is carried by rollers so that it may be separated from the flint glass in order to render the cleaning of each disk easy. The lenses will cost $\$ 120,000$.
The disks were cast by Mantois, of Paris. Great attention was paid to the casting of the glass. Specimens of the glass was constantly taken out during the heating and examined with a lens under different conditions of illumination in order to judge of the degree of purity which they have reached. After several specimens have been found to be free from bubbles the temperature is reduced, the glass thickens, the crucible is opened and a certain portion of the surface is skimmed off to get rid of impurities. The glass is then stirred, and the cooling is allowed to proceed rapidly for five or six hours until the surface of the glass emits a well defined sound when it is struck with an iron bar. After this step it is necessary to proceed with anneal ing. The furnace is walled up and a cooling is allowed ing. The furnace is walled up and a cooling is allowed to proceed, which requires from four to six weeks. When the crucible is opened the glass is found to have been broken into pieces of varying sizes. In order to obtain a 792 pound flint glass lens it is necessary to find a block which weighs nearly 1,300 pounds, and such a block having been found among those in the furnace it is removed and placed upon a car. Slabs of glass are sawed from two parallel sides in order to obtain polished surfaces that facilitate a perfect examination of it.

The striæ in the surface are re The striæ in the surface are re-
moved, and if after this the block moved, and if after this the block
exhibits any defects situated at (-) $\begin{aligned} & \text { exhibits any defects situated at } \\ & \text { such a depth that they cannot be }\end{aligned}$ removed, it is submitted to a molding which changes its form and brings the chief defects near the surface. The block is. placed in a mold of refractory clay and put into a furnace and heated to 800° to 900° Centigrade. By this means it becomes slowly heated and softened until it assumes the form of the mold, but it must not become fused or the whole operation must be gone over again. If the outcome of the process is successful the glass is slowly annealed and is then taken from the mold and examined anew. If any defects deep in the glass are seen, a second operation is begun with a mold of another form. Finally, when the glass is very pure and perfect another and final molding produces the plano-convex lens.
tripoli and as much as possible was removed with a soft brush. The distance between the rubber and the surface of the glass was 0.0012 of an inch.
This method of treatment, notwithstanding its delicacy, produces enough heat to render the mirror slightly convex and cause it to draw away more strongly in the center, so that, upon cooling, it was hollowed at this point. In order to surmount this difficulty the slides were given a curve of which the pitch was 0.4 of an inch. The heat was diminished by operating the machine for a minute and then stopping for a quarter of an hour. When the hand is applied to the mirror, there occurs an extension of 0.0012 of an inch, which is sufficient to distort completely for four or five minutes the image of the flame of a lamp placed atone side of the plate and observed from the other with a small telescope arranged for the purpose. The next operation to be performed is the silvering, and, of course, it will have to be silvered anew from time to time. The mirror protrudes $5 \cdot 4$ inches from its tube or cell, which will be made to swing so as to bring the surface to be silvered underneath. The reservoir containing the bath will be lifted by means of a winch until the mirror enters it at a proper depth. When the operation is finished, the reservoir will be lowered and the silvered surface turned upward and the mirror readjusted in its cell.

SECTIONAL VIEW OF MIRROR-GRINDING APPARATUS.

 After this comes ing takes two or three weeksAt this point the glass disks are taken to the estab lishment of M. Gautier where the surfaces are polished with a device like that used in polishing the mirror, except that the slides have the curve that is to be given to the disk. A long time is required in polishing out the small imperfections, and finally the lens is entirely corrected and ready for mounting.
The tube which carries the eyepiece is supported by four wheels rolling upon rails, O. It is attached to the telescope by an adjusting screw, 4.92 feet in length, which serves for putting it in focus. In the interior of this tube another is mounted upon rollers. This inner tube is 3.54 feet in diameter and is moved circularly by means of clockwork through the medium of a tangent screw which fits into the teeth of a circle fixed to its outer extremity. In this first circle which moves upon four rollers is a second circle which carries two guides and in which slides a carriage having a travel equal to a little more than two minutes of time. This is actuated by a screw which causes the motion in another clockwork. This carriage is provided with a system of frames having rectilinear motion that permits of giving the eyepiece different positions. The upper frame is so arranged that it may receive devices for photo graphy, micrometry, spectroscopy or a projecting ap-

November 4, 1899.

paratus. The exact location of the telescope has not yet been determined upon, but it will be at the service of the Exposition, and will probably be placed somewhere where the atmosphere is purer than that of Paris.

We are indebted for most of our engravings and for our particulars to L'Exposition de Paris, 1900, which has had an interesting and scientific series of articles upon the great telescope. The diagrams are from La Nature.

THE "NEW DEPARTURE" AUTOMATIC COASTER. We have, from time to time, published descriptions of novel forms of bicycle devices. We take pleasure in publishing herewith a new form of coaster hub which possesses novelty of construction in several particulars. It will be noticed from the description given below that in going down hill the wheels may be allowed to run freely with the pedals remaining in a stationary position, while the brake may be applied by simply bringing weight to bear upon the rear pedal.
The coaster uses 36 straight spokes, and can be furnished with any size or thickness of sprocket from 7 teeth by $\frac{3}{1}^{\frac{3}{6}}$ inch up. No fitting or adjusting is necessary; for the hub when it leaves the factory is in perfect order, ready to be placed on the wheel. It has the advantage of being no larger than the regular bicycle hub and has its coasting device assembled compactly and securely within the hub shell. Anyone can apply the coaster in a few moments to any form of wheel.
When the rider desires to coast, the feet are simply held still, thereby releasing the driving mechanism and allowing the wheel to coast freely. By a slight downward pressure on the rear pedal the brake is brought into action and adjusted as required. When it is desired to go ahead, it is necessary simply to pedal forward in the usual manner. There is no back pedaling; the pedals cannot jump, either forward or backward; and there is no strain or twist whatever upon the machine.
What is probably the greatest advantage, and one peculiar to this device, is the fact that the rider always has a tight pedal under foot, which feature is of itself of paramount importance in any free-wheel device. The best rider will naturally feel nervous and insecure if the pedals hang loosely under foot; but in this improved device there is no point where the pedals are not in thorough contact either with the coasting or driving mechanisin.
Second only to this point is the fact that the wheel may be trundled backward or forward, allowing easy racking, whether the coaster be on or off. In walking alongside of the machine the pedals may remain stationary, so that they will not interfere with the limbs or clothing.
The method of obtaining these advantages will be noted by referring to the cuts. Fig. 1 shows the coast er-hub assembled as shipped from the factory. Figs. 2 and 3 show the manner of assembling the interior mechanism.
The chain when pulled forward causes the sprocket, G, to rotate. This sprocket being fast upon the driv er, E, causes it to rotate forward, thereby drawing the cone, D, over into contact with the clutch, F, which

OIL-RETAINING JOURNAL

The accompanying cut represeuts an ingenious device which was; recently tried by Mr. Herman Dock upon a troublesome journal with great success, and as we think the "wrinkle" may be new to our readers, we publish it herewith. Mr. Dock is of the opinion that the difficulty in keeping journals well supplied with oil is due to the sharp edges at the joints.
As the shaft rotates, the oil is scraped off on these edges and flows away through the joint. This takes place chiefly on the lower half of the journal. Thus, if the shaft is rotating, as shown in the cut, from left to right the oil collects on the right hand lower half of the bearing and oozes a way through the joint at that point. To correct this a channel or small collecting trough is cut in the Babbitt metal parallel with the shaft, and

OIL-RETAINING JOURNAL.
small oil-holes are drilled through obliquely from this trough to the bottom of the bearing. The oil that collects in the joint is thus made to flow to the underside of the shaft, and a continual lubrication is maintained.

A New Lethal Agent.

Prof. Willis G. Johnson, of the Maryland Agricultural Experiment Station, has recently caused some discussion among the governmental scientists at Washington by a brief paper setting forth the claims of hydrocyanic acid gas as a lethal agent, to be used in place of the rope or the electric current in capital punishment. Prof. Johnson's idea is by no means a new one; but some of the arguments, and especially the illustrations, he brings forth are novel. He claims to have been temporarily under the influence of this gas to the extent of a feeling " of pleasant drowsiness, relaxed muscles, a limpness and feeling of indifference as to what happened;" adding that "there was no pain, and the whole sensation was soothing, rather than disagreeable." This description of his experience is far from portraying the experience of the writer, who went to a still further stage toward death, and was with difficulty brought back to life from inhaling these fumes arising from an insect killing jar. Intense intercostal agony, unthinkable mental distress, and a horri-

Fig. 1.

Fig. 2

Fig. 3.

"NEW DEPARTURE" COASTER-HUB

being fast in the hub, causes the hub to rotate and the wheel to move forward.

When the rider holds the feet still upon the pedals, the driver, E, stops rotating, thus drawing the cone, D, out of engagement with the clutch, F, and carrying it across into the brake-clutch, C. The brake is not yet applied; but the wheel is free to coast with the feet upon the pedals. If it be desired to brake, simply press lightly upon the rear pedal; and the brake is instantly in operation and can be graduated to any degree desired. When it is required to propel the wheel, merely pedal ahead; the mechanism does all the adjusting. There is no "kick-off."

The device is manufactured by the New Departure Bell Company, Bristol, Conn., which is represented by John H Graham \& Company, No. 113 Chambers Street, New York, N. Y.

IT is said it will cost nearly $\$ 400,000$ to bring the great plant of the Schneiders, at Creusot, into working order after the present strike is over.
ble consciousness of all that was going on, without the power to give any sign of life, was the experience in that case. E. Murray-Aaron.

Uses for Skim Milk.

An interesting process is reported by the Chief of the Dairy Division of the Department of Agriculture, Major Alvord. This is a new composition somewhat resembling celluloid made from skimmed milk. Paper sizing is now made in considerable quantities in the United States; it is the dry caseine from skimmed milk. It requires considerable skimmed milk to make this product, but at the same time vast quantities of skimmed milk are now wasted or fed to stock which can be utilized in making the new material, which is suitable for the manufacture of oilcloth, book cover ings, billiard balls, in fact, for many things for which ings, billiard balls, in fact, for many things for which either celluloid or hard rubber is now used, and it has
many advantages of its own, including impermeability many advantages of its own, including impermeability
to water and non-inflammability. It is thought that it can be used in the manufacture of electrical insulators.
"The Olfactory Nerve Track" is a most interesting article. "The Replacements of Fluids into the Track of Moving Bodies" gives an important study by Mr. M. F. Mithoff. Dr. Thurston's "Evolution of Technical Education in Economics, Politics and Statecraft" is concluded.

RECENTLY PATENTED INVENTIONS. Agricultural Implements.
bean-harvester.-Thomas t. Brown, Euclid, Minn. In this harvester the beans are gathered by chutes having pairs of endless gathering-chains provided with spurs for engaging and advancing the beans along the
chutes. The invention comprises, furthermore a nove djusting mechanism, a new arrangement of parts, and levice whereby the beans can be dumped in quantitie) suit the operator

Mechanical Devices

SAFETY-stop. -Joshua baggaley. Manhattan New York city. The object of the invention is to pro of hoisting-engines, particularly when an engine is oaded, the device employed dispensing with the footbrakes and enabling the engineer to control the drums with the hands only. A reversing check is used which dispensing with the necessity of a weight upon the hoisting-rope, and enabling the drums to turn freely in due to the slight friction upon the shafts.
fire escape.-Edward m. Christ, Pine Grove, Penn. The apparatus is to be used for lowering object escape. The device includes in its construction a sand cylinder with a valve-controlled outlet, in which cylinwhich the object to bellower actuated by the mean ing to retard the movement of these means. The mean in question also actuate the valve of the outlet of the
cylinder to regulate the flow of the sand therefrom.
automatic waste-gate.-Willam t. Tay lus water in flumes and ditches to prevent overflowing The gate comprises a gate formed in two parts, an upper ross-bar, and a main section hinged to the cross-bar and releasable by lifting slightly. A pivoted reservoir or
bucket is secured to the cross-bar to lift the gate, and has its inlet at the maximum desired water-level. Hence, tate automatically descends.
press for preparing fomentations. Mary J. Smith. Marhattan. New York city. The other figned to express to be used as banciages for fo mentations, and is so constructed that the hot surplus iquid may be quickly squeezed from the bandage, and he pressed bandage carried from the press to the bed ide and retained in the press until required for use ing may also be performed at the bedside. To permit plunger used in the press can be removed to expose the entire receiving-chamber. During the preparation of he bandage the hands are out of contact with the water. WRENCH.-James M. Tulton, Isleta, Ohio. The
wrench comprises a head having teeth facing in opposite wrench comprises a head having teetl facing in opposite
directions, and a pawl adjustable to engage either of the opposite faces of the teeth to drive the head in either irection. It is not necessary to remove the wrenc de, by means of and forward on the head of the wrench. The wrench is adapted to fit nuts or bolts of different sizes without changing the head.
nailing-machine.-Samuel Y. Penrod, Choteau, Mont. This machine for nailing shingles on roofs has a feed-chute and a nail-holding wheel provided with openings by which to discharge the nails to the chute and turned by an operating pawl actuated by a rammer operation by the rammer when the feed-chute is full of nails. With this machine a workman can drive nai twice as fast as with a hammer, and can shingle in cold reather when the necessity of wearing gloves makes it
well nigh impossible to handle shingle -nails.

Miscellaneous Inventions.

MANUFACTURE OF ARTIFICIAL MARble. James E. Sumpres. Lynchburg, Va. The method of
nanufacturing marble consists in mixing together limewater and silicate of soda, adding cement to the mixture until it is fully incorporated therewith, and finally allowing the mass to harden on a highly polished sur-
face. The expensive method in vogue for polishing and graining the marbte is entirely dispensed with, and close imitation, both as to structure and appearance of tively low cost.
vel-Fastener.-Margcterite helene Cartfr, Manhattan, New York city. It is a matter of consider-
able difticulty so to secure a veil that it cannot be readily lost. The present invention provides a simple and compuratively inexpensive device by means of which a veil
will not only be held in the proper position and zewill not only be held in the proper position and se-
curely retained, but will also be prevented from slip. curely retained, but will also be prevented froln slip.
ping down in the rear. Tbe fastener is composed of an anchor bent to form opposite end eyes or loops and is held to the bonmet ly intermediate prongs at
the opposite sides of the anchor. Hooks engage the end eyes and are connected with the veil.
measuring fadcet.--John J. Kennelly, Manhattan, New York city. It is the purpose of this invention to produce a faucet which shall be both simple and cheap, and which may be adjusted so that a definite amount of
liquid may be drawn before its mechanism is operated ti) close the valve. This end is attained by means of a wighing lever, upon which a vessel is placed, designed to receive the liquor. A hand-lever is used for openin the valve, and is engaged by the weighing-lever to hold
the valve open until the liquor in the vessel reaches the the valve open until the liquor in the vessel reaches the
required weight. The hand-lever is then released :nd required weight.
the valve closed.
horseshoe. - Erik a. Frydenlund, Lakota N. D. The shoe is desisred to be secured to the hoo without the use of mails, and is provided with calks
which can be quickly removed so that others of different which ar se siarpness can be substituted. A clamping-band
shape is used having its heel portions turned downward and then inward to engage the under side of the shoe. The inward
y-turned portions have openings for registering wit
openings in the heel portions of the shoe. Removable calks engage in the openings, and a clamping-strip con under the toe portion of the shoe, and is furnished with an opening for registering with an opening in the shoe A toe-calk removably engages in the opening.
SMOKING-TUBE. - James M. Eder, Manhattan, New York city. The smoking-tube is so constructed that the bowl portion may be readily filled by forcing it endwise into tobacco contained in a package, without
touching the tobacco with the hands, and is provided touching the tobacco with the hands, and is provided
with a simple means for ejecting the ashes of the conumed tobacco, which ineans likewise provide on its
exterior a long, sinuous passage which cools the smon stefior a long, sinnous ph.
invoice-file. - Eugene Cross, Grifith, Miss covers within which a metal boxing covers. Pins are extended from the bottom to one of the cover. Pins are extended from the bottom piece of the pressure-spring rough a pressure-stip connected with prece of the boxing. In filing papers the spring and on the pins, the pressure-strip and spring are replaced HOLDER OR BUCKLE FOR STIRRUP-STRAPS. sections adapted to hold a strap between them, each being provided with a rigid hook and pin. The sections move hous holding the sections in engagenent. The section are link-connected. Owing to the link connection, the sections may be separated and carried in parallel ines, ne beyond the end of the other, thus enabling the stir-
rup-leather to be readily introduced between the ions and the retaining pins passed through the stirupeather. After adjustment, the two sections are brough ogether and the parts properly connected.
RUfFled tucking.-William Bowden, Manchester, England. By means of the improvements devised by this inventor any suitable fabric can be readily converted into a suitable trimming for use on ladies' and
children's garments for decorative or other purposes. children's garments for decorative or other purposes.
The rufflcd tucking comprises a fabric material formed with one or more rows of gathered tucks. Shirrs extend transversely to the tucks; and a binding hoids the shirrs of rows of locked stitches parallel to the tucks.
NIPPLE-HOLDER.-Thomas Borcher, Jersey City, N. J. The object of the invention is to provide a
holder for blind nipples used by teething children and o construct the holder that when the nipple is secure thereto the nipple cannot be separated from the hold is passed through a button and is engaged by the screwhreaded outer end of a bore or chamber in a holder The holder is arranged for engagement with the open end of the nipple; and a tubular pin has a head aranged within the nipple above the button, the pin below
the button having a thread screwing into the bore or the button having a thr
chamber of the holder.
barrel--Julius F. Vogt, St. Louis, Mo. This in vention provides a barrel adapted to contain perishable barrel is furnished with a double sheathing or wall, thu providing a surrounding the inner sheathing or wall, in which space non-conducting material may be packed in order effectually to protect the contents of the

Carpet-fastener. - Jesse F. Van Wicrel. Jersey City, N. J. The fastener is designed to faste to drive tacks. The fastener comprises a tube secured in the floor and a collar provided with a main and counter bore, the upperend of the tube being received in the lower counter bore of the collar. A yield collar bears against the upper extremity bore of the A button shank fits in the main bore of the collar and into the upper end of the tube, and has an annula groove receiving the yielding ring, so as to hold the button in place. The ring is caused first to spring ove the groove, thus firmly holding the button in the collar and securing the carpet.
Whip-SUPPORT. - Preston V. Stump, Chama Territory of New Mexico. The whip-support is espe-
cially adapted for a harvester or binder and is so co structed that the ordinary carriage-whip may be socurel held in position for immediate use. By the manipulation of a handle, the whip may be carried over either one the animals of a team and the whip-socket drawn down-
ward to bring the lash into contact with the animal. The body of the device is placed high enough not to interfere with the driving-reins.
Water-Filter.-Carl Salzberger, Burgsteinfurt, Prussia, Germany. To purify water containing tube with an this inventor employs a stationary centra casing is mounted to therein. On the tube a filter chambers. Screens are fitted in and form walls for the chamber, and are adayted to hold the filtering materia
between them. Means are provided for closing the chambers whereby one chamber may be used to the ex chambers whereoy ons
clusion of the others.
thill-Colpling.-Thomas E. Piper, Blairsville Pa. Besides securely holding the thill, the device of it overcomes the defects of many old constructions. The thill-coupling has a body-portion with a beveled hook. A latch-section is mounted to swing on the body-section
and has a beveled end ma ching with the beveled end of and has a beveled end ma' ching with the beveled end of
the hook. A dog acts between the latch and body sec tions and serves to hold the two sections in locked posi-

Vehicle-body.-Fredericik Menzer. Flint, Mich The object of the invention is to provide a body of simple construction so arranged that it may be easily changed from a single to a donble-seated vehicle or from a double to a single-seated relicle. A box-like body portion is employed in which a sliding seat is arranged
A front or auxiliary seat has donble-hinged connection with the body and rests on projections on the sides of
the body. The auxiliary seat when swung up converts

the carriage into a two-seated seated vehicle when swung down.

PROCESS OF TREATING GOLD AND SILVER ORES.-Joseph Smith, Salt Lake City, Utah. The with caustic lime, saturating or covering the mixtur entirely with water and keeping it thus until all the acid present has combined with the lime, drying the ma erial, exposing it to the action of atmospheric air, an reating it with a cyanid. The object of the preliminar reatment is to neutralize all acids present and to r move the compounds formed that may consume potas-
sium cyanid before the material is subjected to the acsium cyanid before the materia
tion of the potassium cyanid.
MEANS FOR HEATING APPLICABLE T Forges.--Henry B. Burin, Mons-en-Baroeul, Nor ionary section and partly in a movable section which an be slid toward and fron the former by an adjusting device consisting of a rack and coacting gearing, the object being to enable the heating-cavity to be enlarge or decreasel in size without materially changing the general shape. The cavity is left open at one side fo its own heating device

Designs

GRAVII'Y-LATCH FOR WINDOW FASTENERS - William L. and Charles t. Fields, Cedar Bluff Va. This gravity latch is adapted to be used in connection with a rack-bar patented by the same inventore. as to bring its free end into engagement with the teet of the rack-bar to hold the sash raised at various ele-
vations. The rear side of the latch is flat, while the pposite side is courev
FUNNEL For Chain pumps.-Daniel D. El dridge, Bedford, Ind. This inventor has produced is curved and has a beil-shaped mouth so that the buck ets can pass freely into it. while at the top are formed diametrically opposite lugs adapted to enter slots in the lowermost section of the tubing, the funnel being then
turned so as to take the lugs out of registry with the lots to hold the funnel in place.
hoe.-Daniel h. Baumgardner, Brookville, P The hoe is made heart-shaped so as to provide a sha PLuow
Pillow-TOF.-Raffaelo Astarita, Manhatta ops both rer signs differ both in the attitude and number of persons and the phase of the cake-walk represented Note.-Copies of any of these patents will be furnished by Munit \& Co. for ten cents each. Please state
the name of the patentee, title of the invention, and daje of this paper

NEW BOOKS, ETC

Details of Building Construction.
By Clarence A. Martin. By Clarence A. Martin. Boston.
Bates \& Guild
Company. 1899. Quarto, 33 plates. Price $\$ 2$.
The architect, particularly the young architect, has probably felt many times the need of simple drawings of detains of American houses. There are, of course, books which give these details, but we do not remember any which is of such value as the present work. The volume
is of sufficient size to enable the details to be shown on a comparatively large scale. The selection is a most of Architecture at Cornell University iss au courant with the needs of architects.
Fundamental Laws of ElectrolytiCal Conduction. Memoirs by Faraday, Hettorf, and Kohlbrausch.
Translated and edited by H. M.
Goodwin, Ph.D. New York: Harper Goodwin, Ph.D. New York: Harper
\& Brothers. $12 \mathrm{mo}$. Pp. 98. Price 85 cents.
In the present volumes are collected those papers on electro-chemistry which contained the original statement
of fundamental laws and experiments on which the of fundamental laws and experiments on which the
modern theory of electrolytical conduction is based. It modern theory of electroltical consist of three memoirs by great physicists carefully edited and translated and accompanied by an excellent bibliography.
Some Memories of a Miner's Life
Or, Five Years on the Gold Fields New Zealand. By Mathe
This is a description of the trials and hardships of a
gold miner in far-away New Zealand. It will un
doubtedly prove interesting to all who have ever engaged
Transactions of the Wagner Fref INSTITUTE OF SCIENCE OF Phila
Delphia. Vol. VI. 1899 . The present volume is devoted to "The Solenodon Artiodactyls of the Uinta Eocene." This is a valuable monograph by Professor Scott, of Princeton University
and is accounpanied by excellent lithographic plates.

Elementary Illustrations of Dif ferential and Integral Calcu
Lus. By Augustus De Morgan Chicago: Opeut Court Publishing
Companv. 1899. Pp. 144 .
This work forms, quite independently of its interest t of the qeneral educational plat which integral portion of he general educational plan which the publisher cannot fail to interest those who have made any progres in the study of the calculus.
The Evolution of General Ideas Publishing Company. 1899. 16mo. Pp. 231. Price $\$ 1.25$.
The principal aim of this work is to study the develop
ment of the mind as it abstracts and gen ralizzs and to
tion; that is to say, they exist already in perception and
advance by successive and easily determined stages to advance by successive and easily determined stages to
the more elevated forms of pure symbolism accessible ne more elevated forms of pure symbolism accessible
only to the minority. The volume is a resume of lec tures which the author has given at the College de France in 1895. It is a most interesting work on psy chology.
Statistics and Economics. By Rich-
mond Mayo-Smith, Ph. D. New York: The Macmillan Com
1899. 8vo. Pp. 467. Price $\$ 3$.
This is the second part of "The Science of Statistics published for the Columbia College Press. The presen change and distribution. It is beautifully printed and attractively bound. The author is a well-known authority on political economy and is professor of that has been made with care and has been well collated and the deductions drawn therefrom are as authoritative as It can be in the science, which cannot be termed exact reader.
The Second Law of Thermodynamics Memoirs by Carnot, Clausius, and
Thomson. New York: Harper \&
Brothers. 1899. 12mo. Pp. 151. Price \$1.
Like the otherbooks of this series of scientific memoirs his book is a collection of some of the valuable scattered
papers on one of the most important subjects of modern

The Laws of Gases. Memoirs by Robert Boyle and E. M. Amagat.
Translated and edited by Carl Barus
New York: Harper Brothers. 1899 .
12mo. Pp. 110. Price 85 cents.
This belongs to the series of scientific memoirs edited by Prof. J. S. Ames, PL.D. It is almost needless to domain of physics are here presented in an excellent translation carefully edited. Everything about the makeup of the book in the way of tables, illustrations, etc.,
are excellent. It is a most important book of an imporant series.
Notes sur L'AGriculture aux EtatsUnis. Par P. de Vuyst, Docteur eur er edition. fer. 1899.
Potable Water and Methods of DeTECTING ImPURITIES. By M. N. N.
Baker, Ph.B., C.E. New York: D. $\underset{16 \mathrm{mo} \text {. Pp. } 97 \text {. Price } 50 \text { cents. }}{\text { Vostrand }}$
The need of a concise non-technical work on drinking water has been made apparent ; there is no dearth of lit-
erature on the subject but the works nearly all deal with the subject from the standpoint of the chemist and the sanitarian. Those about to build houses will find their questions regarding drinking water answered in this little The Slide Valve Simply Explained. By w. J. Tennant. Revised and en
larged by J. H. Kinealy, D.E. New York: Spon \& Chambe
16mo. Pp. 83. Price $\$ 1$.
The slide valve is a great stumbling block to young mechanical engineers, and the lucid explanations and dia-
rams in this book will prove very valuable to them and grams in this book will prove very valuable to them and
to the practical engineer as well, who may have a knowledge of what to do to run his engine economically, but

Darwinism and Lamarckism, Old and New. Four Lectures by Frederick
Wollaston Hutton, F.R.S. New York: G. P. Putnam's Sons. 1899 .
12mo. Pp. 226. Price $\$ 1$.
It is the author's aim to give a popular exposition of he Darwinian doctrines in language which can be readily understood by the lay reader. It is useless for the young some kind of preparation, like the perusal of the present admirable book.

Hanibbook OF Optics FOR STU-
DENTS OF OPHTHALMOLOGY. By W
N. Tuter, B.A., M.D. New York The Macmillan Compan
Herein is presented so much of the science of optics as dertains directly to ophthalmology. The demonstration of simple algebraic equations and the elementary truth of geometry. It is a simple and adequate treatment of of geometry. It
dificult subject.
Small Engines and Boilers.
bert P. Watson. New York: D. Van Nostrand \& Company. 1899. 12 mo Pp. 108. Price $\$ 1.25$.
This is a manual of concise and specific directions fo the construction of small steam engines and boilers of nodern types, from five horse power down to mode
izes, for amateurs and others interested in such work It is admirably illustrated by working drawings fully ettered. The author is a practical man and has acquitte

Notes et Formules de l'ingénieur du Constructeur-Mécanicien du CIEN. Paris: E. Bernard et Cie
1900. 16mo. Pp. $14 \% 8$ most valuable ensincer's pocke thook filled with use fill formulas and tables. Like all foreign books of this ature it is rather porrly gott it up. In this country no
technical books can wie with the so-called "pocket echnical books can wie with the so-called "pocket

Business and ゆersonal.

The charge for insertion under this head is One Dollar "
line for each insertion: about eight words to a line Advertisements must be received at publication offic as earlyas Thur
ing veek's issue.
Marine Iron Works. Chicago. Catalogue free. "U. S." Metal Polish. Indianapolis. Samples free. Yankee Notions. Waterbury Button Co., Waterb'y, Ct Handle \& Spoke Mchy. Ober Mfg. Co., Chagrin Falls, O
For bridge erecting engines. J.S.Mundy, Newark, N. J. Machinery designed and constructed. Gear cutting. Ferracute Machine Co., Bridgeton. N. J., U.S. A. Ful R Machinery for R.K. contractors, mines, and quar
ries. for hoisting. pumping, crushing. excavating, etc. new or 2d-hand. Write for list. Wilis Shaw, Chicago. The celeorated "Hornsby-Akroyd" Patent Safety Oin
Enyine is built by the De La Vergne Refrigerating Ma chine Company. Foct of East 13sth Street, New York. The best book for electricians and beginners in elec
tricity is "Experimental Science," by Geo. M. Hopkins By mail. $\$ 4$. Munn de... ${ }^{2}$ ablishers, 301 Broadway, N . Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broadway

Mandernurs

(7744) F. M. asks: If you wind a clock spring up tight and then put it into acid that will burn
it to nothing, what becomes of the potential energy? A. We wish we could answer this question for good and all.
But we cannot. We do not know what becomes of the energy that was put into that spring. And if anybody finds out, we
matter at rest.
(7745) J. A. L. writes: In answer to recent question which would fall faster, an ounce or a
ton of iron, you say that the ounce would do so. If you ton of iron, you say that the ounce would do so. If you clude that it is just the other way. The air resistance
being less in proportion to weight in the larger body being less in proportion to weight in the larger bod
would allow it to fall faster. (7746) W. E. H. asks: Whether the pin in the crank or the pin in the cross-head of an en-
gine is properly called the wrist pin? A. Although in general terms a wrist pin is any pin on which a connect
ing rod oscillates, and which is applicable to the head pin and oscillating-valve gear of engines, we decide that the pin in the crank of an engine or any crank that revolves is a crank pin, and not a wrist pin.
(7747) F. H. asks : 1. What is the best
method of attachinewooden bosses to method of attaching wooden bosses to glass plates of a
Wimshurst, the plates being drilled with centra lhole for spindle? A. Glue the leather to the bosses and cenent
the glass to the leather. The object of this is to interthe glass to the leather. The object of this is to inter-
pose a yielding medium between the glass and the wood 2. In an induction coil of 3 to 5 -inch spark, is there any danger of spark- striking through the coil when the dis
charging rods are too far apart to allow spark to pass A. Yes. The insolation of the secondary winding is sup posed to be made strong enough to withstand the strain, when they do break down. 3. Wi-hing to corstruct a delicate galvaumneter (astatic), how much No. 36 wire should
I use, in order to use it for thermo electric current; which should be wound in first, the coarse or the thin wire? A. Delicate gavanometers have as high as 30,000 turns
in the two coils. It is better to wind the coils so that they can be removed, that is, on spools which can be slipped into place and then have the coarse coil for thermo-electric currents on separate spools from the fine
wire. 4. The price of Weinhold's "Experimental Physics." A. Weinhold's "Experimental Physics", cannot be had. It is out of print.
(7748) F. S. G. asks: What is the best oil to immerse an induction coil in to attain a high de-
gree of insulation? A. Paraftine oil is commoniy used for insulating induction coils.
(7749) V. B. writes: In all the articles on color photography I have read, I have been disappointed
at the absence of any hint as to the depth of color in the color-plates, In the excellent article by M. Vidal in a recent number of the ScIENTIFIC AmErican. this to say how strong a color is Would you be kind enoug used in the camera, and also on the films used in build ing up the positive? Are they tints or strong colors Should the red and vellow be as strong as the blue? I should also be pleased to learn where I could pro-
cure the great variety of aniline colors now in use
A. We suppose the reason that no attempt to describe
the color screens used in color photography is that we the. color screens used in color photography is that we
have no words which can be used for the purpose. You
can probably buy the screens which have been matched against screens known to have proper tints, from pho tographic dealers. If you wish to experiment in this
line, you can obtain the aniline dyes from dealers in line, you can obta
chemical materials.
(7750) J. H. S. asks: Is there a dry bat tery on the market that will light a 16 candle power elec tric light for an evening. A. We do not know any bat-
tery which can economically light a 16 candle power amp, except the storage battery.
(7751) C. T. H. asks: Is it possible to manufacture a machine that will register one-twenty five thousandth of an inch? A. Yes. If a screw were
cut with 100 threads to the inch, and provided with a large head divided into 250 parts, when the head shoul be turned through one of these parts the point of the
(7752) F. L. asks: What is the reason for using platinum wires in the base of electric light luminum be used in place of platinum, the cost bein less? If not, why? A. Platinum wire is used in the base of incandescent lamps because it is the only meta as the glass. If any other metal were used it would soon the glass and ruin the lamp. (725) J. T. S. (7753) J. T. S. writes: Does the mica
front in the ordinary base burning coal stove add any thing to its value as a heater? I claim that it does not : that the stove would be probably a better heater if the
mica were replaced by ordinary sheet iron. mica were replaced by ordinary sheet iron. A. The
mica as truly as the iron absorbs heat to radiate it again at its own temperature. Mica is used for the purpose of
showing the condition of the fire and to give some ligh showing the condi
in a dark room.

AND EACH BEARING THAT

${ }^{\text {For }}$ the ${ }^{\text {Best }}$ Ruling Machines,

SAVE $1 / 2$ Your FUEL

BY THE ROCHESTER RADIATOR. Money refurded if not satisfactory. ROCHESTER RADIATOR CO

Tham the Shop
 CHANGE YOUR WORK

HIGH GRADE Worosing MACHINERY

 Pete Any Class of Work and andiaroran and proes
J. A. FAY \& CO.

Dynamos-Motors.

 Vavewtu fastes and Unapplied Substances. Reduction of Man-
ufacturing Costs. Testing, Perfecting. Introucing and
Disposing of troessen and Produts. Manutacturng
Formulas. © Explanatory Circular on Application "Universal" Kneading and Mixing Machines

 Patented an coutries.
WERNER
PFLEIDERER

 DON'T LEAVE YOUR KEYS

FINE GREY IRON CASTINGS,

NEW IDEA IN TRUNKS

Che Cypewriter Exchange

124 Barclay St... NEW YORK
124 La Salle St., CHICAGO
38 Bromid 38 Bromfield St.." BOSTON
817 Wyandoite St...
KANSAS CITY, MO
 We will save you from 10
to 503 on Typewriters of all
makes.
Send for Catalogue.

푼

 Tree protector. J. Schlaefer.
Truck, car. L.
T. Smy ser.

Valve, L. Gasz,
Valve, air, W. W .ie.
Valve gear, C Weller

Vebice coupling. WI. I. Wolverton...
Vebicle motor whee, J. Waters.
Vehicle steering apraraus, motor

W agon brake, G. A. Stark.
Waqon, dumping
Wagon, dumping, M. Gllock. Bunneli

Water tower and extension ladder.
Water tubbobiler. P. D. Blackder.
weather strip, Yak ley
Weir Prudden.

beel. See Fiftb wheel. Rüber tired whee
Vindicle wheel. Whicle motor wheel.

rench, Ray \dot{t} Peas.
DESIGNS.

Envelop. W.O. Abbot.
Iroining board.
Kite, J Doyle. A. Poweli.

Valve body, D. T. Kenney
Vapor hurne.A.E. Lyte
Washing machine agitato

TRADE MARKS.
 Bevera, es. certain named. T. B. Hail \& Company.
Cocks. stop and wate tanders. Frary \& clark.
Crackers, cakes, biscuits, macarons. and breads. Lafayette Cracker and Confectionery Com

Gloves. E. Pewny \& Company.....
Hairtonics and lotions. B. Emery.
Laxatives. F. P. Prati..........

LA BELS.

Canadian patents may now be obtained by th
ventori for any of the inventions named in the
coing ilist, provided they are simple, at a cost of $\$ 40$

$\left\{\begin{array}{l}\text { R. E. DIETZ CO., } 60 \text { Laight Street. New York. } \\ \text { Mention this paper and get special discount. }\end{array}\right.$
 organizer, sooer and reliable. At preseut well employe
Bartford, Conterment, sole object. Address Box 843 ,

Scientific Hmerican.

PROPOSALS.

 TURBINES

GAS GASOLDIE ENCIMES
WATE
 STy

FOR STEREOPTICONS AND SLIDES

 To Inventaris and Manuffaturers. We have ext

"MALLINCKRODT" PATENT
me absorbent and Vintilated smoking
PIPE, IS THE ONLY PIPE FIT FOR A GENTLEMAN TO SMOKE.
Bowls of the Best French Brier, exceedingly
neat and graceful in appearance, and cost no more than

ACENTS WANTED gine. A successful Kerosene Engine. Desirable agents
wanted for every principal city Address A. MIETZ.
Q) (1) Acetylene Burners. Highest C. P. possible.
State Line Talc Co., Chattanooga, Tenn
S3abaySure

LIFE PRODUGERS

Pranining Ine lew Hone

 Building Edition of the Scientific American
 MUNN \& CO., Publishers, 361 Broadway, New York.

Always Ready For ISe

ANNOUNCEMENT!
HASBROUCK MOTOR COMPANY 68 Broad St., New York, U.S.A.
Manufacturers of GASOLINE MOTORS Manufacturers of CASOLINE MOTORS
also builders of AUTOMOBILES AND YACHTS christiana machine co. CHRISTIANA, PA., U.S.A.
ENGINERRS, FOUNDERS, and MACHINISTS, Mifrs. of TURBINE WATER WHEELS,
 NEW ENGLAND WATCHES.

Guaranteed for accuracy.
Stem wind and stem set.
Thin Model watches
Enames and styles.
in Russia Leather cases.
Exquisite designs in ladies, wateh for the most artistic tastes.
We sell only complete wat
Tried, Tested and Timed before
leaving our factory.
THE NEW ENGLAND WATCH CO. Send for catalogue.

Warm Extremities Warm all over.

EVERY AMERICAN

 SHOULD CARRYA WALTHAM WATCH.
THE BEST POCKET TITIEPIECE

IN THE WORLD.

SUCCESSFUL PHOTOGRAPHY

Depends quite as much on the employment of accurately made and scientifically designed ap paratus as upon skillful manipulation.

BAUSCH \& LOMB-Zeiss

 ANASTIGMAT LENSESGive good results even in the most trying situations-when most needed-because the defects of the rectilinear type of lens, stigmatism, lack of speed, narrow aperture, lack of covering and defining power
 Send for Booklet "ABOUT LENS MAKING.'
Bausch \& Lomb Optical Company,

Rochester, N. Y.

560 North St. Paul Street.

HIGH GRADE FOOT POWER LATHES

PRATT'S PATENT POSITIVE DRIVE DRILL CHUCKS.

Frankfort, N. Y., U. S. A
the pratt chuck co.

Che " Iew Gem"
Safety $=$ Razor

PRINTING INKS

