
a Weekly journal of practical information, art, SCIENCE, MECHANICS, CHEMISTRY, and MANUFACTURES.

1.-First-class Battleship "Andrea Doria." Class of Three Ships.

From Phowgraphs by Symonde \& Company, Portsmouth, England. 2. First-class Battleship "Re Umberto." Class of Three Ships.

NAVIES OF THE WORLD-VI. ITALY.-[See page 362.]

§rientifir gmmiram.

ESTABLISHED 1845.

AUNN \& CO.,
editors and Proprietors.

No. 36I BROADWAY,
NEW YORK.

terms to subscribers

 he scientific american publications.

NEW YORK, SATURDAY, JUNE 3,1899 .

LIQUID AIR IN HIGH EXPLOSIVES.

It is to be regretted that the extravagant claims which have been made as to the commercial and industrial value of liquid air should have diverted the atten tion of the public from the highly meritorious industry with which Mr. Tripler has prosecuted his researches and the really brilliant success which he has achieved It was no small triumph for a private experimentalist to succeed in making by the gallon what the most skilled scientists had only been able hitherto make by the ounce, and at a stroke to reduce the cost of the new substance a hundred fold. In some of bis recent lectures Mr. Tripler has expressed himself as feeling hurt by the vigorous manner in which his statement have been attacked; but he should clearly understand that the criticism which he has evoked has been direct ed entirely at his theories, and does not throw any doubt upon the value of his work
In his recent lecture in this city Mr. Tripler exhibit ed fragments of two pieces of pipe; which showed in a very striking degree the powerful explosive properties of cotton saturated with liquid air as demonstrated re cently at his workshop. His assistant had placed a small portion of cotton, thus saturated, in a short length of 2 -inch gas pipe, and to prevent the flying fragments from doing any damage, had inclosed the 2 -inch within a 6 -inch pipe. The liquid air cotton was exploded and the 2-inch pipe (which was not tamped in any way) was torn into small fragments which cut their way cleanly through the outer pipe, giving it a sieve like appearance. The high explosive qualities here in dicated have been proved by actual test in a European coal mine to be comparable in their effect to those of dynamite; but it is not likely that the new explosiv will have any commercial value because its extreme volatility renders it imperative that the liquid air shal be used soon after it has been manufactured and immediately after the charge has been tamped in the hole. Unlike dynamite, it cannot be stored for an indefinite period and used at leisure; for with the present methods of transit in felt-covered cans, 3 -gallon can will be completely evaporated in ten hours' time. Even if it were distributed in double-wall ed holders, with a vacuum space, as in the Dewar re ceptacles, the complete evaporation would only be a question of two or three days-an insuperable objection to its use in a large variety of operations whe blasting is a necessity.

The general subject of high explosives and the rela tion of liquid air thereto form the subject of an inter esting article by a specialist in this line in the current issue of the Scientific American Supplement. It has been written witn the object of answering the many inquiries which have arisen regarding one im portant phase of the liquid air question.

GRUSON ARMOR IN THE UNITED STATES.
It is not unlikely that the well-known chilled cast ron Gruson armor will in the future be utilized to a limited extent by the United States army in building up the national system of coast defense. It has been used very extensively on the Continent, especially by Germany and Italy, and for the protection of land fortifications it has been found to give results superior to forged steel. As compared with the latter, chilled armor is more massive, many of the plates ranging up to 36 inches in thickness and 50 to 60 tons in weight For this reason it is never used on battleships ; but for land fortifications, where an extra 100 tons or so of weight presents no inconvenience, it forms an ideal armor, being capable of use in masses of such form and weight as will easily defeat the attack of the heaviest artillery. The plates, whether they are to be built up into turrets or casemates, are cast in massive segments, with parabolic surfaces, and they are provided with deep tongues and grooves along their abutting edges by means of which they may be fitted together without the use of bolts or any system of screw fastenings.
The outer face of the plates is chilled to a depth of from two to three inches, and this intense hardness, coupled with the great dead weight and the impossibility of striking a direct blow upon the curved sur-
faces, renders a Gruson turret positively invulnerable. The German artillerists carried out a series of search ing tests, placing shot after shot upon a turret, without being able to disturb its integrity. The system is of course costly, much more so than the earth and concrete protection behind which our coast defense guns are mounted; but there is no question that for a few of the more important and exposed positions, such as those at Sandy Hook or on Romer Shoals (which it is proposed to fortify), the Gruson armor would be found to well repay the cost of its installation. The long. standing proposition to erect the new 16 -inch 125 -ton gun on Romer Shoals is again to the front, and we think that if the government finally determines on this site it could not dovbetter than mount this powerful weapon in a modern Gruson turret. So mounted it would be practically invuinerable, and its mere mora effect, commanding the channel at close range, would be an invaluable defense to the harbor and city of be an inv
New York.

THE EAST RIVER TUNNEL.

The development of rapid transit in Greater New York has been greatly stimulated by the passage of the bill authorizing the construction of a railroad tunnel from Brooklyn to the lower end of Manhattan Island, and the bill providing for the removal of the Long Island Railroad tracks from Atlantic Avenue. The present schemes covered by these measures contemplate a through route from an underground terminus in lower New York to connect with the extensive suburban rail New York to connect with the extensive suburban rail-
road system of Long Island. It is also proposed ultiroad system of Long Island. It is also proposed ulti
mately to extend the tunnel beneath the Hudson River mately to extend the tunnel beneath the Hudson River
to connect with the Pennsylvania Railroad terminus in Jersey City.
We have frequently pointed out in the Scientific American that the difficulties of the rapid transit problem in this city were due to peculiar topographical conditions. Manhattan Island is hemmed in on three sides by a wide stretch of water, which in every direction but one has prevented unbroken railroad communica tion with the outlying suburbs. The only direct means of exit by a suburban railroad is to the north over the lines of the New York Central system. True it is there is an excellent street car service and a more limited ser vice of elevated cars running from New York to the outlying districts of Brooklyn; but it is not the kind of express service which alone is capable of carrying business men in reasonable time to and from their suburban homes. We doubt whether the new East River bridge will afford the necessary connection for a service of the kind desired, for, while it will form an other valuable connection between the street and ele vated railway systems of New York and Brooklyn, there has been no proposal to use it for the running of express suburban trains.
The new tunnel, however, by reason of its direct connection with the Long Island Railroad through the depressed tracks on Atlantic Avenue, will afford every facility for running fast trains of several cars each from lower New York to the outlying suburbs of Brooklyn, and it is to be hoped that in determining on the final dimensions of the tunnel, rolling stock, etc. the company, having in mind the phenomenal growth which is in store for any residential districts that may be thrown into easy touch with the business centers of this city, will lay out both the tunnel and its equip ment on a most liberal scale
The depth of the tunnel has been governed by th necessary depth of the future New Jersey extension which is estimated at 30 feet below the bed of the North River. Beneath the East River the road will be carried in two separate circular tunnels, after plans successfully adopted in the later London underground railways. The diameter of each tube has been placed at 14 feet 6 inches, and hence we infer that cars of special design, smaller than the standard railway coach, are to be used in the tunnel. This would, of course, prevent the running of standard through trains from any part of Long Island to Manhattan Island, and for reasons stated above would indicate a failure on the part of the promoters to realize the possibilities of the tunnel. The difference in cost between the tunnel proposed and one of standard railroad dimen sions would not be prohibitive, and would be hand somely repaid in its enlarged usefulness, especially when the New Jersey connection shall have beenmade.

THE PAN-AMERICAN EXPOSITION.

The Board of Directors of the Pan-American Exposi tion Company have agreed that the coming Exposi tion shall be located at the Rumsey Farm on the Niagara frontier in the northern suburbs of the city of Buffalo, and include a part of Delaware Park. Three experts including an architect and a landscape architect made the selection. The proximity of the Rumsey site to a beautiful park and its accessibility Rumsey site to a beautiful park and its accessibility
are all points in favor of this location. The approach is through some of the most attractive residental districts of the city, and the whole area is within fou miles of the City Hall. Arrangements for preparing the site for the Exhibition purposes will be begun at once.

GOLD IN THE PHILIPPINES

Whether or not a tropical El Dorado will be disco ered in our newly-acquired Philippines the future alone can decide; but certain it is that much time and labor will be expended in seeking the gold which the slands are said to contain. Before the outbreak of hostilities, American prospectors had made many trips inland; but the attitude of the natives prevented any systematic exploration of the country. Meager though the information acquired may be, there can be but ittle doubt that, in the unknown interior of many of the islands and in Luzon in particular, gold lies buried away.
It was the quest for gold and silver which, four hundred years ago, urged Spanish adventurers to begin a great course of discovery and exploration. It seems, therefore, incredible that after having acquired possession of these islands and established here their civilization, these gold-seeking Spaniards should have left undeveloped the natural resources of the territory.
But they never really subdued the natives; and, although they built up their great city of Manila and established trading-stations, their conquest was not extensive. They never subdued even the tribes which inhabit the country bordering the coast. During all the long years of Spanish dominion, from the founding of the first colony to the loss of the islands, the natives constantly rose up in rebellion against their rulers. Hampered by their efforts to bring the insurgent tribes to subjection, it was impossible for the Spaniards to explore the land beyond the beautiful rice fields and tropical groves, in the deep, dark jungles of the interior.
The natives themselves have never extensively engaged in mining; but the little digging which they have done has not been without its good results. In Manila, much gold in the form of jewelry and ornaments skillfully worked by the natives is sold in the shops.
Among many of the tribes of the interior, it is considered sacrilegious to disturb the earth; for which reason they have themselves not dug for gold and have prevented others froin so doing. During the last few months they have resisted the encroachment of American gold seekers, because, they said, they feared that the wrath of their gods would fall upon them, if the earth were made to yield its treasures. It may be that there are other reasons; for the natives, although superstitious, are crafty, and would naturally oppose the mining of the noble metals by any save their own people.
Still another reason may be advanced to explain the undeveloped condition of Philippine mineral resources. The friars, who wield so enormous an influence, have always combated every plan which would tend to the enlightenment of the people and the growth of large industries; and especially have they been opposed to the digging of mines, despite the evidence that precious ores exist.
The mining of the natives has been confined to the alluvial deposits of the rivers; for there is not a stream rising in the mountains of Luzon and the other islands which has not its gold-bearing sands and deposits, from which for centuries the larger portion of the precious metals has been obtained.

Hostile though the natives may have been to the advance of explorers, the possibilities of the islands under any other rule than Spain's would, ere this, have been known. Only with much difficulty was it possible to obtain a mining grant from the Spanish officials; and, for a foreigner, the obstacles encountered in obtaining a concession were well nigh insurmount able.
Since the capture of Manila a number of American prospecting parties have been exploring various parts of the islands. Although their work has been greatly retarded by the insurgents, they have, nevertheless succeeded in locating some very rich veins of gold, which will be worked when peace is established. Even before the outbreak of our war with Spain, a company composed largely of Spanish residents of Manila had undertaken the alluvial mining of gold; but nothing more than the preliminary prospecting was ever accomplished. So promising is the outlook for the future that many of our soldiers, particularly those of our Western States, haveexpressed a desire to remain in the Philippines in order to engage in mining after the insurgents have been subdued.

Our prospectors have confined their explorations to Luzon; but even on this island, perhaps the most civilized of the entire Philippine group, are regions which have never been trodden by a white man. Some of the other islands, it is said, also contain gold, and on Mindanao it is certain there are valuable deposits. Old miners, who have been in Cripple Creek and in the Klondike, have already arrived in Manila, and form but the advance of an army of gold-seekers, which will invade the country when peace has been established The present war cannot long continue, nor can it long delay the development of the mineral resources of our eastern possessions.

SOME SMOKELESS POWDER CONSIDERATIONS

An interesting discussion relative to the merits of certain smokeless powders and processes is now in pro gress in the coluinns of the Scientific American and the Scientific American Sopplement. There are certain considerations that may escape the interested lay reader in forming an opinion, and yet they are of absolute importance in reaching correct conclusions. A bridge may be correctly designed and yet fail through bad workmanship in construction. Such was the cas f the Ashtabula bridge some years ago, for expert en gineers checked the calculations and plans after the accident and found them correct. A wrecked gun doe not necessarily settle the fault upon a powder at once. Good judgment requires that such a conclusion must b reached through a process of elimination of other cause that have a possibility of existence. A smokeless pow der must conform to certain general conditions such a chemical stability, mechanical stability, uniformity bsence of dangerous ingredients, convenience of load ing, ability of being manufactured commercially. Yet a powder exhibiting a high degree of value in all thes essential properties may be delivered by one company as a trustworthy article, and by another company as an equally dangerous explosive. The personal equation o he factory management and equipment determines th value of a powder. To state that a given formula and process is a commercial commodity is not equivalent to stating that any set of ignoramuses can "shove it out" satisfactorily. To manufacture a good sinokeles powder requires a well designed factory, good mate ials, and a large enough corps of explosive engineers thoroughly trained, practically and theoretically, who understand the limits bounding the production of a re iable powder. Those limits are known to the trained men, for the experience gained with the early sinokeless powders and the investigations of conditions occurring gunnery are at their command. Though cordite eld to be toe erosive by the majority of ordnance and powder experts, the English government has an enormous amount on hand, and is satisfied by wide tests tha it can be relied upon. Yet cordite has to its record everal guns destroyed and many lots rejected as dan gerous. Properly made within proper limits it appear to-be safe for storage and use. Made outside of thos imits it becomes so warped as to be dangerous. The early experience of the United States with brown prismatic powder consisted in rejecting more than ccepted. The Ordnance Department of the arm finally detailed an officer to study the question, and h coed in putting the watter on another basis ucceeded in putting the matter on another basis alto ther.
A good illustration may be had from the meteoric career of the Leonard powder. In 1890 Dr. R.C. Schupp haus brought out a first-class nitroglycerin powder the demand being at that time for the ballistics possi ble with such powders. The nitrocellulose he adopted was one determined after long investigation of many varieties to be the best adapted for incorporation with itroglycerin. The safe proportion of that explosive he placed after another series of experiments at 60 pe cent. Being ahead of the times he retired until 1893 when he and Hudson Maxim grappled with the prob em of a gun-cotton powder with the ballistics of nitro lycerin powders. Meanwhile an assistant in that arly work who had picked up some crude ideas of the subject helped to launch the powder in question upon its erratic course. Using a very poor nitrocellulose for the purpose, the nitroglycerin was increased to 75 pe ent on the general idea that too much could not be had of a good thing; of course the powder (?) "sweated" and the men susceptible to nitroglycerin effects at the proving grounds developed big headaches. Storage in winter brought out the ugly "nature of the beast." At Sandy Hook, samples gave spectacular exhibitions f ballistic variations. A charge giving 24,000 pounds ne month gave 40,000 pounds the next. The navy los an 8 -inch rifle through similar circumstances. Whil samples of good nitroglycerin powders keep in excel ent condition, I have seen Leonard powder of 189 rumble away between the fingers in 1897. But w cannot condemn nitroglycerin as an ingredient for pow ders upon these experiences, although the navy exper gave it an undue prominence in fixing their attitude upon the matter. The trained explosive enginee would have thrown the powder out of consideration a nce upon the grounds of its formula. The known isuits had been clearly exceeded and dangerous quali ies were to be naturally expected. Again, those ear amples, such as were shown at the World's Fair, ex hibited careless manufacture, many lumps of uncon verted nitrocellulose being apparent in the individua rains. When the Russian government destroyed ot of cordite it had purchased, what was proved wa that the lot had been badly made, since satisfactor rders of magnitude have been delivered since.
If I may venture the opinion, the average American powder manufacturer does not pay enough attentio o this personal factor. Machines are more reliable than men only when a high intelligence is connecting and limiting them. The so-called "practical" man must give way to the trained experts in chemistry, ma-
chinery, manufacture, and mathematics, before the era of first-class powders is ushered in. A good for mula and process are not going to run themselves in desired directions, while superintendents are ignoran or more concerned with quantity than with quality Yet it must be confessed that Congress and the depart ments do not aid matters any. The one is averse to encouraging ideas, the other is backward in necessary appropriations, and the inventor generally gets dis heartened between the two

There is generally plenty of money for making mud holes navigable, or for other philanthrophic proposi tions for constituents, but a plan to catch up within a few years of Europe brings out patriotic denunciation of our infidelity in not relying upon God to keep ou powder dry and win our battles.

With the official board's new ideas arose the frigidity of atmosphere that makes liquid air a luxury. A man who has had extensive dealings with the governmen stated the case as follows: "Do not try to educate the government if you desire to declare dividends. Sel them what they think they want. If they wish to cal red sand smokeless powder, furnish it if you see profit in it." And the trou ble is that the government willing to give a $\$ 500$ politician a $\$ 2,500$ position, is con tinually haggling on prices for articles in regard to which the question should be quality, and not price This puts a stress upon manufacturers to cut price when they should not, and cover it by questionabl economies, or forcing the output.

The smokeless powder business is no Klondike, for acci dents are costly, business variable, and new things liabl to make a plant archaic. One company is said to have dropped $\$ 200,000$ in explosives during the last three four years. Liberality-to please Congress in ou phrases-should be the order of the day to secure the means of offense and defense, upon whose quality mil lions will depend in the future.

THE PLANT PRODUCTS OF THE PHILIPPINE ISLANDS

The Department of Agriculture has recently issued report on the plant products of the Philippine Islands, which is particularly interesting at the present time The report deals with the agricultural resources of the islands as they now exist, and shows that although an agricultural country, the islands do not produce enough food for the consumption of the inhabitants. In order to supply the deficiency, it is the custom to draw upon rice-producing countries, such as Cochin China. About one-ninth of the area of the Philippine Islands, or $8,000,000$ acres, is devoted to agriculture When the natural fertility of the soil is considered and the large amount of the rich land not yet cultivated, it can be assumed that with better agricultural methods the products of the islands could be increased ten-fold Rice forms one of the most important food products of the islands ; more than a hundred varieties are grown the annual production is about $36,000,000$ bushels This is, of course, far below the actual requirements of the population, even when supplemented by other vegetables and fruits. Maize, next to rice, is one of the most important of the grain products of the Philip pines, and the sweet potato follows maize in turn Fruits grow in great abundance, bananas heading the list. Large quantities of sugar cane are grown, but owing to crude methods of manufacturing, the sugar is inferior in quality, and is sold for a low price. Cot ton is not as valuable a product for the islands as it was once, owing to the successful competition of British fabrics. Formerly indigo was also one of the impor tant products of the islands. Coffee plantations thrive well, but the coffee is not of the best quality and the plantations are not well managed. In most of the islands of the archipelago tobacco is grown, and ove one hundred million cigars are annually exported from Manila, and the shipment of leaf tobacco aver ages about $20,400,000$ pounds. The islands also furnish spices and the medicinal plants are abundant, bu most of them are little known

photography of paintings and drawings.

At a lecture given before the Photo Club of Pari M. Sanger Sheperd brought out the results of his ex periments as to the best method of photographing paintings, drawings, manuscripts, etc. In the case of paintings, he dwells upon the importance of havin the picture lighted in the proper manner.
For pictures in which the tints are delicate, such as water colors, he recommends exposure by diffused day light, but for those whose color is somber, such as that of old pictures or oil paintings, he prefers exposure in the open air as being more suitable, for in this way details in the shadows are obtained which it is impos sible to have otherwise

If artificial light is used, the sources of light should be placed to the right and left, and rather near the picture.
If they are too far off, and too near the camera, dis agreeable reflections are produced

In the reproductions of drawings, writing, or printed matter, the lecturer recommended the use of a blu screen, and a small diaphragm. The focus must be carefully made, a full exposure being given, and once
the negative is fixed, it should be plunged for several seconds into a bath of reducing liquid (hypo and red prussiate of potash), in order to obtain complete trans parence in the whites of the negative
As to the method of development, it is found that hydroquinone and kindred developers bring out first the blues, then the greens, and lastly the reds. However as the development of a negative with these substances requires from 10 to 30 minutes, it is to be feared that the reds will not be produced. On the contrary, metol and other similar developers cause the whole of the image to appear at the same time, and proper density may always be obtained by prolonging the development.

THE "REINA MERCEDES."

With the arrival of the protected cruiser "Reina Mercedes" at an American port, the navy secures at once a useful addition to its fighting strength, and the most valuable trophy of the war. When the ill-fated "Maria Teresa" was floated and started for the United States, it looked as though we would secure at least one of the big 7,000 ton armored cruisers of the Spanish navy, which, under a new flag but retaining its old name, would perpetuate the brilliant victory in Cuban waters. But that was not to be, and for awhile it looked as though the many small gunboats and launches captured in the Philippines and a few that were secured in the West Indies would afford us no naval trophy of the war much over a thousand tons in displacement.

The "Reina Mercedes," however, is a very service able vessel of 3090 tons displacement, or a little less than the "Raleigh," her trial speedalso being about $11 / 2$ knots less, or $171 / 2$ knots an hour. She was built at Carthagena, in 1887, or three years later than the "Atlanta" and "Boston," and was one of the ships of the earlier period of the reconstruction of the Spanish navy, when the design and building of Spanish vessels was largely carried out by British naval architects. Presumably, therefore, she is a well-built ship and capable, after overhauling and re-arming, of being made into a serviceable modern cruiser of the protected type. Her original armament consisted of six 6.2 inch Hontoria guns; two $2 \cdot 7$-inch, three $2 \cdot 2$-inch, two $1 \cdot 5$-inch and six $1 \cdot 4$-inch rapid-fire guns, with two machine guns. She was fitted with no less than five torpedo tubes, and as all of these are above water they will probably be closed up, the above-water discharges being now considered as constituting a greater danger to the ship that carries them than to the enemy

The new armament will consist of six 6 -inch American guns of the new long caliber, smokeless powder pattern, and the miscellaneous sizes at present in the secondary battery will be replaced by our standard 6 pounder and 1-pounder rapid-fire guns. The new navy 6 -inch gun will be a more powerful weapon than the old 6.2 inch Hontoria weapons; and that the latter were destructive was shown by the havoc wrought by a shel from one of these weapons which was fired from the Socapa battery and entered the forward battery of the "Texas," putting it out of action for the time being. Those who wish to see what such a shell can do will find illustrations of the damaged plates in the Scientific American of August 20, 1898
It so happens that the comparatively slow speed, $17 \cdot 5$ knots, of the "Reina Mercedes," her size and battery, will render her practically a sister ship to the half dozen cruisers authorized by the last Congress. These ships are to be of 3,100 tons displacement and 16.5 knots speed. They are to carry an armament of ten 5 -inch rapid-fire guns, and will have a trial coal capacity of 470 tons. The coal capacity of the "Reina Mercedes" is 600 tons. Allowing for depreciation of her machinery, it will be seen that her speed is about the same and her coal capacity greater than the new cruisers, thus rendering her admirably adapted to the particular class of service for which they have been designed.

COMMERCIAL PRODUCTION OF LIQUID AIR.
The General Liquid Air and Refrigerating Company, of New York, has been for several wonths erecting a plant in New York city, which is now practically complete. The apparatus is upon a scale suitable to be operated by a steam engine of 200 horse power. The liquefying apparatus is the invention of Messrs. Ostergren and Burger, the engineers of the company. The first experimental run was made on May 25 and resulted in complete success. The liquid air is said to have poured from the discharge pipe at a rate which indicated the easy production of one gallon a minute at full load. This quantity is the amount which the inventors had predicted in advance as the output of the machine. During the experimental run the aver age pressure maintained in the compressor was 800 pounds, while at full load the pressure to be carried is 2,000 pounds. When the success of the plant was evident, the men employed in the factory went wild with enthusiasim, took Mr. Ostergren upon their shoulders and carried hiv around the works in triumph. We expect to present to our readers in an early issue a ful and illustrated account of the plant, with details of the process employed.

POCKET VOLTMETER AND AN ELECTRIC

 SOLDERING IRONA handy pocket voltweter in the form of a watch is one of the instruments exhibited by the Whitney Electrical Instrument Company, at the Electrical Exhibi tion. This meter has a five-volt scale divided to fifths of a volt, and below it, on some instruments, a milliampere scale also. It is designed for storage battery work principally and for all similar work in which low potential and sinall current readings and tests are made. Inside the case, as will be seen from our illus tration, is a circular magnet which nolds the needle at

A WATCH VOLTMETER.

zero by keeping the magnetic bar on its lower end in a horizontal position. When the current passes through the solenoid, this short bar is moved through an are and moves the needle with it. A piece of soft iron is placed in the top part of the solenoid for the purpose of attracting the magnetic bar more strongly, for if this were not done the dimensions of the scale would have to be uneven at the end. The meter will commend itself to all because of its compactness.
Another convenient article at the Electrical Exhibition is an electrically heated soldering iron intended for soldering wire, electrical connections and other articles. Between the handle and the soldering copper point is located a coil of German silver wire in sufficient quantity to give out the required heat for soft solder in a very short time. The current is taken from an ordinary lamp socket through flexible lamp cord, and only a trifle wore is required to heat the coil than is necessary for a 16 candle power incandescent lamp.
The electrical soldering iron is now preferred by electricians in their work on account of the uniform heat obtained, and we are informed it is now in general use. This iron is only one of many other interesting applications of electricity for heating purposes shown by the Anerican Electric Heating Company at the east end of Madison Square Garden Hall.

An Intelligent Fish.

M. Semon in his recent voyages has observed an interesting fact which shows the large development of the memory and faculty of ment of the memory and fish called observation of a certain fish called the Echeineis remora. It is known
that this fish is provided with a that this fish is provided with a
kind of sucker on top of its head, which it uses in order to attach itself to hulls of vessels, the shells of tortoises, and even to fish larger than itself, such as the shark. One day, during a voyage near Australia, M. Semon having cooked some crabs of a very savory odor, the remains of the repast were thrown overboard. Each fragment as it fell was seized by a fish about 9 or 10 inches long. M. Semon recognized the echeineis, and wished to procure a specimen. The first fragment of crab which he threw into the water was baited to a hook and line, and a specimen was caught at once. The line was again thrown, at once. The line was again thrown,
under the same condition, but not a under the same condition, but not a
single echeineis would touch it, nor even fragments not so attached. During the whole day the fish declined to eat anything that was thrown to them. Evidently they had seen one of their comrades disappear and became distrustful on this account; thus they remained attached to the bottom of the vesse without allowing themselves to be

A STRANDED ICEBERG AT ST. JOHN'S, NEWFOUNDLAND,
past Newfoundland, and keeping near the Great Bank the warming influences of the Giulf Stream cause it to disappear. Usually the limit of travel of icebergs is 40 degrees north latitude, but in the South Atlantic Ocean they have been found as near as 37 degrees south latitude. Naturally these immense masses of ice are a serious peril to navigation as when the "Arizona" smashed her bow on an iceberg off the coast of Newfoundland on November 7, 1879, and they frequently foundland on November 7, 1879, and they frequently
lodge on the banks of Newfoundland, much to the dislodge on the banks of Newfoundland, much to the dis-
comfort and danger of navigators. Nothing is more comfort and danger of navigators. Nothing is more
imposing than the sight of one of these immense icebergs, which might send the finest ocean steamship to the bottom in a few moments. The iceberg is apt to be of an intense bluish white; they are real floating mountains of ice. The sun melts them unevenly, causing rugged and picturesque peaks to jut into the air, and in northern latitudes, where whole fields of

AN ELECTRICALLY HEATED SOLDERING IRON.
icebergs are seen, they look like fairy castles. Dr. Kane in his first cruise counted 280 icebergs in sight at one time, and most of these were over 250 feet high. It is, of course, a well-known fact that about oneeighth or one-ninth of the berg projects above water. As might be imagined, the iceberg, containing as it does at its base many pieces of rock carried down by the glacier from some northern country, scores the bottom of the sea, acting really like a gigantic file. When the enormons bulk of the iceberg is considered, it will be seen that the current hurrying it along might it will be seen that the current hurrying it along might
cause the iceberg to produce considerable change in cause the iceberg to produce considerable change in
the floor of the sea over which the iceberg passes, and the floor of the sea over which the iceberg passes, and
geologists recognize in this operation a repetition of the phenomena accompanying the distribution of the drift formation and the production of rounded bowlders, gravel and sand.

Parade of Automoblles

A parade of automobile vehicles took place in New York on May 24. The route was from Madison Square Garden, by way of Madison Avenue, Fifth Avenue, Lenox Avenue, Morningside Avenue, and Amsterdam Avenue to Columbia University. The parade started from Madison Square Garden at 3:30 P. M. and ended at the University at 4:30 P. M.
The parade was led by Col. A. A. Pope, driving his Columbia Stanhope, then followed Mr. Riker, in his Stanhope, followed by a large number of automobile vehicles. There was considerable dissatisfaction over the fact that the automobiles were not allowed in the Park. The time will doubtless come when automobiles will have equal rights with carriages drawn by horses. The parade was considered a very satisfactory one, and was witnessed by a large number of spectators.

An American Bridge for Japan.
The Phœnix Bridge Company has received a contract to build a large steel bridge for the Imperial Railway of Japan. The bridge will be in six spans and will be one of the largest steel bridges ever contracted for by American builders. As soon as the plans are completed work will be begun, and the bridge will be ready for shipping by September 1 .

The Paris-Bordeaux Automobile

 Race.The automobile race from Paris to Bordeaux, a distance of 353 miles, was won by a carriage called "The Petroleum Duke," the running time being eleven hours forty-three minutes and twenty seconds, or at the rate of twenty miles an hour, which is a very remarkable speed for so long a distance. The carriage had four seats and the engine was of four horse power. There were twenty-eight competitors in the race, and an occupant of one of the carriages jumped off while it was in motion and received fatal injuries.

June 3, 1899.

A POWERFUL OPEN CIRCUIT BATTERY CELL
The value of primary batteries designed for open cir cuit work depends upon their freedom from local action a minimum of internal resistance, quick recovery from an accidental short circuit and non-deterioration by evaporation. The Harrison cell shown in the accompanying illustration possesses many of these features

A POWERFUL OPEN CIRCUIT BATTERY CELL.
besides having a high electromotive force and a larger current discharge in proportion to its size than is usual in other open circuit batteries. It is quite simple in construction, requires very little care, and operates quickly after it is set up. The glass jar is about 3 inches square by 5 inches high and has a bell-shaped mouth paraffined, on which sits a wood cover holding the elements in suspension below. Cast in the jar is a line for water indicated by a " W " and another line above marked " A " for acid, making a very convenient guide for filling. The exciting fluid is sulphuric acid of 66° Baume. The elements consist of a cylinder of peroxide of lead about an inch in diameter encircled by rubber bands and a cylindrical short zinc bar of the same diameter, 2 inches long, amalgamated with mercury to protect it from the acid. The rubber band on the lead element prevents the zinc from coming in contact therewith in case the rod supporting the zinc becomes loose.
In setting up the battery the acid is added to the water and the whole allowed to stand until the solution is cool, then the elements are immersed in the solution and the battery is ready to operate. Convenient binding posts are on the cover for connecting the cell to the line or to other cells in series.
Four of these cells have been in use in our office on our open call bell circuit for several months, requiring little or no attention, and have given good satisfaction.
When exhausted, the zinc becomes spongy and soft and the strength of current diminishes, and soft and the strength of current diminishes, but the battery can be quickly renewed by
putting in a fresh zinc and fresh acid. Each putting in a fresh zinc and fresh acid. Each
cell is rated to give 2.45 volts and 40 ampere hours, so that the electrical energy produced costs but little over one cent per watt hour, making it a very economical battery.
The small size of the cell, its cheapness, its remarkable recuperative power and high voltage, adapt it to the open circuits of burglar alarms, telephone transmitters, electric bells, and to the operation of dentists' and physicians' outfits.
The cell is manufactured by Harrison Brothers \& Company, Philadelphia, Pa., who are introducing it through the Thermo-Electric Company, 103 Times Building, Park Row, New York from whom additional information may be obtained.

A CHINESE TYPEWRITER.

Some little time ago we referred to the various typewriters of the world, and stated that, up to the present time, no machine had ever been invented for use with the Chinese language. We are now informed, however, that or Rev. D Z Sheffield the Rev. D. Z. Sheffield, of the American Board
Mission, President of Mission, President of
the T'ung-cho College, for Chinese students, has invented and perfected a remarkable typewriter, which bids fair to revolutionize the

acy, exact spacing and neat work. Our second engraving shows the under or type side of the wheel after it is removed from the machine, and in addition to the multitude of characters shows the holes around the circumference into which the locking pin goes during the operation of printing. Dr. Sheffield's typewriter is a triumph of American inventive skill.

A FEED-WATER PURIFIER AND SKIMMER FOR

 BOILERS.By means of a simple device which has been invented by Herman W. Nye, of Elmwood, Neb., the feed-water

A FEED-WATER PURIFIER AND SKIMMER FOR BOILERS.
can be purified before entering a boiler, an apparatus being also provided which is designed to remove the foreign matter floating on the surface of the water in the boiler.
Of our illustrations, Fig. 1 is a sectional side elevation of the improvement as applied. Fig. 2 is a section of the purifier.

To the side of the boiler is attached a vessel which receives the feed-water to be purified, and which is filled with water and oil. Within the vessel a tube is fitted extending with its lower open end into the water. From the closed upper end of the tube a pipe leads to the boiler. In the bottom of the vessel two funnels are mounted, one above the other, the lower funnel being provided with a valved pipe, wherethrough the sediment collected can be removed. The feed-water as it enters the vessel flows down through the stratum of oil, whereby the impurities are removed, enters the lower end of the tube, and passes purified to the boiler, through the pipe connected with the closed upper end of the tube.
Into the upper end of the purifying vessel there also discharges a pipe, the other end of which passes into the boiler below the level of the water. This end of the pipe extends within a float or skimmer consisting of a cup which has a perforated or reticulated upper end, and which is counterbalanced to rise and fall with the water. The apparatus is designed to conduct the upper layer of the water in the boiler back to the purifying vessel, where its impurities are removed, before it is returned to the water compartment.

American Locomotives for the East.
The Baldwin Locomotive Works, of Phila delphia, have just secured the contract for the first locomotive for use in the development of the section of Palestine which is associated with the "Zionist" movement, and the Great Central Railway, of England, has placed an order with the same firm for twenty freight locomotives of the same character and design as those intended for the Midland Railway, of England, and which we have already illustrated.
Howell Gun Carriage.
The gun carriage designed by Rear-Admiral Howell, for which Congress appropriated $\$ 50$, 000 , has been disap proved of by Gen. A. R. Buffington, Chief of Ordnance. He gives several reasons for his action. The gun carriage is designed to be used with the large sea coast guns of calibers from 8 to 13 inches. It is much larger. It is much larger and heavier than the Buff ington-Crozier carriage now in use and has three hydraulic cylinders as compared with two in the latter design.

PHOTOGRAPHY IN THE COLORS OF NATURE.
Photography in natural colors has again been going the round of the newspapers, this time from the West, but, like the cry of "wolf," it has so often been a false alarm, that it has received but scant attention; although, this time, there really is something, and something very important, in it.
Prof. R. W. Wood, of Wisconsin University, is the inventor of the method, which, briefly stated, is the production of a positive on which there is neither pigment, colored lines, nor color in any form; and yet when examined through an ordinary double convex lens it is seen in all the colors of the original, and, if possible, in colors more brilliant than those of nature's own. Nor is that all. Even more surprising is the fact that from that positive there may be printed by simple contact, and as simply as are printed lantern slides, as many copies as may be desired, every one of which will show the colors in the same way and with the same brilliance.
Diffraction photography, according to Prof. Wood, in the Philosophical Magazine for April, is founded on the fact that if a diffraction grating of moderate dis persion and a lens be placed in a beam of light from a linear surface, and the eye placed in anyone of the spectra formed to the right and left of the image, the entire surface of the grating will appear illuminated with colored light, the color depending on the part of the spectrum in which the eye is placed. If one part of the grating has a different spacing from the rest, the spectrum formed by this part will be displaced relatively to the first, and if the eye be placed on the overlapping parts of the two spectra, the correspond ing parts of the grating will appear illuminated in different colors.
If, then, three gratings are taken, of such spacing that the deviation of the red of the first is the same as that of the green of the second and blue of the third, and mounted side by side in front of a lens, their spectra will overlap, and an eye placed in the proper position will see the first grating red, the second green and the third blue. If the first and second gverlap yellow will appear, and if all three, white light will be the result.
On this foundation, which perhaps only the initiated can fully understand, Prof. Wood has planned his method, not yet perfect, of course, but one that, in our opinion, will before long lead to the sale in every fancy store in this and other lands of pictures that, when seen in the little instrument that will go along with them, shall appear in all the colors of nature; and that both instrument and say a dozen of pictures will cost less than a dollar.
The first step in the production of a diffraction photo graph is to make three negatives through red, green, and iblue glass in the ordinary way, and from them to print positives on albumen transparency plates, albumen rather than gelatine, as the latter would soften in the warm water of the next operation. Prof. Wood employs albumen lantern slide plates. Those positives, when dry, are coated with bichromated gela tine and printed, each under a suitably spaced grating, and washed in warm water till the bichromate and unacted-on gelatine are washed away. Such positives when examined by reflected light, and with the eye in the suitable position, show, respectively, the red, green, or blue of the object photographed and only need to be superimposed to show it in all its colors and shades combined.

And it is here that the most surprising part of the process comes in, so surprising, indeed, that the professor says, "It is almost incredible." A bichromated gelatine plate is printed successively under all three positives, washed in warm water as before, and dried; and although the gratings may contain.some 2,000 lines to the inch, and to the lay mind must seem simply a confused mass, each does its own peculiar work, sends its own color to the eye and mixes them as they go, so that a bouquet of nature's own most brilliant painting appears in all its glory.
Not less wonderful is the fact that in this stereotype plate as we may call it we have the means of making it multiply itself by the thousand; all that is necessary being to employ it as an ordinary negative, from which as many copies may be printed as we desire and on bichromated gelatine plates.
It has been said that the eye must be in "a suitable position." To find that at a glance, Prof. Wood has devised a simple instrument that will answer the purpose adnirably. It is essentially a cheap bi-convex lens, mounted in a frame to secure its correct position in relation to the picture, and need not cost as much as the cheapest of cheap stereoscopes. The cut will explain itself
One serious obstacle to the prosecution of this kind of work is the great cost of gratings large enough for the purpose: but that the professor gets over in a simple and apparently an efficient way, as will be seen from his description of his method of enlarging up to
any reasonable extent. He says: "The original grating ruled on glass was mounted against a rectangular aperture in a vertical screen, the lines of the grating being horizontal. Immediately below this was placed a long piece of heavy plate glass, supported on a slab of slate to avoid possible flexure. A strip of glass, a little wider than the grating, sensitized with bichromated gelatine, was placed in contact with the lines of the grating, and held in position by a brass spring. The lower edge of the strip rested upon the glass plate, so that it could be advanced parallel to the lines of so that it could be advanced parallel to the lines of of light coming through the rectangular aperture. In this way I secure a long narrow grating, and by mounting this against a vertical rectangular aperture, and advancing a second sensitized plate across it in precisely the same manner, I obtained a square grating of twenty-five times the area of the original. It was in this manner that I prepared the grating used to print the impressions on the three positives. So well did they perform, that it seemed as if it might be possible in this way to build up satisfactory gratings of

DIFFRACTION-SCOPE

large size for spectroscopic work. Starting with a one inch grating of 2,000 lines, I have built up a grating eight inches square, which, when placed over the ob-ject-glass of a telescope, showed the dark band in the spectrum of Sirius with great distinctness. No especia precautions, other than the use of the flat glass plate, were taken to insure absolute parallelism of the lines and I have not had time to thoroughly test the grating. The spectra, however, are of extraordinary brilliancy, and, on the whole, the field seems promis ing."

THE MEASUREMENT OF SHUTTER SPEED.

There are to-day published a number of tables giving the proper time of exposure for different subjects in different classes of light, at all hours of daylight, and all seasons of the year. These tables are a valuable guide to photographers; but in order to use them intelligently, it is necessary to know the speed of one's shutter. The figures found on the indicator dials of most shutters are far from accurate, but are generally accepted as correct because at first sight the measure ment of a shutter's speed, when set for instantaneous work, appears too difficult to be attempted. It may however, be accomplished quite accurately in the fol lowing simple manner. Take a piece of white card board shaped as shown in Fig. 1, and draw upon it the figure shown, being careful that the upper edge of the

THE MEASUREMENT OF SHUTTER SPEED.
edge of the upper triangle. Now insert the narrow part of the card in a piece of lead pipe about 2 inches long and 1 inch in diameter, and then flatten the pipe so as to fasten it securely to the card. With the addition of an ordinary 2 -foot rule, this is all the apparatus needed.
Select a brightly lighted wall, and mark a point about 6 feet above the floor or ground. Then fasten the rule vertically against the wall with its upper end
exactly 3 feet below the mark. Set up the camera squarely in front of the rule and at such a distance as will give the largest possible image of the entire length of the rule. Focus sharply and use a small stop.
The card should now be held so that its center mark is just beside the 6 -foot mark on the wall. Fig. 2 shows all in readiness for the drop, the dotted rectangle representing the field of view of the camera.
Now release the weighted card so that it will fall close beside the rule, and expose the plate while the card is passing the rule. This will require care, and it would be well to practice it several times without withdrawing the plate-holder slide.
The plate must now be developed, and will show a picture like Fig. 3, in which the center mark of the card is blurred by its motion. This motion must be measured by the scale shown in the photograph of the rule (never with the rule itself), and must be expressed in feet. Call this distance d
Let t be the time in seconds that the shutter was open. Then $\frac{d}{t}=v$, the velocity of the card in feet per second at the time of exposure. Observe the distance that the center of the blurred mark has fallen below the upper end of the rule. Add 3 feet, and the sum is the total distance that the card has fallen. Call this h.
Neglecting air resistance, we have from the law of falling bodies $v=\sqrt{2 g h}$. Equating the two values of v, we have $\frac{d}{t}=\sqrt{2 g h}$. Solving for t, we find $t=$ $\frac{d}{\sqrt{2 g h}}$, in the second member of which all the quan$\sqrt{2 g h}$.
tities are known.
Example.- $d=3^{\prime \prime}=0.25^{\prime} ; h=4^{\prime} ; g$ may be assumed as 32.2 . Then $t=\frac{d}{\sqrt{2} \overline{6} \cdot h}=\frac{0 \cdot 25}{\sqrt{257 \cdot 6}}=00156$
second, approximately.
The card may be dropped from a greater height than 3 feet above the rule, and the greater the fall of the card, the greater will be the accuracy of the result; but the greater will be the difficulty of getting the picture of the card at the proper place.
The following table gives shutter speeds from $\frac{1}{\delta \delta \sigma}$ of a second to about $\frac{1}{30}$ of a second with sufficient accuracy for ordinary purposes. By placing the camera at a greater distance from the wall and using a longer drop of the card, the table may be extended as desired.

\section*{| $\begin{array}{l}\text { Total Fall } \\ \text { in } \\ \text { Inches. }\end{array}$ |
| :--- |}

R. R. Raymond,

First Lieutenant Corps of Engineers,
Boston, Mass.
United States Army.

An Automobile Journey from Cleveland to
On Monday, May 22, a Winton motor carriage started from Cleveland for New York. The distance from Cleveland to Buffalo, 218 miles, was covered in 11 hours. On May 23 the carriage ran from Buffalo to Fairport, 94 miles, in 7 hours. On May 24 it ran from Fairport to Syracuse, 80 miles, in 7 hours and 48 minutes. On May 25 the carriage ran from Syracuse to Albany, a distance of 154 miles, in 11 hours and 52 minutes. The total distance traveled was 546 miles; the total time 37 hours and 40 minutes to Buffalo. The difference between the roads from Cleveland to Buffalo and Buffalo to Albany is clearly shown by the difference in running time The carriage in use weighs 1,700 pound and is driven by a six horse power motor.

Americans Elected to the Royal
The Royal Institution of Great Britain, in commemoration of its centenary, has elected a number of American honorary members. The list includes Dr. Samuel Pierpont Langley, Secretary of the Smithsonian Institu tion, Prof. A. A. Michelson, of Chicago, Prof. R. H. Thurston, of Cornell University, Prof George F. Barker, of the University of Pennsylvania and Prof. W. L. Wilson, President of Washington and Lee University, and former Postmaster-General.

AN atlas, in sixty-five sheets, of the upper Yangtse Kiang River, drawn from the surveys of Father Chevalier, of the Jesuit observatory at Si Ka-wei, is about to .be published at Shanghai.

Sorrespondence.

Fire Protection in Paris

To the Editor of the Scientific American
In a recent number of your estimable paper, the Scientific American, you published a very interest ing article on "Fire Precautions in Paris," in which you rightly attribute the fewer disasters by fire in Pari to the manner in which the houses there are construct ed. The information you give is, however, incomplete for you speak only of the exterior of the houses, while it is the interior especially which gives the greatest gnarantee against the rapid development of fires such as we see too of ten here. The architects who go to Paris in 1900 would do well to study the matter in order to apply the construction to American dwellings.

In America the motto is " build quickly." Thus we see houses of considerable importance rise from the earth and open their doors to their occupants scarcely a month after the laying of the first stone. The vari ous materials-foundations, corner stones, doors, win dows, ccrnices, etc.-are prepared in advance by different contractors, and all that is necessary is to add to these a large number of laborers working with th greatest celerity and superintended with discipline.
This system offers the advantage of making capital more quickly productive, but it offers a drawback as regards the solidity of the edifice and the security of the inhabitants, since wood forms the largest propor tion of the materials used. Although the entire out side surface may be of brick, all the interior framework of the house is of wood. Floors and ceilings, staircase and closets, and the roof, covered with plates of tin or sheets of tarred paper, are all of wood. Wood is every where, and what wood? The most resinous kinds, such as fir and pitch pine, so that it needs only a small fire in a corner of the cellar for the whole house, which is all built of inflammable material, to be immediately enveloped in flames. In such a dwelling, the occupant may well ask himself each night if he will awake in the morning.
At Paris the scourge of flame proceeds less rapidly and it is only in a provisional edifice built of wood such as the Charity Bazar, or in an old theater like the Opera Comique, which has not the improvements required by the later building laws, that disasters have occurred similar to the recent fires in New York.
In France, the method of construction of a house differs completely from that employed here. The heavy work, that is to say the main walls, are all of dressed stone or lrough blocks faced with mortar, the girders and cross beams are of iron, the ceilings are arched and of brick, the stairs of stone or marble, the floors of terra cotta tiling (diamond or hexagonal in shape), the interior walls are of hollow bricks placed edgewise, the roof of blocks of terra cotta covered with tiles or slate, the chimneys of marble, and finally, the doors and windows, the friezes, cornices, casings, baseboards, and other woodwork, are all of oak or walnut. It will readily be seen, therefore, that the proportion of inflammable material is relatively small in such a house, which makes it possible to confine a fire very easily to the place where it started. This is the reason that a fire often breaks out in the cellar of a bailding full of inflammable materials such as petroleum, oils, or varnish, without doing damage to the rest of the building.
There is another cause of disasters resulting from the tolerance of the building commissioners, who allow cellers to be extended under the street, with vent holes opening in the sidewalks. A single match dropped by a passer-by and falling through one of these vent holes into the cellar may cause one of the greatest conflagrations
Finally I must mention, as a very good measure in France, the alinost universal use of Swedish safety matches, which can only be lighted by scratching on the side of the box, so that a stray match is not capable of igniting by accident, and thus causing a fire.
Although America may be less favored than France with regard to the rapid development of fires, she is on the contrary far better organized to combat them. Her apparatus, machines, and fire engines have reached the greatest perfection, as has everything else which is connected with mechanics and the application of forces. The organization of her engine houses is perfect, and the start for a fire almost instantaneous. As the engines and men are distributed in numerous stations in the different parts of the city, it takes but a few minutes after the alarm has been given to have the pumps working at the fire.
From what precedes it will be noted that each country may get useful ideas from the other. It is by eclecticism that we approach perfection. The great international expositions, such as the World's Fair in America and the exposition at Paris next year, are the most efficacious means of obtaining the supreme degree of perfection in all things. Et. Michel.
112 Summit Street, Newark, N. J
One-third of the people who go mad are said to recover their senses.

Safe Bengal Fire.-Bengal fire free from danger is produced from powdered aluminum 12 parts, barium nitrate 12 parts, saltpeter 12 parts, yellow dextrine 2 parts, sulphur: 2 parts, and gum arabic 5 parts.-Neueste Erfindungen und Erfahrungen.
Waterproof Canvas.-The canvas is coated with a mixture of the three solutions named below:

1. Gelatine, 50 grammes, boiled in 3 liters of water free from lime. 2. Alum, 100 grammes, dissolved in 3 free from lime. 2. Alum, 100 grammes, dissolved in 3
liters of water. 3. Soda soap dissolved in 2 liters of liters of water. 3. Soda soap dissolved
water.-Suddeutsche Apotheker Zeitung.
Hard Soldering with Acetylene.-The flame of acetylene is exceedingly useful for hard soldering, says Neueste Erfindungen und Erfahrungen. Its temperature is as high as can otherwise be obtained only with a special blowing apparatus. The heating power of acetylene is likewise very great. The use of acetyof acetylene is likewise very great. The use of acety-
lene is particularly in place where no connection with lene is particularly in place where no connection
a gas house or electric central station can be had.

Waterproof Lacquer or Glaze.-By making shellac into an emulsion in water by the aid of an alkali or alkaline salt, a solution is obtained which may be mixed with colors or used alone and provides paper, cardboard and wood with a waterproof coating that can be polished by means of friction or pressure. For maps, playing cards, cardboard boxes used for packing etc., this varnish is exceedingly suitable. The same effect is produced by the use of certain phosphates. If an insoluble powder is mixed with a gelatinous phos phate, especially an alkaline earth, a substance is ob tained which applied on paper or cardboard renders it watertight and can likewise be polished by friction or pressure.-Farben Zeitung.

Red Lakes from Coralline.-Dissolve 10 kilos of coralline soluble in alcohol in a solution of 6 kilos of caustic soda 70 to 72 per cent in about 60 liters of water and thin with water to about 300 liters. The dark red opaque solution is mixed with 120 kilos of finely ground heavy spar, and finally precipitated with a solution of 40 kilos of lead acetate in water. The quantity necessary for a complete precipitation varies according to a large or small percentage of impurities in the coralline. By making a dab-test on filtering paper it can be readily ascertained whether the liquid has become colorless. When the precipitated lake has settled well, it is washed three times, each time with 500 liters of water whereupon the pigment is filtered and dried. About 160 to 165 kilos of dry, dark red lake is obtained. If larger quantities of heavy spar are used, the color becomes paler up to pink. By mixing with minium handsome imitation vermilion is produced. Unfor tunately these lakes cannot be employed for oil colors, because in that case they soon turn yellow. But they are excellent for printing on wall paper, and also dure direct sunlight well.-Svensk kemisk Tidskrift.
To Clean Brushes and Vessels of Dry Paint.-The cleaning of the brushes and vessels in which the var. nish or oil paint has dried is usually done by boiling with soda solution. This frequently spoils the brushes or cracks the vessels if of glass; besides, the process is rather slow and dirty. A much more suitable remedy is amyl acetate, which is a liquid with a pleasant odor of fruit drops, used mainly for dissolving and cement ing celluloid. If amyl acetate is poured over a re sinfied oil paint brush the varnish dissolves almost immediately and, though ever so hard and dry, the brush is again rendered serviceable at once. If necessary the process is repeated. For cleaning vessels shake the the process is repeated. For cleaning vessels shake the
liquid about in them, which softens the paint so that it can be readily removed with paper. In this manner much labor can be saved. One kilo of pure amyl acetate costs 2 marks (50 cents), hence the method is cheap as well. The amyl acetate can be easily removed from the brushes, ete., by alcohol, oil of turpentine or var-nish.-Farben Zeitung.
Process for Producing Gold-like Alloy from Copper and Antimony.-This invention, patented in Germany, covers a metallic alloy, to take the place of gold, which, even if exposed for some time to the action of ammo niacal and acid vapors, does not oxidize or lose its gold color. It can be rolled and worked like gold and has the appearance of genuine gold without containing the slightest admixture of that metal, besides being much cheaper than other precious and semi-precious metals, as well as the compounds and alloys used as substitutes for precious metals. The alloy consists of copper and antimony in the approximate ratio of 100 to 6 and is produced by adding to molten copper, as soon as it has reached a certain degree of heat, the said percentage of antimony. When the antimony has likewise melted and entered into intimate union with the copper, some charcoal ashes, magnesium and lime-spar are added to the mass when the latter is still in the crucible. Although the action of this material admixture of flux is not entirely explained, the alloy loses thereby certain porosity otherwise present and an exceedingly great density of the cast metal is obtained. Same can now be rolled, wrought, hammered and soldered like gold, and when polished has the appearance of genuine gold, while being considerably firmer than the latter.Journal der Goldschmiedekunst.

Science Notes.
Dr. Palisa has given the name "Slatin" to the small planet which was discovered by him on the 9th of March last.
It has been suggested that the hook and ladder companies of the New York fire department carry small tanks of pure oxygen for use in resuscitating people who have been partly asphyxiated by smoke or escaping gas.
The Edinburgh, Scotland, Corporation made an appeal to Parliament for power to deal with street advertising abominations, including the enforced illumination of wall spaces at night. Six other cities are seeking to obtain the same permission.
We have already noted the fact that a party of scientists was to go to Alaska to carry on investigations. They have now taken their departure, and among those in the party are Dr. C. Hart Merriam, biologist, Prof. Coville, of the Department of Agriculture, and Dr. B. E. Fernow, head of Cornell School of Forestry.
A new monument is to be erected at Eisenach, Germany, and over one thousand designs were sent in by no less than three hundred competitors. The committee selected three designs as being the best, and mittee selected three designs as being the best, and
when the sealed envelopes were opened, it was found that all three selected were by the same sculptor, Herr Kreiss, of Dresden.
Jabez Hogg, who was well known in London as an ophthalmic surgeon, died recently aged eighty-two years. He wrote many books upon the eye, but he will be principally remembered by his "The Microscope : Its Construction and Applications," which is well known to every microscopist. At the time of his death this book was in its fifteenth edition.
Both Mexico and Japan propose to establish life saving and signal systems along their coasts and will em ploy the Coston night signals, which are now generally used by the army and lighthouse service. They were invented by the widow of Capt. Coston, of the American corps. It is said that she is the only woman who ever invented an article that could be adopted by the military or naval service.
Sir Robert Ball recently unveiled a bronze tablet at No. 19 New King Street, Bath, England, recording the fact that William Herschel, the great astronomer, resided there. Herschel discovered the planet Uranus from the back garden of that house. Sometimes he found it necessary to bring his telescope out into the street opposite that house, and many of the discoverie were made in the street.

Gen. A. R. Buffington recently made a visit to the Springfield arsenal and looked into the proposed im provements of the Krag-Jorgensen rifle. An importan change that has been proposed is the adoption of a band clip which admits of the feeding of cartridges into the magazine of the gun in bunches of five, instead of singly, as soldiers are now compelled to do. Probably the most important change of all relates to the cartridges, which will allow of six cartridges to a maga zine instead of five
Sir Norman Lockyer has lately been experimenting with a flexible film with the idea of adapting it to spectroscopic photography, according to The Pharma ceutical Journal. The large concave Rowland grating which be is now using for his solar spectroscopic photographs is $211 / 2$ feet radius and has 20,000 lines to the inch ruled on its surface. It gives a spectrum 30 inches long. The focal plane of this grating is of necessity considerably curved; it is, therefore, impossible to get a sharp photograph of the whole spectrum on a glas plate: in fact, not more than 18 or 20 inches of the spectrum can be brought into focus on the same plate The difficulty is gotten over by using a flexible film which is bent to the curvature of the field. The print of the photographs taken with this Rowland concave grating is the longest solar spectrum photographed at a single operation. It is 30 inches long.

Great damage was recently done in Philadelphia by the ignition of benzole vapor: The accident occurred in the chemical laboratory of a manufacturer of chew ing gum. The building was badly damaged. The accident caused three deaths, and twelve or fifteen persons were seriously injured. The whole force of the explosion was upward and outward. At first it was thought that the boiler had exploded, but it was found intact. On the ground floor was a tank con taining about seventy-five gallons of benzole. There was also a certain amount of other chemicals used in the manufacture of vanillin. On the second floor was another tank of benzole of about the same capacity It was while mixing the benzole and certain other ingredients from which vanillin is made that the tank became overheated and overflowed. The inflammable vapor of benzole probably reached the engine room where its ignition caused the explosion. We have mauy times pointed out the dangerous nature of the vapor of benzole, benzine, naphtha, and carbon bisul phide, and the serious nature of this accident shows that experimenters should be more cautious than ever in handling even swall amounts of such inflammable chemicals.

NAVIES OF THE WORLD.

 vi. italy.Battleships.-The mention of the Italian navy suggests at once the huge battleships and cruiser-battleships which were for many years the characteristic feature of this, as distinguished from the other great navies of the world. As far back as the year 1876, the Italians had launched a battleship, the "Duilio," of the then unprecedented displacement of over 11,000 tons, which carried $211 / 2$ inches of armor on her sides and mounted four huge muzzle-loading guns of $173 / 4$ inches caliber and 100 tons weight as her main armament. Two years later, she was followed by a sister ship the "Dandolo." These two vessels produced a veritable sensation, for there was nothing afloat, even in the British navy, to compare with them, the nearest approach being the "Devastation" of 9,330 tons and the "Dreadnought" of 10,820 tons, which, however, carried only four muzzle-loading 36 -ton guns, and armor 12 and 14 inches in thickness. The 173/4inch 100 -ton muzzle-loader has a muzzle energy of 33,220 foot-tons and is capable of penetrating 18 inches of steel at a thousand yards and 16 inches at twenty. five hundred yards. As the armor-piercing and the common shell weigh a ton, and carry a bursting charge respectively of 30 and 80 pounds of powder, it can be seen that the old "Duilio" is a powerful coast defense vessel, despite her age. Of the two ships the "Duilio" remains practically un changed, but the "Dandolo" has recently had her muzzle-loaders replaced by mod had 10 -inch breech ern 10 -inch breech-loading rifles, and a

- First-class Battleship "Benedetto Brin." Also "Reina Margherita."

world. In the first place, massive side armor, or indeed any side armor whatever, was abandoned, and reliance was placed in a thick, curved deck placed several feet below the waterline, and associated with a minute cellular subdivision of the space above the deck at the level of the waterline. Massive inclined armor was placed around the smokestacks where they entered the protected deck. The vessels were given a lofty freeboard throughout, and the armament of four 100 -ton breech-loading guns was placed within a diagonal redoubt of 19 -inch armor, resting upon the flush main deck. A heavily armored ammunition hoist led from the protective deck to the redoubt, and the big
and guns until she ran into close range she would be a most dangerous antagonist. In a recent test of the naval war game, the "Italia "was matched against the British "Magnificent." The boats approached head on, the "Italia" reserving her fire until she was within point-blank range, when she let fly with all four 105 -ton guns at the same instant at the forward transverse bulkhead of the enemy. The victory was award ed to the "Italia," as it was considered that the bulk head of the "Magnificent" would have been smashed in and the engines and boilers wrecked by the 200,000 foot tons of energy embodied in the four 2,000

The "Italia" type was not repeated and the next lot of battleships, the "An drea Doria," "Francesco Morosini," and "Ruggiero di Lauria," launched in 188485, are a reversion to the "Duilio" type. They are provided with a belt extending amidships in the wake of engines and boilers, above which is a diagonal redoubt reaching to the main deck. Within the redoubt are four 17 -inch 105 -ton breech-loading rifles, disposed in pairs diagonally or en echelon, as in the "Italia." The armor, which is of the English compound type, is 17.7 inches in thickness on the belt and redoubt, and 14 inches on the bulkheads. The deck is 3 inches in thickness. The trial speed of the ships was from 16 to 17 knots; but the sea speed would not probably be over 14. The armament is, of course, of tremendous power, no vessels in the world being able to deliver such a combined attack at a single discharge as these vessels

powerful battery of eight 6 -inch and four $4 \cdot 7$-inch rapidfire guns has been mounted on the main and superstructure decks. The 6 -inch guns on the main deck have necessitated the sacrificing of the dead astern fire of the 10 -inch guns; but as the "Dandolo" is designed to fight anything afloat, the loss is only nominal. She can still concentrate four 10 -inch, one 6 -inch, and two 4.7-inch guns dead ahead.

Not content with the unusual dimensions of the "Duilio" and her mate., the Italians proceeded to even greater extremes in the "Italia" and "Lepanto," launched in 1880 and 1883 , both of which were of about 14,400 tons displacement. These vessels are of special interest, both on account of the many radical features embodied in their design, and because they anticipated by a dozen years or more the size and speed which are only now becoming usual in the navies of the
guns were placed in barbette at a height of over 30 feet above the waterline. The weight saved in armor was put in motive power, the "Lepanto" developing 15,800 horse power with a resulting speed of 18.38 knots per hour. The object aimed at in these vessels was to produce a warship which by virtue of her speed could accept or refuse battle as she pleased, that could choose her own fighting distance, and that could stean swiftly to close quarters and deliver a crushing attack with her monster guns before the enemy could do fatal injury to her unprotected hull. For those days of big guns and slow fire it was an ingenious theory ; but the rapid-fire guns of a modern ship would speedily wreck the support ing structure of the barbette and big guns, and bring the latter crashing down in to and possibly through the hull of the vessel Nevertheless it is certain that if the "Italia" could maintain the integrity of the barbette
and the "Italia" and "Lepanto." The guns of the "Andrea Doria" fire a 17 -inch 2,000 -pound projectile, with a muzzle energy of 55,030 foot-tons and a penetration through iron of 35 inches. The combined energy of her fire in any direction would thus be 220,120 foottons for a single round from these guns alone.

The great defect of these ships is their low freeboard (freeboard being sacrificed to armor) and the concentration of the whole main battery in one redoubt, where a single heavy shell might disable every gun. Also, judged by modern ideas, the absence of a numerous secondary rapid-fire battery is a fatal weakness.

Following the "Andrea Doria" class came the three battleships "Re Umberto" (1888), "Sardegna" (1890), and "Sicilia" (1891), in which a return was made to the extreme dimensions of the "Italia." The displacement and speed of these three ships are. abquat the

3.-Third-class Protected Cruiser "Etruria." Class of Three Ships

 Complement, 25% Date, 1891.

Displacement 6.-Second-class Battleship "Dandolo." Also "Duilio

Displacement, 4,858 tons. 7 . Apeed, 19 knots. Normal Goal Polo." . Speed, 19 knotes. Normal Coal Supply, 630 tons. Armor: Bel

4.-Torpedo Gunboat "Partenope." Class of Eight Vessels.

Displacement, 840 tons. Speed, 19 knots. Normal Coal Supply, 100 tons. Armor : 1 -inch

8.-Armored Cruiser "Guiseppe Garibaldi." Also "Varese."
8.-Armored Cruiser "Guiseppe Garibaldi." Also "Varese."
Displacement, 7,400 tons. Speed, 20 knots. Normal Goal Supply, 650 tons. Armor: Com
plete bett, bnikheads, and redoubt extending to main deck, all 6 inches;

From Photographs by Symonds \& Company, Portamouth, Enpland, 9:-First-OLass Bätilenhip "Lepanto." Also "Italia
 JAVLES OF THE WORLD-VI. ITALE.
ame, the "Sardegna," of 13,860 tons and 20 knots, being slightly the largest and fastest. In the arrange ment of their armament the central redoubt has bee abandoned and the system of two separate fore and aft main gun positions, with a central rapid-fire bat tery amidships, adopted. This arrangement was firs sed in the "Admiral" class of the British navy, and is now adopted universally in the navies of the world As compared with the "Andrea Doria," the belt armo has been reduced from 17.7 inches to 4 inches, and it covers about two-thirds of the length amidships, ex tending to the main deck. The barbettes projec above this deck to a height of about 13 feet, the axis o the main $131 / 2$-inch guns being about 26 feet above the waterline. This gives a good command, but the seagoin qualities of these fine ships would have been greatly mproved if the amidships superstructure deck had een carried out to the bow as in our own "Alabama" and "Maine" classes. The $131 / 2$-inch gun weighs 68 ons, and fires a 1,250 -pound projectile with a muzzl energy of 35,230 foot-tons and a muzzle penetration of 33 inches of iron. The amidships rapid-fire battery o hese ships is unusually powerful, consisting of twelve $4 \cdot 7$-inch guns on the main deck, eight 6 -inch guns on the superstructure deck, and four $4 \cdot 7$-inch guns on the bridges, two forward and two aft. None of this battery, however, has more than shield protection, and its formidable character is modified by the meager char acter of the side armor. Strictly speaking, these ships belong to the armored cruiser class, for they culd never lie in line of battle against well protected battleships with much hope of success
The faults of the "Re Umberto" are corrected in the St. Bon" and "Emmanuele Filibert," launched in 1897. in which, on the small displacement of 9,800 tons, the talians have secured the following admirable qualities; a complete Harveyized belt tapering from $93 / 4$ inches amidships to 4 inches at the ends; a belt bove this of 6 -inch armor extending to the main deck and covering the sides between the barbettes; two $93 / 4$ inch turrets protecting a main battery of four 10 -inch guns, and a continuous wall of 6 -inch steel surroundin a central battery of eight 6 inch rapid-fire guns on the main deck; eight 4.7 -inch guns protected by shields arried on the superstructure, and twenty-four smalle apid-fire guns. The speed is 18 knots and the normal coal supply 1,000 tons. Although she is 50 per cent maller the "St. Bon" would prove more than natch for the "Re Umberto."
The latest Italian ideas of battleship construction ar hown in the "Benedetto Brin" class, which at present includes two ships of 12,765 tons displacement and the unprecedented battleship speed of 21 knots. The "Benedetto Brin" is being built at Castellamare and the sister ship, "Regina Margherita," at Venice. The particulars are as follows: An armor belt 6 inches thick amidships tapering to 2 inches at the ends and reaching from the bow nearly to the stern. Above this a 6inch belt extending between the barbettes and connected by transverse bulkbeads which inclose the bases of the barbettes. This upper belt reaches to the spar deck and thus provides a complete central redoubt of 6 -inch armor. The barbettes are protected by 10 -inch armor and each contains a pair of 12 -inch breech-loading rifles. The after loarbette is carried on the main deck, and on the same deck, within the central citadel, is a rapid-fire battery of twelve 6 -inch guns mounted in broadside. On the spar deck above, at each corner of the casemate, is a turret protected by 6 -inch armor, carrying an 8 -inch rapid-fire gun, and forward on the same deck is mounted the forward pair of 12 -inch rifles. Ten 3 -inch and six 18 -inch guns are caried on the superstructure and bridges. It dent that the high speed and powerful armament of these ships must have been gained at the expense of the defensive powers. This is best shown by a com parison of this vessel with the "Maine" of our own navy, which is of about the same displacement.

	" Maine."	"Benedetto Brin."
Length	388 feet.	413 feet.
Displacement....	12.500 tons.	12,765 tons.
Speed.......	18 kmots .	tons
Belt armor....	1, i2-inch maximum.	1, inch maximum.
Citadel armor.	7 inch.	6 -inch
Barbette armor	12 -inch maxim	inch maxi
Intermediate battery.	None.	-inc
Secondary battery ...	Sixteen 6 -inch, twenty 6 . prs., six 1-prs.	Twelve 6 inch, ten 12 prs., six 3-prs.

The adjoining table shows that while the armament of the Italian ship is far more powerful than that of the "Maine"-the difference being due to the rapidfire 8 -inch guns-the "Maine" is much better protected, the belt being 100 per cent thicker and the barbette protection 12 inches as against 10 inches. We greatly regret that the "Alabama" and "Maine" classes do not carry any 8 -inch guns. This weapon has been particularly identified with United States warships ; it proved to be the most effective of all the guns in use at Santiago and Manila; and ever since Armstrong showed the practicability of applying the rapidfire mechanism to it, its destructive powers have been enormously increased. The four 8 -inch guns of the

Benedetto Brin," with their high command of 28 feet and their good protection, would give the Italian ves sel a marked theoretical advantage in an artillery due with the "Maine." The 12 -pounders and 3 -pounders of the "Brin" are preferable to the 6 and 1 -pounder of the "Maine."
We place particular stress upon these points in the hope that before the contracts are let for our new 13,500 -ton battleships, authorized by the last Congress such changes may be made as will admit of the reintro duction of the 8 -inch gun and the substitution of th 12 and 3 -pounders for the 6 and 1-pounders. The use of Krupp in place of Harvey armor (supposing Con gress desists from its obstructionist policy in the mat ter) would greatly reduce the total weight of the armo and compensate for the added weight of the 8 -inch guns, mounts, and ammunition.

Coast Defense Vessels.-The Italian navy is but poorly provided with coast defense vessels pure and simple. Like Great Britain, she favors an aggressiv policy, placing her floating armaments in large ship of good speed and sea-keeping qualities. Moreover her principal strategic points are well protected by fixed fortifications. The coast defense type is repre sented by five small armored vessels that were built over a quarter of a century ago. They are the "Affon datore" (4,062 tons), built at Millwall, London; and the "Ancona" (4,460 tons), the "Castelfidorio," "Maria Pia," and "San Martino" (4,260 tons), built in France The first named has a 5 -inch belt and carries two 28 ton Armstrong guns and six $4 \cdot 7$-inch rapid-firers; the other four have $41 / 2$-inch belts and are armed with six 6 -inch and six $4 \cdot 7$-inch rapid-fire guns. The speed of all five vessels is 12 knots, and the complement from 300 to 400 men.

Armored Cruisers.--At the opening of the present year there were five armored cruisers built or build ing for the Italian navy. The most important of these vessels are the twin ships "Vettor Pisani" and "Carlo Alberto," of 6,500 tons, and the "Varese" and "Guiseppe Garibaldi," of 7,400 tons displacement. These very fine ships are modifications of the "Christobal Colon," which was originally laid down at Sestr Ponente for the Italian navy, but was sold to Spain before her completion. They are all distinguished by their unusual protection, which consists of a complete 6 -inch belt, a central citadel of 6 -inch armor extending over two-thirds of the length, and from the belt to the main deck, and an armored deck. The speed is 20 knots in case of all four ships, and the maximum coa supply is 1,200 tons. The "Vettor Pisani" and he mate carry eighteen guns of the large rapid-fire type distributed as follows: Eight 6.inch on the gun deck in broadside and four 6 -inch on the main deck within th citadel, the latter having a dead ahead and dead astern fire; four $4 \cdot 7$-inch on the main deck, between the 6 -inch guns; one $4 \cdot 7$-inch on the same deck in the bow and one $4 \cdot 7$-inch in the stern. There are also twenty-two 12 and 3 -pounders. The "Varese" and "Garibaldi" have the same armor, speed, etc., but the armament consists of one 10 -inch gun forward in a bar bette, two 8 -inch rapid-fire guns aft in a barbette, ten 6 -inch rapid-fire guns in the gun deck battery, and four 6 -inch rapid-fire guns at the angles of the main deck battery
These two ships have a greater energy of gun-fire per minute than any ship built or building in the world to-day; the total being greater even than that of the German " Furst Bismarck" of 10,482 tons, or the British Cressy" of 12,000 tons.
The "Marco Polo" is a smaller vessel, of 4,583 tons and 19 knots, whose particulars are given beneath the accompanying cut of the ship. The battery is entirely of the rapid-fire type and is characteristically power ful. The six 6 -inch guns are carried, one forward on the forecastle deck, one aft on the poop, and fou on the main deck at the break of the forecastle an quarter decks. The ten $4 \cdot 7$-inch guns are all on the main deck, two beneath the forecastle deck, two be neat.h the poop, and six amidships between the 6 -inch guns. In appearance and distribution of armament the armored "Marco Polo" resembles our own protected "New Orleans."
Protected Cruisers.-The strength of the Italian navy lies in its armored vessels, and in this respect it resembles the Russian navy. What protected ships Italy has built have been small, none of them exceeding 3,600 tons displacement. Of vessels of this class, between 2,000 and 4,000 tons in displacement, there are eventeen, with an average speed of 18 knots, an aver age displacement of 2,754 tons, and a total displacenent of 46,818 tons. There are also twenty-eight small ruisers and gunboats of an average displacement of 886 tons and an average speed of 17.9 knots. None of these vessels call for special remark, unless it be the "Piemonte," of 2,500 tons, built in 1888 at Armstrong's, which was the first warship to be armed with rapid-fire guns. In this respect, and in respect of her at that time unprecedented speed of 21 knots, she is an epochmarking ship
We illustrate a typical vessel of each class above mentioned. The "Etruria" is one of three ships built in Italy, between 1890 and 1893. They are 220 tons smaller than the "Piemonte," and carry four $5 \cdot 9$-inch
and six $4 \cdot 7$-inch rapid-firers as against six 6 -inch and six $4 \cdot 7$-inch rapid-firers. The speed is from 2 to 3 knots less, the deck 2 inches against 3 inches, and they carry 400 against 560 tons of coal. The majority of the protected cruisers are of modern construction, and, as a class, they should prove to be serviceable vessels. In conclusion, it must be admitted that there has been so much variety, so much experimental designing, in the Italian fleet that only the actual test of war can settle the actual fighting value of its first line of battle. Judged by current ideas, the battleships of the "Duilio," "Andrea Doria" and "Italia" classes are hampered by a slow and cumbersome though ad mittedly powerful armament, while the "Italia" and "Re Umberto" classes are perilously deficient in defensive qualities other than those which accrue from ability to run away-and the Santiago tragedy would indicate that the latter is an expedient of very doubtful value, to say the least. It is in her armored cruisers, of which it is difficult to say too much in praise, that Italian naval architects have scored their greatest suc cess, and it is not unlikely that the original cruiser-bat tleship "Christobal Colon" will prove to be the prototype of the standard fighting ship of the future.

Novel Switch for Electric Cars.

Mr. Hiram Stevens Maxim has lately patented a new means of operating the switches of electric cars. It means of operating the switches of electric cars. It
is well known that, in order to get quick acceleration, it is necessary that practically the whole weight of the train should rest on the drivers. It is therefore neces sary to provide each car with a motor, and when several cars are coupled together in a train, as they will have to be on the Underground in London, it will be necessary to have a man to each car, or to have some device by which the driver of the front car can control the switches of the entire train, and various devices have been thought out and patented for this pur pose.
These all require some connection between the va rious cars other than the coupling, but by Mr. Maxim's method the drawbar of each car is attached to the switch in such a manner that the switch is operated by the tendency of each particular car to pull back as relates to the drawbar. The drawbar of each car is am inextensible rod running the whole length of the car with a coupling at each end. This rod is held in a central position by two spiral springs, and is connected to the switching device of the car in such a manner that, no matter in which direction the bar is moved as relates to the car, it switches in the current which moves the car in the same direction. Therefore, each car follows the drawbar automatically, and the motor of each car does just sufficient work to propel tha particular car. This device is of great simplicity and is easily understood, as it requires no couplingor con nection between the various cars of the train excep the coupling itself.

THE BIRD GIANTS.

Among the big things which the State of California produces are ostriches. It has been found that the mild climate of Southern California is remarkably wel adapted for the purpose, and that ostriches breed and thrive as well here as in their native African haunts. The experiment was first tried by an Englishman, Mr Edwin Cawston, who, in 1885, bought fifty-two birds in South Africa. It was a hazardous experiment, as the big birds are extremely difficult and dangerous to han dle; but forty-two were landed on American soil From these pioneers the fine ostrich farm at Pasadena Cal., has grown, which at present contains two hun dred birds. Here one can study the history of thes birds from the egg to the adult; and as the industry is now protected by an import duty of 20 per cent, the ostrich farm is on a sure financial basis and has becom one of the paying American industries.
The Pasadena ostrich farm is beautifully situated among a grove of live oaks on the Arroyo Seco, be tween the cities of Pasadena and Los Angeles. The inclosure of several acres is divided into corrals in which the various classes of birds are seen. As we enter, the birds approach in droves with a queer minc ing gait, ludicrous in the extreme. The ostrich im presses one as being the type of stupidity, posing as a very wise personage; its large body, small head and brain, constructed on economical principles, its enor mous eyes, all carrying out the idea.
The birds are fearless and approach visitors, taking food from their hands. The correct thing to do seemsto be to feed oranges, which are devoured whole, the diver sion being mutual, as the orange presents a remarkable appearance as it passes down the long neck of the bird. The keeper, who tells us that he was once nearly killed by a bird, is a fund of information, and from him we learn all the secrets of running an ostrich farm. First, one must have the birds, which cost from one thousand dollars upward apiece in Africa; but, as they breed when they are three years old, there is a quick return.
There is a definite arrangement in the corrals. The best-feathered are selected and paired, space being left between the males, which fight and of ten kill one an
other. During the laying time, it is of ten dangerous to approach them, the males rushing to the attack, and, by a forward downward kick, producing a serious wound, often fatal. Horses and even men have been killed; and when the charge is made, the keepers find safety by lying flat on the ground.
The adult birds are magnificent creatures, standing seven feet high and weighing two hundred and fifty pounds. One of the interesting sights is to see them feed. They literally eat anything, according to the keeper, but are maintained on alfalfa. Among the ex traordinary things that have been snatched from the hands of visitors and others and swallowed are nails, a gimlet, lighted pipes, a rolled newspaper. The writer once saw an ostrich snatch a bonnet from a lady's head and swallow it; but in this case a green veil that was the bonne-bouche caused the animal's death. With their food of alfalfa and vegetables, the birds are provided with broken shell for the lime, and quantities of pebbles, which they swallow to aid in grinding the food.

The breeding season, at which time we are fortunate in making our visit, is in early spring. The male bird now becomes very active and ugly. He rests his breast bone on the ground at some selected spot, and with his powerful claws throws the dirt away, turning round and round during the operation, until a shallow hole is the result by courtesy a nest. In this work the female sometimes joins When it is complete, the hen takes her place and lays an egg every other day. And what an egg it is! One would make an omelet for thirty men with mod erate appetites, as one weigh three pounds and is equal to thirty hen's eggs. When twelve or fourteen eggs have been de posited, the birds scatter a little sand over them and begin the labor of hatching them, dividing their time with almost mathe matical precision, and present ing a remarkable instance of th sense of responsibility in both male and female. The male takes his place at four o'clock in the afternoon and covers the eggs. At nine o'clock in the morning he is relieved with al the promptness of a sentinel by the female; and it is an interest ing point to notice that at noon, though the male is off duty, he relieves the female for an hour allowing her to take a rest and obtain food. This can be seen by every one, as the nests are in the open corral, and nesting car ried on for nearly six weeks.
If one could approach the eggs now in the absence of both birds a curious tapping would be heard on the shells, called "telephon ing" by the keeper. In a word the chicks have arrived and are knocking for admission into th world. Some succeed in break ing out ; others have to be assist ed, and the hen will press gently upon them at such times and break the shell; then she wil take the youngster in her bil and pick it out, shaking the bits of shell from it.
The baby birds are most at tractive little creatures, covered with wiry, hairlike feathers and possessed of the greatest curiosity. They are at once taken from the parents and brought up by hand in nurseries especially arranged for baby os triches. They are turned into a field of alfalfa during the day and at night kept in warm boxes or artificial mothers. For two or three days they do not seem to care to eat. Then they eat stones and bone crushed and on the fifth day alfalfa, from now on growing rapidly, so that at the age of six months they are six feet high, having grown at a rate of a foot a month after this the growth is slower

The reason for taking the young from the mother is a purely business one, as the birds immediately build another nest, which they would not do if the young were left with them to rear; so instead of one brood a year the owner obtains seventy or eighty eggs from a single bird. In six weeks the chicks are tall and robust birds, beautifully spotted and rapidly becoming valua ble commodities. At a vear old they are valued at $\$ 150$ per pair ; chicks three to six weeks old, $\$ 40$ a pair while the full grown bird is valued at $\$ 300$ per pair. It is evident then that the ostrich is within the reach of the average individual ; yet there are some drawbacks, as an ordinary ostrich has an appetite that, apparently has no limitations, and one will literally eat a poor man out of house and home.

Photographs copyrighted, 1898, by L. A. Graham.

TUST OUT OF THE EGG.

A CALIFORNIA OSTRICH FARM

with a perforated bag. The men station themselves behind, so that the bird cannot kick, and holding it securely the picking is performed in view of the large audience that usually collects at this time. Three crops of feathers are obtained in about two years, each bird being estimated to produce $\$ 30$ per year in feathers; and as each bird attains an age of from fifty to even seventy years, the profit of feath ers alone is enormous, not to count the young. As the feathers are collected they are classified and placed in bags : those of the males in one, those of the females in another, as all have some peculiar market value, and the grades are well recognized by the trade. When graded and weighed, they go to the expert feather dressers of Los Angeles, San Francisco, and New York. Here they are tied on strings four feet in length, or in bunches, classified thoroughly, and are then sent to the dyer, as no matter whether the feather is naturally black it is dyed black. After this they are washed in water and starch ; the latter is then removed when they are ready for the "finisher," where they ar graded, assorted, sewed together, often three or five pieces to make one plume; they are then steamed to allow the fibers to take their natural position. The curler now takes them, and gives the plume the graceful shape so desired. From the hands of the curler they pass to the man called the "buncher," who combs

The birds are valued for their feathers, for which there is a growing demand, and if the visitor is present at the farm during what is termed the "picking." he or she is well repaid. The full-feathered bird is a beautiful creature, but every feather is not valuable or a plume. The feathers are of many kinds and differ widely. In the very young birds they are yellow and white, later dark drab on the male, black and white in the female. The fine plumes are found on the adult male and to bring the best price should be taken rom the living bird, those from the wing being the most es
The picking of the feather crop occurs every few months, the occasion being not only interesting but exciting, as the birds protest decidedly to the robbery. The pickers are men skilled in the business; necessarily so, as poor picking ruins feathers and birds. When picked, the feathers are what is termed ripe ; that is, they would soon be thrown off by the moulting process, consequently there is little or no pain in the operation. The heavy plumes are cut off, the stumps being removed three months later.
At this picking time the birds are separated and driven into a narrow pen, their heads being covered
hem out and gives them the particular shape de manded by fashion. Now the plume or feather is ready for the market and is placed on sale. The history of the feather from the hatching of the young ostrich to the beautiful plume on the hat of some lady is a long and complicated one.
The commercial side of the industry is not without interest. Birds are sold to circuses and shows; the unertile eggs bring a dollar apiece as curiosities; the eathers are made into boas, which range from $\$ 3$ to $\$ 35$; capes, ranging from $\$ 16$ to $\$ 25$; fans, tips, single plumes, collarettes, and other objects, suggestive that ostrich farming must be a profitable business; inteed. in South Africa it was at one time ranked next to that of the diamond in point of value.
But the interest in the farm to the average visitor consists in the birds and their strange habits; whether bathing in the pool, or walking jauntily around the corral, or sailing along with outspread wings, they present a fascinating spectacle. The strength of the male ostrich has been the subject of many experiments at the Pasadena farm, and not the least interesting is the great bird used as a saddle horse; a boy mounting the steed and riding it about, the bird carrying its load with the greatest ease. The birds have also been harnessed and driven tandem to the delight of the young people.
A visit to this farm corrects many errors that may have found place in the mind of the observer. The ostrich does not thrust its head in the sand to avoid its enemy, but boldly charges horse or man, though, sad to relate, a dog will demoralize the entire herd. This is because the ostrich knows that it cannot strike so small an animal. That the birds allow the sun to hatch their eggs is another fiction exploded by a visit to the ostrich farm. No hen displays greater solicitude than does this gigantic mother, who is constantly robbed of her chicks, never enjoys the pleasures of maternity, of leading her young about, but is kept nestling the year around. If allowed to care for her young, the mother ostrich proves to be a famous care-taker. She exercises them all day long, forcing them to run and eat, and at night gives them shelter beneath her warm plumes - the giant mother of the bird creation.

The Current Supplement.
The current Supplement, No. 1222 , is a most interesting paper, filled with important articles. "A Powerful English Express Locomotive" forms the front page article. Dr. Merrick Whitcomb's article, "Student Life at the Close of the Middle Ages," is one in the University of Pennsylvania Lecture Course and is most interesting. "The Progress of Submarine Navigation" is accompanied by 27 sectional views, showing the principal types of submarine boats of the world. This is a very valuable paper on the subject. "Samoa's Latest Troubles" is accompanied by 10 illustrations giving an excellent idea of the country and its inhabitants. "Crime and the Weather" is an orizinal and important treatis and Edwin Grant Dester."The Cork Tree It History Edwin Gs" is by Nistory and "Use is by Nicolas W. H Pra phy" is a paper by Prof. W. H. Preece. "Liquid Air an Explosive" is an article by F. H. McGahie; this is an important paper by an expert in explosives.

RECENTLY PATENTED INVENTIONS.

Mechanical Devices.

argerer, Manhattan, New York city. In thi coin-operated picture-exhibitor are included a picture carrier and two co-operating motors. One of the motor drives the picture-carrier. The other motor is provided with a time-wheel having peripheral slots for the pas eage of projections on the picture-carrier. The time-
wheel controls the length of time a picture is to be ex hibited. The pictures are illuminated by an incande scent electric lamp, so that they may be clearly see through an eye-piece. A coin-receiving lever is arranged to start or stop the motor and to make or break the circuit of the lamp.
mailer.-James a. Horton and Chauncey Wing, Greesfeld, Mass. The present invention provides im-
provements in mailersof that type which are operated by provements in mailersof that type which are operated by
hand and cut an address from a printed slip and paste hand and cut an address from a printed slip and paste
that address upon the wrapper or envelop to be mailed. that address upon the wrapper or envelop to be mailed.
The improvements are concerned chiefly with the cutterblades and their operating mechanism, and comprise a fixed cutter-blade having a pivot located near one end. An ausiliar'y pivot at right angles to the main pivot, is
supported to swing thereon. A cutter arm or blade is supported to swing thereon. A cutter arm or blade is
pivoted upon the auxiliary pivot and is adapted to en gage the fixed blad
DRIVING-GEAR.-Thomas R. JARVIs, Stock bridge, N. Y. This invention is chiefly concerned with drivinggear operated by a wind-wheel. The gear provided is so
constructed that the band-wheel at the lower portion of constructed that the band-wheel at the lower portion of
the shaft may be turned on a horizontal plane to any desired position, and secured so that it may be placed in band connection with any one of a number of machine placed variously around a barn floor or the like. One
band, wiich may always be an open belt, will run the band, which may always be an open belt, will run the
machine in either direction. By this invention, all the machine in either direction. By this
benefts of line shafting are obtained.
COMBINED STONE GATHERER AND ROLLER. -Edaar A. Nugent, Unionville, N. Y. The stone gatherer is provided with a transverse comb which dis
charges into an endless bucket-elerator. A wheel is munted in advance of the comb and is formed with rows of yielding fingers to throw the stones or rubbish upon the comb. The fingers are spaced apart to pass through the spaces between adjacent teeth of the comb
and to move the stones forward on the comb until they and to move the stones forward on the
fall into the buckets of the elevator.
boking or drilling machine.-Lot Person, Cartwright, Penn. It is the object of this invention to provide a drill which can be used in places where the view, mechanism has been devised in order to place the drill-holder at one edge of the device, so that it may be ased close to the roof of a tunnel, thus enabling one to drill a hole parallel to the roof.
MITER-BOX.-Theodore Bootaman, Arctic, Wash Connected with a vertically-adjustable cross-bar is a
horizontal swinging arm moving with the cross-bar, and horizontal ewinging arm moving with the cross-bar, and
fixed in different angular positions by locking devices to fixed in different angular positions by locking devices to
suit the angle or miter cut of the saw. The saw is guided suit the angle or miter cut of the saw. The saw is guided
by two suspended, flagged, guide-plates. Clamping bolta are also provided, one of the bolt connections being slotted to permit adjastment between the plates. To
prevent their turning on their clamping-bolts, the plates prevent their turning on their clamping-bolts, the
have an interlocked or notched joint with the arms.
FIREARM. - Harry E. Brown, Grinnell, Iowa.
A casing is located at the breech of the gun, in which casing is located at the breech of the gun, in which casing a spring-pressed firing-pin is mounted to slide.
The hammer of the gun operates a stop-lever which is arThe hammer of the gun operates a stop-lever which is ar-
ranged to engage a projection on the fring-pin to prevent recoil thereof during a discharge. A simple and con el and the stock. The movement of the firing.pin ca be limited in its bearinge by means of a collar which en gages the rear wall of the casing in which the pin slides,
when it has been forced from the cap-chamber upon cocking the hammer
MEASURING-DEVICE FOR CLOTH.-Thomas S Jones, Prince Albert, Sarkatchewan, Northwest Terri base having a cloth-receptacle at one end and an adjust able winding device at the other end. On the base two ollers having bearings in uprights are mounted. The cloth to be measured is placed in the cloth-receptacle. One end of the cloth is then ruu between the rollers and attached to the board upon which it is to be wound. By turning the winding-device the cloth will be drawn bemeans of intermediate gearing, move a finger or will, by means of intermediate gearing, move a finger or pointer
over a yard-scale to indicate the number of yards wound from one board to another. A machine of this character will be of especial servicein taking stock.

Miscellaneous Inventions. Pipe-cleaning attachment. - Heingich Wenz, Bronx, New York city. This device comprises
a centrally perforated frame or plate secured upon the exterior of the pipe, the pipe having a hole corresponding with the central hole. A cover-plate is secured to
the frame by screws. The cover-plate may be made flat and thin, so as to be readily bent to conform with anysized pipe. This bending may be done in the process of manufacture or by the working-men when applying the device to the pipe. By this means it is possible th ob-
tain access to the interior of the pipe by removing the cover-plate and to permit the insertion of wires or other leaning-tools.
EXTENSION-TABLE. - Randolph F. Wester-
ield, Manhattan, New York city. The two end sec ti,uns of the table are adapted to move toward and from
each other. Levers are fulcrumed unon the table and each other. Levers are fulcrumed upon the table and are adapted to raise and lower the extension-levers.
Rods used in connection with the levers slide in guideways. As the end sections are moved apart. the rods毕st slide idly and then apon reaching the limit of their sliding movement serve to throw the levers so as to
lift the extension leaves. In this manner the folded lift the extension leaves. In this manner the folded
leaves can be brought into position upon extending the table, to complete the estension table top.
TENSION DEVICE FOR FENCE-WIRES.-JosEPH C. Barnes, Summit, Miss. The tension device has a
frame with clamps adapted to bear downwardly upon the
lowermost fence-wire. A windlass is mounted upon the
upper portion of the frame. A clamp connected with the windlass is adapted to exert upward tension on th firmly supported and held while the stays, which ar KNIFE Bay, Paris, France. The knife of this inventor ha connected blades bs means of which meat can be proper-
ly cat into small pieces. The blades are of the same length; and their cutting parta, though parallel, are so arranged that the knife edges of the intermediat the position of rest, and that the intermediate blades can give way progressively when the knife is used to the extent of having all the blades in operation. The knife can be easily taken to pieces, so that the blades can be readily cleaned and sharpened.
measuring device.-Morris Ecker, Brooklyn, New York city. The device comprises a train of count
ing-wheels, one of which rolls upon the object to be ing-wheels, one of which rolls upon the object to be
measured. Each wheel has a crank and pin; and all of measured. Each wheel has a crank and pin; and all o
the cranks are in the same direction from their respective enters when the wheels are in zero position. A slic position, has a pair of cam projections for each crank extending from opposite sides and adapted, when the slide is reciprocated, to engage the crank-pin and turn e connting- wheels to zero position.
COMBINED SMOKING-TUBE AND CIGAR-HOLD-R.-James M. Eder, Manbattan, New York city. is the object of this invention to provide a combined smoking-tube and cigar-holder, which is itted with a
simple means for charging the tube with tobacco or a igar and also for diacharging the ashes of the tobacco or the device are mounted to rotate one relatively to the other. A spiral wire feeder in the body has connection
with the mouthpiece. By rotating the feeder in one diwith the mouthpiece. By rotating the feeder in one direction tobacco or a cigar can be drawn into the tube.
By rotating the feeder in the opposite direction, the ashes of the t.
charged.
LEAR GTOPPER York city. The leak-stopper provided by the present in ention consiste of a body constructed in two sections he inner surfaces of which are shaped to conform uit
he exterior surface of a pipe. Each section is provide with side flanges. Lugs projected from the side flanges
of one body-section are adapted to enter recesses in the one body-section are adapted to enter recesses in the
ide flanges of the opposing body-section. Keys receive de flanges of the opposing body-section. Keys receive the body-sections, so that the device i
Wall-protector. - Richard L. Hardin, Chi oiling of wall-decorations when cleaning window door-frames, or base-boarde. The wall-protector com-
prises a flanged blade or plate provided with a handle. prises a flanged blade or plate provided with a handle, ow-casing and rests apon the wall. The blade is given an inclination to the woodwork to be cleaned, so that he water cannot tow behind the device. It should also
be remarked that the protector may be held by one hand against the wall and in engagement with the woodwork to be cleaned, leaving the other hand free for cleaning. bag-Frame.-Louis B. Prabar, Brooklyn, New York city. The present invention relates to an improve-
ment in the frames of chatelaine-bags, the object being men in the frames of chatelaine-bags, the object being can be readily applied thereto. The frame provided for bis purpose can be termed a "stock-frame," since fron frames so that all the features of the design can be dis-played-a ree
construction.
FISHING-NET SINKER. - Jobn C. Robinson Hampton, Va. This sinker has a body formed with a longitudinal slot. The sinker-body is passed sidewise
upon the bottom line of the net and a doable wedge driven into the slot in order securely to clamp the line in Besition in the bottom or inner wall of the slot.
BELT-BUCKLE. - Louts SANDERs, Brooklyn, New York city. The buckle consists of mating members being a stovided with a fixed projection and the other with a recess, whereby when the members are brought to a locking position, the projection is automatically sprang into the recess. The buckle is designed particularly for use upon military and cartridge belts.
WINDOW LOCK AND REGULATING DEVICE.lamrence F. Ryan, Manhattan, New York city. The inventor employs plates for attachment to window-
pashes, which plates are provided with L-shaped openngs. A locking-bracket is provided, having a triangular arm of the bracket are provided with T-shaped lugs adapted to enter the openings in the plates. This simple device is deeigned to lock a window in an open, partially open, or closed position, so that the locking parts cannot be tampered with from the outside.
SCREW-DRIVER. - Burnside E. Sawfer, Fitchburg, and Whlism D. Arnott, Athol, Mass. The beveled sides of the ordinary screw-driver blade often the screw-head. driver have devised a series of insertible and remorable parallel-sided or flat blades of high grade or toolstee for a common holder or stock. The new form of screwdriver, it is said, overcomes the disadvantages of the old
surface-gage.-Burnside E. Safyer, Fitch burg. Mass. This invention seeks to provide an im-
proved surface-gage of that class in which a quick primary adjustment and a second finer adjustment of the ploys a base having a slot which permits the gage-bar with its attached scriber. to swing through a wide arc a rotatable eccentric being provided for effecting the fine adjustment of the gage-bar and scriber.
Note.-Copies of any of these patents will be furn-
the name of the patentee, title of the invention, and date of this paper.
ßusiness and खersonal.
The charge for insertion under this head is One Dollar a
line for each insertion; about eioht words to a line. Ddvertisements must be received at publication offic as early as Thur
ing week's issue.

Marine Iron Works. Chicaro. Catalogue fre

For hoisting engines. J. S. Mundy, Newark, N. J.
"U. S." Metal Polish. Indianapolis. Samples free. Gasoline Brazing Forge, Turner Brass Works. Chicago Yankee Notions. Waterbury Button Co., Waterb's, C Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O Automatic Variety Wood Turning Lathes. H. H Machinery designed and constructed. Gear cutting, "Criterion" Acetylene Generators. Magic Lanterns \&
cceessories. J. B. Colt \& Co., Dept. N, $3-7$ W. $29 t h$ St., N.Y The celebrated "Hornsby-Akroyd" Patent Safety Ol
Engine is built by the De La Vergne Refrigerating MaThe best book for electricians and beginners in ele ricity is "Experimental Science," by Geo. M. Hopkins, CF Send for new and complete catalogue of Scientif ad other Books for sale by Munn \& Co., 361 Broadwa
 HINTS TO CORRESPONDENTB. Names and Address mast accompany. all letters
or no attention will be baid thereto. This is for ous information and not for publication.
Rererences to former artices or answers should
give date of paper and page or number of question.
 some answers require not a little research, and.
though we endeavor to repty to all either by lettei
or in this departent each must take his turn. Bu yers wisbing to purchase any article not adiverised
in our colamns will be furnished with addresees of
houses manufacturing or carrying to
 expected withoat remaneraition.
centific A merican Supplements referred
to may be had at the office. Price 10 cents each. Books referren to promptly supplied on receipt of
orice.
marals sent for examination should be distinctly
marked or labeled.
(7666) F. W. asks : 1. What amount of water at a temperature of 40 degrees is required to con-
dense 10 gallons of brandy per hour from a still of that capacity $?$. Af If still tank is fed from the hottom and overflows from the top at 80 degrees F., 78 gallons of water will be required to condense 10 gallons of brandy
spirits per hour. 2 . What means are taken to condense the lighter hydrocarbon oils, such as gasoline, naphtha, tc., from the heavier oils? A. The lighter hydrocarbon oils are the first distillate from crade petroleum. The vapors pass throngh the same still as the heavier oil, but are switched off into separate tanks as the gravity of the distillate increases. The gravity is tested as the liquid lows by a hydrometer. 3. In making ice by aid of exof compression mast the air reach in urder to get best effects as found in practice ! A. The most economical air pressure for refrigerating or ice making is 60 lb . per square inch. 4. What power would be required to make 10 pounds of ice from 10 poands of water at a temperatare of 70 degrees in say 30 minutes 9 I figare for above, taking the sulph. ether kind of machine, that it
would require one horse power exerted for a space of 411/2 minutes (nearly) to convert 10 pounds water at
and temperature of 70 degrees into ice at 32 degrees. Am i right ? A. One horse power should prodace 17 pounds of ice in 30 minutes in a small ice making machine. You are nearly right in your figures. 5. What is the practical limit that air compression could be used for freezing or refrigeration parposes withoat the add of ammonia, ether, or bualphate of carbon! A. We do not know eration. It is largels used for cold storage in ships and can only be linited by the additional cost over ammonia and biealphide plants. 6. What are the best works upon the above sabjects and are they treated in the Scientific American Supplement \& A. We recommend Siebel's mail; "Theoretical and Practical Ammonia Refrigeration," by Redwood, $\$ 1$ by mail.
(7667) H. G.. Jr., asks: What book will give me the most detailed description of maltiphase al ternating motors, especially the three-phase type in the
smaller sizes I want a book treating in detail the winding of armature feld and name price. A. The standard work on polyphase motors is Thompson's, a revision of which is expected soon. Watch our book list in Scientific American Suprlement. A new book on the same sabject has been published this year, Ondin's "Polyphase Appara tus," price $\$ 3$ by mail. This is an American work. The
exhaustive work on "Armature Winding " is Parshal e Hobart's, price $\$ 7.50$ by mail.
(7668) J. E. K. asks: 1. What length crank is best with a 91 gear 9 The back sprocket has 8
teeth. Why is a short crank used in some cases and teeth. Why is a ehort crank used in some cases and a
long one in others? A. The length of crank on a bicycle With within certain limits, a matter of personal preference the feet mg crank the pressure on the pedal is less, but he feet must move faster and through a longer distance
for each revolution. With a short crank the pressure is greater, bat the distance traversed by the feet is less. Each one must settle for himself which length suits him best. 2. Is it the light itself' or the heat in the light
which propels the disks of a radiometer such as are seen which propels the disks of a radiometer such as are seen
in opticians' stores ? A. It is the radiant energy ab. sorbed as heat by the carbon on the vanes of the radiome
ter which canses its motion. The black sides of the
vanes become hotter than the bright sides, and the mole-
cules of the residual gas gain from the hot side a greater velocity, which produces a greater pressure on that side of the vane. Hence a motion is produced by reaction. (7669) R. L. C. asks : In cigar lighter poil, and how are they attached to battery so that the circuit can be closed from the lighter? A. The spark coil has only a primary winding. The coil battery an ighter are connected in series. The spark is given when the carcuit is broken by the lighter

An experience of ifty years, and the preparation of more than one hundred thousand appications for patentsat home and aboth continents, and to possess unequaled facilities for procuring paten ts every were A synopsis of the patent 1 aws of the application, and perall foreign countries may be had on at sons contemplating the securing or pate this. itfice for

INDEX OF INVENTIONS

 For which Letters Patent of the United States were Issued for the Week Ending MAY 23, 1899.AND EACH BEARING THAT DATE.

THE HARRINGTON \& KING PERFORATMNGCO
 PERFORATED METALS OF EVERY DESCRIPTION FOR ALL USES. GEI

 Lathes chiosios.antice 9 and 11 -inch S wing. New and Original Features
Send for Catalogue B. Seneca Falls Mfg. Company,
695 Water St.,Seneca Falls, N.

SHAPERS.PLANERS DRILSS
 WALWORTH PIPE VISES are the Heaviest and Strongest vises made. WALWORTH MFG. CO. 20 OLIVER STREET

Mr.BusinessMan

May be you're losing hun. dreds of dollars in wasted steam-steam that you might put to good use in parts or your plant when there is a shortage.

We've written a little nontechnical booklet for the busy mind-and you ought to read it. There's a practical story about the great steam-saver -Heintz Steam Trap. It's a good booklet for your engineer, and it's free-want a copy of Vol. " H " WM. S. HAINES CO., 136 South Fourth Street, Philadelphia, Pa

AUSTIN SEPARATOR

 AUSTIN Manufactured by $2 y$ Woodbridge Street West Detroit, Mich. SCREW - CUTTING DIE HEA SELF-OPENING and ADJUSTABLE.
vest die head on the market. Some ad
vantages over others.

 No. 17 wire gauge to 6 inches diametet inctusive.

Fastener, J. L. Kingston.

$\stackrel{r}{2}$

 Firearm fron siehte guard for, Wi. Maso.......
Firerextinguisher, chemical, Van Riper $\&$ Guti
rit. Fire extirguishing systems, automatic vaive for
Fireproor fon \&oor and ceiling construction, A. D

 Gas Enenatnit, antylie., J. S. Ferguson.

 Hinge, H. G. Hillzeim::

 Indicator See OM... indicator. Sitition indica-
tor. Stree and station Indicator. Injector, L. Fried. Amann......
Insect trap. H.L.
Jacquard machine, double

 Knit boot, R. Heaton.........

 Land roller, J. K. Willerert, A. A.
Last block fastener, J. F. Scoti:.

Linotype mould adjuster, J. D. Harvey.i.

 Metallurgical furnace, W. Swinde
Mill
Bampler. Kolarik
Win

SMALL POWER MOTORS.

 Smen

PRESSES, DIES and SPECIAL MACHINERY For Shect Metal Workers.
WEST MFG. COMPANY, Buffalo, N. Y., U.S. A. REV's recently perfected turbine for boats. Hilustrations
 ROUND OR SQUARE BASE

OUR 1898 COMET

Sanitary Water Cooler

CONNECTED WITH CITY WATER PIPES. Water does not come in contact with ice or outside air
thus keeping it pure and free from contamination.
 COLD WATER CAN BE DRAWN CONTINUOUSLY. We placed one in Senate Wing of the Capitol at Washington in
1899. Read the following letter from the Chief Engineer:

 Very respectfully,
THOS. A. JNEs, Chief Engineer, Senate Wing, U.s. Capito SAVES FULLY ONE-HALF THE ICE. Senton Ten Days Trial THE BARRON COOLER CO., PALMYRA, N. Y., U.S. A.
to Responsibie Parties.
 MACHINERY FOR SALE CHEA Hoisting Engines, Air Compressors,
Reock Dring, Crumers, Dump Cars,
Steam Shovelitight Locomotives,
Relaging Rail, etce. Send for prininted ieaflet just issued.
, 678 N . Life BIdg., CHICAGO

A.W. PABER

LEAD PENCILS, COLORED PENCILS, SLATE PENCIL, NRS PENCIL CASES. STEEL PENS, GOLD OLORS AND ARTISTS MATERIALS. 78 Reade Street, New York, N Manufactory Established 1761 .

 TEN POINTS TO CONSIDER.
1-12 Pictures in 12 seconds 2-Shutter Bulb Release.
3-Shutter Automatic.
4-Shutter Locks.
5-12 Aluminum Plateholders 6-Set Stops.
7-Special Quick Lens
8-Automatic Register
9-All Parts Interchangeable.
10-Exposed plates removed without disturbing unex= posed.
The only Magazine Camera with Bulb Shutter. All Live Dealers Sell Them.
No. 4-(size $31 / 4 \times 41 / 4)$
No. 5-(size $4 \times 5)$
$\$ 8.00$
1899 Catalogue with complete
information-FREE. CO.

PHYSICAL AND SCHOOL APPARATUS
 SELF CHARGING MACHINE $\underset{\substack{\text { For School, College } \\ \text { Ray work. }}}{ }$ Circular free E. S. RITCHIE \& SONS,

25c. Wrath if Tol Inumeide

R. E. DIETZ Co., 60 Laight Street, New York.
Mention this paper and get special discount.

PUNCHING \& SHEARING MACHINERY.
E. S. STILES PRESS Co. WATERTOWN, N. Y.,. "s.

MIETZ \& WEISS KEROSENE and GAS Engine

The Yankee DRILL GRINDER

"Universal" Kneading and Mixing Machines Ered in all countries. RNER \& aripawivicher Build

 Recording insistuments, muitipiplining device fo
Reel for frist

pien. s. B. Borciärat

(Continued on paye s69)

6
6"American-Hunnings

 AMERICAN EEECTRIC TELEPHONE CO.
173 South Canal St., Chicago. Ill Buy Telephones THAT ARE GOOD-NOT "CHEAP THINGS."
The difference in cost is litte. We zuarantee
 WESTERN TELETEPHONE CONSTRUCTION CO 250.254 South clinton St., Chicago. Laryest Manufacturers of Telephones
exclusvively in the Unitea States.

MEL $\begin{gathered}\text { DRILLING } \\ \text { machines }\end{gathered}$

 (erate them easily. Bend for catalog.
WILIAMS BROS., Ithaca, N. Y.

ROSE POLYTECHNIC INSTITUTE

 Worcester Polytechnic Institute, Eourser of studyin Mectanical, civiliand Electrical
Enfinering
nin

SAVE YOUR FUEL.

THE LUBRICATION OF GHS ENGINES.
The Burwell Antomatic Oiler solves the problem
so completely that it leaves nothing further to desire. The oil is sprayed around the piston at every stroke. does the most good.
Speed regulated by throttle, same as steam engine.
Not affected by atmospheric conditions. Not affected by atmospheric conditions.
This engine specially adapted to launches. This engine specially adapted to launch
We build engines and launches on the s
M. A. LOZIER \& CO. Dept. A, Gas Engine Dept. CLEVELAND, O

THELOZER

 "WOLVERINE" GAS AND GASOLINE The "Wolver "ne" is the only re-
versible Marine Gas
the market. It is the lightes on
ben the market. It is the lightesten-
gine for its on per Requires no
oicense
 WOLVERINE MOTOR WORKS,
CRAND RAPAPIDtreet imich.
PARALLEL DIVIDERS
 with MICROME TER ADJUSTMENT
Excellent for laying out work on
a surface as itcomes rom planer,
etc. Will read to $1-1000$ of gn inct

IWhy Use Cold Water

 Stevenson \& Co., sints. 28 N . Holliday St., Baltimore, Md Roper's New Engineer's Handy-Book for Steam engineers and electricians
 Institute. Empracing all the recent improve prents in CARE and MANAGEMENT of an ELECTRICAL PLANT.

TRADE MARKS.

Gentuelen

Meat extract.LLiebigis' Extract of Meat Company
Medicinal tabiets. A? G. Enderle. Meal

 Pencilifand fouttain pens. Iead. Thwer Manüac
Peniring and Novelty Comany

 shiras, coiiars, cüfis, and buirt waists, w. H. Petz

LABELS.

路

MARCUS PRISMS.
wimaryelous method of illuminating dark interiors

 MORAN FLEXIBLE JOINT

BALL BEARING AXLES AND RUB

 MFG. WO. Desires Patented | WANTED-Thoroughly experienced Mill wright by |
| :---: |
| large mannfacturing company. Millwright, Box 773 , N.Y. |

 certain. Will sell or form à company. S. S. SMITH,
Station B, Washington, D. C. |CE MACHINES, Corligs Engines, Brewers ACETYLENE PEALERS'HANDBOKK
 TURBINES

BICYCLE CHAINS

BEST BICYCLE
BRAKE
All cocllsts, whatever wheel theyride, should have attached
the Latest and Beat Automatic onaster and Br ake,
THE TREBERT BRAKE

A WONDER IN WHEELS

EGLIPSE BICYGLE
 ECLIPSE BICYCLE COMPANY, Box X ELMIRA N.Y

SELF=MOVING

Cbe Cypewriter Exchange

11/2 Barclay St... NORK
124 La Salle St.tican
CHICAGO 124 La Salle CH.ičago 817 Wandotte St. 209 North 9th St.
ST. LOUIS,
We will save We wil save you from
10 to 50 sou
ters of aill makepe. THE BICYCLE: ITS INFLUENCE IN

 HIGH GRADE WOORMM MACHNEFY Single Machines or Complete Equipments for
Any Class of Work. Your Correspondence is Solicited.
Illustrated Matter and Prices on J. A. FAY \& CO.
J. A. FAY CIN SINNATI, OHIO

H Rigid Examination Reveals Do Defects. nO better bicycle can be made

Sterling Cucle Works, Kenosha, Wis.

WALTHAM WATCHES

The best and most reliable timekeepers made in this country or in any other. Tbe "Perfected American Watch," an illustrated book of interesting information about watches, will be sent upon request. American Waltham Watch Co., Waltham, Mass.

Adalts' Chain Models, $\$ 35$ SELLINC A BICYCLE. Our business is to sell bicycles-not only this year, but next year and the year after. That being the case, it is simply business common sense to make the best wheel we
know how-to make it so famous know how-to make it so famous for style,
strength and running qualities that strength and running qualities that new
buyers will always for buyers will always favor

CRESCENT BICYCLES. Catalogue No. 3 contaninng "Care of the Wheel," Free.
WESTERN WHEEL WORKS, makers,
Bevel Gear Chainless Models, $\$ 60$ CHICAGO. NEW YORK. 6008

SUBMARINE TELEGRAPH.-A POP

OUR LATEST WRINKLE

New Departure "SECURITY" Cyclometer. Everything Out of Danger. \quad (Patents pending) More Broken Cyclometers. Noiseless Concealed Trip.
Cyclometer on hub inside of spokes and trip. on axle behind fork.
Nothing to catch and cause breaking or bending. Patent, adjustable elamp, titsany hub. Easier and quicker to adjust than old style, Permanency, Durability and Effciency Guaranteed.
Per and THE NEW DEPARTURE BELL CO., - Bristol, Conn |The Trade supplied by Join H. Graham \& Co., 113 Chambers St., N. Y. City.

The BUNVY LAMPS the only perfect acetylene gas lamps

The Frank E. Bundy Lamp Co. Elmira, N. Y., U. S. A.

HIGH GRADE FOOT POWER LATHES

Tribune Bicycles
for 1899.
The Best Wheels in the World.

for larye New Catalogu ilust
ful line of twenty-three models.
The Black Mfg. Co., Erie, Pa.
PHOTOGRAPHY IN COLORS - FOR-

If a sheet or half-sheet of Apollo galvanized iron has any fault, no matter how slight, send it back to your jobber at his expense. Apollo Iron and Steel Company, Pittsburgh.

PRINTIITG INKK

