
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. LXXX.-NO. 12. Established 1845.	NEW YORK, MARCH 25, 1899.	

Grunenthal Bridge Across the Kiel Canal. Span, 511.7 Feet,

Roadway and Upper Half of Arch-Grunenthal Bridge.

Abutment of the Grunenthal Bridge.

Levensau Bridge Across the Kiel Canal. Span, 536 Feet.
some notable german arch bridges.-[See page 182.]

Srientifir smmeram.

ESTABLISHED 1845.

MUNN \& Co.,
Editors and Proprietors.
published weekly at

No. 36I BROADWAY, - - NEW YORK.

terms to subscribers

 the scientific american publications.

NEW YORK, SATURDAY, MARCH 25, 1899.

THE SENATE AND THE ARMOR PLATE

QUESTION.

There is only one thing that is more remarkable than the persistence with which the Senate meddles with technical and professional matters, and that is the invariable and inevitable blunders of legislation which follow this interference. In this respect its record for the past session has been a sorry one. First it undertook to teach our naval experts what kind of ships were needed by the navy, and in flat contradiction to the teachings of the late war, and in spite of the protests of the ranking adwiral under whom that war was prosecuted, the Senate committed the country to the construction of four vessels of an antiquated and discredited type. Having delivered itself duly upon this question, the Senate clinched its arguments by willfully robbing not only the principals, but the subordinates among our naval officers, of the very promotions which had been proposed as the just rewards of meritorious conduct during the war. Not content with the rank injustice (we had almost said the gratuitous insult) of refusing to recognize the brilliant conduct of our naval officers, the Senate proceeded to still further make an exhibition of itself by cutting down the proposed appropriations for the navy by one-half-a movement propriations for the navy by one-half-a movement
which was only checked by the strenuous opposition of which was only checked by
the House in Committee.
When the Senate saw that the House was firm in its demand for the construction of the full number of ships recommended by the Naval Board, it proceeded to gain its end by a piece of political jugglery as disgrace ful to the Senate as it is humiliating to the country at large. It agreed to the construction of the ships, but put a proviso into the bill which blocks the construction of the battleships and armored cruisers as effectually as if they had been stricken out of the bill altogether. The Senate authorized the construction of the armored ships on the condition that no contract for their construction should be made until contracts had been let for the construction of their armor at a price of $\$ 300$ per ton. As it is absolutely impossible for any firm to make modern armor for $\$ 300$ per ton, it will be seen
that the Senate has blocked the construction of these that the Senate has blocked the construction of these
ships more effectually than if their construction had ships more effectually than if their construction had never been authorized.
One grows weary of reiterating the commonplace that there are certain matters for information and instruction regarding which Congress must rely upon the professional knowledge of the various bureaus. While senators and representatives should endeavor to obtain a general familiarity with the affairs of the technical bureaus, no one expects them to become so versed in the various subjects upon which they have to legislate as to be able to discuss the technical questions in-
volved in the recomendations made by the various volved in the recommendations made by the various
expert boards. If they do so, they will blunder as foolexpert boards. If they do so, they will blunder as fool-
ishly as the Senate has blundered in the instances above quoted.
Take the matter of the cost of armor plate. Nobody can deny that armor at $\$ 550$ a ton is a costly material ; but because the price is highi, it does not necessarily follow that the profits are abnormally large. The manufacture of armor plate is one of the most expensive processes known in the art of steel manufacture. It involves the building of an extensive and costly plant of a special type, which must necessarily occupy many months in its erection ; and an armor plate company never knows but what new developments in the art may render a large part of the plant out of date before it has turnei out a single plate. This element of uncertainty alone justifies the manufacturer in placing a tainty alone justifies the manufacturer in placing a
high price upon his finished product, and if he makes the armor plate pay for the periodical and costly renewal of his plant, he is merely protecting his own interests in a perfectly legal way.
Moreover, every increase in the price of armor has been marked by a corresponding increase in the quality of the plate. The Senate is greatly exercised over the increase of $\$ 50$ to $\$ 75$ per ton in the cost of the new Krupp armor over the Harveyed armor. Yet the tests thus far made indicate that the Krupp plates show a
superiority of about 25 per cent over the Harveyed superiority of about 25 per cent over the Harveyed
plates, and, ton for ton in point of powers of resistance,
the Krupp material at $\$ 550$ to $\$ 575$ per ton is cheaper than Harveyed armor at $\$ 475$ to $\$ 500$ per ton. More over, in comparing the prices asked by American man ufacturers of this government with those being actually paid here and in Europe, we find that there is nothing exorbitant in the demands of our armor plate makers In Engiand the price of Krupp armor ranges from $\$ 515$ to $\$ 569$ per ton. In this country the Cramps are paying the American manufacturers $\$ 575$ per ton for Krupp armor for the Russian battleship now building at their works, although they were at liberty to procure this armor from any other source. Russia is now buying in the United States the ordinary Harveyed armor at $\$ 486$ per ton, because this is cheaper than they can procure it elsewhere
In view of these facts, which have been furnished us from an official source, what, we ask, becomes of the Senate's demand that the armor for our new battle, ships and armored cruisers shall be furnished for $\$ 300$ per ton? No manufacturer in the world is going to deliver plates for United States warships at 50 per cent less than the cost of manufacture.
It is no thanks to the Senate that the situation, as regards the vessels just authorized, is not as bad as it seems. It happens that the armor plate makers' hands are so full that no delay will be occasioned in the con struction of the new ships, if Congress only rectifies the mistakes of the last session when it meets again in December. The present contracts for the vessels of the "Alabama" class and for a Russian battleship will keep the mills busy until February, 1900. The 10,000 tons required for the "Maine" class and the monitors will not be completed before the summer of 1901, before which time nothing could be done for the new ships. By the time Congress meets. a lot of Krupp armor, now being made for Russia, will have been tested at the naval proving ground and the department will then be in possession of additional informa tion which will enable Congress to understand the armor plate question better and act more intelligently upon it. If the members of Congress will listen to the expert testimony which will then be forthcoming, there will be no difficulty in securing all the armor we need at a figure which will be just both to the manufacturer and the government. But the price will not be $\$ 300$ per ton.

fire protection of tall buildings.

It will be remembered that when the upper eight stories of the Home Life building were burued out in the recent fire, the chief of the New York Fire Depart ment stated that the failure of the firemen to do any effective work above the ninth story was what he had predicted whenever one of these tall buildings came to be tested by a serious fire. There is a limit of height above which the ordinary methods of fire-fighting by pumping water through a hose are inadequate. Much valuable time is lost in dragging the hose from floor to floor; it is always liable to injury from fire or falling debris; and of course there is the danger of bursting from overpressure, a risk that naturally increases when the water has to be forced to the upper floors of a twenty-story building.
The New York Fire Department has recently made a test of the height at which an effective stream of water can be delivered from its engines, which shows that our tall buildings are better protected than is generally supposed. A fire engine was connected to the mains and to a standpipe that extends the full height of the St. Paul building, and succeeded in forcing a considerable stream of water from the roof-at a height of 307 feet above the street level. With a pressure of 180 pounds at the engine, the water was thrown over St. Paul's Church, on the opposite side of Broadway and fell into the churchyard beyond, a horizontal dis tance of about 250 feet. Unfortunately, the failure of one of the couplings on the standpipe within the building prevented the test being made with the maximum pressure at the engine of 300 pounds to the square inch ; but enough was done to prove that the engines of the department can deliver water at a satisfactory pressure on any of the floors of our tall buildings. At the time the standpipe failed the engine was throwing over 250 gallons a minute at a height of over 300 feet, with only 60 per cent of the maximum pressure.
While it is true that the tall buildings are provided with their own fire service in the shape of tanks on the roof or special fire pumps in the basement, ex perience has shown that the system is not very re liable. The tanks are liable to be empty, or the pumps may not be available because of insufficient steam supply in the boilers, or the whole plant may be crippled by the flooding of the basement during the progress of a fire. But by the new system, if a fire should break out in a building supplied with adequate standpipes and a good elevator service, the firemen will be enabled to command a good service of water on any of the highest floors within a few minutes after reaching the scene of the fire.
The failure of the standpipe in the St. Paul building suggests that the fire system of these tall structures should be put in under the rigid inspection of the Build ing Department ; that it should be of ample capacity ;
and that it should not be passed by the department until it has been subjected to a test pressure considerably beyond that which will obtain in actual service. A further development of the idea of having the service of these buildings operated by the engines of the Fire Department would be to lay down separate salt water mains at stated intervals from Broadway to the Hudson and East Rivers, with connections at the water front to enable the powerful pumps of the fireboats to be concentrated upon a fire. This system is already installed in some Western cities, and it provides a supply of water far in excess of anything that could be secured by the use of the ordinary fire engines. A combination of both systems and the provision of ample standpipes in every tall building. would render these structures practically proof against destruction, so great would be the flood of water that could be let loose upon a fire. It should also be borne in mind that these towering buildings would not only be indestructible themselves, but they would afford an excellent protection against the spread of a conflagration. Their great mass would form an efficient fire-screen, tending to localize an outbreak, while they would serve as giant watertowers, froin the upper floors of which a vast amount of water could be thrown upon the burning buildings below.

coal production in the united states.

The announcement that the rapid increase in exportation of coal from the United States is causing uneasiness among British coal producers and exporters lends interest to some figures on the coal production of the world, and especially of the United States, just issued by the Treasury Bureau of Statistics. From these it appears that the coal production of the United States is now nearly five times as much as in 1870, that the exportation has in that time increased from a quarter of a million tons to over four million tons, and that the United States, which in 1870 supplied but 17 per cent of the world's output, now furnishes about 25 per cent.
No other country shows such a rapid increase in coal production as does the United States. Great Britain's average annual coal product, as shown by a recent and widely quoted statistical publication of the Swedish government, in the five year period 1871-5, amounted to 127 million tons, and in 1891-5 amounted to 185 million tons, an increase of 45 per cent in the average annual output. Germany's average annual coal product in the period 1871-5 was 45 million tons, and in the five year period 1891-5 was 97 million tons, an increase of 115 per cent. The average annual coal production of France in the year 1871-5 was 16 million tons, and in the term 1891-5, 27 million tons, an increase of 70 per cent. The average annual coal production of the United States in the period 1871-5 was 45 million tons, and in the period 1891-5, according to our own figures, was 132 million tons, an increase of 193 per cent. The average annual output of "other countries " not individually specified was, in 1871-5, 34 million tons, and in 1891-5, 79 million tons, an increase of 132 per cent. The total average annual output of the world in 1871-5 was, in round numbers, 266 million tons, and in 1891-5, 520 million tons, an increase of 95 per cent. Omitting the United States, the annual output in 1871-5 averaged 221 million tons, and the average in $1891-5$ was 388 million tons, an increase of 75 per cent. Both the area of coal production and quantity produced have increased greatly in the United States. In 1870 the number of States in which coal was produced was but twenty, while in 1897 the number was thirtytwo. In 1870 the production of anthracite coal was reported only from Pennsylvania, while the census of 1880 reports production in Pennsylvania, Rhode Island, and Virginia, and more recent reports show a production of anthracite coal in Colorado and New Mexico. In the South the increase has been especially rapid. Alabama in 1870 mined but 11.000 tons of coal, and in $1897,5,262,000$ tons. Keutucky, which in 18.0 mined but 150,000 tons of coal, produced in 1897, 3,216,000 tons. Tennessee increased her output from 133,000 tons in 1870 to $2.500,000$ tons in 1897 ; and Virginia, which produced but 62,000 tons in 1870, produced $1,365,000$ tons in 1897 .

PROF. NEWCOMB'S SUCCESSOR.

Prof. Thomas J. See, of Missouri, who was recently Professor of Mathematics at the Naval Observatory, has been designated as Chief of the Nautical Almanac, to succeed Prof. Newcomb, who retired March 12, 1897. Prof. See is already a noted astronomer, althougla he is only thirty-three years of age. After graduating at the State University at Columbia, Mo., he took the degrees of Ph.D. and M.A. at the University of Berlin and in 1899 took the chair of astronomy in the Chicago University. Later he went to the Lowell Observatory at the city of Mexico. and thence to Flagstaff, Ariz. At the last named place he discovered no less than six hundred double stars. Prof. See's discoveries regarding celestial heat have caused some scholars to change their opinion of the nebular hypothesis of Herschel and Laplace.

CARRIAGE TIMBER SUPPLY

The ruthless destruction of our forests in all parts of the country has at last affected the carriage and bicycle trade, and there are those engaged in this business who contend that within the next quarter of a century the trade will fall short of its needed supplies of elm, hickory, ash, and whitewood, the principal woods employed in making carriages and bicycle rims. So long as the lumbermen confined their attention to the spruce and pine forests, the carriage manufacturers gave no thought for the morrow ; but when the demands of modern industries made heavy drafts upon the special trees reserved for this trade, the matter assumed a different aspect. The cabinet makers wanted more variety for their interior work, and they experimented with oak, ash, cherry, walnut, elm, hickory, and birch. One after another had its day, and then declined to go the way of all fashionable woods which are employed too immoderately. Some of the best cabinet woods have almost totally disap peared from our forests, and others are rapidly ap proaching the same condition. Forty years ago wal nut forests were so plentiful that farmers simply had to clear their lands to ship large quantities of timbe to market; but to-day the supply of walnut is confined chiefly to the few groves which are planted for their nuts as much as for their timber. Cherry is like wise becoming scarce, and furniture and cabinet mak ers are looking for substitutes. Birch and maple are receiving the most attention just now from the timber men who supply native woods to the furniture mills and it is fair to assume that they will decrease as rapidly in quantity as walnut and cherry.
The carriage trade is far less elastic in its choice of woods than the cabinet or furniture trade. The manu facturers of the latter have found substitutes for their fashionable woods as fast as the supply gave out, and they have consequently never felt cramped: in fact it has been to their interest to change from one wood to another; for by so doing they set a new fashion, and created a demand for another style of furniture. But the more conservative builders of carriages have clung to the woods that their forefathers used a hundred years ago, and, unless the supply gives out, they will stick to the same woods for another century.
Forest ash and whitewood are considered indispens able for carriage building, and what concerns the trade more than anything else is that the second growth of these trees never answers the purpose so well as thos first growth trees which mark the primeval forests The whitewood is used for the panels of the carriages, and the wood must be close-grained and very smonth. A second growth tree usually produces wood that coarse grained and totally unfit for carriage panels. The forest ash is light, yet firm, strong and resilient, but not elastic, and with a very fine grain and uniform texture of wood. These qualities, !which make forest ash so desirable for carriage building, are not so apparent in the wood taken from second-growth trees. The wood is hard, elastic, heavy, and tough, and, in order to make it retain its form, it has to be stayed with metal. For the framework; heavy carriages it is totally unfit.
Not only is the carriage trade particular in securing orest ash and whitewood from original forests, but the trees are selected by experts while they are standing. Not every tree will answer the exacting demands of the builders of fine carriages and wagons. Trees growing in openings rarely have a uniform grain, and only those found in forests where the foliage shuts out the rays of the sun from the trunks aredeemed fit for the trade; consequently, many of the ash trees that may appear all right to the average lumberman will not do for the carriage builders. With no prospect of increasing their supply by artificial cultivation, the carriage trade has more reasons for alarm at the rapid disappearance of the original forests of ash and whitewood than any other. Of course some experiments have been made with other woods as substitutes for the forest ash and whitewood. Thus basswood is used quite extensively as body panels, and this wood is not quite so much injured by being artificially raised, although the forest basswood is superior to the trees of second-growth.
Hickory has its place in carriage building that has never yet been displaced by any other wood or artificial substitute. For light spokes it has no equal. Ironwood and lancewood are used in its place for heavy spokes, where the weight is of less importance than the strength and cost. But for light buggies and carriages hickory spokes must be used for years to come, as it has been in the past. Forest ash sometimes takes its place, but the result is'never so satisfactory.
Unlike either the ash or whitewood, hickory, to be of any use, must be cut from second-growth trees. The hickery trees are therefore raised artificially for the trade, and by a little training they can be made straighter and more uniform in appearance. Most wild, first-growth hickory trees are the personification of crookedness and evil shape. In the cultivated trees some of this tendency to grow scraggly and unsymmetrically can be corrected, but not entirely. The inherent tendency of the tree will still assert itself. In
recent methods of testing wood considerable light has been thrown upon the relative strength of different woods. It was formerly believed that coarse-grained, second-growth hickory raised upon lowlands was stronger than a piece of hickory of the same size grown upon the uplands. The latter certainly weighed less, about ten per cent, and its grain was finer and smoother. For many years the lowland hickory was used by the carriage builders in preference to the upland;; but modern wood tests show that the lighter upland hickory will sustain from 10 to 15 per cent more weight before breaking than the coarse-grained hickory from the lowlands. In the best trade the upland, secondgrowth hickory is always selected.
The large carriage builders are so particular in their selection of forest ash, whitewood, and second-growth hickory that they take nobody's word for it except their agents', who go out into the forest and select their own trees, and have them cut under their supervision. The wood consequently costs the carriage makers far more than the ordinary timber that one can purchase in the open market. Then the wood has to be seasoned and cured according to certain methods that have long obtained in the trade. There are certain timbermen who have earned the reputation of carefully selecting their wood while growing, and these are trusted by certain established houses who make fine carriages and wagons. The importance of this selection is manifest in other ways. In order to secure the best timber for carriages, and incidentally for wooden bicycle rims, the trees must be cut just at the time of their maturity, when the wood solidifies. This point is kept well in mind by the woodsman who selects the trees. The first test the expert applies is that of examining the bark. By the appear ance of the bark he can tell whether the tree is still growing, whether it is just ripening, or if it is at a standstill or decaying. The latter has to be avoided particularly. After a tree reaches maturity it soon goes into its dotage, and decay follows. Its timber is then of little use to the carriage builders. The bark test is something that cannot be communicated to another. It consists in examining the color, the rings, and the general roughness of the outside, and the sappy condition of the inside. One must learn from long experience to determine the condition of a tree by the bark.

A more infallible test is that of watching the terminal leaf. Until the tree reaches full maturity the terminal leaf will form on the branches. When the tree has passed this period of its life the terminal leaves will disappear, or, rather, fail to form in the spring In time barren branches will appear in place of the terminal leaves. This is the sure sign that decay has commenced and the pith of the tree is drying up. The tree has ceased to grow then, and it is only a question of time before the heart of it will rot.
It is not only necessary to secure trees for carriage timber that have no signs of decay at the heart, but it is essential that they should not have passed the period when the terminal leaves have ceased to appear. The bark test might answer for logs already cut, but the test of the terminal leaf could not be applied to timber cut down and trimmed of all branches. It is for this reason that the experts are required to select the trees while standing. While trees must reach maturity, they must also be growing, A tree that has actually ceased to grow is condemned.
There is a scientific reason for this that is well understood by good timbermen. The sap of the forest trees changes with their growth, and the condition of the sap affects the quality of the timber. The sap of young, healthy trees is rich in saccharine and glutinous qualities, and as they get older these decrease The sap in time becomes thin and watery. The glutinous and saccharine material of the strong sap gives
toughness and fiber to the timber. It is a mooted toughness and fiber to the timber. It is a mooted
question among lumbermen how soon decay sets in question among lumbermen how soon decay sets in charine predominates over the glutinous material, and decay does not begin until the sap grows watery. It is believed jby some expert lumbermen that the trees improve for a few years after reaching maturity, as the wood solidifies and grows stronger in texture. But when the "stag horns" appear on the topmost branches, then the tree has passed its best period of usefulness. Decay has begun at the heart and the topmost branches. It is impossible to say how far the decay has extended by any known tests until the trees are cut down. Even then the logs may have all the appearance of prime, first-class timber, and the weak ness at the heart cannot be detected until the logs have been cured and seasoned. The grain may not be affected to all outward appearances when seasoned the color may be good, and similar external appearances be satisfactory to the eye; but when subjected to modern tests a different story is revealed. The life is out of the wood, and it is brash and devoid of all elasticity. Such timber would be worthless for car riages or bicycle rims. It follows that, in order to secure proper wood for this most important trade, the rees must be selected while growing in midsummer when the foliage is full, marked for future use, and
then cut in the late fall or winter, when the watery part of the sap is at a minimum.
Even with all of these careful scientific tests, the trees selected by the experts will sometimes prove bad There is no accounting for the freaks of Nature. Of two trees growing close together which answer all outward tests and external appearances, one will be good and the other may be fit for firewood, and nothing else. Why Nature breaks her ordinary rules at times is mor than any one can explain ; but she does it, and with a vengeance at times that is costly to those whom she deceives.
One tree that has long held sway in the carriage trade is gradually being replaced by others that are considered equally good For years all light hubs were made of elm. Nothing else was supposed to make good hubs, and the elms were rapidly cut down to supply the trade. Fortunately, when the elms are about all destroyed, except those in groves and streets the builders of carriages are beginning to accept birch locust, and gum, which many consider equal, if not superior, to elm for carriage hubs.
G. E. W.

CHARACTERISTICS OF PORTO RICO.

Mr. Henry M. Wilson, of the United States Geological Survey, spent December and January in Porto Rico, and recently gave an interesting lecture before the Brooklyn Institute on "The Geography and Natural History of Porto Rico." He spoke of the island as History of Porto Rico." He spoke of the island as
teeming with fertility, especially in the northern half, which is copiously watered by clouds driven in by the trade winds, and as being of a temperate climate, the mercury seldom rising above 90° in the summer and rarely falling below 60° in the winter. Even the summer heat is tempered and made endurable by the trade winds that blow with great uniformity.
The population of Porto Rico is, said Mr. Wilson, 315,000 , of which more than 120,000 were of the negro but not of the West Indies type. Throughout the island, from east [to west, stretches a system of moun tains or sierras; the general aspect of the island from the sea is mountainous, and from the interior rugged yet pleasant, on account of the cultivation. The geo logical formation is simple and generally uniform throughout. On each coast is an alluvial plain graded by sediment from the rivers, and between the river mouths is growing coral rock. Inside the formation is tertiary white limestone. The mass of the island is occupied by volcanic rock, porphyry, and gneiss, mixed with heavy calcareous limestone. Porto Rico is poor with heavy calcareous limestone. Porto Rico is poor
in minerals. No evidence has yet been found of any in minerals. No evidence has yet been found of any
minerals existing in commercial quantities. Gold is minerals existing in commercial quantities. Gold is
found east of San Juan in very small quantities. found east of San Juan in very small quantities.
Climatically the island is divided into two parts; the northern humid and the southwestern semi-humid to arid.
Prof. Harrington averaged the annual rainfall at San Juan at 54 inches, yet fifteen miles to the east the average rainfall is 123 inches. This is accounted for by the trade winds that are arrested by the mountains and which deposit their moisture. The island has a wet and a dry season. The soil is very fertile and in the central part the fields are green and large quantities of tobacco are raised. On the south and southwest the sugar cane is the chief product. It grows to 12 and 15 feet in height and is nearly as thick as a man's arm. On the mountains coffee grows above an altitude of a thousand feet, and the higher the elevation, the better is the quality. There are vegetables of all kinds, and all the flowers that are raised in hothouses in America grow wild there. Ferns, mosses, and orchids grow on rocks. There are no wild animals, and domestic animals flourish well, specially cattle. Porto Rico is emphatically the land of the small farmer. There are 21,000 individual holdings, and only 1,000 of them are owned by sugar and tobacco planters.

ANTARCTIC EXPLORERS LAND.

A dispatch from Port Chalmers, New Zealand, says that the steamer "Southern Cross" has arrived there from Victoria Land, where she landed Borchgrevink and ten of his companions of the Antarctic exploring expedition. Borchgrevink left Tasmania some five months ago. He will start on a sledge journey inland in October, for the purpose of getting as near the pole as possible and also of collecting botanical and mineral specimens. It is thought that the expedition will return in about two years. It will be remembered that the explorer visited Victoria Land in 1893 for comnercial purposes with very indifferent results.

Fatalities on the street railroads of Chicago have decreased nearly eighty-five per cent since the surface lines have equipped their cable and electric cars with fenders, in accordance with an ordinance. In the last two months only three persons were killed on the street railways of Chicago, whereas in the same period of 1898 there were eight victims, and the average for half of last year was nine deaths each month. All the surface roads have not as yet fulfilled the requirements of the ordinance, and it is probable that the number of fatal accidents will be even smaller when every car is provided with a fender.

The Winds of the Sahara.
Most interesting meteorological okservations made in the Sahara during eight excursions between 1883 and 1896 have been published by M. F. Foureau, an abstract of which has been published in Popular
Science Monthly. The most frequent winds are those Science Monthly. The most frequent winds are those
froin the northwest and southeast. Every evening the wind goes down with the sun, except the northeast wind, which blows all night. There is also a warm wind from the southwest charged with electricity and often carrying fine sand and darkening the atmosphere. The compasses are much disturbed by it, because, it has been suggested, of a special condition produced upon the thin glass covers by the friction caused by the rubbing of the fine wind-carried sand upon them. But it has been observed that the spare compasses show the same disturbed conditions as soon as they are taken out of their boxes. The disturbance ceases when the glasses are moistened, and does not appear again until they have dried. Several hail stones were noticed. They were usually about as large as peas, but were larger in the heavier storms. He observed no snow in the Sahara, but was informed that snow falls in the winter on the tops of the mountains. Similar observations have been made by other travelers. A curious mirage phenomena was sometimes observed. He found frequent fulgurites in which sand had been vitrified by lightning strokes.

A CURIOUS MEANS OF DISPOSING OF THE DEAD.

 The vicissitudes of the dead would furnish materia for an interesting and grewsome volume. We are, of course, not surprised when we see an Egyptian mum my, but it is very extraordinary that during the Mid dle Ages and the Renaissance a species of mummification was also adopted in Italy, and even continues to this day. The two most curious examples of this are the cemetery of the Capuchins, in Rome, and the catacombs of the Capuchins, at Palermo. In the latter place, we believe, bodies are still added; though probably net in the Roman Capuchin cemetery, as intramural interments are forbidden in Rome even to Popes. covered some genuine Indian mummies. There wer Our engraving represents the catacombs of the Cap- two bodies that had been preserved, in some manner puccini, at Palermo. They consist of a series of cham- so as to measurably resist the ravages of time and bers which are well lighted, adding to the ghastliness. the encroachments of decay.Here are to be seen the mummies of the dead of the These bodies had originally been incased in the skins better classes, in the convent vaults. They are fully of some wild animals. Evidently some preservative attired, even down to the white kid gloves. Some, substance was used to prevent decomposition. The are erect against the wall, and others again buried in skins had been wrapped snugly around the bodi are erect against the wall, and others again buried in skins had been wrapped snugly around the bodie chests, while some
Every year or two the gloves, and less frequently the clothes, are renewed by the affectionate survivors, who go on great feast do on great feast days of the church to gladden their eyes with
the family mumthe family mummies. A visit on the eve of All Souls' Day is a thing long to be remembered. Lights flare dimly through lanterns of bone, revealing the hideous forms of the dead. The bodies against the walls appear like malefactors who had been hung. Many of the bodies appear shabby as regards dress, as their friends do not give them a posthumous toilet from time to time, which is so necessary to keep them in good repair.
The cemetery of the Capuchins, in Rome, is fully as interesting and ghastly It is a series of vauted chambers above the ground, so the walls skull need of artificial daylight. Around possible. As the flesh shrank the covering also shrank, terns. The ceilings are covered by ornamental pat- In the long lapse of time, flesh, bones, and covering terns made of smaller bones, and lamps depend- became very dry and as hard ashorn. How long these will be etched, showing the position of the American ing from the ceiling are also made from bones of the bodies had remained in this mummified condition it is fleet in front of Santiago. arm.
fter a monk dimpossible to determine. To what tribe the mummies the ground in the chapel, the earth being brought serving the no can tell. The object in thus pre the ground in the chapel, the earth being brought serving the bodies is also shrouded in mystery. As a cents per mile.

THE CATACOMBS OF THE CAPPUCCINI, PALERMO, SICILY
their dead
Indians who have been shown the mummies and questioned have invariably shaken their heads in an incredulous manner, and looked puzzled and mystified They have not been able to throw one ray of light on the subject.
The mummies were found in a small cave, situated at the base of a lofty, rocky bluff. Their discover was purely accidental. The two men entered the mouth of the little cave merely out of curiosity, and were surprised on discovering the mummified bodies Careful search and investigation failed to discover more bodies.
As near as can be ascertained, these mummies were found near the headwaters of the Santiam River, in the very heart of the Cascade Range.

The men making the discovery have persistently declined to reveal the locality where the bodies were discovered. They are in hopes of finding more Indian mummies, and of turning the discovery to pecuniary gain, either by selling the bodies or by exhibiting them and charging admission. They propose to make a thorough search

The recent discovery of these mummies has at tracted much attention among those who are interested in ethnology. The shape of the heads and other pe culiarities leave no possible doubt that the bodies are those of Indians

A New Satellite of Saturn.
A new satellite of the planet Saturn has been discovered by Prof. William H. Pickering, at the Harvard College Observatory. This satellite is three and a half times as distant from Saturn as Iapetus, the outermost satellite hitherto known. The period is about seventeen months and the magnitude fifteen and a half. The satellite appears upon four plates, taken a the Arequipa Station, with the Bruce photographic telescope.
The last discovery among the satellites of Saturn was made half a century ago, in September, 1848, by Prof. George P. Bond, at that time director of the Harvard College Observatory.

Sampson's Sword.
The special committee having in charge the selec tion of a design for a sword to be presented to Rear Admiral Sampson have at last agreed upon that submitted by Si mons Brothers, of Philadelphia, and its cost will be $\$ 2,000$. The de sign represents on the head of the pommel the coat of arms of the State of New Jersey, while on the collar of the pom mel will be raised letters and enameled flags crossed being the em blems of the rank of Captain and o Rear-Admiral, sig nifying the fact that at the beginning of the war Sampson was a Captain and a Rear-Admiral at its close. The grip will be made of shark's skin of shark's skin wrapire with forty-eight stars, each star being set with a dia mond. The guard top, and bottom will terminate with dolphins' heads with ruby eyes, the ruby be ing the natal stone of the Rear-Ad miral. The sleeves miral. The sleeves , of the scabbard are to be of gold and the rings.are municipal fasces held to the sleeve by ship's cables The monosram will be made of diamonds. The belt

PASSENGER

AN IMPROVEMENT IN WRENCHES

The wrench which forms the subject of our engrav ing is provided with adjustable jaws which may be set to the nut merely by the movement of the wrenchhandle, in contradistinction to being operated by the movement of a screw.
The handle of the wrench is formed with a slot in

KLATT AND BRODERICK'S IMPROVEMENT IN WRENCHES.
which moves a button attached to a sliding block. To the block a rod is secured which is surrounded by coiled spring pressing against a double stop-pawl.
Pivoted on the end of the handle adjacent to the pawl is the main jaw of the wrench, on which the ad justing-jaw slides. On the main jaw, concentric with its pivot, segmental ratchets are formed which coact with the double pawl to hold the main jaw in the de sired position. The adjusting-jaw is connected with the handle by means of links.
When the wrench has its parts in the position shown in the perspective view, the adjusting-jaw will be pushed by its links as near as possible to the main jaw and the wrench will then be in position to grip the smallest sized nuts. When the wrench has its parts in the position shown in full lines in the partial sectional view, the jaws are opened to a larger capacity. In order to adjust the jaws to a nut, the wrench, when in the position shown in the sectional view, is placed on the nut and the handle turned toward the left, thus causing the adjusting-jaw to be thrown by its links toward the main jaw, and consequently closing both jaws on the nut. The spring-pressed pawl in bearing on the ratchets will hold the jaws in adjusted position. By drawing back the button sliding in the handle, the pawl may be drawn back to release the jaws.
The wrench has been patented by Reinhold Klat and Thomas M. Broderick, of Strong City, Kansas.

A SEWING-MACHINE GAGE.

The sewing-machine gage which we illustrate herewith is a simple device designed to direct and locate trimming or braid upon a fabric.
Fig. 1 is a perspective view of the gage in operative

A NOVEL GAGE FOR SEWING-MACHINES

position, showing the relation of the gage to the ma terial to be guided and to the presser-foot of the ma chine. Fig. 2 is a plan view of the gage. Fig. 3 is a perspective view of a spacing strip or slide adapted to be used in connection with the device.
The gage consists of a base-plate and slide, both being graduated and having intermeshing ribs and slots controlling the direction of motion. The base plate is held in place on the machine by a clamping screw which is made to pass through a slot in the slide. Upon one end of the base-plate a head-plate, slotted to receive the slide, is formed, which headplate serves to guide the outer edge of the trimming o braid. At its end, the slide is formed with a flanged

guide-plate which is carried over the inner edge of the trimming.

In the operation of the device the base-plate and slide are first adjusted to their proper positions and the head and guide plates being in the positions pre viously mentioned.

When the material to be stitched is of such thickness as to prevent its passing under the slide, it is intended either to insert between the base-plate and slide, or to substitute for the slide one or more suitably ribbed and slotted auxiliary slides of the general character shown in Fig. 3, which insertion or substitution would permit the ready passage of the material.

The device is the invention of Miss Susan Chatfield, of 105 West Sixty-fourth Street, New York city.

The Volcano of the Paris Exposition.
The Paris Exposition will abound in interesting novelties and concessions. One of the most curious will un doubtedly be the artificial volcano. We shall publish an elevation and section of the same in our Supplement. It will be constructed at Grenelle, on the banks of the Seine. It will be 328 feet in height and 485 feet in diameter. From these figures it will be seen that the volcano will really be a mountain which visitors will have an opportunity of climbing. The sides of the mountain will be provided with shady roadways and footpaths, so as to make the trip to the top very agreeable. The framework of the volcano will require no less than $18,000,000$ pounds of iron and steel for its construction. The earth which covers the framework will be real turf, in order that the mountain may pre sent a verdant appearance. A roadway 25 feet in width will wind spirally up to a level of 240 feet, and will be decorated with climbing plants which here and there will form beautiful bowers, galleries, or simple arbors. At 120 feet from the bottom it will give access to a circular platform 30 feet wide and 1,000 feet in circumference. It will be called the "Alley of the Twentieth Century." At 240 feet the road will lead to another platform 30 feet in width, but only 328 feet in circumference. This will be named the "Franco-Russian Alley." Vegetation will be so arranged that visitors will pass from the splendid flora of the Mediter ranean to the stunted shrubs found on craters. The paths will lead to the various restaurants, cafés, concert halls, etc. There will also be a reproduction of Dante's "Inferno." A cable railway will start from the base and will take passengers up to the FrancoRussian Alley. The summit will always be surmount ed by a cloud of smoke in the evening, three eruptions will take place at fixed hours, and visitors will be able to see an imitation lava flow which will doubtless prove very interesting.

The Eclipse of 1900.

The Eclipse Committee, with Mr. Simon Newcomb as chairman, is now gathering information regarding the intended observation of the total eclipse of the sun which will occur in 1900, along the line reaching northeast from New Orleans to Norfolk, and thence across the Atlantic to Spain and Algeria. The totality is but brief in duration; still it is expected that many observers will take part, although fewer observations can be made than if a longer duration were available. Observers will, says The Nation, probably prefer the stations east of the Alleghenies, as to the west of those mountains the duration will range from 1 minute 30 seconds, near the mountains, to 1 minute 13 seconds, near New Orleans, where the sun will be much neare the eastern horizon. The circular of the committe invites the co-operation of astronomers generally as to the measures to be taken.
a drop-actuating mechanism for seed. PLANTERS.
A simple device has been invented by Peter W. Jeppesen, of Bloomfield, Neb., which is designed to operate automatically the dropping mechanism of corn-planters and similar agricultural machines, by the rotation of the wheels which carry the planter. Of our illustrations, Fig. 1 is a top plan view of one side of a corn-planter, showing the mechanism attached to the machine, and Fig. 2 is a perspective view of a bellcrank lever used to actuate the drop mechanism. On the planter-axle a wheel is mounted, which is provided with removable pins, upon the number of which the frequency of the seed-drop depends. This actuatingwheel may be mounted to turn with the axle; or it may be loosely held and rotated whenever desired by means of a clutch. In either construction the actuating wheel is grooved to receive a ring connected by a link with an operating-lever in reach of the driver's hand. The operating-lever is directly pivoted to a block bolted on the planter-frame-a construction which readily adapts the parts to most machines. The block has an arm terminating in. a notched segment, capable of being engaged by a catch mounted on the of the keeper and of the bolt render it impossible operating-lever and controlled by a handle in the usual for the bull-bar to become accidentally unlocked manner. By means of this arrangement the actuating- after the bolt has been once turned and shifted in place. wheel may be shifted in and out of operative position. The fastener has been patented by the inventor, Mr. Mounted upon the frame is a bell-crank lever (Fig. 2). John C. Pearson. Pocatello. Idaho.

One arm of the bell-crank is held in the path of the pins on the actuating-wheel; and the other arm is connected with the oscillating or reciprocating bar of the drop mechanism. When one of the pins on the actuat-ing-wheel engages the arm of the bell-crank, the other arm will be caused to operate the seed-drop. To return the bell-crank to its operative position after having been thrown aside by a pin, a coiled spring is used as shown in Fig. 2. The seed-dropping mechanism may be of any desired form, the particular type employed not materially affecting the general construc tion of the actuating parts. The devices described may be attached to any planter already constructed ; they are simple in form, are readily controlled by the

JEPPESEN'S DROP-ACTUATING MECHANISM FOR SEED-PLANTERS.
driver, and are adjustable to permit a regular drop ping of the seed at any desired interval.

AN EFFICIENT FASTENER FOR STOCK-CARS

The invention illustrated in the annexed engraving is a fastener for stock-cars, by means of which the entrance for the cattle may be effectively closed. The fastener consists particularly of an improved bolt and keeper for holding the hasp which confines the usual cattle-barrier or "bull-bar," as it is technically termed. Fig. 1 shows the fastener in use. Fig. 2 is an eleva ion of the basp and keeper, with the bull-bar in section. Fig. 3 is a perspective view of the keeper. Fig. 4 is a rear view of the keeper. Fig. 5 is a perspective view of the locking-bolt. The bull-bar, as illustrated in Fig. 1, is received at one end by a socket formed in a plate carried by one stanchion, and is removably held at the other end by a hasp on the other stanchion the hasp being bent to conform with the shape of the keeper, as shown in Fig. 2.
Referring to Figs. 3 and 4, it will be observed that the keeper comprises a base formed with a tubular portion. The base and tubular portion are provided with longitudinal and transverse slots communicating with the bore of the tubular portion and with a gap adapted to receive a staple on the hasp. The bolt, which coacts with the keeper to lock the bull-bar consists of a main part and of a handle, by mean of which it is operated. The main part slides and turns in the bore of the tubular part of the keeper, the end of the part serving to cross the gap in the tubular portion, to hold the staple. A lug is formed on the main part of the bolt, and is capable of being worked through the irregular passage formed by the longitudinal and transverse slots of the keeper in order to lock and release the bolt. The peculiar forms

PEARSON'S FASTENER FOR STOCK-CARS.

SOME NOTABLE GERMAN ARCH BRIDGES During the past few years German engineers have shown great activity in the matter of bridge construction, and some of the longest and, architecturally considered, most beautiful bridges in the world have recently been erected in various parts of the German empire. The particular form adopted has been that of the arch, a type which lends itself admirably to successful architectural treatment, and it is needless to say that a people so instinct with true æsthetic perception as the Germans were certain to produce results that would be very gratifying to the eye of the critic. At the same time these great bridges are characterized by ample strength and rigidity-features which are closely associated with the short panel lengths and riveted connections which are a characteristic of most German bridge work.
We have prepared a list of the fourteen longest steel arch bridges in the world, from which it will be seen that, while the longest arch is located in this country, the Germans have recently constructed the second and third longest, while three other of their bridges are to be counted among the first eleven big arches of the world.

Rochester Driving Park.

The longest span is that recently opened across the Niagara River to replace the wrecked suspension bridge. It has a length of 868 feet and is over thirty per cent longer than any other arch in existence.
The next largest arch is the Rhine bridge at Bonn Germany, which consist of two shore spans of 133 feet and a great centra arch of $613 \cdot 3$ feet span The roadway is carried above the shore spans, and is suspended from the panel-points of the main arch. The shore abut arch. The shore abut ments and the river pier are treated with carefu attention to architectura effect, and the whole de sign is remarkably wel balanced and appropriate Illustrations and a more detailed description of the bridge will be found in the Scientific American Supplement of March 11 1899.

The two arch bridge ove the Rhine at Dusseldorf illustrated in the SUPPLE ment of February 11, 1899, is a larger structure than that at Bonn, although neither of the spans is a long as the single large single large span of the former bridge. arch of crescent form, with a span of 511.7 feet. Unlike They are $594 \cdot 5$ feet in length and of practically the the arch trusses of the Levensau bridge, which ar same construction as at Bonn, consisting of two vertical, those of the Grunenthal arch have a batter
arched trusses with a roadway suspended from the toward each other. The floor provides for a wagon panel points. The upper and lower chords of each road and two foot paths, the roadway, 21.3 feet in truss are not parallel with each other, the trusses width, being in the center between the arch trusses being considerably shallower at the crown than at and the foot paths on the outside of them. The total the ends, and the deepening at the piers harmonizes width of the bridge is 43.4 feet and the height of the well with the massive character of the piers them- roadway above the canal is $137 \cdot 7$ feet. At the center selves. These bridges were designed and built by Prof. the trusses have a depth of $13 \cdot 44 \mathrm{feet}$, and they taper Reinhold Krohn, who is well known in the foremost toward the skew backs, where they round in to a engineering circles of this and the old country. Arches depth of 3.8 feet. The upper chord of each truss has of this type have been very favorably received in a radius of 492 feet, the lower chord a radius of 442.8 Germany, as witness the bridges across the Rhine, at feet.
Worms, and across the Elbe, at Harburg. The rapidity As in the Levensau bridge, the roadway intersects with which open hearth steel has taken the place the arches. The lateral bracing is carried in the lower of wrought iron in German bridge construction is chord of the arch as far as the point of intersection largely due to the influence and labors of Prof. Krohn.

Our illustrations, for which we are indebted to Fritz Müller von der Werra, C.E., of this city, show two other notable arch bridges of recent construction both of which span the Kiel Canal, one at Levensau and the other at Grunenthal. The Levensau bridge which consists of a single graceful arch of 536 feet, wa designed by the same Prof. Krohn who was respon sible for the Bonn and Dutsseldorf bridges. The canal at this point, $i^{\prime} \sim$ will be seen, is curved, and to compen sate for the curvature (which has a radius of 3,280 feet) and allow ample room for shipping to navigate the turn, the canal is increased in width by 46 feet. The floor of the bridge is designed to accommodate both wagon, street car, and foot passenger travel. The clear width of the wagon road is 27 feet and the
clear width of each footpath is 6.5 feet, while the width from handrail to handrail is $33 \cdot 5$ feet. It will be seen that the arches intersect the roadway, dividing the latter into three approximately equal portions.
The most noticeable and original feature of the design is the method of providing for the wind strains and of supporting the roadway. Instead of placing the wind bracing in the floor of the bridge, and supporting the floor directly, by means of vertical supports upon the upper chords of the arches, Prof. Krohn has provided a strong, lateral, overhead truss, which extends from abutment to abutment. Vertical posts extend from this truss to the arch beneath at each panel point, and instead of the floor beams being riveted at their ends to these posts, as would be done in American practice, they are of the by means of heavy gussets from the pariel points are riveted to both the struts of the wind truss and the tops of the vertical posts above mentioned.

To American eyes, this looks like a rather costly and ndirect method of construction, and we must confess that the ordinary method of supporting the roadway, as carried out in the Grunenthal bridge, appears to be more satisfactory. We presume, however, that Prof. Krohn wished to avoid the bending strains which would be induced in the vertical posts if the floor beams had been riveted to them in the usual manner. In that worked in between the arch trusses and the vertical posts, but in that portion of the arches above the floor the windbracing takes the form of massive plate kneebraces, which may be clearly seen in the view looking through the bridge on the roadway.

A Russian Rallway Agency in the United

According to press dispatches from St. Petersburg it is stated that in view of the extent to which Ameri can manufacturers are now supplying railway ma號 gistering contracts. It is possible that sub-agencie may be established at either Chicago or Philadelphia.

Lagazines for the Navy
More than $\$ 1,000,000$ will be shortly expended for the construction of the magazines and factories where the high explosives and ammunition used in the navy are to be manufactured and stored. A Board of Officers was appointed to view the sites submitted Now that funds are available, no time will be lost in securing the necessary land and beginning the erection f building. One of buildings. One of the new magazines will be buil Trant's Pamb, on the Hudson River It will hosite frontage of several hundred feet on the Hudson River, and will extend to the cliffs. The buildings will be erected in a secluded place, away from factories and other structures. Now the Navy Department has one small magazine near New York. This is at Fort Lafa yette, at the Narrows It is not only a very exposed position, but it is also too small for the purpose and is under the jurisdiction of the Army authorities, which is another reason why the Navy Department should have their own magazines. New York is the chief distribut ing point, and most of the ammunition during the late war was sent to the ships from there. Ammuni tion is extremely expensive to transport and handle owing to its weight and its explosive nature; so that all possible economy should be effected in handling it.

The new magazine and factory in New York will be a great improvement over those now owned by the United States. Buildings will be erected for the stor ing of ammunition, as well as a laboratory for testing materials for guns and torpedoes. There will also be a building used for experimental work and a large plant for the manufacture of all kinds of powder. The buildings will be of solid construction, iron, steel and stone being used Several piers will also be built and the river is to be dredged at this point, so that large battleships can tie up at the piers and ammunition can be taken directly from the store houses and placed in the nagazines of the vessels. This will eutirely do away with the expense and delay of handling charged shells. It will also avert the dangers surrounding re shipment. According to The New York Times, the plans will call for tracks to be laid from the store houses to the wharves Tracks will also connec with the several railroad whose terminals are in the vicinity of the plant. The buildings are to be equip ped with the latest and nost improved appliances t is the intention of th encineers to make thi plant the most complet of its kind in the world When finished and ready for work, it is expected to be able to manufactur sufficient explosives for the entire navy and to have capacity for assembling nearly all the fixed am munition and charued shells needed. An Ordnance Officer says. "The war told us our needs and proved that the government should own its own plants, and New York is the place where the largest and bes magazines should be built." When asked whethe here would be any danger to the surrounding country the officer said: "We have handled many thousand tons of explosives during the past thirty years, and ill not in that time had any accidents." The plant ill be away from towns and in the most secluded place. There will be no factories or other dangerous buildings near, and the buildings to be constructed will be as nearly fireproof as possible. The plant on th Hudson River will cost about $\$ 600,000$. It is expected hat work will be begun within the next few months. Another plant, which will be somewhat smaller, is to be erected at the Naval Proving Ground, Indian Head a few miles below Washington. The main feature of this plant will be the factory for the manufacture of explosives, the greater part of which will be smokeles powder. Like the plant to be erected at New York, all modern machinery and appliances will be used, and as far as possible, power and heat will be obtained by means of electricity. This plant will cost abou $\$ 400,000$, and it is expected it will be completed Janu ary 1,1900 . More than $\$ 100,000$ has been expended for new machinery and instruments that were used in handling ammunition in the magazines at Fort Lafa yette, and, so far as can be learned at present, it is the purpose of the Navy Department to continue to ope rate the plant in conjunction with the others.

Sarrespondence.

Sulphur Flies.

To the Editor of the Scientific American
The Mountain Copper Company, Limited, whose furnaces are six miles west of here, mine and roast from one thousand to twelve hundred tons of ore a day. The ore is composed of iron and:copper sulphides carrying eight per cent copper and forty-four per cent sulphur besides gold and silver values. This ore is brought from the mine on the railroad and dumped in piles fourteen feet wide, six feet high, and two hundred feet long, sufficient wood to start it burning being placed in the bottom. It is then fired and left to burn for thirty days, when the roasted product goes to the blast furnace for smelting into matte. During the roasting process the sulphurous acid fumes evolved are so dense that respiration is almost impossible in their vicinity, and a coating of sulphur two inches thick is often formed on the outside of the heaps. After the heaps have been fired and the roasting well under way, there is a species of fly about the size of a large horse fly, having a gray body and a proboscis identical with the horse fly, that takes up his abode in these steaming, smoking heaps, and apparently lives and breeds in them. The lower portions of the heaps fairly swarm with them, and at night the workmen are compelled to wear netting over their faces, and gloves to resist their attacks, their bites being quite poisonous. For the want of a better name, the miners will call them sulphur flies. They seem to thrive in the densest fumes which are irrespirable to a human being. Is any such insect known to any other locality? They were never known here until the smelting operations commenced some three years ago.

George A. Fitch.
Redding, Cal
[We asked the opinion of Dr. L. O. Howard, Entomologist of the United States Department of Agriculture, in regard to this matter, who states that the occurrence is very unusual and that he had never heard of anything of the kind. He intends to investigate the matter.-ED. S. A.]

The Economy of High Pressure Steam.
 To the Editor of the Scientific American

The economy of steam at high pressure is dependent upon the fact that the total heat of steam generated at high pressure is but little more than that of steam generated at low pressure. It is worthy of note that James Watt partly understood this property of steam. He, however, was wrong in believing that the total heat necessary to change water at zero temperature to steam at any temperature was constant. The total heat of steam increases with the pressure, but not so rapidly as that pressure, nor does it even bear a constant ratio to it. It is evident, from what has been said, that any increase in pressure will not be accompanied by as rapid an increase in number heat units; hence the economy of high pressure
A few examples will bring this out more clearly. If a pound of water at $70^{\circ} \mathrm{F}$. be converted into steam at 50 lb. pressure, a certain amount of heat is necessary to effect this change. Now, 1 lb . of steam at 100 lb . pressure could do considerably more work than the same weight of steam at 50 lb . could do, but an examina tion of formulæ shows that the total heat of the steam at 100 lb . pressure is but little more than that of the steam at 50 lb . pressure.
Let us now insert these pressures in the formula showing the temperature of steam at different pressures:

$\mathrm{t}=\frac{2938 \cdot 16}{6.199-\log \mathrm{p}}-371.85$

in which $t=$ temperature of the steam in degrees F. and $p=$ pressure in pounds.
Logarithm $50=1 \cdot 699$ and $100=2 \cdot 000$. Solving, we find the temperature to be $\overline{2} 81 \cdot 07^{\circ}$ at 50 lb . pressure and $327 \cdot 86^{\circ}$ at 100 lb . pressure.
Let us now put these values in the formula for the determination of the total heat of steam at different temperatures
$\mathrm{H}=1091 \cdot 7+0 \cdot 305\left(\mathrm{t}-32^{\circ}\right)$
in which $\mathrm{H}=$ number of heat units and $\mathrm{t}=$ tempera ture of steam in degrees \mathbf{F}.
Solving, we find total heat of steain at 281° to be 1166.4 heat units, and at 328° to be 1180.5 heat units; but, as we started with water of $70^{\circ} \mathrm{F}$., in one case we have used $1166.4-70=1696.4$ heat units, and in the other $1180 \cdot 5-70=1110 \cdot 5$ heat units.
Hence the extra 50 lb . pressure only required 1110.5 Ti 14 extra units.

Harry Stratton.
Tiffin, 0.
It may not be well known that there are a number of aeronautical journals published. L'Aeronaute and La France Aerienne are both published in Paris. The Zeitschrift für Luftschiffahrt is published at Berlin, and the Illustrirte Aeronautische Mittheilungen at Strasburg. The Aeronautical Journal is published by the Aeronautical Society of Great Britain, at London.

In order to tone silver pictures deep black, the following receipt is very useful, owing to its simplicity and reliability. Dissolve 1 gramme of gold chloride, 1.5 gramme of uranic nitrate and 15 grammes of borax 1.5 gramme of uranic nitrate and 15 grammes of borax
in 2,000 grammes of water. After being toned, the pictures must be specially fixed, since a durable toningfixing bath cannot be produced when using the above chemicals.-'Technische Berichte.
A new style of shoes has appeared of late. The connection between soles and uppers is not effected in the customary manner, but both are screwed together in such a manner that the screw-heads are in the interior, while the screw-ends become riveted by wearing the hoes, so that an undesigned loosening of the sole is impossible, while the simplest connection imaginable of sole and vamp is thus created.-Technische Berichte.
To Dye Billiard Balls Red.-As soon as the ivory ball is finished it is laid in a vessel and covered with water. For one billiard ball the admixture of two teaspoonfuls of vinegar and one gramme of aniline red is sufficient. For a deep red take coralline, for amaranth use eosine, for crimson fuchsine is employed. When the ball has the desired shade, it is rinsed off with clear water and, after drying, polished with soap and Vienna lime.-Deutsche Tischler Zeitung.
The Cracking of Crucibles.-The cause of the frequent cracking of crucibles may be traced to the fact that the walls contain moisture. With quick heating the same is transformed into steam, which cannot escape quickly enough, and, in consequence of overheating, takes on a tension, which finally the walls of the crucible can no longer resist, thus causing the cracking at the largest diameter. In order to guard against this evil, it is advisable to heat the crucible slowly before use, so that the moisture held in its walls can evaporate. This previous heating should be done, even if the crucible is well dried out, not having been used for melting. but kept in damp and cold rooms.Die Edelmetall Industrie.
A New Use for Electric Vehicles.-A case was reported recently of a clever application of the electric storage battery of an automobile described as follows A woman had received a complicated fracture of her arm, too complex for the physician to accurately locate. He then decided to make use of a Roentgen ray apparatus for this purpose, but found the patient too weak to be removed. He obtained the apparatus, but, having no source of electricity convenient to operate it, called an electric cab by telephone. The current from the battery in the cab was conducted to the apparatus by special wires which successfully operated it and enabled the physician by the usual observations to locate the fracture in the arm and set the latter quickly.
It is said improvements are to be introduced in these vehicles whereby they can be made immediately serviceable to doctors in emergency cases.
Lacquers and Varnishes.-A good, cheap priming varnish for furniture consists of shellac 60 grammes, Burgundy pitch (white resin) 60 grammes, and $\frac{1}{6}$ good rec tified alcohol. With this mixture the article is treated in a warm, dry room. A good black ground can be produced by grinding fine ivory black with a sufficient quantity of spirit shellac varnish in a stone dish, using a pestle, until a perfectly fine black varnish is produced. In order to obtain other shades, the light varnish is mixed and ground with a quantity of a suitable pigment, such as vermilion or Indian red for red chrome green or Prussian blue and chrome yellow for green; Prussian blue, ultramarine, or indigo for blue chrome yellow for yellow, etc. Black is the color mostly employed ; the following recipes being productive of a nice black ground:

1. Asphaltum, 1 part ; copaiva balsam, 2 parts; and oil of turpentine as required. The asphalt is melted over the fire and mixed with the balsam, which has previously been separately heated; then take the whole from the fire and mix with oil of turpentine. 2. Moisten good lamp black with oil of turpentine, grind both together in a fine mortar, add a sufficient quantity of ordinary copal varnish and grind it all thoroughly.
2. Asphaltum, 90 grammes; oil varnish, $41 / 2$ liters burnt umber, 120 grammes: and oil of turpentine as required. Melt the asphalt, stir it into the oil varnish, which has likewise been heated, add the umber and gradually the oil of turpentine. The following formula is said to produce an especially fine black appearance: Amber, 360 grammes; purified asphalt, 60 grammes ;
oil varnish, $0 \cdot 1$ liter; resin, 60 grammes; oil of turpenoil varnish, 0.1 liter; resin, 60 grammes; oil of turpen-
tine, 480 grammes. Umber, asphalt and resin are carefully melted together, then the hot oil is added and all is again stirred up carefully and mixed with oil of tur pentine after cooling. White priming varnish is prepared from copal varnish and zine white or starch flour The number of varnish coatings varies from 1 to 6 or more, but each layer must be perfectly hard before the
next one is put on. The last coat, as a rule, consists of pale varnish without pigment and for valuable articles is subsequently polished with soft leather and tripoli, while for ordinary goods the gloss obtained in the

The sewers of Paris are now being searched for treasures, owing to the recent discovery by workmen of a bundle containing $\$ 120,000$ in securities.
"The latest American idea for the sheathing of vessels to prevent fouling and corrosion is to sheath them with glass plates, which is said to be entirely feasible." The above item is from The Engineer, of London. While this may be true, we have heard nothing abont it, and it sounds suspiciously like paper bicycles and other things of like order, which seem to exist only in the minds of newspaper reporters.

The British Eastern Australasian and China Telegraph Company filed a claim with the State Department of the United States for $\$ 36,000$ damages for cutting its cable by Admiral Dewey at Manila last May. The United States Attorney-General has now rendered decision finding that, according to international law, there was no ground for a clai:n for indemnity where military commander cuts a cable within the territorial waters of an enemy.
Petit Bleu, of Brussels, recently had a curious experience in which it was shown that no one is indispensable in this world. The compositors having struck, the text accompanying the illustrations was written out on the typewriter; then the typewritten sheets and the copy for the pictures were pasted on large sheets of cardboard and the whole was reduced by photography to the required size. From this negative a photo-engraving was made from which the paper was printed.
The authorities of the Southern Metropolitan Gas Company, an English corporation, have added workingmen directors to the board of the company. The report stated that the profit sharing system, which was introduced in 1889, continues to justify its existence, as it induces a generally intelligent interest in the welfare of the company on the part of its officers and men. Two of the workmen were elected by the workmen shareholders to sit on the board, and the result so far has proved very satisfactory.
According to The Medical Sentinel, it has been ascertained by careful observation that certain fainilies in a village of St. Ourn, France, enjoy absolute immunity from tuberculosis. They are gardeners of ex cellent habits who intermarry among themselves and keep apart from the immigrant laborers. The latter suffer severely from the disease. It is considered probable that hygienic conditions are not the sole cause of the difference, but that by a kind of natural selec tion a race immune from tuberculosis has been developed.
Caisson disease, or compressed air disease, is a malady which is often contracted by those who are engaged in engineering work in positions where they are subjected to great air pressure. Dr. Thomas Oliver has observed several cases of this kind, and he has arrived at the conclusion that the symptoms are best explained by the theory that the malady is due to increased solution by the blood of the gases met with it in compressed air, and the liberation of these gases during decompression. The increased solution of the gases is due, of course, to the greater pressure upon the person of the caisson worker.

The old "Physic Garden," at Chelsea, which was leased to the "Apothecaries' Company" in 1673, and presented to them by Sir Hans Sloane in 1722, is to be placed under a Committee of Societies and the garden is to be maintained for promoting the study of botany with special regard to the requirements of general education, scientific instruction, and research in systematic botany, vegetable physiology, and instruction in pharmacy, as concerns the culture of medicinal plants. New offices, lecture rooms, and laboratories are to be provided. The old "Physic Garden" was one of the oldest, if not the oldest, botanical garden in the world, and is of considerable historical import ance.

We were much surprised the other day in looking over the "R. I. B. A. Calendar," the official publication of the Royal Institute of British Architects, to find that a "water finder's" advertisement had been admitted into the annual of that conservative society. The fallacy of the divining rod has been demonstrated many times by scientists, but it appears to be not a all well understood in England. The advertisement goes on to say that, if anyone desires to have wate discovered, "you cannot do better than engage the service of the well-known water finder, who under takes to search for water for any parties required in any part of the country and to carry out the work, if de sired, by special agreement. No water, no pay." The last few words are comforting, but, if we mistake not a badly advised English nunicipality recently had to pay a considerable sum out of their pockets to an alleged water finder who found no water supply. Unfortunately, we believe that this decision has now been reversed on the flimsiest of technical grounds. The divining rod myth should be exploded by this time and those who attempt to obtain money by its use should be severely punished.

THE ELECTRIC CAB SERVICE OF NEW YORK Before giving a description in detail of the general tween the frames and the motors. In the electric cabs, CITY. equipment of the station, it would be well to describe or hansoms, as they should properly be called, the The success of the electric cab on the streets of our the construction of the cabs or broughams, several of driver is seated behind the carriage proper, and above city is one of the most significant facts in matters of which are shown in our various illustrations. In gen- a special compartment which serves to hold the battery city transportation. After meeting the preliminary eral appearance the body of the hansom cabs and the In the brougham, the battery compartment and the difficulties and discouragements which are inseparable broughams resembles those of the standard variety, driver occupy the front of the vehicle. The steering is from a new enterprise of this kind, the electric cab has and the designers of the new vehicles have shown good done by a steering-lever which has a motion forward taken its place as a popular means of travel. Dur- judgment in endeavoring to make the new vehicles as and backward, while within easy reach of the driver ing the latter part of 1898 there were sixty-two cabs inconspicuous and as familiar to the public as possible. are the controller switch and the reversing switch and broughams in commission, and there are now fully After considerable experiment with both kinds of The latter has an interlocking arrangement which pre
one hundred of these vehicles in service.
tires, the company has decided in favor tires, the company has decided in favor
The central station, of which we show several illus- of 5 -inch pneumatic tires in preference trations, is located on Broadv:ay, between Fifty-second to solid tires 3 inches in diameter. and Fifty-third Streets, and it occupies a building for- The latest pattern of wheel consists of

electric brotghams in the storage room.

reloading an electric brovgham.
Discharged battery has been withdrawn to table and carried to the right, and hydraulic ram is thrusting new battery into the brougham.

the charging tables.
Electric crane has just picked up a fresh battery

THE ELECTRIC CAB SERVICE OF NEW YORK.
Charging Platform-Cab in position, electric crane bringing up fresh battery from the rear
merly used as a bicycle academy, which has a frontage two $1 / 8$-inch stamped and dished steel plates which are vents the motors from being reversed until the speed of 75 feet on each thoroughfare and is 200 feet in bolted to the hubs with their convex faces outward has been reduced to nothing. The controller provides length, extending the full depth of the block. The and converge toward the rims, thereby forming a hol- for speeds of 6,9 , and 15 miles per hour, and the reversBroadway front of the building is devoted to the offices low, disk-shaped wheel center. The diameter of the ing switch, which is operated by the foot, is normally of the company, the room for the drivers and the re- wheels is 36 inches; the tires are ordinarily pumped up in the go-ahead position. There is also an emergency pair shop, while the rest of the floor is given up to the to a pressure of 60 pounds to the square inch, although switch which shuts off the whole current on being charging platforms, the battery room, and the storage pressures as high as 100 and 150 pounds to the square kicked by the driver's foot. When this switch has charging platforms, the battery room, and the storage pressures as high as 100 and 150 pounds to the square kicked by the driver's foot. When this switch has
of vehicles which are in reserve ready charged for use inch have been tried experimentally.
been opened, it is in such a condition that no passerby
can possibly turn on the current. voted to the storage of vehicles not in use and serves proof, ironclad motors capable of exerting four horse As we have already stated, the charging of the batalso as an erecting and repair shop. Elevators are power combined. They are geared in a manner simi- teries and the reloading of the electric vehicles is done provided for lifting the batteries and general material lar to that in use for railroad motors. Flexibility is ob- on the main floor of the building. The batteries have to this floor,

[^0]from 25 to 30 miles, at the normal rate of speed of a CURIOUS CASE OF ABNORMAL DEVELOPMENT about 8 miles per hour. The vehicles are of two classes -those which are maintained continuously upon the streets and those which are kept at the station subject to calls. The former class returns to the station for charging before the batteries show signs of exhaustion, while the station cabs are recharged every time they return from service. Entrance is had to the charging-room by an entrance at the right-hand side of the Broadway front, and the cabs leave the station by means of another door at the left of the building. There are two charging platforms, with a starter's office located between them, as shown in our illustra tions. The cab is backed onto platforms and adjusted upon them both laterally and vertically by means of hydraulic rams, which brings it into the correct position to receive a fresh battery. On each side of the charging platform is a lateral adjusting-bar, operated by a pair of horizontal hydraulic rams. The adjusting bars are of the same height as the hubs of the wheels. As soon as the cab has been backed on the platform, the bars move forward from opposite sides and align the cab with great accuracy opposite the loading table for the batteries. Other hydraulic rams beneath the platform raise the cab, so that the floor of the battery chamber in the cab shall be exactly on a level with the table. A hydraulic ram on the opposite side of the table now moves forward, and, by means of a grappling device, withdraws the discharged battery onto the table. The table consists of several sections, and it is capable of transverse movement across the battery room. After the empty battery has been deposited, the table moves transversely the width of one section, thereby removing the spent battery and bringing a charged battery in front of the cab. The hydraulic ram now moves forward and thrusts the battery into the cab, where it is automatically brought into contact with the wiring to the motors.
The charging of the batteries is done upon eight rows of tables which extend down the length of the charging room. The empty batteries are carried to these tables and the charged batteries are taken from them to the ca.bs by means of an overhead electric traveling crane. After the battery has been withdrawn from the cab to the transfer table (which is really an endless traveling link belt electrically ope rated) it is carried laterally by the table into line with the particular row of tables desired, when it is picked up by means of four hooks which are let down from the electric traveling crane, raised to the desired height, and then carried down the room by the crane and deposited in place. The operation is reversed in transferring the charged batteries to the cabs. The traveling crane is completely controlled in all its motions by an operators who stands in an operating cab suspended at the mid-length of the crane, and which travels with it throughout the full length of the room.
The electric cabs have proved to be particularly popular for certain classes of work. Physicians and all who have occasion to make hurried journeys are very frequent and constant patrons of the new service, while there are several of the cabs that are retained by business men who find it mor wh venient and even more expeditious to go " down town" by electric cab than by the other means of travel. The cabs, moreover, have proved in the recent snowstorms that they can keep going long after the horse driven cabs have given up the at tempt. We are in debted to Mr. G. H Condict, the chief engineer of the com pany, for courtesie this article.

FRONT OF HOUSE WRECKED BY GAS EXPLOSION.

AN INTERESTING EXPLOSION OF GAS
We have at different times referred to the danger of explosion caused by escaping gas, and we have rarely heard of a more complete ruin than that caused by an explosion of gas at Fort Wayne, Ind., on February 26, at the residence of Mrs. Mary Nichter, in which her on was severely injured, and the house was almos otally wrecked. The house was a two-story brick building with an ordinary celiar below the ground loor. A few days before the accident an inspecto rom the gas company made an examination of the premises and pronounced everything to be all right It is believed that the frost coming out of the ground caused a break in the pipe, disabling the service con nection and allowing the gas to escape into the cella through a duct in th earth along the service should be accompanied by the statement of the ways The boy went and means which may appear likely to lead to the ac-

rear of house wrecked by gas explosion.
complis
Saluting a Phono-
gram.
It will be remem bered that Queen Victoria spoke message of friendship and good will to the Emperor Me nelek, of Abyssinia after the recent vic tory in the Soudan The message cre ated a marked im pression on his Majesty. The royal words were delivered on a Sunday, the phonograph working excellent
down into the cellar, and, on reaching the bottom of ly. The tones of her Majesty's voice were reprothe steps, struck a match with which to light a can duced with remarkable clearness, and Menelek was dle. Instantly there was a blinding flash, followed so pleased that nothing would satisfy him but to by a tremendous explosion. The cellar must have hear the message at least a dozen times. First he been almost entirely filled with escaping gas. With a would listen to the words as they came from the splintering crash the kitchen floor was rent, the trumpet of the phonograph, and then he would walls of the house were pushed outward, falling in use the ear tubes. When his curiosity and deheaps, and the interior of the house was instantly light had been satisfied, he relapsed into solemn transformed into an almost total wreck. Mrs. Nichter silence, and ordered the royal salute and remained and a younger son made their way painfully out of the standing while seventeen guns were fired. Menelek ruins, and, throwing the outside cellar door open, the himself has tried to send a message by the phononeighbors succeeded in rescuing her injured son, whose graph, so that he appreciates the difficulty of securclothing was in flames. The lad was wrapped in an ing a satisfactory record.

ANTIQUE CHAIN ARMOR IN THE CAUCASUS MOUNTAINS

The mountain defiles of the Caucasus ranges are so deep and so completely isolated from one another that the tribes which inhabit them have preserved their distinctive characteristics much more decidedly than most parts of the world which have felt the touch of curopean civilization. Some of these tribes boast of great antiquity and certain families have preserved for many generations ancestral heirlooms, such as armor and weapons, furniture and garments. The photograph herewith reproduced shows some men of the Pchaves, a Georgian tribe living at and near Ananoor, in the southern part of the mountains, on the Georgian military road, who donned their ancestral chain armor and gave an exhibition of ancient broadsword combats for the benefit of the members of the Caucasus excursion of the International Geological Congress last summer. The armor was made of small round links of iron or steel wire woven together to form a long-sleeved
shirt or tunic which reached to the knees. The head was protected by a small round skull cap of steel or iron from which hung another piece of chain armor coming down to the shoulders and breast. The shield was small and round, shaped like a bowl, with a point projecting from the center. The sword was long, projecting from the center. The sword was long,
double-edged, and so heavy that exercise with it soon exhausted the strength of the men giving the exhibition of their skill. Another antique weapon carried by these men was a musket with a barrel about six feet in length, the whole weapon being protected by a goatskin case. The others on each end, as shown in the picture, are Cossacks. T
teer cavalry troops of teer cavalry troops of southern Russia. They provide themselves with horses, uniforms, and wea-
pons and serve as guards pons and serve as guards
to the highways and perto the highways and per-
form certain other military duties, on demand of the governor of the district in which they live, in return for which service they are relieved from taxation to a certain extent. On the breast of the figure on the right will be seen the car tridge pouches. Their cos tumes are picturesque, and they have a worldwide reputation for the excellence and daring of their horsemanship.

Some Badly Needed

 According to the authority of the grave digger inHamlet, an act has three Hamlet, an act has three
branches-to act, to do, to branches-to act, to do, to
perform ; and the same perform ; and the same may be said of inventing -financially successful inventing, that is. It has three branches. The first is the idea conceived; the second, the idea achieved; and the third, portant, the idea received, that is, selling on the mar ket, says a writer in The London Standard. We migh almost say that invention has four branches, the extr branch being knowing what to invent, and it is propos ed here to deal more particularly with the fourth branch The general idea that inventions in a small way are ex hausted is erroneous, as is likewise the popular impression that inventions of the greater kind need technical knowledge. A man may make a fortune out of a useful penny article or out of an accidental discovery, and that without technical knowledge. No special knowledge of any kind was needed to invent the bent wire safety pin, the inventor of which is supposed to have made a fabulous fortune, nor could it be said that the invention of the anchor with flukes hinged at the middle required either genius or technical knowledge. The idea was the invention, the actual carrying out of it was practically nothing, and both ideas could as easily have occurred to a plowboy as to an Edison. The mud from our streets, some thousand of tons of which are scraped up daily, ought to be put to some use other than building suburban residences, for which it is not well-suited. In this case it is wanted to know what profitable use it can be put to, and once the idea re is formulated, and is practicable and profitable, the detail is soon worked out. This js an invention badly needed, and would make a large fortune if it were discovered. There is another article which is wasted hugely, and that is wood. The present method of sawing lumber produces a large quantity of sawdust, only a very little of which is used. Every saw-cut wastes a plank the thickness of the saw and length and breadth of the log, whether the resulting planks be thick or thin, and the surface so left has in most a clea
ings.
again as is wasted in sawdust Now about half as much badly needed which will obviate this waste. The wood must be cut, not rasped through, so as to leave a clean surface, and waste nothing in dust or shav-

Electricians badly need a perfect insulator. It must stand heat, cold, water, air, and all atmospheric conditions and be quite flexible, have great strength and electric resistance, and, above all, must be cheap. Rubber at present fulfills the bulk of these conditions, but it is worth some 15 s . per pound. But then, on the other hand, worn-out rubber is an almost valueless commodity, as it cannot be made up again. This is due to the sulphur used in manuf again. This is material. An inventor is wanted who can devise a material. An inventor is wanted who can devise a
cheap process of extracting the sulphur from the old wornout rubber and rendering it as serviceable as new. Probably an accident will show the method of doing this, and when it does it will be rash to invest in rubber companies. Ships, nowadays, are built so as to defy almost everything, save the carelessness of man. One or two things they lack, however. They need something which will effectually protect the parts under water from barnacles and other fouling pests of the sea, and that for an indefinite period. They need an invention which will warn a ship in a fog of the proximity of other ships, say within a distance of two miles. Not only that, but the warning must be in such a form that each ship will know the she course that the other ship is steering, so that this is practically a sea telegraph, and it is course that the wireless telegraphy we have heard so it possible

COSSACK CAVALRY SOLDIERS AND THEIR ANTIQUE CHAIN ARMOR.
would soon be as bad traveling as frozen plowed fields. What is wanted, therefore, is a road with the holding advantages of macadam, and the permanency of asphalt, and the silence of wood. It must be as cheap as any of them, and will therefore be made from the refuse of some manufacture or other which is practically worthless. We suggested above that worn-out rubber is useless and that the mud from our streets is useless. Could they be combined in some way so as to make a useful road? The lighting of our roads too, needs much improvement. The arc lamp at pre sent used is inefficient on account of its flickering-in fact, for many purposes arc lighting cannot be used, because of this fault, although it would be the very best light were it perfect. Therefore, invent a per fect arc lamp-O ye geniuses! Much as it is needed, there is no good preservative for iron and woodwork which is exposed to the atmosphere. Paint is but a makeshift, and a poor one at that, having to be con stantly renewed, and the same may be said of all othe preservatives save one-cement. We have seen piece of iron which have been embedded in cement for cen turies, dug out of the same, without the least suspicion of rust, and still retaining the bluish color of the forge What is wanted is the application of this knowledge to air-exposed ironwork. Another kind of paint is needed for inside woodwork. It is one which will ren der the article to which it is applied uninflammable Some of the salts of strontium would accomplish this but they are two expensive at present. There is, there fore, another alternative, and that is to devise a way of obtaining the strontium salts more cheaply; and to make assurance double sure, houses should be buil with a perfectly fireproof brick--a brick which can have a fierce fire built upon it and have its under sur face quite cool, although only about an inch in thick ness. Such a brick has been an existing fact, is now, but its inventor is dead, and he, and only he knew what the ingredient of that brick were.

A Typewriter Wanted

Typewriter Wa
for the Blind.
Those who are interested in the welfare of the blind will be pleased to hear of a great improvement in the method of printing for the blind, devised by Dr. A Mascaro, a Spanish medi cal man, long a resident in Lisbon, who has hit upon a very ingenious method which enables people who can see to read books pre pared for the blind, or to correspond with them or to teach them to read with out any previous training in the blind alphabet. This is accomplished by a modi fication of the Braille em bossed alphabet, which con sists of a grouping of dot
about recently may apply. The method in vogue in relief. Dr Mascaro has succeeded in cunnectin among the drivers of expresses upon our big logue in relie. Dr. Mascaro has succeeded in connecting the case of thick fog is to trust to the officials to keep the dots by means of dark lines, thus exhibiting the case of thick fog is to trust to the officials to keep the complete outline of each letter. This is done
the line go ahead. So, at least, the writer by printing on the reverse side of the porous paper, has been told by one of them, and the fact that ex- so that the type which produces the bosses can also presses mostly arrive punctually on foggy nights, or lay on the ink, and this in its turn passes through the even before their time, would seem to support the as sertion. Under existing circumstances, this possibly is the best that can be done, as fogs often make it im possible for drivers to see signals even when close beneath them. Still it cannot be denied that the practice is dangerous, and, consequently, as we are given to having fogs in this " nook shotten isle of Albion," t would be better if a system could be devised by which communication could be made with the drive direct upon the engine. In this it is not so much the communication to the driver to stop which is the diffi-culty-that can easily be done. But the problem is how to effect the communication to him to go on again. Something which will effectually do away with the moke nuisance is badly needed, especially in such cities as London, Manchester, etc. Of course, smoke less coal has done away with much, but there is still room for an invention which will do away with the

In the matter of town improvements, too, there the much-felt.need of a really good permanent roadway. Asphalt is good, when either wet or dry, but a sprinkling of rain makes it as greasy and slippery as ice. Wood blocks have the same objection and wear into holes too quickly, while granite sets are noisy, liable to settle, and do not give a very good foothold. The best roads for horses are, doubtless, the macadamized variety; but, unless they are relaid every other day or so, the city roads, where there is much traffic
porous paper to the other side, making a distinc mark. Thus, the letter L is represented by four dots, three of the dots being in a vertical line and one at the right, while they are all connected by a fairly black line. This enables the person with evesight o read easily while a blind person feels his way ove he same surface. In practice it was found nece ary to twist the visible lines somewhat out neces but the effect is perfectly plain and readable. Writing by hand is done with the aid of a guide with perforations, which also enables the connecting lines to appea on the lower surface of the paper, which lies against a sheet of carbon paper used for the purpose. The great desideratum is a typewriter for this work, and, in view of the fact that this instrument originated in America. in an attempt to help the blind (for we refer to the typewriter invented by the late Alfred Ely Beach), the Rev. Robert H. Moreton, of Oporto, Portugal, thinks it will not be strange if some one in the same part of the world does solve the problem, by producing a ma chine which will print embossed lines with carbon outlines complete. There would certainly be a field for a achine of this kind, though naturally the number of them which could be sold would be limited. Hereto fore books which have been printed for the blind have been so expensive and bulky that their use has been We have some examples of the Mascaró sys em, and we shall be glad to send a sample of the wor to those interested in producing such a machine.

ダinntific gmerican.

March 25, 1899.

the Great telescope at the paris EXPOSITION OF 1900.
In a recent issue of the Scientific American (see Scientific American, March 11, 1899), Prof. Picker ing, of Harvard University, advocated the establishment of a horizontal telescope of great focal length. He suggests a telescope with an aperture of 12 to 14 inches, having a focal length of 135 to 162 feet. Thestar would be reflected into the instrument by means of a mirror. It will be interesting to learn that a telescope of this general character is to be built for the Paris Ex position of 1900 .
Our esteemed contemporary La Nature, in speaking of this announcement, says : The great teiescope which is to figureat the Exposition of 1900 , and which is due to the initiative of M. François Deloncle and the skill of M. P. Gautier, will surpass the most powerful instruments of the kind that have ever been constructed The greatest telescope that exists at present is that of the Yerkes Observatory, the objective of which is 3.28 feet in diameter, and the focal distance about 65 feet. It moves around an axis fixed in the center and in a vast cupola 78 feet in diameter.
The telescope of 1900 has an objective of $4 \cdot 1$ feet in diameter and a focal distance of 65 feet, and its weight exceeds 44,000 pounds. It was therefore

The siderostat under consideration comprises a circular mirror 2 meters ($61 / 2$ feet) in diameter, absolutely plane and giving excellent images, and of a 196 foot telescope placed horizontally in a line running north and south. The telescope forms the images to its focus where they may be examined by means of an eyepiece or be received upon a sensitized plate, or be projected upon a screen placed in a hall in which they will be exposed to the view of numerous spectators.
Let us now pass to the details. The mirror consists of a glass cylinder, $61 / 2$ feet in diameter and $10 \frac{1}{3}$ inches in thickness, and weighs 7,920 pounds. It is arranged in a 6,820 pound tube, and is kept in equilibrium through a system of levers and counterpoises.
All this part is fixed in a mounting of which the total weight is 33,000 pounds. The base of this mounting floats on mercury contained in a tank, and the thrust of which eases it of $\frac{9}{10}$ of its weight. Hence the clock work that directs the apparatus has merely to displace a mass of 33,000 pounds, and its motive weight is but 220 pounds.
The siderostat (Fig. 2) comprises: (1) a cast iron base 34 feet in height, of which the southern part support the horary axles, parallel with the line of the poles, and its toothed rings; (2) the declination circle; (3) the out of the question to think of placing the instrument its weight, (4) the cranks which with the circle and

The New York Academy of Sciences-1899 Reception.

The sixth annual reception and exhibition of the New York Academy of Sciences will be held on the 19th and 20th of April, in the American Museum of Natural History. There will be three sessions, as usual: That on Wednesday evening for members of Academy, exhibitors, and special guests; that on Thursday after noun for teachers and students; and that on Thursday vening for the members of the Scientitic Alliance and their friends. These annual receptions have come to be an important feature in the scientific life of the city, on its more popular side, and they are looked for ward to with interest, because the exhibitions connected with them illustrate in the most graphic way the proress which has been made in the various department during the year. The general committee of arrange ments consists of Prof. H. F. Osborn, of Columbia University; Prof. C. A. Doremus, of the City College; Mr C. F. Cox, of the New York Central Railroad; and Prof C. L. Bristol, of the New York University The chair man of the committee on exhibits is Prof. William Hallock, of Columbia.

The current supplement.

The current Supplement, No. 1212, is of exceptiona interest. The iirst article is on "Excavations in the

DETAILS OF THE GREAT TELESCOPE.
General view. 2. The siderostat. 3. The telescore. 4. The ocular
under a cupola 209 feet in diameter, as this would the tangent screw, for the displacements of the horary Roman Forum," and deals largely with the recently have required foundations of exceptional solidity, the circle, for the declination circle, and for the winding discovered tomb of Romulus. "The Passy Undermaneuvering would have been difficult, the flexions up of the clockwork. The part situated at the south ground Railroad "describes a great engineering work in and distortions of the glasses and tubes would have comprises: (1) the support of the mirror, mounted in Paris and supplements the work described last week. been considerable, and the net cost would have been the tube and resting upon the breech, with the screw "Trade Suggestions from the United States Consuls" extremely high.
M. Gautier decided upon a very advantageous form, and one that, under the circumstances, was necessary -that of the Foucault siderostat (a heliostat regulated to sidereal time).

This instrument consists essentially of a movable plane mirror actuated by a clockwork that causes it to move in such a way that the luminous rays thrown upon it by a star are, after their reflection, sent in a fixed and absolutely invariable direction. If the axis of the telescope be placed in such direction, the observer, upon putting his eye to the eyepiece, will see the image constantly during the entire time in which the star remains above the horizon, and will be able to study it at his leisure, and to make drawings and photographs of it
Fig. 1 shows the apparatus in its entirety. The siderostat is at the north, with the mirror placed upon the movable support. The declination circle is seen as well as the horary axis, resting upon a stone base. The ocular, with its movable part, is at the south.
This magnificent instrument, when mounted, will be the optical and mechanical chef-d'œuvre of the nineteenth century.
that permits of displacing it; (2) the axis of direction is continued and is the subject of thirteen notes. M of the mirror, which slides in a tube, fixed upon the De Baye's "Mission to the Caucasus" describes an in diameter of the declination circle ; (3) the counterpoise terestins exploration in a little known country "Ap of the mirror; (4) the mercury reservoir; (5) the windlass, proved Lightning Protection" is an article by Nevil designed to raise the receptacle for the silvering mirror; Monroe Hopkins and is a short treatise on the historic (6) the rollers of the support; and finally (7) the regulat- and modern lightning rod and its daily incorrect aping screws of the siderostat. Fig. 3 gives the arrange- plication; it is accompanied by seven illustrations. ment of the objectives, $4 \cdot 1$ feet in diameter, one of "The Nature and History of Patent Rights" is an im which is designed for visual observations and the portant address by E. L. Thurston. The new "French other for photographic work. They are mounted to- Flashless and Soundless Giun "is also described. gether upon the same carriage, the base of which rolls upon the rails by means of wheels, in such a manner that one or the other can be easily adapted to the extremity of the telescope which is in the vicinity of the iderostat. The tubes that carry the crown and flint glass lenses are mounted upon the rails. The flint and crown glasses may be separated from each other in order to permit of wiping off any dust that may settle upon them. Fig. 4 gives a lateral elevation of the ocu lar. Here it shows the external tube set in motion by the wheels, the internal tube sliding into it by the aid of the rollers, and the bellows that join the ocular with the body of the telescope. Clockwork movement carries along the tube through the transmission rod.
and Soundless Gun" is also described.

(Illustrated articles are marked with an asterisk.)

RECENTLY PATENTED INVENTIONS. Bicycle-Appliances.

adJUSTABLE HANDLE-bAR.-Morgan H. Vabar at its upper portion is slotted at opposite sides. In the upper portion of the stem a horizontal part is mounted to turn, which is provided with an annular ides of the stem. Pawls are pivoted in the tee ppposite each other and in a position to engage the sposite each other and in a position to engage the
eeeth of the horizontal portion. The shanks of the pawls being raised, the handle-bar can be adjusted to the desired position, even when the bicycle is going at ull speed
Water-cycle. - John J. McClimont, Union,
Hudson Countr, N. J. The cycle is provided with a Hudson Counts, N.J. The cycle is provided with a
number of floats upon which the frame of the maciine number of floats upon which the frame of the maciine is carried. The cycle is driven by means of a pedalmedium of bevel erears and connecting rods. The device medium of bevel-gears and connecting rods. The device
is guided by means of a hand operated steering-wheel is guided by means of a hand operated steering-wheel
connected by chains and sprockets with the front float. DRIVING-WHEEL FOR CYCLES.-WILLIAM H. Chapman, London, E., England. This invention seeks to provide a driving-wheel which can be removed with-
out dismounting the driving. chain and gear-case. The wheel-hub is constructed in two portions, so coupled together that, by merely witbdrawing the central spindle and unfastening the coupling, the wheel may be removed
along with one of its bearings, the other bearing, tocase, being left in situ in the frame.
bicycle-tire armor.-Emil il. haupt, Manhattan, New York city. The steel armor extends across the tread and at the sides of the tire. and is formed with opposing ends. Clamps are adapted to support the end purtions of the armor. A spring tension device connected with the clamps serves to draw the ends of the
armor toward each other and to provide a means wherearmor toward each other and to provide a means where-
by the armor will yield lengthwise to such an extent as not to interfere in any appreciable degree with the elasticity of the tire.

Mechanical Devices.

glass-molding machine.-Henry bastow, Indiana, Pa. The machine comprises mechanism for holding, the molten glass as the blow-plunger is dipped
therin. Guide-plates are mounted adjacent to the metherin. Guide-plates are mounted adjacent to the me-
chanism, and between the guide-plates a carriage slides chanism, and between the guide-plates a carriage slides which is adapted to deliver the molten glass to the
glass-holding mechanism. A block is independently glass-holding mechanism. A block is independently
slidable on the carriage and has a knife which severs a portion of the molten glass. The glass, after having been thus separated into masses sufficient to form jars or bottles, is pressed into an approximate form, and, after having attained this form, is molded or blown into the exact form.
BRICK-PRESS.- Sylvester TAflor, Center, Indian Territory. Mounted to turn in the frame of the press is a vertically-disposed shaft carrying a number of arms
horizontally. Each arm has a mold in which a plunger horizontally. Each arm has a mold in which a plunger
reciprocates vertically. Feed-devices supply the molds as they turn with the shaft. A cover-plate is supported above the frame and is connected with an eccentric shaft by means of which the plate is caused to move
to and from the molds. A vertically-movable bar is adapted to engage the plungers and push them up. The bar is located at a point beneath the cover-plate, to compress the brick. A fixed segment is located raised plunger movable over the upper face of the segment. Mechanism is mounted at the end of the segment opposite the vertically-movable bar, by which to raise the plungers further in order to dislodge the brick from the plunge
AUTOMATIC KEG-SOAKING APPARATUS. harles Zies, Baltimore. Md. It is the object of this invention to provide an improvement in that class of roughs for soaking beer-kegs which are provided with the tank to a scrubbing-machine. The inventor has devised improved means for submerging the kegs in the water contained in the tank, and for causing the kegs to roll and travel from one end of the tank to the other, where an improved elevating and delivery mechanism is arranged for automatic co-operation with the means for submerging. 'The inventor furthermore provides an im-
proved guard for regulating the admission of kegs to the proved guard for regulating the admission of kegs to the
tank, which guard operates automaticaily in conuection with the other mechanism referred to.

Engineering-Improvements.

 AIR-COMPRESSOR.-HENRY E. ANDERSON, Chehaving guideways therein. Weights have a limited rehaving gudeways ciprocation in the guideways, and are connected with the piston of an air-compressing cylinder. As the weights reach the top of the mechanism, they have a tendency to slide toward the opposite end of the guideways. As the weigbts drop, they move the piston of the air-compressor,and thus compress a certain quantity of air. From the and thus compress a certuin quantity of air. From the
arrangement of weights it follows that a complete double each revolution of the device.
TRACTION-EVGINE
Traction-ENGINE.-. George Cashmore. Oak
land, Cal. To provide an improved triction ranged to be driven by a gasoline or oil engine, and to be ruadily movable from place to place, is the purpose of
this invention. The novel features of the invention are this invention. The novel features of the invention are
found in an ingenious reversing device, comprising a round in an ingenious reversing device, comprising a
driven shaft on which clutch gear-wheels are loosely mounted, a double clutch mounted to turn with and to
slide on the shaft to engage either of the clutch gearsimultaneously in or out of mesh with the clutch gear wheels. A shifting-lever is provided for the clutch and is connected with the intermediate gear-wheel to shift the latter on moving the clutch.

[^1]platform may be increased, and the additional step or steps be held as firmly in place as the regular steps. The pivoted step an extension-step is carried. The pivoted and extension steps can be operated by means of a shaft mounted upon the car-platform and is crank-connected with a flexible pitman joined to the pivoted step by a link. Mechanism is connected with the pitman for springing the pivoted step past the center of its
order to form a continuation of the regular steps
COMBINED AIR-OPERATED CAR-COUPLING AND TRAIN-PIPE-COUPLING MECHANISM.-Joun vides a quick-action pneumatic mechanism for automatically setting the coupling-pin to its coupling position The mechanism is adapted to be set in operation to move he pin to its uncoupling position by hand-manipulated ther portion of the car. The invention embodies novel arrangement of coupling means for joining the train air-pipes, which means coact with and form part
of the air-operated coupling-pin adjusting mechanism. There is also comprehended in the invention a construc its uncoupling position, hose-coupling devices coacting therewith, and an air-brake mechanism combined with such devices and forming an interdependent part of the
complete structure of the improvement, but capable being operated independently of the air-operated cou ing-pin and hose air-coupling devices.

Miscellaneous Inventions.
Cane-sling.-Daniel h. Walsh, Plaquemine, La This cane.sling consitts of a novel arrangement of chains
and hooks, the chains being passed around the cane and he hooks engaging the chains. The sling is to be used in ransferring sugar-cane, sorghum, and the like from carts package intact, so ae to facilitate handling.
SURGICAL Splint, Roben W. Bat
SURGICAL SPLINT.-Robert W. BARTON, Marion,
Kans. Primarily this invotion simple form of splint ror use in the treatment of compound and comminuted fractures, and is so constructer that extensibility can be effected without the use of weights, and without rearranging the bandage. The splint comprises two sections or base portions of pliable
material secured in proper position on the limb, and a material secured in proper position on the limb, and a
bridge-portion counecting the two pliable sections so as to maintain them in an immovable position after adjustment. The surface of the injured portion can hence be left free for treatment without affecting the setting of the
binder-Frame.-Harvey P. Jones. Chicago, Ill The binder is provided with a main frame, with top and bottom clamping-plates fitted to slide toward and from
each other in the main frame, and with a right and left each other in the main frame, and with a right and left hand screw mounted trum in the main frame, and ent gaging nuts on the clamping-plates. The device forms
detachable leaf-binder for books of any kind and so binds the leaves that they are separately movable and interchangeable, the operator being enabled readily to open the clamping plates by turning the screw for the insertion and removal of a leaf.
Windmill.-Hans h. Bergsland, Red Wing, Minn. The mill is provided with blades or wings which turn in a horizontal plane and which are carried on a vertically extending tower-shaft, and is furthermore provided with centrifugal governor which serves automatically in the manner of mounting the blades in their casing a that they may be automatically feathered by the gover nor, according to the veiocity of revolution of the main
shaft, and according to the previous adjustment of the governor, by whing to the previous adjustment of the be set and maintained. Another novel feature is found in the hand-operated means located at the foot of the the mill.
GRAPHOPhone. - Inocenio Andion, New York crease the improvement in graphophones seeks to in recorder, to secure a more perfect recording action by concentrating the sounds and preventing the scattering or loss thereof. This object is attained by making the recorder or reproducer in the form of an exterior shell,
and providing it with a diaphragm-holder smaller than and providing it with a diaphragm-holder smaller than
the shell and spaced therefrom peripherally so as to form an annular chamber between the shell and the holder. holder is apertured peripherally between the diaphragms so that the chamber communicates with that between the shell ard diaphragm holder.
FLUE-STOPPER.-Wllliam D. Powley, Lexington,
III. The present invention provides a device for closing III. The present invention provides a device for closing
the flues in chimneys and walls when the stove-pipes have been removed, so that the flues will not present an unsightly appearance. The device embodies a cap to
which two clamping. arms are pivotally connect d, such arms being actuated by a sliding cross bead, all of the parts having a peculiar construction by which the
stopper is made more effective in operation than most stopper is maf its class.
vices
Cap.-Charles J. Holzenthaler, Brooklyn, New York city. The cap provided by ihis inventor is designhave become shapeless. To this end, a metallic stiffener has been employed consisting of a continuous sheetmetal rim for the side of the crown, the rim being formed at its upper edge with an inturned annular and integra belt-fastener. - Russell Fraser, Brooklyn, New York city. This belt-fastener consists of a con
tinuous lacing woven back and forth to join the ends of the belt. The lacing has its parts secured togethe at a number of points intermediate its ends, whereby it
is formed into independent loops, thus preventing the withdrawal of the entire lacing upon the breaking of one or more of the loops. A number of strands may
break without affecting the strength of the lacing to appreciable extent.
UMBRELLA-TOP PROTECTOR.-William O. ForTH, Trinidad, Col. The covers of umbrellas and
parasols are subjected to considerable wear at the upper end of the ribs. It is the purpose of this invention to
provide a device for the protection of these portions.
This device consists of a cup-shaped body of rubber, This device consists of a cup-shaped body of rubber,
provided with external ribs. The body fits upon the tip stick and entends down over the cover below ing it to the ribs.
Climber.-Charles H. Cole, Brooklyn, New York city. The present invention provides a climber for the use of riggers and linemen. The climber comprises a shank having an opening in its lower portion, a boxing, and a spur having a plate extended through the opening
and secured in the boxing. The spur may be easily removed for the purpose of sharpening or repairing it.

Designs.

foot-brake dog.-Eugene B. Gray, Manhattan, New York city. The leading feature of this design re-
sides in a guard located on the dog-arm, and extending sides in a guard located on the dog-arm, and extending
beyond the arm. The foot-brake dog, as a result, is more easily
character.
Note.-Copies of any of these patents will be furn-
ished by Munn \& Co. for ten cents each. Please send ished by Munn \& Co. for ten cents each. Please send
the name of the patentee, title of the invention, and date the name of t
of this paper.

NEW BOOKS, ETC.

Cuba: Its Resources and OpportuNities. By Pulaski F. Hyatt, United
States Consul, and John T. Hyatt. States Consul, and John T. Hyatt,
United States Vice Consul, Santiago de Cuba. New York: J. S. Ogilvie
Company. 1898. Pp. 211 . Price $\$ 1.50$, paper 50 cents.
The book gives valuable information for American investors, manufacturers, exporters, inporters, lumber
and mine operators, wholesale and retail merchants and mine operators, wholesale and retail merchants
employment seekers, prospective planters, professiuna men, sportsmen, travelers, railroad men, and others The book gives exactly the kind of information that
people are now besinning to ask regarding the great islands at our gates. The book being written by the United States Consul and Vice Consul of Santiago de Cuba is, of course, authoritative. The book is cheaply
made, but the illustrations give some idea of the kind of stores which may be found in Cuba. The tables dea with the commerce of Cuba, and are excellent. Part
the book is given up to a business directory of Havana the book is given up to a business directory of Havana,
Santiago, Matanzas, and other cities. We hardly expected to find a business directory of these cities in such Marine Boilers. Their Construction with Tubulous Boilers. By L. E. Ber tin. London: John Murray. 1898.
8 vo. Pp. 437. Price $\$ 7.20$.
The author is the chief constructor of the French
navy. It is translated and edited by Leslie S. Robertson, navy. It is translated and edited by Leslie S. Robertson,
the well known mechanical engineer, and there is also a the well known mechanical engineer, and there is also a
short preface by Sir William H. White, director of naval short preface by Sir William H. White, director of naval
construction to the British Admiralty. The author has construction to the British Admiralty. The author has
long been known as an authority on marine boilers. It is not limited to boilers ou war veels, as might bear posed. The work is profusely illustrated weale. should be noted that the present volume treats of the very latest practice in marine boiler construction, and on this account should not be confused with the books which have already been long on the market. While the
Frenci practice differs in many respects from English Frencin practice drers in many respects from English and American practice, at the same time, the author has
shown such an intimate faniliarity with the work of other countries that his book is not at all injured there-
by. It is a most admirable book, which we can heartily

Das deutsche Pate WISSENSCHAFTLICHEN HUELFSMIT TEL DES Ingenieurs. By Prof. A. This is a reproduction, in pamphlet form, of an article published originally in the Zeitschrift des Vereins deutscher Ingenieure. The subject treated in the pam-
phlet will be interesting to patent lawyers, on account of the clear and able exposition of what may be termed the logical train of reasoning of a well educated mind rather than upon the utilization of more or less accidental discoveries. Apart from the abstract question
treated, the subject is of special interest on account of the example referred to very fully, namely, Schlick's German patent for hissystem of balancing multiple crank
engines, which system is now well known in naval engineering. The patent was declared void by the German patent office, but upon appeal was upheld by the Supreme Court of the German empire. Prof. Riedier was
one of the experts appearing in Schlick's behalf, and is therefore particularly fitted to give a history of this im portant patent cause
The Sanitary Condition of City and Country Dwelling Houses. By
George E. Waring, Jr. New York
D. Van Nostrand Company. 1898.

16mo. Pp. 130. Price 50 cents. ${ }^{-}$The tragic death of the great sanitary engineer would alone make the second revised edition of this bookle
worthy of notice. We know of no book which gives information of so much value in such a small compass. The information is of the greatest scientific value, and is pithily conveyed in clear language which those who are
interested in the subject will have no difficulty in understanding. It is a most valuable little book, and we con gratulate the pablishers upon the public
probably the last work of Mr. Waring.
The Romano-British City of Silches
TER. By Frederick Davis, F.S.A.
London: William Andrews \& Com
London: William Andrews
pany. 1898. 8vo. Pp. 62.
The city of Silchester will always be interesting to the archæologist, and the present study of Mr. Davis is
an admirable resumé of the excavations which have been made and the results which may be produced from
them. It is reprinted from "Bygone Hamphire,"

The charge for insertion under this head is One Dollar a
line for each insertion: about eight words to a line. as early as Thursday morning to appear in the follow ing week's issue.
Marine Iron Works. Chicago. Catalogue free. "U. S." Metal Polish. Indianapolis. Samples free. Gasoline Brazing Forge. Turner Brass Works. Chicago. Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O For bridge erecting engines. J. S. Mundy, Newark, N. J. For Sale. - Valuable patentable ideas. Samuel B
ambdin, 181 Baltic Street, Brooklyn, N. Y. Special and Automatic Machines built to drawings on
Contract. The Garvin Machine Co., 141 Varick St., N. Y. The celebrated "Hornsby-A kroyd" Patent Safety Oil Engine is built by the De La Vergne Refrigerating MaThe best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$. Munn \& Co.. publishers, 361 Broadway, N. Y. Roche's "New Standard" Flectric Necktie Pin.
Works like a charm. Midget Battery. The electric light is a beauty and a wonder. Sent postpaid for $\$ 1.00$ York. Revolutionary Newspapers. Nagazines, broadsides,
etc.-Any one wishing to dispose of any colonial or
evolutionary papers, etc., may correspond with the revolutionary papers, etc., may correspond with the
undersigned. Please describe the condition and state price.
York.
of Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broadway

 HINTS TO CORRESPONDENTSames and Address must accompany all letters
or no attention will be paid thereto. This is for ou
information and not for publication. or no attention will be paid thereto. This is for ou
information and not for pubication.
onsers should Itererences to former articles or answers should
give aate of paper and paye or number of question.
Ingivities not ansered in reasonable time should
be repeateá : correspondents will bear in mind that
 or in this department. each must take his turn
Bu in ers wising to purchase any artice not advertised
in our columns wirchat be furnished with addresses of
in
 expected without remmuneration.
Scientific A American
Lo may be had at the ontice. Pplements rice 10 cents eacred
Books referred to promptly supplied on receipt of Books referred to promptly supphed on receipt of
vineral
marked or on labeleg. ex.
(7614) A. B. asks: What is a standard candle power and an easy way in which I can measure
the candle power of a kerosene lamp? A. A unit of light, one cande, is the light given out by a sperm candle weighing six to the pound and burning 120 grains per
hour. A wax candle may be weighed burned 5 or 10 hour. A wax cande may be weighed, burned 5 or
minutes, and again weighed. This will test the candle If it consumes nearly the properquantity, it may be used as a standard candle. Druggist grain weights will answer for weighing the candle. Fasten a sheet of white paper
so that the candle will illuminate it. Place the candle so that the candle will illuminate it. Place the candle
one foot from the paper, and a lead pencil 3 to 4 inches from the paper so that its shadow cast by the candle wil fall on the paper. Now place the lamp to be measured
so that the shadow of the pencil which the lamp will produce may fall by the side of the shadow cast by the candle. Move the lamp to and fro till the two shadows
are of equal intenity. Measure the distance of the are of equal intensity. Measure the distance of the
lamp from the sheet of paper, in feet and fractions of foot. The square of this number is the candle power o the lamp.
(7615) F. S. G. asks: 1. Which is better for the secondary of a 2 inch spark induction coil, double cotton covered wire or single silk covered wire, both in
regard to insulating qualities and space it will require regard to insulating qualities and space it will require
A For the seondary of an induction coll use single Neither covering hasuny insulating qualities No wire covering can insulate a wire any more than the air in the pores insulates it. The object of the covering is to pre-
vent contact. Insulation is had by shellac after a laye vent contact. Insulation is had by shellac after a laye is wound on. 2. Can you tell me any way to straighten
the No. 18 B. \& S . iron wres, $111 / 2$ inches long, used to the No. 18 B \& S . iron wres, $11 / 2$ inches long, used to
make the core of the above coil? I find that to straighte make the core of the above coil? I find that to straighten
them by hammering is a very tedious task. A. To straighten a wire, fasten one end in a vise, or around a stiff nail, driven in any convenient place. Fasten the
other end to a bar of wood or iron and pull till the wir is taut and straight as a line. Wire as heavy as 14 or 1 can be straightened by one man's strength. More power
can be put upon larger wires, using a vise and a screw can be put upon larger wires, using a vise and a screw
or lever. Any length can be straightened at one time. Cut it up after it is straightened
(7616) W. A. G. C. asks: Can ice be made colderthan 32 degrees? A. Water cannot under or-
dinary conditions be cooled below $3 z^{\circ}$. It turns into ice at this temperature. But a block of ice behaves in all re pects like a block of any other solid, a piece of stone o whatever below it and may be cooled winter's night with the thermometer indicating zero, the ice and snow will be at a temperature far below 32°. In an ice machine the ice in the cans after the freezing is
completed may be cooled below 32° by the brine, and completed may be cooled below 32° by the brine, and
will then cool a refrigerator more than ice which is at 32°. (7617) C. I. W. asks: 1. What number wire should I use on local magnets for short circuit No. 28 or 30 wire may be used for sounders. On a short circuit less battery is required. The sounder is usually for the line. power dynamo with round armature? What Supple

This Deats Wind, Steam. or Hors GAS ENGINE Bor \$150, les 10, discount for cash
Buit on interchangeabe plan. Buil of best material. Made in lots of 10
theretore we can make the price Box
ed for shivent, weight son pound ed for shioment, weiqhe pron pound
Mane for Gas or Gasoint also Hori
zontal Engines, 4 to 30 borse power.
 GREAT POWER-SMALL COST

KEROSENE ENGINE.

Power? Power? Power!
 The "Wolverine" Three Cvlinder Gas Oline Marine Engine.

 WOLVERINE MOTOR WORKS,

A.W. FABER

LFAD PENCILS, COLORHD PENCILS, SLATE
PE VCILS, WRITING SLATES. STEEL PENS, GOL PEVS, INKS, PENCIL CASES IN SILVER ANDIN
COLDTATIONERS' RUBBER GOODS, HULERS. 78 Reade Street. - - - New York, N. Y

In a Cramped Corner Adjustable " S " Pipe Wrench.

ame of malleab
of steel, nlidin
 JUST OUT.-Send for List No. 9.-150 Illustrations of CHISELS,
GOUGES,
RAZORS, $\quad \begin{aligned} & \text { CARVING TOOLS, } \\ & \text { PLANE IRONS, } \\ & \text { LIGHT EDGE T00LS. }\end{aligned}$ Hand'Turning Tools for Metal or Wood. Tools for Buck
CAS T bUCK BROTHERS, Riverlin Works, Millbury, Mass.

HORSELESS AGE

merican-Hunnings

Our telephones in successful operation
Used by War and Navy Departments.
ordering state lengt of hine. Whether
sinlieline or metalitc circuit ind. number of
telehones to be used on one line. AMERICAN ELECTRIC TELEPHONE CO.,

PHOTOGRAPHY IN COLORS - FOR

FOUR TOOLS IN ONE (2) alone is worth the mouey. The jaws open eight inches.
Weight tiry pouns. Agent wanted.
BLOOMFIELD MMG. CO., Bloomfield. Ind.

MEL DRILLING

Orer 70 sizes and styles, for drilling either deep or on wheels or on sills. With engines or horse powers.
Stron, simple and durable. Any mechanic can
Ster WILLIAMS BROS., Ithaca, N. Y.

Exhibit of Patents and Inventions

Electrical and Mechanical. Inventors, note this.
In connection with the Third Electrical Show to be held in Madison Square Garden, New York, from May 8th to June 4th, 1899, there will be a special exhibition of Patents and Inventions. Inventors so de-
siring may thus be able to show their models to investors and others interested at very little cost. siring may thus be able to show their models to investors and others interested at very little cost.
350 Exbibitors and 700,000
visitors at our former Electrical Shows. For further particulars address

ELECTRICAL EXHIBITION COMPANY, MARCUS NATHAN, Gen'l Manager. MADISON SQUARE GARDEN, NEW YORK.

Do you want an up to dute vapor samuchs

EDISON SAYS
 Over 20 technical and popular electrical courses, covering every branch of this fascinating
 (arses, covering every branch of this fascinating "Ogite I Becor two FREE books entitled the ELECTRICAL ENGINEER INSTITUTE OF CORRESPONDENCE INSTRUCTION.
 \qquad

 ant V. Pres. Hi.A. Strus. Gen. Mg. \&see \quad Dept. A, 120-122 Liberty Street, New York, U. S. A

 CIVIL SERVICE EXAMINATIONS.

Che Cypewriter Exchange

 $11 / 8$ Barclay Sti. Y ORK124 La Salle St.t. 38 Bromfield SHİAGO 817 Wyandotte St, 209 North 9th st. MO .

 THE NEW BHISTOL COUNTLER

by prof. t. o'conor sloane.
AN INEXPENSIVE LIBRARY OF THE BEST BOOKS
ON ELECTRICITY
For the Student, the Amateur, the Workshop, the Electri
cal Enineer, Schools and Colleges.
Conrising Arithmetic of Electricity, 138 pages. Electric Toy Making 140 pages. How to Become a Surcessul Electrician 189 pp 1.00 Standard Electrical Dictionary, 682 pages. - $\quad 3.00$ (wit The simplified. 158 pages,

Munn \& Co., Publishers, 361 BROADWAY, NEW YORK.

$\left.\right|^{\text {sen }}$

\section*{| H |
| :--- |
| M |
| M |
| M |}

 LABELS

" Dr. Terrill's Man Restorer." for a medicine, Ter rill Medical and Surgical Institute. 1. " Quiny $17 .$, ... port. Victoridad," for cigars, A merican Lithographic

PRINTS.
Company...................................... 112
A printed copy of the speciffcation and drawing of onts. In ordering pleasestated tre name and numbe large number of coptes are desired at one time.

DID YOU EVER COLLECT STAMPS?
 MEXICAN STAMPS. Hustrated Cat

GASNGASOLINE ENGINES WATER BOTORS

Not Make Rubber Stamps?
 RUBEE STAMP MAKING. - THIS

35
aDaySure $=$ zaz

NOVEL POCKET KNIVES

 oveltr cutienr companr, 2 bar st. canton. onio.

ANTI-RUST WILL Preserve Fine Tools, Samples, Surgical Instruments, Guns, Arms. The Frasse Co., 21 Warren St., New York.

Waltham Watches

 are always guaranteed to be free from any defect in material or construction. The makers particularly recommend the movement engraved with thetrade mark
" RIVERSIDE"
Made in various sizes for ladies and gentlemen, and for sale by all retail jewelers.
"The Perfected American Watch," an illustrated book of interesting informa.
tion about watches, sent free on request American Waltham Watch Co. waltham, mass.
Fauber : 耳angers. 160.

SELF-MOVING
 carbon system at a cost of about one-half cent per mille StGNaLING through space

SMALL TOWNS CALDWELL
TANK AND TOWER
are provided with adequate and in
expensive water supply and fire proexpensive water supply and frre pro
tection. Handsome Catalogme Free.
W. E. CALD WELL CO. 217 E. Main St., \quad Louisville, Ky
AUSTIN SEPARATOR MTMEM

29 WUSTIN SEPARATOR CO.
 DO THIS!
Put a Qecdez Cyclometer on your wheel. your watch. One measures distance, the other time-both are essential factors of every business or pleasure trip. To ever
Cyclometer is a necessity. Cyclometer is a necessity.
Its merit has eliminated competition. 90x of modern
cyclometers are Veeder Cyclometers. Booklets Free. VEEDER MFG. CO, Hartiord, Conn.

66 Peitade mark D^{27}

BRIGHT METAL PROTECTOR.

NEW LINE TO PARIS

by the magnifcent Twin-Screw Express S.S. Furst
Bismarck and Augusta Victoria, and the Twin-Screw Passenger S.S. Pennsylvania, Pretoria, Graf WalderSHORTEST SEA ROUTE TO PARIS. HAMBURG-AMERICAN LINE, HIGH GRADE WOording MACHINERY
 Single Machines or Com:
plete Equipments for
Any Class of Work.
Your Correspondence is Solicited.
Illustrated Matter and Prices on
application. J. A. FAY \& CO.

HIGH GRADE FODT POWER LATHES
Cribune $=$ bicycles
the best in the world. Handsome illustrated catalogue describing ou
full ine of twenty-three models mailed iree. Cbe Black Infg. Co., Eric, Pa.

BICYCLE TIRE REPAIRING.-THE

lalcium King
Lamp.
BURNS acetylene gas. No Oil, Wick, Dirt or Smoke. Agents wented in rever town.
CALCIUM KING LAMP Co.

[^0]: tained by interposing rubber cushions and springs be sufficient capacity to run the cabs for a distance of

[^1]: Railway-Contrivances.
 CAR-STEP.-STEPHAN OLIGER, Burkettsville, Ohio. This invention seeks to furnieh a simple means wheroby,
 when occasion requires, the number of steps of a car-

