(40)
A WEEKLY JOURNAL 0F PRAC'TICAL INFORMẠTION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFAC'TURES.

|  | NEW YORK, FEBRUARY 4, 1899. | [ ${ }^{\text {3.0 }}$ WEEKLT: ${ }^{\text {a }}$ ( |
| :---: | :---: | :---: |


1.-Iron Pier and Shed at Ia Boca, at the Inshore End of Maritime Section of Panama Canal on the Pacific.

3.-Bohio-Site of Locks and Dam. Chagres River in the Foreground. Locks
will be Built in the Rock Cut Beyond the River.

2.-View Looking Through Interior of La Boca Plor Shed. Length, 9911/2 Feet.

4.-Great Culebra Cut, 34 Miles from Atlantic. Dotted Line Shows Original Surface of Mountain.

6.-Oompleted Canal, 10 Miles from its Atlantic Entrance. Canal is Excavated to Width Shown for 15 Miles, or up to Bohio.

THE NEW PANAMA CANAL-PRESENT CONDITION OF THE WORK.-[See page 73.]

## stintifit Ammiram.

ESTABLISHED 184.5
MUNN , CO., - - - Editors and Proprietors PCBLISHED WEkKLY at
No. 36I BROADWAY, - - NEW YORK.
 the as ientific american plblications.




## NEW YORK. SATURDAY, FEBRUARY 4. 1899.

## the new panama canal.

All the world is pretty well agreed that a ship canal ought to be built somewhere across the neck of land which unites North and South America. All the world is also agreed that only one canal should be built. The points upon which it is not agreed are as to where it should be built. by whom and at what cost.
The United States Senate has cut the Gordian knot at a stroke by declaring that it should be built at Nicaragua, by the United States government, and Nicaragua, by the United States go
"for a cost not to exceed $\$ 115,000,000$."
for a cost not to exceed $\$ 115,000,000$."
One of the most distinguished and
One of the most distinguished and representative bodies of engineers that ever gathered to discuss an en gineering problem of international importance, afte examining the results of a four years' survey by 150 en gineers, has recently stated that the waterway should be cut through at Panama, where it finds a canal al really two filth; completed, and that the cost of its completion "ill be $\$ 102,000,000$.
Three successive estumates, based upon preliminary surveys of the Nicaragua route, have been offered to the public. In 1895 the engineer of a private company (the Maritime Canal Company) reported that the cana could be built for $\$ 69.893 .660$. Then a government commission of engineers (the Ludlow Commission), at about the same time, after examining the route, said it would cost at least $\$ 133,4 \pi 2,893$ to do the work; but stated that the many unsolved problems could only be determined after a complete survey by a competen staff of engineers. Thereupou the government dis patched an admiral, a college professor, and an engi neer to make a more detailed examination. In its fran tic haste to know the truth, and before the commission had had time to arrange its data and draw its final conclusions, the Senate demanded a state ment of the cost. At a hearing before a committee o the Senate the college professor stated that he though the thing could be done for "inside of $\$ 90000,000$ ?" the gallant admiral, "speaking as anybody on the street mights speak, thought that the canal could be pu througlr for $\$ 125,000,000$;" while the engineer though it could be built "for a maximum of about $\$ 140.000,000$. The preliminary report of the Walker Commission, re cently handed to the President, states that the cos will be between $\$ 123,000.000$ and $\$ 140,000,000$. The Sent ate, without waiting to learn the very facts which it had dispatched its commission to ascertain, lumped the three guesses above mentioned together, divided the result by three, and authorized the construction of $\$ 15,000,000$ worth of ship canal
Now, without dwelling upon the precipitancy, or shall we rather say the absurdity, of such legislation, we ask whether it would not be wise, before authorizing the construction of a new canal, to ascertain whethe there is any probable competitor in the field. For we take it that if it were once proved to the people of the United States that another canal was within measura ble distance of completion, they would never counte nance for a moment the folly of constructing a secon in its close proximity
With a view to giving publicity to the facts re garding this vital and fundamental question, we devote a considerabe part of this week's issue to a statement and illustration of the exact condition of the Panama Canal. Our illustrations are repro ductions of photographs taken within the past few months along the route of the canal. The plan profile, and cross sections are drawn from plans fur nished by one of the American members of the In ternational Commission of Engineers, and the fact are taken from the recent report of the commission, or were communicated to us verbally by varions members of the commission, American and foreign.
In presenting the data we wish to give it our fullest indorsement as being an exact, unbiased statement of facts; and we do this, not because we have the slight est interest in the Panama scheme as against any other but because we are satisfied that the ability, experience, and high professional character of the gentlemen of the Iuternational Commission are such as to place their findings upon any engineering question of this kind beyond the faintest suspicion of incompetence or partiality.

If expert testimony counts for anything, the unani mons report of a commission which includes the chief engineer of the Croton Dam and the chief engineers of the Manchester and of the Kiel canals, in favor of the coustruction of the Panama scheme, should set at res all doubts of the feasibility of the plans as now drawn up, and lay forever the ghosts of floods, fraud and fe vers, which have haunted this enterprise ever since the days of De Lesseps' catastrophe.
The Panama Canal then is feasible, and the cost and time of its construction are accurately known. Two fifths of the actual excavation is completed, a plan that cost originally $\$ 30,000,000$ is seattered aloug the route, engineering surveys of the most thorough char acter are completed, the working plans for every struc ture big or little are completed, and the specification drawn up; and a company composed of representative of the leading financial institutions of France with $\$ 13,000,000$ of paid-up capital stands ready to concen trate a maximum force of labor upon the work with vew to its energetic completion.
Finally, in respect of the all-important question o control, it will doubtless surprise many of the public o know that by the articles of a treaty concluded in 1848 between this country and New Granada (which is now the United States of Colombia) this country in return for special privileges, "guarantees" (to quot the treaty)
the perfect neutrality of the isthmus with a view that free transit from one to the other sea may not be interrupted,
and the United State also guarantee, in the same manner, the rights of sor ereignty and property which New Granada has and possesses over the said territory.'
These rights are of the very essence of sovereignty, and, in accordance with their stipulations, this country has already had occasion to land its forces to protect the property of the Panama Railroad.
After cousideration of the facts as above set forth the question will naturally suggest itself whether, if it is desirable for the government to participate in the construction of a canal (which we very much ques ion), it would not be advisable for it to take such teps as will give it a strong representation in the di ectorate of a company whose property it is by treaty pledged to protect. Should the question be answere in the affiruative, the next and most obvious move be given all the time it needs to look carefully into both the Nicaragua and Panama schemes, and repor which, all things considered, has the most features to commend it to the support of the United States.
In a future article we shall present the available dat regarding the Nicaragua scheme. Our first attention has been given to Panama because we believe that any discussion that ignores or belittles the older enterpris is worse than misleading

\section*{PROF. DEWAR'S EXPERIMENT WITH LIQUID

## HYDROGEN.

## HYDROGEN.

It is now about eight months since hydrogen ha been liquefied in the laboratory, and on January 20 Prof. Dewar gave an interesting lecture on the subject at the Royal Institute. His experiments were most interesting, and a description of them has been cabled to The New York Sun. A little ball, cooled and ex posed to the air, was first covered with a coating of solid air. It then began to drop liquid arr. A piece of cotton wool soaked in it appeared to be magnetic but the liquid itself Prof. Dewar is satisfied is no nagnetic. 'This phenomenon must, therefore, be due to the cotton wool being immediately filled with solid oxygen, which is highly magnetic. He explained how vacuums of high tenuity were easily obtained by in nersing a closed tube in liquid hydrogen. The air in the tube was immediately solidified, and if the tub was so arranged that the portion combining the aceu mulation of solid air could be sealed up, the other par would have, according to the calculations of Sir Willian Crookes, a pressure amounting to only one ten-mil ionth of an atmosphere. With vacuum vessels for us with liquefied hydrogen it is, therefore, not necessary to pump out the air. It is only needful to put liquid hydrogen in a double walled vessel and it may itsel make a vacuum by solidifying the air between the two walls.

## COPYRIGHT OF PHOTOGRAPHS

An amendment has been proposed to the copyright aw in the interest of photographers, which will enable them to prosecute the alleged infringement of their copyright at any time after publication. It also gives the photographer the full amount of the penalty of the violation of the law instead of dividing the amount with the government, as is now provided by law. persons in the photoraphic business for levying black mail, and these operations have been highly successful The amendments proposed will enable them to carry on their designs with still more success, as they will not be obliged to divide with the government. It will be readily seen that this new amendment might re sult in great hardship to the publisher ; thus a photograph might be brought to the newspaper, which had
been remounted, cutting out the copyright notice, or it may not have been copyrighted at the time of pub ication. The owner of the copyright sees the viola tion, and atter waiting two or three years sues the ewsuaper publisher, the photographer saying that the newspaper published a copy of his copyrighted picture. 'rhis may or may not be the case, but in the meantime it is more than likely that the newspape editor will have lost all trace of the photograph fron which the cut was made and he is practically without means of proper defense. In many cases innocent in ringers have had to pay $\$ 5,000$ for using a photograph the value of which was not $\$ 5$. The law should be amended so as to bring damages within reason, and endeavor should be made to make them in some de ree commensurate with the actual damage which the photographer has suffered. Photography is a common rt, and no photographer was ever yet damaged any hing like $\$ 5,000$ for even a very flagrant infringement of his rights.

## THE FOURTH ANNUAL CYCLE AND AUTOMOBILE EXHIBITION.

More prominence has been given to horseless vehicles automobiles as they are called, in this exhibition than in previous years, and naturally they form one the chief attractions to visitors.
The exhibition was held in the Madison Square Gar en, in this city, from January 21 to January 28, 1899 the main floor being divided in sections for the variou xhibits of many different manufacturers of bicycles nd accessories
We shail refer briefly to the exhibits of automobiles Near the main entrance slightly to the left stood an electric runabout styled the "Orient," and manufac tured in Waltham, Mass. Its bright red running gear contrasted well with the black body. The framework or holding the body and motor is built of weldles teel tubing, and the front axle support is swiveled to allow for unevenness of roads, there being attached also steering rods which operate the two front wheels in combination with a center lever located in front of he driving seat. The raising of the lever, we will say farns the wheels to the left, the lowering of it steers $t$ the right. A foot lever connected underneath rear ward, by diverging wire ropes to brake bands located near the hubs of the rear wheels, operates the brake. A three-kilowatt motor attached to the frame under neath gears into a special spur differential gear, there by equally distributing the power on the wheel vhether going straight or around a curve. The con roller lever for switching on the electric current is on the outside of the carriage, left side. The chloride ac umulator battery is located in the rear compartment and has an efficiency of 1,800 ampere hours or a dis charge which will propel the vehicle for twenty-fiv miles on a level road
Near by this exhibit. on the left. were three lectric vehicles by the Riker Electric Company, one of which was a new covered phaeton, light in construc ion and tasteful in design. In this vehicle a specia steering gear is provided working the hubs of the front wheels, and connected to a vertical steering rod which ises to the level of the seat and is there hinged to lie horizontally, with a handle on the end for steering with the left hand. Projecting upward between the cushions in the center is the controller lever operated by the ight hand for switching on the battery. The motor at the rear gears into a large gear wheel, keyed to the rea axle, and the latter is ingeniously constructed to com pensate for different rates of speed of the two rea wheels. The Willard storage battery is employed on ac count of its compactness and efficiency. Another vehi cle was a covered delivery wagon of unique design The vehicle is very attractive and easily operated.
The third exhibit of electric vehicles was that of the Fope Manufacturing Company, of Hartford, Conn., at the further end of the hall. These vehicles appear to be more solid and substantial than those of other makes. Three styles were shown, a top-covered two-seated doctor's vehicle, a four-seated trap, and a covered deivery wagon of solid proportions, all equipped with the usual controller lever and brake device. The motor is well incased at the rear, motion being conveyed therefrom to the wheels in an effective manner:
It was said these vehicles would make a distance of thirty-five miles on one charging of the battery on a hard level road. Each carriage is equipped with the chloride storage battery
Near by, in the same section, was on exhibition by this company a novel motor merchandise vehicle, propelled by a gasoline motor. The carrying boxes are supported on each side of the main central frame, there being one steering wheel in front and two drising wheels at the rear. The gasoline motor is located at the right hand side, about ten inches above the ground, and gears into a driving shaft running across the rear of the machine. The motor cylinder jacket is provided with flanges for cooling by air currents

Attached to the main shaft is a chain connected with a separate foot-driven sprocket wheel. A seat is provided conveniently for the operator, who, to start the machine, works the foot pedals. The forward motion
of the vehicle pumps the gasoline and air mixture into the motor. The electric igniter then explodes the mix ture in the cylinder and the machine travels by its own power, the operator at the same time, by means of a lever, disconnects the foot crank and steers the forward wheel by the usual cycle handle bar. It travels at ten miles an hour and under, and is said to be an excellen hill climber.

A nother new gasoline-propelled vehicle, on the south side of the room, was the Tinkham tricycle, for one per son. It is provided with a small, double cycle motor, hav ing the usual mixing chamber. The water for cooling the cylinder is in a tank the width of the machine locat ed over the motor between the two rear wheels, form ing a cover for it. A hand lever on the left throws in or out a clutch which connects the driving shaft to a pedal crank conveniently operated by the feet like a bicycle. To start the machine, the driving shaft, when clutched to the pedal crank clutch, is rotated by the movement of the feet, the clutch is then disconnected by the hand lever and the feet raised and supported on two rests. The speed is regulated by pressure on a small lever attached to the steering handle bar, which cuts off the supply of air to the mixture. The electric sparking is produced by a small storage battery which is kept charged by a small dynamo geared to the shaft A muffler is provided at the rear to soften the sound of the exhaust. It has a speed of 15 miles an hour.

A third and most attractive looking gasoline moto carriage designed to carry two persons was called the "Hertel," made in Greenfield, Mass. The striking feature was its lightness and compactness and method of applying the power to the wheels. Beneath the seat is carried the supply of gasoline, water tank, and stor age sparking battery, kept charged by a small dyna mo geared to the main driving shaft. There are two cylinders placed horizontally, which operate the main shaft. One lever in the center near the seat brings to bear a countershaft in contact with the main shaft, and the driving pulleys on each end of the countershaft on the outside impinge by friction on special concentric rails secured to the inside of the rear whee's. Pushing the lever forward brings the pulleys in contact with the wheels and sets the vehicle in motion; drawing the lever backward puts on the brake and at the same
time removes the driving gear from the wheels. The time removes the driving gear from the wheels. The engine is also started by a back and forth movement of
the same lever. By another lever the two front wheel are steered. The weight of the vehicle is 500 pounds. Its manipulation is said to be so simple that a lady can operate it without difficulty.
The wheels of all these vehicles are fitted with heavy pneumatic tires of large dimensions
In the line of cycles, perhaps the most prominent improvement is the introduction of various chainless gears. The Pope Manufacturing Company have perfected their bevel gear driving mechanisin during the past year in such a way as to make a smoother run ning wheel and prevent undue friction.
The Grand Rapids Cycle Company exhibit also a plain bevel gear bicycle called the "Clipper," well built and light weight.
In the Sager gear is shown a combination of a pe culiar shaped bevel spur with a roller gear on the axle of the driving wheel, designed to reduce the usual fric Still a bothel gear.
Still another form is the Bullis gear, in which miniature rollers on projecting spurs take the pläce of the usual spurs of a bevel gear and mesh into each other at an angle like a bevel gear.
A novelty in the chainless line was tandem chainless b:cycles, located at the east end of the hall.
The usual sprocket pedal wheel had gear teeth on its periphery which geared into a run-around ring of large diameter, traveling on ball-bearings over a sta tionary ring supported on the frame of the bicycle, and geared on the opposite side into a second toothed
pedal wheel. This in turn geared on a second large run-around ring and that into a gear wheel on the end of the axle of the rear wheel. The power is thus trans mitted through the medium of these gears and runarounds directly to the rear wheel.
In the line of accessories and minor improvements there were on exhibition four or five different styles of acetylene lamps, unique devices for quickly adjusting the height of the seat on the seat post, notably that of the "Tribune" bicycle, novel contrivances for ringing a bell from bicycle wheel, and a curious adjustment of the bicycle pedals which could be immediately detached from the sprocket wheel by a slight back pressure, desirable in coasting. Numerous exhibits of adjustable handle bars were to be seen. On the "Cleveland" bicycle we noticed a new simple up to the seat, which permitted the rider, when in motion, to quickly change the gear from low to high speed or vice versa. There seemed to be a desire on the part of manufacturers to supply the public with the chain or chainless machines as it might select. In the Orient cycle exhibit we noticed a six-seated racing bicycle which had a main sprocket wheel twelve nches in diameter.
In another issue we shall give illustrations of some
of the novelties in the exhibition. As a whole it was particularly interesting, especially in the progress shown in automobiles.
the verdict in the tank collapse case.
Coroner Zucca and a jury concluded, on January 24, an inquest in the case of the eight men who were killed by the collapse on December 13 of the large tank of the Consolidated Cas Company at First
Avenue and 23d Street, which we have already illustrated. After taking expert testimony the jury re turned a verdict that the deceased came to their death by asphyxia and by drowning, and that the construc tion and materials of the tank were in accordance with the plans and specifications, and that the workman ship was of good character. The jury recommended that in view of the fact that neither the design nor the construction of such gas-holder tanks is under the upervision of any city department, all such work in future should be subjected to proper municipal super ision and control

## the heavens in february. <br> y garrett p. serviss.

In this month the great winter constellations which enter about Orion gradually shift their places to the western half of the sky, while less brilliant star companies, led by Leo and Virgo, occupy the east. At 10 'clock P. M., in the middle of February, the Milky Way arches the sky in a nearly north and south line The Great Dipper is high in the northeast and Cas sopeia low in the northwest.
Early in the evening Orion is on the meridian, and advantage should be taken of his favorable positio for study of the beautiful star Betelgeuse, in the im aginary giant's right shoulder. This star is remarka ble both for its color, a rich topaz, and for its irregular variability. Ordinarily Betelgeuse is about twice as bright as Aldebaran, the leading star of Taurus, but according to an estimate recently made at the Cape of Good Hope Observatory, it is, this winter, but slightly superior to Aldebaran. It may lose yet more of its light, and attentive observation may result in the dis covery of some law governing its variability. That a
sun of such presumably enormous magnitude as Betelgeuse possesses should lose, for a time, one-half it radiant power is a phenomenon calculated to arres attention and excite wonder. Together with observa tions on its brightness as compared with Adelbaran and with its white neighbor Rigel in Orion's foot, the color of Betelgeuse should also be carefully watched There is here an opportunity for amateur astronomer possessed of normal color vision to add something of value to the stock of astronomical knowledge. The colored stars present a fascinating but difficul problem, and a careful record of their hues, arranged
on a simple chromatic scale, would be highly inte on a simple chromatic scale, would be highly inter esting and might prove highly important.
A hint of what can be done is conveyed by the fact that Betelgeuse and Aldebaran, although both are sometimes called red stars, have by no means the same olor tone, while
the planets.
Mercury is a morning star, moving in the course of the month from Sagittarius across Capricornus into Aquarius. But it is too near the sun for observation. Venus is also a morning star, and conspicuous fo wo or three hours before sunrise. She reaches he greatest western elongation on February 10. She is in the constellation Sagittarius.
Mars remains the most striking stellar object in the vening sky. He crosses the meridian about 10 o'clock in the middle of the month. He is in the constellation Gemini, south of the twin stars Castor and Pollux, and reatly outdoes them in brightness. His brilliancy di minishes, however, all through February, as the dis tance between him and the earth is widening at the ate of several hundred thousand miles in a day.
Jupiter, in Libra, is an evening star, rising before midnight, and in the course of a few weeks will take the place of Mars as the planetary cynosure. Recent studies of his cloud belts indicate that the giant planet continues to be the scene of stupendous surface changes, which probably affect only the vapors that envelop his globe, but which give rise to a wonderful and beautiful spectacle in the telescope.
Saturn is a morning star, rising several hours before daybreak, in the constellation Ophiuchus, near the place where the new star of 1604 appeared. Recent observations of Saturn by Monsieur Antoniadi show that the ball of the planet does not lie exactly in the center of the rings, but appears shifted slightly toward the west. The explanation of this singular appearance is obscure. Antoniadi's drawings of the planet, made within a few months past. also show very plainly the series of light and dark belts parallel with the equator and the tendency of the outer ring, near the extremi ties of the larger axis, to break up into cloud-like masses. This appearance may arise from tidal waves, or waves of condensation and rarefaction running through the masses of minute satellites that compose the ring.

Uranus is a morning star in Ophiuchus, five degrees almost directly north of Antares.
Neptune is an evening star in Taurus.
THE MOON.
February opens with a waning moon, the satellite reaching last quarter on the 3d. New moon occurs on the 0th, first quarter on the 17 th and full moon on the 25 th There will be a minimum of the variable star Algo ten minutes before $\boldsymbol{Q}$ o'clock on the night of February 8. There are no conspicuous meteor showers in February

## PHILIPPINE ARCHITECTURE.

According to Prof. Dean C. Worcester, the house est on four or more heavy timbers which are firmly et in the ground. The floor is raised some five o ten feet from the ground. The frame is of bamboo tied together with rattan and nails are not used. The sides and roof are usually of palm, and the former may be made by splitting green bamboo, binding the halves lat and then sewing them together. If palms are scarce the roof may be thatched with long grass. The floo s usually made of bamboo strips with the conve side up. They are tied firmly in place in such a way that wide cracks are left between them. The houses are entered by ladders; in some cases there is only one room, and the cooking is done over an open fire built on a heap of earth in one corner, and as the opening for the exit of the smoke is inadequate, the room is sometimes rendered almost uninhabitable. In the be:ter classes of dwellings the house is divided into several rooms, and there is a place partitioned off for cooking. There are windows which are provided with swinging shades. Prof. Worcester states that native dwellings which are properly arranged have much to recommend them. The ventilation is perfect and the air is kept much cooler than in a tightly closed building. The construction is so light that if they are thrown down by an earthquake or blown down by a typhoon no one is injured, as the material is too light to do any damage. The richer natives sometimes build houses of boards with galvanized iron roofs and limestone foundations, but they are very much more expensive and are pronounced decidedly less comfortable than the more humble dwellings which we have described.

## WINE STORED UNDERGROUND.

An experiment in handling red wine was tried last year at the Italian-Swiss colony's vineyard, situated at Asti, in the State of California. The grapes handled by the colony were far in excess of the cooperage facilities it possessed, and some means had to be devised to care for the surplus. Among the different plans suggested was that of building a concrete cistern, and this idea was finally adopted. An excavation was first made in a rocky hillside in the rear of the establishment. Next walls of concrete 2 feet in thickness were put in, and the floor and top were added to in an equally substantial manner, the latter being supported by fifteen steel girders. Then the entire surface was covered with a lining of pure cement, and finally this was glazed to the impermeability of glass. The whole cistern was buried beneath 3 feet of earth, the object of all these precautions being to preserve the wine at a uniform temperature. This cement tank is 104 feet long, 34 feet wide, and 24 feet high, and is capable of long, 34 feet wide, and 24 feet high, and is capable of
holding 500,000 gallons. The wine was kept in this reservoir for four months or more, and the experiment is said to have been entirely successful. It was then drawn off by gravitation into wooden tanks, in which it will be allowed to mature previous to being placed in barrels for shipment. There are said to be several advantages derived from treating the wine in this manner. One is that it can be maintained at a cool, even temperature; another is the equal blending of such a arge quantity of wine at one time, and a third is the reat saving in insurance, which is expected to repay tbe cost of the construction of the tank in five years.

## OUR IMPORT TRADE FOR 1898.

The import record of the calendar year 1898 is as renarkable as that relating to its exports, but for opposite reasons. The total imports of the year are less than those of any calendar year in more than a decade, while the exports of the year are the largest on record. The imports fall more than $\$ 100,000,000$ below those of 1897 and nearly $\$ 50,000,000$ below those of the years of great depression, 1896 and 1894, on which occasions the imports were phenomenally light. That the importations in the early part of the year 1898 should have been light was not surprising, because of the heavy im ports in certain lines prior to the enactment of the tariff law of 1897 ; but that they should continue light during the entire year in the face of the large home demand, which prosperous business conditions would naturally create, has proved surprising to those following closely the commercial developments of the year. The importation of a full year's supply of wool, sugar, and other articles of that class just prior to the enactment of the Dingley law naturally had a marked effect in reducing the imports in the closing months of the calendar year 1897; but that the imports of the closing months of 1898 should remain as low as those of 1897 is a matter of very considerable surprise.
$\triangle$ WATER-FEEDING DEVICE FOR GRINDINGWHEELS.
There has recently been patented by George J. Ridley, of Auburn, N. Y., a novel method of feeding water to grinding-wheels, whereby many objections hitherto encountered are overcome
The grinding-wheel itself is mounted in the usual


RIDLEY'S GRINDING-WHEEL.
manner. Below the grinding-wheel, but not in con tact therewith, a water-feeding disk is mounted and partially submerged in a reservoir containing water. The disk and grinding-wheel are driven by a belt running over pulleys on the wheel and disk shafts.
The emery-wheel is covered by a hood, so that no water can be scattered about while the wheel is in operation. The hood extends down and covers the feed disk. A slide is mounted in guides so that it may be inserted between the emery-wheel and the feeddisk.
When the grinding-wheel is rotated, the feed-disk is also rotated, and the water which is lifted from the reservoir will be thrown by centrifugal force against the grinding-wheel. The amount of water thus supplied to the wheel may be regulated by moving the slide in or out.
In this device the feed-wheel is not in contact with
the grinding-wheel, but is rotated thereby, with the result that the grinding-wheel is wet only when in use and that the connection between the wheel and disk is not disturbed by uneven wear.

A NEW WAY OF CONSTRUCTING DRAWBRIDGES. In drawbridges of the swinging and revolving type, as at present constructed, considerable time is lost by the slowness of operation of the draws. In order to overcome this objection, William L. Sampson, of Ocean Grove, N. J., has constructed a drawbridge which consists primarily of movable cantilever spans having inclines, and aprons adapted to be engaged by the inclines and swung into an angular position.
Of the accompanying illustrations, Fig. 1 is a side elevation of the bridge, showing the draw closed; Fig. 2 is a similar view, showing the draw open; Fig. 3 is an enlarged section of the adjacent ends of the spans locked together; and Fig. 4 is an enlarged transverse section of the base of the span locked to the abutment. The cantilever spans of the bridge are constructed to travel toward and from each other on foundations extending above the water-level. In order to impart this movement to the spans, a rope or chain, passing through a tunnel or conduit in the bed of the river, is connected with the ends of the spans and with a drum on shore driven by suitable machinery.
When the spans are in closed position, their two inner ends abut against each other, and the outer or shore ends abut on the aprons; and since the aprons are in turn hinged to the abutments, a continuous bridge is formed from shore to shore. The aprons at their under sides are provided with wheels normally resting on tracks and adapted to travel up the inclines of the spans. An engineer stationed in a power-house on shore can readily move the spans from the abutments to close the waterway or toward the abutments to open the waterway, in which latter position the aprons will be raised
In order to lock the spans securely in place when the waterway is closed, and to prevent all lateral movement, the outer trusses are provided with heels extending upon the floors of the opposite spans as shown in Fig. 3. Locking bolts engage the heels and the floors of the spans, and a second set of bolts connected with the first-named bolts engage registering recesses in the timber of adjacent trusses. The bolts are controlled by the engineer through the medium of ropes.
The inner ends of the spans are also adapted to be locked in place when the bridge is closed, and for this purpose, the device shown in Fig. 4 has been devised. The arrangement consists of movable bars on the base of each span, each bar being provided with pintles. Fixed eyes on the side walls of the abutments are adapted to be engaged by the pintles. By means of a rope and operating lever the engineer can simultaneously move the bars in order to shift the pintles in and out of locking engagement with the yes.
The special advantages of this bridge are the simpli city of its construction and the time saved in opening and closing the draws. Notonly is the invention appli-

## AN IMPROVED STEAM-BOILER.

In the accompanying illustration we present a novel steam-boiler in which an inner and outer shell are provided, the inner shell being open at the bottom and designed to collect the steam, and the space between the inner and outer shells being filled with water. When heat is applied to the outer cylinder, the bottomless inner shell will be filled with steam : the air will be exhausted; the space between the cylinders will be filled with water; and the exterior surface of the outer shell will be enveloped by flame or heat. The steam generated within the interior cylinder maintains by its pressure a thin layer of water on the bottom, the


STAUBER'S STEAM-BOILER.
interior cylinder acting somewhat like an inverted bell jar. When the fire decreases in intensity, the interior cylinder becomes partly filled with water; when the heat is at its maximuin temperature, the water isforced out of the interior cylinder. The inventor of this boiler Benjamin T. Stauber, of Jewell City, Kan., claims for his invention cheapness of construction, a saving of fuel, and ability to raise steam rapidly and to mak large reductions of steam without blowing off. By the addition of an air supply pipe, air can be heated in the interior shell, and supplied in the usual manner.

## A New Power Scheme for Niagara.

New York and Buffalo men have organized a com pany for the purpose of developing the great power of the whirlpool rapids by means of a canal which shall be built inside or beneath the tracks of the gorge road. This canal will be 530 feet long and 100 feet wide. It will be capable of furnishing 35,000 horse power at the whirlpool under 45 feet head. It is power at that the cost will be about $\$ 2,000,000$.


THE HOADLEY-KNIGHT COMPRESSED AIR MOTOR.
In our last issue we gave some account of the development of compressed air traction on the streets of New York city, and dre tical work in this direction had been done with wo moters with two motors, one known as the Hardie motor having been run on several cars on the One Hundred and Twentyfifth Street line of the Third Avenue Street Railway Company, and the other, built under the Hoad under the Hoad-
sure cylinders 8 inches, and the common stroke is 6 inches. The crankshaft carries a 9 -inch pinion which meshes into a 23 -inch gear-wheel on the axle of the car.
the seats in the car. From these it is led by a combined throttle and reducing valve, at a pressure of 320 pounds to the square inch, to a coil which is located within the hot water tank, in which the water is under a pressure of be tween 225 and 300 pounds to the square inch. In passing through the coil the temperature of the air is raised to an extent which greatly increases its capacity. On its way from the coil to the high pressure cylinder a spray of hot water is thrown into the now heated air, in which it is immediately ents, having shown good results in operating several $\mid$ and between the cylinders, as shown in the engraving $\mid$ converted into vapor. The combined steam and comcars on the Lenox Avenue branch of the Metropolitan of the complete truck. The supply of compressed air, pressed air then enter the high pressure cylinder. The Street Railway Company's system. In the Hardie stored at 2,400 pounds pressure, is carried in a set of motor compressed air is used in a single, two-cylinder, cylindrical steel reservoirs, which are placed beneath


AUTOMOBILE CARRIAGE DRIVEN BY COMPRESSED AIR MOTOR.
high pressure exhaust is heated by passing it through the hot water coil, and before the reheated air enters the low pressure cylinders, another spray of hot water is injected into it. The temperature of the air as it issues from the low pressure exhaust is sufficient to prevent any trouble from freezing and choking up the exhaust passages.
The power is controlled by a single lever at either end of the car. When it is thrown over in one direction, the car is propelled at a speed corresponding to the distance through which the lever is moved. Whe: the lever is reversed, the car is stopped, and a furthe: movement in the reverse direction will reverse the motors. With regard to efficiency, it may be said that, in the diagrams showing the work of compression and expansion, the area of the compression cards is 2.015 square inches, and the area of the cards of both high and low pressure cylinders is $1 \cdot 227$ square inches; from which it is seen the compound compressed air motor shows an efficiency of 60.9 . It has been found that, owing to certain losses not shown in the diagrams, as a matter of fact, about 35 per cent of the indicated power of the compressors is delivered on the axle of the car in driving the motor. Fifty per cent of this economy is estimated to be due to the reheater and careful tests have shown that the cost of reheating is about onefifth the cost of compressing the air. It requires thirty to forty pounds of free air to drive a nine-ton twentyfour foot car, and the cost of compressing and reheating the air and of the maintenance of the motor works out as $2 \cdot 9$ cents per car mile.
In view of the large amount of publicity which has been given during the last few weeks to the financial affairs of the motor company and what is known as the auto-truck company, the public would naturally be led to suppose that the auto-truck was in successful service on the streets of our large cities. This is not the case. The only actual compressed air auto-truck in existence as far as we have been able to learn is the crude yard truck shown in the accompanying engraving.
high-pressure engine. It is carried in steel reservoirs, located under the seats of the car, and on its way from the reservoir to the motor the air is heated by passing it through a tank of hot water, stored under a pres sure of several hundred pounds to the square inch.
The Hoadley-Knight motor differs from the Hardie type chiefly in the methods of heating the air and in the fact that the motor is on the compound system. The superior results obtained with the Hoadley type have led to a combination of two companies into the new American Air Power Company, which controls all the patents of both systems, and is now actively engaged in building and supplying the Hoadley-Knight motors for all classes of work.
Our illustrations show a plan view and a photographic reproduction of one of the motors which was successfully at work on the Lenox Avenue line. It will be seen that the truck is of the type ordinarily used for electric cars, and it is one of the advantages of this compressed air motor that it does not involve any structural alterations to the truck to put it in place. The weight of the car when it is equipped is about the same as that of an electric car, the car body weighing 6.500 pounds, the truck 4,500 pounds, the reservoirs 3,600 pounds, the complete motor 3,000 pounds, and the other fittings bringing the total weight of the car up to between 18,000 and 19,000 pounds.
It will be seen from the plans that the power is ap plied to both axles, the high pressure cylinders driving one axle and the low pressure cylinders the other. The cylinders are, in each case, attached to the outside of a strong, cast-steel casing, which entirely incloses the moving parts of the motors. The lower part of the casings in each case serves to hold a bath of oil, which renders the engine self-lubricating and, because of the close-fitting cover, entirely dust-proof. The high pressure cylinders are 4 inches in diameter, the low pres-


EXPERIMENTAL COMPREBSED AIR AUTO-TRUCE FOR YARD,

The Hoadley-Knight motor, it is true, has been applied to an automobile carriage of the kind shown in our engraving, which has the appearance of being a compact and serviceable vehicle; but the auto-truck, so called, exists as yet only upon paper. Plans, however, have been prepared and the company has purchased the Rhode Island Locomotive Works for the purpose of manufacturing cars and motors.

Report of the Smithsonian Institution. The report of Prof. S. P. Langley, Secretary of the 1898, has-just appeared. Following the precedent of several years, he has in the body of the report given a general account of the affairs of the Institution and its bureaus, and, as usual, the report teems with interesting particulars of the splendid work which is to be accomplished by this branch of the government service. The receipts for the year were $\$ 67,178.22$, of which $\$ 56,400$ was derived from the interest of the permanent fund in the Treasury and $\$ 10,778.22$ was received from miscellaneous sources. The total permanent fund now amounts to $\$ 912,000$ and is deposited in the Treasury of the United States. During the year 1897-98, Congress charged the Institution with the disbursement of appropriations for exchanges, ethnology, the preservation of the National Museum, the preservation and care of the collections, maintenance of the buildings of the National Zoological Park, the Astro-Physical Observatory, etc., in all $\$ 363,097$.
The promotion of original research has always been one of the proper functions of the Institution. Investigations in the anthropological, biological, and geological divisions of science have been extensively carried on through the departments of the National Museum and through the Bureau of American Ethnology, these lines of research being well represented by its bureaus. It has remained for the Institution proper to levote its energies more specially to some of the physical sciences The secretary himself has carried on researches in the solar spectrum which are
believed to be important, and the results believed to be important, and the results
of which will shortly be published. The of which will shortly be published. The
secretary has not wholly discontinued the studies he has made in regard to aerodromic experiments, and these have attracted the attention of other departments so far that during the war with Spain a commission was directed by the Secretaries of War and the Navy to inquire into them with a view of their possible utility in war. The secretary's time is now so largely given up to administrative work that what he has been able to
do in these directions has been largely do in these directions has been largely
done in hours which might be considered his own. Grants were made from the Hodgkins Fund for carrying on work at the Blue Hil Meteorological Observatory and to a number of professors at home and abroad for ca
tions upon the air and other gases
In the plan of organization of
In the plan of organization of the Institution, exploration occupies an important part, and during the
year investigations among American Indians year investigations among American Indians have been conducted by the Bureau of Ethnology, and several collaborators of the Institution have made natural history explorations. As usual, the Institution has published a number of interesting books and pam phlets, among which may be specially noted Dr. H. C Bolton's "Catalogue of Scientific and Technical Peri odicals," a monumental work, second only to his "Bibliography of Chemistry." The library quarters at the National Museum have been increased, and during the year nearly 5,000 volumes were added. The Smithsonian deposit at the Library of Congress is known to number something like 350,000 titles, and
the work of classification and cataloguing is being actthe work of class
ively carried on.

At the International Congress of Orientalists, which was held in Paris, September, 1897, and at the International Geological Congress, held at St. Petersburg, September, 1897, the Smithsouian Institution was represented by delegates. The Institution participated in the Tennessee Exposition by a proper ex hibit. The National Museum has, during the year,
received 4,141 lots of specimens, which include more received 4,141 lots of specimens, which include more
than 450,000 objects. This is worthy of special notice, as this increase is the largest during the last fifteen years, and it manifests a desire on the part of the public to aid in building up the collections. The number of specimens now recorded in all departments of the Museum is considerably more than $4,000,000$. Nine thousand four hundred and fourteen institutions in other countries are in communication with institutions in the United States through the Smithsonian Institution, and the Report is accompanied by a map showing the distribution of correspondence of the Smithsonian international exchange services. The weight of matter sent out during the year exceeded 150 tons and was distributed among 93 countries. Work has also proceeded on the National Zoological Park and at the Astro-Physical Laboratory. The amount of work carried on by the Smithsonian Insti-
tution is enormous, and the quality of it is so high
that there is no branch of the governuent service that there is no branch of the government service the Smithsonian.

## Patented Works at the Paris Exposition.

Fears have been entertained by some American manufacturers, who intend to have exhibits at the Paris Exposition, that their inventions, registered designs, trade marks, etc., will not be protected by the French government. It is satisfactory to note that Mr. A. S. Capehart, Director of the Liberal Arts and Chemical Industries for the United States Commission to the Exposition, who recently returned from Paris, states that he was assured that the inventions, trade marks, etc., of the American exhibitors would be amply protected. Mr. Capehart has obtained considerable protected. Mr. Capehart has obtained considerable
information in regard to the subject from the French authorities, which he will publish in a pamphlet which will-be issued by the commission for distribution among manufacturers. He states that the French law of 1868 is explicit, and that this law is incorporated in the organic act of the republic providing for the expo sition. The law is in relation to all exhibitors, and guarantees ample protection to those who have not previously exhibited their manufactured articles in the republic of France for a period of three calenda months next following the close of the exposition, pro vided such exhibitor, within thirty days after the opening of such exposition, make or shall have mad application for a patent. Mr. Capehart also quoted from the general rules and regulations of the exposi tion. In the chapter concerning the protection of the xhibits are the following provisions
Section 70. No works of art, no products exhibited in the buildings, parks, or gardens, may be sketched copied, or reproduced, in any way whatsoever, with out an authorization from the exhibitor countersigned by the department of the director-general. The com


PLAN SHOWING ARRANGEMENT OF mOTORS, GEARING, AND CASING.

This is then filed off. After every trace of brown has been removed, the piece is immersed in a second solu tion, taken out, dried, and filed as before. These alter nating soakings and filings are repeated five or six times, until there is not a trace of rust left. The last filing and polishing leave it in the proper condition, and it is then ready for sale, unless it is to be mounted with gold or precious stones. It is very difficult to put on hinges, etc., as it is very hard to solder it properly As only the most expert workmen can be employed this accounts for the present very high price of the gun metal articles. It is an unfortunate quality of this beautiful substance that when exposed to much dampness it will rust after a time, despite the care with which it is made.

## Viticulture in Russia.

Although the results of last year's grape harvest. especially in the Crimea, were disappointing-a fact due to unfavorable weather and to the ravages of the phylloxera-viticulture in Russia has within the last fifteen years made enormous strides, says The English Mechanic. At one time confined to the southeast of the Crimea, it now extends in a northerly and northeast erly direction into the provinces of Kherson, Podolia; and Bessarabia, some of the plantations, notably that of Prince Troubetzkoi, covering an area of 500 acres. In the government of Bessarabia, in particular, the progress made, according to the acting British consul general at Odessa, has been very marked, both in the extent of land under cultivation and in the quality of wines produced. The former fact is brought out by comparison of the area under cultivation in 1893, which amounted to 108,000 acres, and that in 1897, which was 175,000 acres. The latter fact is evident when we con sider that a province which at one time produced only wine rated as very inferior has now gained a reputa tion for the quality of its superior wines, which are quite equal to good quality French wines, over which they have a considerable advantage in point of price.
The causes militating against the wine harvest in the Crimea have also been present in Bessarabia, so that the fine quality wines are this year more limited in quantity and higher in price than in a good season. The quality of the Bessa rabian wines, both red and white-the red bearing a close resemblance to Bur gundy, the white partaking of the nature of hock-should render them acceptable in England and other countries, and it is confidently believed that in course of time Russian wine will compete with effect on the markets of Europe; in fact it may be worthy of note that it figured
tissioner-general may Section 71. Exhibit. immunities granted by the law of May 23,1868 , as to the guarantee of inventions liable to be patented, and lso of manufacturing designs, within the delays and subject to the conditions of the said law.

## Gun Metal for Jewelry.

Gun metal is at the present time very popular for match boxes, cigarette cases, watch cases, lorgnettes, etc., for which silver has been the prime favorite for several years. The New York Tribune recently had an interesting article on the subject
Gun metal is made up not only in plain, undecorated form, but also in combination with gold, and is used in the handsomest pieces as a background for jewels A quantity of gun-metal jewelry was imported from Europe a few months ago. A few manufacturers a once began experiments with a view to duplicating the ame, but they soon found themselves not successful in obtaining the dull, soft luster which distinguishes the blackish surface of the metal. Lacquering, oxidizing and varnish failed to give the desired finish, and the coatings wore off very rapidly, and for a while it seemed as though the foreigners would enjoy their monopoly; but at last an Italian who had been en gaged many years in making fine jewelry in gold and ilver, after a long series of experiments discovered th process, and, strange to say, he is almost the only man who can now produce a satisfactory article of this kind in this country. Naturally, he will not disclose the valuable secret, but he gave the writer of the artile referred to a general idea of the method of treating the metal. He first procures the high-grade steel used by the government in the manufacture of artillery, so hat it is really "gun metal," and proceeds to fashion it into the various forms desired. The metal is then f course, of the ordinary light gray color which char cterizes steel, and to produce the dull black luster a long process of finishing must be undertaken. The workers refer to the first step in the process as "taking all the rust off the metal." This is done by boiling it in hot acids. After being soaked for some time in one solution, the article is taken out and dried, when the rust appears upon it as a dull, reddish-brown coating
in 1897 among the exports from South
Russia, when the first shipment of the kind was made to the British Isles. The development of viticulture has led to the establishment in Odessa of two cham pagne factories. One of these has not yet comnenced operations, but the other has been workin under most favorable circumstances for some time competing most successfully with French champagne.

The Launching of the Cruiser "Albany." The United States cruiser "Albany," which was pur chased from Brazil about the middle of last March, wa launched at Newcastle, England, on January 14. The vessel is the sister ship of the "New Orleans," which we have illustrated in the Scientific American fo April 9, 1898. Her length is 330 feet; the moulded breadth is 43 feet 9 inches; the maximum draught is 16 feet 10 inches; her displacement is 3,600 tons; the horse power is 7,500 ; and the coal capacity is 850 tons, giving a steaming radius of 8,000 miles. The armament consists of six 6 -inch rapid-fire guns, four $4 \cdot 7$-inch rapid-fire guns in the main battery. The secondary battery is composed of ten 6 -pounders, four 1 -pounders and four Maxim rapid-fire guns. The cruiser is also fitted with three torpedo tubes. Fortunately the vessel was purchased at a time when the construction could be altered somewhat to adapt the vessel to our needs. The improvements are largely in the matter of ammunition hoists and in providing more comfortable quarters for the officers and crew, as a vessel which is intended for the tropics is very uncomfortable in our north ern climate, as has been found in the case of the "New Orleans," which was built for use in southern waters.

Szczepanik, the Polish schoolmaster, who is the alleged inventor of the alleged instrument for enabling one to see an object at a distance clothed in the colors of nature, announces that by means of an electrical device which he has invented, he can, by it, with the aid of a beam of light, explode bombshells. Our contemporary The Electrical Engineer, from which we glean this interesting intelligence, calls this " another ern from Szczepanik's garden.". The instrument which s supposed to annihilate distance and enable us o see our friends in foreign lands is known as the "fernschr."

## ©orrespondence.

## Metallic Copper in Trees.

To the Editor of the Scientific American
In a recent number of the Scientific American, reference was made to the occurrence of muriate of copper in the roots of pine trees. A peculiar case of the occurrence of copper in the plant world fell under my observation recently. An oak tree died in one of the parks of the city of Minneapolis, and while cutting up and removing the trunk. a peculiar copper-colored powder was noticed as coming from the wood. So remarkably bright and beautiful and so abundant was this powder, that it immediately attracted attention. Analyses indicated almost pure copper. Under the microscope, the powder appeared as flakes, the larger ones partly rolled up so as to fit in the pores of the wood. Some of these larger flakes, when unrolled measured one and a half millimeters in diameter.
Analyses of the wood showed certain parts of the tree to contain comparatively large quantities of the metal, while other parts contained only a trace. The outer rings contained nearly all of the metal, the heart and the inner annual rings containing only a trace. The inaximum amount of copper seemed to be in the fourth and fifth annual rings from the bark. This part of the tree contained 4 milligrammes of copper per 100 grammes of wood. The origin of the metal has not yet been determined.

George Bell Frankforter
University of Minnesota, January 16, 1899.

## Experiments in Aerial Navigation

To the Editor of the Scientific American :
The announcement that the government of the United States has appropriated $\$ 25,000$ for experiments in aerial navigation by the Board of Ordnance, under direction of General Greely, Chief Signal Officer, cannot but stimulate inventors. This is the first time in our history that any money has been directly appropriated for such purpose
Two months before the opening of our war with Spain, in communications to the Secretary of War and to the Chiei Signal Officer, I urgently recommended the construction of several war balloons for captive observations, and the creation of at least one aerial warship for observation and assault, to combine all the then existing features of known value practically attainable.
The answer was that whereas the great advantages of a practical airship were realized, yet the department had then no funds for either construction of or experiments with an airship, and that in the matter of balloons, should the necessity arise, I would be further communicated with. The war followed, and found us utterly unprepared in the matter of aerial warfare and almost the same as to captive balloons for observation. As a result, I was called upon to speedily build twentyone captive war balloons, ranging from the largest size suitable for such work to those exclusively used for signaling. Our war was too brief to bring these into action otherwise than as practicing apparatus for the balloon corps, under instr
With an efficient apparatus, already in order, it wa among the easy possibilities to discover Cervera's fleet lying snug in Santiago Harbor, instead of our worry ing weeks about a spook fleet threatening our coast, and wasting time and money in non-discovery, to say nothing of our chance of early observation, and inter ception and capture without destroying it, as it escap ed from Santiago Harbor.
Our limited aeronautical equipment permitted only a preliminary observation of the defenses of Santiago by our balloon signal corps just before the assault Was the subsequent advance of our captive balloon 80 yards in front of our columns a shrewd "Yankee trick to draw the Spanish fire, and thereby distract the alm of their Mausers and artillery from our assaulting troops, by offering instead this alluring sky target for their practice at short range? This balloon banner was thus as much in evidence and bore its bullet marks as bravely in the front of battle as any other standard, though it finally fell, wounded but not destroyed.

As a matter of fact, under fair conditions, it is very difficult to hit a distant captive balloon, and scarcely possible to hit any balloon sailing free and high in air, and any wounds, however inflicted, can be repaired by a competent operative.
Our past experience illustrates anew the old saying. "In time of peace prepare for war." With funds now available, there is a great natural curiosity to know what may be done with them. Two systems present chanical flight, by wings or aeroplanes and screw propellers. The other, a gas-buoyed vessel propelled by any means. Mechanical flight has troubled men' minds for centuries before the balloon appeared. The balloon is the only means by which man has yet rise free from the ground.
Of late costly experiments have been made with propelled aeroplanes, without achieving practical success in
carrying man aloft. Maxim, who has spent more money on the aeroplane than any other man, over $\$ 100,000$, it is reported, recently declared in his lecture in New York, reported in the Scientific American, December 24 , as a result of his experiments, that " the aeroplane system would not be found successful, but that a totally different plan would be necessary," the conditions attending a toy experiment not being akin to larger operations. Furthermore, he declares that in his opinion the suin of " $\$ 25,000$ will be found completely inadequate" to properly attempt the subject, and that $\$ 100,000$ or more will be necessary.
My own experiments, which include both of the sys tems, corroborate those of Maxim, though not approach ing them in the matter of large expenditures upon the aeroplane alone. Indeed, I do not think that large expenditure is necessary in any experimental system for aerial navigation, as most of the tests are simple and may be cheaply made, and quite as successfully in a small way as if larger. In this field I believe it to be a fact that what will not succeed in a small way will not in a large way, so far as relates to mechanical flight or aeroplane buoyancy. The chief difficulty in aeroplane flight is the fact that buoyancy is entirely dependent upon aerial resistance, and this resistance devour force.
To illustrate: From common observation it would seem that if a thin lath ( 1 inch by 4 feet, were to be buoyed up by its swift passage through air, it should naturally be projected length wise, like an arrow. The facts are directly otherwise. The lath projected length wise would chiefly meet resistance and be buoyed up by the air first touching its front under edge or surface, one inch wide, the remaining portion, trailing rearward, being comparatively of little use, because not meeting much resistance. On the other hand, if the whole longedge of the lath be projected broadside, with this front edge slightly elevated, it would be buoyed up along the whole 48 inches. Its resistance would, how ever, be much greater than one inch, say 48 times as much, roughly speaking, but the entire weight of the apparatus relative to effective buoyant surface would be less than with the first experiment.
The construction of a bird's wing is based on this aw, and it is composed of single narrow feathers, which are in turn composed of minute slats, like common blinds, overlapping and separable, and capable of presenting many times the effective aerial resistance o a single united surface.
This mode of wing or aeroplane construction has limitations, however, and its economically effective range does not appear to exceed 2 inches in width for any bird's feathers, while the wing of the largest bird seldom exceeds a few inches in width and is never a few feet wide from front to rear when extended in flight. The only resource, then, is in the multiplication of wings or feathers or lath surface drifting edgewise, upborne by aerial resistance. The effective aeroplane must of necessity become a vast, subdivided, and complex system, possessing great surface in order to buoy up great weights, and this requires powerful propelling force sustaining it in swift flight, as it cannot pause a single instant without falling. Besides its effective buoyant surface, its power mechanism and propellers possess bulk, and consequently resisting surface not available for buoyancy. These observed facts have been the result of considerable practical experimenting which cost me more time than money.
as inevitable and opposing conditions.
Surface being the chief resisting factor, I next sough how to evade resistance. Given a necessary body, hull or case for containing passengers, goods, and appliances for buoyancy or propulsion, what form should this body have? This inquiry seems to have escaped the research of most flying machine fanatics.
I began by building various forms of bodies and dragging them through still water or immersing them in water currents while held by simple spring scales to note the comparative pull or resistance. I next built buoyant gas models like those forms found most valu able, and towed or floated them in air currents, attach d to spring scales for noting comparative pull. Al these were quite early experiments, and showed me that the two elements, air and water, were vastly dif erent mediums in their influence on hulls of vessel completely immersed in them.
These experiments were followed by a series for test ing swifter flights of bodies, including all forms of pro jectiles, of equal weight and sectional area, impelled by amrods fired from a spring gun of known force, for accurate comparison. Incidentally these bodies were fired into air, water, snow, sand, wood, ice, and metal plates. They revealed one fact which is a scathing criticism upon our imbecile system of modern bullets and cannon balls. It was known at this time that if a slug or cylinder required or consumed a certain force in overcoming air resistance, say for comparison 6 pounds, then a globe or hemisphere might only con sume one-half this force, or 3 pounds, while a cone of same sectional area might only.need one-third of this force, or 2 pounds. Here investigation seemed to have stopped, though it is evident that the sharper a cutting
tool or projectile became, the more effectively it could
cut or pierce, if well supported. Now it would seem, certainly, that if a needle could not be improved by breaking off its point, or a razor by dulling its edge, or a cold chisel by cutting its tooth off square across, then a bullet would not have increased penetrating power by treating it likewise.

Whatever the practical reasons may be for these ob tuse forms of projectiles in use, it became quickly evident that for aerial navigation a tub or a globe or cone was unsuitable, and that it was of the utmost import ance to create a new form of air-piercing projectile whose bulk or uncouth form would not be a serious feature when speed or economy in driving power wa desired. The problem finally narrowed itself to one o extreme simplicity-the evolution of an entirely new air vessel or projectile which evaded all aerial resistance in theory, by having the ability to convert the resistance or air pressure in front to an equally propelling influ ence applied to the rear to urge it forward in equa degree. This I practically attained in a symmetrica vegrel containing and braced by hydrogen for preser vation of form and buoyancy with space for preser vation of form and buoyancy, with space for other re quisites, as motive power and supplies. This body re solves itself into a mathematical formula, governed en tirely by the two elements of its length and breadth, o speed versus carrying power, great relative bulk being impracticable with high speed as a purely physical and mathematical fact.
The success of aerial navigation at this moment seems to be dependent upon a practical light motive power, of great force, and not upon any mystery of bird's flight, or sustaining power of aeroplanes or special forms of screw or other propulsion. No complex sys tem of surface buoyancy known at present has equaled the work or prolonged stay in the air of the ordinary hydrogen balloon, while with equal motive power the gas vessel of superior form will give more prolonged results, cover greater distance, carry greater weights and entail more safety for the passenger than can the best aeroplane, using equal power and carrying a pass enger. With the 300 horse power steam motor of Maxim many of the gas vessel systems invented in this country could have made a better showing than has any nechanical flight or propelled aeroplane system thus ar shown, the one fatal defect of all such systems being the inability to safely stop or hover in the air. It constantly risks destruction through irregularities or perturbations in air currents, or turmoils in the air while the gas vessel itself is becalmed during any storm when it ceases to urge itself forward or struggle agains t. Its endurance becomes a matter of gas-holdịng power. Absolute imperviousness is insured, not by any special varnish, but simply by superimposed. multiple tissues of suitable varnish applied by mahinery, by which all underlying microscopic pores are lugged up and overlaid by many succeeding films too hin to reveal their total bulk to a micrometer caliper et denser than hydrogen and holding it prisoner Hydrogen balloons built by me within the past yea had from eight to twelve such coats, with little increas ed weight after the first two coats, because applied moothly and homogeneously, with every particle of surplus varnish removed to insure only the thinnest films, which are generally as effective as if thicker. Long voyages with gas vessels henceforth may depend entirely upon expert manipulation of supplies carried, as with suitable treatment little gas or ballast need b expelled.

Carl E. Myers.
Frankfort. N. Y

## A Refrigerating Plant for Manila.

The Chief Quartermaster of the Department of the Great Lakes, U. S. A., has invited proposals for the erection of a large refrigerating plant at Manila, for the use of the commissary department of the United States army in the Philippines. The plant as designed will be one of the largest of the kind ever built, and will include a number of ice-making machines and equipment for a large cold-storage plant. The estimated cost of the apparatus will be $\$ 100,000$. The cold-storage rooms will have a capacity of 1,200 tons of beef and 150 tons of mutton, 100 tons of vegetables, 50 tons of butter, and 50 tons of canned goods. Special rooms are to be built for every class of supplies, so that they will be kept in good condition for months in the tropical climate. Under this arrangeinent soldiers at all times will be furnished with fresh meat and other foods. The plant must be ready for use within six months after the contract is awarded. Bids will be opened on February 1.

Death of the Builder of the Transcaspian Railway
Gen. Michael Annenkoff, the distinguished Russian engineer, who constructed the Transcaspian Railway, is dead. He was born in 1838 and had a military career. He was later assigned to the work of constructing strategetic railwavs, and he soon distinguished himself in this direction. He completed the great Transcaspian line. He was noted for the ingenuity and the process of construction which he employed and the rapidity with which they were carried on.
investigations at the keely laboratory. In our last issue we noted the fact that the Keely laboratory, at 1420 North Twentieth Street, Philadelphia, Pa., had been examined by experts, and that the discoveries seemed to confirm the views held by the Scientific American in 1884, that the phenomena were produced through the medium of compressed air. A representative of the Scientific American was at once sent to Philadelphia, and through the courtesy of Mr . Clarence B. Moore, who has the lease of the premises, unique photographs and diagrams were obtained.
The laboratory is an inconspicuous brick building two stories in height. After Mr. Keely's death the laboratory was given up, and all the apparatus, wires, laboratory was given up, and all the apparatus, wires, tubing, etc., in fact, everything which could be used as a
clew to the discovery of the principles underlying the clew to the discovery of the principles underlying the
alleged motor, but it is shown by the result that Keely had not taken anyone into his confidence, and accounts for even his supporters being ignorant of the existence of the remarkable things which we are to describe.
The investigations were carried out under the waspices of the Philadelphia Press.
Every bit of flooring was ripped up and every nook and cranny explored in the floors, walls, and ceilings, and it was found that the building was honeycombed with traps, holes for piping, etc., for carrying on the bogus traps, holes for piping, etc., for carrying experiments. Everything was conducted
with such secrecy and ceremony, and the with such secrecy and ceremony, and the
laboratory lent itself so admirably to the


Exterior of Keely Laboratory.

Back of this was a room to which no one was ever admitted, and here a remarkable discovery was made. A steel sphere forty inches in diameter, weighing 6,625 pounds, was found embedded in a pit underneath a trap. The sphere had two projections or trunnions both had a hole through them ; one of these holes had been filled up and then faced off, and the other, near the iron pipe shown in our small illustration, was open and was of the proper size for charging the reservoir Midway between the two trunnions a small hole drilled


Tapped End of Sphere
specially made for the purpose. It was tested up to 28,000 pounds, or only one ton less than the powder hamber pressure required in tests of United States ordnance. Steel tubes were also tested with this powerful hydraulic pump. The tubes were 9 inches in diameter and the bore was only 3 inches. These were split with enormous pressure and the stockhold rs and the general public believed that the tubes were burst by the "etheric vapor." Mr. Rickert state that they ran tubes to the lever machine which indi cated pressure, andone of the tubes recently discovered Mr . Rickert believes to be a tube running to that $\mathbf{m a}$ chine. He also states that Keely never allowed the men to entirely complete any connection to the ma chinery; he assumed that part of the business himself A very heavy iron pipe with high pressure joints, $131 / 2$ feet long, ran diagonally under the floor to a point in a trap in the front roow. This was undoubtedly used in distributing the compressed air. The room where the sphere was discovered had a wooden ceiling nailed on to the joists, while in the front room the joists were exposed. This ceiling gave 16 inches of space, which, of course, gave an excellent opportunity for running tubes or concealing apparatus. The private room in the rear was used by Mr. Keely when resting from his arduous labors and was handsomely fitted up.

'Plan of Second Floor of Laboratory. Front Exhibition Room, Showing Trap, Pipe Holes, and Operating Window.


Three-ton Sphere Discovered Under the Building.

## investigations at the keely laboratory.

purposes of deception, that it is little wonder that this |into the side of the sphere was found to be the proper nineteenth century thaumaturgist should have been successful, for the border line between science and quackery is always attractive.
The ground floor has no cellar under it and at places the joists were sawn away and the flooring had been removed and replaced in sections, forming what is known in stage parlance as "traps." Most of the spaces between the sawed joists were flled with ashes, made. The center room contains four traps and a pit.
size for connecting with one of the small brass tubes size for connecting with one of the small brass tubes
connecting with the second story. These tubes, while of small diameter and having a small bore, have very thick walls, showing that they could resist enormous pressure. Of course, the sphere possessed great strength and must have been an ideal storage reservoir for air or gas at a great pressure. William Rickert, who was formerly employed in Keely's laboratory, has come forward with valuable evidence. He says he helped to test the steel sphere with a hydraulic pump which was


Threshold of Rear Exhibition Room, Showing Concealed Tube, A.

The second floor was divided into an office and two exhibition rooms, where progress was reported at intervals. Sometimes the front exhibition room was used, but generally the rear exhibition room was utilized. A small window connected the exhibition rooms and also the office. Keely would station himself behind the small window, $C$, connecting the exhibition rooms, and after asking the favored few who were allowed to see the manifestations what pressure they desired or what speed they wished, depending upon the nature of the apparatus which he was then exhibiting,
he would then play a violin, a zither, or a harmonica to set in motion the harmonic vibrations upon which he depended for obtaining his remarkable manifestations. The first exhibition room has many auger holes, which have been indicated by our artist. These holes were, of course, hidden by the oilcloth which covered the floor, and one of the holes was covered with a piece of tin with a hole cut out of it the same size as the auger hole, as shown in the diagram at $D$. It is surmised that these holes, and specially the last one to which we have referred, permitted the "etheric flow" of com pressed air from the receiver in the cellar to the apparatus on exhibition to be controlled by a spring valve operated by the foot. ' Other holes seemed to have been located under the apparatus and doubtless aided in the experiments.
The upper floor of the main exhibition room was torn away during the investigation, and showed that tu bing of the same kind as the alleged "wires" of Keely's lever machine passed under the joists, through the brick partition, under the threshold of the door at the point, $A$, connecting the two exhibition rooms. This is in a way the most remarkable of the find, as it was so carefully hidden in the brickwork, which had been removed and reset. The tubing ran through the brick partition under the steps, where it apparently descended into the room below, but this end was broken off. At the point, $B$, another piece of tubing was found running out into the front room from the rear room below. Tuose who assisted at the investi gration were Prof. A. W. Goodspeed, Prof. Carl Hering, Dr. M. G. Miller, Mr. Moore and Mr. Sellers, and the investigations were so thorough and the results obtained were so satisfactory that it is to be hoped that, once for all, the Keely motor may be considered to be exposed, though we have no doubt that, like the scotched snake, the tail may still continue to wiggle.

THE NEW PANAMA CANAL.
There is a broad difference between the Panama

7.-The Work at Outlet of Culebra Cut on Pacific Slope.
canal on the Nicaragua route, for the construction of two practically contiguous canals would mean the bankruptcy of both.
Historical.-In 1879 an international congress met in Paris, and, after investigating various routes, re

6.-French Eixcavators at Work in the Emperador Cut.
commended the building of a sea-level canal from Colon, on the Atlantic, to Panama, on the Pacific Many of the best informed members of the congress, it should be said, considered that a sea-level scheme preented too many difficulties and advocated a cana
with locks; but the influence of M. de Lesseps pre with locks; but the influence of M. de Lesseps pre-
vailed and the sea-level route was adopted. The calculated time for completion was set at twelve years, and the cost, including interest on capital, at $\$ 240$, 000,000 .

Now, when it is stated that the route of the proposed canal followed for over twenty-five miles a river which in the rainy season is subjected to enormous freshets, and that in passing through the Cordillera mountains an excavation 8 miles in length and varying from 100 to 325 feet in depth had to be made, it is evident that the first duty of De Lesseps was to secure the results of careful gagings of the rainfall, and to make elaborate borings along the route of the canal to ascertain the nature of the material to be excavated. Neither of these precautions was taken, or if taken, were so in completely carried out as to leave the engineering features of the scheme very much in the air.

Work was begun in 1881. A large amount of the capital of the company was swallowed up in purchas ing and placing along the line the necessary plant, in constructing shelter for 15,000 laborers, and building the necessary workshops and hospitals. The firs opening up of the surface soil induced an appallin: amount of sickness, and the enormoue floods of the Chagres River proved altogether beyond the control of the engineers. Moreover, the upper layers of mate rial in the great Culebra cut proved to be of a treacher

Canal as it actually is and the Panama Canal as it ex ists in the public mind. It would be difficult to find another great undertaking about whose present status there is so much general ignorance or positive misinformation as there is concerning the artificial waterway with which Ferdinand de Lesseps attempted to join the waters of the Atlantic and Pacific Oceans. It is a matter of history how the distinguished Frenchman, emboldened by his success in cutting the Suez Canal, undertook to open a great sea-level cutting through the mountains of the Panama Isthmus and failed-the physical difficulties ot the project, assisted by gross corruption on the part of the promoters, serving to bankrupt the company when only a fragment of the sea-level scheme had been completed. The odium of that ill-considered and worse executed project still attaches in the public mind to the Panama Canal as such, and it is only the small minority, who have followed the subsequent course of events on the isthmus and are familiar with the heroic and successful attempts that have been made to bring order out of chaos, who are alive to the fact that the new Panaina Canal project is on a sound engineering and linancial footing and is within a calculable distance of completion.

The present article is written for the purpose of putting the public in possession of the facts regarding the present status and future prospects of this undertaking. In view of the fact that one canal at undertaking. In view of the fact the the will be amply suffient to accommodate the isthmus will be amply sufficient to accommodate
the traffic, the question of the completion or abandonment of the Panama scheme becomes of supreme importance in considering the advisubility of building a

8.-Rock Out at La Corosita, 28 Miles from the Atlantic. the new panama canal.-Present condition of the work
ous character, and the side slopes caved into the excavation faster than the material could be taken out. The hopelessness of the task of building a sea-level canal was by this time apparent, and the company decided to adopt a new plan involving the constructior of locks. The decision came too late. The credit of the company was not equal to the raising of further capital, and, in 1889, a receiver was appointed. At this date a sum of $\$ 156,400000$ had been expended upon the isthmus, of which about $\$ 88,600,000$ had been put into excavation and embankiment. The commission which examined the company's affairs states: "The enormous amount of material at hand ready to be utilized, the great number of works established, lands received, labor actually expended, experience gained, supplies laid in, preliminaries mapped out, including the right of way, are worth to the new company at least $\$ 90,000,000$." The receiver obtained at this time a further exteusion of time from the Co
pany was largely due. They also determined to begin work on a considerable scale with a view to determin ing exactly what quality of material would be encoun tered in completing the excavations and building the various dams and locks. To this end a staff of one hundred and fifty engineers was placed in the field and a force of several thousand men was put upon the work at the more important points, including the great Cul ebra cut through the divide
Culebra Cut.-The experience of the De Lesseps engineers and the opinion of casual visitors to the Culebra cut had agreed in indicating that the caving in of the loose material would prevent this great ditch from being successfully excavated. The new company accordingly concentrated a large force at this point and at Emperador for the purpose of ascertaining the nature of the underlying material of the mountain. A tunne 1.100 feet in length was driven along the axis of the
ence to the map (Fig. 9), it will be seen that the route of the canal, immediately after passing through the divide at Culebra, follows the course of the Obispo River, a tributary of the Chagres. At Obispo the anal enters the valley through which the latter river lows, and it follows this valley from mile 29 to mile 5. a istance of 24 miles. Now during the rainy season the hagres is liable to enormous floods, which were such as to render the canal construction on the original lines physical impossibility.
The new company decided at the outset to abandon De Lesseps' extravagant idea of a sea level canal and substitute a system of locks. This decision opened up the question of a sufficient supply of water to compen ate for losses and supply the summit level. The floods of the Chagres evidently afforded an abundant supply, and the problem then took the form of an in vestigation of the amount of the Chagres River discharge and the possibility of storing it in suitable reservoirs, which

9.-General Plan of the New Panama Canal.

10.-Profile and Oross-Sections of the New Panama Canal

11.-Cross-Section Through Alhajuela Dam. Height
lombian government, carrying the date to 1904 ; and a later concession of six years extends the date of com pletion to the year 1910.

The New Panama Canal.-In October, 1894, a new company was formed for the purpose of completing the canal. It vas organized with a cash capital of $\$ 13,000,000$, and, with a view to giving it a commanding position in the financial world, the stock was purchased by several of the leading financial institutions in France, the whole $\$ 13,000,000$ being actually paid in. The new company was officially recognized and its titles, etc., duly confirmed by the Colombian government.
On coming into possession, the new owners very properly determined that their first duty was to make that complete study of the engineering features of the scheme, to the lack of which the failure of the old com-

12.-Oross-Section Through Bohio Dam. Height, 751/2 feet. Length of Orest, 1,286 feet.

## THE NEW PANAMA CANAL

at various points through the cut down to the proposed level of the bottom of the canal, and the shafts were connected by short tunnels. In short, the mass of material to be excavated was so thoroughly honeycombed in the regions where the worst caving had occurred as to leave no doubt as to its actual composition. Altogether, in the past four years there has been taken out of the Culebra and Emperador cuts $3,924,000$ cubic yards of material, and the cost of this survey by excavation has been ovel $\$ 4,000,000$. It was costly, but absolutely necessary to an exact estimate of the feasibility and expense of completing the canal. The evidence thus acquired proves that the "Culebra sliding moun tain" does not exist, the excavation having passed through the upper layer of loose material and reached an argillaceous schist, below which, to the proposed bed of the canal, is solid rock. At; Emperador the material is less firm, but perfectly capable of control when provided with proper drainage-a precaution wholly neglected in the happy-go-lucky methods of the Lesseps regime.
The Control of the River Chagres.-Another problem to be solved by the new company was that of the control of the turbulent Chagres River. By refer-
should at once serve to feed the summit level and to hold back the rush of the Chagres waters in times of Hood. With the question of the Chagres control was associated that of the most desirable elevation for the summit level and the number and location of the vari ous locks.
This investigation was intrusted to 150 engineers, who, with their corps of assistants, have been oceupied for four years in exhaustive surveys, the total cost of which has amounted to $\$ 1,200,000$. This included, in addition to superintendence of the work at Culebra extensive borings at the sites of the proposed dams and locks, sufficient to determine the exact nature o the whole site covered by their foundations; gagings of the river ; the complete cross-sectioning of the basins of the proposed storage and control reservoirs, together with every kind of research that is necessary to the determination of the feasibility and cost of an engineering work of this magnitude. The investigation has been carried out to the smallest details, the drawing of every culvert, bridge, etc., being worked out with such elabo ration that, on receipt of orders to go ahead with the work, these plans could be sent to the shops and the inaterial ordered. We have had the pleasure of inspect
ing the engineering data, and we are free to admit that the plans, profiles, maps, shop drawings, records, etc. are as complete as the most fastidious could ask for.
The new company has evidently laid the lesson of the first failure to heart ; but, in order to give further weight to the findings of the engineers, it asked for the appointment of a Technical Commission composed of eminent engineers of different nationalities, whose experience in similar work gave them special qualifications for passing upon the new surveys and plans. The International Commission included such men as Brig. Gen. H. L. Abbot, Corps of Engineers, U. S. A.; Mr. Fulscher, formerly Engineering Director of the Kie Canal ; Mr. Koch, engineering member of the same canal; Mr. W. Henry Hunter, Chief Engineer of the Manchester Canal Company ; Mr. A. Fteley, Chief Engineer Aqueduct Commissioners, New York City; Mr C. Skalkowski, formerly Director of Mines, Russia and four of the former General Inspectors of Roads and Bridges, France.
This commission, organized in 1896, through some of its members has made personal inspection of the canal on the Isthmus and in addition to having at its disposa the local records of rainfall and floods for the last 15 years, for two years has made its own elaborate records of rainfall and of the flow and floods of the Chagres, and has held over 100 sessions. It presented a unanimous report on December 2. 1898, which, considering the standing and experience of the members, is per haps the most representative and authoritative document of the kind ever drawn up
The report fully indorses the plans and estimates o cost of the new canal
The New Panama Canal.-The International Commission find that the work on the canal is at present two-fifths completed, that the cost to complete the work ander the new plans will be $\$ 87,000,000$. If 20 per cent be added for contingencies, the total cost is $\$ 102,400,000$, and the time for completion, not allowirg for improvements in methods of working and plant, is from eight to ten years.
The canal is forty-six miles in length. The map (Fig. 9) shows its location, and the profile (Fig. 10) shows by a dotted line the amount of excavation that has been done and by a full line and shaded portions, the excavation remaining to be done. The engineers drew up three designs for a canal with locks. In the first the summit level was to be $963 / 4$ feet; in the second 68.08 feet; and in the third, $323 / 4$ feet above the sea level. The technical commission recommends the second. which is the one shown in the map and profile
As the determination of the levels and number of locks is dependent upon the means taken to control and utilize the Chagres River, it will be well to ex plain that this control is secured by constructing two large dams, one at Alhajuela, in the upper Chagres, about nine and one-third miles above the canal (see map), and the other at Bohio, at the end of the sea level length of the canal on the Atlantic side. The Bohio dam will be thrown across the Chagres val ley at a point about half a mile to the left of the cana at Obispo. It will be of earth, upon a bed of compact clay. The general features are shown in the cross section, Fig. 12. The crest is 1,286 feet long, and the extreme height above the bed of the river is $751 / 2$ feet and above the foundation $931 / 2$ feet. This dam will create a vast artificial lake, which will extend thirteen and a half miles to Obispo. Its lowest level will be $52 \cdot 5$ feet and its highest level, when the river is in flood, $65 \cdot 5$ feet. The channel of the canal will lie in the bed of this lake, which will not only take care of a large part o the flood waters, but will greatly reduce the amount o excavation necessary for the canal. The other dam, a Alhajuela, will be built everywhere upon solid rock and will consist of concrete masonry. Its crest, 936.75 feet long, will be 5 feet above the river bed, and 164 feet above the lowest foundation.

This dam will be connected with the summit leve by a feeder with a capacity of 6.605 gallons per second. The dam will also furnish energy for the electric light ing of the canal and the electric operation of the locks, etc.
The storage capacity of the two artificial lakes thus formed will be 66 billion gallons, which provides a wide margin of safety, as shown by careful records, over any possible flood discharges of the river. The records of the flow of the upper Chagres have demonstrated that the surplus quantity of water impounded during the rainy season by the Alhajuela dam will be many times as great as will be necessary to supply the summit level during the dry season.
Commencing at Colon on the Atlantic, the first sec tion of the canal, 15 miles in length, is tidal up to the two double locks at Bohio, by which vessels will pass into the Chagres River lake. These locks are of masonry and will be built upon rock foundations, as will al the locks of the canal. The deep cut shown in Fig. is the site of the Bohio locks. The Obispo dam will be half a mile to the left of the locks in the bend of the Chagres River, which river is seen in the foreground of this same illustration. The working length of the locks will be $738 \cdot 22$ feet, the width of one of the twin locks being 82:02 feet and of the other 59.05 feet.
his sea level stretch of the canal, the first 11.8 miles are navigable, the depth varying from 16.4 feet to $29^{\circ} 5$ feet, the finished depth. It has been excavated to the original width (see Fig. 5), and not much dredging wil be necessary to complete it for the whole 15 miles to Bohio. After passing the locks the canal channel ex tends for about $131 / 2$ miles along the bed of the lake to Obispo, where two double locks (built like all the othe locks of the company upon a rock foundation) will ad mit vessels to the summit level 5 miles in length, wher the bottom of the canal is 68.08 feet above mean se level. On the Pacific slope admission is gained at Paraiso by one double lock to a level 7,963 feet in length, and at Pedro-Miguel two double locks lead down to a level 7,930 feet long, from which at Miraflore one double lock will admit vessels to the tide level of the Pacific. This portion of the canal is $71 / 2$ miles in length. The depth of water in the locks will be $29 \cdot 5$ eet and will not exceed 32.8 feet
It should be noted that the slopes of the canal, par icularly in the Culebra cut, are to be reveted with tone, and that the curvature of the canal is easy throughout, the smallest radius being 8,200 feet and the prevailing radius 9,843 feet.
The Question of Healith. -The Technical Com wission examined carefully into the question of mor tality and concluded that the climatic dangers have been exaggerated. It is true that, during the first year of operation, owing to carelessness as to sanitation the emplovment of races not used to hard labor in th tropics, and the fact that surface ground full of feve germs was being opened, the loss of life was serious Of late years, however, owing to the employment of negroes from the British Antilles who are used to the climatic conditions, and as a result of the fac

gLass sponge from santa catalina island, cal
hat the excavation is in the deeper rock formations, the amount of sickness is not abnormal
Relations of the New to the Old Canal Company.-In conclusion, answering the inevitable question as to the relation of the new company to the financial burdens of the old company, wecansay briefly that the old bondholders have no control over the new company, the receiver turning the property over to the latter upon the condition that the old bond holders were to have an interest in the profits (after the payment of operating expenses, depreciation, inter st on construction bonds a
to the extent of 60 per cent.

## GLASS SPONGES.

It is not generally known that the beautiful animal known as glass sponges are found within the border of the United States, yet one species at least is common though rarely taken, off the coast of the Southern Cali ornian islands, especially on the so-called grouper banks of Santa Catalina, where fishing is carried on n water five hundred or six hundred feet deep.
It was here that the attractive specimen shown in he accompanying illustration was found, being brought up on a fish hook. The sponge was a species of Hol tenia, probably Holtenia Carpenteria, about twelv inches in height and nearly six in diameter; the long glass-like roots had been torn off when it was brought up. In appearance the sponge was a veritable porcu pine; long needle-like spicules standing out all over it the longest three inches in length, needles so sharp and brittle that it was difficult to hold or touch the sponge, nd at a glance it resembled some odd or fanciful cactus.
The sponge was vase shaped, and would hold three pints of fluid, bulging out in the center, with an
pening at the top sufficiently large to admit the losed hand. The long spicules reaching out from it presented a splendid appearance when held up to the sun, and resembled glossy hairs, gleaming and scintil lating wherever the sun flashed along their surfaces. Many of the spicules were overgrown with an attrac tive coralline, so that they appeared branched like the limbs of a tree. In these mimic branches hung pend ent many miniature pink-hued star fishes and shrimps while fastened to them, coiled and interlaced, were the barrow-like egg cases of a skate. These are shown in he illustration.
I'hat these sponges are fairly common in deep wate offshore is evident by the small specimens often brought up and the pieces found on the outer islands, specially San Nicolas; but never before has so large and perfect a specimen been seen.
The glass sponges are so called because their skele ton, or the spicules, resemble glass, being formed of silica instead of lime, and closely resembling spun

The most beautiful of the group is the Venus flower basket, or Euplectella aspergillum, which represents a vase of spun glass of the most beautiful description When the first specimen was found it was sold at a fabulous price, and its true nature was not suspected But finally a specimen was taken by a naturalist, who made the interesting discovery that the delicate and fragile glass-like vase, that seemed to be the work of some cunning East Indian, was nothing more nor less than the skeleton of a sponge whose spicules were sili cious. In the water and alive the sponge is not an ttractive object, being of a gray color and half buried n the mud, anchored by long glass-like streamers. But once dead and relieved of its covering, it become one of the most resplendent objects of the sea-a fairy vase, that might well have been modeled by the se: ods as a gift to Venus.
This sponge has the spicules so arranged that they present the appearance of squares. It is closed at the top and sides, hollow in the interior, and is occasion ally the prison of small crustaceans, which enter the in terstices when very young and unable to escape become prisoners for life, and in the skeleton may be seen with their claws protruding through the opening, creating much wonder among the uninitiated as to how they obtained ingress into the glassy prison.
Another interesting glass sponge is Hyalonema, which resembles a glass rope. The sponge itself is a smal cup, perched upon a long series of glass-like stems which is buried in the mud. This was for a long time sold as the skeleton of the little coral polyps which are parasites on its stems.

## AN INSECT BREEDING IN CRUDE PETROLEUM <br> y l. o. howard.

In view of the extensive use of petroleum product for insecticidal purposes, the title of this article would seem paradoxical. That such a case should be found seems, in fact, more remarkable than the breeding of the cigarette beetle, Lasioderma serricorne, in pyrethrum powder, recorded by the writer in the Proceedings o the Entomological Society of Washington, volume $\mathbf{i}$. page 37 .

At the meeting of the Boston Society of Natural History, January 22, 1879 (Proc. B. S. N. H., volume xx page 134) Dr. Hagen read a letter from a Mr. Dean to Henry Edwards, of Santa Cruz County, Cal., describ ng a small alkaline lake in the southeastern corner o Santa Cruz County, of 20 to 30 acres area, into which copious petroleum springs continually poured thei contents, which, drying, formed masses of asphaltum verlying the soil and running down to the lake. The petroleum had forced passages through the asphaltum forming little pools of about the consistence of molasses. Mr. Dean sent with the letter a number of flies of the enus Ephydra, which he had found sitting upon the petroleum and piled up uponone another in vast num bers just like flies upon molasses, those underneath dy ing and becoming embedded in the petroleum and being succeeded by others, which, in turn, were pressed down into the liquid tar by those above. On approaching hey would rise in a cloud about 2 feet above the petro eum, and, on being unmolested, would return and settle upon it. The dead flies were said to rise several inche deep above the liquid petroleum. Mr. Dean further stated that the flies appear to breed upon the water plants covering the surface of the lake, which are left ncrusted with the salt and covered with the empty hells of the insects.
This is the only published note with which the writer s familiar which approaches in any way or is related to the case which he is about to describe. There seems no doubt, however, that in this case the insect was rue Ephydra, possibly E. californica of Packard, which breeds upon water plants in the alkaline lakes of the ar Western States.
On May 20 of the past year the writer received letter from Mr. C. G. Kellogg, Secretary of the Board f Horticultural Commissioners for Los Angeles Coun ty, of Los Angeles, Cal . transmitting in alcohol some mall maggots, the natural habitat of which he wrot was "in the old pools of crude petroleum oil that is
wasted around the oil wells here in the city of Los Angeles." He further stated that there were any quantity of the maggots, and that he could furnish them by the gallon if necessary. The commissioners had been asked many times to name the insect, but could not do so, and wrote in search of information. Suspecting that these larvæ would prove to belong to the family Ephydridæ, the species of which have a habit of breeding in extraordinary substances, we urged Mr. Kellogg to make an attempt to rear the adults, which he succeeded in doing July 9. A shallow dish filled with crude oil containing about fifty of the maggots was placed in a flat box with a glass top on June 18. In nine days the first maggots were seen to emerge from the oil and crawl to the underside of the glass cover of the cage; where they pupated the following day. On July 9 the first adults were seen, having issued during the night, twenty-two days from the time of placing the maggots in the cage. Prior to this attempt, Mr. Kellogg had sent us specimens in crude petroleum, but naturally, owing to the shaking of the bottle on the trip, the maggots died from suffo cation. Experiments made before shipment showed that, when the maggots were bottled up in a full bottle for twenty-four hours, they were killed. Although the writer has the most perfect confidence in the testimony of Mr. Kellogg, and of his assistant, Mr. George Compere, gained through personal acquaintance and extended correspondence, he was anxious to verify the observations himself, and therefore suggested other methods of sending the insects to Washington. The solution was reached by the shipment of the maggot in moss perfectly saturated with crude oirived in Wash ington in good condition. On September 20 one adult ington

This specimen, together with those previously reare in Los Angeles, were submitted to Mr. D. W. Coquillet for study, and he has decided that the insect which possesses this abnormal habit is a new species of the Ephydrid genus Psilopa, which he has named Psilopa petrolei.
There is no record in entomological literature of the habits of this genus Psilopa. Records of the habits of other Ephydrid genera are as follows: Ephydra and Halmopota in salt pits in Europe, the former in salt pits
in this country and in alkaline lakes in the West; Teich myza in human urine; Notiphila on the stems of wate plants ; Hydrellia in the sap of trees; Pelina and Pary dra in water-character of water not mentioned. It is
obvious from this that the family is practically subaquatic in its larval stage. The larvæ of some form possess branchim, while others breathe by means o protected anal stiginata which they occasionally prorude for arr above the surface of the water. This lat er method is the one by which the larva of the petroleum maggot secures its air. Obviously the stigmata are very thoroughly protected, and when we conside hat only this protected pair is functional there is, afte all, nothing so very curious about the habit of the in ect, since the insecticidal properties of petroleum de pend upon the closing of the air holes or spiracles by the oil. The adult of the Psilopa breathing through normal spiracles is as readily killed by petroleum a ny other insect. The question of the food of the lar $\boldsymbol{r}$ is not a difficult one, since in these petroleum pools

adult; $b$, antenna of same; $c$, side view of larva; $d$, dorsal view same; $e$, ventral view of larval head; $f$, ventral plate on anal segmen of larva; $g$, enlarged lateral tubercle of larva; $h$, enlarged anal spiracl
of larva. $a, c, d$, enlarged; $b, e, f, g, h$, still more enlarged (original).
many insects are caught, and it is upon their remains hat the larvæ probably feed.
It is strange that there is no reference to this particu ar insect, so far as we know, in entomological litera ure. The presence of living maggots in crude pe
oil men having been familiar with it for years. Dis cussing the matter incidenta ly with Mr. Clifford Rich rdson, Superintendent of Tests of the Barber Asphal Paving Company, recently, Mr. Richardson stated that he had himself seen these maggots in California when isiting the West in the interest of his company, and called the writer's attention to the fact that Mr. S. F Peckham, in his elaborate report on the production echnology, and uses of petroleum and its products, published in volume x. of the Tenth Census Reports, refers to the same occurrence as lending support to the theory that petroleum oils are of animal origin. The tatement which we have just made regarding the probable food of the maggots, if true, would indicat hat the presence of the maggots in petroleum has no ossible bearing upon the question of the origin of his product. Not having made personal observations in the field, however, the writer is not in position to emphasize this point.

## The Current Supplemen

The current Sopplement, No. 1205, is a particularly inter sting number, owing to the diversity of the sub jects treated in the articles. Probably the most impor tant paper is "Ethics of Primitive Peoples," a lectur by Dr. D. G. Brinton, specially reported. "Mirage" is an interesting lecture by Major P. A. MacMahon F.R.S. "Brick and Clay in the Bible" is a curious ar icle and "Our Trade with Japan" and "Our Trade with China," and "Scotch Opinion of United States Goods" give timely articles on economic subjects. "Over Pressure in Schools" is a letter by Dr. R. H. Thur ton. On the front page is a view of the French battle ship "Jaureguiberry" at full speed.


## RECENTLY PATENTED INVENTIONS.

Agricultural Implements.
potato digGer.-Robert b. Patterson, Ludington, Mich. The potato-digger of this inventor is designed, not only to dig potatues, but also to sort thenn and
to deliver them to crates The digger has a revoluble assorting-cylinder provided
The digger has a revoluble
with peripheral pockets adapted to receive potatoes, and with peripheral openings through which small potatoes may pass to the inteior of the cylinder. The potatoes, after having passed hrougn the cylinder-openings, are conducted to a receptacle. The digging-fork is readily controlled by the nay be regulated as the character of the soil mast and mand.

## Bicycle-Appliances

BicYCLE-SUPPORT.-William F. Williams, London, England. This invention provides improved means whereby a bicycle, when traveling very slowly or when
stopped, may be maintained in an npright position. The stopped, may be maintained in an npright position. The fitted to slide up and down and to turn upon a spring. urrounded tubular pillar which projecte down from the arms provided with rollers adapted to rest on the ground n order to afford the lateral support required. By pulling upon a cord, a lever will be caused to bring the arms and rollers to operative position.
burglar-alarm. - Cbarles T. Kunz, New
York city. The burglar-alarm is arranged so that York city. The burglar-alarm is arranged so that when an opening door presses down upon the device, a part will be released and caused to explode a cap
or cartridge. The alarm comprises a casing, a breechthe plunger. The plunger. in operation, is drawn back arainst the resistance of its spring and held by the latch. A blank cartridge is then placed in the breech-block. When pressure is eserted on the casing, the latch is re-
leased and the plunger violently hurled by the spring leased and the plung
against the cartridge.

Mechanical Devices.
PUMP-GEAR.-Louis H. Nicolas, Louisville, Ky. The improved, hand-operated ship's pump-gear provided by the present invention has a spring-beam adapted to
be connected with the upp r end of the pump-rod be connected with the uppir end of the pump-rod. A
link is connected with the pump-rod, and a crank shaft is connected with the link and is provided with a driving pulley. Over the regmental pulley-rim of a pivoted hand-lever, a rope extends. A pendulum and a fly-
wheel are secured on the shaft. The operator, by moving the hand-lever in one direction, starts the pendulum in the opposite direction, and the momentum acquired ,
AlVEOLI-AMPUTATING FORCEES.-Dr. George B. Clement, Macon, Miss. A novel construction of
forceps has been devised by this inventor, for the purforceps has been devised by this inventor, for the puralveolar processes after the extraction of teeth. Of the two beaks of the forceps, one has an interior flat face, the other an interior concave face formed with a curved cutting edge, extending around the sides and ends and shutting against the flat face of the other beak. The flat-face beak is tapered to a sharp, wedge-shaped
end and is made relatively thinner and of wider con-

## tour edge.

Wrench.-Frank T. Verharen, Spencer, Iowa The movable jaw of the wrench may be quickly adjusted on the toothed shank by means of an internally-toothed adjusting sleeve having a longitudinal groove on its inner
side. This groove may be brought into register with the side. This groove may be brought into register with the
toothed edge of the shank to permit the sliding of the movable jaw to and from the fixed jaw. By turning the movable jaw oo and from the ined jaw. By turning the
sleeve in an oppositedirection, the teeth or tbreads on the jaw will be caused to interlock with those on the hank.
MACHINE FOR PICKING CURLED HAIR. Edaar Beers, Georgetown, Conn. This machine comprises two sets of feed-rollers, one set being mounted rear wardly of the other; a reciprocating comb rearwardly of shaft and clutches whereby both sets of feed-rollers may be operated while the other set is at rest. In operationthe ropes of hair are fed between the rollers. At each downward stroke of the comb, the teeth will engage the ends of the rope and draw the hairs downward,
the rope and to pick the hairs thoroughly
APPARATUS FOR CONCENTRATING AND AMAL gamating precious metals. - William w habersham, Gainesville, Ga. In ordinary sluicing ope rations the heavier gold-particles are precipitated into in the riffles or raised on the bottom of the boxes, where as the fine or flour gold is washed away and lost. To obviate this diffculty, this invention provides a construction of sluice boxes and riffles in combination with tubs, vessels, and wheels, the principle of which construction being that embraced in the action of water in streams in which eddies are formed, and in which the sediment carried off by the natural current is stayed and is enabled to save the greater portion of the gold now lost.
CIGAR-CUTTER AND MATCH-SAFE.-Andrew R. Fossum, Cottonwood, Minn. To provide a combined cigar-cutter and match-safe arranged to cut the
cigar and to deliver a match to the user, is the purpose of this invention. The combined cigar-cutter and match
the a safe has a manually-operated lever, which actuate a cutter. A match-picker in the form of a man is
mounted to turn, and is arranged to be swung into inclined position to pick up a match. The movepicker.
car-Loading apparatus, - Philip Oberst, West Superior, Wis. It is the object of this invention to provide an improved apparatus for loading rails and log upon cars. The apparatus includes three "horses" or
movable supports, which are adapted for use either upon movable supports, which are adapted for use either upon the gronnd or upon a flat-car. The borses have each a top section which is hinged and adapted to he thrown
back for the purpose of lessening temporarily the height of this support, so that the rails may slide into the car by gravity.
HYDRAULIC PROPELLER FOR SHIPS. - ANdrew Pleceer, Savannah, Ga. This invention is an improved jet propeller, and consists of a rotatable
screw or spiral blade propeller arranged in a tube traversing the vessel from stem to stern and taking in wate at its front end to discharge it at the other. The im-
provements are found in the use of cat-off valves ar-
ranged on each side of the screw, and other val
controlling the admission of water from the hold. PAINTING MACHINE.-M. G. Barrier, Lcuisville, Miss. The painting machine is especially designed for painting high emoke-stacks, and consists of a guide-
pulley having a support adapted to be hooked over the pulley having a support adapted to be hooked over the edge of a stack, and a paint-box and brush attached may, by mallipulating the rope from which the paint may, is suspended paing the rope from which the paint

Miscellancous Inventions. Lubricator. - Heinrich Froborse, Bielefeld, Germany The present lubricator is especially applicable for use on cycle and similar bearings. The device is provided with a double closure for preventing dust from effected by a plug completely shutting off the lubricatorhole from the bearings, while the second additional losure is formed by a cover.
DUMPING ATTACHMENT FOR WHEELED SCrapers.-Anson Titus, National City, Cal. In connection with the wheels of the scraper and the scoop, bars are used, mounted to slide at the rear end portio of the scraper and having their ends arranged for clampto be automatically operated thereby. A lever is orde nected with both bars, and is arranged simultaneously to move the bars in opposite directions.
TAILPIECE FOR STRINGED MUSICAL INSTRU ments.--Grorae F. Wells, Philadelphia, Pa. In most tailpieces the string is attached in such a manner tha it is bent over a sharp edge; so the string consequently soon breaks. In the present invention a plate is used, upon which a cam-lever or shoe is pivoted. The lever knotted end of a string. The strain upoal the string is hence more nearly a direct pull.
Glory-hole. - Andrew Daubenmeyer. Nashvile, Tenn. To provide improvements in glory-holes ware can be subjected to a uniform heat, is the purpose of chis invention. The furnace used is provided with a heating-chamber having a transverse wall and a semi circular outer wall. The transverse wall is formed with The outer wall is formed with a slot for the passage of the arms carrying the rotating suppoits for the glassware SUSPENDERS.-Edward Denis, Green Bay, Wis The suspendere have shoulder-straps provided at their ends with snap hooks carrying two chains or wires archains or wires are adapted to be connected with the trousers. game-appañatus.-Cbarles Edwards, Brooklyn, New York city. This apparatus comprises two re
voluble wheels, a belt or cable passing over the wheels, and horizontally extending yielding arms secured to the cable, each carrying a ball. The device is used by stationing a striker with a bat alongside one of the runs of the cable, so that the ball is traveling toward him. As the ball approaches, he endeavors to hit it with a bat By the curving of the ball's path, this is sometimes very difficult. It may be made more diffcult bv causing th RUNNING-GEAR F
Runing-gear For vehicles.-Lafayette
vides a durable connection between the reach of a vehiking bolt, the connection being so effected that all th advantages of a fifth-wheel will be obtained and the running-gear will be rendered stronger than in the usual construction. A coupling is also provided which per-
mits the use of a long or short reach. Protective head-screen.-Henry E. Beach, Grand Forks, Canada. To provide a combined cap and
screen which can be worn without discomfort and which will serve as an effectual protection against mosquitoes and other insects is the purpose of this inven tion. The head-screen consists essentially of a globular creen inclosing a cap and adapted to surround the head DUMPING-VEHICLE.-Thomas Hill, Jersey City, N. J. In most dumping-vehicles, the body works from sae especial bearing to another and rests on both at the order to dump the load. In the present invention, there is no sliding motion and the dumping action 18 continu ous. This is due to the fact that the vehicle-body of the present invention has its trunnions working in guides arended at an upward angle to metal boses.
non-REFILLABLE bOTTLE.-Philip J. FriedRicB, Coytesville, N. J. The neck of the botlle has a tube in which are arranged two spiders, between which a valve-stem and palve are adapted to move aud to be
held normally in position by means of a ball and spring The bottle can be readily emptied, but cannot be filled owing to the position of the ball on the valve-stem and the seating of the valve.
CARBURETER.-Robert D. Bradley, Linchester, Md. This improved gas apparatus comprises a vertical casing in which a frame is arranged. On the frame an oil-pump and a vertically-movabie gas-receiver are ar ranged. In the frame a rotatable air-carbureting appar-
atus is mounted and connected by mechanism with the atus is mounted and connected by mechanism with the ing the carbureter. The peculiar merit of the invention lies in the automatically-controlled generation of a measurably-fixed aero carbon gas.

## Designs.

SAD-IRON holder. - George W. Clewell. Reading, Pa. The sad-iron holder of this inventor is intended to be sunk into the ironing-board so that its supporting surface shall be flush with the board.
Hence, when one has fuished ironing, the sad-iron is Hence, when one has finished ironing, the sad-iron is
not lifted from the board, but is merely pushed into the not lifte
GAS-METER-DIAPHRAGM HOOP.- Jobn Hearne Brooklyn, New York city. This hoop at the gas-inlet is
provided with a shield in order to prevent the leather' provided with a shield in order to prevent the leather's
being burnt during the process of soldering the hoop to the diaphragm.
hand-wheel.-John Ormerod, Brooklyn, New York city. The leading feature of the design consist providing the wheel with a continuous chain o osely grouped spheres. The wheel is designed for use etter than the ordinary wheels.
Nore.-Copies of any of these patents will be furn hed by Munn \& Co. for 10 cents each. Please sen the name of the patentee, title of the invention, and dat
of this paper.

Pusiness and Personal. $^{\text {Pen }}$
The charge for insertion under this head is one Dollar a
line for each insertion : about eioht words to a line Advertisements must be received at publication offic as early as Thurs
ing week's isue.

Marine Iron Works. Chicago. Catalogue free.
U. S." Metal Polish. Indianapolis. Samples free. Brazing Forge, Ther Brass Works. Chicag Yankee Notions. Waterbury Button Co., Waterb's, Ct Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O Schwaab Stamp \& Seal Co., Milwaukee. Send for cat'g Automatic Variety
Frary

Bee keepers. send for 1899 catalogue
J. H. M Cook, 60 Cortlandt St., New York.
New volume Model Engineer begins now. Annual
sub., 75c. Spon\& Chamberlain, 12 Cortlandt, New York. Garvin Machine Company, Spring and Varick Streets, New York.
The celebrated "Hornsby-Akroyd" Patent Safety Oi chine Company. Foct of East 138 th Street, New York.
The best book for electricians and beginners in elec tricity is " Experimental Science," by Geo. M. Hopkins.
By mail, \$4. Munn \& Co.. publishers, 361 Broadway, N. y Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 611 Broadway

## (2) (4) (2) ?


#### Abstract

HINTS TO CORRESPONDENTS Names and Address must accompany all letters or no attention will be paid thereto. This is for ou References to former articles or answers should give date of paper and page or number of question. Inquiries not answere in reasonable time should be repeated: correspondents will bear in mind that some answers require not alit bear in mind the though we endeavor to reply to all reearch, and to though we endeavor to reply to all either by lette or in this department. cach must take his turn. Buy yers wishng to purchase any article not advertise n our columns will be furnighed with addrese houses manufacturing or carrying the same. Special Written Information on matters o personal rather than general interest cannot be pexsonaled rather than general ecientific american ranation. Sclentinc American supplements referre to may be had at the office. Price 10 ents each. Books referred to promptiy supplied on receipt o price. | $\begin{array}{c}\text { price. } \\ \text { minera s sent for } \\ \text { marked or labeled. }\end{array}$ |
| :---: |


(7581) E. R. N. says : 1. Will you kindly publish in your paper how compressed yeast is made
A. Indian corn, barley, and rye (all sprouting) are powdered and mixed, and then macerated in water at a temperature of from $149^{\circ}$ to $167^{\circ} \mathrm{F}$. Saccharification takes
takes place in a few honrs, when the liquor is racked off and allowed to clear, and fermentation is set up by the bonic acid is disengaged during the process with so much rapidity that the globules of yeast are thrown up by the gas, and remain floating on the surface, where they form a thick scum. The latter is carefully re-
moved and constitutes the best and purest yeast, which when drained and compressed in a hydraulic press, ca be kept from eight to fifteen days, according to the
season. 2. A formula for making a leather cement. This is made by mixing 10 parts of bisulphide of carbon with 1 part of oil of turpentine, and then adding enough gutta percha, cut into small pieces, to make a tough,
thickly-fiowing liquid. One essential prerequisite to thorough union of the parts consists in freedom of the surfaces to be joined from grease. This may be insured by laying a cloth upon the part to be joined and apply
ing a hot iron for a time. The cement is then applied $t$ both pieces, the surfaces brought in contact, and pres sure applied till the joint is dry.
(7582) R. J. W. asks whether Mason's principle of hygrometry is the correct one. A. Mason's readings taken together give the relative humidity of the air. There is no better method known for finding it.
See Davis' "Meteorology," price $\$ 3$, Ganot's "Physics," See Davis' "Meteorology." price $\$ 3$, Ganot's "Physics,
price $\$ 5$, for reliable data on this point.
(7583) E. WT. M., China, asks: 1 . In an electric. motor is the chief attraction or pull of the field
magnets exerted on the currents circulatiug in the wires on the armature or on the magnetism excited in its core? A. The current around the field of a motor produces a the armature is to torn. The current through the armature coils of a motor is so directed that the lines of force which it produces, in their effort to place themselves
parallel with the lines of force of the field, twist the armature around. The commutator, if the motor ures the coil and maintann the twist, or torque, as it is called, indefinitely. The iron core of the armature is used becius lines of force pass through iron more easily than attraction is on the magnetism in the core, would it not be an advantage to make the core with projecting lugs, the windings being between and wound up
even with the lugs ? A. Armatures are often made with slots in which to wind the coils. 3. Is it practicable repulsion as well as the attraction between the field and the armature ? A. There is attraction on one side of a coil for one pole and repulsion from the opposite pole on the opposite side. 4. How shall I wind a four-pole ar-
mature to run as a motor in a two-pole field A. Wind so that the poles shall be alternately plus and minus as
you go in either direction around the armature. Make a
four-post commutator, and join ends of the coils to its
(7584) R. H. B. asks: Has any otber misture besides silver and nickel been found for use in been using in coherer in wireless telegraphy? I have ver filings and carbon together with a small quantity of iron filings. I dispense with resistance and choke coils and use a simple good telegraph relay. The coherer thu made is extremely sensitive, the signals clear cut and de
cisive. The percentage of carbon is from about 45 to 50 per cent. About $1 / 4$ per cent of iron filings is sufficient. With this mixture there is no need of any contrivance to regulate the pressure on the powder. With the same coherer I have telegraphed at short distances and through brick walls at long distances. I mention these thing simply for the help it may give to others experimenting in this line, if, perchance, no better mixture has bee feen tried
(7585) N. S. J. writes : A correspond ent in your issue of December 17 recalls to $m$ y mind ex lumps of white sugar together in the dark. Let me add in further vindication of this writer's theory, that the luminosity is mechanlcal rather than electric; that I have often noticed with interest a similar phenomenon when two pieces of hard stone are rubbed together. Tha it is not phosphorescence seems to be proved by the fact that the light is in some cases quite red. I would aug gest that two disks of amorphous quartz arranged for even granite will produce it. The loss by friction in any case is trifing.
(7586) J. R. asks: 1. Why do I not get ny current from my shunt machine on short circuit? A. A shunt machine will give no current on short circuit, be
cause all of the voltage is lost in the armaturecircuit and none in the outside circuit. 2. Is there any way to connect a single dynamo to a three-wire circuit ? A. You
can connect the middle wire of the threc-wire system with one terminal of a dynamo and the two outside
wires with the other. You, however, lose the advantage wires with the other. You, however, lose the advantage
of a three wire-circuit, as this makes it a double two-wire. Another way would be to wind the armature with two circuits, one for one side and one for the other. By this means, however, the branches would hav
anced, or the regulation would be very poor.
Correction.-In answer to query 7545, volts per can dle should read "watts per candle." Electric lamps are rated in watts. One watt is the power of one ampere of multiply the volts by the amperes.

P位ertisements.
ORDINARY RATES.
Inside Page, each insertion, : $\mathbf{7 5}$ cents a line
Back Page, each insertion,
$\mathbf{8 1 . 0 0}$ a line High For some classes
The above are charges per agate line-about eipht
words per line. This notice shows the widto the tiine

 Star $\star \stackrel{\text { Forteower }}{\text { serewiting }}$ Lathes $\begin{gathered}\text { Aitiomaticic } \\ \text { cross ted }\end{gathered}$ 9 and 11 -inch Swing. ewand Original Features
Send for Catalogue B. Seneca Falls Mfg. Company,
695 Watcr SL ,.Seneca Falls.N. y .


WOODWORKING MACHINERY, For Planing Mills, Carpenters,
Builders, Furniture, Chair, Vehic
Wheel and Spoke Makers, etc. Wheel and Spoke Makers, etc.
\& Correspondence Sollcited. Inustrated 312-page Catalogue free THE EGAN CO. Cincinnati, Ohio.


25: Yoritu of Tol Iumbicige

E. S. Ritchie \& Sons, Brookline, Mass.


INDEX OF INVENTIONS For which Letters Patent of the United States were Granted JANUARY 24, 1899, ANDEACH BEARINGTHATDATE See note at end of list about copies of these patents.]

## \section*{}






 C. H. Bup...............................
Brace. See Lee and anile brace.
Brackect. Shade roller
Brakac. See Cair door brake. Car brake.


[^0]





## 


c
cu
cun
cun















 Game












## ARMSTRONG'S No. 0 THREADING MACHINE



NEW FURNACE PIPE COVERINQ



Rotary Neostyle 5,000 Copies from one orizinall writ.
inn or TTpe
Operating Operated by Crank, Treag.
or Electric
Motor. Speed 7 cop-
jotes.
uter
mina-
 dorsed by lieading
aration
rations in in every
citt



Queen's Patent "Triple Plate Toepler-Holtz Electrical Machine.


 and apparatus. QUEEN \& CO.. Inc.
1011 Chestint St 11 Chestnut St
Philadelphia, Pa.

## IT SIMPLIFIES DIFFICULT WORK


 THE NERRELL MANUFAC- SOL Curtiss St., Toledo, Ohi
 Chiefy designed for use in Schools.and
 ELBRIDGE ELECTRICAL APPARATUS OMPANY, Elbridge, N. Y., U.S.A. DRAWING TABLES


ROCK DRILLS AIR COMPRESSORS


OUR 1898


You USE GRINDSTONES ?
 cial purposes.
cist Ask for catalogue The CLEvELLAND STONE CO
2d Floor. Wilshire. Cleveland, 0 .


Own Circulars ers, etc...or or et your
bot combine business
oit print them for you






 Hydrocarbon burner, A. A. Ar Pott. S. sierman
Hydrocarbon burner. E. Van Note.
 Inhaler holder, medicinal, G. O. Shakespeare.
lodin derivatives of phenois and bismuth sait thereof. A. Classen.
Iron See Culink iron.
roning mathine
romp machine, C. W. Danglemyer...........
Lamp, forced draught. He. Jorfoik.
amp, street, v. H. Sinacik....

 Wi.h................
Lock
Loom, C. A. Littleteld







inin n machine. B. Gilbert. Palmer.
ixer See Bever
ould


Motor speed reaulator. C. A. Dresser
Moving harness. $\&$. . W.C. Colteryah
husical instru ment






 low. Hanson \& Johnso

Post. See Hence post. conveyer, F. F. Landis.
Postal denominating. registering, and adding
machne, E. E. Wolf.
Pot. See Slag or cinder pot.
Powe tranamission device. w. T............
Power transmisting
Powning mehinery. E. Winans......

 Printing in colors, machine for,
Printing machine J. Merue.s.,
Printing press, P. M. Randall. Jr





Reguator regulator Feed water regulator. Möot

| R |
| :--- |
| R |
| R |

## $\stackrel{R}{R}$



scren. Shee wh, die for rolling. W. L. Ames
Screm


## Separator. see Goid searator. Seeming machine, J. . Betrand

## Sewing. E. Bertrine Shackle. C. Hase

## 

 sirt 1 ifter and supporter. Wolfe \& Richmondkylight opener or closer. A. S. Brown as or cinder pot, J. J . W. Shompson. W . Sliding gate. lever operated A. Mas...........
Snow auard and slate fastener, W. T. Russeii:
 Wats \& Storrs.. Marierison
spinning machine
Spinning machine. H. A. Owen.
Spinning or twisting frame end cover, Knight Stacker straw........eineie.:.
Station indicator. A.
Sation indicator. A. C. Osenvach et al
Station indicator, R. Sperber.
Stam trap, automatic. J. H. Biessing
 making monlds fror, Kett
toperer. See Flue stopper



 Threshing mack ine ce chinde
Tiie See Rail way tio.
Tile, grooved. W. Borgolte (Contgnuad on pcoe 79)
 Here is a Bargain, Don't let it Pass !
 ing how you can save up to 50 per cent. on all the tools you use. Established 1806.
THE FRASSE COMPANY, 21 Warren Street, NEW YORK Simple Lessons in the Use of The Speed-Latile.

By COMPTON and DE GROODT.
12 mo . vi+ 134 pages, 100 figures. Cloth, $\$ 1.50$. JOHN WILEY \& SONS, 53 E. 1oth Street, New York City.
 MARINE ENGINE We are the oldeat builders and


SINTZ GAS ENGINE CO., Grand Rapids, Mich., U.S.
WITTE GASOLINE OR GAS ENGINES


ICE BOATS-THEIR CONSTRUCTION



路
 GAS ENGINE





## FIRES



THE MACHINERY OF A NAPMTHA




## Expansion and

## Foreign Patents

Reduction in Foreign Patent Fees.
After February 1, 1899.
$T$ meet the demands of our clients who deand our vast export trade, to protect their inventions in foreign countries, we beg to announce that we have made a material reduction in our charges for foreign patents.
Our export trade in 1898 amounted to $\$ 1,233,600$,-
636, showing an increase of $\$ 153,766,340$ over that of the year 1897. The balance of trade in favor of the United States amounted to $\$ 600,000,000$. These figures indicate the hold which the American trade.
is getting on foreign markets, and American manufactured goods are now being shipped to all parts of the world. The importance of procuring protection abroad for new inventions was never as great
as it is now. The prices at which foreign patents may now be obtained are about one-half what why meritorious years ago, and there is no reason abroad before the United States patent is issued, and the right of procuring such protection is lost. This new schedule of fees will go into effect on February 1, 1899.
For particulars in regard to foreiga patents, together with a statement of our reduced fees, see
our Handbook on Foreign Patent Practice, sent free on application. Address MUNN \& CO., 36I Broadway, New York.
Chain GeLTING of Various Styles, ELEVATORS, CONVEYORS, COAL MINING and HANDLING MACHINERY.
JEFFREY MANUFACTURING CO., COLUMBUS, O.

# Can I Become an Electrical Engineer? <br>  

 Endorsed by Every Prominent Electrical Engineer.("Conducted under the a uspices of
120-122 LIBERTY STREET, NEW YORK, U. S. A.


##  <br> T <br> $\stackrel{T}{T}$ <br> 







Warp stoum motion apparäaus. G.







 York Central at 5.3 o'clock every after noon and dine in San Francisco the fourth evening following.
3.400 miles in four days

No other line than the New York Cen tral can do this.

Also hoo'stet on the "Lake Sbore Limited", contanng


 DESIGNS.






## WATER

Is distilled water. Nothing but
 THE SANITARY STILL



THE POLARIZING PHOTO-CHRONO-



$\$ 3.50$ Trojan Sanitary Still - The Beet Still madid and at at the the usal price.

STERLING METAL POLISH









| TRADE MARKS <br> Case hardening and annealing compou <br>  <br>  <br>  <br>  <br>  <br>  <br>  silk fabirics, stiriin pan siik Manufactu <br>  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

LABELS.





## PRINTS.


A printed cony of the specifcation and drawing of






NEW EAST RIVER BRIDGE. Cly or New York.

For the information of intending bidders on the Steel
Towers and End Sonas of the New East River Bridge the Commission of the New East River Bridre state as follows: As soon as the money necessary for sucb con-
struction is appropriated, advertisements $\begin{aligned} & \text { will be issued. }\end{aligned}$

 sary information, in ordier that they mayd have ample
time to prepare their estimates. By order of the com-
 Commissioner and secretary.




HOW TO MAKE AN ELECTRICAL

$\qquad$



 |CE MACHINES, Orliss Enyines, Brewers
 NOVELTIES \& PATENTED ARTICLES





 Experimental \& Model Work



## CAS AN GASOLINE ENCINES. WMTER MOTORS BACKUS WALER MOTOR Co NEWARK <br> DYNAMO AND MOTOR CASTINGS  VOLNEY W. MASON \& CO. Friction Pulleys, Clutches \& Eleyators PROVIDENCE R.

为
THE CYPHERS
 Incubator and Brooder yoisture fractical System of theubation. solute. Produces Stronn, Heallthy Stock-
sion

 DESIGNS
OPYRIGHTS $\&$.



## Scientific American.


MUNN \& Co.a.s. Beanam. New York





## A New Idea in Trunks



amination. Send 2c. stamp for
trated catalogan. siallman,
61 w. Spring St.,

[^1]
## THE HARRINGTON \＆KING PERFOR ATING CO． <br> PERFORATED METALS OF EVERY DESCRIPTION FOR ALL USES：C SHCHECO



Price $\$ 1,000$ ．No Agents．





＂Perfection＂Yacht Mattresses and Cushions．
 sisting，non－absorbent，and yermin proor．Ne make to
order any site or shapo of matressee and cushions
Write for cotalogue．Send measurements for estimates． mechanical fabric co．，Providence，r．l．，U．S．A．


R．E．DIETZ CO．．． 60 Laight Street，New York．
Mention this paper and get special discount．
Mentider


AN ART SOUVENIR OF THE WAR consisting of sixteen elepant eugrav－
ins of troe Ary and Navy Heroes．
AIII inclosed in handsome embuseed portfolioe．size of eache embravsee，
x 9 nomes．
A Valuable Keppanke． Complete Set，by maill 25c．
THE HERO MFG．\＆SPECIALTY CO． HE HERO MFG．\＆SPECIALTY
31 Broadway，New York City． 31 Broadway．New York City．
Agents Wanted Everywhere
There is no Kodak but the Eastman Kodak． By the

## KODAK SYSTEM

of film photography the instru－
ment loads and unioads in broad
daylight mentight．
The film is put up in cartridge form and is perfectly pro tected from light by a strip of black paper extending the full length of the film and seve To load：simply insert cartridge in the Kodak；thread up the black paper ；close the camera and give the key a few cantaioar． turns，thus bringing the film into position． The picture taking may then begin． pleted the black paper covers all，and the cartridge can be removed as easily as it was inserted．
Film Cartridges weigh ounces where plates weigh pounds and are non－break－ able．All Kodaks use light－proof film cartridges and load in daylight．

$$
\text { Kodaks } \$ 5.00 \text { to } \$ 35.00 \text {. }
$$

Catalogresfree at the
dealersor $y$ mail． EASTMAN KODAK CO．



## SENSITTVE LABORATORY BALANCE．






APOLLO BEST BLOOM GALVANIZED IRON．
We never have stenciled an orde of galvanized iron faise to its gauge Such orders go to cheap maker generally，of course．

Apollo Iron and Steel Company， Pittsburgh，Pa．
$\$ 90.00$ H $500 t-$ Power Cathe $\$ 90.00$
 and Ouffit of Cools．

## SPECTAL OFFER！

with with Two Sets of Jaws，Lathe Arbor，and Set of Morse Twist Drills， $1-16 \times 1 / 2 \times 32 \mathrm{ds}$ ，in all amounting to 8110.00 ，for 890.00 ．Goods Send for Descript

CO． 999 Ruby Street，ROCKFORD，ILL

THE BEST．IN THE WORLD． F（F）Handsome illuatrated cataloguu describlng our Che Black Mig．Co．，Erie，Pa．

Zalcium King Lamp．
BURNS ACETYLENE GAS． No Oill，Wick，Dirt or Smoke． Get the Best．Price 83．50
Agoents wanted in everv town． CALCIUM KING LAMP CO．



by railroad men－who require the most truthful time－pieces． of the Engineer＇s cab test a watch as nothing else can．
Nearly elght million Elgins in a third of a century（more than any other factory in the world has produced in the same period）is the
record of the Elgin National Watch Factory．

High grade，but not high price
An Elelt Wateh almays has the word＂Elcin＂
engraved on the works full guaranteed．
At all jewelers－overywhere－in any style
case desired．


EXTRAORDINARY CHANCE
TO BE SOLD OR LEASED
Graa Mining Business in Siberia
Consisting of about 80 gold placers，each nearly five kilo－
meters
32 ong
and
and









[^0]:    Car

[^1]:    WE WILL DOUBLE YOUR SALARY
     ITHE UNITED CORRESPONDENCE SCHOOLS, 156 Fifth Ave., New York.

