
a WEEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS CHEMISTRY, AND MANUFACTURES.

WAR DEPARTMENT EXHIBIT.

DOME OF THE GOVERNMENT BUILDING.

portion of fish commission exhibit-entrance to grotto.

united states government building-front facade.
THE GOVERNMENT EXHIBIT AT THE TRANS-MISSISSIPPI AND INTERNATIONAL EXPOSITION.-[See page 168.]

yrientific glmmitan.

ESTABLISHED 1845.
 MUNN \& CO.,
 editors and Proprietors.
 published weekly at
 No. 36I BROADWAY, - - NEW YORK.

terms to subscribers.

 the stientific american publications.

The combined subscription rates and rates to foreign countries
be furnished upon application.
Remit by postal or oxpress money order. or by bank draft or check.
UUN \& CO 361 Broadway. corner Franklin Street, New York.
NEW YORK, SATURDAY, SEPTEMBER 10, 1898.

THE WAR DEPARTMENT AND OUR NEW

FOREIGN POLICY

It did not require the test of the late war to prov the mettle of the American soldier, or the skill and heroism of the officers that led him into battle; but it did require just such a test to open the eyes of the American public to the woeful incapacity and confusion that reignsin certain branches of the War Depart ment. With all the accumulated experience of the great Civil War to go upon, our quartermaster, subsistence, and medical departments should have been among the most efficient in the world. They were popularly supposed to be so, and the public never doubted, when war was declared, that in the transportation of troops, the bringing up of supplies, and the care of the sick and wounded, we should show something of that character-
istic order and method which has contributed so largely istic order and method which has contributed so largely to our present industrial supremacy.
The public was doomed, however, to a bitter and humiliating disappointment. The confusion that existed from the first in the Sou thern camps was merely a prelude to the scenes of inexcusable suffering and neglect which marked the progress of the campaign and the melancholy home-coming of the troops at its close.
Nor can the department be absolved of all blame because great results were actually achieved in the been achieved, and should have beesults could have rible accompaniments of neglect and starvation that are causing a thrill of anguish and indignation to pass from one end of the country to the other. The performance of one duty does not atone for the total neglect of another, and the demand of the public for a searching and impartial investigation is both reasonable and just.
Apart from its moral aspects, however, there is another consideration of a very practical nature which makes it imperative that the investigation should be set on foot at once. We refer to the portentous change which has taken place in the foreign relations of this country, and the widespread and complicated field of naval and military operations upon which the natio has entered.
Cuba, with its diverse and bitterly opposed races to be pacified and garrisoned; Porto Rico to be held as England holds Jamaica; Hawaii, in the mid-Pacific, and the Philippines, 8,000 miles away in the Southern Seas, are all likely to become the outposts of military activities, which have hitherto been confined to our own borders and represented by a mere handful of 25,000 men. If the wish of a considerable section of the American people is fulfilled, we shall find ourselves embarked upon a colonial policy which will demand the very highest efficiency in those very branches of the War Department that have broken down so com
pletely in the present war. pletely in the present war.
If we cannot form and maintain a camp within our own borders without starting so preventable an epi demic as typhoid fever, how, in Heaven's name, are we to maintain permanent camps in the fever-laden towns of Cuba and Porto Rico? If the transportation and nursing afforded our sick troops on a short trip from the West Indies is such that they die, soon
after landing, "of starvation, because they do not have food that is suitable to a convalescent," how, we ask, are the convalescents to be brought over the 8,000 miles of ocean that separate Manila from the United States? Yet the work of transporting troops and maintaining them in garrison duty in some of the deadliest climates in the world, of bringing home the sick, of transferring garrisons from one island to another, will have to be carried on continuously as part of our control and administration of these newly acquired possessions. Does any one doubt that, if our present methods were followed, the mortality among the troops would be a repetition of that which is now carrying off our soldiers by the hundred?
Our War Department stands in need of immediate and sweeping reform. This reform is necessary for the double purpose of visiting condign punishment upon the parties who are answerable for the present
mortality among our troops and of placing the depart-
ment on a footing which shall enable it to cope success fully with the grave military problems of the future.
AMERICAN PROGRESS IN ENGLISH INDUSTRIES, The success that has recently attended America competition in those markets of the world which have been hitherto exclusively controlled by the English manufacturers has awakened a reasonable expectation that we would in the
in Great Britain itself.
in Great Britain itself.
It now appears on the statement of no less an authority than The Engineer, of London, that the inva sion of British markets has not only commenced, bu is in very active and aggressive operation. Under the title "American Progress in English Industries" ou contemporary gives a very candid review of the situa tion, which opens with the significant admission that British industry is pressed harder by this country than by Germany-a fact which will be surprising to those who are aware of the inroads which German competi tion has been making on the British industries.
The article carries special weight appearing in the columns of a conservative journal which has all along professed to make light of the "bugaboo" of foreign competition, and has endeavored to allay the fears of the manufacturers, which, as it now appears, were only oo well founded. We publish the article in full in the current issue of the Scientific American SupPLEMENT, and must be content to mention here a few of the leading facts adduced in proof of the reality and threatening character of our competition.
A Sheffield manufacturer is quoted as saying that it is best for Englishmen to realize that America is send ing over in the regular way of business heavy .consign ments of steel. American steel is being sent to Lon don and in large quantities to Birmingham. It is pre ferred for anything that can be made in large quanti ties by automatic machinery. The manufacturer finds lower in price, and the workman likes it because it niform termper renders it easy to be worked s
The writer of the article was shown, in Sheffield, a consignment of American files, just received by a local manufacturer, which cost considerably less delivered in Sheffield (the home, by the way, of the British file industry) than those of domestic make. Moreover many of the workmen prefer the American files for certain classes of work, and the quantity received in London and Birmingham is stated to be much greater than is generally supposed.
In Birminghain the British manufacturer is using American made brass, " because it is drawn so much ruer than the English that it can be worked in auto matic machinery with less trouble and greater eco nomy." 'Fo these advantages is added that of cost, the American product being from 15 to 20 per cent cheap er. Steam India rubber hose piping, according to an ther manufacturer, is laid down on his premises from 20 to 25 per cent cheaper than it can be bought in the English markets.
It seems, moreover, that in the smaller sizes of malleable castings we are in a fair way to capture the trade, for not only can they be laid down in Sheffield at fully 30 per cent below the local prices, but (more significant than their cheapness) the workmen themselves openly confess their preference for the American production on account of its truer and more uniform quality. The large industrial establishments, moreover, unable to obtain what they want in England, are adopting Ameri-
can labor-saving machines in large quantities, and adcan labor-saving machines in large quantit
Our contemporary is correct in the assumption that the business of supplying these American inventions to British industries is only just beginning. It frankly admits that "there is no denying the advance of the American, both in his methods of production, his ap plication of those methods in the use of the machinery by which they are applied and the men by whom they are worked." This remarkable article concludes with
the suggestion that a healthy discussion of the subject would be seasonable
We think that the first act of self-preservation on the part of British manufacturers should be to teach the average British workman that labor-saving machinery is worthless without a labor-saving workman to run it The great struggle of last year, known as the engineers' strike, was fought out over this question, and the prin ciple was established by the collapse of the trade union in their attempt to limit the output of machinery. It will be interesting to see whether the British workman has yet grasped one of the chief, if not the chief, secret of our industrial pre-eminence.

ARTIFICIAL FOODS.

The announcement that Prof. Lilienfeld had read a paper before the International Congress for Applied Chemistry, at Vienna, on the artificial production of albumen has made a profound impression on both scientific and lay readers. It has proved a boon to the papers, which have begun to settle down into midsum-
mer dullness, after the stirring days of the war. It has given them an opportunity to reel off column after column, with such captions as "We Will Get Along

Without Meat," "Dining à la Tablet," "Aliment per Capsule," and equally sensational headings which the subject hardly warrants. It will doubtless prove inter esting to some of our readers to examine a few state ments which have been made, and to see what has actually been done.
Dr. Lilienfeld in his paper describes the artificial synthesis of albuminous substances which form an essential element of nitrogenous foods. He found it pos sible to prepare pepton hydrochloride by the conden sation of phenol and glycocoll with phosphoric oxy chloride. The substance thus obtained gives all the re actions of albuminoids. The lecturer demonstrated the preparation and properties of the new compound. By previous conversion into the sulphate and decomposition of the latter, free pepton was obtained which re sembled both in its chemical and physiological behavior the natural pepton from albumen. The analytical data corresponded with those given by natural pepton. From what has been said it will be seen that Dr. Lilienfeld does not claim to have made albumen by synthesis, but to have made pepton a diges tion product of albumen. Chemists will not be readily convinced that pepton has been really synthesized as a proteid molecule is so complex, mobile, and of such high instability that a change in its constitution may readily be brought about, so that until more definite tests have been made, and until Dr. Lilienfeld pleases to give more of the details of his processes, which he holds secret at present, pending the issuance f a patent, chemists will be apt to suspend judgment Even if artificial albumen may be produced at a moderate price, it does not necessarily follow that it will in any way tend to solve the problem of food sup ply, and we are not sure as yet that the new product is physiologically identical with that produced in Nature's laboratory. Pure albumen has been made on a large scale and it is not at all dear, but we are not aware it has ever occupied an important position, in dietetics or that it has been proposed as a substitute for ordinary articles of food; so that it is really absurd to think the time will come when we shall carry about a complete meal in a pill box, and, like the artificial diamond, Prof. Lilienfeld's discovery may not be valuable from a com nercial point of view, certainly not while glycocoll is selling for some $\$ 75$ a kilogramme.
The subject of chemical synthesis is an important one, and in Germany alone in scores of laboratories chemists are actively experimenting along this line, which has in the past yielded discoveries which have netted large fortunes. Substances which were formerly produced only by the slow processes of Na ture are now "built up" in laboratories and the products successfully meet every test.
The peculiar thing about these synthetic products is that they are far less costly than those which are made from the organic substance, usually a plant. If the substance to be produced is an extract, instead of crushing and distilling the plant or bean, the chemist proceeds to make up his product working backward, as it were. It is only necessary to cite one example of such a process. Take artificial flavoring extracts, for instance. Raspberry essence may be made by taking 4 parts of glycerine, 1 part nitric ether, 1 part aldehyde, 5 parts ethyl acetate, 1 part ethyl formate, 1 part ethyl butyrate, 1 part ethyl benzoate, 1 part ethyl œnanthate, 1 part ethyl sebacate, 1 part methyl salicylate, 1 part amyl acetate, 1 part amyl butyrate, 5 parts tartaric acid, 1 part succinic acid. These various chemicals are added to 100 parts of alcohol. This gives an excellent imitation of the flavor of the raspberry, and it is largely by such formulas as this that our artificial fruit essences which are sold to such a large extent are made. Those who have refined taste in the matters of fruit flavors are not deceived by such imitations, however. "Vanillin," the substitute for vanilla, is another example of a synthetic compound.
Discoveries along these lines have enormous commer cial possibilities, and no one outside of the active field of chemistry knows what great strides have been made in chemical synthesis. There has been rather less success in foods than in other lines, possibly from the fact that there is no such chance for profitable manufacture as in technology. It is along coal tar lines that most of the important work has been done. Now we have drugs and colors which a few years ago could only be obtained from natural products at enormous expense. Modern chemists find laboratories freely open to them, especially in Germany, where every facility is offered to them in the hope that finally they will make an important discovery. One German professor of chemistry is said to have made over $\$ 40,000$ in a single year on one coal tar product. Indigo is successfully produced artificially, and alizarine has replaced madder root for a red color, and is now used as a base and can be combined chemically to get any color. Chemists have also succeeded in making artificial morphine, and they have been able to make artificial caffeine, the essential principle of coffee.
The new coal tar drugs have taken a most important and aggressive position in modern medicine. The alkaloids which were formerly extracted from various plants are now made in the laboratory. Oil of
wintergreen is produced artificially, and the bitter almond oil is even better than the natural product, as it contains no prussic acid. Artificial sugar, not saccharin, has been produced in the laboratory, but not on a commercial scale, and artificial alcohol has also tion of by-products and waste products of all kinds One chemist has recently discovered the means for utilizing the spent yeast of breweries in the making of a meat extract substitute.
Let us hope the day will never come when the older methods of eating with which we are familiar will be superseded by artificial foods, though this would please our vegetarian friends. If we had fifty articles of diet like artificial albumen, there is no reason to believe that we should be any better off than we are at present. Indeed, we would probably require almost a much food as we do now for the waste material which
the human economy requires. Artificial foods have never been very popular, and are not considered very never been very popular, and are not considered very
healthy. It is very probable that if the time ever healthy. It is very probable that if the time ever
comes when a considerable portion of our food is produced in the laboratory, the world will be attacked by such an epidemic of dyspepsia as it has never before seen.
Food is bothan index of the civilization attained and a factor in the attainment, and as eating and drinking became a finer art, life became more refined and manners more attractive. There is, indeed, a sentimenta side to it, and while living would be immensely simpli fied, the great institution of society, the dinner, would soon become a thing of the past and Brillat-Savarin would become as antiquated as Lycurgus. We would indeed "return to nature" with a vengeance, but not in the way of which Rousseau dreamed. The subtle delights connected with all our favorite dishes would soon evaporate, and we doubt if we could endure very long to have our food produced in the laboratory of some great syndicate instead of in our own privat laboratory-the kitchen.

THE ARMAMENT OF OUR NEW WARSHIPS.

On another page we publish the official drawing and a digest of the findings of the Naval Board which examined the wrecks of Cervera's fleet. We wish to draw particular attention to the tabular analysis of the gun-fire of our fleet, showing the number of hits made by each caliber of gun, and the ratio of the number of hits to the number of guns engaged foreach caliber. The data contained in the table is among the most valuable of all that has been gathered during the war, and it is to be hoped that it will exercise a powerful influence upon the designs for newer and more up-to-date ordnance which we presume are being more up-to-date ordnance which we presume are being
prepared by the Bureau of Ordnance for the armaprepared by the Bureau of
ment of our future warships.
In the comparison of the relative efficiency of each caliber and type of gun, as shown by the ratio of hits scored to number of guns employed, it must be borne in mind that the table takes no account of the number of shots each gun fired-it is based merely upon the hits actually scored and the number of guns that could be brought into action. However, as the Spanish cruisers were at all times within range, at least of the large guns, it is reasonable to suppose that all of the guns that could be brought to bear were actively en gaged throughout the whole of the engagement, and
that the number of hits for each gun is a test of its relthat the numbe
ative efficiency.
The figures in the table are a powerful indorsement of the rapid-fire type of gun. Commencing with the "no hit" record of the 13 -inch gun, and $\frac{83}{10}$ hit per gun for the 12 -inch, there is an increase as the caliber diminishes, the 5 -inch rapid-firer scoring $21 / 2$ hits and the 4 -inch rapid-firer 4 hits per gun. The low figure for the 1 -pounder is due to the range being too great, and in a less degree the 6 -pounder was similarly affected.
Evidently then we ought to aim at reducing the weight and increasing the rapidity of the heavier arma-
ment of our warships. As we recently pointed out, 10 ment of our warships. As we recently pointed out, 10
inch 30 -ton guns are being built of equal penetrating power to our 13 -inch 60 -ton guns, and there are 8 -inch 18 -ton guns whose penetration is equal to that of our 10 -inch 27 -ton guns. The smaller modern guns are not only more rapid in their fire, but their trajectory is much flatter and the chances of scoring a hit are that much better. If only a few out of every hundred shots fired reach the mark, it is an obvious advantage to fire the largest number of shots in the shortest space of tine, and for this kind of work a gun that weighs over 30 tons is altogether too slow. In view of the terrific destruction worked by such 8 -inch shells as did land on the cruisers, it would seem desirable to retain this caliber on our future ships, especially as an 8 -inch rapid-firer can now be built that will deliver 4 or shots per minute.

languages of the philippines.

According to a Spanish missionary, who resided eighteen years in the Philippines, there is no language that is common to all the islands, but each canton has a dialect peculiar to itself. All these dialects, however,
have some affinity, somewhat like that which exists
between the Italian dialects of Lombardy, Sicily, and Tuscany. On the island of Luzon there are six dia lects, some of which are current in the other islands. The most universal are the Tagala and Bisaya. The latter is very coarse, while the former is more polished and peculiar, and to such a degree that a Roman Catholic missionary who had a thorough knowledge of everything pertaining to the islands was accustomed to say that the Tagala language had the advantages of four of the principal tongues of the world : that it was mysterious, like Hebrew; that it had the articles
of the Greek, as well for appellations as for proper of the Greek, as well for appellations as for proper
nouns; that it was as elegant and copious as Latin and that it was as well adapted as Italian for com pliments and negotiation.
The natives make use of but three vowels, and have but twelve consonants, which they express differently by placing a dot above or below them. They have learned from Europeans to write from left to right, in stead of from top to bottom, as they formerly wrote.
Paln leaves were formerly used for paper, and an iron style for a pen. They use writing for correspondence only, as they have no books of science or history. The missionaries have had religious works printed in the various dialects of the islands.
The natives of the Moluccas have a very pleasing way of corresponding with their friends. They arrange fowers of different colors in a bouquet in such a way that the receiver understands, by examining the varieiies and their shades (which represent so many char acters), what his friend intended to say to him.
the undeveloped resources of cuba United States or not, American brains and capital will argely contribute toward the development of many hitherto unsuspected resources, and the island that has so long suffered from misrule may be expected to blossom as the rose. Probably no more promising field for making money through legitimate and wisely directed toil has presented itself to the American youth in this century than does the "Pearl of the Antilles," now that the last vestiges of Spanish oppression have disappeared.
While sugar and tobacco have been the principal commercial products of Cuba, their importance may soon be equaled by others less generally known. The soil and climate of Cuba are eminently adapted to all ropical fruit and vegetable culture. In fact, these products grow so luxuriantly and naturally there that the natives raise all they need for home consumption without any effort. Bananas grow wild in the wost extravagant manner, but the variety is poor and needs only a little scientific culture to make it equal to any mported into the United States. We import some $15,000,000$ bunches of bananas into this country every year, and Cuba could produce every one at a nomina cost. Probably the banana, next to the cocoanut, is
the best poor man's fruit. It grows without much cul the best poor man's fruit. It grows without much cul
tivation, and hence it is the lazy man's fruit as well. But when we come to oranges and pineapples, it is quite a different matter. These t wo fruits require cultivation and the most careful handling frow the time the plants are started until the fruits reach market. The Cubans and Spaniards were never willing to pay the price of labor and attention required to make the raising of pineapples and oranges profitable. Long before the war the industry, such as it was, had drifted into the hands of Americans, who systematically cultivated a few plantations, and shipped their products to
the United States. The native owners of an orang the United States. The native owners of an orange grove would gather their fruit by shaking the trees or and shipped to this country was naturally in poor condition, and half the cargo would decay on board the teamers. The oranges were packed in barrels with th same utter disregard for their tender qualities, and less system was employed in this work than an American would give to potatoes.
It was only natural that shipping oranges to the United States under such conditions should prove unprofitable, and that in time energetic Americans should go into the business and raise and ship oranges at a good profit. Oranges grow as easily in Cuba as they do in Florida or California. There are thousands of semi-wild groves scattered throughout the island which produce fruit so inferior that they are of little value or market purposes. These trees, however, can be budded and grafted with fine Florida oranges, and in two years they can be made to yield large crops of
exquisitely flavored fruits. There is an opportunity for making a fortune in securing these neglected tree such as the early growers found in Florida when they irst realized the value of the wild Indian orange trees. The pineapples of Cuba can be raised to perfection. The famous Porto Rico "sugar loaf " pines can be duplicated in Cuba. People never realized what enormous and delicious "pines" could be produced under good cultivation until the London gardeners raised them in hothouses. Two years ago these magnificent pineapples from London hothouses were imported into this country, and sold as high as $\% 3$ and $\$ 4$ apiece. They

Florida orange is to the semi-wild product of the old ndian groves. It is believed that fully as fine pine apples can be raised in Cuba as ever came out of an English hothouse. The soil, the climate, and all other conditions are favorable to the perfect development of the fruits, provided the owner is willing to give the necessary labor and intelligence required for the production of all fancy fruits. It is this knowledge and skilled labor that Americans can and will supply.
Other fruits of great commercial value flourish in Cuba like the proverbial green bay tree. Lemon rees reach a superb size there, and the fruits are equal to the famous imported La France lemon of the Mediterranean shores. But no effort has been made to raise lemon groves systematically. Cocoanuts are native products of the island, and they thrive without apparent effort in the rich soil. The grape fruit, shaddock, lime, and similar semi-tropical fruits, which have obtained a small foothold in Florida, grow wild in Cuba. Many little known fruits, such as the guavas, apotas, sapodillas, and kumquarts, are commonly found in all parts of the island. Many of these have peculiar flavors, and it requires a residence in the sland to make one acquire a taste for them. On the other hand, there are many tropical fruits raised in Cuba that only need to be tasted by Americans to be appreciated. These can be cultivated with every pros pect of success.
But if fruits are important products of the Cuban soil, what must one say of the vegetables? These grow and yield crops about every month in the year. Tomatoes are as plentiful as sands on the seashore Vines never cease to produce fine tomatoes. In mid winter it is possible to purchase in Cuba corn, celery ettuce, tomatoes, and artichokes cheaper than in our American cities in midsummer. The plants simply revel in the warm, inoist climate.
Winter market gardening must, therefore, figure prominently in the future Cuban industries. Good warket land is cheap and plentiful. With ten to twenty acres, an enterprising American farmer could aise all the vegetables he could use, and ship enough to the United States to pay him a moderate income. The truck gardening of Cuba has been even less developed than its fruit industries. The vegetables need not come in competition with those from our Southern States, for the time of shipping them north would naturally be in the early part of our winter. Then consignments of fresh vegetables direct from Cuba, in fast steamers, would find ready purchasers in many of our principal cities. We may soon expect to have watermelons in March and April, green pease in December and January, and tomatoes all the year round.
Market gardening in Cuba would be the easiest sort of work that a farmer could undertake. With considerably less cultivation than we give to our gardens and farms in the United States, fruits and vegetables produce remarkable crops, and, without fertilizers, the same land continues to raise plants and their fruits with prodigal luxuriance.
Onions and potatoes raised in Cuba are equal to any imported from Bermuda, and they could be shipped to the United States at less cost than from the latter place. In a very few years American brains and industry could monopolize most of the trade in tropical fruits and winter vegetables, which is now controlled argely by alien West Indian planters.
The effect that all of this development of latent Cuban industries would have upon our coast trade can readily be imagined. Already several new steamship lines are in the course of preparation for what is expected to be an active trade with Cuba when the war ends. It is the opinion of shippers that the trade with the island, when once begun, will develop quickly, and new industries will spring up with such marvelous rapidity that the " booming" of our own Western States in the past will be completely cast into the shade.
Besides the fruit industry, it is expected that Cuban mines will show unusual resources, and that much of our machinery will be needed to develop these. Iron ore is so plentiful in various parts of the island that American steel manufacturers have established mills there in the past, and one American firm has nearly $\$ 3,000,000$ invested in iron mines near Santiago. The copper mines of Cuba are also known to be rich, but the real extent of their contents is not definitely realized. In the great mountain chains that rib the cener of the island gold and silver have also been discovered, but so far no mining for the precious metals has been attempted. Under the Spanish rule the mineral resources of Cuba have never been thoroughly examined, and no one has ever attempted to mine ystematically for such products.
Thus, the outlook for hardheaded capitalists and energetic business men from the United States is promising in Cuba, whether the United States extends a protectorate over the island or merely shows a fatherly interest in helping the home government to uaintain peace and order. All that is required for Americans to develop the industries of the island is a stable government, which will guarantee to protect their rights and make a peaceful existence on the
island certain.
G. E. W.

AN IMPROVED BALL-BEARING.

The ball-bearing illustrated in the accompanying engraving is designed always to run true and to permit ready access to the various parts. Means are provided for lubricating the bearing and for excluding dust.
Of our illustrations, Fig. 1 is a partial section through the hub of a bicycle-wheel showing the parts of the

HITCHCOCK'S BALL-BEARING

bearing. Fig. 2 shows the bearing applied to the rear hub of a bicycle-wheel. Fig. 3 is a sectional view of the bearing applied to the crank-hanger of a bicycle. In all these applications the essential principle of the bearing has been retained with but few modifications. The bearing is surrounded by a casing, in each end of which a back-plate is secured. Each back-plate has a marginal flange extending outward. To the end of the shaft passing through the casing, cones are secured, coacting with the back-plates to form raceways for the balls. Each cone is formed with a peripheral flange. Retaining-rings are provided, which bear against the flanges of the back-plates. Dust-caps are secured in the ends of the casing and are provided with flanges coacting with the cone-flanges, with the retaining-rings, and with washers on the cones, to exclude all dust. The cones are secured to the shaft, not by the ordinary method, but by means of a shouldered key placed in a groove on the shaft and threaded as far as the shoulder; when the cone and locking-nut are assembled on the axle, the nut will engage the threaded end of the key, holding it firmly in place as well as the cone itself. By providing the back-plates and retaining-rings with small apertures, the lubricat ing material coming from the oil-cup is permitted ready access to all the moving parts.

The bearing has been patented by the inventor, $\mathbf{M r}$ A. G. Hitchcock, of 409 Fort Street, Honolulu, Ha waiian Islands.

Luxurious Travel in Siberia.

The new Siberian train which was recently sent to St. Petersburg for the approval of M. Khilkov, Min ister of Ways and Communications, returned August 3, after being personally inspected by the Czar. It left with over forty passengers, including several Englishmen Americans, and Frenchmen. This is the second train specially built for the quick service on the great Siberian rail way. It is an improvement upon the first specially built train, which was already a marvel to Russians.
The new train consists of flve coaches, two for sec-ond-class and one for firstclass passengers, the others being a dining and a baggage car. The construction is of the newest design, and the train runs with great smoothness. Besides the comforts of a bathroom with gymnastic apparatus, a library in several languages, a piano and selection of music, maps, guide-books, albums of views, an ice-cellar, and an arrangement for boiling water in three minutes by means of steam, which were found in the first train, the new one is fitted with plates which indicate the next stopping station, and, if the stoppage be over fiv train stops.

All the windows are protected from dust and wind by external plate-giass guards; the last coach is arranged to serve as an "observation-car," showing
three views of the country traversed. A stationary bicycle, with arrangements for measuring in minutes and kilometers the amount of work done, a barber, who is also qualified to give medical assistance, and a superintendent, who speaks Russian, French, German, and English, are among the other conveniences to comfort of traveling now provided. The train will be lighted inside and out by electricity, and electric cigarlighters find a place in the dining-car. A lavatory has been fitted in the second-class car, so as to be available for the enthusiastic photographer to change plates and develop in during the journey. Electric bells and portable electric reading-lamps are in each compartment. The kitchen is intended to furnish a hot dinner for a maximum of sixty people. Paper and envelops are to be supplied gratis at the buffet, where hot and cold drinks of all kinds are to be had; there is no charge for the barber, but two rubles is the price of a bath, for which three hours' notice beforehand must be given.
From Moscow one may now get to within a few hundred miles of Irkutsk on the sixth day, and the charges for this journey under such luxurious circum stances are very moderate. The Englishman who cares to undertake the journey has only to see that his passport has been properly vised in London before leaving; and even if he be entirely ignorant of any language but his own, he will find no difficulty in reach ing the heart of Siberia by rail. In all the chief towns, as far as Irkutsk, one or two resident English or Americans are to be found, and they gladly welcome a fellow-countryman who brings the latest gossip from town. The French are already showing their appre ciation of the opportunities offered for investigating the resources of Siberia. A special train from Paris is to leave Moscow for this trip in August, the whole time to be occupied being about one month.

What is Thought of it in California.
The Signs of the Times, published at Oakland, California, is an admirer of the Scientific Ameri can, and as it comes to us each week, says the editor it is filled with most useful and practical matter. It keeps close watch of every field of science and industry and is a faithful recorder of the progress that is being made. It employs none but the most thoroughly competent writers, and consequently its information is always reliable.
It is a paper for men, and at the same time it is pre eminently the paper for boys. Its matter has the advantage of being solid and substantial, while it is also most interesting as well. Boys will pore over its pages by the hour. And when they turn away from its study, their minds are filled with useful facts about farming, fruit-raising, carpentering, machinery, etc For there is no field of the useful vocations of life from which this valuable paper does not bring you interesting sheaves of desirable knowledge.
If parents will furnish themselves and their children with such papers as the Scientific American, instead of those that are more or less filled with stories of highway robberies, conflicts with policemen, hair breadth escapes from bears and the like, they will se

THE MOULDING OF "PAN"-TAKING OFF PIECES FOR MARING PIECE MOULDS ON LARGE PIECE.

An invention has recently been patented by Ralph Bird, of 307 Webster Avenue, Jersey City, N. J., which provides a novel cradle so constructed that it may be readily folded into compact form when not in use, thus permitting it to be stored and transported with great facility. The cradle, as seen from the engraving, has head and foot arches standing upon base-rails. On each base-rail a bar is hinged. Rods are connected with the bars and are provided with retractile springs by means of which proper tension is maintained. To each bar two braces are attached having slotted ends in which pins on the head and foot arches slide. Dogs are mounted in the slots and are capable of engaging the pins to hold the arches in vertical position. Each arch carries an extension-standard in which is mounted a bolt engaged by a keeper attached to the standard. By means of this arrangement the standards are held in raised position above the arches. The cradle itself is suspended by means of slings attached to the arches. When it is desired to fold the cradle, the bolts in th tandards are lifted out of engagement with their

$8.1+1$

BIRD's FOLDING CRADLE

keepers and the standards are moved inwardly and downwardly. The dogs in the slots of the braces are then disengaged from the pins working in the slots the arches are then folded down over the body of the cradle. The cradle itself, being made of fabric readily collapses on the rods, and the whole device then appears as shown in the lower portion of our engraving.

A PHENOMENAL PIECE OF BRONZE CASTING

No substance is so well fitted for monumental use a bronze. There is a sense of dignity, weight, and value about it when used in large masses which is possessed by no other material. It successfully defies the ravages of time, and its intrinsic value has not been found great enough to make it very often the prey of the vandal ; so that, if it is sur passed in some of its pro perties by gold, silver, and platinum, the value of these precious metals has in itself invited the destruction of beautiful works of art. We have, however, a large number of bronze statues which have descended to us from antiquity which are to day a striking example of the difficulties with which the early sculptors had to contend and the triumphs which the bronze caster achieved. By the nature of the material, everything which is possible to the sculptor's art is possible to bronze. It can be fused and castinto moulds of the most intricate shape, and it is interesting to note that the history of this alloy has no beginning, and we only know, on the authority of Sir John Evans, that our bronze age ceased in the fourth or their sons grow into useful men rather than "border|fifth century B. C. We also know it immeasurably ruffians."

Tasmania has one of the most wonderful tin mines in the world, called the Mount Bischoff Mine.
then ing as a fine art is equally lost in the Bronze workantiquity, and from that time to the present day the art of the bronze founder has never been extinct.

Until a few years ago, when it was necessary to cast the different pieces eliminated, the statue may be a large statue or monument, we had to send to Munich, Berlin, Paris, or Rome to have the model executed in bronze, but it may now be said that the industry has become thoroughly naturalized in the United States. Splendid examples of the bronze founder's art are now executed here, castings in which technical skill and artistic feeling are combined with strict are combined with strict
fidelity to the sculptor's models. Indeed, it seems as though some of our native American ingenuity has been grafted onto the magnificent technique of the foreign workman. Our illustrations present a notable triumph of this industry. They represent the moulding and casting of Mr. George Gray Barnard's statue of "Pan," intended for Central Park, where it will be placed on a natural bowlder in the lake opposite Seventysecond Street. The most interesting feature of this work is the fact that it was cast in one piece.
This is the largest casting This is the largest casting
in bronze which has ever in bronze which has ever
taken place in the United taken place in the United
States, and was accomStates, and was accom-
plished by the HenryBonnard Bronze Company, in New York city.

PART OF MOULD AND CORE SHOWING SPACE OCCUPIED BY THE METAL.

The object of this is to prevent one portion of the mould from adhering to another. The moulder then proceeded to work on the projecting portion of the model, making separate pieces, so that they can be withdrawn and replace: 1 at will. The pieces were eight or nine inches thick and were generally wedge shape, in order that they might fit closely. Chan nels and indentations were formed in each piece in or der to insure their assuming the same relative posi tions, and it is no easy task to remember where the small pieces go. In work of no great size, some of the pieces of the mould which is to receive the metal are no bigger than a pea. Sixteen pieces are often needed for an eye All must be fitted with the greatest nicety. An im mense amount of wire and iron clamps are embedded in the pieces of the mould to give them strength After the various parts of the flask, each containing a large number of the pieces of the mould, were finished, they were removed and carefully dried and stored away in order to allow the moulder to work on other parts of the statue. After the entir work has been moulded, the bronze might be pour This casting is by all odds
the most difficult piece of work ever attempted in this \mid most exacting conditions of undercutting and compli- \mid ed into it; but this would give a solid statue of country, and it is very doubtful if there is a bronze casting of such an artistic piece of work in one piece. art. Before a work can be cast in bronze, it must, of course, exist in some other material. The sculptor usually makes a sketch of his idea, not on paper, but in arrangement of the composition having been decided upun thenextstep is the construction of a full skeleton of iron, skeleton of iron, without which the statue in such plastic materials as clay or wax could not stand, but would soon yield to its own weight and sink to the floor. The iron frame or skeleton is made soleton is made so substantial that the sculptor may have his work in the studio for several years without fear of its becoming injured. The model in clay is, of course, very tender, as the particles are not very tightly bonded together, and it therefore becomes necessary to have a plas ter model, which is not so liable to be injured as the clay one, and it is this plaster model which is given to the bronze founhe bronze foun der. In brief, the casting involves several opera-tions-the construction of the mould, the preparation of the fluid alloy, th e casting, the solidification in the mould and the subse- it was carefully pressed and smoothed all around the quent liberation of the cast from the mould, and, model, so that the latter presented somewhat the apinally, after all the gates are cut off, blemishes are pearance of a bas-relief. The sand background was removed and the various parts of the work are fast-
ened together and the line of demarkation between over with lycopodium, which takes the
place of parting sand in the ordinary iron foundry.
foundry in Europe which would care to risk the

Before describing the casting it would be perhaps well to glance for a moment at the technique of the wax or clay. This sketch is usually roughly modeled and is but a few inches high, so that it does not require any internal framing to support it. The general enormous weight which would be heavy, expensive, and no better than a hollow statue, in fact, not as good, as the shrinkage would be increased, therefore the mould is "cored." The parts are assembled, and the core is made by filling the cavity of the mould with the same sand as before, only a softer variety is used, so that the figure is again repro duced. As, however, this sand figure occupies the entire cavity of the mould, it must be cut down, so that a space may remain between its surface and the interior of the mould, and this space will be filled by the metal. Our engraving shows the appear file of the core and the part of the mould, and als ance of the core and the part of the mould, and also

CASTING THE STATUE OF "PAN" IN ONE PIECE-POURING THE BRONZE IN THE RESERVOIR to occupy. Of course, such a core must be sup ported by an internal iron car cass, the ends of which project through various openings in the mould, serving to keep it in place keep it in place Without this it would fall, and thus prevent eith er the flow of the metal or would reduce the meta to a dangerous thinness. When the statue h as been entirely moulded, the pieces of the mould are sepa rated and dried in special ovens or furnaces. This operation take place before the core is formed. The core itsel must also be baked. The mould must be provided with openings for the admission of the metal and for the escape of the air and gas, and this result is obtained by the use of many gates and channels. After the core was put in position and all the piece of the mould adjusted with care and accuracy, they were secured in place by a most elaborate system of clamps and iron rods. The mould in the bronze foundry weighed 54,650 pounds or about 27 tons. Some
idea of the great weight which had to be supported by artificial means will be gained when it is stated that the mould comprised some pieces which weighed from 4 to 5 tons each, and the core comprised 28 de tached parts, besides the main core, which alone weighed 6 tons. 'The figure of "Pan" is 11 feet 4 inches long and 5 feet 3 inches wide. If the figure should rise, it would be 13 feet 6 inches high.
At this point it might be well to mention some of the difficulties which deter sculptors and bronze founders from casting large works in one piece. A bronze casting, unless it be of very small size, is always cast hollow, and in order that it may be so cast it is neces sary that it should have a core inside as well as a mould outside. Now it is clear that if an object like a horse is to be cast with a core inside, and if it is to be cast all in one piece, the core will have to be left inside, since there would be no opening whereby it can be removed. Now the great weight of the core inside is a marked disadvantage in erecting or moving a statue, besides it puts an unnecessary strain on the legs of the horse. In addition, the material of which the core is composed is excessively porous, taking up moisture from the air, so there is a source of danger to the bronze statue, which is very likely not to be absolutely air and damp proof. There will be here and there some tiny flaw through which core will absorb air and will become so moist that a severe frost might swell it almost to bursting. But if the horse is cast without its head or neck, the core is usually removed and these dangers are avoided. To avoid these dangers, the ancients cast very large works in pieces, and modern founders find it advisable to cast their works in com paratively small pieces. There is another point which is an important one. If there should be any flaw in the mould or in the casting, the entire work of the moulders for months would be vitiated and they would have to begin anew. For this reason it is very rare to cast large works in one piece, and the great success which attended the casting of "Pan" at the Henry Bonnard foundry is a triumph for art metal work in America.
After the various clamps and stays which held the model together were in place, the interstices were filled with sand, for cooling must be rapid to prevent the separation of the tin and copper which sometimes oc curs, owing to the difference in their melting points. The sand was then tamped hard and the top and sides of the flask are applied.
The alloy used was 90 per cent copper, 8 per cent tin, 2 per cent zinc. The total amount of bronze melted was 6,450 pounds. It was melted in 15 crucibles, in 7 crucibles of 750 pounds and 8 crucibles of 150 pounds each. The fires were started at 1 A. M. August 22, and the casting took place at 5 P. M. the same day in the presence of a number of invited guests. The large la dle was heated, and when the bronze was at the proper condition of fluidity, the covers of the furnace were removed, the crucibles loosened, and they were drawn out with the aid of a tackle. They were carried to the ladle and emptied. When the ladle was full, it was hoisted by the crane and swung around in position over the flask, which rested in the casting pit. The scene was a magnificent one. The metal was not poured directly from the ladle into the mould, but was received in a reservoir at the top of the flask. At the bottom of the reservoir were holes, which were closed by iron plugs. When these plugs were closed, all connection with the gates was shut off. It was now a moment of
great excitement, for the success of the whole undertaking depends upon the exact condition of the metal when it is allowed to flow through the gates into the space between the mould and the core. Every one waited with bated breath until, in the judgment of the foreman, the bronze was at the exact temperature to insure a perfect flow ; too high or too low a tempera ture would ruin the casting. The men took the keenes interest and pride in their work, and waited like sol-
diers to receive and implicitly obey the orders given diers to receive and implicitly obey the orders given
them. At the proper moment the foreman, Eugene then. At the proper moment the foreman, Eugene
Veillard, gave the word, and the plugs were removed from the reservoir and the metal flowed to all parts of the mould. Flames burst from all sides of it for a mo ment, and the foreman waved the American flag ove this great triumph of metallurgical art in America.
The work of taking down the flask was soon begun, and the greatest possible care was taken to avoid injuring the statue, in removing the carcass which sus tained the mould and the core. The cast was found to be smooth and perfect
Artistically, "Pan"will be very interesting when placed on the big bowlder in the lake. The statue was offered to the city a year ago by the Clark estate and the model was approved by the National Sculpture Society. The measurements of the huge figure have already been given. The god is reclining on a ledge The repose is a lazy, careless one and he is blowing the "Pan" pipes. His long beard falls over his breast; his hair tumbles carelessly over his head. The head differs somewhat from the Greek conception of the god, but it is thoroughly artistic and will prove an ex cellent addition to the sculpture of Central Park which
is already too much burdened with solemn rows of bronze statues of the departed great.

Prof, Haeckel on Evolution.

At the Cambridge Congress of Zoology Prof. Haeckel read a fascinating paper on the descent of man. He does not hesitate to say that science has now definitely established the certainty that man has descended through various stages of evolution from the lowest form of animal life, during a period of a thousand million years. The New York Sun with commendable enterprise cabled over quite a full account of the paper, and goes on to say: Lamarck, Darwin, and finally scores of other investigators won the knowledge which must now be accepted as the crowning achievement of cience during the nineteenth century.
Recent discoveries of fossil remains in Java, Madagascar, and Australia have made still more complete the evidence, available proof, and discoveries where with Darwin's name is most commonly associated Prof. Haeckel thus summarized the steps in evolution

The monophyletic origin of all mammalia-that is to say, their origin from one common parent form from monotremata upward to man-is no longer a vague hypothesis, but an established fact. All the living and extinct mammalia which we know are de cended from a single common ancestral form which lived in the Triassic or Permian period, and this form must be derived from some Permian or perhaps Car boniferous reptile allied to the Progonosauria and Theriodontia, which was derived from a Carboniferou amphibian of the group Stegocephala. These amphibians in turn descend from Devonian fisines, and these again from lower vertebrates. The most important fact is that man is a primate, and that all pri-uates-lemurs, monkeys, anthropoid apes, and mandescended from one common stem. Looking forward to the twentieth century, I am convinced it will uni versally accept our theory of descent. I have no doubt that the strong influence of anthropogeny upon ther branches of science will be most fruitful."
A member of the congress said that Prof. Haecke had spoken of one thousand million years as necessary or his evolution tree, while Lord Kelvin supposed himself to have proved that this world as the scene of life could not be more than twenty-five million years old. It seemed unwise to complicate Prof. Haeckel's theory by assuming that a thousand million years would be equired for proof
Prof. Haeckel replied that the computation was not his own. He took the time from one of the most eminent geologists. For himself he confessed that he had no intuition as to the length of time required for the volution.
The congress received and discussed Prof. Haeckel' paper with the greatest enthusiasm.

The oldest American Journal.

Another piece of bric-a-brac which Mr. Cyrus Curti has coveted for many years, but was not able to pur chase until recently, is The Saturday Evening Post the oldest newspaper in America, which has been issued regularly in the city of Philadelphia since Decem ber 24, 1728, and was edited by Benjamin Franklin from 1729 to 1765. It was originally known as The Universa nstructor in All Arts and Sciences, and was pro jected by Franklin, but that usually discreet person isclosed his plans to George Webb, a fellow-apprentice in Samuel Kiemer's printing office, and the latter started he paper under that preposterous title. It was mall folio, six and a quarter by ten inches in size and the first number contained two columns of re print from "Chambers' Dictionary of Arts and Sci nces." which had recently appeared in London, thre advertisements, and a grandiloquent address from the publishers, who promised that "each person who pre erves their papers will possess the richest mine of nowledge (of the kind ever before discovered, except f late in Europe)."
Franklin was naturally indignant at having hisidea stolen, but, after thirty-nine numbers had been pubished, Kiemer was glad to unload the enterprise, and the paper was purchased by Franklin and Hugh Meredith for a trifling sum. Kiemer claimed a circulation ci 250 copies, but Franklin asserted that it had but ninety paying subscribers. The new proprietors dropped the absurd title and called it The Pennsylvania Gazette. At that time there were only five newspapers in America, all weeklies. A year late Franklin made it a semi-weekly, the first in America but it did not pay, and, after two brief experiments, resumed the weekly issue, which has continued ever since, with the exception of two weeks in 1765, when it was suppressed for refusing to pay the stamp tax and large handbills headed "Remarkable Occurrences" ere published instead, and during the occupation of Philadelphia by the British from November 27, 1776, Janubruary 5, 1777, and from September 10, 1777, to January 5, 1779. In these periods a few straggling numbers were printed at York. When the regula publication was resumed upon the evacuation of the
city, the title was changed to The Pennsylvania Gazette and Weekly Advertiser. David Hall pur
chased the property in 1776 and his sons ran the paper with the assistance of several partners, until 1821 , when it passed into the hands of one Atkinson, who changed the name to The Saturday Evening Post s it has since been known
For half a century it has been published in the same old-fashioned way, for the benefit of the same old-fash ioned, conservative patrons and their children and grandchildren, with a highly moral serial story, a column or two of antique and shelf-worn anecdotes, selected poetry, conservative comments upon curren events, crochet patterns, charades and rebuses, a col umn of "wit and humor" and a page of Sunday reading. With the aid of a pair of scissors and a pastepot one man has been able to do all the editorial work, and another has attended to the business department.

Bids for Three Eighteen-K not Battleships.
The bids which have been put in for the construc tion of the three new battleships which are authorized for the navy make it certain that the vessels will b of at least 18 knots speed, as against the 15 knots speed which was the minimum that had been previously imposed by the government.
The successful bidders are the three well known firms, William Cramp \& Sons, of Philadelphia, the Newport News Company, of Norfolk, Va., and the Union Iron Works, of San Francisco, the builder of the "Oregon."
The bids were as follows: Newport News Company one ship, class 1 , in 31 months, for $\$ 2,581,000$; one ship class 2 in 32 months, for $\$ 2,680,000$, minimum speed, 1 Inots 18 knots minimum speed, for $\$ 2,850,000$.
William Cramp \& Sons, Philadelphia, one ship, class 1. in 29 months, for $\$ 2,650,000$; two ships for $\$ 2,625,000$ each. One ship. class 2 , of 11,500 tons, 17 knots, in 32 months, for $\$ 2,725,000$; two such vessels for $\$ 2,700,000$ each. One ship, class 2 , of 12,150 tons, 18 knots, in 3 nonths, for $\$ 2,885,000$, and two such ships for $\$ 2,870,000$ each.
Union Iron Works, San Francisco, one ship, class 1 or $\$ 2,674,000$, in 31 months ; class 2 , one ship for $\$ 2$, 725,000, 17 knots ; class 2 , one ship in 33 months, 12,20 ons, 18 knots, for $59,899,000$
It is expected that the Cramps will build a practica duplicate of the Russian battleship which they hav in hand. This vessel is to be 376 feet long, 72 fee wide, 26 feet draught, and of $12,7 c 0$ tons displacement with a coal capacity of 2,000 tons. She is to maintain n average speed of 18 knots for 12 hours. This is hours longer than the term required by the United

The 18 -knot vessel proposed by the Newport New Company is based upon the department plan, the increased displacement being secured by lengthening the ship by 15 or 20 feet and putting in more powerful en sines and boilers.
The Union Iron Works also propose to lengthen the hull and put in additional boilers of the water tub type.
There is cause for great satisfaction in the change s has thus been made in the designs of these vessels, as to be aly proposed, they would have been sut th new vessels, if a similar improvement is made in the velocity and energy of their armament, will be thor oughly up to date.

Yale's Physical statistics.

Dr. J. W. Seaver, associate director of the Yale gym nasium, gives the following physical measurements of the Yale freshman class, whose compulsory gymnastic work was begun this year, says The New York Evening Post. The average age of the classat the time of measurenent was found to be nineteen years one-half month. The oldest man in this class was thirty-three years and youngest fifteen years nine months. Average height feet 7.5 inches. Tallest member of the class, 6 feet $31 / 2$ inches, shortest 5 feet $\frac{8}{10}$ inches. The averag weight, $134 \cdot 2$ pounds, the heaviest man being 21 pounds and the lightest $1011 / 2$ pounds; girth of chest normal, $34 \cdot 4$ inches ; girth of chest, inflated, $35 \cdot 8$ inches girth of biceps, $11 \cdot 5$ inches; girth of neck $13 \cdot 8$ inches girth of head, $22 \cdot 4$ inches; girth of waist, 28.1 inches girth of thigh, 19.9 inches, and girth of calf, 13.7 inches capacity of lungs, 4 cubic liters, or 240 cubic inches.
Comparing these measurements with those of the reshman class at Yale fifteen years ago, Dr. Seave finds the average freshman strong physically at almost very point, his lung capacity having risen from 225 to 40 cubic inches. This is attributed to athletic train ing in the preparatory schools, where Dr. Seaver say ten men train where one trained fifteen years ago There are but ninety-seven men, or 38 per cent, of the reshman class who have normal eyes. Seventeen others have one normal eye, the other eye being abnor ual to the extent of at least twenty-thirtieths. Thirty eight men, or about 13 per cent, used glasses before en tering college. No figures are obtainable for discovering whether there are fewer men with normal eyes now han ten years ago, but it is believed that this is the case.

Miscellaneous Notes and Recelpts.
Glossy Blacking for Shoes consists of the following ingredients, according to Neueste Erfindungen und Erfahrungen: Spirit, 126 parts; camphor, 11 parts Venetian turpentine, 16 parts; shellac, 36 parts. Color with 32 parts of a mixture composed of aniline blue, 15 parts: Bismarck brown (phenylene brown), 15 parts and spirit, 800 parts.
To Give Zithers a Soft, Full Tone.-The purpose of an invention which has lately been patented in England is to impart a soft, full tone to zithers, which is purported to be attained by the use of glass rods as frets for these musical instruments. These glass rods may possess any desired thickness, and the strings ar stretched over them in the usual manner. The muquite astonishing.-Neueste Erfindungen und Erfahr quite ast

Artificial and Natural Indigoes.--Leon Lefévre reports the experiments of a dyeing establishment in France which tested the artificial indigo alongside of the nat ural product, in exact comparison, on hank. According to the results obtained, artificial indigo would be about 5 per cent cheaper, on the basis of the 1897 indi go prices, while with the present low price of the nat ural product the same comes 5 per cent higher. A regards the quality of fastness, both are equ
Génerale des Matières Colorantes, 1898, 226.
Varnish and Linseed Oil.-At the occasion of a dispute, O. Bach has conducted experiments to determine the non-saponifiable parts in a number of differently produced linseed oils of authentic purity. He found oil, 0.32 to 0.92 per cent ; extract oil, 0.61 to 0.90 per cent; Baltic oil (nine years old), 0.88 per cent; boiled varnish, 0.43 to 0.74 per cent; varnish prepared in the cold, 0.95 to 1.71 per cent; "stand" oil, 1.0 per cent. From this he forms the conclusion that in varnish (even that prepared in the cold, i. e., by adding resinates) the percentage of unsaponifiable substance should never be higher than 2 per cent at most.-Zeitschrift oeffentl. Chemie, 1898, 167.
"Colored Colors."-The denomination of "colored colors" may sound paradoxical, but as a matter of fact mineral colors are frequently met with of late whose dull and little productive character is rendered more
fiery and richer by an addition of coal-tar colors. In fiery and richer by an addition of coal-tar colors. In ure, if colors sufficiently fast to light are chosen, as is well possible nowadays. But very often this is not done. Thus the eosines used for carminette are very fugitive; likewise coloring with fuchsine and aniline blue fades in the light. If one wants to employ artificial organic coloring matters for fining, faster ones should be employed. According to M. Bottler, the rather fast rhodamines, next methylene blue and meldola blue, which are very fast, deserve a preference. Against the use of ponceau, coccines, and scarlets, which for the most part are not inferior as regards fastness, to the cochineals, whose place they have taken, less objection can be raised. Since it has been established by the above mentioned observations that for coloring various varieties of carminette, velvet red, purple, cinnabar red (vermilion), and chrome red such artificial organic coloring matters are also employed as
are liable to fade quickly, this fact should be given sufficient attention in practice. Carminette is frequently used, prepared with turpentine and English varnish, as a carriage color; likewise vermilion and chrome red.-Maler Zeitung.
Varnish for Photographs.-Varnishes for photographic negatives have to meet very special requirements. They must be colorless, hard, impervious, but at the same time elastic and exceedingly adhesive. If they are not hard enough, the plate is injured in printing the positive copies; if the elasticity is lacking, the negative will easily tear and crack. Another important requirement is exacted from the photograph lacquer : with hardness, elasticity, and viscosity, it must dry so quickly that the plate can be retouched immediately after varnishing. Following are some recipes for photograph varnishes (by weight throughout) 1. Sandarac, 16 ; lavender oil, 12 ; chloroform, 2 ; rectified alcohol, 90. Filter off all insoluble parts. 2. Place shellac in a concentrated solution of ammonium carbonate, extract the latter, and substitute pure water (shellac, 1 part ; water, 8 parts), whereupon the shellac dissolves. 3. Take shellac, 2: sandarac, 12 : mastic, 12 ; ether, 150 . Dissolve entirely and add benzole, 9. 4. Digest dammar, 2 , with acetone, 9 , in a wellclosed flask for two weeks in a warm place, shaking from time to time. Then pour off from the insoluble residue. Several coatings are required of this lacquer, which is also adapted for paper. 5. Gum lac, 75 ; san-
darac, 10 ; alcohol (95 per cent), 915 . 6. Amber, 2 ; copal, darac, 10 ; alcohol (95 per cent), 915. 6. Amber, 2: copal,
2 ; benzole, 4; rectified alcohol, 30. 7. Amber, 4; copal, $2 ;$ benzole, 4 ; rectified alcohol, 30 . 2 . Amber, 4 ; copal,
4 ; mastic, 2 ; petroleum ether, 20 ; rectified spirit of wine, 40. 8. Sandarac, 40 ; turpentine, 4 ; lavender wine, 40 . 8. Sandarac, 40 ; turpentine, 4 ; lavender
oil, 5 ; ether, 5 ; absolute alcohol. 100. 9. Mastic, 2; oil, $5 ;$ ether, 5 ; absolute alcohol, 100 . 9 . Mastic, 2 ;
turpentine, 2 ; bleached shellac, 10 ; rectified spirit, 60 . Care should be taken to use only the purest ingredients obtainable.-Färben Zeitung.

Spiders and Pitcher Plants.
In the insectivorous plants of the genus Nepenthes, a form represented by a number of species and widely distributed over the Indian and Australian regions, as well as in Madagascar, the pitchers or insect-traps, which are usually regarded as expansions of the leaf-stalk, are suspended, mouth upward, at the ends of long tendrils proceeding from the tips of the leaves. The gap ing orifice, frequently strengthened and kept open by ing orifice, frequently strengthened and kept open by
a thickening of the rim, is protected by a lid, which, a thickening of the rim, is protected by a lid, which,
while preventing the infall of rain, offers no obstruc tion to the free entrance of insects. To attract the attention of these animals the pitchers are frequently conspicuously colored in their upper parts, and honey is secreted from glands scattered around the margin of the aperture and on the under-face of the lid. This gaudy and sweetened portion, designed as it is to catch the eye and act as a bait, constitutes the "attractive area. A short distance within the cavity and belo
the attractive area just described, the walls of the pitcher are smooth and of a waxy consistency, so that pitcher are smooth and of a waxy consistency, so that
no foothold is afforded to insects, which are conseno foothold is afforded to insects, which are conse-
quently precipitated to the bottom of the pitfall if quently precipitated to the bottom of the pitfall
luckless or incautious enough to venture on this "conductive" area. The lower part of the receptacle is filled to a greater or less extent with a fluid, contain ing among other substances potassium chloride, malic and citric acids, as well as soda lime and magnesia in smaller quantities, and an enzyme which, in the presence of the acids, has the power of digesting organic natter. This fluid, poured out as a secretion from a large number of glands developed in the adjacent wall of the pitcher, is usually crowded with the indigestible remains of insects, commingled with those of which the nutritious tissues are in process of decomposition
under the action of the alimentary juice of the plants under the action of the alimentary
and of the bacteria which infest it.
The spiders of the family Thomisidæ belong to that artificial section of the order sometimes spoken of comprehensively as the wandering or hunting species as opposed to those of sedentary habit, which spin snares for the capture of prey. Some of the Thomisidæ live on the ground among vegetable debris or beneath tones; others on the trunks or leaves of trees; others again-and those are the species that have attracted
the greatest amount of attention-frequent flowers, and lurk anong the petals on the watch for visiting insects. To this last category belongs the spider Misumena nepenthicola) now under discussion, pecies which invariably takes up its abode in the pitcher of a North Bornean (Labuan) Nepenthes, perhaps referable to the species described as N. phyllamphora; in any case, whatever the name of the plant may be, the Misumena appears to inhabit exclusively he one species, for although several other kinds wer ound growing in the vicinity, they were never ob erved to be tenanted by spiders.
According to that skilled collector and trustworthy observer, Mr. A. Everett, who kindly furnished me with the notes forming the basis of the account here riven, the pitchers in question are some what elongate in shape, and constricted a short distance below the rim, broadening out again as the bottom is ap proached, and narrowing ultimately to a vanishing point where they join the supporting stalk. Just below the upper constriction the spider spins a slight web adherent to the wall of the pitcher. This web is no of the nature of a snare or net designed to intercept
insects, but extends as a thin carpet over a smali por insects, but extends as a thin carpet over a small por
tion of the conductive area, and enables the spider to maintain a secure hold on its slippery surface Here it lives and rears its young, no doubt feeding upon the insects which the Nepenthes attracts for its own use, capturing them either as they enter the pitcher, or perh
So far as procuring food is concerned, this spider would seem to be no better off than those of its allie which live in flowers and capture the honey-seeking insects that visit them, except in so far as it is not de pendent upon seasonal inflorescence for a place where in to lurk. But in one very important respect it mus presumably score heavily in the struggle for existence that is to say, in its means of escaping from enemies It is a well known fact that almost all spiders, especially those that occur in tropical and subtropical countries, suffer immense mortality from the relentless persecution of the solitary mason wasps, which at their breeding season scour the country and explore every nook and cranny in the eager search for spiders
wherewith to lay up a sufficient store of food for the wherewith to lay up a sufficient store of food for the
voracious young wasps during the days of their larval existence. From these enemies the flower-frequent ing species have no means of escape, except such as is afforded by quiescence, in conjunction with the protective nature of their colors, attitudes, and form. The slightest movement on their part will attract the notice of the quick-sighted wasp, and bring swift destruction upon them.
Whether or not the mason wasps have the temerity to invade the pitchers of Nepenthes in their quest for victims, there is no evidence to show. Possibly long-
billed birds thrust their beaks into the insect-trap to
extract any living things or organic débris they may contain. At any rate, the account given by $\mathbf{M r}$ Everett of the behavior of this spider when threatened with danger points forcibly to the conclusion that the species is subject to persecution from enemies of some kind or other. This collector found that when an attempt was made to capture them by tearing open the pitcher, the spiders, although very active, never attempted to escape from the mouth of the vessel, but ran down its inner surface, and plunged boldly into ran down its inner surface, and plunged boldly into
the liquid at the bottom, ultimately, if still pursued, retreating to its very base, and burying themselves among the remains of ants, moths, beetles, etc., with which the pitcher was more or less choked.
Although many spiders of semi-aquatic habits, such as Dolomedes, Thalassius, and some species of Lycosidæ, plunge beneath the surface of water when threatened with danger, and escape along the stems of the subaqueous weeds; and although an example of Araneus (Epeira) cornutus, a terrestrial species, which, however, frequents the banks of streams and marshy country, has been noticed, when disturbed, to drop to the ground, run into the water, hide beneath a tuft of weed, and there remain for a minute or so before venturing to climb back to its web, I am not aware that the adoption of water as a city of refuge has ever been recorded of any member of the family Thomisidæ. These spiders, in fact, as already explained, depend for safety upon protective assimilation to their surroundings. Consequently, the habit of plunging into the fluid in the pitcher of Nepenthes, adopted by Misumena nepenthicola, must be regarded, t appears, as a new instinct acquired by the species n connection with the exceptional nature of its habitat; and its behavior carries with it the conviction that the species is constantly subject to persecution from some enemy other than man, whether it be bird or wasp.
Possibly the spiders, when once they have taken up their abode in the pitcher are, like the insects that venture in, unable to get out again on account of the opposition to exit offered by the slipperiness of the walls of the conductive area. If this be so, they would be compelled, in case of attack, to seek safety in the ower parts of the pitcher; and while those too timid to take the plunge, or too weak to withstand the immersion, would be captured or destroyed, their instinctively bolder or physically hardier companions would be saved to transmit their characteristics; and so by a process of elimination and selection the instinct would be gradually brought to the state of perfection Mr. Everett bas described.
Lastly, if it be wondered by what means the spider is able to resist the action of the fluid, and to regain its position of securitylin the upper part of the pitcher, t must be remembered, in the first place, that a great many spiders, as well as many insects, can be immersed in water and other liquids and withdrawn in a perfectly dry state; and in the second place, that almost all spiders, when dropping from their webs or leaping after prey, insure a safe return to the spot they have left by letting out a drag-line of silk, which passes from the spinning mammillæ to the point of departure. A silken thread of this description would enable M. nepenthicola to climb out of the digestive fluid which retains the captured insects; while the nature of the integument and of its hairy clothing would prevent the penetration of the fluid during the short time that the spider remains beneath it.-R. I. Pocock, in Nature.

A Pygmy Locomotive.

What is claimed to be the smallest locomotive for drawing passenger cars has been built by T. E. McGarigle, of Niagara Falls, and the small steam road is to be operated at the Trans-Mississippi Exposition, in Omaha. In all, six locomotives are to be built. It is possible that they will be used also at summer resorts, such as Coney Island, Atlantic City, and other places. The road in Onaha is about 1,100 feet long. The locomotive from the point of the pilot to the rear of the tender is 7 feet 3 inches long, and it weighs about 600 pounds and can draw ten cars, each containing two persons, or a weight of about 4,000 pounds. From the top of the stack to the rail is 25 inches and the gage is $121 / 2$ inches. The steel boiler is tested to 300 pounds pressure and works at 125 pounds. The boiler is of $11 / 2$ horse power and it will hold 24 gallons of water. The feed water is supplied by two injectors and there is a steam brake between the drivers. The cylinders are 2×4 inches. The wheels of the forward truck are 5 inches in diameter. The tank in the tender holds 30 gallons of water, and the operator sits on the seat in the tender. The scale is about one-seventh of a full sized locomotive, and the type
selected is one of the latest engines on the New York Sentral road.

RUSSIA is going to abolish the difficulties of navigation at the mouth of the Volga by cutting a canal directly from the river to the Caspian Sea. Work on it will begin this summer.

THE GOVERNMENT EXHIBIT AT THE TRANSMISSISSIPPI AND INTERNATIONAL EXPOSITION. It is admitted that the government of the United States is one of the most important factors in the Omaha Exposition. Its exhibit is not only unquestionably the best on the grounds, but it is the best selected collection of exhibit material and the best installed of any previous governmental exhibitions, not excepting that of Chicago. The reason for this is that only men of experience have been placed in charge of the work of accumulating the collections and installing them, and, through the experience acquired at many expositions, the work has been done in a most thorough and satisfactory manner.
Out of an appropriation of $\$ 200,000$ made by Congress for this purpose, $\$ 62,500$ was set aside for the building proper, which was constructed under the direction of the supervising architect's office of the Treasury Department.
The departments of the government represented are the State, Treasury, War, Navy, Post Office. Interior, Justice, and the Agricultural Departments, with the Smithsonian Institution and National Museum and the United States Fish Commission.
The building. which is the largest on the grounds, is 460 feet in length, 146 feet in width at the center, and 100 feet at the ends. One of the g̣hief architectural features of the structure is the dome, the height of which is 185 feet to the torch held in the hand of the colossal figure of Liberty which surmounts it. The facade of the The acade of the cen tral portion of the building is 58 feet high and of the wings 43 feet. It is built of wood and iron, covered with staff, as were the Exposition buildings at Chi cago.
Never before has the Government building at an exposition been so artistic ally and beauti fully decorated, the color scheme and general de tails having been selected and ar ranged months before the begin ning of the work of construction by a decoration committee made up of members of the board.
It would be impossible, in the linuits of this ar ticle, to describe in detail even the main features of the exhibit material, but there are particular exhib its, however,
which give char-
acter to the departmental spaces where installed, and as these are the first to impress themselves upon the great mass of visitors, who, as a rule, seek amusement rather than instruction, they deserve first mention.

Starting at the north entrance, west side, the visitor enters the spacious archway leading to the grotto of the Fish Commission. The exterior is of paneled woodwork finished in imitation ivory and gold. The interior is treated in imitation of a roughly blasted rock tunnel ; numerous stalactites, glistening in a pale greenish hue, depend from the roof of the grotto. On either side are the aquaria tanks, richly decorated inside with sand, rock, and aquatic plants, and so arranged that all light entering the grotto passes through the water in the tanks and their plate glass fronts. In the two rotundas, rocky cascades are formed with large pools, illuminated by electric lights. Al of the tanks and pools, with the exception of eight, are devoted to the display of fresh water fishes reared by the United States Fish Commission and the indigenous varieties of the Mississippi and Missouri River valleys. In the salt water aquarium are exhibited most of the important fishes of the New England coast.
Other features of the Fish Commission exhibit, and which are arranged outside of the grotto, are the exten sive apparatus for collecting, dredging, and trawling, and for preserving collections; for deep sea soundings, transportation, fish hatching and rearing, with a large series of models of boats, vessels, buildings, etc., used in the work of the Commission. There is also a large
and valuable museum collection of marine animals and fishes, both dry and alcoholic, the whole forming a most instructive and beautiful showing of the scientific and practical work of this important branch of governmental aid in the development of our national resources.
The next space is that of the Post Office Department, and, though the exhibit is smaller in size than that made at Chicago, it surpasses any previous attempt to illustrate this branch of the public service, which is so near to the people.
The stamp collection would set a philatelist wild with envy. It includes a complete series of United States postage stamps from their introduction in 1847, including department, special delivery, postage due, and newspaper and periodical stamps; also sets of stamped envelopes from 1853 (date of introduction) to date, and sets of foreign stamps, postal cards, and wrappers to 1898 from all stamp-issuing countries of the world. In the Equipment Division there are models of the "Paris" and of smaller types of mail boats and of postal cars in use in this country, a full sized Western mail coach and models of foreign mail coaches, moun tain mail courier, toboggan and dog outfit employed in snow-clad regions, together with life size figures of city mail carriers of the United States and other countries. The exhibit of the Dead Letter Office is particularly interesting, as it is made up of objects sent through the mails that have never reached their destination. In

THE LAGOON BY NIGHT-GOVERNMENT BUILDING IN DISTANCE.
this incongruous collection will be found explosive bombs, deadly weapons, tarantulas, and rattlesnakes sent alive, and poisonous liquids and compounds, letrten on collars, cuffs, and boards : childrens etc.
There are voluminous postal records and a fine collection of portraits, engravings, and photographs. A branch post office is located near the space, where all the Exposition mail is handled.
The exhibit of the State Department and the Executive Mansion occupies the space directly in the center of the building, west side, and comprises forty-one exhibits, some of them being collective exhibits of great value. Naturally, the larger portion of this exhibit is in the form of books, printed and written documents, maps, photographs, etc., among which are letters and manuscripts of great historical interest and value, diplomatic papers bearing the signatures of kings, princes, and potentates. Among valuable manuscripts may be mentioned exhibit No. 22 , the papers of Benjamin Franklin, arranged in fourteen large volumes, and exhibit No. 23, the papers of Thomas Jefferson, ar ranged in one hundred and thirty-five volumes.
The portrait collection is very interesting, containing the portraits of every President from Washington to McKinley, the portraits of the Secretaries of State, and many others, including old world rulers. Other exhibits illustrate the methods of transacting business in the various bureaus. The medal and coin collections
are very valuable, and there are exhibits of articles of historical interest, such as swords, flags, etc.
The Treasury Department space is the first in the outhwest section of the building after passing under the dome, and its display is particularly attractive. The! exhibit of the Lighthouse Board is a source of wonder to the western rural visitor, who gazes curiously at the immense lenses of first and second order lighthouses. Near the model of a fog bell is a large model of Minot's Ledge light on the Massachusetts coast, illustrating the granite-built form of structure erected on sunken ledges. Models are also shown of the airy and graceful open-work form of iron structure, of which the Fowey Rocks light, on the Florida reefs, is an example. Everything connected with government lighthouses has a place in this exhibit, and a keeeper is on the ground to explain what is not understood.
The collection of coins includes a specimen of every coin struck by the government since its foundation; in fact, the financial branch of the department is illustrated by a complete exhibit of the currency issued by the governinent, from a ten cent piece to a ten thousand dollar gold note. The process of coining the money of the government is shown by the operation of a coin press which has been in use in the Philadelphia mint for upward of fifty years. It has a capacity of ninety thousand dollars per hour, and in coining silver dollars, strikes with a force equal to the weight of one hundred tons.
The Marine Hospital Service exhibit illustrates in a very complete manner the efforts of the government in preventing the intro duction and spread of epidemic diseases. And in its entirety it embraces every branch of media 1 science, including the wonderful X ray apparatus, which, naturally, is one of the popular exhibits of the building.
The Life Saving Service is practi cally illustrated by a crew on the grounds, which gives an exhibition drill in the lagoon daily.
One of the most interesting exhib its in the space o the Agricultural Department is the practical demontration of the in. spection of pork as conducted by his bureau at va rious packing centers in the United States. Assistant microscopists are engaged in making examination of pork samples, furnished daily by packing house at South Omaha, Nebraska. The microscopes and other appliances are similar to those used elsewhere for this purpose. About $11 / 2$ per cent of the carcasses examined show trichinæ, so it is possible for the young lady attendant, in charge of the work, to give visitors an opportunity to see a bona fide example of trichinæ, by means of an extra microscope arranged for the use of the curious public on a table near. A large pathological collection of specimens in alcohol illustrates the many other diseases of animals, while there are models of sheep dipping vats, a collection of cultures of bac teria, etc. The Dairy Division of the department also makes an interesting showing, including a series illns trating the constituent parts of milk.
The Chemical Division illustrates the chemical side of the beet sugar industry, while the progress of entomological science is presented in the next space by interesting exhibits of insects and their work, with the in secticides for their destruction.
A collection of fruit models in wax, prepared by the Division of Pomology, is a very attractive feature.
The instrument tables in the Weather Bureau exhibit are constantly surrounded by inquiring visitors. One delicate instrument, partly the invention of Prof. Mar vin, records on a strip of paper the direction and velocity of the wind, the variations in temperature, the duration of sunshine or cloudiness, with the amount of rainfall, when it does rain, during a given time. For
example, in a recent storm at Omaha a four-tenths fall of rain was recorded in 5 minutes, an inch in 30 min utes, and $21 / 2$ inches for the afternoon. Instruments arranged on the roof of the building are connected by wire with those upon the tables in the space, and the work goes on daily with only a simple winding of the clock mechanism and the changing of the record blanks once every 24 hours.
The Botanical Division confines its exbibit to a collection of poisonous plants and to illustrating the government methods of seed inspection. In the same alcove the division of Vegetable Physiology and Pathology has a most attractive exhibit of the wild and culivated mushrooms of the United States, with a large model of a cellar for mushroom cultivation. Here the mushrooms are found "growing" (in wax) in all stages, and a pamphlet of instructions given out gratuitously tells the visitor how to do it himself if he wishes to embark in the enterprise
In the Forestry Division space is shown a large series of woods. There are also three very instructive relief models of a farm, showing (1) the devastation consequent upon indiscriminate cutting and other destruction of farm forest cover; (2) the method of restoring the forest cover where needed, and recuperating the wasted soil; (3) rational utilization and proper disposition of the farm forest. An outdoor tree-planting ex hibit completes the showing of this division.
A very attractive alcove is that devoted to the flax and hemp of the world prepared by the Office of Fiber Investigations. Thereare 22 panelsmeasuring 2×5 feet, under plate glass, in which are arranged all the leading forms of the flax and hemp of commerce. The examples of flax grown in the United States include one sample, from a departmental experiment, that Irish spinners have valued at $\$ 500$ per ton. This and other specimens near it show conclusively the value of the work done by the Office of Fiber Investigations, for they demonstrate the practicability of the culture in this country beyond question. A frame containing 18 reports published by the fiber office forms a part of the exhibit.
We have now reached the south end of the building having reviewed all the exhibits between the main aisle and the west wall. Starting again at the southeast corner of the building, the visitor finds himself in the interesting space devoted to the War Department.
There is an interesting exhibit of small arms of historical interest, showing the kinds of arms employed in our wars at different periods. There are also a few howitzers and field guns, including a Gatling gun, with many different forms of ammunition and projectiles. The Engineer Department is also well represented by models of fortifications, with miniature siege guns in position, enabling one to get an idea of modern de-

CORNER OF POST OFFICE DEPARTMENT EXHIBIT.
fenses. One of the most interesting exhibits in this branch is the group of torpedoes and ground mines used in harbor defenses, recalling the "Maine" disaster most vividly. The Quartermaster's Department makes a very instructive exhibit of dummies clad in the uniforms of the American soldier at different peri ods of our national existence, including the Puritan soldier of 1620, his Bible in one hand, his blunderbus in the other. A fine equestrian group shows a major general and two aides, of the present date, in ful dress, and near by are the captains of cavalry and ar tillery. There are also army tents, beds and bedding cooking utensils, mess outfits, etc. The Signal Corps is well illustrated, and the Medical Department make a very instructive exhibit from models of hospitals and equipped Red Cross ambulance, down to such details as field medical and surgical chests.
The next space, on the north, is devoted to the five bureaus of the Interior Department. The United States Patent Office display is one of the most extensive exhibits in this department, and it contains many striking features. A working linotype machine is doubtless the main attraction, and whenever it is in operation it is surrounded by groups of admiring visitors, who apparently never tire of witnessing the working of its complicated mechanisms. The cast typelines, hot from the assembled matrices, and ready for
printing, are passed from hand to hand among the lookers-on and the various steps in the work of producing them fully explained.
Many of the patent exhibits have an historical interas illustrating the progress of invention in familiar ines. The sewing machine may be taken as an illustration, the models showing the earliest forms of machines, together with the crude attempts at invention

ONE pF THE WEATHER BUREAU INSTRUMENT tABLES.
made before the sewing machine became a substantial reality, and so on down to the latest modern device. The typewriter, the printing press, agricultural imple ments, and many other labor-saving machines of the present day are thus shown in series, enabling the visitor to study step by step the improvements of a de cade or a century. A wide range of invention is thus illustrated. from nusical instruments to firearms, ord ance, and explosives.
The United States Geological Survey exhibits, first a wall series of geologic and topographic maps. Second a series of relief maps and geologic models, including arge models of the State of Nebraska and the Yellow stone National Park. The Yellowstone Park is also represented by sixteen photographic transparencies, illuminated by electric lights, and by two cases of spe cimens illustrating its geology. Two cases of rare minerals and one of fossils complete the survey display. The Bureau of Education has for its principal duty the collection and diffusion of educational information, but it also administers the schools of Alaska and exercises a limited supervision over the expendi tures of the moneys appropriated to Land Grant Col leges under the Morrill act of 1890
All three of thése functions are most completely illus trated in the space devoted to educational matters, the Alaska exhibit, with its lay figures, and natura history specimens, proving especially attractive to the masses who throng the government building in quest of novelty. An Alaskan sled outfit, drawn by a reindeer, over a platform covered with artificial snow, is a prominent object facing the main aisle
The exhibits of the Smithsonian Institution and National Museum occupy nearly one-half of the north east section of the building, beginning at the main en rance.
The exhibition of the Smithsonian Institution proper ccupies a quadrant under the dome, and its handsome installation material, painted in a soft greenish gray, is in strong contrast to the mahogany cases beyond in which the National Museum exhibits are displayed. The exhibits as a whole tell the story of the founding and perpetuation of the Institution, notable among which are many personal relics of Smithson, a cast rom the bronze tablet recently placed upon his tomb in Genoa, Italy, and a complete set of the publications of the Institution and its many bureaus. There are everal copies of the history of the first half century of the Institution in different bindings-a most valuable document and a superb exhibit of the printer's art as well.
The exhibit of the National Museum proper is one of the most complete and interesting that has ever been made. In preparing this display, two principal objects have been considered: to indicate the comprehensiveness of the scope of the Museum and to represent the manner in which series of objects are arranged, labeled, and displayed in the Museum, at Washington. The cases and general installation materials, for the most part, were brought from Washing ton, though some special features have been introduced that are new. The exhibit is arranged in three grand divisions, namely, the Departments of Anthropology,

Biology, and Geology. Space will not admit even of an enumeration of the subject material in the three sections of the Museum display, and a few examples therefore, briefly stated, must suffice.

The group of anthropological exhibits is intended to inustrate the achievements of the race along a few of the more important lines of activity. Each series of objects epitomizes the subject treated, and presents the leading steps of progress in the simplest possible manner. Here is the story of fire making and illumination: The discovery of the use of fire and the making of fire by artificial means is illustrated by a single series of objects. The story begins with the fire of volcanoes and lightning, is followed by the kindling and keeping of fire, and closes with the utilization of the electric spark. Illumination is represented by two series: (1) the torch, (2) the lamp.
In like manner are completely illustrated the sub jects of tools and utensils, weapons, ceramic art, and metal working, musical instruments, land and marine transportation, sculpture and stone shaping, book making, electricity, and many others.
The Department of Biology covers the entire field o zoology and botany. In selecting a topic for illustration in the small space available, two ideas have been in view: first, to present a series of objects significan in itself and at the same time likely to be of especia interest to visitors to the Exposition; and, second, to have this series sufficiently diverse in character to show the various methods Employed in the depart ment. It comprises the characteristic animals of the salt and fresh waters of North America, from the low est to the highest forms, and the principal types of sea weeds.
The Department of Geology is in several divisions, as follows : Systematic and applied geology, mineralogy, and stratigraphic paleontology, the latter embracing three sections, as paleobotany, invertebrate fossils, and vertebrate fossils.
The Department of Justice has a small space between the National Museum and Navy exhibits, chiefly devoted to portraits of Attorney-Generals of the Uni ted States, important departmental publications, law books of the present and past centuries and papers and objects referring to important periods in the history o our country. In the department of prisons and pris oners there are many objects illustrating prison manu factures, including work of individual prisoners, such as embroideries, carvings, and the many curious ob jects denoting skill and patience that are produced where time is of little value
The Navy Department exhibit of models of our navy is one of the most interesting and instructive ex hibits of any in the Government building, for they in clnde first and second class battleships, cruisers, gun boats and the smaller fighting vessels, among which the "Katahdin" and the "Vesuvius" are prominent. These models are from 3 to 6 feet in length, and cost perhap $\$ 3,000$ to $\$ 5,000$ apiece.
Near the wall is a full-sized model in section of a 13 -inch gun, surrounded by projectiles of various sizes from a 13 -inch shell down to those employed in guns of small caliber. There are a few light machine and rapid-fire guns, small arms of every description, and ther exhibits illustrating every branch of the ser ice, which are studied with interest. Lieut.-Com F. M. Stedman is the representative of the Navy De partment. Perhaps the most striking and attractiv exhibit in this section is a $\$ 2,000$ model of a naval dry dock, built to scale. It represents the type and size of docks to be built at Boston, Philadelphia, Portsmouth and Mare Island. A model of the battleship "Illinois" is floated into the dock from a tank and the whole process of docking is illustrated. The illustrations used in this article, it is hardly necessary to state, are from government negatives.

PORTION OF PATENT OFFICE EXHIbIT
Regarding the government exhibit as an educator, it is worth all the money it has cost the United States, for among the daily throng of visitors the most superficial mind must carry away some impressions of the meaning of the term "The Government" that will make the man a better citizen.

THE OFFICIAL REPORT ON THE WRECKED

 SPANISH WARSHIPS.We have before us the full text of the official report of the naval board appointed by Admiral Sampson to investigate the condition of the wrecks of the Spanish fleet now lying on the Cuban coast. Accompanying the report are a series of photographs and a set of drawings showing the location of the shot holes on each vessel. In our issue of July 30 we gave several illustrations, reproduced from photographs taken the day after the fight, when the ships were still burning, which gave a vivid inpression of the destruction wrought by our shell-fire and by the conflagrations which it started. It is not necessary to reproduce any of the photographs which accompany this report; but we present the four official diagrams showing the number, location. and size of the hits on each cruiser. They are of extreme interest, and those of our readers who are following closely the naval events of the war will find these diagrams of special value for future reference.

In order to expedite the examination and render it a complete as possible, the board was divided into committees to consider the subjects in dicated below
Condition of hull and practicability of saving the vessels.

Condition of ordnance equipment, magazines, etc.

Condition of machinery and boilers.
Effect of gunfire upon the enemy's vessels.
"INFANTA MARIA TERESA. The vessel lies nearly upright, and is down by the stern about five feet. She rests easily, bearing throughout the greater part of her length upon a firm coral sand botcoral tom.
The examination of the structure extended to the protective deck. The frames above water are practically intact, and are doubtless :io below water.
new breech-blocks. The secondary battery of 6 -pound ers, however, is badly burned. The engines are cov ered with water to within six inches of the tops of the cylinders, but they do not appear to have been struck by exploding shells, and there is reason to believe that, if the vessel is raised soon, both the engines and boilers can easily be put in serviceable condition. As our readers are aware, the wrecking operations are being pushed in the endeavor to save this vessel.
Effect of Gun-Fire.-The "Maria Teresa" was struck twenty-nine times, as was also the "Vizcaya." More than half of the hits were by 6 -pounder shells, though it was the larger shells that wrought the greatest destruction. An 8 -inch shell struck the shield of the second $51 /$-inch gun, passed through it, ranging aft, and exploded. "The effect of the explosion." the report says, " upon almost everything about the decks in that vicinity must have been terrific." Another interesting hit, showing the effect of bursting shell in the coal bunkers, was made by a 5 -inch gun, just abaft the after smoke-stack, under the berth deck. It passed through smoke-stack, under the berth deck. It passed through
the wing passage and exploded in a coal bunker, rip
port side away from the frames, completely wrecking verything in that compartment, and made a large ragged hole about four feet square on the starboard side. They both entered at an angle of about 45 de grees with the normal, ranging from aft forward.
"ALMIRANTE OQUENDO."
This vessel suffered more severely than any other vessel. She was hit 57 times, or twice as frequently as the "Teresa" and "Vizcaya," 43 of the hits being made by 6 -pounder guns. The wreck lies uneasily considerably down by the stern, with a slight heel to starboard. The destruction worked by our gun fire was completed by fire and magazine explosions The engines and boilers, however, appear to be intact the protective deck amidships having apparently done ts work well in this ship, and indeed in the case of all our cruisers; but the explosion of the magazines and orpedoes have wrecked the "Oquendo" beyond all ope of saving the ship The hull is practically broken two at the forwar turre An interestin tural fact is brought out at this point; namely, that tural fact is brought out at this point; namely, that
there is a decided weakness at the junction of the for-
 ward and midship portions of the vessel, arising from the discon tinuity of the pro tective deck.
The after 11 inch gun and mount are in ex cellent condition, and in spite of th fact that its turre was struck, th forward 11-inch gun and moun seem to be unin jured. The 51/2 inch battery can be rendered ser viceable by the addition of new breech-blocks One of the afte $51 / 2$-inch guns wa dismounted, and another was pene trated to a depth of $11 / 2$ inches by a 6 - pounder. Th 6 -pounder second ary battery is bad ly burned.
As in the case of the "Teresa," all piping and auxil iaries above th protective deck are destroyed or damaged irreparably.
Effect of Gun Fire.-The effect

DIAGRAMS SHOWING LOCATION AND SIZE OF HITS ON SPANISH CRUISERS.

The deck-beams above water are warped by the heat The end bulkheads above the protective deck are badly warped by the heat of the fire; but the bulkheading below the protective deck, both longitudinal and transverse, is doubtless intact. The outside plating of the vessel is practically intact; but the heat has warped all the deck-plating above the protective deck. The br ard considers that, taking full account of the distri bution of the weights and the strains involved, and taking full account of the reduction of strength, as pointed out, it is considered that with an intact con dition of internal structure below the protective deck, the remaining structural solidity is adequate for the stresses liable to be encountered in wrecking the vessel and those liable to be encountered in any except severe conditions of navigation. There are no indi cations of external explosions, and all deformations can be accounted for by the heat effect of conflagra tion.

The 11-inch guns and mounts are in excellent condi tion, but eight out of the ten $51 / 2$-inch guns require
ping up the gun deck in that vicinity. Another 5-inch
shell did great damage in the same vicinity. Here is the description of the work of an 8 -inch shell, one of the most destructive hits of the battle:
"An 8 -inch shell struck the gun deck just under the after barbette; passed through the skin of the ship and exploded, ranging aft. The damage done by this shell was very great. All the men in that locality must have been killed or badly wounded. The beams were torn and ripped, and the longitudinal bulkhead bet ween the two cabins was badly damaged. The frag ments of this shell passed across the deck and out through the starboard side at an angle of 45 degrees. This shell also cut the fire main."
The only hits made by the largest shells landed on this vessel. It will be seen from the diagrams that no $13-$ nch and only two 12 -inch shot-holes were found on the wrecks. The two 12 -inch shells entered just under the berth deck. They entered through almost the sam hole. They exploded in the stern torpedo manipulat ing room, cutting the beams of the berth deck on the
of the gun-fire upon this ship are described as being "terrific."
"The sides, smokestacks, ventilators, hatch trunks, all seem to have been riddled by shell, by fragments of shell, and by an infinite number of small projectiles. When it is considered that boats which no longer exist were in place and must have been frequently hit, it will be recognized that the effect of this fire was quite sufficient to create dismay among the ship's company besides setting fire to the woodwork. The intense flames to which the three ships were subjected, and the serious explosions of magazines and torpedo heads, caused by the heat of the flames, have so completely consumed all articles and material of inflammable nature that it has been impossible to describe more definitely and in detail the effect of the gun-fires." The8-inch shells demonstrated their destructive power on this ship, one of them striking the hood of the forward 11 -inch gun, at the edge of the port, bursting, and evidently killing every one in the turret and disabling the gun. This is a case where the danger of
carrying a very light shield is demonstrated. Had raise this ship, and should he be successful she will there been no shield, the shell would possibly not have burst. The Chinese removed these shields from their 12 -inch guns to avoid a similar catastrophe.
As evidence that some of our gunners must have got the range and direction with great accuracy, we direct attention to the concentration of shot-holes below the forward $51 / 2$-inch gun sponson, where there are seven holes made by a 6 -pounder besides one 8 -inch hole. Another concentration of fire is seen on the berth and gun decks below the sponson of the after $51 / 2$-inch gun, where there are nine hits by 6 -pounders. In calculating the effects of these little shells, it must be re membered that they all passed through the unarmored shell of the sinip and burst into flying fragments, one 6 -pounder being easily capable of killing or disabling a whole gun crew.
It will be seen from the diagram that a considerable portion of the hull above the flotation line was submerged when the examination was made, so that it is probable that a duzen or more hits lay below the wate and could not be observed.
The board consider that it " would be most difficult if not impossible, to save this vessel."
"VIZCA YA."

Although the "Vizcaya" did not suffer so heavily from our gun-fire, she was so badly wrecked by fire and explosions that the board is of the opinion that it is inadvisable to attempt to save her.

So far as can be determined, the boilers and engines are intact, or, at least, not irreparably damaged.
Effect of Gun-Fire.-The "Vizcaya" received a larger proportion of large rapidfire and 8 -inch shells than any other vessel, being struck by no less than 16 of these shells as compared with only 13 hits pared with only 13 hits by the 6-pounders. The effects on the crew were
proportionately disastrous, and the report states that " it is evident that the fire of the gun crews of the 'Vizcaya' was very materially lessened and almost silenced by their not being able to serve their guns under the severe fire poured upon them by our ships."

The fact that evidence is lacking of the explosion of many of our shell should attract the attention of the Ordnance Departinent. though it is true that pieces of exploded shell may have struck parts since destroyed by fire.

The number of shell that struck the ship seemed to show by their direction that about one-half struck as she was leaving the har-bor-the shell ranging aft; and the other half as she was attempting to run

the gundalow with lateen sail-a relic of early days.

ANALYSIS OF HITS ON SPANISH CRUISERS.

Size of gan.	Namber of hits on each						
	$\begin{aligned} & \text { 密 } \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	宫		$\begin{aligned} & \text { İ } \\ & \text { O} \\ & 0 \\ & 0 \end{aligned}$			
6-pounder....		43					
1-pounder....				..		13	$0 \cdot 15$
4-1nch.........	$\frac{1}{3}$	7 3	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	$\ddot{2}$	12 15	${ }_{6}$	4.00 2.50
6-inch.	1	1		1	${ }^{3}$	7	0.43
8.inch...	${ }_{3}$	3	5	1	12	18	0.67
12-inch...	2			..	2	6	0. 33
13 -nch.	8	0.00
Totals..	29	57	29	8	123	103	..

is possible that the evidences of some hits have been obliterated-such, for instance, as may have been made by shells fired at considerable elevation from long range and have fallen on the decks or superstructure without penetrating the side plating.
Of the 123 hits recorded, 77 , or more than one-half, were made by 6 -pounders. Then come the 5 -inch rapidfirers of the "Brooklyn," which evidently did splendid work against all the vessels, but especially against the "Vizcaya," where seven $\overline{5}$ inch shells got home. The next largest number of hits is to be credited to the 8 -inch and the 4 -inch rapid-fire, the latter guns on the "Iowa" landing 12 shots. The 6 -inch scored three hits, the 12 -inch two hits, and the great 13 -inch guns probably never landed at all. If they had, the mark of their 1,100 -pound shells would be plainly visible on the vessels.
In studying the accompanying table of percentage of hits per type of gun, it is remarkable how closely the results agree with the forecasts as to what would happen in a naval engagement. On the theory that there will be a large number of misses for one hit, it is readily understood how the 13 -inch guns failed to score a single hit -they did not fire often enough. Moreover, of the larger-calibered gunsabove 4-inch, by far the highest percentage of hits per gun was made by the guns of the rapid-fire type, namely, the 5 -inch rapid-firers of the "Brooklyn" and the of the "Brooklyn" and the 4-inch rapid-firers of the Iowa." Another curious
fact is that if the percentage figure $(0 \cdot 43)$ for the 6 inch slow-firers be multiplied by the respective
away.
"christobal colon."
The board found the "Christobal Colon"lying on her starboard beam ends, the stern being about 150 feet from the shore, and her length lying in a direction nearly perpendicular to the line with the beach.
The depth of water at the stern is between five and six fathoms. The bow lies in a depth of about sixteen fathoms.

The deck is quite vertical. The battery on the port side, with the exception of the two forward 6 -inch guns, is clear of the water. The forward and second 6 -inch ports are submerged. The rest of the gun ports on the port side are out of water.

The bottom valves are supposed to be open. Many of the watertight doors were closed by the crew of the "Oregon" before the vessel capsized. The bilge keel is exposed, and also the port propeller and the propeller shaft.

There is no deformation visible in the deck or outside plating, except some dents where rocks had touched the bottom, and there is no evidence of the vessel having sustained any structural injury. The extensive side armor will prevent local injury to the sides now bearing on the bottom, and the board believed that with the integrity of the skin plating and of the decks and transverse bulkheads, the vessel can sustain herself in her present position, even in a heavy surf, with out injury.

Lieutenant Hobson is now engaged in the effort to
fitted with risers at such points as may be considered ANALYSIS OF GUN-FIRE.
It is estimated that about 6,000 shells of all sizes were fired during the Santiago engagement, of which all but such as were aimed at the two destroyers, during the brief time that they remained afloat, were fired at the four armored cruisers. The diagrams of the shot holes show a total of only 123 hits as having been made on the metallic structure of the vessels. At first sight this would appear to be a very low percentage for such good marksmen as our American gurners are universally considered to be. There are modifying circumstances, however, which must be considered in connection with the accompanying table analyzing the gun-fire.

1. The first half of the battle, or that in which the "Teresa," "Oquendo," and "Vizcaya" were destroyed, ook place under the confusion of a dense pall of smoke, none of these three or of the American vessels using smokeless powder. Moreover, what gentle breeze there was, blew off shore frow the Spanish to the American fleet, bearing back both their own and the Spanish moke upon the American gunners.
2. The smoke rendered it difficult to get the range of the Spanish vessels.
3. The diagrams show only the shot holes that were visible above water after the cruisers had settled wore or less in the water.
4. There were a few hits on the starboard side that do not appear in the diagrams.
5. The woodwork having been all burned away, it
ates of fire of the 4 -inch and 5 -inch guns, the result gives very closely the percentage of hits recorded for these guns, namely, 4 and 2.50 .
We should naturally expect, arguing along the same lines, that the 6 -pounder, on account of its very great rapidity of Cre, would have shown the highest percentage of hits per gun engaged; that it does not is due, probably, to the fact that some of the fighting was done at ranges which were rather long for guns of uch small caliber.

THE GUNDALOW.

To one who has had a passionate fondness for boats, who has sailed in all kinds of craft, from rowboat with homemade sail to yacht and coasting schooner, certain occasions stand out as real epochs in life. One may be the first sails in the easy-steering dug-out canoes and buckeyes of the Chesapeake and Hampton Roads, which glide along so quietly yet rapidly, one of the nost interesting relics of the aboriginal life of the Southern coast. Another may be the first sight of a full-rigged ship under full sail on the Atlantic, a picture of incomparable beauty. Then may come the running through a fleet of red-sailed English fishing smacks in a dead calmin the British Channel, the tiny craft in color and contour delighting the eye. The Thames lighters, lying in the upper reaches of the Thames, with picturesque sloping gaff and brailed-up sail, or with their red sails spread driving up the river off Rochester and Green wich, or beating like a fleet of yachts up the Medway, hold a warm place in the memory. Standing on the bridge at warm place in the memory. Standing on the bridge at
Rochester, near neighbor to or successor of the one on
which Mr. Pickwick and the dismal man held converse the writer learned to admire the Thames lighter, craft sacred to the memory of Jacob Faithful, and he still hopes to sail on one. The Venetian boats with painted sails, slender bowsprit and decorated bluff, high bows, the sailing gondola, and the hours spent in learning the mysterious art of gondoliering, when the oar persisted in slipping out of the shallow notch in the forcola, or rowlock, all are golden memories. A sail in the harbor of Levorno on a lateen-rigged open boat, the distant view of a felucca from the Riviera, bring to mind a railroad trip from Newburyport to Portsmouth, N. H., taken simply in the hope of seeing a gundalow, the only American representative of the Mediterranean felucca.
These interesting craft are nearly extinct. By special effort we secured the view shown of the gundalow "Fanny M." She was built in 1888. She is sixty-nine feet long, eighteen feet six inches beam, and four feet draught. The short mast rises twenty feet from the deck, and carries the great yard, sixty-eight feet in length, counterbalanced by iron weights at its lower end. There are 259 yards of duck in the sail.
We are indebted to her owner, Capt. Edward H. Dunham, for the following notes on gundalows, which
form a most valuable contribution to the history of form a most valuable contribution to the history of naval progress on this side of the Atlantic.

Gundalows were used on the Piscataqua and its branches before the revolutionary war. Gen. John Sullivan at the time of that war, with some men, boarded one at Durham in the night time, and went down twelve miles to Forts William and Mary, at the mouth of the Piscataqua, and captured a quantity of powder from the British. Returning to Durham with it, they hid it under an old church, whence it was drawn by ox teams to Concord, N. H., and Bunker Hill, Mass., arriving in time to reinforce the supply used in those momentous times.

They were short decked, bow and stern open, where the freight was carried and propelled by long oars and poles. These were not run with a sail, but later on they were rigged to sail with a short square affair to go in a fair wind.
The first one to go with a lateen sail was rigged by Dyer Foye, of Dover, N. H., about fifty years ago. They also then had a leeboard and rudder.
The ones rigged with square sail were pulled around with oars like a raft. The first boats had no rudder to steer by. A notch was made in the stern in which a steering oar was placed.

About forty years ago they were constructed with full deck. Since then the cargo has all been carried there. Sideboards are fastened up by means of hooks there. Sideboards are fastened up by means
to form bunkers when coal is to be freighted.

Probably the lateen sail was taken from that style of sail used on a boat called a packet which was used to carry cotton to Exeter, Durham, Dover, New Market, and the heads of the streams from Portsmouth, returning thither with provisions. It was a short deck, keel boat. These were in favor, as the sail was portable in passing under the bridges.
It is true that there are very few gundalows left at all and only two that sail, one of which is shown in the cut. The reason of this is the large size of the boat of
to-day, some carrying from fifty to one hundred tons. the average tonnage of the old time ones was about twenty tons, and the difficulty of navigating the large modern gundalows in the strength of the current which runs very swiftly is very considerable, especially through Dover Point Bridge, which was constructed in 1873-74. This is considered one of the hardest passes to navigate in the country, as the cu
The few that do not sail are towed by small steam tugs, which makes the business from a lucrative standpoint less attractive than formerly.

The Rays of the Glow-worm.

The pale green light that shines from the posterior portion of the so-called "glow-worm" is said to be due to the emission of X rays. By the way, this creature
is not a worm at all, but the wingless female form of a is not a worm at all, but the wingless female form of a
species of beetle, the Lampyris noctiluca, and her luminosity is supposed to afford the means of attracting the non-luminous male.
Recently three hundred of these insects, according to the Revue des Sciences, were made the subjects of
experiment by inclosing for two days in a dark chamexperiment by inclosing for two days in a dark cham
ber, sheltered from all foreign lights, and placing before photographic plates screened by several thicknesses of black paper, besides plates of brass, copper, and aluminum ; also a piece of cardboard with a hole in it was interposed between the plates and the phototo be blackened, except at the part opposite the hole in the cardboard. The rays of the Lampyris, therefore, appear to have penetrated the metal and excited luminosity in the cardboard. It was subsequently discovered, also, that when there was nothing between
the sensitized plate and the "worm," the rays acted as the sensitized plate and the "worm," the rays acted as
do those from ordinary light, but in traversing cardboard and certain metals, they acquired the properties of the Roentgen rays. It is suggested that possibly
these creatures have the property of emitting both forms of rays.
The foregoing savors somewhat of the improbable, and the editor of the Revue suggests further and more definite experimentation; he also adds, as regards the be a third form that will prove explanatory.

Olled Clothing.

A suit of oiled clothing such as is commonly worn by sailors,' consisting of a coat and la pair of trousers, costs from $\$ 1.50$ to $\$ 2.50$, according to the quality ; an oilskin sou'wester costs 25 to 50 cents. There are many makes of oiled clothing, including some whose trademarks have been familiar for many years. The oilskin coat hanging outside the outfitting and supply stores in streets along the water front has long been a familiar sign, says The New York Sun.
The life of an oilskin suit depends, of course, primarily upon the wear to which it is subjected, but largely also upon the care taken of it. An oilskin suit will last longer and keep much better if hung up when not in use than it will if rolled up, but it may be that the user has no place to hang it, or that he keeps rolled up to be ready to carry with him at any time as a pilot would do. In dry latitudes, where a
sailor has less occasion to wear them, his oilskins, if sailor has less occasion to wear them, his oilskins, if
cared for, would, of course, wear longer than where they were of ten worn. Usually, the average life of an oilskin suit worn by a sailor would be about a year.
When a sailor's oilskins crack or get worn so that they are not waterproof, he oils them. They may need oiling two or three times a year. There are prepared oil dressings made for this use and put up in little tin cans. Some sailors use oils of one sort and another and some sailors make a mixture of their own for a dressing. The sailor is likely to have a preference for some one brand of clothing and to stick to it. And he has his own ideas as to the best dressing for it, but he carries always with him a dressing of some sort. It
is put on with a brush, the garments being hung up is put on with a bru
and painted with it.
.Oilskin coats worn aboard ship by men before the mast are cut short, so as not to interfere in any way with their movements. The coats worn by the officers of a ship are cut longer. The officers in some cases wear rubber coats, but the oilskin is the coat the ommonly wear.
While oiled clothing and the traditional sou'wester are most familiarly associated in the mind with ideas of sailors and of the sea, they are also, as a matter of
fact, very largely and extensively worn upon the land fact, very largely and extensively worn upon the land
by truckmen and car drivers, and many other outdoor workers and by sportsmen.

Cycles for Farmers.*

Appreciation of the bicycle has penetrated so deeply into the whole American public that one dollar whea is likely to mean a great deal to the cycle trade, on account of placing cash money in the hands of a large class of the population whose purchasing capacity has heretofore been limited. "Kansas City, perhaps the most important market for agricultural implements in the country," says one of the commercial agencies in its weekly summary of conditions, "reports the de mand exceeding all records and sales limited only by the ability to deliver orders." The West needs agri cultural implements and, having the money, buys them. The rural population in the Eastern and Central States is better provided with the tools of agriculture and has less need of investing the money obtained from the sale of grain in this line of goods. The indications of unusual prosperity are therefore less pointed among farmers in the older States, but there is no reason to doubt but what a very gratifying amount of money is in circulation in country district all over, and will be expended in part for a commodity like bicycles, which satisfies nearly all those cravings
for fashion, utility, and sentiment that induce men to part with their money.
What preparations should be made for the trade which seems to be within easy reach under these hopeful conditions is a problem which is already occupying the attention of business men who have made it their particular line to supply rural trade. Catalogue and mail order houses are early in the field with cheap bicycles and undoubtedly will reap a harvest. Great
efforts are visible in the advertising columns of country newspapers on the part of dealers in second-hand cycles, and these, too, will probably be rewarded by a good trade. The most salient point in the situation seems to be the fact that the affiuence of the rural class is something already in operation and more strongly felt in general trade at the present moment than it is likely to be at any later period of the season. Nearly everybody has sold his wheat and has the money where it is instantly available. As time procresses there will be less to spare for purchasing cycle goods than there is now, and thus it seems to become the proper policy for manufacturers and agents to
train their batteries on the new possibilities with as
little delay as may be, and get a stock of suitable goods on hand ready for the very first manifestations of the demand which appears coincidently with mild weather in each locality.
Dealers in small towns probably have it in their own hands to decide whether the business which is in prospect shall be done by them or by the department store in the nearest larger town. Unless they make a special effort to impress their rural neighbors with the merits of their line of goods and are fortified with a respectable assortment of stock to choose from, it is easy to predict that the real advantage which they may be able to offer to customers will be looked upon lightly by the class of people under contemplation, whose inexperience in cycling affairs makes outward appearances all-powerful for business purposes.
In certain territories the great need of immediate action, which is due to the momentary prosperity of the agricultural class, has apparently been realized, for dealers in these localities have lately been sending in many rush orders of goodly size, although previously they were found so callous to the arguments of the hopefulg salesman as to drive this usually suave and that are blessed with very similar possibilities for a brisk business the agents are still sitting with their arms folded and looking unutterably suspicious when a reasonable wholesale price is mentioned. They may a reasonable wholesale price is mentioned. They may
have determined to leave the bicycle business and have determined to leave the bicycle business and
allow it to drift into stronger hands than their own; allow it to drift into stronger hands than their own;
but if this is not their plan, it would seem worth while but if this is not their plan, it would seem worth while
for them to consider if there is likely to be any other period in the year 1898 when their chances for pro. fitable trade will be as bright as just now. Having to deal largely with a new class of buyers and competing with large stores in the nearest large city, their success must depend upon their ability to impress the public forcibly with the commercial inducements at their command, so that the comparison which the ural customer draws between him and the large city tore shall not be altogether in favor of the latter, but shall at least leave a lively doubt for his benefit on the score of intelligent selection of models and responsibility for their workmanship.
In this matter of helping the minor agent to hold up his head and maintain his commercial prestige in spite of a small stock and meager displays, manufacturers have done little, but the prospects of a rushing cash business which is most likely to go to the dealers that make the greatest showing and the smallest prices may perhaps this year induce a new order of things.

The Current Supplement.

The current Supplement, No. 1184, contains a number of articles of unusual interest. "The Design and Construction of a Sensitive Laboratory Balance" is another practical article by N. Monroe Hopkins, who two weeks ago described an electrical furnace for the use of amateurs. With proper attention to the instructions any amateur can make, within a week's time, a balance which will be as good for all practical purpose as one for which he would have to pay $\$ 125$. The balance described is so delicate that when the pans are fully loaded they will turn, with the addition of one-quarter of a United States postage stamp, to either side. The article is accompanied by eight illustrations, giving the various steps in the manufacture of the beam, etc. We are sure that many of our readers will like to have a fine balance for laboratory use if they could make it themselves at small cost. "American Progress in English Industries " is referred to elsewhere editorially. "Something About Brass Furnaces" is an article which will interest all brass founders. "Prince Henry of Prussia, in China," is a handsomely Illustrated article showing the summer residence of the Emperor of China. The late French architect Charles Garnier has an appropriate biographical notice accompanied by a portrait. "Experiments with Currents of High Tension of Great Frequency" describes a number of curious and interesting experiments. "Acetylene Burners" is an article giving detailed illustrations showing the construction of several leading types of acetylene burners. "Glacial Geology in America," by Herman L. Fairchild, is continued This is an important address delivered before the Bos. ton meeting of the American Association for the Ad vancement of Science.

Contents.

September io, 1898.]

RECENTLY PATENTED INVENTIONS.

Mechanical Devices.

LOCK- -EdwARD FACENNER, New York city. The simple in action and durable in construction. The lock has a a asing in which a a fied partition in locoted. In the
casing a popring-presesed bolt is arranged at the front tide aosing a spring-pressed bot is arranged at the front siae
of the partition. This bot comprises a rod movale through the partition, three brackets, rigidly held in the
casing at the rear side of the partition, and two indecasing at the rear side of the partition, and two inde-
pendent tumbless, alternating with the bracketa. Each tumber is capable of engagugg the rod to hold it. In
conection with each tumbler, a ker-rod is ued and operated respectively at the opposite sides of the casing. By the arrangement described, the door can be locked
from the inside, so that it cannot be opened from the frorn the inside, so that it cannot be opened from the
outside, one tumbler being merely left in its normal position.
apparatus for shuffling cards.-Joseph Boort. New York city. The present inventioo provides
an apparatus in which the intermixing of the cards is performed far more thoroughly and expeditiously than by hand. In the apparatue in question, the cards to be
shuffed are introduced into the mouth of a casing containing the operative mechanism and fall through guidepassages upon a series of horizontally movable tapered
fingers. Tteese fingers are attached to a narrow strip having rounded notches in its upper edge. The fingers are inclined downwardly from base to point, and have
a flat bottom and vertical side flanges, the upper edges of which are toothed. The cards falling through the passages are arrested by the strip, in the notches
of which they temporily released, the cards slide off upon the fnnarars, whence
they are discharged. The cards being supported evenly in the same plane and being restrained by the tooth.d flanges, they fall off one by one, so
that they are delivered well shuffed in the receptacle that they are delivered well shuffled in the receptacle
at the base of the apparatus. Thus by a simple, higly
efflient device, cards oughly than is usually done iu shuffling by hand.
aUtomatic playing-Card shuffler.sepr Boorn, New York city. The purpose of this invention is to provide an apparatus for shuffing cards
whereby all players are placed on the samie plane of equality, whereby any advantage gained by using marked cards is nullifed, and whereby a more completet shuffing is attained than is usuaily accomplished manually. The
cards introduced in the casing are divided into three equal parts. Each part is temporarily arrested and supported by on of the tapered fingere of a separator. A spring gear which has been placed in operatiton, actst to
force the esparator or shumfer slowly backward, in which force the eeparator or shuffer slowly backward, in which
operation the cards fall successively off on each side of the fingere and drop into a tapering condenser, slotted in its entire width to allow the cards to pass. In the present invention, as well as in the preceding, it wiil be observed
that the cards are not intermixed by twos and trees, but one by one, attaining tuus a
than has been hitherto possible.
spout-hoisting apparatus.-Henry F. Kubs, Escanaba, Mich. This invention provides an apparatus
for raising and lowering spouts used for discharging material from a wharf into a boat. By means of this apparatus the pulling leverage will be changed with the changing positions of the spout in raising or lowering.
The apparatus comprises a drum tapered in both direcThe apparatus comprises a drum tapered in both direc-
tionos, with the smaller diameter near its ends, theese
toper tions, with the smalier diameter near its ends, these
tapered portions being each provided with aspiral groove or channel. Cables engage in the grooves and have con-
nection with the outer end of the spout or platorm. A nection with the outerenen of tee spout or plattorm. A
tapered and spirally-channeled equalizing drum is tapered and spirally.channeled equalizing drum is
mounted on the shaft of the frrst named drum. The mounted on the shaft of the irst named drum. The
drums are rotated by cranks. A counterbalancing weight rums are rotated by cranks. A counterbalancing weit
has a cable engaging with the equalizing drum. Means outward to strike a boat or the like.
GRader and scraper
GRadela, IIl. The object of this invention is Karraride, machine of comparatively few parts, that will reduce the amount of labor required in grading or excavating. The machine is constructed so that it may be adjusted. to dif-
ferent widtho of road. The ditcher and grader comprises ferent widths of rod. The ditcher and grader comprises
a carriage and a frame mounted to swng vertically with a carriage and a frame mounted to swng vertically with
relation to the carriage, and consisting of side sections. relation to the carriage, and consisting of side sections.
Each section consists of two parts adjustable longitudinally, one part on the other. From the shafts to the side. pieces of the frame, braces extend, which are slotted at thecir inner ends. A bolt extend through the slots of
the
the the overlapped inner ends of pairs of braces. The
ground-breaking devices are operated by the wheels, ground-breaking devices are operated by the wheels,
which in turn are operated by a eeries of sprocket wheels driven by a traction engine.
PLanter.-John S. Earbart and Charles Miller, Miller.ile,
upon the construction of a p planter patented by the sente upon the construction of a planter patented by the same
ioventors. The improvements in question relate partieularls. to the connection between the seed-drop me-
chanism of the three seed-boxes and to the means for chanism of the three seed-boxes and to the means for
adjusting the central seed-box so as to cause the seed to be planted more or lese deeply. The seed-bos is provided with a aupporting frame and with a runner. Side-
pieces on a frame are connected at their rear by a crosspieces on a frame are connected at their rear by a crosi-
piece, and have upwardly-extending forward ends piv-
otall piece, and have upwardil-extencning forward end piv-
otally attached to the e supporting--frame of the seed-box. A wheel is journaled in the rear portion of the pivoted
frame and a a lift-lever is connected with the pivoted wheel-carrying frame. By operating the lever the frame
frem will be raised or lowered, and the wheel will be carried
toward or away from the ground, thus regulating the depth at which the runner shall enter the ground.

Rallway Appllance

CAR BRAKE AND FENDER.-Oliver B. WhitnEx, Marlborough, N. Y. This car-brake and fender is
designed to bring a car almost instantly to a standstill, either at the option of the driver or when an obstruction passes into the fender. The car-brake is provided with link carries the shoe normally in the path of and out of contact with the wheel, and is arranged to allow the shoe to move down into a resting position on the track
in advance of the wheel to permit the latter to run onto in advance of the wheel to permit the latter to run onto
the shoe. A spring-arm extends forwardly from the
$\left\lvert\, \begin{aligned} & \text { shoe. Fised stops on the car-frame hold the shoe in } \\ & \text { place, one of the stops being adapted for engagement by }\end{aligned}\right.$ the arm to guide the shoe forward and upward to a normal, inactive position.
emergenct.crossover.-Frank r. Coatrs, Stamford, Conn, and Orry M. SERPARD, New York
city. This emergency-crosover has a pointrail formed city. This emergency-crosiover has a point-rail formen
of T-rail, with the we and base cut away at one end
at an angle so as to ft against the eide of the track-
rail The head extend over the ehad of the track-
rail and is beveled to rail and is beveled to form an incline for raising the
wheels so that their flanges will clear the track-rail A plate is fixed to the bottem of the point-rail, extends in the direction of its length, and is adapted to rest upon the tie
tion.

Miscellaneons Inventlons.

TRIPLE Val Ve.-Joen V. Weles, Wilmerding, mi. The purpose of this invention is to provide a triple
valve which does away with the uecesity of releesing valve which does away with the necessity of relearing
hè brakes to recharge the auxiliary reservoir, the _seesvoir being at all times fully charged in case of an emer-
gency. The triple valve has a valve-body with two gency. The eriple valve has a valve-body with two
ports independenuy connected with the brake-cylinder. A slide-valva is arranged to uncover one of these ports. to connect with the auxilary reservoir on an emergency
application. The slide-valve is provided with a port having a spring-pressed valve near one end and opening the other into a receess at all times in communication with the train-pipe presesure. The port in the slide-valve
is adapted to connect the other port in the valve-body with the train-pipe pressure.
syringe-nozzle.-Frrdinand Kina, New York city. This syringe-nozzle consists of an approximately semispherical body having its outer or fron ten curved
dowwwardly, forwardly, then inwardly, and extended ithin the body to form an inwardls extending projectherewith a longitudinaly curved the body and forme The inwardy.curved front portion of the body is per-
forated whereby the spray delivered trom the nozzle forated, whereby the spray delivered from the nozzle
will convere toward the center of the nozzle and meet will converge toward the center of
at a short distance in front of it.
folding-bed. - Charuie e. feager, Prairie Creek. Ind. The object of this invention is to provide a justed, and which when not in use wyll present the pearance of an ordinary article of formiture. The bed comprises a head-section, a foot-section, a bed pivoted io the foot-section and sliding into and out of the headsection and a spring secured to one of the sections. This spring is detachably interlocked with the other section, whereby it may be adjusted to assiet in the foldni operation or may be released to prevent such opera-
tion accidentally. By means of a drag-line extension, may be connected and disconnected.
HOE-SLING.-ALLEN J . CARLEYY, Belmont La. To
provide a device which is adapted for use on rakee hoes or long-handled shovels, and which is designed to save much labor, this inventor has arranged a sling comprising a shoulder-strap with elastic sections. A hanger-
section is also provided, which has its upper end buckled section is also proviced, which has its upper end buckied
to the elastic sections at the ende of the shoulder-strap. The hoe is attached to the lower end of the hanger.section by means of a strap.
Chart-table.-Stass N. Grernieaf, Seatile, and Henky Barkrr, Hoquiann, Wash. The chart table pro-
vided for by these inventors is designed to hold chart or maps in place for convenient inspection on board a vesse or other place, the table and map being constructed to be readily folded and stored when not in use. The table has a top consisting of slats arranged closely together
and held in place by some flexible material secured to the upper surface of the slats. A smooth, unbroken topsurface is thus provided when the table is in use. One arms are hinged to the support. Flexible straps hold the chart on the table top. In rolled position the top is held by a strap.
COAL-CHUTE.-JAMEs S. Chew, What Cheer, Ia. This coal-chute is of peculiar construction and is ar-
ranged to divide the stream of coal and to direct it into any of o plurality of passages, so that two or more vehicles may be loaded simultaneously from one chute. The
coal-chute has two branches, a post mounted at coal-chute has two branches, a post mounted at the
meeting walls of these branches and a deflector having a jaw loosely embracing the post. The deflector is mounted to swing on the chate to command each branch
thereof, and the jaw serves to shed the coal past the post.
BU
 Kultown, Pa. The alarm devised by this inventor io
an electrically actuated burglar-alarm. By jarring or breaking a window-pane, door-panel, transom, or the
like, the circuit is closed and the alarm sounded. The wires of the circuit are extended across the window and are connected with the alarm. A circuit-closer is moonted to swing on one of the wires and adaptea
close the circuit when swang out of its normal engage ment with the window.

Designs.

game-board. - Frank b. Wrlls, Masonville, N. Y. This design consists of a box-like body in which wiere is a horizontal partition above the bottom provided with pockets at diagonally-opposite corners of the box-
body, each pocket having an opening. In each of the other two corners, and in the center of the partitiono, openings are also made. Balls are placed in the pockets and the board is to be tilted so as to roll the
balls into the proper openings.
TIRe repairing Plug. - Arrar J . Whislur,
Kokomo, Ind. The plag-stem in this deeign is provided Kokomo, Ind. The plug-stem in this deeign is provided
at its lower end with an anwardy flaring rim, the outer at its lower end with an npwardy flaring rim, the outer
side of which tapers at its lower end to a point. This ride of which tapers at its lower end to a point. This
rim extends upper end of the stem, the space within the rim being
conical and extending from the lower end to about the level of the upper end of the stem.
Nort.-Copies of any of these patents will be furnthe name of the patente, title of the invention, and date of this paper.

Business and Wersonal.
The charge for insertion under this head is one Dolarar a
line for each insertion a about teoaht worres to a ine
line for each insertion : about eitht worrs to a line.
Advertisements must be received at pubbication office

Marine Iron Works. Chicako. Catalogue free.

For mining engines. J. S. Mundy, Newark, N. J
Gasoline Brazing Forge, Turner Brass Works. Chicag
Yankee Notions. Waterbury Button Co., Waterb'y, Ct.
FERracute Machine Co., Bridgeton, N. J. Full
The celebrated "Hornsby-Akroyd" Patent Safety oll Engine is built by the De La Vergne Refrigerating Ma-
chine Company. Foct of East 138th Street, New York.

The best book for electricians and beginners in elec-
ricity is " Experimental Science," by Geo. $\dot{\text { M. Hopkin }}$ tricity is " Experimental Science," "b Geo. M. H. Hopkins.
By mail, \$4. Munn \& Co., publishers, 361 Broadway, N. Y . Michigan Military Academy
Orchard Lake Michigan.
Twenty-frst year. Prepares for leading Universities. Gradu ates are now in Harvard, Yale, Princeton, Cor50×100 feet. Address Colonel Rogers, Supt.
Send for new and complete catalogue of Scientifc
and other Books for sale by Munn \& Co., 361 Broadway New York. Free on application.

HINTS TO CORRESPONDENTS
 or no attention will be paid thereto. This this is for ous
information and not give date of paper and articles or panswers should
quir ies not annwered in reasomber of question.
be repeated : correspondente whiond
will bear in mind that some answers require not a little research, and,
though we endeavor to reply to all either by lettei or in this department. each must tate his turn
Buyers wishng to purchase any article not at vertised
in our columns will be furnished with addresses of
 expected withont remuneration.
Scientific American Supplements referred
to may e ehad at the offce. Price elo cents each
Books referred to promptiy supplied on receipt of Minerals sent for examination should be distinctly
marked or labeled.
(7485) W. A. T. writes: Will you kindly inform me as to the number of pounds of gun cotton or explosives used in the 13 -inch shell \& A. The 13 -in
(7486) O. S. K. writes : I believe I saw at one time in your publication the method of placing an egg in a bottle. Think some acid or something was used to soften the shell and then the egg was placed through the neck of the bottle. A. In order to make
eggs enter a decanter or a bottle, it is necessary to soak an egg for about twenty-four hours in acetic acid or but must be handled with care. It will be an easy mat ter for the egg while in this state to euter the mouth of the bottle. It can be helped along greatly by the use of a funnel, as wide as possible as will just enter the bottle.
If the egg is now placed in the funnel, it gradually finds If the egg is now placed in the funnel, it gradually finds
its way and by its own weight drops into the bottle. The bottle should be about half full of water, both to check the fall of the egg and to prevent its breaking and at the same time it hardens the shell, which after the opera tion is very thin, more so than originally. An egg can also be passed half way through a finger ring, and in
that condition placed in water, and it presents a very curious appearance-an egg with a ring around its cen-
(7487) C. E. G. writes.: Please inform me how much No. 10 wire for the primary and No. 36 for the secondary of an induction coil will be needed to
give a four-inch spark, and how large a core, also how many square feet of tinfoil for the condenser, and what kind of a battery and how many cells will be needed A. We cannot give you defnite quantities for your 4 inch A. We. Use two layers of No. 10 wire for primary.
cors secondary you will do well if you get 1 inch of spark for 1 pound of No. 36 wire. Some maker claim to do better than this. You may have to use
2 pounds per inch of spark. We cannot tell. For battery you can hardly do better than to use the bichromate plunge battery. If you wish to make it, follow pattern in Scientific American Supplement, No. 792, price 10 cents. Six cells, perhaps four, will be enough
for your coil. Your core may well be $11 / 2$ inches by 12 inches. The condenser requires about 75 square feet o tinfoil. Probably no two 4 -inch coils are alike in al coil giving that length of spark.
(7488) H. M. J. writes : A question was raised here in regard to the speed of the "Columbia"
and "Minneapolis." Would like to have you answer it and "Minneapolis." Would like to have you answer it is the standard offlial time each makes in knots? What is the greatest speed each has mades A. The greatest
speed of both the "Minneapolis" and "Columbia" was made at their official government trials, when the
"Minneapolis" made 23.073 knots per hour and the Minneapolis" made
Columbia" 228 knote
(7489) C. H. B. writes : Kindly inform ne how to construct a cheap balloon, one that may be
ueed repeatedly, with a lifting power of about eight pounds. What is the size and pitch of the propeller
wheels on the torpedo boat "Porter"? A curious fact wheels attracted my attention, and I have sought a plausible explanation in vain. At Pensacola, Florida, near the seashore are many flowing wells, usually less than one
hundred feet in depth. The tide here rises about two
feet once a day. When the tide is high these wells fow much more freely than when the tide is low. Some weak
wells have been observed to flow only during high tide. welis have been observed to flow only during high tide.
It you can explain how the tide can antect water It you can explain how the tide can affect water above
it level I sball be pleased to have you do so. That it does do so is evidenced daily at this place by the flowing well. A. An interesting illustrated description of the AMERICAN SUPPLELEMNTI, No. 413, and also a practical papper on balloon construction in No. 726,10 cents each mailed. A balloon to lift 8 pounds should have a ca-
pacity of 125 cubic feet. We have no dimensions of the pacity of 125 cubic feet. We have no dimensions of the
Porter's propellers. The subway waters near the sea flow into it and are influenced by the rise and fall of the tide in the same manner that sluggish rivers rise and fall with the tide, although their waters may constantly fow
seaward. The rise in the tide increases the undergond resistance to the in the tide increases the underground ocean. The waters of artesian wells near the sea have their natural outlet at various distances from the shore,
according to the depth and formation of the water-bear ing strata. Variations of pressure by tidal action over the outlets of such subterraneous waterways will react upon artesian well flow for a considerable distance from the ocean. Ordinary surface wells near the ocean are influenced by the same causes, and are found to (7490) L. H. M. writes: Will you please answer in your next isgue of the Scirsmiric Amprican
through the Notes and Queries column the following questions: 1. How many and what kind of storage bat
ques teries would it require to lig canale power? A.
descent tamps, 52 volts, will require 28 cells of 7 plates, each 734 inches by 734 inches. These will discharge 8
hours at the rate of 15 amperes. This answer is baed upon the tables isgued by the Electrical Storage Battery
Conpany, Drexel Building, Philadelphia, Pa. 2. Which Conpany, Drexel Building, Philadelphia, Pa. 2. Which
would be more economical-52 or 110 volts for lights 9 would be more economical-5 or 10 volte for lights?
A. There is no difference in electrical efflciency of 52 and 110 volts. If you adopt 110 volt lamps, you will require
58 cells of battery. The cost of battery will be more than twice as much. 3. What would be the smallest dy namo that would charge the batteries? I want to run the dynamo by water power. A. You will require a cur-
rent with 70 volts pressure for charging the battery. For rent with 70 volts pressure for chareging the battery. For
the best rate of charge the dynamo should give 30 amhe best rate of charge the dynamo should give 30 am peres. This will charge the battery in 4 hours. 4.
Would it be posible to make the batteries and dynamo myself, and where could I gel information about making them? A. If you are a rood machinist, you might make the dynamo; but cells which do not infringe some patent would not be worth much. 5. About what would be the frrt cost and the after operating expeneses? A. We
do not know whiat it would cost you to put in your plant. do not know what it would cost you to put in your plant. Probably twice as much to build it as to buy it. The
cheapest way is to get a kilowatt machine and light your cheapest way is to get a kilowatt machine and light your
lamps directly with it. There does not seem to be any need of using a storage battery. You can obtain information about the storage cell
Cell," price $\$ 1,75$ by mail.

NEW BOORS, ETC.

Alternating Currents of ElectriCITY AND THE THEORY OF Trans-
FORMERS. By Alfred Still. numerous diagrams. London and New York: © Whittaker ${ }^{\text {1898. }}$ Pp. 884 . Price $\$ 1.50$.
This book has been written, not only for engineering students, but also for those engineers who are but slightly acquainted with alternating current problems, or who,
though their practical knowledge of the subject may be extena heir practical knowledge of the subject may be
 which will enable them to solve many if not the greater number of problems likely to arise in practice. The in large degree avoided. As this is a very important subjec of electrical engineering, the present work will undoubt edly have a large sale.
 The present work is one of the best works we have
seen on mechanical drawing. It is filled with ex-
cellent illustrations of the kind of drawings which the cellent illustrations of the kind of drawings which th draughtsman would be compelled to make in a shop,
such as full details of lathes, stuffing boxes, cranks, bolts, etc. Theoretical problems are far from being ne tered throughout the book illustrations is specially adapted for the use of stndenta who wish to acquire a competent knowledge of me-
chanical drawing at home. The large size chanical drawing at home. The large size of the pages enables the drawings to be reproduced on a large scale
and also permits a handsome face of type being used. The book is most creditable in appearance.

A Catalogue of the Scientific and Technical Periodicals. 1665-1895.
Together with chronological tables Together with chronological tables Carrington Bolton.
Washington. 1897. Second
Pp. 1247 . The first edition of this catalogue was pub The first edition of this catalogue was published in 1885. The value of Dr. Bolton's service to science is very
great. We are indebted to him for the Bibliography of Chemistry and for the present catalogue. They both have been labors of love and have been executed with
remarkable accuracy and zeal. It is difficult to know remarkable accuracy and zeal. It is difficult to know
whom to congratulate most, Dr. Bolton for the valuable whom to congratulate most, Dr. Bolton for the valuable
volume whicb he has compiled, or the Smithsonian Involume whicb he has compiled, or the Smithsonian In-
stitution, which has published this work, which could never pay its expenses. It is gratifying to know that \mathbf{w} np and publish manuscripts of this kind. The value of the Smithsonian Institution in the increase and diffusion of knowledge is recognized throughout the world.

INDEX OF INVENTIONS For which Letters Patent of the United States were Granted AUGUST 30，1898， and each bearing that date．

Acid and echarping water theremith apparatus

Cycite drive whel., motor, C. E. Roberts.

 Fence machine．Wi．H．Walker

and

ゆमDertisements．

ORDINARY RATES． Inside Page，each insertion．－ 75 cents a line
Back Page，each insertion，－ $\mathbf{8 1 . 0 0}$ a line CWi For some classes of Advertisements，Special and
Hioher rates are required．

 WOOD or MEIRL WORKERS
 OotandHandPowerIMachinery

AMERICAN PATENTS：－AN ITNTER

 MACHINE DESICN，

Taught at Your Home for $\$ \mathbf{\$}$ ？ This pays for Tert Books，Drawing Plates，and
Instruction until you complete the course． E UNITED CORRESPONDENCE SCHOLS， F．W．Ewald，Gen．Mgr．154－158 Fifth Ave．，N．

WALWORTH PIPE VISES
are the Heaviest and Strongest vises made． WALWORTH MFG．CO． 20 OLIVER STREET，BOSTON，MASS． TRANSITS AND LEvELING INSTRUMFNTS．
ADEW USTABLE BENCH LEVEL
 Size 4 in．to 18 in．Price 82.50 to 88 ．For book on the le P．C．Box gry，ATHARSOL，MASS．，A．S．
 LATHES CUANSTITHS．Tool MAKERS，EXPERI－
 Rockford，Ill．
ACETYLENE APPARATUS

HIGH GRADE WOorsma MACHINERY
Single Machines or Com plete Equipments for Any Class of W ork
our Correspondence is Solicited． A A．FAY \＆CO
J．A．FAY \＆CO．
$0-30$ John St．，CINCINNATI，OHIO

DORMAN＇S

 ARMSTRONG＇S PIPE THREADING ARE

CUTTING - OFF Watro finad fobifichen

 Gate．H．Asbell．．．．．
Gate A．

J．Murray，．i．．．．．．．．．．．．．．．．．．．
Locomorve．nine，
Loom reed，E．Adamson．

 Plow subsoil attachment，riding，Twomey \＆M
Post．See Fene post．
Powder oompresor．．．C．Clark．
Powder distributing apparatus．
Po．T．Merriili．．

Radiator，A．H．Fowler．
Rail and Joint thereor，
Rail bond．W．Halley
Railway，G．J．Capewell．

 Reaping machine，J．Macphail．
Recorder．
See Time recorder．

Sash
Sash
Sash
Sash
Sash

Separator．see Sheet separator．
Sewing mantine，multiple．Kuhn $\&$ Kluge．．．．．
Sewing machine into
throwing，G．S．Neeler out of gear，means

Buy Telephones
 tee and instruments are both guaran－
WESERN TELEPHONE CONSTRUCTION． WESTERN 250 －254 South Clinton St Chican Largest Manufacturers of Telephones
exclusively in the United States．
A TIGTET GRIP．

THE OBER LATHES

The Ober Lathe Co．，Chagrin Falls，O．，U．S．A． PHOTOGRAPHY IN COLORS．－FOR－

Che Scientificic American

PUBLICATIONS FOR 1898.

The prices of the different publications in the United
States，Canada，and Mexico are as follows： RATES BY MAIL．
 Scientific American Supplement（weekiy），one year， 5.00
Export dedition of the Scientitc American（month－
Iy in Spanish and English． Building Edition of the Scientifc American
（monthly），2．50

COMBINED RATES
in the United States，Canada，and Mexico．
Scientiffc American and Supplement，
Scientiflc American and Building Edition，
Scientific American，Scilentittc American Supple－
ment，and Building Edition，
Terms to Foreign Countries．
The yearly subscription prices of Scientific American
publications to forelgn countries are as follows：

$\begin{array}{llll}\text { Scientiflc American（weekly），} & - & -84.00 & 016 \\ \text { Scientifc American Supplement（weekly）} & 6.00 & 14\end{array}$ Building Eintion of the Sclentiff Amer－
ican（monthly），
s．00 012 Expport Edition of the Scientific Amer
ican（monthly）in Spanish and Eng lish
3.00
0 Combined Rates to Foreign Countries． Sclentific American and Supplement， －$^{8.50} 11111$
Scientific American and Building Edi－ Scientifc American and Building Edi－
pplement，and Scientific American 11.00
ETP Proportionate Rates for Sixt Month
The above rates include postage，which we pay．Re－

