
a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS CHEMISTRY. AND MANUFACTURES.

|  | NEW YORK, JULY 16, 1898. | [ \$3.0 WEEKLI. |
| :---: | :---: | :---: |


1.-A TYPICAL CURVE AND TRESTLB.

2.-30-TON GEARED ENGINE WITH TWO TRUCES.

3.-THE "DOUBLE BOW KNOT"-TRACK PARALLELS ITSELF FIVE TIMES.

4.-VIEW from summit, looking toward san frangibco bay.
7.-A TRUCE WITH GEAR-CASE OPENED. GEARED LOCOMOTIVES ON THE MOUNT TAMALPAIS SCENIC RAILWAY.-[See page 39.]

## Sricntifir smerican.

ESTABLISHED 1845
MUNN \& CO.,
Editors and Proprietors.
published weekly at
No. 36I BROADWAY,
NEW YORK.
TERMS FOR THE SCIENTIFIC AMEIICIAN Established 1845.)
One copy, one year. for the U. S. Canada or Mexico...
One copy, six months, for the U . S., Canada or Mexico
 Remit by pustal or express money order, or by bank draft or check.
MUNV $\&$ CO., Sil Broad way, corner Franklin Street. New York. The scientiflc American Supplement Established 1896
Is a distinct paper from the SCLENTIFIC ANERICAN: THE SUPPLEMENT
is issued weeky. Every number conta ins lib octavo pages, uniform in size
ist



Building Established 1.885.)





Export Edition of the Scientifle American


Rif Readers are gecilly freauseded to notify the
NEW YORK, SATURDAY, JULY 16, 1898.

| nte |  |
| :---: | :---: |
| ed art | ed with an asterist |
|  |  |
|  | Sele |
| Sour |  |
|  | Soeama, opening of |
| Comer |  |
|  |  |

## TABLE OF CONTENTS OF <br> Scientific American Supplement No. 1176 .

## For the Week Ending July 16, 1898.


II. CIVIL ENGINEERING
ili. commerce.-Trade and Iv. ECONOMICs.-The Right to Property in an Idea
V. FORESTR Y.-Historical and Mythological Tree


Variations in the Form of the Heart:-7iiiusitrations.
VIIL. MICROSCOPY.-Notes on Microscopical
IX. MISCELLANEOS. Miscentile

X. PHOTOGRAPHY.-Animated Pictures.
XI. PHYSICS.-The Bolometer.-
XI. PHYSICS.-The Bolometer.-By Dr. S. P. LANGLEY. XII. TECHNOLOGY.-Colors Used in the Manufacture of Soap...

## CONTENTS

Of the July Number of the
SCIENTIFIC AMERICAN, BUILDING EDITION (Illustrated articles are marked with an asterisk.)


## the debtruction of cervera's fleet

Before the opening of the present war the world was naval warfare was as great as theoretically it could be proved to be. The question has already been answered in two hemispheres. At Manila a fleet of nine cruisers, fighting beneath the shelter of friendly fortifications, was annihilated in the course of a single morning; at Santiago de Cuba as fine a squadron as ever sailed the seas, comprising four swift armored cruisers and two
of the largest and most powerful torpedo boat deof the largest and most powerful torpedo boat de
stroyers in the world, was wiped out of existence in less than sixty minutes.
It is remarkable that in both cases the beaten fleet was overwhelmed by the same element of a ship's offensive powers-the gun. In neither case was there any call for the services of the ram or the torpedo.
The war between China and Japan gave us an inkling of the importance of the gun in modern naval war fare. Nianila and Santiago have established it as par excellence the deciding factor (always supposing, of course, that it is well handled) of the sea fight of the future. Had it not been for the accuracy, heavy caliber and great carrying power of our guns, the speedy ships of Admiral Cervera's fleet would now be anchored in Havana Harbor, and our whole plan of campaign, both naval and military, would have been upset. As it is, thanks to the splendid marksmanship of our men, we were able to "wing" the flying cruisers, close in with them, and complete their inevi table destruction
Just why Cervera elected to run the gauntlet of ou fleet is a matter of speculation. Either he foresaw the speedy fall of Santiago and feared to be caught between the guns of army and navy, or, as is reported, he acted under the instructions of General Blanco to make a dash for Havana Harbor. There was much to be gained by such a move if it could be successfully car ried out. Once out of Santiago, Cervera's fleet would have constituted a serious menace to our communi cations, and its escape would have removed the osten sible object for which the army was landed, namely, the capture of the fleet. The center of operations would have been transferred to Havana, where the
strength of the Spanish army is gathered, and the system of defense is by this time enormously strong.
Whatever the cause, the fact remains that, after tak ing on as full supplies as were obtainable, the flee moved at full speed out of the harbor, and attempted to break through the blockading fleet by steaming along the coast to the westward. Its chances of escape were good, all things considered. The four cruisers "Christobal Colon," "Teresa," " Oquendo," and "Vis caya," were all of 20 knots speed, the last, indeed, hav ing made 21 knots on her trial, and the destroyers,
"Furor" and "Pluton," were supposed to be good for "Furor" and "Pluton," were supposed to be good for
28 and 30 knots. Against them were the "Iowa," 17.1 knots; "Oregon," 16.8 knots; "Texas," 17.8 knots; and the "Brooklyn," 21.9 knots, together with a couple of converted yachts of 16 or 17 knots speed. Our ships were lying some $21 / 2$ miles from the entrance, and, a the Spanish ships turned sharply to the west and hug ged the coast, their escape from all but the "Brooklyn" was assured, unless they could be brought down by some well-placed shells. Moreover, judged by the canons of modern warfare, the possession by the Spaniards of powerful and numerous rapid-fire bat teries gave them a decided advantage in a running
fight, for, by concentrating their fire on the unarmored ends of our ships, they should have been able to retard their speed to such an extent as to make their own escape certain.
They came out of the harbor with every gun shotted and opened a heavy fire as they steamed past, the at tack being concentrated on the "Iowa," as being the most formidable ship of the fleet. The plan of battle was to disable the "Iowa" and draw after them the swifter "Brooklyn," hoping to close in and cripple her when they had drawn away beyond range of the heavy guns of the battleships
The plan, so far as the ships were concerned, was feasible. Had the conditions been reversed, and the Spanish fleet been in American hands and vice versa it would undoubtedly have been successful. As it was, American gunnery won the day, and won it in very short order. In less than twenty five minutes from the moment that the bow of the "Christobal Colon" first showed at the mouth of the harbor two of the Spanish ships had been driven on the beach; in less than three quarters of an hour another had surrendered, and in fifty-six minutes, according to one of the officers on the "Iowa," the whole fleet of six ships had been driven in a sinking condition upon the coast.
The Santiago fight has served to blast the reputa tion of the torpedo boat destroyer, which had alread been shaken by the repulse of the "Terror" a few day before at San Juan by the ocean liner "St. Paul." The converted yacht " Corsair," now the "Gloucester," engaged these two vessels with such success that one of them, at least, appears to have been sunk by her fire. It is true the destroyers were designed for attacking torpedo boats, and their opportunities for offensive operations against larger craft are supposed to be con-
fined to foggy weather and dark nights. Yet we cannot but feel that with their great speed something might have been done, even on this bright Sunday morning. As it is they have proved the easiest kind of prey for ships which have only recently and hastily been converted from uses of pleastre and commerce to those of war.
We spoke last week of the undying value of the personal equation in modern warfare. Santiago adds its eloquent testimony to the truth that to-day, as of old, it is the " man behind the gun" that wins the fight.

## OUR ARMY AT SANTIAGO.

The rank and file of the American army has again demonstrated its ability to fight its way to success through and in spite of difficulties that might well have dismayed a veteran army. In estimating the work done by our men in the fighting of Friday and Saturday, July 1 and 2 , we must remember that they were not only attacking seasoned troops entrenched in strongly fortified positions, but the attack was made under a tropical sun and in a climate which is known to be one of the most trying in the world. The difficult nature of the country prevented the bringing up of supplies fast enough to provide the troops with full ra tions, and the execrable condition of the roads ren dered it impossible to bring to the front sufficient artillery to cover the advance of our attacking columns.
In view of the frightful cost in killed and wounded at which the heights were stormed and taken, much of it due to the shrapnel which was used with deadly effect by the Spanish artillery, it will be asked why the attack was not deferred until we had time to bring up an adequate number of guns to silence the enemy' batteries and properly cover the advance of our men. It is probable that the deadly nature of the climate, and the desire to attack before our ranks had been thinned by sickness, had much to do with the precipi tancy with which our troops were rushed against the Spanish entrenchments.
But without entering into criticisms which must at best be based upon partial information, the country nay feel a just pride in the splendid fighting qualities displayed alike by our regular and volunteer regi ments. The taking of El Caney and the storming of San Juan heights have shown that the combined dash and steadiness which were conspicuous on both side in the great Civil War may still be counted on to win the country's battles when we are called on reluctantly to take up the sword
It was a soldier's fight, in which the gallant leadership of the officers met a noble response from the men; and the heroism of those two days is witnessed by the endless stream of dead and wounded that moved slowly to the rear during the long hours of that memorable struggle.

## THE LOSS OF THE " BOURGOGNE."

Our readers are already familiar with the harrowing details of the loss of the "Bourgogne," with 560 lives, in the North Atlantic. We have no intention of entering nto a discussion of her general features of the disaster urther than to observe that, as contrasted with the detestable cowardice and villainy of the crew, it is a nournful gratification to know that the officers did their duty to the last and to a man perished with the ship.
The awful suddenness with which the ship went down as the result of the complete failure of her watertigh compartments will shake the confidence of the pub ic, already rudely strained, in the system of water tight bulkheads as a means of keeping an injured ves el afloat. The "Oregon," the "Elbe," and now the Bourgogne" testify that, however perfect it may be in heory, the subdivision of a modern liner is not a sur guarantee against foundering
We wish to draw attention to one feature of the wreck which is very suggestive, and indicates that there is a faulty element in the arrangement of the bulkheads which may have been answerable for their failure to keep the vessel afloat. We refer to the fact that the ship commenced to heel heavily from the moment she was struck, and that the decks before she went down were inclined at an angle of $45^{\circ}$. This heel was due to the fact that the longitudinal bulkhead which divides a ship from stem to stern into two equal halves prevented the inrushing water from passing clear across the vessel, and threw her out of trim. As the heel increased, the water must have risen above the lower and possibly the upper row of gangways and portholes, and finding its way in through these it must have hastened the end.
It was the longitudinal bulkhead that caused the British battleship "Victoria" to capsize after she was accidentally rammed by the "Camperdown." Had the water been free to flow clear across the vessel, she might have sunk until her bow was almost awash, but it is probable that she would have kept afloat long enough to be towed into harbor or run ashore. As it was, the starboard compartments being filled, while those to port were empty, the ship was thrown over to starboard until the water, rushing in through the gunports, completed the capsize.
It is a question well worth considering whether th
safety of a vessel would not be better secured by making the transverse bulkheads more numerous and dispensing with the longitudinal bulkhead except as a division between the engine rooms. In this case, if a couple of compartments were filled by the smashing of a bulkhead in collision, the ship would be filled clear across from side to side, and she would merely settle low in the water, without any dangerous list to one side or the other
The question is well worth the careful consideration
of our marine architects and builders.

## OUR FOREIGN COMMERCE.

The most remarkable eleven months in the history of American commerce is graphically told in the last summary prepared by the Bureau of Statistics, which has appeared a month earlier than is usual with these tabulations. Ordinarily this pamphlet is rather dull reading to all who are not in any way interested in finance or commerce, but the present issue contains remarkable figures, which are startling to all who have not closely watched the fiscal year which has just drawn to a close. These figures show in brief that our exports more than doubled the imports, and more manufactured goods are exported than are imported, and more gold has been brought into the country than in any preceding year.
An analysis of the tables is interesting, especially in view of the fact that for many months we have had the menace of war hanging over our heads, and some of the time actual warfare, which usually tends to decrease export trade; but this has not been the case in the period we are considering.
During the eleven months ending with the last day of May, 1898, our imports of free and dutiable mer chandise a mounted to $\$ 563,770,032$, against $\$ 679,547,391$ for the corresponding period of 1897 . This is offset by the export of domestic goods to the amount of $\$ 1,117$, 284,973 in 1898, against $\$ 960,120,120$ in 1897. In other words, foreign countries owe us $\$ 553,501,941$ for the value of goods which they received from us in addition to the goods which they have sold us for our consumption, or $\$ 280,572,729$ increase in a year.
The ratio of imports to exports is best told by the annexed tables :

IMPORTS INTO THE UNITED STATES.


The greatest reduction in the imports considered by classes was in manufactured articles ready for con sumption, which fell off from $\$ 117,352,182$ in the eleven months of 1897 to $\$ 75,930,142$ in the same period in 1898. For the first time American exports of manufactured articles are exceeding imports, which is of deep significance, owing to the special facilities for manufacturing which Europe affords because of the cheapness of la and the utilization of water power, cheapfuel, etc.
Of the $\$ 563,770,032$ worth of articles imported into the United States, $\$ 267,448,136$ came in duty free, or $47 \cdot 44$ per cent of the total imports. The duties collected on the $\$ 296,321,896$ worth of goods which were subject to duty amounted to $\$ 135,263,865$, a falling off of $\$ 19,-$ 492,376 , a sum which we can readily spare when we think of the splendid balance of trade in our favor.
The tables are capable of more minute analysis, but this would probably be fatiguing to the average reader, and the 1878 pages in the annual volume to date may well be left to the statistician; it is enough for the average reader to know and rejoice that in our year of trial over $\$ 550,000,000$ has been or is to be paid to us, so that we are receiving nearly $\$ 2,000,000$ for each working day, a truly magnificent sum to be charged up on the credit side of the ledger.

## THE HOSPITAL SHIP "RELIEF."

The War Department has had this vessel fitted up in the most approved style for the comfort of the sick and wounded soldiers in the army. The ship is divided into five large wards and contains besides store rooms, iness rooms, operating rooms and officers' quarters.
There is also a complete equipment of every appliance known to modern medical or surgical science including, among other things, two complete X-ray outfits, a mi croscopic laboratory, perfect facilities for photographing, and electrical apparatus of various kinds. Electri cal fans everywhere abound to fan the sick.
The wards are models in their way. The walls are painted white, the floors covered with rubber tiling, and the beds of iron, enameled white.
Baths abound; they are connected with all the
wards, with all the private quarters of the medica
staff and with those of the ship's officers. There is special shower bath for sick officer, and it is co that the shower throws hot or cold, fresh or salt water. All the bath rooms have rubber floors.
The ship sailed recently for Santiago de Cuba, where t will be most useful and acceptable to our soldiers in jured in the battles about that place.
It is probable this will be the first extended use of the X-ray apparatus in war, and reports of its success will be watched with interest.

## "THE ENGINEER'S" ANALYSIS OF AMERICAN

 AND SPANISH WARSHIPS.In our issue of May 7 we replied to an article in The Engineer, which compared the Spanish and American havies in respect of the speed and batteries of their fighting line. It will be remembered that The Engineer
gave figures to prove that the Spanish line of battle gave figures to prove that the Spanish line of battle
was superior in every respect but that of total displacement. Its energy of fire per minute was estimated at 1,529,516 foot-tons, as against 1,120,323 foot-tons for our own, and its average speed 23.67 knots, as against 19.63 knots for our ships. In our reply we showed that, if the same types of ships as The Engineer had selected in making up the Spanish line were included in the American line, the table would be reversed. By offsetting our protected "Cincinnati" and "Marblehead" class against the Spanish protected "Alphonso XIII."
and "Lepanto" and including the monitors (The Engineer included the Spanish but omitted the American protected cruisers, ignored the monitors altogether and forgot to mention the "Oregon" and "Texas"), we raised from $1,120,323$ foot-tons to 2820,883 , and that on every point save that of speed we possessed a consider able superiority
Since these articles were penned, the naval engage ments of Manila and Santiago have been fought. A dozen sunken hulks in Cavite Bay and half a dozen more strewn along the southern coast of Cuba are the Spanish fruits of a struggle out of which our ships have come at the cost of one man killed, scarce a dozen ounded, and not a ship even temporarily disabled.
The Engineer made a strong point of the fact that our fighting line was practically devoid of rapid-fire guns, and in our reply we showed that not only wer forty-two of these weapons carried on the ships enu merated in its tables, but that the protected cruisers, which should have been included, carried forty of these weapons, making eighty-two in all.
In reply to our criticism, The Engineer has published in its issue of June 10 an exhaustive comparison of our own battleships and armored cruisers with those of the leading naval powers in respect of the energy of their heavy rapid-fire armament. Our contemporary admits the truth of our corrections, except as regards the rapidfire armament of our battleships, and to substantiate its position enters into a careful review of the present status of our own and other battleships and armored cruisers in this respect. Inasmuch as The Engineer limits the discussion to battleships and armored cruisers only, the article which we reprint cannot be
considered as an answer to our reply. We take it that, with Manila and Santiago in mind, The Engineer is now willing to adınit that both on paper and in fact we have established the superiority of our fleet over that of the plucky but badly worsted Spaniards. We publish The Engineer's article in another column, both for its own intrinsic interest and for the reason that it draws attention to a fact which we as a nation shall do well to carefully take note of, namely, the enormous development of rapid-fire batteries in the later war
ships of the world. hips of the world
While we do not attempt to deny and have, indeed, always deplored the fact that our battleships, as dis tinct from our cruisers, are weak in rapid-fire energy, it is but fair to point out that the "Indiana," "Massachusetts," and "Oregon" were authorized as far back as 1890, or previous to the period in which, as The En ineer shows, the rapid-fire gun was introduced. Th these ships is the battery of eight 8 -inch guns with which hey are equipped. The guns are carried behind 6 inches of Harveyized steel, at an altitude of 26 feet above the water line, and even the most ardent advocate of the rapid-fire gun must admit that these 40 caliber guns, with their armor-piercing capacity, high command, great carrying power, and good protection of other navies.
This, at least, is the lesson taught by the brief 55 minute engagement off Santiago. The 6 and $5 \cdot 5$-inch rapid-fire batteries of the four armored Spanish cruisers should have made our gun-positions untenable, yet all
the damage done to our fleet in that artillery duel of 55 minutes was a few shot holes and one man killed. Meanwhile our 12 and 8 -inch guns were crashing through 12 -inch armor belts, crippling engines and boilers and driving the Spaniards to beach their ships in the the armor-piercing gun has received its vindication, and another argument is placed in the mouths of thos
naval men (and they are not a few) who deplore the
passing of the 8 -inch gun and its substitution by the 6 -inch rapid-firer.
We can anticipate the reply which will be made by our contemporary, to the effect that the full potentiality of a gun can only be realized when there is a marks man behind it. We know that the Spaniard has the reputation of being a notoriously bad gunner, and that in this conflict the value of the technical lessons to be learned is greatly lessened by the woful inaccuracy of Spanish marksmanship. At the same time, after mak ing due allowances, the naked fact remains that the Spanish ships, with their rapid fire batteries, are strewn along the Cuban coast, while the ships that were weak in this type of weapon have scarcely a scratch to show for the conflict.
There is fashion even in such an unsentimental matter as warship design, and it is the fashion just now to develop the rapid-fire gun to a point at which it is the chief element of offense in the ship. Our new battleships will be conspicuous examples of this tendency, and their broadside batteries of fourteen 6 -inch rapid-firers will place them in the very front rank among modern warships.
At the same time there is every reason why the four 6 -inch slow-firers on the "Indiana" and her type should be replaced with rapid-fire weapons. Their offensive power would be quadrupled by the change Moreover, we hope that one of the first changes to be made at the close of the present war will be the substi tution, in every case, of rapid-fire weapons for the slow-firers, which are still to be found on some of the crack cruisers of our navy. The change was urgently recommended by Ex-Assistant Secretary of the Navy Roosevelt, and has been carried out on ships like the "Chicago," which are now undergoing refitting at our navy yards. When a similar change has been made on the "Baltimore," "San Francisco," and others of their class, the fighting efficiency of these ships will be ncreased fully fifty per cent.
Limitations of space forbid our discussing this very live question at further length in the present issue, but we hope in an early issue to take up the matter a uller length and show the exact status of our ships in respect of rapid-fire armament.
On the question of "feeding" the guns, concerning which our contemporary asks for enlightenment, we follow its excellent rule of withholding information on such an important question until the international sky is less overcast. When the present war is over, we shall be prepared to say more upon this question.

## The Floating Machine Shop "Vefican."

The floating machine shop of the United States navy has been named the "Vulcan," and this vesse is now with Adıniral Sampson's fleet and was ready to repair any damage which might have been sustained at the hands of Admiral Cervera; but it is likely that now she will devote her attention to saving some of the wrecked vessels in conjunction with the wrecking companies. It is said that $\$ 300,000$ was spent in alter ing and equipping this vessel. Officially the "Vulcan" is an engineers' repair ship, and formerly she was the teamer "Chatham." Shortly before the war, En gineer in Chief Melville recommended that two vessel be purchased which could be transformed into en gineers' repair ships and attached to the Atlantic and Flying squadrons. Only one steamer was purchased by the Auxiliary Board, and she was transformed at the Boston navy yard. While the ship is not intended for fighting purposes, she carries two rapid-fire 6pounder guns. The "Vulcan" is to follow in the wake of the fleet, and she has a large coal capacity which will give a wide radius of action. She will also upply fresh water to other vessels and make such re pairs as may become necessary. The bow of the boat is devoted to a stock room; back of this is the black smith shop, foundry, and machine shop. There are also evaporators and distillers of a capacity equal to a daily output of 10,000 gallons of water. There is a complete foundry with a cupola, which will enable castings to be made on the boat. She has two steam cranes with 10 foot arms, which are especially designed for moving weights from a man-of-war and for trans erring machinery to a disabled ship. There are also plate-bending rolls, punches, shears, lathes, planers drills, milling machines and other machine tools, which will enable them to repair the hulls, engines, and boilers or guns. The "Vulcan" carries a large com plement of first-class mechanics, and the repair shop has some of the finest engineers in the country. It is doubtful if any vessel has yet started out to war which has carried such a large complement of well-trained and well-educated men. The "Vulcan's" captain is Lieut.-Commander Ira Harris, who has been general nanager of the Chicago Drop Forge and Foundry Company. The chief engineers are Gardiner Sims the head of the Armington-Sims Engine Works, of Providence, Rhode Island, who has thirty of his best mechanics aboard, and Prof. Aldrich, of the University of Virginia, one of the best electrical experts in the country. Out of her entire crew of two hundred men, ninety-two have the right to wear the officer's cap.

## AN IMPROVED PLOW.

The plow which we illustrate herewith is so constructed as. to throw earth simultaneously from both sides to a common center or line in covering cane or in the cultivation of plants. The plow may be also adjusted to throw the earth from a common center or line to opposite sides of the plants under cultivation. Our illustrations represent the plow in both adjustments.
The plow is constructed with two beams joined at their front ends and diverging as they extend rear


## ROSS' IMPROVED PLOW.

wardly. These beams are adjustably connected near their rear ends by sliding bars. The mouldboards are somewhat longer than in ordinary plows, and are de signed to throw the earth farther than usual. The landsides are also longer than in the plows now in use, rendering this plow steadier and easier to run. The handles of the plow are capable of being removably connected either with brackets attached to the mould boards or with arms attached to the shanks. When the plow is adjusted to throw the earth inwardly, a roller and rake are attached to the beams, so that the earth thrown up by the plow may be cultivated by the rake and flattened by the roller. When it is desired to throw the earth outwardly, the plows are interchanged; that is, the plow which was on the right side is now attached to the left side, the other plow being also changed so that its landside shall be turned inwardly. The roller and rake, when the plow is in this position, are renoved, since they are not required.
This implement is exceedingly simple, durable and economic, and its plows may be quickly and easily shifted to perform the work for which it is designed. The improvements have been patented by Jesse W. Ross, of New Orleans, La.

## $\triangle$ NEW BALL-BEARING.

An invention has recently been patented by James E. Lawrence, of West Shefford, Quebec, Canada, which


## LAWRENCE'S BALL-BEARING.

provides a simple adjustable bearing designed to run without oil at a high speed with a minimum of friction. As shown by our illustrations, the bearing may employ either balls or rollers.
Referring to Figs. 1 and 2, it is seen that the bearing comprises a shaft having an inner radial flange. At the outer reduced end of the shaft a disk is secured having a raceway coincident with a raceway on the flange. In the space left between the flange and disk a grooved annulus is situated free from the shaft. In the groove of this annulus balls roll which are engaged by an outer series of balls contained between the raceways of the flange and disk. A ring free from the shaft engages with its raceways the outer series of balls and assists in keeping the parts in position. A cap adjustable relatively to this latter ring is also provided with a raceway to engage the outer balls and in addition keeps out the dust and other foreign matter.
In Fig. 3 we have illustrated a modification which
employs rollers. In this case the flange has a peripheral projection. A flanged disk is secured to the outer re duced portion of the shaft and has longitudinal ad justment thereon. In the space between the disk flange and the peripheral projection first mentioned, a grooved annulus is placed free from the shaft. An inner and outer series of rollers are employed. The inner rollers consist of disks having trunnions on op posite sides bearing upon the annulus. The outer rollers consist of similar disks whose trunnions bear upon the flange and disk. An outer grooved bearing ring surrounds the outer rollers. A cap and confining ring screw upon the bearing ring and keep the parts in place.
These bearings, it is claimed, possess an advantage over other forms in so far as they are designed to run without oil, thus obviating the necessity of removing the mixture of oil and dust which accumulates in most bearings. Another advantage of the invention is the absence of sliding friction between the parts when moving in their respective circuits.

## Wheat Production.

The statistician of the Department of Agriculture has issued a detailed statement of the world's whea production in 1897. The United States heads the list with $530,149,000$ bushels, followed by France with 251 , 298,000 , Austria-Hungary with $133,370,000$, and Ger many with $107,000,000$ bushels. All other continental European countries with their enormous population to support produce $600,000,000$ bushels, and the United Kingdom only $54,527,000$ bushels ; Argentine, which is so often quoted as being such a great wheat-producing country, could furnish on'ly $32,000,000$ bushels. The otals for the world in the last seven years are as follows :

From the totals it will be seen that the United St furnishes nearly one-quarter of the total wheat produced in the entire world, so that it is little wonder that other nations regard with anxiety the war or any thing else which tends to prevent the exportation o wheat and flour in accordance with the ordinary laws of supply and demand, and any raising of the price of the breadstuffs of America is sure to be a calamity to some countries where economic laws are quick to repond to any fluctuation in the price of this most inl portant of commodities.

## A SIMPLE MAGAZINE HAND CAMERA

In the hand camera illustrated herewith will be seen one or two features of special interest which make it an extremely useful instrument for those about to begin the practice of photography.
We refer more particularly to the absence of compli cated devices and the simplicity of the plate changing arrangement. In the larger engraving the plan of changing the plates or films held in suitable carriers is clearly shown. Under the lid of the camera, attached to a light-tight hinged metal frame, is a thin opaque double-lined rubber bag, having an opening which fits over the wrist, being secured thereto by an elastic band. The hand is slipped through the aperture, then the plates are changed by lifting the exposed plate upward and pushing it down behind to the rear of the bunch. There is the usual rear spring to keep plates pushed forward, so the front shall always occupy the focal plane. After a plate is changed, the flexible cloth is ucked inside and the lid closed, when he camera is ready for an exposure to the cam plates are held in be made. The plates are held in a metal sliding carrie, operated back ward and forward by the focusing pinion in the interior on the shaft extending to the outside, where the varying focus for portraiture or views is readily obtained. On the front end is the usual finder, a shutter setting and releasing lever, as well as a button for regulating the speed of the shutter for time or instantaneous work, and another button for operat ing the diaphragm plate. The latter showing the different apertures, may be seen in the small diagram engrav ing in the upper right hand corner, which also gives a general idea of the ingenious shutter mechanism. This consists mainly of two thin, sickleshaped metal pivoted blades, connected by a link arranged to open and close when the button-releasing lever is pressed. Pressure downward on the upper lever sets the shutter, and for time exposure the movement is inter rupted by a metal finger brought int position by the outside button. The
two levers are connected by a spring, which is also the actuating spring. Attached to the right hand end o the connecting link is an ingenious toggle joint, which insures positive motion to the shutter. The latter is shown in an open position. Miniature springs also hold other parts in place.
In a less expensive camera having a fixed focus is another style of shutter shown in the small engraving. The dotted circle is the lens aperture. The shutter is an-shaped, pivoted near the apex. Just in front of the pivot is the actuating pin, connected by a coiled spring to the end of the operating lever. The long upright lever has a section near the center cut out and bent down underneath, forming a stop or pin. When the lever is placed as shown and the operating lever on he side of the camera is pressed downward, the pin on the shutter (shown in dotted lines under the lever strikes the stop on the under side and holds the shutter open for time exposure. By moving the upright lever to the left, the stop is taken out of the path of the pin on the shutter and the latter is free to move to the bottom, making an instantaneous exposure. Rub-

ber buttons at the top and bottom cushion the shutter at the end of each movement. The diagram at the side is a sectional elevation, showing clearly the position of the pin on the shutter
The movements, it will be noticed, in the shutters of both cameras are simple and effective.
It is called the "Vive" camera and is made in Chicago, Ill., by the "Vive" Camera Company. The size of the picture is four inches square, and also four by five inches, and plates or films are used interchangeably as may be desired. It is a light, handy instrument, and judging from prints we have seen does excellent work.

The vegetarians are making a great ado over the alleged triumph of their theory in the long-distance test of walking endurance, 70 miles, in Germany recently. The twenty-two starters included eight vegetarians. The distance had to be covered within 18 hours. The first six to arrive were vegetarians. The first finishing in $14 \frac{1}{4}$ hours, the second in $14 \frac{1}{2}$ hours, the third in $151 / 2$, the fourth in 16 , the fifth in $161 / 2$, and the sixth in $171 / 2$. The two last vegetarians missed their way and walked five miles more. All reached the goal in splendid condition. Not till one hour after the Jast vegetarian did the first meat-eater appear, completely exhausted. He was the only one. Others dropped off after thirty-five miles.

the " vive" magazine camera.

## care of the wounded in sea fights.

 The requirements of modern naval warfare make it impossible to pass easily from one section of the ship to another during an engagement. This has caused the medical service in some navies, notably the French to be decentralized as much as possible on each ship centralization being left for the hospital ships and shor hospitals. In the old days of wooden ships with flush gun and spar-decks, it was comparatively easy to transport the wounded to where they could receive every surgical attention. The surgical staff was a unit, and its work was brought to it ; but now all this has been changed, and they must seek it. A modern battleship is practicaily an aggregation of steel cells, each containing its quota of the crew, all working harmoniously and in concert toward the destruction of the adversary.Anyone familiar with the construction of a modern battleship will readily see the impossi. bility of caring for wounded men as in the days of wooden ships; for, of course, the object of making closed compartments is to utilize them in this form when in action, for when a ship clears for battle the bulkhead doors are closed, and the men isolated in groups, as much so in fact as if they were in separate ships; so that it will be seen that it is manifestly impossible to carry the wounded men to a sick bay until the fight has ended ; but everything is done to save life until those injured can be carried where they may be properly attended to. The fight ing space in modern war vessels is so limited especially in the turrets, tbat the immediate re moval of disabled or wounded men is of the ut:nost importance, for there are no unoccupied spaces in which they can be placed out of the way of the actives. The only practicable method of caring for the injured is to lower them to the partially cleared space at the base of the turret, either by the ammunition hoist or lashed in a hammock. Here the unfortunate must remain after receiving temporary aid, as the space is too limit ed for the performance of any operation, and it is doubt ful if a surgeon could even reach him. But at the first favorable opportunity he is transferred to the sick ward, where proper medical attention is given, and he will be relegated to a cot, something similar to that in our illustration; but as soon as possible the wounded are transferred to a place where they can be still better cared for, such as is afforded by the ambulance ship "Solace," now with the fleet at Santiago, and whic has already furnished efficient aid for many soldier and sailors, ill or wounded.
As far as possible, each compartment of the ship is provided with emergency surgical appliances, and men rated as "nurses," under the direction of a surgeon's steward, do all possible to relieve the sufferings of the injured. The temporary surgical ward is usually a space especia.lly set apart for this purpose. It may lie at the forward end of the berth deck, or in such other place as the exigencies of the situation may demand. Formerly the old operating room was the cockpit, which was considered the safest place on the ship ; but now the table in the wardroom is now the table in the wardroom is
usually assigned to the surgeons, as usually assigned to the surgeons, as
on Dewey's squadron during the on Dewey's squadron during the
battle of Manila. When there is a lull in the tide of battle, the wounded are brought as quickly as possible to the surgical table, where the necessary operations are taken in hand. Of course capital oper ations are only performed when delay would be fatal, and whenever possible those injured are transferred to a hospital ship or to a hospital on land, where they may receive plenty of light and air and proper nursing. With modern aseptic surgery, injuries which in the Civil War would have been fatal are now treated successfully.
Our engraving represents what is known as a hospital cot, and the cots which are used in the sick bays of war vessels usually partake of the characteristics of both a cot and a hammock. Of course, a cot of this kind would be used during cruses by those who became in jured, so that the ordinary hamnock would not answer. The cot consists of a frame covered with a mattress, and triangular pieces of canvas serve to attach it to
the hammock hooks through the me medium of ropes from striking the at the ends to prevent a draught rom strikig the patient. The blankets are placed on the cots in such a way that they may be thrown over the patient from each side, and are not used
in the ordinary way. The peculiar form of cot in the ordinary way. The peculiar form of cot
shown in our engraving has been somewhat criticised
by medical men, who say that it embodies none of the advantages of either the true naval hammock or cot since here the equilibrium of the patient is constantly endangered, which is not the case in either of the latter The ordinary ship's hammock is suspended in such a way as to gather it about the body of the individual resting therein.

a hospital cot on a man-of-war.
xcept, perhaps, to those suffering from delirium. The true naval cot is suspended from four corners, and a web of canvas protects the occupant, regardless of the changes of gravity. It is feared that the cot hammock here illustrated will tip at ány disturbance of the center of gravity; hence it would be materially improved by providing two more points of suspension.
The "Solace" was formerly the "Creole," of the Cromwell line. She has a displacement of 3,600 tons, is 350 feet long on the load line, and has a speed of 14 knots. The ship carries powerful launches and barges for transferring the sick and wounded at sea. The dea is to have the "Solace" remain near the fleet while in action, and as soon as any ship withdraws, or at the close of the engagement, to take all the wounded on board and steam away for a naval hospital. Thus it will be seen that she is more properly an ambulance ship rather than a hospital ship. The injured ar lowered into the steam launches and barges, and immediately on being received on board those requiring operation at once will be placed on the tables and then operation at once will
sent later to the wards.


ROMAN WINE CASKS DISCOVERED AT SILCHESTER ENGLAND.
infecting chamber for clothing. An ice machine and cold storage plant have also been supplied, as well as a large water distilling plant. The ship is equipped with three formaldehyd generators for disinfecting purposes. There are separate rooms for wounded fficers, and the men are berthed in spacious wards in the forward and after par our medical officers attached to there ar four medical officers attached to the ship three apothecaries, eight graduated nurses,
laundrymen, cook, etc. The ship flies the Red laundrymen, cook, etc. The ship flies the Red
Cross flag and is protected by the articles of the Geneva convention. She is painted white with a green stripe, as are each of her steam launches. It is the first war in which surgeons have had an opportunity to practice aseptic military surgery. There are seven hospita ships attached to the French navy, which has paid particular attention to this subject

## A Literary Treasure Honse.

The Genizah or treasure house of an ancient synagogue in Cairo is a windowless and doorless room at the end of a gallery, with an entrance through a big shapeless hole, reached by a ladder, says Biblia. Here, in obedience to the injunction upon the Jews not to destroy any of their sacred books, which finally came to include the preservation of all writings ir the Hebrew characters, have been deposited during the past two thousand years, worn-ou and defective copies of such books, sound copies of "disgraced" books (that is, such as have once pretended to the rank of Scrip tures, but have been authoritatively condemned as uninspired) and various Hebrew documents Some parts of the immense mass, which in cludes books printed during the last four hun dred years, are in a fair state of preservation others are squeezed into unshapely lumps, while still others are "literally ground to dust in the terrible struggle for space." Dr Schechter, of Cambridge, England, was able to rescue about forty thousand fragments of manuscripts, which have been placed in the library of the Uni versity of Cambridge, and are now being carefully examined. They consist mainly of parts of the Old Testament, some going as far back as the tenth cen tury, of Jewish liturgical works, of the two Talmuds very many hymns, legal documents, letters, prescrip ions, amulets, and fragments of miscellaneous works.

ROMAN WINE CASKS DISCOVERED AT SILCHESTER In the rooms of the Society of Antiquaries, Burling ton House, may just now be seen, says The St. James' Budget, some of the finds made last year by the ex plorers on the site of the Romano-British town of Cal eva, in the parish of Silchester, which is about ten uiles from Reading. The archæological value of the relics is great. At Burlington House one sees thre venerable casks. Fifteen hundred years ago they held Italian wine. Some probes and other surgical instru nents show that ancient Roman ideas on the form of uch things were very like those of modern Englishmen. such ine Then there are a fine bronze necklet and an eagle head of the same metal from th top of a Romano-British staff
There are a few fraginents of Samiai pottery. The value of these pot sherds lies in the clearness with which the maker's name still ap pears on them. There is a piece of imitation Samian "marble" which formerly decorated a mantel piece. A stone jar, standing con spicuously in the middle of the room, is supposed to have been used as a store pot. It was found unbroken, built into the wall of a house. The collection also includes well preserved portions o querns, fragments of flint glass pestles, and mortars.

Opening of the Harlem Speedway
The new Harlem Speedway, which extends along the Harlem Rive from 155th Street to Dyckinan Street, was opened to the publi on July 2 , without public ceremony of any kind. The driveway wa opened last fall, but the speedway was closed again, as it was not com pleted and the road was in a bad condition. Plans tor the construc tion of the speedway were ap proved in February, 1894. The

The operating room measures 30 by 30 feet and is well lighted and equipped with aseptic hospital furniture of the best pattern, and the outfit of instru ments, sterilizers, etc., is complete in every detail. The floor of the operating room has even been paved equipped steam laundry and room deck is a fully equipped steam laundry and drying room and a dis-
work was let in two sections, one from 155th Street to High Bridge and the other from High Bridge to Dyck man Street. The second or upper section was tinished first. The total cost of the driveway $18 \$ 3,075,000$. W have already described the speedway. See Scientific American for March 31, 1894, October 27, 1894, Febru ary 6,1897 , February $13,1897$.
" The Engineer's" Analysis of American and

## panish Warships

The Scientific American not unnaturally criticises an analysis made by us a few weeks ago bringing out certain features in American and Spanish warships. Some of its observations are fair and reasonable, and we are always obliged for any corrections in matters of fact. On such questions as the nationality of the crews of the United States vessels, the best information must come from America. We admit also that for blockade work even the slow monitors have their value. On the leading feature of our article, however, namely, gun power, we feel we must reply, the more especi ally as our contemporary remarks: "The fiction that our ships do not carry rapid-fire batteries is ạn old one with The Engineer, and, judging from the persistence with which it appears, it is as popular as it is abiding."
On this subject we may explain that, while we think hat we never said that no quick-fire guns were carried, we have had in view a very definite deficiency, namely, want of power of serious fighting with quick-fire armaments. Originally light quick-firing guns were intro duced in warships to defeat torpedo attack; then, as the power of larger quick-firing guns became apparent, came in batteries of pieces from about 4 inches to 6 inches in caliber, mounted behind medium or thin armor, intended to attack the unarmored or lightly armored parts of ships. So great a power was thus developed that, as we showed in our article in the end of 1895, ships deliver an enormous amount of energy of fire from quick-firing guns, and in a shape on which they can reckon more certainly than the few heavy blows delivered by the primary guns. It has been deliberately concluded by some of our highest authorities that our light unprotected quick-firing pieces, whose energy, moreover, is but small, could not be manned in close action unless circumstances specially favored it, so that their main function remains what it originally was, the defeat of torpedo attack or of men in boats.
The power of really heavy quick-firing batteries is not merely a very distinet feature, it is the main characteristic feature of new construction. Originated at Elswick, it quickly came into British armaments, then France, Germany, Russia, and other powers took up the question so keenly that, as shown in our article in 1895, England, in the actual amount of energy of quickfirers in occasional instances, does not now compare well with these powers. If, however, we take into account that the 6 -inch quick-firing batteries in the most important types of British ships are mounted be hind 6 -inch Harveyed plates, and the pieces of most other powers behind 3 inches to 5 inches of ordinary steel, so that our own guns are secure while easily able to perforate most enemy's shields, it may be admitted that our quick-firing batteries ought not only to hold their own, but to have the best of it in a fight. Strange to say, the United States were slow to recognize the power of quick-firers used in the way we now speak of. This is now what we have to show, and we at ficiency of powerful quick-firing guns in all existing American battleships and armored cruisers, and the fact that last year for the first time a 6 -inch quick firing piece was introduced. For some reason which we do not attempt to account for, quick-firing gun were introduced in unarmored American ships, bu while some of these are no doubt specially protected, no one can maintain that these vessels can take the place in close action that we are considering. The fact remains that this element of quick-fire was remarkably deficient in battleships and armored cruisers, and con tinues to be so to this day in ships afloat. For though at last the United States authorities have awakened to their need, it has been too late to get the benefi they would have had, had they not been behindhand

We give herewith a list of battleships now afloat of the principal powers, with their quick-firing guns o the class we refer to, that is, from $3 \cdot 9-\mathrm{inch}(10-\mathrm{cm}$.$) up$ ward. We have taken ships approaching 10,000 ton displacement, and built between about 1891 and 1897that is the time when this class of quick-fire was com ing in. It will be seen that America has four battle ships, of which only one has any quick-firing guns of the class we are dealing with, and these are only six in number and 4 -inch in caliber. Spain has only on such battleship, the "Pelayo," who carries nine 5.5 inch quick-firing guns; that is, Spain's one ship carrie 50 per cent more guns than the whole of the four Americans, and they are of much heavier caliber Germany comes next with five battleships carrying twenty-four $4 \cdot 1$-inch quick-firing guns and eighteen $5 \cdot 9$-inch, besides four $9 \cdot 4$-inch, which last are of so heavy caliber that their rapid character might be questioned. Then follow Russia with six ships carry ing eight $3 \cdot 9$-inch, thirty-six $5 \cdot 9$-inch, and eighteen 6 inch quick-firing guns; France with nine ships mount ing eight $3 \cdot 9$-inch, seventy $5 \cdot 5$-inch, and ten 6.4 -inch quick-firing guns; and lastly England with nineteen ships mounting twenty 4.7 -inch and one hundred and eighty-six 6 -inch quick-firing guns.
Our object is, however, not so much to take ou
stand on the total quick-fire gun power as on the ex tent of its recognition, which is represented by the av erage per ship. If, then, we take the energy per min ute, and if, to be liberal, we allow the light 4 -inch guns of America ten rounds per minute, and cut all heavier guns down to five per minute, the result is still absurd as a matter of comparison, the average 13,730 foot-tons energy of fire being less than $\frac{1}{4}$ of Germany $\frac{1}{1 T}$ of Spain, about $\frac{1}{12}$ of France, less than $\frac{1}{12}$ of England, and hardly more than ${ }_{1}^{1}$ of Russia. Our Ameri can critic objects to the omission of coast defenders. Were we to throw them in in this comparison, how ever, America would suffer, as they are old-fashioned vessels, which among them all could only muster ten 4 -inch quick-firing guns. Were we to take ships building and not afloat, we admit the inatter would be greatly changed, and this will be the case next year. We, however, are at present answering the charge of running our head against a fallacy in articles written in the past: we are not charged with doing so in articles which we are going to write next year
Being, however, brought to book, we are anxious to make good our so-called "fiction." First, then, as to battleships, we offer our figures and ask that they should be shown to be wrong. Failing this, is it a fiction to say that with a proportion on the most liberal allowance of rate of fire of from $\frac{1}{7}$ to $\frac{1}{15}$ the energy of fire of the average ship of the various powers mentioned, American ships are decidedly deficient in quick fire? "Do not carry quick-firing batteries" is not, we think, an expression we ever used, although three out of four battleships have none at all of the class we are dealing with. Next we come to armored cruisers. Of these we give lists of England, Germany, Spain and the United States, with an average showing the United States ships behind all the others, though not at all to he same extent as in the battleships.
With regard to unarmored ships, we admit that commencing in 1892, American ships appear to be well provided with powerful quick-fire guns. It is to armored battleships and cruisers our statement was made, and holds good. Our disregard of the small quick-firing pieces may be objected to. We can per haps best meet this objection substantially by explaining to our readers exactly how the question of this element in armored ships came prominently to our notice. Near the end of 1895, as above said, we pub lished diagrams showing energy of fire per minute of various British and foreign ships, taking "Excellent" ates for all as far as possible. An article in the " Na val Annual" in 1896 reproduced these figures, further arried out and corrected, and with several additiona ships. In these were included the fire both of heavy guns and of all the light quick-firing pieces; but as the whole of the guns were given on both broadsides, so hat the heavy guns did not carry the weight that hould be assigned them in action, and as the light quick-firing pieces have insignificant energy, the figures shown chiefly depended on the heavy quick firing batteries. In the shape in which they appeared he rectangles showed actual facts and figures withou the application of any judgment which might involve personal prejudice. The guns were simply entered as hey stood; the energies were taken from tables and the rates from the "Excellent." The simplest applica ion of service conditions would cut down the quick ire by half, because as a rule a ship would only be able to use half her broadside batteries. Thus, the differences shown would decrease, but they would stil exist. It happened that the energy per minute of th New York" was then worked out and found to be very poor; in fact, only 119,904 foot-tons, as compared with 509,091 foot-tons for the "Esmeralda," of 500 tons les displacement. The rectangle for the "Brooklyn," with 247,940 foot-tons, which, though much better was still very poor, was shown, but the reason that the " New York" was omitted was that our relation with the United States had been so very unsettled, and the aspect of matters had been sufficiently threatening or it to seem undesirable to call attention to a faul which appeared so easy of correction.
We have always regarded the possibility of fighting with the United States with dismay. Nothing has been more opposite to our wishes; but American off cers, as fully as our own, would ennsider that we were right in keeping such a point as this to ourselves at such a time. It was not necessary to take an extrem view in the way of caution, and, as said, the rectangle or the "Brooklyn";"was shown in the " Naval Annual," but she had the largest quick-firing guns in the Ameri can service, and could not quickly get a heavier arma ment. The want of power of the 4 -inch pieces could ot, it is true, long escape the notice of such keen men as are to be found in the States, and was indeed men tioned elsewhere in the "Annual," but it seemed righ o refrain from thrusting forward at the moment the great gain that would follow from substituting 5 -inch or 4 -inch guns. It is not always remembered that caliber tells as the cube. A 4 -inch and 6 -inch gun in a secondary armament are, of course, seen to be dif erent things, but it is not grasped till tested that i heir velocities are equal, the blows delivered are in

That this, as we say, has only been latterly appreciated in the States is surely apparent from the fact that only a few months ago was the 6 -inch quick-firer gun adopted by the United States government. That it is now appreciated, however, is equally clearly seen n the armament laid down for the "Illinois" and "Wisconsin," two of the very class we have instanced as hitherto almost wholly deficient in powerful quickfiring guns, for each of these are to have fourteen 6-inch quick-firing guns. We have said nothing concerning the arrangements for "feeding" the guns; that is to say, supplying them with ammunition. 'This is, however, a most important point, and we are not at all clear that it has been fully worked out in the United States navy. Possibly our contemporary can supply information on this subject.

BATTLESHIPS

| BATTLESHIPS. <br> United States. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Name. D | Displacement in tons. | Q.F. guns of 3. 9in. calibre and over. |  | $\begin{gathered} \text { Date } \\ \text { of } \\ \text { launch. } \end{gathered}$ |
| Indiana | 10,288 | ... none |  | 1893 |
| Iowa | 11,410 | ... 64 in . |  | ... 1889 |
| Massachusetts | 10,288 | ... none |  | ... 1883 |
| Oregon ... ... | 10,288 | ... none |  | 1893 |
| Germany. |  |  |  |  |
| Brandenburg $\dddot{\square}$ | $]^{10,100}$ | $64 \cdot \mathrm{lin}$. |  | 1891 |
| Kurfurst Friedrich Wilhelm | h 10,100 | $64 \cdot 1 \mathrm{in}$. |  | 1891 |
| Weissenburg ... ... ... | .... 10,100 | ... $64 \cdot \mathrm{lin}$. |  | 1891 |
| Würth ... ... ... ... | ... 10,100 | ... $64 \cdot \mathrm{lin}$. |  | 92 |
| Kaiser Friedrich 1II.... | .. 11,130 ... | $\ldots\left\{\begin{array}{ll}4 & 9 \cdot 4 i n . \\ 18 & 5 \cdot 9 \mathrm{in} .\end{array}\right\}$ |  | 189 |
| Russia, |  |  |  |  |
| Georgi Pobiedonosetz. | 10,280 | 83.9 in. |  | ... 1892 |
| Petropavlovsk ... .. | ... 10,960 | ... 12 5.9in. |  | ... 1894 |
| Poltava | 10,960 | ... 12 5.9in. |  | ... 1894 |
| Sevastopol ${ }^{\text {a }}$. $. . . ~ . . ~$ | ... 10,960 | ... $125 \cdot 9 \mathrm{in}$. |  | ... 1894 |
| Tria Sviatitelia | 12.480 | ... 126 in . |  | ... 1893 |
| Sisoi Veliki ... | 8,880 | ... 66 in . | ... | ... 1894 |
| Franc |  |  |  |  |



Allowing the United States guns ten rounds per minute and all ARMOURED CRUISERS.


König Wilhelm ... ... 9757 ... ... 20 5.9in. ... ... $\left\{\begin{array}{l}1868 \\ 1896\end{array}\right.$
The encrgy of fire per minute, allowing the United States 5 in guns six rounds and the 4in. ten rounds, and the English, Ge
and Spanish guns five rounds, gives the following average :-

German ships
British ... ...

## foot-tons 370,300 167,800 <br> 167,800 128,484 120,924

## GEARED LOCOMOTIVES ON THE MOUNT TAMALPAIS

 railway.The geared locomotive has had a somewhat extended trial in this country and has proved itself to be a valuable means of traction under special conditions. It has found a field of usefulness in the West, where it has been used on logging and mining work, in which the grades and curvature are heavy and the track is of the rough-and-ready type. For this class of service the geared locomotive is admirably adapted. It has a large hauling power in proportion to its weight, and great flexibility.
To the mechanical sense there is, at first thought, something objectionable in the idea of introducing the complication of gearing into a locomotive; though the objection is more sentimental than anything else, and is due, doubtless, to the fact that we have come to associate the idea of high speed with the locomotive, and have rightly determined that a direct connection is superior to any other for fast work of this kind. On the other hand, it is a fact that excellent results have been attained in electric traction with geared motors, some of them of considerable size and power.
Taere are two classes of geared locomotives. In one of these the engines are placed vertically on the outside of the frame, and drive a horizontal shaft which extends along the side of the locomotive and meshes with gears formed on the faces of the driving wheels. In the other class the engines drive a shaft which lies beneath the boiler parallel to the axis, and carries bevel gears which mesh with gears on the driving wheel axles.
On our front page we give illustrations of a 30 .ton engine of the central shaft class, which was designed by Mr. Charles Heisler, consulting engineer, of Erie City, Pa., and is running successfully on the Mount Tamalpais Scenic Railway, in California. The road, which was built purely for tourist purposes, runs from Mill Valley, a point near the Golden Gate, San Fran cisco Harbor, to a point near the summit of Mount Tamalpais, a distance of 8.25 miles. The grades are heavy, varying from 5 to 7 per cent, and there are about 275 curves, all of which are of from 70 to 75 feet radius.
The engine, as will be seen from the cuts, is carried on two trucks, one under the forward end of the boiler and the other under the tender, the tender and loco
motive being built on the same frame. On the forward axle of the leading truck and on the rear axle of the trailing truck is secured a heavy bevel spur wheel which gears with a bevel pinion whose shaft is car ried by a long bearing in a frame that is formed integrally with the inclosing gear case, the upper half of which is shown removed in Fig. 7. The frame is supported by a sleeve on the axle and is independent of the truck frame, thereby insuring that the gears shall be maintained at all times in proper alinement. The gear case, which is dust-proof, enables the gears to run continuously in a bath of oil. The other axle of each truck is driven from the main axle by means of coupling-rods, as shown in Figs. 6 and 7.

The pinion shatts are inclined and extend the length of the gear frame. At their inner ends they are connected by universal joints with the main crank shaft which extends parallel with the axis of the boiler and just above the top of the inner axles of the trucks.

The cylinders, one on each side of the boiler, are inclined 45 degrees to the vertical and drive inwardly and downwardly upon the longitudinal crank shaft. Each cylinder is bolted to its own hollow cast frame, and the two frames are securely bolted together in the vertical longitudinal plane of the locomotive, the journals of the main crank shaft being formed in the bottom of the frame. The engine frames are carried by the locomotive side frames, the space between the top and bottom bars being considerably widened to admit them. In the Heisler engines of a larger size four cylinders are used, two on each side.
In designing these engines the boiler has been made of ample capacity, to avoid over-forcing when the en gine is working up to its full capacity on heavy grades, and a large cylinder capacity has been provided to insure ability to start with the heaviest loads and of steain.
The universal couplings are made of steel and phos phor bronze. They are clamped upon the shafts, and may be readily removed. They have only a slight angular movement and offer only a slight resistance to
the swing of the trucks in passing around the sharp the swing of the trucks in passing around the sharp
curves which abound on this railroad. The gear wheels are made unusually heavy, so that, even when they have become weakened by wear, they may be able to withstand the heary shocks to which they are ex posed.

The Mount Tamalpais Scenic Railway is situated in the southern end of Marin County, California, and, as its name suggests, it climbs the east peak of Mount Tamalpais, a rugged and picturesque mountain that attains an elevation of 2,537 feet above the sea in a distance of three miles. Marin County forms the north shore of the famous Golden Gate of the Pacific, and is bounded on the west by the Pacific Ocean
summit of the mountain is twelve miles northerly
from the city of San Francisco and five miles easterly from the city of San Francisco and five miles easterly Thom the ocean.
The railway, which has a total length of 8.19 miles, is built to standard gage. The track is laid on ties 6 inches by 8 inches by 9 feet long and the rails weigh, 56 pounds per yard. It is thoroughly well ballasted, and ample superelevation is provided on all curves Commencing at the little hamlet called Mill Valley (75 feet above sea level), which nestles at the foot of the
mountain, the road ascends the valley of the Arrovo mountain, the road ascends the valley of the Arroyo
Corte Madera del Presidio in a northerly direction for a distance of about two miles, at which point the Arroyo is crossed by a trestle on a curve having a radius of 70 feet, with a total curvature of $182^{\circ}$. Continuing westerly along the face of the mountain for another two miles, winding in and out of many cañons the "Mess" is reached. Here the topography of the country compelled the engineers to overcome an elevation of 130 feet between points that were less than 800 feet apart in an air line. This was accomplished by means of what is now known as the "Double Bow Knot," where the tracks parallel themselves five times, the shortest radius of the curves at the turns being 75 feet. Here, at an elevation of 1,150 feet, the expanse of the Pacific Ocean breaks into view. Con tinuing westerly for a distance of two miles, the "West Loop" is reached at an elevation of 1,800 feet, where a remarkable turn of $252^{\circ}$ is made, the radius of the curve being 80 feet and the grade 5.2 per cent. The road now stretches in an easterly direction and climbs
to the Tavern of Tamalpais. which marks the end of the road at an elevation of 2,353 feet above the sea.
The average grade of the entire road is 5 per cent and the maximum grade attained is 7 per cent. The grades have been somewhat lightened on the curves to compensate for the increased resistance, but in a few instances a 6 per cent grade has been maintained upon curves of 70 feet radius. We are informed by Mr George M. Dodge, chief engineer of the road, to whom we are indebted for the engineering data, that in this short line there are 21 wooden trestles having an ag gregate length of 1,703 feet. One of these trestles is shown in our illustrations crossing the cañon already mentioned on a curve of 70 feet radius.
The excessive curvature may be judged from the fact that, out of the total length of 8.19 miles, the tota amount of straight line is only 3.282 miles, while the curvature is divided as follows :

| 26 curves of 70 feet radius |  |  | Length. 3,641 feet |  |
| :---: | :---: | :---: | :---: | :---: |
| 24 | " | 80 feet radius. | 2,974 |  |
| 20 | " | 90 feet radius. | 2,328 |  |
| 49 | " | 100 feet radius. | 4,020 |  |
| 46 | " | 110 to 150 feet radius | 4,403 | " |
| 59 | " | 150 to 300 feet radius | 4,710 |  |
| 42 | " | 300 feet radius and upward | 3,887 |  |

There are in all 266 curves on the road, and it speaks ell for the geared locomotives that they work very eely on the curves and show no perceptible wear on the wheel flanges.

## An Acetylene Gas Exhibition in London.

An acetylene gas exhibition was opened by the Im perial Institute, London, June 15. Considerable pains were taken to make the exhibition a success as a prac-
tical exposition of the principles and practice of the production and use of acetylene gas. An influentia committee was appointed, which drew up rules and regulations governing the exhibition. Generators were classed under three main heads: 1 . Those in which the gas is generated by water being allowed to drop or fall in small streams on to the top of the carbide 2. Those in which the water rises around the carbide. And, 3, those in which carbide falls into the water Subdivisions were made into automatic and non automatic generators. Acetylene apparatus was re presented by twenty-seven exhibitors. 'There is a
second department in which acetylene gas is made by generators which are duplicates of the ones already exhibited. The gas thus made is conducted from each machine to a lamp made by the owner and maker of the generator. A practical test of acetylene for illumination is made in another part of the building, and it is intended to make a test of the light itself as re gards its effect upon color. Five rooms have been handsomely furnished and hung with oil paintings and engravings, and they are lighted with acetylene
gas; therefore, the public has an opportunity of judging of the value of the new light, in presenting color in their normal tints.

## The Proposed Antarctic Exploration

The Royal Geographical Society is much disappoint ed by the refusal of Lord Salisbury to supply govern ment aid to the expedition in search of the South Pole. Notwithstanding this decision, the Royal Geographica Society has determined to raise a fund of $\$ 250,000$ by ubscription, for providing for the expenses of the ex pedition. $\$ 100,000$ has already been promised. It has
been proposed to send an especially equipped steamer in June next, and one of the purposes of the expedi tion will be to land a sledge party on Victoria Lanil, which will endeavor to penetrate the interior as far

## Miscellaneous Notes and Receipts.

Waterproof Porcelain Cement.-Dissolve (1) 10 parts of mastic in 60 parts absolute alcohol ; (2) 20 parts isin glass in 100 parts water and 10 parts grain brandy ; (3) 5 parts gum ammoniac in 25 parts grain brandy whereupon solutions 1 and 2 should be thoroughly mixed, No. 3 added, and the whole boiled down to 180 parts.-Neueste Erfahrungen und Erfindungen.
The cane bottoms of chairs can be rendered tigh again by supporting the chair, moistening the cane seat thoroughly with very hot water by means of a sponge and washing off so that the cane-work becomes completely soaked. Then place the chair in the open air or, better still, in a strong draught and allow to dry The results will always be very gratifying.-Die Mappe
A Process to Silver Porcelain consists in mixing to gether 120 grammes of silver nitrate, 20 grammes of nercuric nitrate, 30 grammes of sodium bromide, 10 grammes of bismuth oxide and 120 grammes of water adding a little gum. Coat the places to be silvered with the mass, allow to dry and bake in the kiln. Then place the pieces in the electrolytic bath and precipitate the metallic silver on the prepared places. In a similar manner gilding may be done. The effects produced in this manner may be called handsome in every respect -Offerten Blatt fur Bijouterie, etc.
A Giant Barometer has been mounted at Paris in the Iower of the St. Jacob's Church. It is $12 \cdot 65$ meter high and 2 cm . thick. The filling consists of colored water, which is prevented from evaporating by a layer of oil above. While a mercury column, about 760 mm . higi, will keep an air column of the same cross sec tion in balance, a barometer filled with water must be much longer, because mercury is $131 / 2$ times as heavy as water. On the other hand, the fluctuations of the liquid column with such large barometers are $131 / 2$ times as great as with mercury barometers, for which reason they are admirably adapted for scientific obser vations.-Deutsche Uhrmacher Zeitung.
New Porcelain.-A complete revolution would take place in the ceramic industry if a new process called "Thonguss" (clay casting', should be successful. The nass is not, as heretofore, worked cold upon the pot ter's lathe or pressed into a mould, but is finely ground after careful drying, then melted at about $+3215^{\circ} \mathrm{C}$. in an electric furnace and poured in a heated, fireproof casting mould. Glazing becomes unnecessary in most cases, if the walls of the mould are sufficiently smooth. Otherwise it is allowed to cool off after the solidifica tion of the cast to about $+1860^{\circ}$ and finely powdered glass is thrown on in a uniform, thin layer. The ad vantage of the new process is said to consist (aside from the considerably reduced cost) in an almost com plete prevention of the unforeseen shrinking of th mass on cooling; so that henceforth instruments o precision and accurately divided measuring vessels of every description can also be made from porcelain. By means of a still unpublished process, viz., the admix ture of a suitable substance to the melted clay, the in ventor expects to render the cooled mass pliable -malleable-and also to make a remelting considerably more difficult. A difficulty which still remains un solved with the clay casting method is the colored decoration. Solid colored designs, such as the much mployed onion pattern, can be readily pressed with suitable stamps on the melting glass layer which form with the said glazing method, but one has not been uccessful, for instance, to produce in clay casting th popular coffee cups decorated with flowers by hand painting. - Pharmaceutische Centralhalle, through Neueste Erfindungen und Erfahrungen.

## The "Windward" Salls

The auxiliary steam yacht "Windward" left New York on July 2, for Sydney, Cape Breton, in command f Capt. John Bartlett, who has made tour trips to the Arctic regions. Mr. Peary and other members of hi party will join the "Windward" at Sydney. The Windward " carried one of the two survivors of the si Esquimaux which Mr. Peary brought home last year The "Windward" has 50 tons of provisions tor the use of Mr. Peary and his men. From Sydney the yacht will go to Cape York, Greenland, where she will take aboard a party of 60 Esquimaux with their sledges and dogs. From there she will steam to Sherard Osborne Fiord, where a base of supplies will be estab ished. As the expedition moves northward it will a 50 mile intervals establish other bases of supplies fo use in case the party is forced to retreat. The "Wind ward" will return in spring to Sydney for stores.

## Lightning Explodes Mines.

During the thunder storm of June 28, a bolt of lightning struck the switchboard at Fort Washington which controls the mines in the Potomac River, ex ploding three of the mines and damaging the system The mines were intended as a protection to the capital The explosions were witnessed by a number of person on shore and in boats, and the exhibition left no doubt as to the fate of any boat which may be near the mines when they are exploded. An investigation wa at once begun to ascertain the extent of the damage.

## TWO INSECT SAMSONS. <br> res wire JR.

When Samson stood between the pillars of the temple of Dagon and "bowed himself," thereby occasioning the mighty pile to fall in ruins upon his head, as well as upon the heads of a multitude of his enemies, he evinced extraordinary and super-normal strength; yet it was my good fortune recently to witness exploits of great strength, by the side of which the captive Hebrew's avenging blow pales almost into utter insignificance. When I declare that the actors in these feats were two lowly "pinching bugs," I am afraid that some of my readers will declare that I am drawing on my imagination. And yet, that which I am about to relate can easily be verified by anyone who will take the trouble to investigate and to experiment.
Last summer I went to a "cake walk" which was given at night in the city park. I had secured a good viewpoint and was enjoying the amusing antics of a couple of cake walkers when I felt something alight on the collar of my outing shirt. The entertainment was in the open air, the walking course being one of the footpaths of the park, which was brilliantly illuminated. I had noticed many moths and beetles fiying about the lights; so knew at once that my visitor was a "bug" of some kind. I put up my hand and seized it, when, suddenly, a spasm of pain darted from my finger tips to my shoulder. In my agony and surprise I emitted a yell which occasioned the two cake walkers to execute several steps not down in their repertory. On examination, I found that I had got the tip of my middle finger between the mandibles of the largest stag beetle (Lucanus elephas) that I had ever seen. His mandibles were carefully pried apart by a friend and my finger released. It can be seen in the photograph what formidable weapons they are, though the beetle is here considerably reduced, it being, in life, $21 / 4$ inches long and $5 / 8$ of an inch broad. He is much more noticeable with his branching, staglike "horns" (which are not horns, but mandibles), broad, fiattened, elephantlike head, and sturdy, polished legs and back than the smaller female, whose mandibles are no branched and whose form is not so robust and formid able looking.

Unlike most of his congeners, the fiight of Lucanus is almost without sound. I did not notice my visitor until I felt him on my collar. As soon as this beetle thinks that it is in danger of an attack from any source, it will hold its head erect and widely open its mandibles. Along the inner margins of the latter the horny skin is exceedingly sensitive. As soon as it feels anything between them, it closes them with considerable force and power, as I can testify from sad experience.

While holding this beetle in my hand, I was greatly struck with the extraordinary strength of his legs. When I closed my fingers upon him, taking care that none of them came between his sharp and ever ready "nippers," he seemed to plow his way through the hollow of my fist without the slightest difficulty. Procuring a little tin wagon which weighed exactly two ounces ( 960 grains apothecary's weight). I fastened him to it with a quick-drying glue and two pieces of thread. He weighed only 31 grains, yet he walked away, drawing the little wagon, as though he were free and untrammeled. I then placed half an ounce of and untrammeled. I then placed half an ounce of additional weight, yet pulled it along without difficulty. I added another half ounce. This seemed to be the limit of his load, for he could barely move the wagon, though move it he did for one inch. Just think of it! Here is a creature weighing only 31 grains which pulled 1,440 grains one inch, measured distance. Do you not think that his feat ranks with, if it does not surpass, that of the famous Samson? I do

I confined all of his legs save one, which I attached to a very delicate dynamometer. This leg was fully extended and the animal was then irritated. It pulled down, as shown by the dynamometer, 249 grains. A man weighing 240 pounds would have to lift very near 2,000 pounds-one tonwith one hand or one leg in order to equal the performance of this beetle.

The rhinoceros beetle (Dynastes tityrus), the second insect Samson to which I invite attention, differs from the first in many respects. Lucanus is jet black, with wing cases and legs highly polished : it is slender, and sometimes very quick in its movements. Dynastes, on the contrary, is yellowish gray in color, with wing cases splotched with black ; its body is heavy and solid looking, and its movements are always slow and sedate. Unlike those of the stag beetle, the horns on the head and prothorax of the rhinoceros beetle are true horns, and not mandibles. If the photograph of Dynastes be closely observed, it will be seen that th top horn springs from the back of the creature's neck as it were, while the lower horn grows from the back
of its head. These horns are fixed and immovable and can only be made to approximate by movements of the beetle's head. Near the base of the upper horn are two short, thornlike spines, one on each side. The female Dynastes is without horns, and is otherwise very different from the individual in the picture. The photograph is life size, and, since it is a very good one indeed, an accurate idea of the appearance of this mammoth beetle can easily be obtained from a study of it.


AN INSECT SAMSON-DYNASTES TITYRUS (RHINOCEROS BEETLE).

an insect samson-lucanus elephas (stag BEETLE).

The set (or sets) of muscles governing the action of the mandibles of L . elephas is very highly developed and is exceedingly strong. Especially is this true o the tendinous attachments of the muscles themselves, which seem part and parcel of the mandibles, so closely and intimately are they welded to them.
The anatomical appearance of these structures indicates great strength. This appearance is reality, for relatively the elephant beetle has more power in its "jaws" than the most ferocious bulldog that ever grip ped a bone. Furthermore, this insect has all the staying" qualities of its canine prototype; for, once having seized an object between its powerful pincers, its head may almost be torn from its body before it wil elax its grasp.
I held this beetle between thumb and forefinger of my right hand, and then brought the tip of my left

The larva or grub of Dynastes is the largest of all the beetle grubs. The individual I have is very near two years old and will pupate during next winter. It will emerge a fully developed rhinuceros beetle about next May or June. When this grub is first hatched out, it is quite active, boring and eating its way through wood that is just beginning to decay. As it grows older, it becomes. sluggish and seeks wood that is softer and more decayed ; finally, just beforc it pupates, it seeks the rotten dust and broken up detritus of pates, it seeks the rotten dust and broken up detritus of
the cavity and there undergoes further metamorphosis. the cavity and there undergoes furt
The grub was reared from the egg.

This giant among beetles is remarkably strong. After fastening it to the tin cart mentioned elsewhere in this paper, I placed in the little vehicle one ounce of bird shot. The beetle pulled this along without difficulty. I then placed a half ounce more of shot in the cart. This seemed to bring out the strength of the insect, for it bent to its work and clearly showed that it felt the additional weight very materially. Again I added a half ounce of shot. This seemed at first to bring the load to a weight beyond the creature's strength, but when I goaded it with an electric needle, it "bowed itself," even as Samson did between the pillars of Dagon, and pulled this, to it, enormous weight of one thousand nine hundred and twenty grains, a measured distance of two inches! The beetle weighed only one hundred and eight grains; consequently, it moved a weight eighteen times greater than its own. To equal this feat I would be compelled to drag a wagon and load which together weighed four thousand five hundred pounds! When we take into thousand five hundred pounds! When we take into
consideration that two thousand pounds is a heavy consideration that two thousand pounds is a heavy
load for two strong draught horses, we can appreciate all the more what a wonderful exploit this was. This beetle showed a dynamometric strength of three hun dred and ten grains for one of its fore legs.
In order to further test this insect's strength, I gently placed on its back a common paving brick weighing some four or five pounds. The beetle moved this brick perceptibly to and fro. If a man were to be subjected to a like experiment, the brick being as large in proportion to him as it was to the beetle, he would be crushed into a shapeless mass.

## THE UNITED STATES ARMORED CRUISER "BROOKLYN"

Until the story of the naval engagement off Santiago has been written by some naval expert who was pres ent at the fight, and written with a view to giving the facts which are of the greatest technical value, we shal be in ignorance as to which of the American ships bore the brunt of the fight. By one eyewitness the "Iowa" is reported to have been the chief object of attack, and another witness reports that on account of her superio speed the "Brooklyn" was singled out by the Spanish cruisers, and an attempt made to disable her. Th fact (if fact it be) that she was hit forty times seem to substantiate the latter statement; moreover, it would be natural for the cruisers, whose sole effor seems to have been to escape, to aim at disabling the speediest ship of the enemy, and the only one tha was capable of overhauling them provided she was not disabled.

The "Brooklyn" is the most modern of the large cruisers of our navy. She was modeled on the lines o the "New York," but exceeds her in
size, speed, coal endurance and the power of her batteries. Both of the hips are of the armored cruiser type and they constitute the sole representa tives of this type in our navy.
The dimensions of these two vessels are given below.
Both ships have three funnels, and with their losty freeboard present a commanding appearance. The "Brooklyn's" funnels are abnormally lofty, their extreme height being in tended to serve the purpose of forced draught.
The forward pair of 8 -inch guns in the "Brooklyn" are carried upon a raised forecastle deck, and the great height of the deck above the waterlin gives the ship a peculiar contour from which she is easily recognized.
She was built by the William Cramp and Sons' Ship and Engine Building Company, of Philadelphia Penn., from government designs, the contract price being $\$ 2,986,000$, of which it was estimated that the machinery would cost $\$ 986,000$, the
on the hard and calloused skin, the tips piercin through and through and meeting beneath the surface. By exerting no little force, during the exhibitio which the cervical attachments underwent consider ble strain, the mandibles were dragged through th Th. Not till then did the creature separate them. These members are powerful weapons of offense and
defense, and one should carefully avoid them when examining this insect Samson.

relative strength of man and beetle. remainder being for hull and fittings. Proposals for the construction of this cruiser were issued on September

|  | Length. | Beam. | Draught. | Dis-placement. | Horse <br> Power. | Speed. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| "Brooklyn"; | $\begin{array}{ll} \hline \text { Ft. } & \text { In. } \\ 400 & 6 \\ 880 & 61 / 2 \end{array}$ | $\begin{array}{cc} \text { Ft. } & \text { In. } \\ 64 \\ 64 & 8104 \end{array}$ | $\begin{array}{ll} \overline{\mathrm{Ftr}} & \mathrm{In} . \\ 24 & \\ 23 & 31 / 2 \end{array}$ | $\begin{aligned} & 9,215 \\ & 8,200 \end{aligned}$ | $\xrightarrow{18,769} 1$ | $\begin{gathered} \text { Knots. } \\ 21.91 \\ 21 \end{gathered}$ |



UNITED STATES ARMORED CRUISER "BROOKLYN."


28, 1892, bids were opened on December 15, 1892, and the contract awarded on February 11, 1893. The contract requirement as to speed was that the vessel should maintain a speed of 20 knots for four consecutive hours on a displacement of 8,150 tons and with an air pressure in the fire rooms not exceeding $21 / 2$ inches, it having been further stipulated that a premium of $\$ 50,000$ should be paid to the contractors for every quarter knot made in excess of this requirement, and that a penalty of $\$ 50,000$ should be exacted from them for every quarter knot deficiency.
By the successful completion of the speed trials on August 27,1896 , the builders received a premium of $\$ 350,000$.
The hull is built of mild steel, which, like everything else in the vessel, is of domestic manufacture.
It is divided into 242 water-tight compartments. There is a double bottom, 3 feet 6 inches deep amidships, divided into 13 water-tight compartments, and extending from frame No. 22 to frame No. 82 and about 29 feet outboard. There is a cofferdam on each side, 3 feet 6 inches wide, extending the whole length of the ship between the protective and berth decks. This cofferdam is filled with cellulose at a density of 7.5 per cubic foot. The transverse and wing bunker bulkheads are carried through the cofferdams and divide them into water-tight compartments.


The protective deck armor over the machinery space consists of two courses of $1 \frac{1}{2}$-inch steel plates. For ward and aft of this, the total thickness of the two plates is not less than $21 / 2$ inches. Tise protective deck extends the whole length of the ship. Glacis plates, 3 inches thick, are fitted around the engine hatch.

The side armor is 3 inches thick, and extends from 4 feet above to 4 feet below the 24 -foot water line for a length of about 192 feet opposite the engine and boiler spaces. The barbette armor of 8 -inch turrets is 8 inches thick, with a thickness of 4 inches where not exposed. The turret armor is $51 / 2$ inches thick, secured to a backing plate of 20 pounds per square foot. Tise side armor turret armor, and barbettes are of Harveyized nicke steel.

The armor of the 5 -inch gun sponsons is 4 inches thick, and the splinter bulkheads, $11 / 2$ inches thick. The secondary battery protection is 2 inches thick.

The conning tower and shield are of forged steel, 71/2 inches thick; from the center of the conning tower an arimor tube, 5 inches thick and 12 inches in interna diameter, runs down into the forward handling room.

## ARMAMENT.

There are eight 8 -inch guns mounted in pairs in four urrets. The guns in the forward and after turrets have an angle of fire of $290^{\circ}$, or $145^{\circ}$ on each side of the bow and stero.
The midship guns have an angle of fire of $180^{\circ}$ from right ahead to right astern. There are twelve 5 -inch rapid-fire guns mounted in sponsons on the gun deck. There are, in addition, twelve 6 -pounders, four 1-pounders, and four machine guns. The 1-pounders and machine guns are mounted on the rails and in the tops.
The ammunition is supplied by electric hoists, ten in number. There are four above-water torpedes tubes, two on each side, for firing Whitehead torinedoes. The air comiressors are of the Rand Drill Company's three-stare type, and, together with the accumu lators, are situated in the forward and after handling ooms.
The ship is driven by four vertical, direct-acting, three-cylinder, triple-expansion engines, placed one in each of four separate watertight compartments, con nected by five watertight doors.
There are two engines on each shaft and, in place of the disconnecting coupling fitted on the "New York, there are four taper coupling bolts, the coupling being of the ordinary disk kind.
The I. P. and L. P. cylinders are fitted with steam jackets. The valves are of the single ported. piston type made of cast iron, one for the higb pressure and two each for the intermediate and low pressure eclinders. The low pressure valves are balanced by making the upper ends $11 / 2$ inches larger in diameter than the lower, the live steam being between the ends. The other valves are fitted with balancing pistons, connected above with the condensers. The valve gear is of the double bar Stephenson link type. The cut-off can be varied from about 5 to 7 of the stroke by means of a slot in the reversing arm.
Reversing is effected by a Cramps' steam reversing gear, which consists of a steam lift secured to one of the engine frames, and connected to an arm on the reversing shaft. The liiting piston is cperated by a piston valve which is controlled by a floating lever,
receiving motion at one end from the hand lever, and
a reverse motion at the other from a pin on the crosshead, so that the piston moves and stops with the
hand.

Each engine is fitted with a disk stop valve, having a screw stem and a balancing piston, and a butterfly throttle. The former is $123 / 8$ and the latter 14 inches in diameter. The main pistons are of cast steel, dished, and fitted with two packing: rings, each $5 / 8$ inch wide and $3 / 4$ inch deep, and the followers are grooved.
The engine frames are of the inverted $\mathbf{Y}$ type, of cast steel, two for each cylinder; each frame is made in two sections which are bolted together in the vertical plane. Cast on the inside of each frame are ribs and facings to which the cast iron crosshead guides are bolted. The space between the frame and the guide is used for water circulation. The bed plates are of cast steel of I section, each in three sections, bolted together. The bed plates of forward engines are fitted like a pillow block and its wedge, so that the forward shaft may be adjusted to the after engine shaft whenver the bearings wear down
Shalting and Bearings. -The crank, thrust and for ward sections of the propeller shafts are of forged steel; the after sections of the propeller shafts are of nickel steel. The crank shaft of each engine is in three sections, the cranks being bolted to each other at angles of $120^{\circ}$, and the sequence for ahead motion being H. P., I. P., and L. P. The two engines on each shaft are coupled with the H. P. cranks opposite each other. The after coupliugs of the L. P. crank shafts are of the same dimensions as those of the after engines. The couplings are fitted with tapered, headless bolts, and split pins over the nuts. There is no shaft alley, the thrust shaft coupling direct to the after section of crank shaft of the after engine.
Where the propeller shafts pass through the coup lings forward and the propellers aft, the 11 -inch hole is reduced to 4 inches in diameter.
Main Condensers.-The main condensers, one for each engine, are made of cast brass, each in five sections, including the water chests. The water circulates tbrough tubes. Brass baffle plates are fitted to direct the steam over the tubes, and plates are provided for supporting the tubes and also to act as baffle plates The tube sheets are made of rolled brass, 1 inch thick The tubes are packed with cotton tape set up by scred glands, and are spaced $\frac{15}{15}$ inch between centers.
Main Air Pumps.-There is one double, vertical, single acting Blake air pump for each main engine, fitted with the Blake valve gear. Both pumps on one side are connected to both condensers on the same side with intervening straightway valves, and exhaust into ither the condensers or the I. P. or L. P. valve chests.
These air pu:nps are of the same style as fitted on the "New York," " ( 'olumbia," "Minneapolis," and other ships, and their successful working has been described
in previous reports of trials.
Main Circulating Pumps.-There is a centrifugal double inlet circulating pump for each condenser, ar ranged to draw either from the sea, from the bilge of its engine room, or from the main drainage pipe. The sea and bilge injection valves are fitted with a safet lock, so that both cannot be open at the same time.
Screw Propellers. - The propellers are of manganese
bronze, and are three-bladed, true screws. The blades are bent back and are adjustable from a pitch of 19 feet 6 inches to 22 feet 3 inches. The hubs are spheri cal and fitted with conical tail pieces. The starboard propeller is right, and the port one left handed.
Steam is supplied from five double ended and two single ended steel boilers, all 16 feet 3 inches in dia meter. Four of the double ended boilers are 18 feet and the fifth, 19 feet $111 / 2$ inches in length. The single ended boilers are both 9 feet 5 inches long.
The working pressure of all boilers is 160 pounds per quare inch. There are four Fox's corrugated furnaces in each end of eac:h double ended boiler and four in each single ended boiler.
The boilers are all below the protective deck and olaced in three watertight compartments, separated by two athwartship bulkheads. Two double ended boilers are placed in the forward, and two in the after compartmenr. In the middle compartment, the larger double ended boiler is on the port side, and the two single ended, placed back to back, are on the starboard side.

The longitudinal shell seams of the boilers are treble riveted with double butt strans. Joints of boiler heads and shell seams are double riveted, and the other circumferential seams are lapped and treble riveted. The ront and back heads of all boilers are curved at the top; the radius for the double ended boilers being 3
feet 10 inches, and tor the single ended boilers, 3 teet 2 eet 10 inches, and tor the single ended boilers, 3 teet 2
inches. The boiler tubes are of charcoal iron, lapweld ed and drawn.
The furnaces are fitted with Cone's patent cast iron shaking grates. There are 8 grate bars in each turnace of the main boilers, each bar extending the whole length of the furnace. They rock on lugs on the front and back bearers and on projections on the middle bearers, and can be easily renewed without hauling fires.
atus, and the internal feed pipes are arranged to disibute the feed water throughout the boilers.
The figures of heating surface are as follows :


Forced Draught.-The closed fire room system is used, there being in each fire room two Sturtevant blowers, each driven by a double engine. The diameter of the steam cylinders is 5 inches and the stroke is 4 inches. The diameter of the fan is 60 inches and its width 18 inches.
Feed Pumps.-There are three main and four auxiliary Blake feed pumps in the fire rooms. Both the main and auxiliary feed pumps are so connected that any pump will supply any boiler, but there is no connection between the -main and auxiliary systems. There are also independent connections with the feed taṇks.
Turning Engines. - In each engine room there is a double cylinder vertical, simple engine, with cylinders 7 inches in diameter and a stroke of 7 inches, secured to the engine frame, for turning the main engines. It operates on a worm wheel on the line shaft through bevel gears and a worm. The worm is made to slide on a feather key, and is held in place by a collar below and a removable key above it. A double pawl ratchet is fitted to the shaft of this engine for turning by hand.
Turret Turning Engines.-The forward and star board turrets are turned by electricity, the port and after turrets, by steam. The steam turning engines are double vertical engines, with cylinders 8 inches in diameter and a stroke of 7 inches. They are capable of turning the turret at the rate of one revolution per minute with the guns run out and the vessel heeled $10^{\circ}$, with a steam pressure of 100 pounds per square inch. At a recent trial, the steam gear worked slightly better than the electric gear, but the result of the rivalry beween the steam turned turrets and electrically turned turrets has no doubt been beneficial, as the present steam gear is believed to work much better than any team turning gear that has been used in our service.
The steam gear is worked by a lever in the sighting hood; this lever, by appropriate mechanism inside of the ammunition tube, moves a change valve on the engine. The "follow up" gear has been abandoned, and the automatic stop, which is necessary to prevent the turret going too far, is provided by cams which are astened to the bottom of the revolving turret tube As the turret nears its extreme position, the cams are brought to against a fixed arm connected to the valve gear. These cams close the valve gradually, and the turret will stop at the same point. regardless of the speed of rotation.
All ammunition hoists are electrical.
OFFICIAL SPEED TRIAL.
The official speed trial took place on Thursday, August 27, 1896, on the measured course off the New England coast, between Cape Ann and Cape Porpoise. The weather was fine and the sea smooth, making the conditions most favorable. The first run over the course was made in 1 hour, 54 minutes, and 42.52 sec onds. The turn, made without change in the speed of the engines, occupied 20 minutes and 53.85 seconds. The return was made in 1 hour, 52 minutes and 26.34 seconds. A tidal correction applied to the 83 -mile course reduced the latter to 82.953 nautical miles.
The machinery worked smoothly and without water on any journal, except that circulating through the bearings. Indicator diagrams were taken every half hour from each main cylinder, and once an hour frow the main air and circulating pumps. No difficulty was found in keeping the steam pressure up to the desired point without running the blowers at too high a speed. The ease with which the steam pressure was maintained was no doubt due, in a great measure, to the high smoke pipes. All boilers were in use and under forced draught. The coal used was Pocahontas of good quality.

DATA OF TRIAL.
Draught at beginning of trial, forward, feet and in
aft, feet and inches
and
aft, feet and inches ..
mean, feet and inches
Displacement at above dr
Average speed, knots
Piston speed, feet, per mean of both engines ......... $136.13{ }^{136}{ }^{13 \% 9}$ Steam preed, feet, per minute. .
Vacum pressure, boilers, per gage.....
engines, per gage...
Vacuum in condense
Opening of throttle.

The total indicated horse power for all four engines was 18,248 . We are indebted for many of our particulars to the builders, William Cramp \& Sons, and to Passed Assistant Engineer W. C. Herbert, U.S.N.

## THE OLYMPIAN THEATER OF PALLADIO AT

 VICENZA.*The oldest permanent theater in Europe, at least of those built since the time of the Romans, is the Olympian Theater at Vicenza, Italy, and it is the last of its race. Before considering this curious theater it would, perhaps, be well to glance for a moment at the history of the theater in ancient and modern times. In the old Greek theater the spectators were seated in a semicircle in front of a raised platform on which a fixed architectural screen was provided. The action took place upon this stage. The place upon this stage. The
dramas of the Greeks and dramas of the Greeks and
Romans were of the simplest kind, the dialogue being simple, rhythmical, and often intoned. The amphitheater, in which the seats rose in tiers, could accommodate a large number of spectators. A theater with a radius of three hundred feet could seat hundred thousand spectatwenty thousand specta-
tors. The best counterparts of the Greek theater are some of the concert halls which were built specially for oratorios and concerts. The Greeks fully understood that the facial expression of the actors was lost, the spectators being so far away from the scene of these difficulties by requiring the actors to wear masks with strongly marked features, and to increase their height they were provided with high heeled shoes. The opera glass in the modern theater has of shoes. The opera glass in the modern theater has
course done away with all objections of this kind. course done away with all objections of this kind.
The modern theater is the result of the blending of the old circular theater of the Greeks with the rectangular theater (so-called) of the middle ages. The earliest mediæval theaters in Italy and Spain consisted of courtyards with balconies which were impressed into the service, and plays were often performed in the tennis courts were used. The trouble with the tennis court was that, owing to the difficulty of roofing a large open space, the room could be only forty or ing a large open space, the room could be only forty or
fifty feet wide, and only six hundred to one thousand fifty feet wide,
persons could persons could
see and hear see and hear
to advantage. The accommodations had to be increased by tiers of boxes. The conch-like ar. ranch-ment of rangement of classical times was soon found to be unfit for a spoken dialogue, which cannot be well heard more than seventyfive or eighty feet away, or the expression of the actors' faces apprecifaces appreci-
ated at a greatated at a great-
er distance; so er distance; so
that the next that the next
improvement was the rounding off of the corners of the room and the multiplication of boxes, which were placed tier upon tier in thesame manner as high office buildings
*By Alberta. Hopkins. From
"Magic: Slage Illusions and scientific Diversions including, TrickPhotography." Copyrighted. 1807 by Mann \& Co.

scene at the olympian theater at vicenza.


Sen Am My
plan of the olympian theater at vicenza.
 of Venice. He was an ar chitect of the first order, and it is difficult to mention any architect who exercised a greater influence on the men of his time, as well as on those who succeeded him. He was an enthusiastic student of antiquity, and, fascinated by the stateliness and charm of the buildings of ancient Rome, he did not charin of the buildings of ancient Rome, he did not
reflect that reproductions of these, even when they reflect that reproductions of these, even when they
possessed great archæological accuracy, were often possessed great archæological accuracy, were often
lifeless and unsuited to the uses of the sixteenth century. His writings and architectural work rendered it easy for those who came after him to reproduce buildings which were faultless in their details, but which were cramped, formal and cold. The Certosa of Pavia would have been impossible in London, yet, under the inspiration of Palladio, Sir Christopher Wren was enabled to construct in London the Cathedral of St. Panl, which would have done honor to the great Italian master himself.
Palladio died before the theater at Vicenza was completed, and it was finished, though not altogether after the original design, by his pupil and fellow citizen Scauluozzi. It was an attempt to reproduce the classic theaters of Greece and Rome, and his friends assistel him by sendhim by selid-
ing designs ol ing designs antique build-
ings to help ings to help
him. It consists of an auditorium under an awning in the form of a semi-ellipse, it not being possible, from the narrowness of the situation, to use a semicircle. Its greater diameter is ninetyseven and onehalf feet and its lesser as far as the stage is fifty-seven and one-half feet. Fourteen ranges of seats for the spectafor the specta-
tors follow the tors follow the
curve of the elcurve of the el-
lipse. At the summit of these receding steps, or seats, is a corridor of the Corinthwhich, from
the narrowness of the ground, could not be detached from the outer wall at all places. Palladio therefore filled up the nine center and the three external col umnations, where the statues touch the external wall, with pieces of statuary.
The orchestra is five feet below the seats. The scene which is sixty feet broad, is an architectural composition of two orders of the Corinthian style superimposed, which are surmounted in turn with a light and well-proportioned attic. On the stylobate of the sec ond story are placed statues, and the intercolumna tions are enriched with niches and statues. The panels of the attic are ornamented with reliefs of the "Labors of Hercules," and the center panel over the largest of the three openings in the proscenium, which is arched with a representation of an ancient hippodrome. Ove the arch is the following inscription: "Virtvti ac
Genio Olympicorvn Academia Theatrvm hoc a FvnGenio Olympicorvn Academia Theatrvm hoc a Fvn damentis Erexit Anno MDLXXXIIII. Palladio Archir."
In the lower order the middle interval has a high open arch and the two others, on the side, have square openings through which are seen streets and squares of stately architecture, each ending in a triumphal arch. The position of the diverging avenues will be understood by reference to the plan. The magnificent palaces and private dwellings which are here portrayed furnish a very effective setting for the plays which were performed in the theater. Though the distance to the back of the theater is only forty feet, yet by skillful and ingenious perspective and foreshortening it appears to be four hundred feet distant. For this skillful and ingenious conceit, which is unclassical in spirit
o.inted by Picutti, dates from 1828, in imitation of the velarium or awning of the Roman theaters. The old ceiling was removed, as it was falling to pieces. The
exterior of the theater is by no means comparable to its internal beauty. It was not built at the expense o the government, but by some private Vicentine gentle man of the Olympic Academy. The Academy was not confined to literary questions. Sometimes the pro gramme included some classical tragedy. They used wooden theaters at first, and Palladio designed one fo them in 1562. The Academy wished to found a perma nent structure ; therefore, Palladio was intrusted with the commission. The theater, begun in 1582, was com pleted in 1586 , and was inaugurated by the performance of the "Edipus Tyrannus" of Sophocles.
The general lines of the interior of the theater ar noble and calm. The theater looks as well on paper ings built of brick and stucco, which are now in a dilapidated condition, it has an enduring shabbiness. It must be said that in this remarkable building Palladio conciliated the precepts of Vitruvius and the needs of a contemporaneous society and it shows what a hold tradition had on the society of the late Renais ance, who were pleased by the resuscitation of dead forins. M. Eugene Muntz has expressed the conception of the theater when he said that it was a "mirage of a
Paolo Veronese in architecture ;" and, indeed, with it profusion of statues and niches and columns, it doe resemble the works of the great painter of Verona who, in his great light-filled frescoes and canvases, crowds the space with monumental architecture and fills the buildings with the well-dressed courtiers of Venice, until the whole becomes a gorgeous pageant.

The Current Supplement.
The current Supplement, No. 1176, is almost en irely devoted to subjects of very present interest
"The Spanish Battleship 'Pelayo'" describes the one great battleship of the Spanish navy, which is now returning from the Suez Canal to defend the oasts of Spain. The vessel is illustrated by a num ber of engravings showing the various guns, and even the telephonic installation on the vessel. "The Trans ort 'Alphonso XIlI.'" illustrates a well known Span sh transport ship. "The Loss of the French Steamer Bourgogne'" refers to the recent lamentable accident nd illustrates this fine transatlantic steamer. "Th Military Medical Services in Cuba" is the subject of full paper. "The Causes of the Explosive Effect of Modern Small Caliber Bullets" is an important pape by Charles E. Woodruff, M.D., United States Army his is a particularly important and timely paper, and s fully illustrated.
Other notable papers are "The Bolometer," by Dr S. P. Langley, and, in "The Right to an Idea," Mr A. R. Foote describes the subject with reference to the copyright and patent laws. "Historical and Mytho ogical Trees" is a lecture by Dr. A. W. Miller, and is curious and interesting paper

An aerial graphoscope is described in the Journa f the Society of Arts. A lath is rotated about it enter in its own plane, and a picture projected upon by a magic lantern. The apparatus illustrate persistence of vision, and may be used for testing it uantitatively. Three tables of numerical results ar iven. The inventor suggests that the apparatus may b used for stage effects such as the dagger in "Macbeth.

## recently patented inventions.

## Bleycle Appliances

bicycle-support.-Wilinam metzrath, High and Park, N. J. This bicycle-support comprisee a cli apped to be secured to the lower brace of the bicycle the elot a bead is pivoted which alao has an open slot,
but running tranyersely $A$ pin croses the latter slot ut running transversely. A pin croses the latter slot nd equidiptant from the cross-pin, and have notches in eir extended upper ends for engaging the same. ed to enter coincident holes in the clip and head.
dress-guard attachment.-Wiluni Shir angland. The purpose of this inventio aard may be quickly applied to means of which a dressof which the guard may be stretched and readily removed nd a latch adapted for locking engagement with the keeper and having casings formed upon its body. The atch is provided with spring-controlled members havi the dress-guard.
Brake. Julius L. Allen, Mendocino, Cal. The provided for by this invention is an improvemen apon those brakes in which a loose band or sleeve re-
volves freely around a rigid drum or axle adjustable to apply the brake when necessary. To the fork of the bicycle, clamps composed of elastic bands are applied. Right-angalar screw-bolts. whose inwardly projecting portions constitute fulcrum pins on which the brake arm yes for receiving these pins engages the forks and roller rums at its roller of the brake out of contact with the tire.

## Mechanical Inventions.

PAPER-TUBE MACHINE.-Frederick S. Baru Jersey City, N. J. The purpose of this invention to provide a machine for making papes tubes such as
those used in the manufacture of fireworks. The intention consists primarily of a rolling table, a recessed head on the table and a slidable mandrel-frame, carrying revoluble mandrel adapted to engage the paper in the recessed head. A knife-frame is pivoted in the slidable Prame and carries epaced knives for cutting the paper
into strips, the mandrel afterward rolling the strips into tubes.
GOIN-CONTROLLED VENDING MACHINE. Charles E. Snapp, Grottoes, Va. This inventio provides for a machine which will automatically dewhen a trip mechanism is operated by a coin of a certain denomination, the device being so arranged that no coin or piece of metal other than the proper piece of
moner can operate the machine. The apparatus is promoner can operate the machine. The apparatus is provided with a coin-chute and compartment for holding
cigars or other articles. A tiltable table is located below cigars or other articles. A tiltable table is located belover
the compartment. A movable coin-carrier and lever echanism are adapted to be acted on by the coiu in cigars.
PERCUSSION - DRILL. - Jobeph P. Hartman, Pueblo, Col. This invention provides for a drill which can be operated by hand or power alike, but is especially
designed for use by prospectors or miners working districts where steam-apparatus cannot be transported. The drill comprises rotatable arms to which hammers are pivoted by their handles and made to
come into contact successively with the head of a drill or a socket containing the drill. A circular hammer rack controls the path of the hammers. Springs are connected to the hammers and hold them at all times
against the track. Means for increasing the tension on he springs at certain predetermined points are also,pro. vided.

Miscellaneous Inventions.
VALVE-GEAR for pumps. - John Doherty
ventor is especially adapted for use with single
pumps. The gear comprises a pivoted lever or dog having its outer end pointed or diamond.shaped and orming inclined cam surfaces, connections therefrom to the steam-valve and a plunger having a roller bearing on the cam-surfaces of the dog and toward ite pivot. A
pivoted lever has $\begin{aligned} & \text { ibratory connection with the pump- }\end{aligned}$ rod and has arms embracing the dog. Set-screws extend through the arms, whereby the sluck or lost motion be tween the arms and dog mny be regulated. This gear, it is claimed, will enable a pump to be run at as slow a speed as desired without any probability of the pump stop-SASH-FASTENER. - Joen Greife, Dayton, Ky. his sash-fabtener is so constructed an $t o$ be readily applied to a window without cutting the casement or
sashes, and when in operation is adapted by manipulation of one part of the device to lock both sashes imultaneously. The sash-lock is provided with
ockahle friction-block adapted to lock the lower sash. A pivoted bell-cranks lever is located above
the rockable friction-b.ock. Another friction-block is located on a pusher-bar, which is rockable on a limb of the bell-crank, and is thus adapted for projection
toward the upper sash to lock it. Means are also provided to connect the bell-crank and lower friction-block for their simultaneous rocking movement. A projection on he bell-crank supports the upper friction-block when is rocked away from the upper window-sash.
GRAIN-REEL FOR REAPING MACHINES Marbial G. and Petrer P. Keen, Keensburg, Il. The
object of this invention is to provide a reel which shall take less space than ordinary reels, and which simple arrangement is provided whereby the rect mas adjusted relatively to the cutters. The reel is so con-
structed that it may be folded down closels upon the platform for convenient storage and transportation. On the reaper-frame toggle-links are mounted to swing. Means are pronded for swinging the links relatively to the platform \&nd one relatively to the other. A tubular shaft is carried by the upper link. A rec-ssate extends tating the reel shaft On this shaft sprocket-d heels are mounted which are engaged by sprocket-chains. For the sprocket-wheels gaideways are provided comprising
downwardly diverging side portions and a bottom por ion suspended in the arc of a circle. To the chains ree ards are attached
ball-bearing.-John R. SAucier, New Iberia, . The object of this invention is to provide a ball earing more especially designed for use in the step
Pertical shaft of a heavy machine rotating at high rate of speed, the arrangement being such dispense with the use of high-grade lubricants and the same time permitting the shaft to run with grea speed, without overheating the bearing. The bearing comprises a cup-shaped casing formed at its inside with support on which an oil box is hung within the casing. A batton is set in the bottom of the box and is shaft rests on a second hutton above the first named button. The second button is provided in its under side with a circular groove registering with the groove in the
other button. Balls fill the grooves to separate the buttons.
FOUNTAIN ATTACHMENT FOR PENHOLDERS, -Carl J. Renz, New York city. The object of this application to any penbolder, the attachment being a in the holder. When not in use the attachment mas be reversed and the ren introduced entirely in the holder. The attachment comprises a body, a fingere tip at the forward end of the body, having trans-
verse cells in its upper face, and a spring secured to the under side of the bedy face, and a spring secured to curved upwardly and extending in close proximity to the under f
the holder.
DEVICE TO PREVENT COWS FROM KICKING



[^0]

## ゆฎvertisements. <br> ORDINARY RATES.

Inside Page, each insertion. - 75 cents a line
Back Page, each insertion, - $\$ 1.00$ a line Back Page, each insertion, - $\mathbf{8 1 . 0 0}$ a line
rat For some clasges of Advertisements, Special and The above are charg


WOOD or MEIAL WORKEFS Footandiar PPuver maetilieri Wood-working Machinery. B-Laod-working Machinery.
SKNECA FALIS. MFG. COMPATY. 95 Water St., Seneca Falle, N. AMERICAN PATENTS. - AN LNTER Anting and valuable table showing the number of patents
erranted for tha frarlous subjects upon whitch petitions
gave been fled from the bepining down to December


##  <br> MACHINE DESIGN, <br> Taught at Your Home for $\$ 2$ 学ernth <br> This pays for Tert Books, Drawing Plates, and Instruction un til you complete the course. <br> EaT Write for free S. A. Clreular. UNITED CORRESPONDENCE SCHOOLS, <br> F. W. Ewald, Gen. Mgr

## Pipefitters!

Your kit is not complete unSTILLSON WRENCH

 ROUND OR SQUARE BASE


ARMSTRONG'S PIPE THREADING
 CUTTING-OAFDMACHINES
Both
and

 Transirs and leveling instruarnts.
 ize in. to 18 in. Price 82.50 to 88. For book on the le
C. F. RICHARDSON \& SON,
 The MIDGET yotatiow wixt ou
 Electrical apparatus company, Elbridge, n. r. SUB-PRESS PUNCHES AND DIES


Oster Pat. Adjustable Stocks \& Dies




 SIGNALING THROUGH SPACE




THE
Scientific American ARII AND
COAST DEFENCE SUPPLEMENT


GUNS, ARMOR AND FORTIFICATIONS.
In response to numerous requests for detailed information regarding our Coast Defences, we have just published a special edition of the SCIENTIFIC American SUPPLEment under the above title as
complementary to our recent "Navy" issue. It is complementary to our recent "Navy" issue. It is
similar in size, quality and general make-up to the Navy Supplement, and in it will be found the most important facts regarding our system of coast defence and the varied character of the "war material" upon which it depends.
Among the subjects treated are the following:
$8,10,12$ and 13 inch guns.
Disappearing gun carriages
fences.
Rapid-fire guns, various types.
Rapid-fire guns, various types.
Machine guns, such as Hotchkiss, Gatling, Colt,
Armor ; method of manufacture, tests, etc.
Projectiles, powders and guncotton: process of
Range finders, submarine mines, etc.
Tables of size, power, penetration, etc., of the
various guns.
Mortars, dynamite guns, submarine mines, small
Diagrams showing filght of modern projectiles and
Mountain guns and method of transportation by
mule pack. This issue opens with a brief discussion of the exact and proper scope of a system of coast defence, in
which it is shown that both army and navy are intimately associated in its planning and execution The descriptive matter commences with an ac-
count of the 12 -inch coast defence guns and the count of the 12 -inch coast defence guns and the
methods of their construction, mounting and operation. Then in their order follow a series of chapters on heavy rapid-fire guns, light rapid-fire guns and machine guns, in which the leading types of
each classare fully illustrated and described. The development of armor is doscribed from the early wrought iron plate down to the re-forged face-hardened Harvey plate of to-dav. Under the head of powders is an article on the manufacture of gun-
cotton, and following this is a brief account of the cotton, and following this is a brief account of the
much-talked-of smokeless powders. Dynamiteguns much-talked-of smokeless powders. Dyn
are illustrated in several handsome cuts.
are illustrated in several handsome cuts.
There is a very full chapter on the subject of harThere is a very full chapter on the subject of har-
bor defence, including diagrams of the various sys tems of range-finders and the modern methods of defence by mortar-fire, submarine mines and dirigible torpedoes. Under the last head, the Whitehead, Howell, and Sims-Edison types of torpedo are
shown in a series of cuts which will be entirely new shown in a series of cuts which will by the army, navy and volu inse is followed by vice and those of leading foreign powers.
The illustrations number over 100 and include a
magnificent double page supplement of our largest battleship, the "Iowa.
illustration of a large
Price, By Mail, 25 Cents. MUNIN \& CO., Publishers, 361 Broadway, New York City.

FDUCATIONE E= DIEmBY MAIL
 Matidraxdezo


 Oraular FREE. Btate eubject you wilh to ntudy.
THE INTERNATIONAL CORRESPONDENCE SCHOLS

The Best Place to Study Engineering IS PITTSBURGH



HIGH GRADE WOoding MACHINERY Single Machines or Complete Equipments for
Any Class of Work Your Correspondence is Soli ited. J. A. FAY \& CO. $\underset{\text { 10-30 John St., CINCINNATI, OHI }}{\text { J. }}$

## PURIFY YOUR DRINKING WATER



WELL DRILLING MACHINERI WILLIAMS BROTHERS. ITHACA, N.Y. MOUNTED OR ON SILLS, FOR DEEP OR SHALLOW WELLS, WITA STEAM OR HORSE POWER
SENO FOR CATALOGUE

THERE IS NO MYSTERY
 THE RALSTON STILL
隹




## A Bunch of Keys

 Hitl iot fet loys of bieft in



NEW BINOCULAR.

 OUEEN \& CoO
1010 Chestnut Street,







## Itte







 anhole and cover therefo
Marine boiler. W.
Matyen box, W . W. Housel.











 Pan. Eied D.ast pan




ipe compressing machine, corrugated, w.
Pipe coupling, Morrison \& Hansen......... laiting machine, E. F. D. Donn.



Propeling ships, etc., device for, c. J. D’ưban


Rails over joint siee.ers, deviae for reguiating p
sition of height of, A. Wambsganss.

 Railway overhead consaruction, ele
Railwavis. permaneni way. P. Hëvier
 Ram, hydraulic. G. H. Harris.
Reel. See lothes ilie reel.
Revister. See Cash rexister





 Sedigh and boat, combined,
Soap ake. L. Samuel.
Spark arester, S. S.




 Kitchen table.
Tablet, and mote briting, E. W. Hill.
Tank. See Animal dipping tank.
Tarket, Ge D Masini






## National Tube WorksCo.

## McKEESPORT, PA., U. S. A.

THE Largest Makers of All Sizes and Kinds of Special WROUGHT MILD STEEL AND BEST WROUGHT IRON TUBULAR GOODS IN THE WORLD; control the Manufacture of Wrought Tubular Goods Made of a High Class of Mild Steel, FROM THE ORE to the FINISHED PRODUCT, and unqualifiedly recommend NATIONAL PIPE FOR ALL USES as Better than any other Pipe made.

## PROPOSALS.





## 

ALUMINUM, BRASS AND STEEL


## GAS ${ }^{\circ}$ GASOLINE ENGINES <br> WAIER MOTORS

SENT FREE



Experimental \& Model Work

(iili. ${ }^{2}$ U. Drying machines

ACETYLENE APPARATUS






[^0]:    HINTS 'TO CORRESPONDENT
    Names and Address must accompany all letters
    or no attention will be paid thereto. This is for our information and not for publication. Nuswers should
    References to former articles or answer give date of paper and page or number of question
    Inquiries not answered $m$ reasonable time shoul
    be repeated: correspondents will bear in mind the be repeated: icorrvepondent reasonable will bear in mind shoua tha
    some answers require not a little research, and some answerf require not a
    though we endeavor to reply to all either by lette
    or in this department. each must take his turn. Bu y ers wishnng to purchase any article n not advertise
    in our columns will be furnished with addreses on houses manufacturing or carrying the same. personal rather than general interest cannot be
    expected without remuneration.
    cientific American Supplements referre Scientific American Supplements referre
    to may be had at the ofoce. Price 10 cents each.
    Books referred to promptiy supplied on receipt price.
    (7463) W. V. asks: 1. Can the same length of spark be obtained in the induction coil of Sur LEMENT, No. 160, by No. No. If or not what length wil hey give \& A. No. If wound equally close, the spar 36 wire. 2. What size will the tinfoil in the condenser
    be \& A. The size of the condenser is determined by the primary current and would not be changed whateve changes were made in the secondary winding. Cut the sheets of tinfoil to go into the box at base of coil.
    The proper surface of tinfoil is 40 square feet. 3. Do he proper surface of tinfoil is 40 square feet. 3. Do folding camera, size $4 \times 5$ or $5 \times 7$ ? What number is the Supplement? A. For folding camera, see Supple ment, No. 1021. For mode of making bellows, see Sur Plement, No. 625. Other articles may be found in Sur (7464) S. E. writes: Please send me SUPPLEMENT containing an article on the prevention o now any separate article on the battery. A. We do no alts in battery jars. It is on the checking of creeping of ake paraffine wax, 2 parts; vaseline, 1 part. Melt to cell abont Clean and dry the cells. Dip the neck of the obliquely and rolling the jar around, it will be coated on the inside as well as on the outside. Over this surface salts will not creep.
    (7465) W. G. R. asks: Have you any book or books giving a full explanation of differential arc light system? A. A valuable series of papers on the arc light appeared in the Scientific Amerioan Supple frnt, Nos. 1047-1052, also one on driving powers, equal zers, etc., in Sury
    cents each by mail.

