

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS CHEMISTRY, AND MANUFACTURES.


THESPANISH "CAPE VERDE" FLEET.
The center of interest in the interest in the present war is quickly shifted.
One week it lies One week it lies
off the south coast off the south coast of Florida as our
blockading fleet moves to the investment of Cuba: the next week it is found off the coast of Africa, coare we Africa, where we see the gathered for its gathered for its
long voyage to long voyage to
the relief of the the relief of the Spanish army; then it flies to the antipodes and we watch the fateful conflict of Manila; and before we have had time to estimate the full estimate the full value of the vic-
tory, the startling news comes that the Cape Verde fleet, which was supposed to be at Cadiz, is in the West Indies, replenishing its bunkers and get-


THE FORWARD 11-INCH RIFLE OF THE "VIZCAYA."
Weight of shell 694 pounds; velocity, 2.034 feet per second; muzzle energy, 24,030 foot-tons; muzzle penetration, 28.7 incles of iron.
ting otherwise ready for its campaign of diversion and relief of the blockaded island of Cuba.

Unless it is sunk or captured by our squadrons, the Cape Verde fleet is likely to fill a large page in the record of the Spanish-American war, for it happens to combine several qualities which are essential to successful fleet maneuvers. In the first place it is homogeneous, three of the armored ships being sister vesselsand the fourth so nearly like them that, for tactical and maneuvering purposes, the four ships are identical. The three torpedo boat destroyers are also identical in armament and general (Continued on page 345. )


ARMORED CRUISER "VECAYA," OF THE "CAPE VERDE" FLEET. (ALSO "MARIA TERESA" AND "ALMIRANTE OQUENDO.",

## Srientific smerican.

ESTABLISHED 1845
MUNN \& CO.,
Editors and Proprietors.
published weekly at
No. 36I BROADWAY, - - NEW YORK.

## TERMS FOR THE SCIENTIFIC AMERICAN. <br> Established 1845.)

One copy, one year, for the U. S., Canada or Mexico....
One copy, six months, for the U.
One copy, one year,to any foreign country,postape prepaid, $£ 0$ ㅇ....... 1.50 .50 mit by postal or express money order, or by bank draft or check.
MUNN $\&$ CO., 361 Broadway, corner Franklin Street, New York.

The scientific American Supplement
(Established 1876)
is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMENT with Scientific American. Terms of subscription for Supplement $\$ 2.00$ a year for the U. S., Canada or Mexico. $\$ 6.00$ a y ear, or $£ 1+\mathrm{ss}$. Sd., to foreign countries belonging to the Postal Union.
Sold by all newsdealers throughout the country.
Sold by all newsdealers throughout the country.
will be sent for one year, to one address in $\mathbf{~}$. .s., Canada or Mexico, on will be sent for one year, to one address in C.S., Canada or Mexico, on
receipt of sevendoluars. To foreign countries, cioht dollars and Afty cent
a year, or $£ 1$ 14s. 11d., postage prepaid.

Building Edition of Scientific American. (Established 1885.)
The building edition of the Scientific american is a large and splendidly illustrated periodical, issued monthly, containing floor plans
and perspective views pertaining to modern architecture. Each number and perspective views pertaining to modern architecture. Each numbe
is illustrated with beautiful plates, showing desirable dwellings, public is illustrated with beautiful plates, showing desirable dwellings, public
buildings and architectural work in gr eat variety. To architects, builders and all wao contemplate building this work is invaluable.
Single copies 25 cents. By mail, to any part of the United
 Combined rate for Builiding Edition with Scientific American, to one address, 85.00 a year. To foreign countries, 86.50 a year, or $£ 1$ Gs. 9 d .
Combined rate Combined rate for BuIliding EDITION, SCIENTIFIC AMERICAN, an
SUPPLEMENT, 89.00 a year. To foreign countries, 811.00 a year, or $x 25 \mathrm{~s}$. 2 d ,


Export Edition of the Scientifle American Established 189(s)
with which is incorporated "LA America Gentipica e industrial," or Spanish edition of the SCIENTIFIC AmRRICAN, published monthly,
uniform in size and typograply with the Scientipic American. Every number contains about 100 pages, profusely illustrated. It is the fnest
scientifc industrial export paper published. $I t$ circulates throughoul scientific industrial export paper published. It circulates throughout
Cuba, the West Indies, Mexico, Central and South America, Spain and Cuba, the West Indies, Mexico, Central and South America, Spain and
Spanish possessions-wherever the Spanish language is spoken. TH Scientific American Export Edition has a large guaranteed circula tion in all commercial places throughort the world. $\$ 3.00$ a year, o
so 12 s . 4d., postpaid to any part of the world. Single copies, 2 cents.
RTP The safest way to remit is by postal order, express money order,

draft or bank check. Make all remittances payable to order of MUNN | draft or |
| :--- |
| $\& \quad \mathrm{CO}$. |
| . |

failure, delay, or irregularity in receipt of pape
NEW YORK, SATURDAY, MAY 28, 1898.


TABLE OF CONTENTS OF
Scientific American Supplement No. 1169.
For the Week Ending May 28, 1898.
I. ARCHEOLOGY.-The Latest Discoveries as to the Antiquity of
II. BIOGRAPHY.-Admiral Cervera.-1 illustratio

Gladstone and His Place in the History of His Time.-By
George W. Smallet
il. botany and horticuliture.-Eulophiella Peetersiana-
IV. ECONOMICS.-American Competition with France in Agricul-
taral Products.-From a French point of view..................
. FINE ARTS.-The Making of a Stained Glass Window.-By Lewis
foreman day.
I. ILlumination.-Calcium Carbide and Acetylene............... 188
II. MEDICINE-The Pathological Impulseto Drink--By William
III. MINING.-The Gold Fields of Western Australia.-5 illustraix. miscellaneous-A New Form of Table Knife. -3 illuatraEions.................
Miscellaneous Notes
Selected Formule...
X. NATURAL HISTORY.-Protective Value of Motion.
XI. ORDNANCE.-Schneider-Canet Quick-firing Breech Mechanism.
II. STAGE MLCHANISM.-The Revolving Stage of the Variety III. TRAVEL AND EXPLORATION.-Malay Life in the Philip.

## THE WEAK PONNT IN OUR NAVY

There is much food for thought on the part of our Board of Naval Strategy as it watches the game of hide and seek which is being played between Adwiral Sampson's powerful, slow-moving battleships and the elusive fleet of armored cruisers under Admiral Cervera The fleet that crept slowly along the northern coasts of Cuba and Hayti, its speed restricted by an inexorable law to the speed and coal capacity of its harbor defense monitors, was the embodiment, as far as guns and armor go, of the very highest powers of attack and defense. But with a trial speed of 10.5 knots, a probable sea speed of 7 or 8 knots, and a very limited coal capacity, the monitors had to be taken in tow at a 5 knot gait, to insure their reaching the objective point with a reserve of fuel in their bunkers. While our squadron was approaching from the westward, the less powerful but swifter fleet of Spain was speeding at a 12 knot gait to the eastward, and was able to reach its objective and prearranged coaling rendezvous in the Caribbean Sea, fill its bunkers, and make its next move on the checkerboard unmolested. With its advantage of 8 or 10 knots over Sampson's squadron of battleships and monitors and of 3 or 4 knots over the "Flying Squadron," coupled with its steaming radius of 7,000 to 10,000 knots, the armored cruisers were now free to make any one of several diversions in favor of the beleaguered island of Cuba. They might run to Porto Rico and take up a strong position under the guns of the fort; they might sweep in a wide circle to the eastward of the islands and menace
our Atlantic coasts; or they were free to remain off th our Atlantic coasts; or they were free to remain off the Venezuelan coast, drawing our fleets to the southward, and then speed swiftly to the northeast to effect a junction with a possible second Spanish squadron in the shelter of San Juan Harbor.
The present situation teaches a lesson. It proves the usefulness of speed as an offset against mere defensive power, and the inestimable value of speed and offensive power when combined in a fleet composed of identica armored vessels. Although the Spanish cruisers are not capable of contending with our battleships and are cer tain to be sunk if they attempt it, they would be more than a match for our two armored cruisers the "Brookyn" and "New York," which are our only armored ships having sufficient speed to hunt them down, and it would certainly go hard with our unarmored and scattered scouting and patrol fleet if Cervera should run to the eastward around the Sampson and Schley squad rons and make a raid up the Atlantic seaboard.
The Spanish fleet in its relation to our blockade of Cuba is what naval strategists call a "fleet in being," that is to say, a fleet which, while it is inferior in strength to the enemy, is in such a condition that it is a constant menace to his operations, and as long as it exists obliges him materially to defer, modify or abandon his predetermined plan of campaign. That the Cape Verde fleet is a "fleet in being" is proved by the fact that its sudden appearance in the West Indies obliged us to postpone, as was advocated long ago in these col us to postpone, as was advocated long
umns, the intended invasion of Cuba.
It may be asked, Why should we not combine with the "Brooklyn" and "New York" the fast cruisers "Minneapolis," 23 knots; "Columbia," 22.8 knots; "New Orleans," which it now appears is credited with $221 / 2$ knots; and "San Francisco," 20 knots ; and run down the Spanish fleet? The reply is, as we have already suggested, that these four ships were never designed to stand up against 11 -inch armor-piercing guns. If well placed, a single shell from these guns, weighing nearly 600 pounds and filled with high explosives, would be sufficient to put them out of action, even if it did not send them to the bottom. The answer to an 11 -inch gun is an 11-inch gun or one of equal penetration, and not the 6 -inch aind 4 -inch guns carried on these vessels; the answer to 12 -inch belts is a 12 -inch belt of its equivalent, and if to this combination of guns and armor the enemy's ships add the feature of high speed, we must match it with high speed.
It is this trinity of elements that makes up the ar nored cruiser, and it is just because Spain happens to have and we happen to be without any members of this type that, in spite of our naval superiority, we may be unable to strike the decisive blow by getting rid of the "fleet in being" for some time to come. It is, of course, possible that, before these lines are published, the Spanish admiral may have elected to give battle, or, by skillful strategy upon the part of our fleets have been so hemmed in as to be forced to fight.
Whatever may be the issue, the situation has already proved that our lack of armored cruisers presents a already caused us not a little apprehension as to our ability to maintain the blockade, and that may result in the naval campaign being drawn out to an unexpected length. The composition of our navy was determined with a view to coast defense and in agree ment with a national policy into which never entered the thought of blockading islands and hunting down hostile armored fleets upon the high seas. We can do nothing to remedy the matter as it stands; but it is in our power to provide against the future by the imme-
diate authorization of several armored cruisers in a supplementary naval appropriation bill.

AIR MOTORS FOR STREET RAILWAY TRACTION
An important street railway plant, whose operation will be watched with considerable interest, is about to be installed in this city on a portion of the lines of the Metropolitan Street Railway Company. It will be remembered that a few miles of this company's extensive ines have been operated for some time by compressed air motors, which are of the compound type and built under the Hoadley patents. On another stretch of road in this city the Hardie compressed air motor has been in successful operation. The distinctive feature of the Hardie motor is the use of a tank of hot water to heat the compressed air before it is used in the cylinders. A fully illustrated description of this machine will be found in the Scientific American for August 15, 1896 where it is shown in service on the lines of the Thir Avenue Railway Company, New York; another motor of the same type built for the elevated roads was illus trated in the Scientific American of January 30 1897.

The new plant will include a power house on the property of the Metropolitan Company in West Twentythird Street opposite the Pennsylvania terminal, and in addition to the power house the contract calls for the equipment of twenty cars with compressed air. The air compressor will be of the Ingersoll-Sergeant four-stage single-acting type, provided with intercoolers between each pair of cylinders and a final cooler after the fourth-stage cylinder. The air cylinders will be vertical and will be set under a vertical cross-compound Allis engine.
It is interesting to note that the American Air Puwer Company, to whom the contract has been let, was formed by a combination of the Hoadley-Knight and Hardie Companies. The new plant and equipment will embody the experience gained by the two experimental lines to which reference has been made above, and as both of these tests have shown satisfactory results, it is safe to say that the new Twenty-eighth and Twentyinth Streets equipment will represent the very lat est advance in compressed air traction. The Metro politan Street Railway Company has now in operation four different systems : the cable, underground trolley, compressed air and the horse car. The probabilities áre that of these four, two only will survive-the underground trolley and compressed air : the former being used on what might be called the trunk lines running north and south on Manhattan Island, and the compressed air motors working the crosstown branches.

## LAUNCH OF THE BATTLESHIP "ALABAMA."

## The first-class battleship "Alabama" was success-

 fully launched at the Cramps' shipyard on May 18 in the presence of less than one hundred invited guests. The work of cutting away the blocks that held the ship in place was commenced at half past twelve, and the "Alabama" took the water in less than half an hour.We have so recently described this vessel (see Special Navy Supplement) that it will be sufficient to recapitulate the leading features of her design, which are as follows: Length on load water line, 368 feet; beam, 72 feet 5 inches; mean draught, 23 feet 6 inches; displacement, 11,525 tons. Her maximum coal supply will be 1,200 tons, and she will be driven at a speed of 16 knots by twin yertical triple expansion engines of 10,000 horse power. This result will be obtained under a moderate forced draught. She will carry a complement of 489.
The armor will be of the latest Harveyized nickel steel and will be more complete than in any ship of our navy. The belt will be $161 / 2$ inches thick amidships, tapering toward the ends. Above this will be a wall of $51 / 2$ and 6 -inch armor protecting the rapid-fire battery. The main battery of four 13 -inch guns will be placed in 15 -inch turrets above 17 -inch barbettes, and the rapid-fire battery of fourteen 6 -inch guns will be sheltered behind six inches of steel. The secondary rapid-fire battery will consist of sixteen 6 -pounders, four 1-pounders and one Colt. The maximum concentration of fire dead ahead will be two 13 -inch and two 6 -inch guns; astern it will be the same, and on the broadside the concentration will be four 13 -inch and seven 6 -inch.
Our readers who are familiar with the details of our earlier battleships will notice that the 8 -inch gun which forms such a conspicuous feature in the "Indiana," "Iowa" and "Kentucky" types has disappeared altogether in the "Alabama." This is in accordance with the latest theory or fashion in battleship design, which is to have only three main types of guns: the armor-piercers, generally not less than 12 -inch; the rapid-fire battery, of not less than 5 -inch caliber; and the secondary rapid-fire battery, of 6 and 1-pounders. The first type is for the penetration of the belt armor and demolishing of the barbettes and turrets, the second type is intended for wrecking the lighter armor, 8 inches or less in thickness, and the "pounder" guns are for the destruction of torpedo boats and the attack of unprotected gun positions. The 8 -inch gun has been thrown out because it is heavier than necessary for the attack of light armor and not powerful enough to penetrate belts and barbettes, except at close range.

The long caliber 6 -inch rapid-firer can pierce almost as thick armor at the shorter ranges as the 8 -inch, and its rapidity of fire is four or five times as great.
Although the "Alabama" is afloat, she will not be sommissioned for eighteen months, unless the work is pushed along much faster than is usual on our battleships. If there is no delay waiting for armor, guns, etc., this fine vessel might be in the fighting line by the summer of 1899

## THE HEAVENS IN JUNE. <br> by anrrett p. arrviss.

At 9 P. M. in the middle of June the great star Arcturus is overhead. Even for those who know and care but little about astronomy it is worth while to look carefully at Arcturus, because Arcturus is the very mightiest sun that the heavens are known to contain. Its distance is about a thousand millions of millions of miles, or more than ten million times the distance of our own sun. Since the intensity of light decreases as the square of the distance increases, it is easy to show that if we were as near to Arcturus as we are to the sun, the earth would be vaporized by the blast of unimaginable heat which would smite it, for Arcturus must exceed the sun in light and heat giving power in the ratio of six thousand to one! As to the actual size of Arcturus, it is not improbable that its globe would more than fill the entire space that is belted by the orbit of the planet Mercury! Not to know Arcturus, then, is to be unacquainted with the most stupendous physical phenomenon within the range of human vision.

An easy way to make certain of the identification of Arcturus is this: Look for the Great Dipper, which
will be found between the pole and the zenith, with its handle upward. Follow with the eye the bending line of the handle, beginning at the bowl, and continue it, beyond the last star in the end, to a distance about equal to the entire length of the Dipper, and thus the eye will be led to a bright yellowish star, which is Arcturus. Far southward shines the white star Spica, in Virgo, and farther west the planet Jupiter, the threeAreturus, Spica and Jupiter-marking the corners of a large triangle.
Northeast of Arcturus will be seen the beautiful circlet of the Northern Crown, and half way between the Crown and the horizon, the brilliant Vega will catch the eye. This star ranks next to Arcturus among the recognized giants of starry space. Its distance is more than five hundred millions of millions of miles, and in light-giving power it probably exceeds the sun about two thousand times! Those who have telescopes may enjoy an exceedingly beautiful contrast of color by looking alternately at Arcturus and Vega.

THE Planets.
Mercury is a morning star, visible to early risers at the beginning of the month, but lost in the rays of the sun at the end. It passes from Aries into Gemini, to become an evening star in July.
Venus is beginning to overmatch Jupiter in splendor as an evening star. At the opening of June she is in Gemini and at the close in Cancer. With a telescope she appears in the form of a gibbous moon, more than eight-tenths of her disk being illuminated. Venus is a kind of mirror to the earth. Being very nearly of the same size-as our planet, she presents an appearance similar to that which the earth would present if we
could look at it from a corresponding point of view. could look at it from a corresponding point of view.
But when, as will happen in December, Venus comes between the sun and the earth, her inhabitants will behold a planetary spectacle more magnificent than any ever presented to our eyes; for then the earth will be seen in their midnight sky, in the phase of a full moon, with all its continents, and oceans, and stream ing storm clouds plainly visible to their telescopes; and
accompanied by its ever faithful attendant the moon, which itself will appear as a planet of no mean size. Its cloudless condition, in contrast with the earth, would instantly arrest the attention of an astronomer on Venus.
Mars in these warlike days sulks in his tent. He is far off and faint in the inorning sky, passing during the month from Pisces into Aries.
But while the celestial god of war thus apparently neglects his interests on the earth, the great master planet Jupiter occupies a commanding place, crossing the meridian early in the evening and remaining con spicuous during the first half of the night. Jupiter has developed a remarkable series of dark elliptical spots in his north tropical zone during the past two years, and at present these spots appear to be increasing in number. Three of them are being carefully motion is said to be greater than that of spots which were seen in the same latitude three or four years ago The commotion of Jupiter's surface markings is always a fascinating thing to watch. Tremendous changes are evidently going on there, but the clew to their natur is yet lacking. Jupiter is in the western part of Virgo moving slowly toward the southeast.
Saturn, near the northern edge of Scorpio, rises about 7 o'clock in the evening on the 1st of June, and
opposition to the sun on May 30th. Its north pole and
the northern side of its rings are presented toward the the northern side of its rings are presented toward the
earth. Its most conspicuous satellite, Titan, will be earth. Its most conspicuous satellite, Titan, will be elongation on June 16, and at eastern elongation again on June 24.
Uranus remains in Scorpio, and during the month retreats slowly westward from the neighborhood of the double star Beta.
Neptune is in Taurus, and in conjunction with the sun on the morning of the 13 th .

THE MOON.
The moon is full on June 4; at last quarter on June 11; new on June 18, and at first quarter on sune 26. It is nearest to the earth on the 19th and arthest from the earth on the 4th. Greatest lib
T, June 27; greatest libration west, June 11.
The lunar conjunctions with the planets occur as ollows: Uranus, the 3d; Saturn, the 4th; Mars, the 14th; Mercury, the 17th; Neptune, the 19th; Venus, he 21st; Jupiter, the 26th.
On the morning of June 21, about 5 o'clock, Eastern standard time, the sun enters the sign Libra and the astronomical summer begins. Eleven days later the earth will be at the cooler extremity of its orbit, or in aphelion, a fact which those who find comfort in the eflection that things might, at any time, be worse than hey are, will do well to recollect when July rolls in it tide of heat.

## SAN JUAN'S BOMBARDMENT.

In our last week's issue we referred to the bombardment of the fortifications of San Juan, the capital of Porto Rico, on May 12. At that time only meager details of the engagement were a vailable. Now, howver, full particulars of the battle have been puban Juan the reef on which the city is built is pract cally an island separated from the mainland by a tidal ditch. The whole sea front of the island is precipitous, especially so at the western point, where rocks frown above the entrance to the bay within. At this spot stands the old stone fort called Morro Castle, with its thick walls and tiers of guns. It was in the time of smooth-bore guns practically impregnable. Having fears of buccaneers in the old days, the Spaniards erected a defense line running along the shore front for three-quarters of a mile, where they built another big castle. The defense line was carried all the way around the inner front of the island or eninsula, and within this area they built the town.
When the fleet approached the lighthouse tower, 171 feet above the sea, it did not show any light, indicating that the people of the town were expecting trouble The "Detroit" with the tug "Wampatuck" slowly led he way in. The torpedo boat "Porter" ran off to the east a half mile or so from the line of the squadron and stopped within a mile of the shore. On arriving within 1,400 yards of Morro Castle the "Detroit" turned west and steamed slowly along the beach for a quarter a mile, while the "Wampatuck" with her flag o ruce drifted on, followed by the "Iowa," the "Indi was at five o'clock that the "Detroit" turned east, and $t$ that moment a signal fluttered on the "Iowa" which called for the hoisting of the American en sign on every ship. For six minutes the flags floated in peace, and then some Spanish officer having no egard for the flag of truce opened fire on the Wampatuck" and sent her skurrying away out of rauge. Admiral Sampson told Captain Evans that the fire might be returned. The forward turret of the "Iowa" was turned so that the long 12 -inch ifles were headed at the yellowish walls of the old castle, and at $5: 15$ o'clock the word "fire" was given, and the huge projectiles were hurled at the point whence the guns had been firing at the flag of truce The aim was so good that no further shots were fired from that part of Morro during the remainder of the he "Dnent. The 8 -inch guns then took part, and came the "Indiana" with her 13 -inch rifles which took the place of the flagship, which was steaming slowly out to sea, her 8 -inch guns also firing. The fleet was out to sea, her s-inch guns also
In the meantime the soldiers in all the forts had be gun to fire on the squadron, but it was a useless task or the shots from the old smonth-bore guns did not reach the vessels. At first the fire was so feeble that it is thought that the artillerymen were enjoy ing a peaceful rest when they were rudely a wakened by the roar of the big guns. At Santo Domingo barracks there was a battery with at least fou modern rifles of 8 or 10 -inch caliber and other batteries appeared to be equipped with modern guns. These opened on the fleet soon after the first gun was fired from Morro, but not since modern rifles with gun ights were invented has any one seen such shots as from these crest batteries. Shot after shot, mounting into hundreds, were fired, but hit nothing, every shot flying far above and beyond the great targets. Even the unarmored "Detroit," which lay perhaps 1,200
touched. The Spaniards did not neglect the "Por ter," and she would have been an easy prey if they could have hit her, but their efforts were futile. The inarkmanship of the American squadron on the first round was not, on the whole, quite worthy of the record made at the targets. The majority of the shots hit Morro, but three or four at.least fell so far short as to strike the water, but the first round of the squad ron in its elliptical course cured that completely. The Spaniards, as the "Iowa" came down on them for the second round, worked their guns with increased frenzy and their aim was worse and worse, until the "Iowa reached the turning point and once more began firing with her 12 -inch rifles, the "Indiana" following. The Americans now had perfect range and were as cool as at target practice, while the Spaniards shot wilder and wilder and at last fled. The first shot which seemed to reach the city struck the huge barracks just east of Morro. A cloud of yellow brickdust rose high in the ar, obscuring the building, and the flames and smoke f a conflagration appeared. Within ten minutes a half dozen other shots had fallen elsewhere in the town, and by the time the "New York" turned out to sea again seven different fires were seen in different parts of the city.
The forts nearest Morro were wholly obscured by the smoke of the shells. The forts replied with an oc casional gun, and mostof the Spanish at this time had fled to the bombproofs. The guns at the east of the city, however, continued to work steadily because they had received little attention from the ships. The "Detroit" now turned to the west, and running close under the guns of Morro, attacked a new earthwork built on an island on the west side of the channel There were a couple of modern 8 -inch guns there, but the little vessel forced the gunners to retire. Both the "Montgomery" and the "Porter" were ordered out of range, but a casual observer would say there were no cases on record during the cruise where orders were obeyed with such deliberation.
Three circuits were made. The first gun, as has been aid, was fired at the forts at 5:15 A. M., and at 7:20 A. M. the "Iowa" opened fire for the third and last ime. Before her guns were fired a big breach was plainly visible in the curtain wall of Morro, and from that time on, nothing of the fort could be seen becaus of the smoke and dust. The "Indiana" began the ast round at 7:26 o'clock, the "New York" at 7:30 the "Amphitrite" at 7:40 and the "Terror" at 7:56. The big fort east of the city near the Tierra gate was hit as the "Iowa" turned away, firing her last shot. Five guns had been work ed steadily from within the fort, but only two were fired after that and they quit soon after the "New York" got a broadside on the city but they opened again after she pulled out and then one hot from the hill battery just east of Morro was fired It struck against the iron stanchions used for hoisting the boats to and from the superstructure of the "New York" and burst.
The boat was knocked to pieces, and a fragment of the shell struck Frank Widemark, seaman, and he was killed; three or four others were injured. A 10 -inch shell struck a gallows frame on the "Iowa" and burst at about the same time, hurling fragments in all direc ions; three men were injured. Both these shots were plainly accidental because they came on board at long range and because the following shots fell as wide as usual of the ships. As the squadron drew off, the "Terror" lingered behind, firing at five minute inter vals, until 8:05 o'clock, when the last shots from the leet were sent. The hill battery kept wasting its am munition until 8:29.
The admiral and all the officers, save only those sta tioned under cover, fought on the bridge and upon the decks. Admiral Sampson went from point to point on the bridge or deck as the exigencies of the smoke made it convenient. Though the battle may be considered as an unimportant incident of the war, like the bombardment at Matanzas, it certainly proved the lack of training of the Spanish and demonstrated the skill and ability of the Americans. The destruction in the town was not great, but nearly all of the big guns were dismounted.

## STATE COLLEGE OF FORESTRY.

A conference has been held at Albany to decide upon the location of 30,000 acres of land to be purchased by the State for the establishment of a college of forestry under the authorization of an act of the last legisla ture. Dr. Fernow, director of the new State College of Forestry at Cornell University, who was formerly chief of the Forestry Division of the Department of Agriculture at Washington, formulated the conditions which the Cornell authorities had decided necessary for land for the purpose of the new college, and a canvass was made of the available property in the Adirondack woods which is on the market. This developed that there were not more than three or four tracts available, which it is believed the State could readily secure. These tracts are in Hamilton and Franklin Counties, and it is held that they could be purchased at less than $\$ 6$ an acre. No particular plot of ground has been decided upon as yet.

## some interesting features of the electrical EXHIBITION.

Not long since we illustrated a new system of wire less telegraphy, designed by Mr. E.J. Clarke, of the United States Electrical Supply Company, of this city. Since then the system has been improved in many ways, and he is now giving an exhibition at the Elec trical Show in the Madison Square Garden which is attracting a great deal of attention.
In a showcase in the center of the south gallery is placed an automatic transmitter, which is insulated. A storage battery of four cells is placed in the lower part of the case, which feeds the primary of a 4 -inch spark coil, the current from the battery first passing through an automatic circuit breaker (not shown) This automatic circuit breaker does not tak the place of the vibrator of the coil (that being provided as usual), but is so arranged that it will make and break the circuit in the same manner as a telegraph operator would when manipulating his Morse key in the act of calling $\mathbf{N}$ Y. N. Y. N. Y which i the well known telegraph call for New York City. In this way it will be seen that the sparks from the secondary of the coil are in terivittent, and their duration is governed by the length of the time during which the automatic circuit breaker allows the circuit to be closed while making the dots and dashes. Immediately in front of the induc tion coil is placed the improved oscillator which consists of two solid brass balls about four inches in diameter, as shown at 2 in our illustration, mounted so that the distanc between them is adjustable. Outside thes balls are placed two smaller balls about an inch and a half in diameter attached to slid ing brass rods, on the outer end of which are other balls one inch in diameter, so that the distance between the large and the small balls can be easily adjusted. The secondary terminals of the coil are connected to bind ing posts on the base of the oscillator which connect direct with the brass standards that serve as supports for the sliding brass rods. The distance between the balls being properly adjusted and the current turned on from the battery, the sound of the secondary sparks passing bet ween the balls can quite easily be recognized as the dots and dashes of the signal N. Y. So apparent is this that telegraph operators visiting the exposition are immediately attracted by the sound. One terminal of the oscillator is connected to earth and the other to a brass rod about ten feet in length placed on top of the showcase.

In the center of the north gallery directly opposite and about 200 feet distant is placed the receiver which consists of a Clarke coherer relay and receiving in strument constructed almost precisely in the manne described in our issue of April 2 , with the exception that a large six-inch vibrating bell is connected up in the local circuit in addition to the telegraph sounder This six-inch bell is continually ringing out the Morse
signals N. Y. N. Y. N. Y., and by holding down the hammer of the bell the sounder can be distinctly heard repeating the same call. Considerable trouble has been experienced in overcoming the effects of self-in duction in this apparatus, but now it is claimed the difficulty has been overcome.
In the center of the garden is placed a large tank of water, and four times each day a miniature warship about three feet in length is placed in this tank, and
n ordinary electric fuse. The apparatus at the tank is placed on the outside, so that visitors to the exposi ion can readily understand the arrangements, but hat is not necessary in any way, as Mr. Clarke is pre pared to blow up mines in this way with all the appa ratus contained in a waterproof box connected directly o the mine.
We understand a carefully insulated wire has been run from the transmitter to the highest point of the tower of the garden, and that during the next few day


ELECTRIC WELDING BY MEANS OF AN ACCUMULATOR, AND A SAMPLE OF WORK it is intended to send messages many mile from the city.
Among the interesting things to be seen at the Electrical Exhibition, now in progress, is the electrical welding outfit shown by the Electric Storage Battery Company, of Philadelphia and New York. The welding is done by one chloride accumulator element known as type F-11, consisting of eleven plates, each $101 / 2$ by $101 / 2$ inches. Thes plates are immersed in dilute sulphuric acid in a glass jar resting upon an insulated tray filled with sand. At the side of the cell, and connected to it through heavy cables, is a copper clamp, one jaw of which muves on a sliding contact. The metal to be welded is gripped in the clamps, and when brought to the proper heat, is forced togeth er by means of the movable jaw. The usua method of the exhibition is to place a solid bar in the clamps, heat it to the melting point, break it by means of the sliding jaw and then weld it. The power required de pends upon the size of the bar operated upon

The bars generally used take 800 am peres for a few seconds and the current then drops to 400 amperes, at which point the weld is completed. The cell operates a 2 volts, and the power required is, therefore from 1.6 kilowatts to 0.8 kilowatt. The nor mal discharge rate of the cell is 50 amperes The outside dimensions of the glass jar are
coherer, relay and battery placed immediately out side of the tank in the manner shown at 3 in our en graving (the coherer tube being shown enlarged at 1) One terminal of the coherer is connected to earth, and the other to an insulated wire rising about ten feet in the air. When the time comes for exploding the mine under the warship, the oscillator in the south gallery is stopped and connection made at the tank between the coherer and the vibrating bell which is used for esting purposes. The oscillator is now started for an instant to see if the bell at the tank rings, thus prov ing that the coherer is in proper. adjustment. The bell is now disconnected, and connection made to th ubmarine mine instead, and at a signal from the at tendant the man at the transmitter again presses the tendant the man at the transmitter again presses the the coherer completes the local circuit and the mine instantly explodes, breaking the warship into splinters, and throwing it and the water high in the air. Of course it is understood that the mine is provided with
$101 / 2$ inches by $121 / 2$ inches long by $151 / 2$ inches high
This outfit appears to be a very desirable one for the maller welds required in many branches of manufac ture. A very interesting souvenir furnished to vis itors consists of two wire nails welded together at the point, as shown in the small detail figure.

## ng the sight.

Mr. R. Brudenell Carter, F.R.C.S., in a lecture be ore the London Society of Arts, directs attention to the fact that acuteness of vision may be increased by raining. He suggests that the average acuter vision of country over town children is due to the fact that the latter see chiefly large objects and under large visual angles, while the former are habitually attend ing to smaller and more distant objects, seen at smaller angles. He suggests, therefore, that school teachers should be instructed to test the vision of new pupils and record the same in a register, informing the par ents of a ny defects obser ved.-Medical Times.


1. The coherer. 2. The ransmitter. 8. Relay and teating bell

## AN IMPROVED WRENCH.

The simple, readily adjusted wrench shown in our illustrations consists of a fixed jaw with a plain rectangular shank upon which a sliding jaw moves. Two strap extensions on the sliding ja w embrace the shank of the fixed jaw, and a spur on the sliding jaw serves as a fulcrum and gripping surface. In connection with the sliding jaw, a grip lever is employed provided with an angular head for engagement with the shank of the fixed jaw at a point opposite to the previously mentioned spur. In operation, after the grip lever has


## HENWOOD'S WRENCH

been raised to disengage the angular head from the shank, the sliding jaw is adjusted to the desired posi tion and the grip lever then carried forward, thus bringing the sharp-pointed angular head into contact with the shank. At first a rocking of the jaw on its spur takes place, and upon continued movement of the lever, the jaw will be locked in fixed position. The greater the resistance encountered in operating the wrench, the greater will be the binding action of the lever. Referring to our illustrations, it will be seen that the surfaces of the jaws may be either plane or toothed, according as it is desired to use the wrench for nuts or pipes. The wrench is the invention of Ed win Henwood, of Hancock, Mich.

## A NOVEL TWINE HOLDER.

An invention which is an improvement upon that form of twine-holding devices in which means are pro vided whereby a certain amount of the free end of the string is retracted, has been patented by Frederick W. Copcutt, of No. 234 Stuyvesant Avenue, Brooklyn, N. Y. Referring to our illustration, it will be seen that the moving parts of the device are mounted on a frame consisting of a board or back plate provided at top and bottom with projecting ledges. Near the upper end of the board a clamping lever is pivoted, secured to one end of which is a cord guide. The other end of the lever is provided with a plate adapted to engage with a stop fixed to the under side of the upper ledge. An inclosure on the lower shelf contains the ball of twine. Adjacent to that end of the lever carrying the cord guide and connecting the upper and lower ledges


## COPCUTT'S IMPROVED TWINE HOLDER.

are two guide wires, which are embraced by two side extending arms attached to a sliding weight. The upper end of the weight is provided with upwardly extending arms, to one of which a pulley is journaled. The other arm may be swung aside so as to permit the cord to be placed conveniently around the pulley. The manner in which the cord is rove through the several guides and pulley will be clear from the drawing. In using the twine holder. when the free end of the cord is pulled do wn, the vertically sliding weight is first. raised until the pulley is nearly upon a level with the adjacent end of the lever. At this point the weight to a large degree ceases to act upon the lever,
which then relaxes its binding or clamping action on the cord. When, after use, the free end of the cord is released, it is carried upward by the falling of the weight. The back board is of a size large enough to receive advertisements, to which the attention woul be directed, owing to the novelty of the mechanism.

## The Wellman Polar Expedition

Mr. Walter Wellman, the correspondent and explorer, has sailed for Europe. He will go to London and then to Norway, from whence he expects to start north ward about June 20. His point of departure will be Tromsoe, on the northern coast of Nor way. From Trom soe he will go to Archangel, Russia, where a pack of Arctic dogs are awaiting him. From Archangel the expedition will sail through the floating ice to Cape Flora, in Franz-Josef Land, where he expects to estab ish a supply station. The explorers will then push on to the north end of Franz-Josef Land. They will winter somewhere between $82^{\circ}$ and $83^{\circ}$ north latitude, in a hut built of stone, drift wood, walrus skins and ice, living on the game of the country, which is said to be very abundant. Before the middle of February the long Arctic night will be over and the dawn will be light enough to permit of further travel. Mr. Wellman has allowed himself about sixteen weeks between February and June for his journey of 1,000 miles between his winter stations and the pole and back again. He has not dared to allow himself a longer period, because soon after the first of June the snow in that region begins to melt enough to make travel through it extremely hard. Allowing an average of nine hours' travel every day for 112 days, the party could make one mile an hour and accomplish their round trip between their winter stations and the pole with a little time to spare, but with all their supplies carried by dogs, sleds and by themselves on skii they will be able to make much better progress than this and allow liberally for all sorts of delays and for a sufficient stop at the pole, if they are fortunate enough to reach it, to make valuable observations. Mr. Wellman has decided to devote a year and a half to his expedition, and whether he finds the pole or not, he feels he may bring homenews of the fate of the explorer Andree. Mr. Wellman has been forced reluctantly to believe that Andree has perished. Celebrated explorers, including Dr. Nansen, have spoken very favorably of Mr. Wellman's plans. Prince Luigi has adopted the same route for his own expedition, which is to start in 1899. Mr. Wellman's ship will be the "Frithjof." The members of the expedition will consist of Prof. Harlan, of Columbian University, who will be the physicist of the party under the auspices of he United States Coast Survey; Lieut. Baldwin, of the Weather Bureau, who will serve as mineralogist, botanist and geologist ; and Dr. E. Hofma, of Grand Haven Mich., who will act as medical officer and naturalist. Mr. Wellman will be the leader and director of the enire expedition. He has selected Norwegians instead of Esquimaux to accompany his party, as experience has proved to him that the Norwegians are more hard y and understand traveling through the frozen zone in all ts technical details quite as well as the Esquimaux and have vastly greater courage, intelligence and per sistence.

Prizes for Rallway Inventions.
The German Railroad Union (Berlin), says The Railway Gazette, has every four years offered prizes for inventions and improvements in railroad constr uction and machinery and railroad management. This spring it announces a first prize of $\$ 1,800$, a second prize of $\$ 720$ and a third prize of $\$ 360$ for inventions and improvements in construction and mechanical apparatus; equal prizes for inventions and improvements tus; equal prizes for inventions and improvements prize of $\$ 720$ and two prizes of $\$ 360$ each for improvements in administration and operation. Without excluding other things, the union suggests as matters in which improvement is desired:
Improvements in the construction of locomotive boilers, especially such as, without increasing weight materially, secure economy in fuel, the prevention of sparks, the most complete consumption of smoke possible, and the reduction of cost of maintenance
An arrangement by which the coupling of cars with automatic American couplers and those with the standard couplers of the times may be made without danger.
Weighing apparatus by which separate cars while moving or loosely coupled cars of a whole train may be weighed with sufficient accuracy.
Some means of protecting a train which has come to a stop or is threatened with delays which in bad weather and at night will work better than the track torpedoes and the hand signals of track and train men. Those inventions or publications alone may compete which have been made or published between July 15 1891, and July 15, 1899. The invention or method must be already introduced on some railroad in the Railroad Union, before application is made to compete, and it application must be supported by the railroad trying it. Notice of competition must be sent in to the execu tive of the union between January 1 and July 15, 1899.

## AN EFFICIENT FEED MIXER

A feed mixer has recently been patented by Walter G. Pearson, of Newburyport, Mass., which is designed to mix feed without kneading it. In this feed mixer a shaft is mounted in a frame, and a cylinder is axially mounted on the shaft so that its walls will be concentric with the shaft. Connected by their central por tions to the shaft are a series of arms so arranged that their ends shall be in proximity to the inner sides of the chamber. The end portion of each arm has its sides beveled in opposite directions so as to cause a po tion of the material to be thrown by one side of the


## PEARSON'S FEED MIXER

arm in one direction, and a second portion of the material to be thrown by the other side of the arm in an opposite direction. Upon the ends of the arms knives are carried which lie flat against the inner sides of the chamber so as to scrape away the feed. When using the apparatus, the feed is inserted through an orifice on the top, and the chamber is held with the orifice uppermost during the period in which the shaft is revolved to mix the feed. When the mixing operation has been completed, the chamber is permitted to turn one-half a revolution so as to throw the orifice downwardly and permit the discharge of the contents.

## A NEW CLOTHES HANGER.

If A clothes hanger designed to facilitate the hanging of clothes without danger from windows has been patented by Richard B. Fordham, of Rahway, New Jersey. As will be seen from our illustration, a bracket is pivoted to the outer wall of a building adjacent to a window, and is of such length as to enable its free end to be readily swung inward to the center of the window. A cross piece at the free end of the bracket is provided with pulleys. Around these and around pulleys attached to a pole or other distant support an endless clothes line passes, as in ordinary clothes line contrivances. To the middle part of the bracket are attached the ends of two cords for swinging the bracket to and from the window, the ends of which are to be passed into the window and secured to a free cleat or the like. One cord is passed around a pulley whose block is attached to the wall at a distance from the window so that the bracket can be swung outwardly away from the window by pulling upon the cord. By pulling upon the other cord the bracket can be swung inwardly into position for use. This arrangement permits the line to be placed conveniently for receiving or removing clothes without danger of a person falling from the window and yet places the devices out of the way when filled or not in use.
The clothes lines are attached to the pole or other support by means of spiral springs interposed between the pole and pulley blocks. Hence, when the line contracts during wet weather or the bracket is swung in toward the window, the elastic connection at the pole will yield, and when the line dries out and lengthens, the elastic connection will take up the slack.


FORDHAM'S WINDOW CLOTHES HANGER.

## Sorrespondence.

## EFFLORESCENCE AND OXIDATION OF SODIUM SOLP HITE.

To the Editor of the Scientific American
I inclose the different results that were obtained here in the laboratory on the efflorescence and oxidation of sodium sulphite.
These results were obtained by taking ordinary commercial sulphite and grinding it to a coarse powder, and then spreading it in a layer of a quarter of an inch on a glass plate protected from dust.
Atthe end of the first day a sample was taken and weighed, then dissolved in a beaker with some water and titrated with $\frac{N}{10}$ iodine which had been standardized before. A burette of 50 c. c. capacity was filled with the standard iodine solution. Everything now being ready, the iodine was run in on the sulphite, starch indicator being added beforehand, when the blue color of starch iodide made its appearance, this being shown by the last drop of iodine producing a deep blue coloration, the stop cock was shut off and the number of c. c. used read off.
The calculations were very simple, being based on this reaction
$\underbrace{\mathrm{Na}_{2} \mathrm{SO}_{3}, 7 \mathrm{H}_{2} \mathrm{O}} \underbrace{+\mathrm{I}_{2}}=2 \mathrm{NaI}+\mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{H}_{2} \mathrm{O}$

## 20) $\left.\frac{251 \cdot 6}{12 \cdot 58} \quad 20\right) 25$

$12 \cdot 7=$ grm. in 1000 c. c. of stand ard solution.
The results from the analysis are all combined in the form of a table or curve seen in the illustration.

efflorescence and oxidation of sodium sULPHITE.

When the sulphite was first exposed its per cent was 41. The first day of exposure the sulphite lost water enough to reach 43 per cent real sulphite, next day it jumped to 48 per cent, and so on until it reached 80 per cent. It was evidently at this point that all the water had been lost by effiorescence. Then oxidation started and oxygen was taken up from the air to lower the percentage of real sulphite down to $711 / 2$ per cent, but here, again, the loss of some more water was suffi cient to overcome the loss by oxidation and run the percentage up to 78 , but this would only be a tem porary gain, as oxidation would begin to lower it.

Randolph Bolling.
Chemical Laboratory, University of Virginia.

## A Solar Magnetic Engine.

To the Editor of the Scientific American
I find your paper here on the table, and in looking over it is revived the memory of 1845 , when at Philadelphia 1 first commenced to read it as a system of education in science and invention, in which I had engaged when only eighteen years of age-1840. Born at Philadelphia in 1821, sound and healthy yet, due to my discoveries in medical chemistry. A few days since I was examining several of your papers of 1850 , containing a description of my solar magnetic engine,
which was a continuous rotary motion derived from the alternating action of horseshoe magnets. I then gave it to the world, through your paper, The Franklin Institute Journal, and London Mechanic's Magazine.
Now I ride in the cars here, propelled by its power. I had it running in Philadelphia in 1850, and now the world knows not whence it came. Such is the fate of science and invention when not accompanied by the grasping greed of gain. My prediction that it would become an engine of power to the world has been
verified, and that is my satisfaction. I was far ahead
of the electric age in 1850 when I made it. I hope some of my old friends of that time among you are
still living.
William Wheeler Hubbell. Willliam living. Wheeler Hubbell.
House of Representatives, U. S., Washington, D. C.

## The Tqmb of Gengis Khan.

M. Bonin, vice-resident of France in Indo-China, has communicated to the Academie des Inscriptions et Belles-Lettres a very interesting note upon the historic monument designated by Mongolian tradition as the tomb of Gengis Khan, and which has often been described by travelers, although no one has up to the present been able to enter it and inspect it in detail. The following is what Prjevalsky, the Russian explorer, has to say of it:
"Legend teaches us that the mortal remains of Gengis Khan repose in the bosom of Ordos, in the district of Wan, which is situated at 200 versts to the south of Lake Dabasoun-Nor. These remains are inclosed in two coffins, one of silver and the other of wood, placed under a tent of yellow silk. The arms of the monarch are near him, and the other members of the royal fanily are buried at a distance of ten versts further along. A sheep and a horse are offered every evening to the royal manes, and the next morning the offering has disappeared. At his death, the conqueror predicted that he would come to life again in eight or, at the most, ten centuries. Consequently, it will be necessary to wait but a hundred and fifty or three hundred and fifty years for such resurrection. Then a war will break out between Gengis Khan and the sovereign of China. The former will be the conqueror
and will lead the Mongolians from Ord os to Khalka, and will lead the Mongolians from Ordos to Khalka,
their own country. It has been impossible for me to their own country. It has been impossible for me to
ascertain the location of the mortuary temple of which this legend speaks."
This passage in Prjevalsky's book attracted M. Bonin's attention, and he conceived the idea of making some researches with a view to discovering the mysterious tomb.
In the month of July, 1896, says he, in the course of an official mission of which I had oharge upon the an official mission of which I had oharge upon the
frontiers of China, finding wyself on the bank of the frontiow River, to the north of Ordos, in the center o
Yell which, according to the concordant narratives of ex plorers, the tomb ought to be found, I decided to verify the facts set forth in the tradition.
It requires a march of about a week, to the south o the Yellow River, through the territories of the kings of Djoungar and Wan, to reach the monument, which in Mongolian, bears the name of Yeke-Etjen-Koro, or "the palace of the great lord," and which stands in the center of the desert surrounded by a village of tents. The tomb, which fronts the southeast, has fo subbasement a vast platform of stones, and the pos-
terior half is surrounded by a wooden palisade. This latter incloses the two large tents that cover the em peror's remains, and, to the left, a small tent, and, in the rear, a wooden booth where objects of worship are dispensed. It is entered through a gate provided with a shed in the Chinese style.
The two large felt tents that cover the tomb are exactly like the tents of the present Mongolians, but are of much greater dimensions. They are placed back to back, so that, from the first, one can see what is
taking place in the second, and each is surmounted with a gilded bronze ball such as may be seen upon the oofs of the large Thibetan lamaseries. The front tent is used for religious exercises, and a dozen men can
easily stand erect in it. In the center there is an altar easily stand erect in it. In the center there is an altar
covered with yellow silk, at the sides high red lacquered tables, and at the back a violet silk velum, ornamented with flowers, that seems to be very ancient and dates back, perhaps, to the time of the Conqueror. A red curtain separates the two tents, and is raised only for prayers and sacrifices. When this is drawn, there is seen upon the floor of the second tent the large, low and wide silver coffln, which contains the emperor's remains. It has the form of a huge chest ornamented with rosework chiseled in the metal. At the back of the tent and over the tomb there is a mirror with an
inlaid frame of Chinese workmanship, and from the inlaid frame of Chinese workmanship, and from the
sides are suspended various objects that are said to have belonged to Gengis, especially his saddle and saber. In reality these are reproductions. The originals have been carefully concealed, on account of the sacriegious thefts that have been attempted at differen times, especially during the last Mussulman revolt
The worship that is rendered to the memory of Gen gis Kahn is purely laical. It is performed by officer who are hereditarily in charge of the tomb, and who
receive from the court of Pekin regular titles of receive from the court of Pekin regular titles of
mandarin order. The external forms of the worship comprise three sorts of ceremonies: the petty sacrifice the great sacrifice or sacrifice of the horse, and the great commemorative fete that takes place every year n the twenty-first day of the third moon, the anncome from every part of the desert to pitch their tents at Yeke-Etjen-Koro and venerate the relics of the em peror, which are brought together and exposed around peror, which
the tomb.

Miscellaneous Notes and Recelpts.
To Thaw Out Water Pipes. - According to the Deutsche Hausbesitzer Zeitung, a simple remedy consists in shoveling a way the snow from above the pipes, covering them one-quarter meter high with unslaked lime and pouring on water. In consequence of the heat generated thereby the ground and the pipes are thawed out.
Preserving Stone Monuments.-To retard the disintegrating of stone monuments, such as tombstones, etc., without painting them and covering up the natural color of the stone, it is recommended to dissolve one part blond shellac (as pale as possible) in eight to ten parts pyroxylic spirit, applying it with a rose. The shellac dissolves in pyroxylic spirit like in alcohol.Leipziger Maler Kalender.
Extermination of Mould in Cellars.-Unslaked lime is best suited for this purpose. Same is blown, in the shape of a fine powder, on the walls of the cellar and into the joints and crevices by means of the bellows or else thrown on with the hand. The walls must be damp; dry walls have to be well moistened previously. The lime slakes with the adhering water and kills all organisms. On the day following the walls are washed off, and, as experience has proved, the cellar will remain free from mould for at least two years.
Production of Ground Glass.-Lainer recommends the following process in the Chemiker Zeitung: Mix $240 \mathrm{c} . \mathrm{cm}$. of commercial hydrofluoric acid of $1 \cdot 258$ spe cific gravity with 600 grammes of pulverized soda crys tals, then dilute with $1,000 \mathrm{c} . \mathrm{cm}$. of water. After standing for some time a sediment is formed and over it a clear solution. The thoroughly cleaned glass pane is provided with a wax edge (prepared by kneading yellow wax with tallow, colophony and asphalt powder) and pre-etched with common hydrofluoric acid $(1: 10)$ for some minutes to obtain an absolutely clean glass surface. Then wash with water and wipe the plate with a clean, soft sponge until the surface is only very slightly moist. Stir up the paste of the etching acid and pour the mass $1 / 2$ to 1 cm . high upon the pane. With this mixture a nice normal deadening is obtained after one hour. If the acid is old, having been used often, it may be made to act longer upon the plate of glass. The liquid is poured back into the vat and the glass is rinsed off with water. Then the water is allowed to remain upon the pane until a skin, formed from the surface of the glass, can be removed with the finger or a brush. The strong deadening obtained by this method can be fixed to any desired degree of trans parency by etching with hydrofluoric acid.
Hardened and Washable Articles of Plaster of Paris.For the hardening of gypsum a firm in Heidelberg has taken out a German patent on a process which apparently surpasses all those in existence and furnishes very satisfactory results. Either burnt gypsum is prepared and mixed with the liquid named below or else he finished articles of hot gypsum or of mixtures of gypsum and other bodies are impregnated by painting with the fluid. The same consists of a solution of am monium triborate in water. For this purpose boracic acid is dissolved in warm water and a certain amount of ammonia is added, whereby a substance readily soluble in water and deviating much in its propertie from known compounds results. The saturation of the gypsum or painting of the plaster of Paris articles is carried out in the cold. The objects are subsequently insed off and dried. The surface becomes very hard after two days and insoluble in water, while the in duration in the interior ad vances more slowly. By neans of the fluid described gypsum floors can be hardened and rendered more durable and impervious to the influence of the weather. Saturating with am monium borate is said to be especially useful on ex terior walls of buildings, barracks, etc.; on the latter because experiments have proved an antiseptic action of the liquid.
To Test Ivory for Genuineness.-As ivory is extensively employed and costs about twelve marks (three dollars) per kilogramme, it has been attempted to sub titute a cheaper substance having the same appear ance. Since about twenty years an article has been worked up in this industry, which, in contradistinction to the genuine animal ivory, has its origin in the vegeable kingdom, being derived from the nut of a palmlike shrub called Phytelephas macrocarpa, whose fruit reaches the size of an apple. This fruit has a very white, exceedingly hard kernel, which can be worked like ivory. One hundred of these fruits only costing bout four marks (one dollar), their use offers great advantages. Worked on the lathe, this ivory can be passed off as the genuine article, the resemblance being so great that it is sold at the same price. It also can be colored just like genuine ivory. M. Pasquier, of Liege, now gives a practical method in Science en Famille to distinguish the two varieties of ivory. It is the following: Concentrated sulphuric acid applied to vegetable ivory wlll cause a pink coloring to appear in about ten to twelve minutes, which can be removed by washing with water. Applied on genuine ivory, this acid does not affect it in any manner.-Journal der

## ADMIRAL SAMPSON

Acting Rear Admiral William T. Sampson is very much in the public eye at the present time, when at any moment we may expect to hear that his fleet has attacked the Spanish Cape Verde fleet.
Adiniral Sampson was born in Palmyra, N. Y., February 8,1840 . His father was a farmer, and could not afford to allow his son to devote much of his time to his school books. When old enough he went to school, but it was necessary for him to do much of the hard work known to farmers' boys. The young man had an insatiable desire for information, and, despite the fact that he had less time to devote to his studies than any of the rest of the boys in the Union School he soon distanced them in the race. Young Sampson was offered the appointment to the Naval Academy by a Congressman. He entered the Naval Academy in 1857, and graduated first in his class three years later. His first cruise was made in the frigate "Potomac," in 1861, and in 1862 he was commissioned a lieutenant. He was detailed to the ironclad "Patapsco" in 1864, and in June, 1865, while he was executive officer of this vessel, he was ordered 'by the admiral of the fleet to enter Charleston Harbor and to remove or destroy all submarine mines and torpedoes by which the city was protected from invasion. This was an exceedingle difficult task, for as soon as the ironclad entered the harbor, she was met with a rain of bullets from sharpshooters. Seeing a number of his men killed, Lieut. Sampson ordered them all below, while he re mained as a target for the rebel rifles. The me
scarcely obeyed the order when the ironclad was blown up by a submarine mine. The vessel sank, carrying seventy of the crew with her. Lieut. Sampson was blown out one hundred feet, but was rescued with twenty-five of his men. He was attached to the Naval Aced em y from 1868 to 1871; in 1874 he was made a Commander. In 1879 and 1882 he commanded the "Swatara" on the Asiatic station. During the two years which followed he was stationed at the Naval Observatory, and during that time was a member of the International Prime Meridian and Time Conference. He had charge of the torpedo stadion in 1885 and 1886, and was also a member of the Board on Fortifications at the same time. He was appointed Superintendent at the Naval Academy in 1886 and held this positron until 1890. In 1889 he was promoted to the rank of Captain, and in the next year was placed in command of the cruiser "San Francisco." In 1892 he was made Inspector of Ordnance, and in 1893 he was made Chief of the Bureau of Ordnance. He held this position until the "Io wa" was ready to be commissioned, when he was detailed to that vessel. When the fleet was sent to Havana, Capt. Sampson was placed in command and raised his flag on the cruiser "New York." At the outbreak of the war with Spain he was made Acting Rear Adiniral by President McKinley.
In the navy he is regarded as a great authority on torpedo work, and his lectures at the War College have produced a profound mmpression all over the world. He devised the double-deck or superimposed turrets which are now being put on the battleships "Gearsarge" and "Kentucky" in conjunction with Lieut. Joseph Strauss. While Chief of the Bureau of Ordnance he assisted in the construction of the great gun factory at the Washington navy yard. Personally, Admiral Sampson is well liked, and he might often be seen in Washington playing tennis with Secretary of
State Olney. He is of slight build and his shoulders State Olney. He is of slight build and his shoulders are a trifle rounded. His eyes are blue and his beard and hair are gray, and though a man of few words he is very affable. He is regarded as being very resourceful in an emergency and there is no question of the wisdom of the authorities at Washington in putting him in com mand of the fleet at the present time.

How Dewey Obtained His Plans of Manila.
Mr. William Doherty, an American ornithologist and entomologist of reputation, has just returned to this country from the Philippine Islands, via Hong-Kong and San Francisco. His latest distinction was in sue cessfully passing the Spanish customs officers at Manila with the complete plans of the city, the harbor, fortifi cations and minute details of the armament. It was a dangerous proceeding, but Mr. Doherty carried it out successfully. The plans and drawings were concealed in a newly laundried shirt which was folded, pinned and banded in the usual style and put with other cloth ing in his trunk. He arrived in Hong-Kong early in April and at once delivered these most important pa pars to Commodore Dewey on the "Olympia."

A CURIOUSLY annoying theft is that of a negative film of the late solar eclipse, taken for the cinemato graph by one of the British astronomical expeditions to India. Between Buxar, in India, and London a bo was opened and only the eclipse film taken.

## Patents and Warfare

If all of the inventions directly traceable to the in spiration of war and to the feverish preparation for hostilities should be put to use today, the men of the navy would be kept pretty busy and the coast defense force would have to be largely increased. Nearly all of these thousands of devices for the destruction of hostile ships and men require operators possessed of more or less scientific training. Thus, when the day arrives when the "war "patents realize the expect tions of their owners, fighting, both on sea and land will become so dangerous and destructive that either whole fleets and forts and armies will be annihilated or the very terrible aspect of such war will bring about a forced and lasting peace among the nations of the earth. This remarkable tendency in inventive genius makes it necessary to safeguard the Army and Navy Departments against the specious pleas of cranks o all kinds who are attempting to foist upon the heads of bureaus scores of crazy schemes which may be infinitely wore destructive to our own side than to the enemy.
This avalanche of patented problems for war cannot be too closely scrutinized. A• limit must be set, too in the morale of the devices. For instance, every re sponsible government chief may well hesitate about adopting the patent of that inhuman genius who proposes to annihilate whole armies, or entire crews o warships, or the complete force in a fortification by means of a powerful gas which suffocates every living
being. Such devices go along with the electrical patbeing. Such devices go along with the electrical pat
ents to slay the enemy at wholesale at an entirely safe



## 

distance. We are not ready for that horrible weapon yet. Subinarine boats may also be still classed among the extra-hazardous implements of warfare
Civilians probably do not understand that the navy and the army distrust inventions which propose to do away with fighting. What with five thousand dolla range finders and thirty-five hundred dollar automo bile torpedoes, and expensive guns and submarine boats, and dirigible electric torpedoes and searchlights, and two million dollar battleships and harbor mine and sixteen-inch guns, fighting has become more and more scientific, b ut there is still the element of dange that the true soldier loves, and which he cannot escape
The wizard Edison suggests the use of large nom ers of canister lights. He would fill the canisters with calcium carbide, with a small quantity of calcium phosphide mixed in. These canister lights could be placed in the water near the patrol boats or fired half a wile away from a mortar. Acetylene gas would be given off from the contents of these canisters and this would be ignited continuously by the presence of spontaneously inflammable phosphureted hydrogen Thus, great numbers of cheap lights could be placed over an area equal to a square mile, or even more These lights burn for a long time and reveal the ap broach of hostile torpedo boats, which seem to be so much feared.
Then there is an invention which resembles bottled lightning. The electricity is stored in condenser which hold as much as a celestial thunderbolt, and
anything can be destroyed by it. It is unfortunate hat one of the scientific experimenters with this terri ble weapon was recently killed by his own lightning. An electrical bomb has been almost completed. The flying projectile unrolls and carries along a copper wire connected with a powerful dynamo. When the bomb alights, it can be exploded by touching a button at the firing station.
Mr. Seely, in the Patent Office, has got up an elec trical gun which will throw a continuous stream of projectiles containing high explosives. The range is six miles. 'Two Russian inventors have a device for boring the bottom of a hostile ship full of holes. This is to be done from a submarine boat or otherwise, and the holes are made by an electrical contrivance which causes the metal of the armor to melt and run down thus leaving the hole.
Capt. Zalinski furnishes his new destructive device which is a flying torpedo fitted with a dry battery This is to be thrown alongside an enemy's ship and the water energizes and explodes the affair, and proably destroys the vessel.-Army and Navy Journal

The Lobster Before a Class in Cookery.
Teachers of cooking in the public schools of New York City, where a good deal of attention is now given to this subject, have recently had the advantage of some most -valuable instruction at the biological labor tory of Prof. C. L. Bristol, of the New York University Of late special attention has been paid to those pro ducts of the animal kingdom that serve man as food with a study of the digestive processes of th lower animals as a foundation for the study of the human alimentary system. In connection with this branch of the subject Mrs. Mary E
Williams, supervisor of cooking in the public schools, says: "Considering the prevalence of indigestion, I cannot see why anyone should be surprised because cooking teachers study digestive processes ;" and in one of her recent practical lectures the sub ject was the lobster.
Mrs. Williams said: "There is no way to get the eatable part out of a lobster except by dissecting it. Then the animal has some unpalatable little green glands, which serve it as kidneys, and which cooks often fail to remove They quickly decompose and generate a violent poison, and if teachers in cooking convey no part of their biological knowledge but this to their classes, it can scarcely be said to have been acquired in vain. The kidneys of fish also have an injurious effect if not taken out The lobster is a most curious animal
'Its stomach is located in its head and pro vided with teeth, and it gets a new tooth every year. The shedding of the skull is an operation which no scientist has ever been able to explain. The animal has extremely large legs in comparison with its joints, and yet it gets out of its coat of mail by drawing these huge limbs through the tiny joints. As might be expect ed, it is completely exhausted by the time it has accomplished the feat, and always crawl under a rock or into the sand for a couple o days to rest and let its new shell harden."
Prof. Bristol says that all animals are just as odd as lobsters when one gets acquainted with them, and his pupils appear to find them all equally interesting. Many of the teachers, in stead of going home after the lecture, stay in the laboratory all day, and they have entirely con quered the usual feminine aversion to animal of the small and wriggling type. They can handle a live crawfish with as much unconcern as if it were a kitten, and when the teachers take outings in the country, the wildflowers have a rival in the var aus unpleasant things that grow in stagnant pools.

## The Current Supplement

The current Scientific American Supplement contains many articles of timely interest. The death of Mr. Gladstone has been the event of the week, and "Gladstone and his Place in the History of his Time," by r. George W. Shaley, gives the views of one who had a rare and intimate opportunity for acquainting himself with the life and character of the statesman Gladstone's latest portrait is the subject of the first page engraving.
"Admiral Cervera" is accompanied by a portrait of this Spanish admiral, who is in command of the Cape Verde fleet. "American Competition with France in Agricultural Products," from a French point of view discusses an important economical problem. "The Latest Discoveries of the Antiquity of Man," by Prof D. G. Brinton, is an important article by a great an thropologist. "The Gold Fields of Australia" de scribes these important mines. "Malay Life in the Philippines," by W. G. Palgrave, is concluded in this number. This is one of the most interesting accounts of the Philippines which we have seen. "The Schneider Cant Quick-Firing Breech Mechanism" describes one of the latest modern guns. "The Making of a Stained Glass Window," by L. F. Day, is a very full article.


THE SPANISH "CAPE VERDE" FHEBT
(Continued from first page.) design, two of them being of 28 knots speed and one of 30 knots. The similarity in the ships is of great value in enabling the fleet as a whole to steam at any desired speed or move in any desired formation, instead of the faster ships having to wait for some slower vessels or the more powerful having to shield the weaker units when forming the line of battle. The disposition, arc of training and power of the batteries being almost identical in all the ships, a fighting position which is the best for one ship is the best for all the fleet. It is a well recognized fact in naval warfare that this homogeneity in a fleet is in itself a considerable source of strength, just as a fleet made up of ships of miscellaneous types and having various speeds must accommodate itself to the slowest and weakest units or permit them to be destroyed piecemeal by the enemy.
It is evident that the ships of the Spanish fighting line were designed with a view to fighting at a considerable distance from their home base. To this end they possess three prime requisites: Seaworthiness, habitability and a large coal supply. They stand high out of the water, they have abundance of berthing space between decks, and they are credited with a coal supply of 1,200 tons, or enough to carry them for 10,000 miles at a 10 -knot speed. The fleet, there fore, has the characteris tics which mark, or should tics which mark, or should mark, the ships of a na tion with extensive colo nial possessions, and which are conspicuously present in the British navy, whose nine battleships of the Prince George class can carry 2,250 tons of coal, or sufficient for them to steam for 19 days at a speed of about 15 knots an hour It should be men hour. It should be men tioned, however, that, a though the theoretical ra dius of the "Vizeaya" type of ship is 10,000 knots, it is not likely tha in actual service it is so large. The auxiliary en gines on board probably consume from 8 to 10 ton of coal per day, and this is to be deducted from th to be drom the amount available for the
main engines. Of the four armored cruisers in the Cape Verde fleet the "Christobal Co lon" is undoubtedly the most formidable both in armor and armament. She is one of six similar ships built or building at Sestr Ponente, in Italy. Two of these, the "Guisepp Garibaldi" and "Vares, are being built for the Italian navy; two, the "Garibaldi" and the "San Martino," form part of the Argentine navy; the other two are the "Christobal Colon" and the "Pedro d'Aragon,' now under con-
struction for Spain at the Italian yard. The most strik ing feature in these ships is the unusual amount of side armor which they carry, in which respect they are only surpassed by the French "Dupuy-de-Lome," which is entirely covered from stem to stern with inches of steel. The "Dupuy-de-Lome" was designed after the French experts had proved the terrific destructiveness of shells containing high explosives, and realized the necessity of preventing their bursting within a warship. The "Christobal Colon" is not so completely covered as the "Dupuy-de-Lome," but her armor is thicker and of Harvey steel. In the first place she has a complete waterline belt of 6 -inch Harvey steel. Above this and extending for about two-thirds of her length amidships is another belt of 6 -inch stee which reaches to the upper deck. At each end of this belt are transverse bulkheads of the same thickness which extend clear across the ship and join the side walls of armor, thus constituting a great oblong fort or citadel. Within the shelter of this citadel is a power ful battery of ten 6 -inch rapid-fire guns, five on each broadside. Each of these guns can be fired five or six times a minute, and the 100 -pound shells have a muzzle energy of 4,645 foot tons and are capabl of penetrating 21 inches of iron at the muzzle

Placed within the shelter of the citadel, one forward, one aft, are two barbettes of 6 -inch steel which protect the turning gear of two 10 -inch guns, which are the most powerful weapons carried by the ship. They throw a 500 -pound shell with a muzzle energy of 14,430 foot-tons, which can penetrate over 20 inches of iron at 1,000 yards. Above the 6 -inch battery is another rapid-fire battery of six $4 \cdot 7$-inch guns, each capable of firing 7 or 8 shells per minute, which are good for a muzzle penetration of 15 inches of iron. These guns are protected by shields of Harvey steel. It will be seen that the armament is not only extremely powerful, but unusually well protected. The secondary rapid-fire battery consists of ten 6 -pounders and ten 1 pounders, with two machine guns in the tops. There are also four Whitehead torpedo tubes, protected by 6 inches of armor. The speed is 20 knots and the coal carrying capacity 1,000 tons. It should be mentioned that, in addition to the belt and citadel armor, the "Colon" is further protected as to her vitals by a $11 / 2$-inch deck, a cofferdan of water-exeluding cellulose and the arrangement of her coal. Of the four ships of the Cape Verde squadron, she easily stands first in all round fighting efficiency.

cross section

deck plan
dIAGRAM OF GUNS AND ARMOR OF ARMORED CRUISERS "VIZCAYA," "MARIA TERESA" AND " OQUENDO."
this might stop and burst the shells, it would not burst.them on the outside of the ship, as would the 6 inch side armor of the "Christobal Colon."
The armament is powerful, though not equal to that of the "Colon." Its lack of armor protection however detracts greatly from its efficiency. There are two armorpiercing 11-inch guns, one forward and one aft, which fire over $101 / 2$-inch steel barbettes carried on the main deck. The barbettes communicate with the magazines below: the protective deck by means of thick armored tubes, a shown in the diagram, which will serve to protect the ammunition on its way up to the breech of the guns. Apart from the tubes, however, there is nothing but the thin $1 / 2$-inch plating of the ship's sides to prevent shells from being burst beneath the barbettes. It would not take many such shells, even from rapid-fire guns, to cut away the plate framing and girders that support the great weight of the barbette gun and turn ing gear and tumble the whole structure into the hold of the ship. The same thing is true of the amidships battery of ten $51 / 2$-inch rapid-fire guns on the same deck. High explosive shells bursting beneath them would break up the deck and inevitably put them out of action. Four of the $51 / 2$-inch guns are carried on sponsons, which extend out from the sides of the ship and enable the guns to be trained fore and aft. On the gun deck below are eight 6-pounder and eight 1-pounder rapid-fire guns and in the tops on the fighting masts are two machine guns.
The 11-inch gun shown in our front page engrar ing is a very formidabl piece, capable of penetrat ing the belts and gun po sitions of our battleship at the ordinary fighting range. It is a 35-caliber weapon of the Hontoria type and weighs about 36 tons. With a charge of 352 pounds of powder it fires an armor-piercing shell of 694 pounds with a veloci ty of 2,034 feet a second The shell has a muzzl energy of 24,000 foot-ton and is capable of perforating $281 / 2$ inches of iron at the muzze. This weapon therefore, approaches the 12 -inch rifle Mark I of our navy, which has a foot-ton energy of 25,985 and a penetration of 30.8 inches. The curious domelike structure above the gun is a light shield a few inche in thickness which is bolt ed to the carriage and ro tates with the gun, the barbette being stationary The shield is too thin to stop the heavier rapid-fir shells, which it would only serve to intercept and cause to burst inside. The Chinese removed the light shields of a similar kind from their guns on the "Chen Yuen" before the battle of the Yalu, considering the gun crew

The other three ships, "Vizcaya," "Maria Teresa" and "Almirante, Oquendo," were built at Bilbao, Spain, and launched in 1890 and 1891. Their principal di mensions, etc., are as follows : Length, 340 feet; beam 65 feet; draught, $211 / 2$ feet; displacement, 7,000 tons speed, about 20 knots for the "Teresa" and "Oquendo" and 21 knots for the "Vizcaya." The water line for over two-thirds of the length is protected by a belt of steel 12 inches thick and $51 / 2$ feet deep, part of it being below and part above the water line. At each end of the belts a transverse bulkhead of steel of the same depth extends across the ship to prevent a raking shot from entering the engine and boiler rooms. At the top of the belt and bulkheads, or about two feet above the water line, is a steel deck 3 inches in thickness, which is level between the bulkheads, but curves down o meet the stern and stem (see diagram) below the water line. So far, so good, as regards armor pro tection. The weak point in this respect is the fact that the sides of the ship above the belt are entirely unprovided with armor. There is thus a space the full depth of two decks, or say about 15 feet, which is penetrable by the smallest shells. It is true there are several feet of coal stowed in the wake of the engines and boilers on the berth deck above the belt, and while
would be in less danger
without them; though the Japanese, who now ar the owners of this ship, have replaced them, probably making them thicker and of better steel.
The four cruisers of the Cape Verde fleet are all liber ally supplied with torpedo tubes, the "Colon" having four and the other three ships six, two of which are ubmerged. The above-water tubes, owing to the terri ble risk of having the torpedoes hit and exploded on the ship itself, are not likely to be used; but the under water tubes are very dangerous weapons, and if the swift Spanish ships should steam in to close range, they might even the fortunes of a losing fight by sinking on or more of the enemy.
Accompanying the cruisers and acting as very useful scouts are three torpedo boat destroyers of the latest design and of exceptional power and speed. Two of hem, the "Furor" and "Terror," which were built on the Clyde in 1896, are sister boats, 220 feet long, 22 fee beam, of $5 \frac{1}{2}$ feet draught and 380 tons displacement. They have engines of 6,000 horse power and are capa ble of 28 knots speed. They carry 100 tons of coal and contrary to the popular opinion, can cruise for severa thousand miles at 10 knots without replenishing their bunkers. They have two torpedo tubes and carry a crew of 67 men. The "Pluton," built last year on the Clyde
is 5 feet longer, $31 / 2$ feet broader and of about the same draught. Its displacement is 400 tons, and its engines of 7,000 horse power drive it at a speed of 30 knots an hour. The three boats are, therefore, two-thirds the length of the big cruisers and are good seaworthy vessels capable of going anywhere with the fleet. They are heavily armed, carrying two 12 -pounders, two 6pounders and twe 1-pounders, and would be capable pounders and twe ink porpats they might overtake.
Such is the Cape Verde fleet, whose speed and wide Such is the Cape Verde fleet, whose speed and wide
radius of action have already earned for it the title "elusive." Incapable of meeting our battleships in action with any hope of success, its admiral appears to be content with threatening our communications and giving assistance to the beleaguered island by acting as a diversion to the fleets of Admiral Sampson and Commodore Schley. The question of the capture or destruction of the Cape Verde fleet is first and last a question of coal supply, for it will be the scarcity of this that will ultimãtely drive the Spanish admiral to an active will ultimately drive the Spanish adm
engagement or send him back to Cadiz.

## Sclence Notes.

M. Vallot's observatory on the top of Mont Blanc is to be moved from the Rochers des Bosses, where it now stands, to a rocky point at the same altitude, as the piling up of the snow in its present position interferes with scientific observations. The removal will be difficult, as the whole structure will have to be
taken piece by piece on the backs of workmen to taken piece by piece on the backs of workmen to the new site at a height where any physical exertion is pleted in one season.

According to the Bulletin de la Societe Française de Physique, M. Crémieu has devised an ingenious means of producing elliptic sound vibrations in air. By the interference of the longitudinal vibrations of two organ pipes, placed at right angles, and vibrating under the influence of two diapasons with the proper difference of phase, an elliptic motion was set up a made evident by means of delicate quartz fibers which made evident by means of delicate qua
followed all the movements of the air.
Prof. Theobald Fischer contributes a short paper to Petermann's Mittheilungen on the "moraine-amphi theater" of the Lake of Garda, says Nature. The form of the moraine deposits on the inner or Italian side of the Alps differs markedly in type from that on the outer or German side. In the former type, o which the Lake of Garda affords an excellent example the deposits are laid down in concentric ramparts which turn their convex side to the plains; while in the mouths of the valleys. Dr. Fischer avails himself of the very excellent maps and models furnished by the Italian service.
A rather remarkable accident with chloroform is re ported from the Catholic Hospital at Herne, Westphalia. It appears that a man had to be operated upon at once for a gunshot wound, and the operation being difficult, the time extended to about four hours. The illuminant in the room was gas, and it is supposed that it decomposed the chloroform with evolution of chiorinated vapors, with the result of incapacitating the two surgeons and so seriously injuring the sisters in attendance that one died on the second day, and the lives of the others were in great danger. The matter is of special interest, because operations have to be performed occasionally without preparation, and it would seem, from this experience, that only the incandescent electric lamp can be safe.

At a meeting of the New York Academy of Sciences, on January 24, Mr. E. L. Thorndike, of Columbia University, gave an account of a long series of interesting experiments on comparative psychology. These experiments were made upon cats, chickens, dogs, monkeys and other animals, and were supplemented be the experience of professional aniwal trainers. According to a report in Science, cats were placed in boxes with doors so arranged that they could be opened from the inside in various ways, in one set of experiments by pressing a latch, in another by pulling a cord, by pulling a hook attached to a cord, or by turning a button. Again the arrangement was more complicated. and two or three separate movements had to be combined in order to release the door and let the animal out to reach the fish placed outside the cage. Curves were given showing the rate at which the kittens learned the various tricks, the time taken to get out becoming gradually shorter. The trick was always learned by accident; one lucky hit would prepare the way for another. There was no trace of rational inference. Seeing another animal do the trick a hundred times was no help. Nor was it possible to teach the trick by taking the kitten's paw and put-
ting it on the latch, and so opening the door, no matting it on the latch, and so opening the door, no mat-
ter how often it was repeated. A habit once formed artificially will overpower natural instincts. A chicken that had been compelled to jump from a box to the floor in a roundabout way by a cardboard placed in its way, felt unable to jump down to its food directly when

Prince Victor Emmanuel of Naples is said to be an expert electrician. He experiments on all its applications to light, sound, motive power and photography, and was one of the first persons in Italy to investigate the Roentgen rays.
It is reported that a huge central station will be con structed in Saxony to supply electricity throughout the kingdom; 168 towns will be connected with the station. Electrotechnische Rundschau.
Twelve thousand mail cars of the German railroads are now lighted by electricity, storage batteries being employed. The light has given full satisfaction and is also said to be cheaper than the gas light used hither-o.-Uhland's Wochenschrift.

The Western Electrician has paid great attention o the electrical aspects of the war and has published several columns each week devoted to this subject. A reportfrom Hong-Kong brought by thesteamer"Gaelic" states that the night before this vessel left Hong-Kong, Commodore Dewey gave an exhibition of electric ligh signaling. The Cominodore is particularly interested in this branch of naval tactics, as he was at for of the naval commission which authorized and formulated
the method and code. The signals of the war vessels in the harbor of Hong-Kong were answered almost instantaneously from the other ships anchored at vari ous distances.
It would be suicidal for a vessel to enter New York Harbor at night under the present regulations. All the channels of the harbor are planted with contact mines, which, while harmless in the day time, would explode at night by contact. Patrol boats enforce the orders of the authorities and protect the mines and cables from the knives and nets of the shad fishermen or those who are disposed to destroy the mines out of sympathy with the Spaniards. A large number of wines have been placed in our harbors on the Atlantic and the Gulf coast. One or two of the mines which oat been cut away from the cables by the propell as an object lesson, and the result showed that they are in perfect order. Mines have also been placed in Long sland Sound
The lack of a trans-Pacific cable under American control was greatly felt after the victory of Manila The ordinary rate from Chicago to the Philippine Islands is $\$ 2.41$ a word.
During the bombardment at Matanzas, on April 27. the electrical ammunition hoists and the turning gear of the New York worked admirably. This news is specially gratifying to those who contended that th electrical transmission of power on shipboard is as reli able as it is convenient and economical.
An elaborate signal service system along the south ern coast of New England, with thirty-four stations, is manned by New York militia. If a patrol boat should
sight one of the enemy's ships approaching Long Island Sound, she would immediately put in under full stean for a coast life saving station on the southern Long Island shore and signal the militiamen stationed there of the approach of the invading ship. The news would at once be sent on by telephone to Fire Island, Quogue or Montauk Point, whichever station was nearest. These stations are in direct telegraphic communication with the Navy Yard at Brooklyn. As soon as the message was received by telephone at one of the three signal stations named, it would be immediately transmitted to the Navy Yard.
It is said, for the first time in the experience of an army in actual service, the commanding officers of the United States troops will have complete outfits for maintaining telegraphic communications with the various brigades and regiments that go to make the divisions and corps of the army. General Greely also has equipped and has ready for service his field telegraph outfit.
The War Department has decided to erect sets of the "telephotos" at the fortifications at Boston, New York, Fort Monroe, Key West and San Francisco, so that news, instruction and general communications may be transmitted by night as well as by day between the army fortifications which will be in telegraphic communication with Washington and the fleets or vessels
of the navy which may be under the guns of the forts or in adjacent waters. It is the intention of the government to equip other stations along the coast with these signals. The inventor has devised a small automatic auxiliary engine connected to a dynamo of sufficient size to supply the lights of the "telephotos." This could be installed at a small cost and could be run without requiring the services of a skilled engineer or attendant.

The great 60 -inch search light which was used at the World's Fair now guards the approaches to the harbor at Norfolk, Va., the latter being protected by means of submarine mines. A modern battery of rapid-fire guns for use against torpedo bnats and light-draught fort.

## THE TRANS-MI8SI8SIPPI AND INTERNATIONAL

 EXPOSITION AT OMAFA.The greatest exposition of America's resources and the products of a nation's thrift ever witnessed, with the single exception of the World's Fair at Chicago in 1893, will take place on the banks of the Missouri in the summer and fall of 1898, at Omaha, Neb. It was at first intended to make the exhibition a regional one, devoted to the products, arts and industries of the States west of the Mississippi River, but this plan expanded as the work progressed, and all the States were invited to take part in it. Then there was some attempt to make it international in character, the foreign flavor being dear to American hearts at American fairs, as is just and natural, and this attempt has been quite successful, as several countries will participate. The work of preparation is well under way, and there is satisfactory assurance that every building will be completed and every exhibit in place when the gates are opened to the public on June 1. The exhibition will continue open until November
Anyone who visited either of the Paris expositions will readily concede that, although no nation surpasses the French in artistic capacity and perhaps none equals that country in the development of landscape gardening, it is a fact that from an exterior point of view all of the exhibitions held there have been singularly unattractive. 'The first two expositions were held in the Palais de l'Industrie and were completely housed un der a single roof, and there was no special attempt at beautifying the grounds inmediately about the Exposition building. And the same was true, in a degree, of the World's Fair in 1889. The space was so valuable that the whole thing was crowded, and there was little pportunity for any display of landscape gardening. It was reserved for Chicago, in 1893, to make landcape gardening a feature of the World's Fair ; and no one who was privileged to see that dream of beauty will doubt the wisdom of the effort.
Profiting by the experience of the Columbian Exposition, Omaha proposes in the forthcoming Trans-Mis sissippi Fair to pay special attention to scenic effect The situation of the grounds lends itself in a remarka ble way to such an endeavor. There is a splendid plateau covering two hundred acres, breaking off sheer into the gorge which constitutes the valley of the Missouri River. The outlook from the top of this bluff, which has been provided by nature, is magnificent and inspiring beyond expression. Throughout a stretch of a mile the visitor may stand and with his eyes sweep that beautiful valley, with the bluffs of Iowa beyond, for a great distance. At his feet the river bank and stretching south ward the busy outskirts of the city of Omaha are seen. Beyond sweeps the majestic river, laden with steamboats and all forms of passenger and freight craft -a typical scene-while in the distance are the marshland bottoms backed by the imposing mesas of the adjacent State.
But this is all natural and God-given. It is to that which art is developing-the exposition grounds proper -that the visitor will-turn with chief interest. The landscape gardening on what is known as the Bluff Tract promises to be most imposing. A vast quantity of flowers, shrubs and trees will be set out so as to form a beautifully shaded garden spot. There will be labyrinths, graveled walks, the more conventional geometric flower beds, hedgerows and lovers' nooks, all in such profusion and with such a wealth of verdure that one may walk by the hour in the serene belief that he is far from the madding crowd in the fastnesses of Nature itself. But in sharp contrast will be the Court of Honor, over the way. Here the long lagoon, dotted by lazy gondolas, weaving in and out and under the graceful arches of the bridges; the picturesque fountains playing in the bright sunlight, the walled sides of the water flanked by the greenest of grass plats, with here and there a pedestaled Apollo or laughing faun, a Bacchus or the struggling Laocoon or the classic figure of the Venus de'Medici, backed by the imposing line of stately buildings and graceful arches and colonnadesall these will make up a picture of amazing beauty and impressiveness. It will not be a "White City." The artists have hit upon a color scheme which will relieve the scene from the hard glare of monotonous concrete, so trying to the eyes at Chicago. The buildings are to be done in neutral tints of Pompeian red and brown and ocher. This is daring and at first thought would seem incongruous. But careful tests have been made, and all now agree that it will be a great improvement. It will really be suggestive of Sienna marble, and will be most harmonious and effective.
The marvelous progress that has been made in the grounds has effectually dispelled any fears that the buildings would not be ready in time or that the open ing might be delayed. The experience gained from former expositions has enabled contractors and workmen to erect and complete exposition buildings much more rapidly than was possible even five years ago, and the task of installing exhibits will be a comparatively easy matter, as every inch of space is shown on plans drawn for the purpose of facilitating the work. The governing board has acted wisely in employing a firm of
Boston architeots to make the general plan of the
grounds and to control the whole building scheme; the principal buildings have been divided among the best architects of Western cities.
The beautiful building of electricity, simple, but effective in design, stands nearly finished. Its ornamentation, symbolic of its exhibits, shows clear designs in cogwheels and electrical machinery. The most complete and elaborate display of everything pertaining to the infant yet ever-developing science will be shown Tesla, Edison and Prof. Thompson will have individua exhibits.
In the section devoted to machinery will be found a splendid and complete collection of agricultural mechanism, the finest ever exhibited at any exposition.
The Agricultural Building will command much at tention and the Temple of Ceres is well fitted to ex-

Across Sherman Avenue is a viaduct which connect the Main with the Bluff tracts. The latter will contain the State Buildings, the Horticultural Building and the Midway.
The Horticultural Building is designed in the Corin thian and Ionic styles, and will furnish 27,000 square feet of space for exhibits.
The main feature of this building is a central dome with an open gallery from which visitors may view the surrounding country from a height of 110 feet. The main entrance will be through a portico supported by free Corinthian columns.
The State Buildings are progressing rapidly. Illinois will have an exceedingly pretty and pretentious home, designed in a combination of Greek and Byzantine architecture, with a dome 115 feet high. Nebraska's
pledged to treat the visitor courteously and answer his questions or put him in the way of getting them answered.
The transportation facilities are excellent, and extensive preparations are being made for the entertainment of the guests. With a number of good hotels, together with the many new lodging houses being erected, there will be no scarcity of excellent accommodations.

A Parisian Scientific Toy Picture Book.
. The pictures represent the most familiar domestic animals, and each animal speaks its own language. To cause it to break silence, it suffices to pull a little string at the edge of the book. Here are a rooster, a cow, a lamb, little birds in their nest, a donkey, a cuckoo, a

hibit the agricultural products of this wonderful Western country. Facing it and across the Facing it and across the
lake, is the Fine Arts lake, is the Fine Arts Building. It is constructed in form of two Greek crosses, which are connected by a court. A splendid art collection is being made and new exhibits are pro mised every day pro mised every day. The building itself will be one of the most beauti ful on the grounds. It ry, but a frieze five feet


VIEW NORTHWEST FROM WEST DOME 'OF FINE ARTS BULLDING. ${ }^{\circ}$
IEW NORTHEAST FROM WEST DOME OF FINE ARTS BULLDING

## THE TRANS-MISSISSIPPI AND INTERNATIONAL EXPOSITION AT OMAHA

high, which surrounds the building, will be artistically colored, and will add a contrasting bit of beauty to the whole conceit
The Government Building, which, with its huge dome and immense wings which flank it on either side, reminds one so strongly of the national Capitol at Washington, will stand facing the lake and overlooking the main court. Curving colonnades which stretch away on either side connect it with the Agriculture and Fine Arts Buildings. Surmounting the dome will be a reproduction of the famous " Liberty Enlightening the World," and from the ground to the torch in her hand the distance will be 178 feet. The statuary which will adorn these different buildings is well nigh completed. That which will ornament the Government Building was inade in Washington, D. C., while that of the Electricity, Manufactures, Fine Arts and other buildings has been made in Chicago, St. Louis, Nashville and other cities.
commodious building is 90 by 145 feet. Iowa, Wyoming, Colorado, South Dakota, Wisconsin, Montana and even far-off New Jersey are already at work in the preparation of plans for buildings. One of the most novel will be Georgia's Pine Palace, built of native umber and highly polished. An immense wigwan will represent Pottawattamie County in Iowa, while Missouri will boast of three beautiful buildings. The other State buildings are rapidly materializing, and it will be safe to say that when the exposition opens its cates on June 1, no less than thirty-four of our States will be fittingly represented.
A curious innovation will be a Bureau of Courtesy Not only is the idea novel, but it is surprising to learn that nearly all the people in Omaha will be enrolled in the committee. Every member will wear a badge, and visitors will be at liberty to address anyone wearing one of these badges, and ask for any information they may like. The member, on the other hand, will be
"mamma." These various results are obtained very simply with the aid of small bellows placed in a box hidden in the book. When the string is pulled the air enters the corresponding bellows, and is then expelled by a spring that tends to return the bellows to its original position. The air makes its exit through a special tube appropriate for each cry, and at the same time the bellows meet with certain obstacles placed on a wire. These arrangements have been carefully studied with a view to producing the proper sounds.-La Nature.

The legend of Romulus and Remus being suckled by a she wolf passes for a fable, but the researches of naturalists lend it color. In India native children have been nursed by wolves and lived with them. Negroes aver that anthropoid apes have suckled babies. Romanes has cited as a fact the suckling of three young rats by a cat whose kittens had been taken from her.

RECENTLY PATENTED INVENTIONS Agricultural Implements.
Grass Clipping Device.-John Mc Callum, Chippewa Falls, Win. This grass catting de-
vice comprises cutting and operating mechanisma a vice comprises canting and operating mechanisms,
guiding hande formed in two parts screw-threaded each other, each part having one of the mechanisms
attached thereto, and an arm mounted upon one part laving a locking pint thereon. The adjacent end of the other part is provided with a series of holes arrange on a spiral corresponding to the thread of the con-
nection and adapted to receive the locking pin. The deice can be worked by one or both hands of the operato nd can be easily yoved in any
Combined Cotton Seed Planter and Ferrtiizzr Distributre.-Walter G. Gray, Mar rowbone, Tenn. The inventor
$a$ machine which is deeigned to make a tidge, trench and top it, plant the cotton seed and supply the ferriizer, and which will then close the trench in the ridge. covering the sead, all of which operations take place almost at
the same time or in quick succession. The machine is, the esme time or in quick succession. 'The machine is,
furthermore, provided with plows enabling it to make furthermore, provided with plows enabing it to make a large or a smal ridge, with either two or four farrows
to the ridge. A novel seed-distributing device permite but a fer seeds at a time being taken from the hopper and delivered to the drill or chute
Corn Header.-William A. Wilson, Centropolis, Kan. This machine comprises a frame, on the axis of the platform and having its un extended forwarills besond the axis, a etandard fixed to he plattorm and havng a sliding connection with the upper end of the lever, a link pivoted to the lower end
of the lever and extending forwardly, a hand-lever monnted on the frame and connected with the link, and nected with the link, the bell-crank being within reach of the driver's foot.

## Bieycle Improvements.

Bicycle Canopy.-Jacib J. Metzger,
 lar standard in which a rod is adjustably held. A bloct is located at the upper end of the rod and is adjustably beld thereto by a thamb screw. Two pivotally-connected nembers are mounted on the block and form a fork, the irms of which extend apward and outward in opposic irections. To the upper ends of the members the cano a place. The canopy can also be oused as a sail both in running with and reaching on the wind.
Handle Bar.-Thomas Vantuyl, Vichols, I. This handle-bar comprises a handhe-ba em formed with a head having interral notches, a fit with moanted to tring in the head and arme formed at its ends heir inner longitudinal ends, and a key held in the fit ing and engacing notches in the handle arm ende and otches in the head. The arms are designed to permi
odependent adjustment either longitudinally or tran indepe

## Engineering

Gas or Oil Engine.-Frank S. Mead Montreal, Canada. This engine consists of a power cy Inder, a channel for the sapply of compressed air, tromnel for the supply of liqui luel, a paneage leadin tuated by the engiue and so arranged as to control the dmission of air and fuel to the cylinder. A spraying evice is located adjacent to the working chamber, an o tie spraying device the valved delivery port of a ir compression pump is connected. The delivery tub is directly controlled by the movement of the pump piston for injecting a apray of liquid fue
ing chamber after the exhaust is closed.
Differential Piston Valve.-Nich las Power, New York Citt. The valve-body of this valve is provided with an inlet and outlet and a valve
seat. $A$ cyinder is securced to the valve body above the valve seat and has its lower open end in commanication with the inlet of the body. A piston located in the cyl inder is provided with a looeely sliding stem by which it is operated and with a etem projecting from its lower end. A valve is loosely mounted on the stem projecting from the lower eud of the piston and is adapted to rest upon the valve seat. hef rrea of the top or the valve than that of the piston, the valve is held tie seat. When raised from its seat, the pressure of the uid on the lower end of the piston will cause it to
upward to open the valve entirely and hold it open.

## Electrical Appliances

Electrical Steering apparatus.Harry O. F. Bindemann, Madrid, Spain. Connected
with a rudder, oppositely rotating motors and clutches with a rudder, oppositely rotating motors and clutches
for operatively connecting the rudder with either of the motori, are an axxe or pivot controlled by the operator, a switch arm capable of a limited rotary movement relatively to the pivot and having an inclined surface, a pin projecting from the pivot and engaging the
inclined surface, a soring for keeping the pin aganst the inclined surface, a spring for keeping the pin aganat the
inclined surface, contact devices arranged to be ennclined surface, contact devices arranged to be en gayed by the switch-arm and electrically connected to
the clutches, and means for holding the rndder tationary the clutches, and means for holding the
after it has reached the desired position.
Alarm.-Ira B. Frazee, Blairstown, la This invention relatee to an improvement adapted partic plarly for detecting the rraduluent entrance of persons
into baildings. The device consists of a casing containing the alarm apparatus and ite battery, which apparatus in connection with the terminals of an ele By the delicate adjustment of a weight an arm upon which the armature of an electro-magnet is carried is so arranged that it shall drop upon a contact post, caus-
lng the alarm bell to ring, should the electric circait Which rans through the places to be protected. be broke
santly antil, by mannal force, a crank shaft is tornedd
which aching nuon varions devices, cansea the aluren bel which, acting upon various devices, canse8 the
circait to be broken, thus stopping the alarm.

## Mechanical Devices.

Centering Machine.-Jacob H. Brewer, New Straiteville, O. This centering machine a squaring tool, a drill and a reamer arranged in the same plane, a carriage mounted to slide toward and from the ools, a cross-slde movable on the carriages at righ ngles to the movement thereof, a holding device on the roses.siide, for holaing the work in the same plane he wand to therk to and from the tord an means for adjosting the crose-slide, to carry the work accessively in alignment with the tools, and for locking the slide to the carriage after it has been adjusted. The
nachine is is especially designed for conveniently and accurately cent
like machine.
Die Stock.-William H. Sweitzer, Dan ville, IIl. Connected to a die-stock having radial han ${ }^{\circ}$ the sta and railial recesses for dees in opposite race the recesses of the etock, a central die occupying the about the center and in the receese8 on the other side o the stock, each die comprising a fixed section and a novable section, and a set ecrew bolt for adjusting each

Railway Switch - William Harri elleridge, Pa., and Wibbur J. Harris, Mount Pleasa . This menention makes nge of a deflecting rail and uxed shich points in connection with mechanibm monnted npon the car and under manual control; the rail to shift the car sideways. The mechanism npon the car comprises an eccentric sleeve journaled on the axle, deffecting wheel journaled on the eccentric sleeve, a gear on the sleeve concentric with the axle, a rock bar
held in engagement with the eara a pinion fixed to the held in engagement with the gear, a pinion fixed to the axle, a frame having top and bottom racks engagable
with the pinion and connected with the rack bar, and with the pinion and connected with the rack bar, and
suitabe levers and springs by which the frame mas be epresed or raised to engape either rack with the pinion, and thus to canse its horizontal movement in either direction, and by reason of the connection with the rack bar wo turn the eccentric sleeve in either direction. The
rame is also constructed with locking recesses receiv ing the pinion to limit the horizontal movement of the rame and to hold it in either extreme position.
Bending Machine. - Charles SeyBour, Deftance, O . In this bending apparatus a form is elow the on a rame and two ben teds from one ar ot the other, means being also provided for swinging the pulleys carried by the frame. Springs serve to draw the ape tort beneath tie arms, the rope forming a yielding hrust the arm toward the form, thas causing the timber o be bent which is contained between the arms.
Automatic Vehicle Brake.--Joseph arnuel Elliott, Eddy, Tex. Connected with brake-beam ods and levers arranged in the rear of the brake-beam and in the eame plane therewith, are a yoke having a pull-rod passing through a threaded bore in the yoke, nel to the brake levers, the rod and the hand lever brake apparatus is counected with a link suppended from he front axle. Thronga a device consisting of an elongated link having an upward curve at its middle the pull rod pasees and has a crose-pin arranged in the rear of the curvec portion of the device. To the front end of this device the lift lever and rod are attached. The braked are applied by the team when holaing back, sach resu
being obtained through the flexible connection between being obtainer through he fexible connection betw

Miscellaneous Contriva
Cobfer Roaster.-William R. Ram ey, Keno, Ore. This coffee roserter comprises a recta bearing and the opposite end of which is provided with a lownwardly, horizontally and thence upwardly extendin bearing aligned with the bearing in the frot normed oearng aigned with the bearing in the first named end
of the receptacle. A cylinder is located within the receeptacle, one head of the cylinder baving an opening
therein, and a hingedly monnted plate is capable of therein, and a hingedy moonted plate is capable of swinging over the opening to close it. A Ahart is paseed
through the cylinder, is mounted in the previously menthrough the cylinder, is monuted in the previously menthe receatacte by means of a slot in one head thereof A handele is attached to the shaft, whereby the shaft may be revolved.
Dry Vacuem Cooker. - Herrmann a Wolff, New Haven, Conn. The object of this invention the materials will be cooked dry, i. e., in their own juices, without water. The apparatus comprises a casing provided with a surrounding water space, having a packing at its bottom and a cover casing open at one end and
closed at tue other, the closed end being provided with a losed at tae other, the closed end being provided with alve and with packing, the packing at the closed end apper portion of the inner wall of the water space, the sides of the cover casing being arranged to extend within the water space to form a double water jacket and ite open end to engage with the packing in the space. The cover casing 18 provided with a locking device, and ves-
sels adapted to receive the articles to be cooked are ocated within the body casing beneath the closed poror the covers of the veseels.
Jar.-Julian P. Lyon, Detroit, Mich. This invention is an inprovement in that clase of jars

Hon beling of such construction that the cap may be readily digplaced withont injuring the gasket and with-
out chipping the material of the jar. The gaves, more ver, may be antomatically and effectively exhansted over,
daring
jar.

Combined Chair and Bedstead. oseph Dixon, London, Englasd. This combined folding rest slidable thereon and provided with separate lege back frame pivoted on the seat frame and adapted to form a bed extension therefor in an opposite direction he slidable leg rest, a brace pivoted on the back fram extension legs pivoted on the brace and adapted to en rage the back frame and means for locking the brace place on the back rrame. The chair can be conveniently chair, sitting chair or bedstead.
End Gate Fastening. - John $S$ Court, Memphis, Tenn. Mhis invention provides a ening for end gates, which fastening has an eyebolt rearward of the end pate and held br a verically er tending rod which passes through eyes in the bolts and which also engages sockets formed one on each wear
plate for the eyebolts, by which sockets the rod is held teadily.
ash Sifter.-James H. and Edmund . Countise, Camden, N.J. A casing having an opening in its bottom and an opening in its side, and a screen Magonally placed in the casing, extending from it losed to its open side, is provided with a dumping platform located beneath the screening surface, a pivoted nected with thechute and a rod connecting the platform with the chute. The chute is of such length as to extend from side to side of the casing and the connection
between the chute and platform such that when the hute is closed the platform will be opened to discharg

Screw.-Philip W. Cassil, Garner, Ia. This invention relates to screws having their plain unthreaded portions bent or curved to adapt them to serve
as hooks, and it has for its object the provision of a as hooks, and it has for its object the provision of a n object by an ordinary screw driver. The invention
 the bottom of which is at an angle to the face of the
head and perpendicular to the longitudinal axis of the body of the screw.
Car Coupling.-James M. Brown and Leo D. Peak, Exeter, II. This car coupling comprises a
chambered draw-head, an elongated coupling link having laterally draw-heau, an elongated couphing link having rearward of the hook, the link being pivoted near it ear end at the rear of the draw-head chamber, a limb pivoted at the side of the coupling link and spring ock the link laterally against the pressure of the

Steelyard. - Charles H. Bartlett, Bristol, England. With the short arm of this steelyard are connected two sets of knife-edge centers at different distances from the center of saspension, and a single est on either set of centers indifferently, and having shifting coniuection with the load snspension device whereby the load may be caused to bear through the
hanger entirely upon the one or other set of centers. An adjustable weight carriage is adapted to engage with the notched lower edge of the steelyard, and is provided with notched indices referring to two acales on the same face of the steelyard. The steelyard is self-adjustable or light and heavy loads alike, and the weight is prevented from running down the tail of the steelyand when
the latter assames an inclined position. The denominahe latter assames an inclined position. The denomina me side of the tail.
'Irduss Pad.-Smith Tucker, Medina N. Y. The truss pad for which this patent was granted pad will more effectively control the rupture, the thad being provided with ribs engaging the skin and serving to draw together the loose folds thereof.
Apparatus for Extracting Preiocs Metals.-Joseph R. Hebaus, Butte, Mont. This contrivance comprises an amalgamated copper lining rorming a cathode and a number of agitators each ro-
tating on its own axis and at the same time traveling round the tank, the agitators forming an anode. Means are provided for connecting the agitators and cathode is the extraction of the nobler metals from thei is the extraction of the nobler metals from their Windmill.-Seth K. Humphrey, Bos on, Mass. The inventor of this windmill mounts his vanes upon a rotating frame and connects them by an eccentric which is rotated abont the main shaft in such a manner that the vanes will be rotated upon their
shafts at one-balf the speed of the rotation about the main shaft. There are also means whereby the angular position of the eccentric may be changed so as to thr
the vanes ont of operation, thus stopping the mill.
Pipe Hanger. - Theodor B. Sauer, Oberreifenberg, Germany. This invention comprises a
clamp or shackle for holding tubes, and the invention is in general characterized by two clamping sections ing them together and a apike or shank rigidly attached to one section and designed to be driven into a support which the shackle or clamp is held.
Lock.-Robert H. Hearn, Dyer, Tenn. his lock has a locking bolt composed of a straight middle portion with a pivot hole at each end and off-
setting curved locking ends at opposite ends and on opposite sides of its straight portion, each being described about the pivot hole of the opposite end and having bevel faces upon opposite sides, a lifting bar pivoted at ne end to the case and having its other end resting beleeve with tappets arranged beneath and acting upon
the lift bar, and a supplemental key-bolt with tumbler arranged to be projected against the inner side of the
end of the main bolt to lock it. The bolt can be operated by the knob shaft or be locked by a key so that it cannot be operated by the knob shaft.
Medicine Dropper.-James B. Schermerhorn, Malden, N. Y. To the glass tube of this medicasing fits on the tube and bas a recess on its upper face receiving the lower edge of the nipple and the adjacent edge of the tube, the side wall of the recess being undercat whereby to receive an adkesive substance. A stopper which it is secured tube below the protective casing, to than the casing whereby the latter will project over the apper edge of the bottle in whose neck the stopper is inbreakage and loss.
Photographic Plate Holder.-Jacob Schaub, sit Lake Cly, Ulah. The object of this nvention is to provide an holder which will allow insertion and removal of plates with greater ease and celerity than heretcore, and by which the plates shall be more securely held in place, so that they shall be in no danger of being
dislodged by jolting in traveling or otherwise. For this parposed by jolting in traveling or otherwise. For this holder with a hinged section which is arranged at the end opposite the slide entrance. When the slide is which, slightly overlapping the sensitive plate, holds it secarely in place.

## Designs.

Box Lid Cover.-Joseph L. Conway, Sioux City, Iowa. The leading feature of this design comprises a body portion, members proiecting from the body at one end about right angles to one side face,
and additional members at the opposite end ranging in a direction diagonal to a side edge of the body.
Bottle.-Constantine Wagner, New York City. In this design, the chief feature is a twobored single neck rising from the apex of the tapering top of the bottle body, a portion of the neck appearing
as depending from the top within the body, the exterior surface of the neck presenting an unbroken continuity In a transverse direction.
Brake Shoe. - Oliver B. Whitney, Marlborough, N. Y. The essential portion of this design consists in an approximately wedge-shaped shoe
block having a straight base and a segmental base terminating in a wedge-shaped point, and formed with a depression baving a narrow strip or tongue at one side of the shoe block, the strip terminating
ginning of the wedge-shaped point.
Suspender Buckle. - Aaron Coleman, New York City. This design consists of a front with a conventionalized frog extending from the toe to the heels, a loop plate appearing wha a serrated apper
Tip for Umbrella or Parasol Ribs. Charles H. Peddrick, Jr., New York City. The leading feature of this design consists of a bead arranged on
Puzzle Box.-Hiràm C. Clarke, West Winfield, N. Y. This design relates to puzzle boxes in which a labyrinth is provided, through the mazes of consists in the novel configuration of the base and walls forming the labyrinth.
Note.-Copies of any of the above patents will be fornished by Munn \& Co. for 10 cents each. Please send name of
of this paper.

## NEW BOOKS, ETC

Lubricants, Oils and Greases. Treatcal Information Regarding their position, Uses and Manufacture. A Pacinee Guide for Manufacturers, Lubricants. By Lloyd I. Red wood. $\begin{array}{ccc}\text { New } & \text { York: Spon \& Chamberlain. } \\ \text { 1898. } & \text { Pp. 54. Price } \$ 1.50 \text {. }\end{array}$
The subject of lubrication is of constant interest, and while we already have some literature apon the subject,
there is nothing which occupies exactly the same ground as the present work. The sathor has attempted to give engineers an insight into the properties of the varions labricants that are likely to be offered them and thus enable them to goard against the choice of one that
would be likely to prove unsatisfactory for the purpose would be likely to prove
for which it is intended.

ANNALS OF THE ASTRONOMICAL OBServatory of Hardard College. XLII., Part I. Observations. Made ervatory, Massachusettsological Obthe direction of A. Lawrence Roteh, A.M. Cambridge: John Wilson \& A.M.
Son.
1897.

This large pamphlet treats of the scientific aspect of kite flying for obtaining meteorological observations It
is illustrated by diagrams and is accompanied with a

Alternate Currents in Practice. Translated from the French of Loppe and Bouquet by Francis J. Moffett.
New York: The Macmillan ComNew Yony. Pp. 376. Price $\$ 5$.
The especial value of this work lies in the fact that its artially from English , ources. In this way they have Gendan and American atically traverse the entire feld and treat in a systemmanner the whole range of alternating corrents of

Modern American Dwellings. With Constructive Details. By Numerous
Architects. Practical Designs for Builders and Those Intending to Build. Illustrated by means of 3 plates of details. New Yurk: David The selection of designs of residences in this volume called upon to act as his own architect in the erection of dwelling houses. The designs range in cost from $\$ 2,000$ to $\$ 5,000$, and there is also a large number of details of the interior and exterior construction, a feature which the practical builder will recognize at once as of inesti-
mable value in the building of houses. The designs mable value in the building of houses. The designs
represent work already executed and illustrate the efforts of architects scattered over a territory which includes practically the entire country. The half-tone engravings are well reproduced, but the elevations, while useful, are not particularly handsome. The floor plans are on a rather sm
mended.
MODERN SWITCBBOARDS. By Alfred
B. Herrick. Philadelphia: The Cut-
ter Electrical and Manuiacturing
Company. Pp. 200. Price $\$ 3$. Conpan. Pp.
While this handsome quarto volume, full of illustra-
tions, is published primarily to set forth the business and tions, is pablished prinarily to set forth the business and
describe the appliances manufactured by the Cutter Company, it is a book which cannot fail to be extremely valuable to the electrical engineer or to any one engaged in electrical work, as the abundant engravinge represent
a multitude. of minute details not often found in a single volume. The book also has an interesting historical resume of early practices and expedients, indicating
the advances recently made in electrical apparatus, and the advances recently made in electrical apparatus, an
Greenhouse Management. By Prof. L. R. 'Taft, of the Michigan Agricul-
tural College. New York: Orange

Judd Company. Pp. 382. Price $\$ 1.50$.
A manual brimful of valuable condensed and: wel arranged information on the forcing of flowers, fruit
and vegetables in greenhouses is here presented to the public, the book also covering the propagation and care of house plants. To the fiorist especially, who pursues
the business as a commercial enterprise, and to the crowers of early vegetables and choice fruits, the work proved methods continually being brought into nse, but the plants grown change from year to year, and this work of Prof. Taft is up to date in elacidating the mos recent methods. 'The same author has also published Hydradlic and Placer Mining. B Eugene B. Wilson. New York
John Wiley \& Sons. Pp. 234. $\$ 2$.
The times are especially propitions, since the developon placer mining, which so many thonsands rienced men are now entering into in our Alaskan cerri Lory. The book before us is well adapted to set befor he miner in a very practical way the leading features of ing, sluicing and the construction of rifles, flumes, ditches, valves, gates, welrs,
The Century Atlas of the World. Prepared under the superintendence
of Benjamin E. Smith, A.M., manag-
ing editor of the Century Dictionary
editor of the Century Cyclopedia of
Names, etc. With 117 double page
mapsin color, 138 inset maps, 45 hismaps in color, 138 inset maps, 45 hisindexes ( $382-\mathrm{xpp}$.) of places, rivers,
mountains. etc. Published by sub-
scription. New York: The Century
Company. Cloth. Price $\$ 12.50$.
The Century Atlas contains some of the finest speci-
mens of map making we have ever seen. It is an enmens of map making we have ever seen. It is an en-
tirely new atlas of the world, uniform in size with the tirely new atlas of the world, niniform in size with the
Centary Dictionary, which is known everywhere the English language is spoken or written. It is withont the whole world, as it contains the latest details as to po litical changes, such as the new boundary of Greece resulting from the late war and the limits of Greater New York. The atas has 117 double page maps, 138 inset mape and 4; historical and astronomical maps. They are printed in from five to ten different colors. The moet recent government surveys of all parts of the world, the explorations and the latest measurements of mountain peäk cable lines are all shown, and they are, of course, broneze down to date. Important battlefields are plainly matea
and the dates affixed. The historical maps illustrate ene most important epochs of sacred as well as ancient and modern history. Standard time divisions are shown tourist map of Europe shows the chief routes of travel. As an example of what the older atlases lack and which the present atlas contains are the rontes of celebrated explorers, including those followed by Nansen in his recent expedition to the Arctic regions and by Glave a:d Donaldson Smith in their recent African explorations. The index shows aboat 200,000 entries, and the foreign
words used in connection with place, names are translated, adding greatly to the atility of the atlas. The present time is particularly suited for the production of an entirely new series of mape, and the Century Company have done wisely in beginning at the bottom and making each map afreek from the newest and test material. The latest geographical surveys of civilized countries have been incorporated, and in those regions of the world for thoritative sources of information have been used. space orbids us to enumerate all of the distinctive features which tend to make this atlas so valuable. The mape
are clear and handsomely executed and bristle with details, to some of which we have referred.

## Əืusiness and Personal.

The charge for insertion under this head is one Dollar a Advertisements must me received at publication offic as early as Thur
ing week's issue.

Marine Iron Works. Chicago. Catalogue free.
"U. s." Metal Polish. Indiauapolis. Samples free.
Yankee Notions. Waterbury Button Co., Waterb's, Ct
Bicycle تletric Likt $\mathrm{C}_{0}$,
Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O . FERP FERRacUTE Machine Co., Bridgeton, N. J. Full Improved Bicycle Machinery of every description.
The Garvin Machine Co.. Spring and Varick Sts., N. Y. Gasoline Engines and Launches. Free catalogue.
Monitor Vapor Engine and P. Co. Grand Rapids, Mich. The celebrated "Hornsby-Akroyd" Patent Safety Oil nine Company. Foot of East 13tin Street, New York. The best book for electricians and beginners in elec-
icity is "Experimental Science," by Geo. M. Hoplin By mail, 84. Munn \& Co., publishers, 361 Broadway, N. Y. Send for new and complete catalogue of Scientiff
and other Books for sale by Munn \& Co., 361 Broadway,

## Haticy Munties

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters
or no attention will be paid thereto. This is for ous or no attention winte paid theret..
information aud not for pubication.
eferences to former articles or answers should References to former articles or answers should
give aate of paper and pare or number of question
nquires not answered in reasonable time should some answers require not a little research, and,
though we endeavor to reply to all either by letter
or in thi depar or in this department. each must take his turn.
Bu Yers wisbing to purchase any article not adverised
in our columns wil be farnished with addresses of houses manufacturing or carrying the same.
Speelal Writters of
Whormation on matrer peeial Writien In formalion on matter:
personal rather than general interest cannut ve
expected without remuneration. expected without remuneration
Scientific American Supplements referred
tomabe had at the offce. Prie 10 conts each.
Books reeferred to promptly supplied on receipt of Books referred to promptly supplied on receipt of
price.
Minerals sent for examination should be distinctl.
marked or labele. marked or labeled.
(7436) C. L. P. writes: I have a square dining extension table which has become somewhat
marred by nee, that is it has lost its polish. Can you tell has: A. Formulas for furniture polishes are given in our Supplement, Nos. 1067, 1099 and 1145, price 10 cents each by mail.
(7437) H. B. D. writes: I have had great difflculty with $X$ ray tubes becoming punctured by the passage of the current through the glass. What is
the cause of this? A. To be punctured is the natural death of an $\mathbf{X}$ ray tabe. When it will occur no man can tell, whether in infancy or in old age. The atatic coil. The spark jumps through the glase becanse onder existing conditions that is the path of least resistance. Sometimes punctures seem to be preceded by a creeping out of an electric discharge upon the tabe; at others there is a flash, a stroke and a hole. It is difificult to account for them. 'Two valuable works may be mentioned.
" The Induction Coil in Practical Work,", Lewis Wright, price $\$ 1.25$ by mail, and "The Roentgen Ra
Work," David Walsh, price $\$ 2.25$ br pâll.
(7438) P. L. G. asks: Will you kindly inform'me, through the Notes and quiuries of the Sci-
Entiric American, the way to asterigin the distance from a receiver to the place that ase sibibmarine cable is severed $\boldsymbol{A}$. The general method of Ecoailizing a fault is to measure the resistance of the ciable. This will be the resiftance from the end on shore to the break, smce the earth has no resistance. The resietance of the whole diilles to the place where the break occurred.
(7439) J. E. $\cdot$ W. asks : How are electric hights tested for cande power 9 What apparatus is re-
quired, etc. $\% ~ A . ~ T h e ~ b e s t ~ w a y ~ t o ~ r a t e ~ e l e c t r i c ~ l i g h t s ~$ is by the power they use in watts. The National Electric Light Association has defined a 2,000 candle peres at 45 volts. Incandescent 15 candle power lamps measured, 50 to watts. If the candle power is to be that of a standard. The legal candle is one consuming 120 grains an hour, made to have 6 to the pound. The method of comparison is to adjust the two lights till isey illuminate a surface equally. Then the light of each face. Thus, if the standard candle were 1 foot and the ight to be testea 4 feet from this surface, the lights are as $1^{2}$ to $4^{2}$. or as 1 to 16 . The light to be tested is giving 16 candles. This is explained in Hopkins' "ExperimentScience." Price \$4.
(7440) R say\$: Please give a receipt for mating caler, toe cost to be about 16 cents per gallon.
A. Mix well 10 eallons cold water, $71 / 2$ pounds brown upar, 14 pound tartaric achd, add the juice expressed ( 7441 ) G. says : Kindly let me know how much a knot is. I would like to know whether it is a
mile or a little over. A. A "knot" is a nautical mile mile or a little over. A. A "knot" is a nauticas
and is equal to $\left(\frac{6080 \cdot 27}{5280}\right)$
$1 \cdot 15156$ statate miles.


For which Letters Patent of the United States were Granted MAY 17, 1898,
and each bearing that date.

Acid, making pyrocatechin sulphonic, P. P.


## 







## 







tetor handiling machine, pneumatic, $j$. т. Fíl




Catter marchine be bryd cutter.
$\underset{\substack{604,331 \\ 64,255}}{ }$
.311 The Coburn Trolley Track Mfg. Co:




## STEAM ENGINEERING 

 \$2 in ADVANCE and \$2 a MONTH


 You wish to atidy:

ROSE POLYTECHNIC INSTITUTE
 drees C. L. MEES, President, Terre Haute, Ind. THE
Scientific American
SPECIAL NAVY SUPPLEMENT.
With Colored Map of Cuba.


THE BATTLESHIP "OREGON."
The great desire during the present crisis for accurate information concerning the United State on the Navs, which has just been published under the above title. Every effort has been made by the publishers to treat the subject in such a manner that it may be readily understood by the time render the publication a permanent book of reference.
This issue takes the place of the regular numof forty pages.
The number opens with a historical sketch of the birth and growth of the new Navy from 1883 to 1 k98, in which the programme of shipbuilding authorized in each year is given,
clases of ships which it called for
This is followed by an article for.
different types of vessels into which explains the navy is divided, and shows, by the assistance of diagrams, the manner in which the various types of vessels are classified. This article will greatly
assist the reader in understanding the detailed illustrations and descriptions of each ship which The thips are
as classified below. A comparison is drawn be I ween different vessels of the same type, and the improvement of each ship on its predecessor is pointed out.

BATTLESHIPS.
"Indiana," 13 cuts; "Massachusetts," 2 cuts "Oregon," 2 cuts; "Iowa," 3 cuts; "Texas,"
cuts; "Kentucky," 2 cuts; " Alabama," 5 cuts. CRUISERS.
" New York," 3 cuts; "Brooklyn," 1 cut; " Minneapolis," 1 cut; " ${ }^{\text {Columbia," }} 2$ cuts; "Chicago,"
1 cut: "Olympia," 2 cuts; "Cincinnati," 1 cut "San Francisco," 5 cuts; "Detroit," 1 cut;
"Charleston, 1 cut; "Baltimore," 1 cut; "New Orleans," 2cuts.

## MONITORS.


GUNBOATS and TORPEDO BOATS.
"Helena," 1 cut; " Annapolis," 1 cut; "M Marietta, 1 cut; "Ericsson," 2 cuts; " Porter," 2 cuts SPECIAL CLASS.
Ram " Katahdin," 4 cuts; submarine boat "Holland," 2 cuts.
Under the cut of each ship is a full table of her dimensions, armor, guns, speed, etc., and this is supplemented by tables at the end of the The illustrations number about 90 , and include handsome half-tone views and wood-cuts of all of the vessels above mentioned. Other pictures show in great detail the guns, gun-turrets, tormany interior and sectional views of other parts of these warships. The whole forms
complete and fully illustrated periodical complete and fully illustrated periodical.
In addition to the above is included a reliable map in colors, showing the island of Cuba and the West Indies.
This issue is inclosed in a handsome colored cover for preservation.
MUNN \& $C O$,
361 Broodway, New York Cityo

Gas mannfacturing apparatus, acetylene, $\mathbf{H}$.
Gas omisin iuxi.





## 






 Lampes. zass burne.ers, ete., support bracket for














$$
\begin{aligned}
& \text { momor. ind reaping machines, rotary sickle for, } \\
& \text { Mo. }
\end{aligned}
$$






$\stackrel{\text { Pa }}{\substack{\text { Pa } \\ \text { Pa } \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline}}$

## 














pushos.uto on card receiver and ejector, combin






 crew driver and drawer, G. B. Jocelyn:
crew machine, metall, W. . Davenport.
eine pursing machine. C. H. Gafter











VOLNEY W. MASON \& CO.
Friction Pulleys, Clutches \& Elevators PROVIDENCE R. I.


THAT ARE GOOD--NOT "CHEAP THINGS."
 against loss by patent suits bour guara.
tee and initrument sare both eood. WESTERN TELEPHONE CONSTRUCTION CO
$250-254$ South Clinton St., Chicago. Laroest Manufocturerof Ted Telephone
exclusively in the Unitch States.


We TELEPHONE DIRECT


 ADJUSTABLE FIXTUREST - nuwuyn ums nuinuimen HE O.C. WHITE C? WORCESTER.MASS.


"I have a Gram-o-phone at my house and another on my car. It's the best thing of the kind I know of to entertain one's family and friends.'
New York World "Gram-o-phone does not Intato
 INDESTRUCTIBLE RECORDS.
 NATIONAL GRAM-O-PHONE CO., 874 Broadway, N. Y

## KNIGHT GAS AND GASOLINE ENGINE


 GAS ENGINE


WEBSTER MFG. Co., 1074 West 15th St., CHICAGO

the charles b. king co., Detroit, Mich.


You USE GRINDSTONES?
 specialtyof sel ecting stones for all spe-
cal purpoeses.
Ask for cataloonve The CLEVELAND STONE CO EVERY FARMER interested in Fmsi-
lage shonld investigate the CALDWELL OYPRESS SILOS EVOLUTION OF THE AMERICAN LO

$\$ 5$ Printing Press


