A WERELIY JOURNAL OF PRAC'TICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY. ANI MANUFACTURES.

[^0] PLANT FOR LIQUEFYING AIR-EXPERIMENTS SHOWING PROPERTIES OF LIQUID AIR.-[See page 214.]

Srientific)marian.

ESTABLISHED 1845

MUNN \& CO.,
Editors and Proprietors.
published weekly at
No. 361 BROADWAY, - - NEW YORK.

terms for the scientific american

 (Established 1845.)One copy, one year, for the U.S., Canada or Mexico..
One copy, six months, for the U.S. Sanada or Meat

MUNN \& Co., 361 Broadway, corner Franklin Street, New York
The scientific American supplement (Established 1876)

Building Edition of Scientific American Established 1885.)

Export Edition of the Scientifle American (Established 1878)
with which is incorporated "LA AMERICA CIENTIFICA E INDUSTRIAL,
or phanish edition of the SCIETIFIC AM FRICAN. published nonthly
oniform in size and typorray

arf Readers are specially requested to notify the. any failur, delis, or ireegularity nin receipt of papers.

NEW YORK, SATURDAY, APRIL 2, 1898.

TABLE OF CONTENTS OF
Scientific American Supplement

No. 11®1.

For the Week Ending April 2, 1898.
Price 10 cents. For sale by all newsdealers.
I. A
I. ANTHROPOLOGY.-The Postal Service of Australian Aborigine 1I. A.
 IV. BICYCD

 teresting article it illustrated by engravinss taken from photo
rapaps showing disruptive discharges at very high voltage. -5
inustrations.

 x .
xI.

A SPANISH VIEW OF THE AMERICAN NAVY. It is a matter of frequent remark that the average European is as densely ignorant on all questions relating to the United States as the average citizen of this country is well informed on European affairs. It is probable that outside of a comparatively narrow circle in England, France and Germany, the people of the old world have only the vaguest idea of the resources, wealth and social and industrial development of the United States. They see the nondescript crowds that migrate yearly across the western ocean, and they grow accustomed to the thought that America is a huge agglomeration of unassimilated nationalities. They little understand that such is the size and virility of the American race that these myriads are absorbed without disturbing the national equilibrium or chang ing a line or shadow of the national countenance
Perhaps it is safe to say that in no European country is there so much misapprehension regarding the United States as in the very one which has good reason just now to be best informed regarding us. The informa tion which the Spanish press is giving out to the people is such palpable misinformation that one can scarcely attribute it to mere ignorance, and we are led to believe that the misrepresentation must be willful. One of the most striking instances of this is an article on the United States navy, which appears in a recent issue of the Spanish weekly, La Ilustracion, the "Harper' Weekly" of Spain. The United States has usually been credited in Europe with possessing a navy which, though small in numbers, is of the very lates pattern and includes some of the most original and effective types of ships in the world. The Spanish journal in question, however, lends itself to the task of persuading the Spanish public that our navy is made up of poor imitations of European ships, that it is "manned by hirelings who calculate, while they are fighting, what their valor, in cents, should be worth to them ;" that it is a "navy without tradition of any kind" (ye shades of Farragut, Perry and Pau Jones!) and that therefore "it will be nothing remark able if in a short time we see all these" ill designed and worse constructed "vessels go to the rubbish heap." The article opens by stating that ten years ago our naval efforts were confined to repairing the "Miantonomoh" and her class, which are built "partly of wood" (sic). We are informed that a navy yard has re cently been started at Port Orchard, in Brambridge (sic), and that among other places where the navy keeps stores of ammunition and coal is New Oskau (New Orleans?) on the Atlantic coast. The map of Washington fails to show the name Brambridge, the nearest approach to it being the name of Bainbridge Island, which lies about five miles distant from Port Orchard.
After our contemporary has displayed such an inti mate knowledge of our geography, we are not sur prised to learn that "important works for the manu facture of armor
have been established in Massachusetts under the direction of Mr. Bethlehem." We are informed that these "works can compete with Krupp in Germany:" but lest our confidence and Spanish dismay at this information should be too pronounced, we are informed in the next paragraph that in creating our navy "the tests of armor and othe work were unsatisfactory."
This "period of feverish activity was succeeded by three years of calm," after which there came "the wa with Cuba . . . and the fear of a rupture with Spain," impelled by which we " proceeded secretly (sic) to construct armored vessels," until at length we had at our disposal "what seemed to be a respectable squadron." "Fortunately for us," our contemporary proceeds, "the great funnels and quantity of smoke o the Yankees need not frighten us," and in proof of this a list of the shortcomings of the ships is added, from which we select the following:

The 'Indiana,' 'Oregon' and 'Massachusetts' submerge the armor plate"(presumably the belt) "entirely, and can only carry a full complement of coal in time of peace." "The turrets of the 'Kerasage' (sic) and 'Kentucky' present some advantages; . . . but their axes are so badly arranged that the guns which they carry would be out of combat as soon as they began to
"it cannot carry the torpedoes intended for it," and the critic does not spare even the ill-fated "Maine," but informs us that "its best speed was 16 miles" (it was $171 / 2$ knots), and that at this speed "it shipped water at the bow.'
The "Katahdin" "cannot go into battle on the high seas," and "its crew cannot sleep on board for lack of space." The "Miantomoh" (sic), "Monadnock" and "Terror" "are provided with a central compart ment, easily separated from the body of the monitor
an eccentric and senseless idea." We are further informed that the stability of the "Baltimore" and "Philadelphia" is endangered by their heavy guns. and that the armored deck of the "Cincinnati" and her class "is a source of danger, rather than of de-
fense." Even the famous run of the "Columbia" across the Atlantic, at a speed of 18 knots, is dis credited on the ground that the last day's run "could
no longer be made under forced draught." As a draught.
This remarkably lucid and accurate account of our warships concludes by assuring the Spanish public that "the rest of the vessels are not worth mentioning."

FOUR-CYLINDER LOCOMOTIVES

The four-cylinder type of locomotive appears to be enjoying quite a run of popularity just now on the other side of the water. At least three of the leading English roads have built engines of this kind, and they appear to be giving satisfaction. The type is not un familiar in this country. The Strong locomotive reck oned the four-cylinder arrangement among its many striking novelties, and visitors to the World's Fai at Chicago will remember the James Toleman, an Eng lish engine with four driving wheels, the forward pai of which were driven by a pair of inside cylinders and the rear pair by two outside cylinders.
The object aimed at in the Strong engine was to re duce the amount of counterbalance weight in the driving wheels, and the James Toleman was designed with the view of producing an exceptionally powerfu ngine without increasing the size of the cylinders and one that would provide sufficient adhesion without the use of side rods. The Strong engine fulfilled all its promises and has shown exceptionally good results on the Perdue testing plant. The James Toleman, how ver, owing to faulty design, was a failure, the boiler proving to be quite unable to supply the four cylin ars with steam.
Of the three new English engines above referred to the first is a four-cylinder simple engine built for the Glasgow and South-Western Railway. All cylinders are connected to the leading pair of driving wheels; a pair of $141 / 2 \times 26$ inch inside cylinders connect to two cranks set at 90 degrees, and a pair of $121 / 2 \times 24$ inch outside cylinders connect to crank pins set at 180 degrees to the adjoining cranks. This disposition of the cranks and pins enables one set of valve gear to be used for each pair of cylinders on each side of the enine.
Mr. Webb has built two experimental four-cylinder engines for the London and North-Western Railway one of them being a simple and the other a compound In the simple engine the four cylinders are all of one ize, viz., 15 inches diameter by 24 inches stroke, while he compound has two 15 -inch ontside and two $191 / 2$ inch inside cylinders, the common stroke being 24 inches.
'The London and South-Western Railway is exper1nenting with an engine which has two outside cylinders driving the rear pair of drivers, while anothe pair between the frames is coupled to the front drivers. This, it will be seen, is a similar arrangement o that on the James Toleman.
It is possible that the English designers are being driven to the use of four cylinders in their endeavor to ncrease the power of their locomotives. The height of the bridges and the width of tunnels in that country is considerably less than here. The track clearance diagram for an English road limits the width of the locomotive to about $81 / 2$ feet and the height to about 13 feet, as against 10 feet and $151 / 2$ feet in this country Hence outside cylinders of more than a certain diamete cannot be used and the diameter of the inside cylinder is, of course, restricted by the clearance between th rames. The four-cylinder locomotive opens up some escape from these restrictions, although, if the cylinder capacity be enlarged. it will always be a problem to find space for the bigger boiler which will be necessary.

bILL TO INCREASE THE PATENT OFFICE FORCE

Notwithstanding the great interest in and the teady stream of appropriations now being made for nilitary and naval purposes, it is to be earnestly hoped that a bill pending in both the Senate and House o Representatives for the allotment of a very modest ad ditional sum for the needs of the Patent Office will not be lost sight of. In no other department of the govern ment is it expected that the service shall be crippled or the expenses of properly conducting the business be limited by the additions we are now making to the army and navy for coast defense and possible foreign contingencies, and it would seem ridiculous, if the subject were not really so serious to all inventors, to bring up any such idea of false economy in opposition to the proposed measure
The bill presented in both branches of Congress by Mr. Platt, of the Senate Committee on Patents. S. 4168, and Mr. Hicks, of the corresponding House committee, H R. 7082, provides for the employment of an additiona Patent Office force involving an expenditure of $\$ 62,880$ a year, which, it is pointed out, is only a small proportion of the excess of fees over expenditures, in accounting for the moneys annually paid into the government by in ventors, manufacturers and owners of patents. To il ustrate the particuiarity with which the bill has been rawn and the caution exercised that there shall be no oom for extravagance on the part of the Patent Office it is especially stated that the whole number of addi
tional employés shall not exceed four principal examiners, four first assistant examiners, four second assistant examiners, eight third assistant examiners, eignt fourth assistant examiners, four first-class clerks, four copyists, six laborers, six assistant messengers and six messenger boys. It will be admitted, we think, that the business of the Patent Office has been looked into with great at tention to detail when so modest an appropriation therefor is so specifically guarded. But we hope that, with such inspection of the business, it did not fail to impress itself upon the members of the Committees on Patents of both branches of Congress that the present quarters occupied by the entire force for the prosecution of their work and the keeping of the necessary records are altogether too cramped and overcrowded for the attainment of the best degree of efficiency. More room and better facilities, especially a well equipped laboratory, are quite as urgently called for as the additional force of examiners, clerks, etc.
The especial reason for bringing forward this bill at present is found, not in the well-known fact that the Patent Office has been overworked for years, and the issue of patents thereby greatly delayed, but in the need which has arisen, as a consequence of the act of March 3, 1897, for a more perfect revision and classification, by subjects matter, of all letters patent and printed publications which "constitute the field of search in the examination as to the novelty of invention for which applications for patents are or may be filed." It is now made especially the duty of the Patent Office to see that an invention for which application for a patent is made shall not be patented or described in any printed publication in any country before the invention made by the applicant, and, according to the report of Mr. Hicks, it is the intention by this appropriation to enable the Commissioner of Patents "to make examinations in a manner so thorough and complete as to insure the issuance of patents only for such inventions as are unquestionably new ; so that the patent when issued shall be an affirmative statement, certified to under the seal of the Patent Office, that the invention covered thereby is new, and has not been described in any patent or printed publication." It will be seen, therefore, that the design is to enable the Patent Office to make competent examinations of the whole field of invention-embracing more than a million issued patents and a vast accumulation of technical publications-the effort to do which is already constituting a great drag on the work of the office, which is now from two to seven months in arrears, and it being evident that "the office is strug gling with a load much too heavy for it to carry." The Commissioner expects that, with the additional appropriation, "the income of the office will be greatly increased by the more rapid and thorough disposal of the business and the increased number of applications which will be filed when it is assured that action upon them will be prompt and thorough."

THE FRUITS OF CIVIL SERVICE REFORM

Civil service reform has now been on its trial for a period of about fifteen years, and each succeeding year has given stronger proof of its value in the practical results which have been achieved. In its recent annual report the Civil Service Commission points out that the merit system, as compared with the patronage system, is both more economical and more efficient. This is conclusively shown in a comparison of the few changes in employés under the merit system, as compared with the many removals under the patronage system. Dur ing five years preceding the classification of the New York Custom House there was an average of 275 removals per year, whereas during the past two years the removals averaged only 50 per year and the resignations 30 per year. The figures for the civil service of the whole country are even more conclusive, for 75 per cent of
those holding unclassified positions were removed, while in the classified competitive service only 85 re signed. During the fifteen years of civil service reform the positions which are politically controlled have increased 37 per cent in number and 43 per cent in cost, while the number of classified positions not subject to such control has remained the same. The economy of the merit system is further illustrated by the fact that the extension of the civil service rules in May of last year, by which a large number of hitherto unclassified positions were brought under the merit system, led to the abclishing of a number of positions which were found to be quite unnecessary.
In spite of the objection which has been urged agains the merit system, on the ground that it renders employes too independent and encouraged carelessness in the performance of their duties, a rule was approved by the President in July of last year which prohibits removals except for cause and upon written charges On the general question we think that it is very doubt ful if any serious trouble of this nature has ever arisen If it has, it is immensely outweighed by the excellent results which have been secured, and it is a fact that the new rule has met with general public approval. It is argued that while the new rule in no way interferes with the proper exercise of discipline, it prevents abuses, guards against unjust removals, and insures that per-
rood behavior
One of the strongest arguments against the political system is that the tenure of office is for only a limited number of years, and the appointments being made on strictly political considerations, the new incumbent may or may not have any qualifications for the special duties of his position. An equally serious drawback is the fact that the return of a political party to office is certain to deprive the government of the services of a greater or less number of employes who, during their service, have acquired valuable experience and efficiency. These points are dwelt upon at considerable length by the commission, who recommend that the scope of the civil service law be extended to embrace all positions to which it could be applied with advantage. It is specifically suggested that the municipal service of the District of Columbia, the staff of the Congressional Library, and the clerical force of the next census be brought under the civil service law.

Apart from the abstract principles involved in the question of removing the civil service from the field of politics, with which in the nature of things it has no proper connection, the financial aspects of the problem are of the highest importance. This is evident when we bear in mind that the total salaries paid out annually to the employes in the executive civil service amount to close upon $\$ 100,000,000$. Bearing in mind the statement in the report already referred to, that since 1882, the year of the organization of the commit tee, the unclassified positions under political control have increased in cost 43 per cent while the classified positions have remained the same, it will be seen that civil service reform has an important bearing upon the finances of the country. Of the 178,717 employes in the executive civil service shown by a census of them taken last year, about one-half were in positions which were governed by the rules of the civil service.

THE HEAVENS IN APRIL

Heaver

The mild nights of early spring are adorned with constellations less brilliant than those of winter, but not less beautiful. Orion and Taurus appear, in the first half of the night, setting amid the lingering twilight, robbed of the dazzling brightness that char acterized them when they were on the meridian in mid winter. Higher up glows Capella with a softened radiance, while the Milky Way stretches, like a verna mist, across the sky from north to southwest. Overhead, south of the zenith, is Leo, and north of the zenith the Great Dipper. Virgo is conspicuous in the east, and Arcturus, high and splendid, counterbalances Capella on the other side of the meridian, while, as Sirius is setting in the southwest, the Sirius of the north, Vega, appears rising in the northeast.

THE PLANETS.
Mercury is an evening star, and there will be no better opportunity to see it this year than that presented about the 10th of April, when it will attain its greatest elongation east of the sun, and will not set until almost two hours after sundown. At the beginning of the month Mercury is in Pisces; at theend, when it passes between the earth and the sun, in Aries
Venus also is an evening star, and gradually becom ing more conspicuous, as it moves out of the neighbor hood of the sun. It is not far west of Mercury at the opening of April, but, after the latter turns in its course and begins to move sunward on the 10th, the two planets will draw nearer together, coming into conjunction on the 18th, when Mercury will appear be tween three and four degrees north of Venus. From that time on Mercury will cease to be a conspicuous object in the sunset sky, leaving Venus to reign aione there. Notwithstanding Mr. Percival Lowell's much exploited observations and theories, there is, as yet, no good reason for not regarding Venus as the most earth like of all the planets that circulate within or without the orbit of our terraqueous ball. The observations of it to be made during the present year should be of intense interest. At the beginning of the month Venus is in Pisces and at the end in Taurus, near the Pleiades.
Mars is in the morning sky, and still too near the un for easy or satisfactory observation. It moves in the course of the month from Aquarius to the border of Pisces and Cetus
Jupiter in Virgo, near the star Eta, is a magnificent sight for all who can appreciate the wonder and beauty of celestial phenomena. Recent telescopic study has revealed the formation of new spots among its grea colored belts, and at all times it is an entrancing object for the possessor of a telescope. It rises before sunset, and, as the evening advances, moves up the eastern sky clothed with the majesty proper to the mightiest of the planets.

What is that bright star?" asked a man who neve ooks at the heavens except by chance
"The planet Jupiter."
"Why, I never saw such a star! Do they often look like that?"

Not many of them.
Possessors of telescopes may watch interesting phe nomena of Jupiter's satellites on the night of the 17 th

At 8:15 o'clock, Eastern standard time, Satellite I. will disappear, eclipsed by Jupiter's shadow. At 8:21 P. M. Satellite II. will begin to transit the disk of Jupiter, and at $9: 22$ its shadow will follow the satellite upon the disk and will occupy two and a half hours in crossing it. On the night of the 28 th an interesting observation may be made showing the effect of the position of the sun on the direction of the shadows of Jupiter's moons in relation to the line of sight between the earth and Jupiter. At $7: 34$ P. M. Satellite III. will pass upon the disk and begin a transit which will end at $10: 15$. But the shadow of the satellite will be so inclined to our line of sight that it will not appear on the disk until twenty-one minutes after the satellite itself has completed the transit.
Jupiter is very close to the celestial equator, and rosses it, moving northward on the 8th
Saturn, whose rings are now admirably placed for observation, can be seen in the east, rising at the end of the month near 9 o'clock; but it will be much better situated for evening observation in May. It is in Ophiuchus, near Scorpio.
Uranus is near a little pair of stars, the Omegas, in Scorpio, and gradually gets closer to them in the course of the month. It rises half an hour or so ahead of Sat urn. Its approach to the Omegas will be interesting to watch with a field glass or a small telescope.
Neptune, invisible to the naked eye, remains in Taurus.

THE MOON.
The moon is full on the afternoon of the 6th of April, and in last quarter on the morning of the 13th The new moon of April occurs on the afternoon of the 20th, first quarter following on the evening of the 28th. The moon is nearest the earth on the 9th and farthes from it on the 25th.
The greatest eastern libration occurs on the evening of the 3 d and the greatest western libration on the morn ing of the 17th
The moon's conjunctions with the planets occur as ollows
Jupiter on the 5th, Uranus on the 9th, Saturn on the 10th, Mars on the 17th, Mercury on the 21st, Venus on the 21st, Neptune on the 24 th.
There are several recognized meteoric showers in April, of which one, occurring on the 20th, may be worth observing. The meteors radiate from a point a few degrees west of the brilliant Vega, in the constel lation Lyra

FORTHCOMING TELEGRAPHIC TOURNAMENT.

During the electrical exposition which is to take place at Madison Square Garden during the month o May, the Board of Control will hold a Fast Sending and Receiving Tournament which is intended to sur pass any contest of the sort that has yet taken place. As at present arranged, the events include :
A message class for receivers, transmission thirty minutes, receivers to use typewriters of their selection Novice class, open to persons not having an official record; sending five minutes. Championship class, open to all, sending five minutes, with prizes for receivers. Ladies' class, free for all, sending five minutes. Two-forty-word class, open to those not having an official record of 240 words or better, sending five min utes. Two-thirty-five-word class, open to all who have not an official recorá of two-thirty-five words or better sending five minutes. Two-thirty-word class, open to all who have not an official record of two-thirty words or better, sending five minutes. Two-twenty-five-word class, open to all who have not an official record of two twenty-five words or better, sending five minutes.
The judges of the contest will include leading officials of the great telegraph companies and the editors of several leading electrical papers.
The best official records in contests of this kind were made in 1893, F. J. Kihm and F. L. Catlin sending 24 words without an error, and R. C. McCready sending 249 words with 14 errors in five minutes. An interest ing feature will be furnished by Thomas A. Edison, who will make a phonographic record of the best transmissions, thus enabling contestants to listen at any time to the record of their own work.

LAUNCH OF THE BATTLESHIPS "KEARSARGE" AND

 KENTUCKY.'On Thursday, March 24, there were launched at the Newport News shipbuilding yard the two most powerful ships of the United States navy, the "Kearsarge" and "Kentucky." They are an improvement upon the "Indiana" class, which they exceed in size, speed and fighting strength. They are of 11,525 tons displace ment and 16 knots speed, and protection is afforded by $161 / 2$ inches of steel on the belt and 15 inches on the barbettes and turrets. The main battery consists of four 13 -inch and four 8 -inch guns, and there will be fourteen 5 -inch guns in the secondary battery. The most remarkable feature of these ships is the double deck turrets, the 8 -inch guns being mounted above th 13-inch.
For a very full description and illustration of these ships the reader is referred to the Scientific American of January 29, 1898.

AN IMPROVED POWER CRANK.
The illustration represents a crank designed for use in any machine driven by a crank, from a coffee mill to a locomotive, its use giving greater leverage with out increasing the circle traveled by the crank pin or handle. In the engraving the improvement is represented as adapted for bicycle propulsion, Fig. 1 being a side view and Fig. 2 a view looking down from above, showing the different distances of the

POTTS' POWER CRANK APPLIED TO A BICYCLE.
pedals from the hub of the sprocket wheel in their downward and upward movement. The improvement has been patented by Joseph C. Potts, of Berwyn; Pa., and the applicability of the principle to any machine used to transmit power will be readily seen. Forming a part of or rigidly secured to the bearings of the sprocket wheel shaft are projecting bearings for rings which carry the cranks, and which have circular peripheries that are eccentric in respect to the axis of the shaft. The opposite cranks are so secured to the rings as to constitute rigid extensions of them, and both the rings and central shaft are preferably provided with ball bearings. To each end of the shaft is secured an arm whose outer end is connected by a link to the crank, the crank being in advance of the arm, or preceding it in the direction of rotation, whereby the pull of the crank is imparted with most directness during the time the crank is passing through the operative half of its stroke. It will be observed that the gain in leverage is obtained without the use of slotted cranks, slides or other operative elements such as would cause excessive friction. As applied to a bicycle, it will be readily seen that the increased leverage, without any increase in the travel of the foot, which is a true circle, enables the use of highergear to increase speed or results in less labor of propulsion if the gear is not increased. Where weight is carried, as in the case of delivery bicycles, this is designed to be of great advantage, and the bicycle rider will also probably appreciate any device that gives him greater speed or less exertion. In the drawing the increase in leverage and consequent power is one-seventh. By using larger eccentric rings to carry the cranks, a considerably greater in crease can be obtained.
a CASING FOR SHAFTS, COUPLINGS, ETC.
The illustration represents a protector inore especially designed for use on shafts at or near the floors or

ground, and which is arranged to form a hood or cover over collars, flanges. couplings, set screws or other projecting parts, to prevent damage to clothing or bodily injury to persons. The inrention has been patented by Henry F. M. Podeyn, of No. 980 $1 / 2$ DeKalb Avenue, Brooklyn, N. Y. Fig. 1 represents the application of the improvement, Fig. 2 veing a sectional
perspective and Fig. 3 a cross section of the protective casing in position on the shaft, parts being broken out to show the manner of attachment. The casing is sup ported from the shaft and held out of contact with it by springs, preferably arranged in pairs, the middle portions of the springs being attached to the casing and the free ends of the springs resting on the shaft, these free ends having balls thereon, to reduce friction, if desired. The casing is preferably made in sections, to be fastened together when placed in position on the shaft, by riveting or screwing together overlapping parts, or, as shown in Fig. 2, the sides of the sections have internal flanges to be engaged by a key slipped through an opening in the side of the casing.

World's Gold Production in 1897.

The Director of the United States Mint, from information now in his possession, states that there is substantial evidence that the world's output of gold for the calendar year 1897 will approximate, if it does not the calendar year 1897 will approximate, if it does not
exceed. $\$ 240,000,000$ in value, an increase of close to 20 exceed. $\$ 240,000,000$ in value, an increase of close to 20
per cent over 1896 . Of this total the United States per cent over 1896. Of this total the United States
produced approximately $\$ 61,500,000$, an increase of $\$ 8,400,000$ over 1896 ; Africa, $\$ 58,000,000$, an increase of $\$ 13,600,000$; Australasia, $\$ 51,000,000$, an increase of $\$ 6$, 800,000 ; Mexico, $\$ 10,000,000$, an increase of $\$ 1,700,000$ Canada, $\$ 7,500,000$, an increase of $\$ 4,700,000$; India $\$ 7,500,000$, an increase of $\$ 1,400,000$; Russia, $\$ 25,000,000$, an increase of $\$ 3,500,000$.
The indications for the United States, says Director Preston, are that Colorado will lead in the production of gold for 1897, as it is estimated by former Governo Grant that it will not be less than $\$ 20,000,000$. California will follow with a product of probably $\$ 19,000$,000 . With the exception of the States of the South Appalachian range, he believes that there will be an increase in every producing State and Territory of the gold products over that of 1896.

Patent Decision on Street Car Cable Grips.
In the United States Circuit Court for the Southern District of New York, on February 19, Judge Wheeler handed down an opinion in favor of Charles I. Earl gainst the Metropolitan Street Railway Company of New York City.
Earll was employed by the old Metropolitan Company as a draughtsman. He was assigned by the company to work on a grip mechanism for its use. He per fected the grip now in use on the cable cars of the Me tropolitan Company, which was patented May 22, 1894 By the terms of his agreement with the company they were to have the right to the patent without payment of royalties or other considerations. In his complaint Earll contended that the present Metropolitan Company was not the company by which he was employed, and therefore, had no right to the patents.
Judge Wheeler held that the present Metropolitan Company had acquired the Lexington Avenue and the Columbus Avenue lines since the time when Earll was employed by them, and that "a license to a company as such would not extend without its own limits to other roads after acquired from other corporation within their own limits or by new extensions. The de endant was not in existence at the time of the license and its rights under the license must be such only as it has wholly acquired by succession from those who took the license in the first place."
Judge Wheeler therefore found that the defendan had the right to use the device on the original proper ty, namely, the Broadway and Seventh Avenue road, but that it had no free license to its use on its other roads, namely, the Lexington Avenue and the Colum bus Avenue roads. Under the opinion Earll can col lect royalties on his patent for its use on the Lexington Avenue and Columbus Avenue lines.

AN IMPROVED SASH SUPPORTER.

In the accompanying illustration are represented improvements in sash-supporting devices designed to hide the cord and the opening through which it passes within the window casing, and also to facilitate the releasing of the cord from the sash and securing it when so released. The invention has been patented by Richard Bohrisch, of East Las Vegas, New Mexico, Figs. 1 and 2 representing slightly modified constructions of the pulley casing with the cord in place, Fig. 3 showing the manner of fastening the cord by its hook in the corner of the sash, and Fig. 4 being a sectional view indicating the operation of the device. The pulley casings are placed in the sides of the window casing, it being possible to employ a single pulley, although two pulleys are preferred, which permits the cord to be offset and carried within the vertical channel or casing within each side of the window casing, the cord being carried upward and over a pulley and attached to a weight which rises and falls in the channel. Near the bottom of the sash, at one edge, is a recess containing a casing in which is journaled a hook adapted to be turned by a crank or key inserted from the outside, he hook being adapted to engage a hook on the end of the cord. The hook in the sash casing has on its
hub end a lug adapted to be engaged by a dog, to hold the hook in the desired position, as shown in Fig. 3, and a finger of the dog, whereby the dog may be released as desired, projects through a slot in the casing. To free the sash from the cord, the dog may be released, or the hook may be turned back by the key or handle to the position indicated by the dotted lines, as shown in Fig. . When the cord is released from the sash, it is se cured in the pulley casing by placing the shank of the hook at its end between lugs and the body of the hook in a recess in the front and side plates of the casing. The invention presents some modifications in the de-

BOHRISCH'S SASH SUPPORTER.
tails of the pulley casing, though the construction is in all essential points the same.

CULTIVATING COTTON PLANTS.

On passing an ordinary plow between young cotton plants, in the cultivation of cotton, the cotton left standing needs more or less carefui and immediate at. ention, and to leave the plants in better shape the invention illustrated herewith provides for the attachment to the ordinary plow of an auxiliary following share or blade designed to leave the plants on a tapering or beveled ridge, while also removing grass or weeds that would interfere with chopping out surplus plants. The improvement has been patented by George D. McElwee, of Gloster, Miss. A curved supporting beam, bolted at one end to the plow beam, has a downwardly extending member with a socket adapted to receive a shank arranged for attachment to a scraper, also shown in the small figure. The scraper is curved or dished on its front face, and its upper right hand corner is curved. The shank carries a hook bolt, and the hook with the bolt are arranged for locking engagement with the front upper face of the scraper. The scraper is located at the rear of the main share of the plow, and the arrangement is such that it may readily be given vertical or side adjustment or be adjusted at any desired angle to the ground. At the upper left hand end of the scraper is an eye which receives a rod whose opposite end passes through the eye of an eyebolt in a projection or lug on the forward end of the curved supporting beam, and over this beam a bracket rack is attached to the plow handle, preventing the beam from working upward and admitting of considerable range of lateral adjustment. In operation the scraper makes

MCELWEE'S COTTON SCRAPER

a furrow at an angle to that made by the plowshare, and the inclination of the scraper is such as to throw the dirt away from the roots of the plants being cultirated, while, should the scraper strike a stone or ensage a root or other obstruction, it will yield slightly to avoid breakage, the parts being readily restored to their original position.

WIRELESS TELEGRAPHY

coil is fitted with an ordinary vibrating make and nd $\begin{array}{ll}\text { tri }\end{array}$
At the present moment, when such strained relations xist between Spain and this country nothing could number of interruptions. A special Morse key, B, is the receiver, and finally reach the powder in the tube prac- placed in the primary circuit, and the condenser is G. Under the action of the waves, the particles of tical method of carrying on between distant points on land, and between ships at sea, without any prearranged connection of any kind between the two points. Many years ago it was found possible to transmit signals through space at a very short range by means of electrical vibrations, but not until the brations, but not until the spring of last year had anything of much practica value been accomplished in this direction, with the exception, perhaps, of the method of telegraphing from moving trains which was patented in this country in 1881, and used for a limited period on short sections of two of our eastern railroads. During last year Guglielmo Marconi, year Guglielmo Marcon, an Italian student, devoted considerable time to the as well as at the vibrating contact. Mounted on the development of a system of wireless telegraphy, and upper part of the coil are three solid brass balls, C, the although he has made use of well known principles, he center one being stationary, and the outside ones adhas so arranged and designed his instruments that he has found it possible to transmit intelligible Morse signals to a distance of over ten miles. It has been left, however, for the American inventor to design appara

INSTRUMENTS FOR TRANSMITTING MORSE SIGNALS BY MEANS OF WIRELESS TELEGRAPHY

 sistance instantly drop down to between 7 and ohms, which great decrease in resistance permits the current from the battery, J, to pass through the cir cuit, and energize the mag nets, L, of the polarized receiving relay, which in turn operates the sounder N , using the large loca batiery, K. When th powder in the tube once coheres, it remains in the state until the tube ceives a sharp tap, when the powder instantly de coheres and its resistance rises again to an extreme ly high point. In order that Morse signals can be transmitted it is necessary of course, that the tap on the tube be automatically ccomplished. In order to secure this the decoherin magnets, D, are provided and placed in multiple with the magnets of the sounder, so that the sounder and decohering apparatus will operate simultaneously; the decohering magnet operates the vibrating hammer a shown, which it will be seen will keep constantly tap ping the tube as long as the key at the distart station is depressed, the powder refusing to decohere as lony as the waves are passing through it; but the moment that the key at the transmitting station is released

WIRELESS TELEGRAPHY-APPARATUS FOR BELL SIGNALS. this count in this country. After months of experimenting Mr. W. J. Clarke, of the United States Electrical Supply Company, of this city, has designed, and his company is placing upon the market, such a complete set of wireless telegraphy apparatus that it will in all proba bility come rapidly into use. For the information of our readers, we illustrate the various pieces of apparatus used, and also explain, with the aid of diagrams, its internal contruction and method of operation.
By reference to the diagrams it will be seen tha both the transmitting and receiving stations are shown, station A being the transmitting and stations B and C the receiving. The transmitter shown at station A consists of an induction coil, A, specially constructed so as to give the most efficient kind of spark for the purpose. The

INSTRUMENTS FOR TRANSMITTING ELECTRIC SIGNALS BY MEANS OF WIRELESS TELEGRAPHY and also by the vibrating contacts of the decohering apparatus, send out waves which affect the coherer these sparks must be almost entirely suppressed by the use of suitable condensers in the bases of the instruments. This set of apparatus is used for the transmission of Morse signals to moderate distances only, but for longer distances it is simply necessary to use a much larger and properly de signed induction onnection with coil in mitter
It is frequently desirable to dispense entirely with Morse signals, and
this is especially true on shipboard or in places where there is much noise and where a much louder signal or a visual signal is required. To meet these requirements a much less expensive set of apparatus has been designed. The transwitter is precisely the same as in the preceding case, but the polarized receiving relay, R, is much smaller and is not provided with as sensitive adjustments, it having been found that for bell signals they are not necessary. The sounder is entirely dispensed with, and is replaced by a high class vibrating bell, shown at P in the diagram of receiving station C. This bell is so arranged that it can be adjusted to work in unison with the vibrations of the decohering apparatus. The Clarke coherer relay in this case is mounted on top of a mahogany box which contains the decohering magnets, resistance which contains the decohering magnets, resistance
coils for bridging the terminals and also condenser for coils for bridging the terminals and also condenser for
suppressing the spark at the vibrating contact, as fully shown in the diagram at station C. The plugs in the cohering tube, G, are provided with the same adjustment as in the more elaborate set. The working of the apparatus is perfect in every respect. When required, the vibrating bell, P, can be replaced by an incandescent lamp which can be readily turned on and off from the distant station. It is certainly extremely interesting to place the transmitter of this set in one room and the receiver in another and then listen to the vibrating bell ring out loudly in response to every impulse of the waves. No ground connection, however, or air plate is required for either set of apparatus when the distance between the transmitter and the receiver is comparatively short. For the benefit of those who wish to exper:ment, and perhaps endeavor to build their own appa atus, a simple coherer is provided which is shown in erspective in one of our half tone illustrations and in detail in the lower engraving. The outer binding posts of this coherer are intended to hold two light rods of metal of equal length projecting out on either side. These rods or wings are necessary when it is desired to transmit to any considerable distance without using the earth connection or air plate.

LIQUID AIR AND ITS PHENOMENA.

Renewed interest has recently been awakened in the liquefaction of air by the announcement that it can be produced in practically unlimited quantities. This result has been brought about by the development of the method of expansion, and its use in a new and in geniously devised apparatus. Credit for this is due to Mr. C. E. Tripler, of New York, who has for many years been engaged in the study of this problem.
Our first page illustration shows the appearance and arrangement of his plant. It consists of a triple air compresser, a cooler and a liquefier. The compresser is of the ordinary form, having three pumps upon one piston shaft working in a line. The first gives 60 pounds pressure; the second raises this to 750 pounds, while the third brings the air
,000 pounds per square inch.
After each compression the air flows through jack eted pipes, where it is cooled by city water. For this work about 40 horse power is employed. After the third compression the air flows through an apparatus which disposes of some of its impurities, and it passes on to the liquefier. It is this part of the apparatus which constitutes Mr. Tripler's special invention. By means of the peculiarly constructed valve, whose de tails are not made public, a portion of the compressed air is allowed to expand into a tube surrounding the tube through which the remaining air is flowing. This expanded air absorbs a large amount of heat from the air still under compression in the inner tube. The contents of the inner tube are thus cooled. In this way the air is brought below the temperature of lique faction and its pressure is very much reduced, so that upon spening the valve at the bottom of the appara tus, a stream of liquid air is received, flowing out with scarcely more force than the water from our ordi nary city service pipes. Thus the liquefaction of the air is accomplished by the "self-intensification of cold" produced by the expansion of a portion of the com pressed and cooled air, without employing any other substance to bring about this result.
In this lies the difference between the process em ployed by Wroblewski and Olzewski many years ago, in the liquefaction of various gases, and finally, in the liquefaction of air by Olzewski and Dewar.
Through the courtesy of Mr. Tripler, we are able to present a cut of the original apparatus by means of which, in January, 1890, the first liquid air was made in America, and probably in the world, by this means. It is known that the method by expansion of air under pressure has been employed both in England and Germany, but the earliest published date connected with any of these experiments is 1895 , and previous to that time, as Mr. Tripler states, his application for an English patent was on file in the English Patent Office.
Our cut of this original apparatus shows the tube through which the air under compression flowed into the spiral coil. Having traversed this coil, it rose through a tube (not seen) in the middle of the coil and
passed the valve shown at the top. The whole was surrounded by a glass tube open at the bottom. By the expansion of the escaping air the coil and the inner tube were so cooled that liquid air trickled down the pipes and dropped out at the bottom of the tube.
This most interesting piece of historical apparatus is only 12 inches long and 1_{18}^{8} inches in diameter. Its capacity was of course extremely small as compared with the great plant which will deliver from 30 to 40 gallons of liquid air per day of 10 hours, with an expenditure of from 40 to 50 horse power, and its operation must have been extremely slow, as compared with the operation of the modern plant, which will give liquid air in less than 15 minutes after the pump is started.

As fast as the liquid air is drawn from the liquefier it is placed in tin cans, packed in felt, in which it can be kept for a very long time. Cans have been sent as far as Lynn, Mass., in one direction, and Washington, D. C., in the other, and the contents were not seriously diminished by evaporation in transit. Such a can holding 3 gallons would not wholly evaporate in less than 8 to 10 hours.
Prof. Dewar invented a double walled glass bulb, in which between the walls a high vacuum is formed (see Fig. 8). In this the air will last five to six times as long as in an ordinary packed dish. Indeed, it lies practically quiet without boiling, while in an open dish (see Fig. 9) the boiling is quite violent, and very soon the walls are covered with ice frozen from the moisture of the air. This is doubtless the coldest free liquid that has ever been produced. Its boiling point at the ordinary pressure of the atmosphere is $-191^{\circ} \mathrm{C}$.

TRIPLER'S ORIGINAL APPARATUS-USED IN 1890.
An extended table of the physical constants of the "so-called" permanent gases is embodied in this article and will doubtless interest our readers. A glance at this will show that the boiling point of the air is the owest temperature thus far attained at atmospheric pressure. Only hydrogen and helium having lower boiling points, and neither of these has been liquefied up to this time in a free state, that is, at atmospheric pressure. The same statement can be made with regard to air boiling in a vacuum. This has the lowest temperature yet attained
The possession of a large quantity of a liquid at so low a temperature makes it possible to perform many experiments of a very startling and marvelous character. When a dishful of the liquid air is dipped from

Physical constants of (so-called) permanent gases.

the can, it boils so violently that drops of it are pro jected to quite a distance. This continues until the dish is cooled to the temperature of the liquid, when it becomes quiet, simmering gently. In this condition it is turbid, containing solid particles of carbonic acid and possibly ice. These may be filtered out through filter paper, and the liquid is seen to be of a delicate shade of blue, clear as water.
Since the boiling point of nitrogen is $13^{\circ} \mathrm{C}$. below that of oxygen, it follows that, in the first boiling, nit rogen is distilled from the oxygen as alcohol may be distilled from a mixture of alcohol and water through the difference between their boiling points. By this means the liquid air becomes very much richer in oxy gen. The liquid air would at first contain only 20 per cent of oxygen, but after boiling for a while the pro portion of oxygen increases to 75 per cent. If the liquid be poured upon a block of ice, it bounds off like water from a hot stove. The ice at the freezing point is $344^{\circ} \mathrm{F}$. hotter than the liquid air-a distance of 132° greater than separates boiling water from ice. We cannot comprehend it any better than we can comprehend the space which separates us from the sun. Although so cold, the hand may be dipped into the liquid or the liquid may be poured into the hand with out producing much sensation, since the heat of the hand evaporates the liquid so quickly that a layer of vapor is formed around the hand; in other words, the liquid is thrown into a spheroidal state with reference to the hand. If, however, contact does take place between the skin and the liquid air, a most serious burn results. One day, when Pictet had a burn upon his hand from fire, he also produced one accidentally by liquid air; the ordinary burn healed in ten or twelve days, but the other was open for six months.

Fig. 4 shows a copper tube 2 inches in diameter, with walls one-eighth of an inch thick. On pouring a couple of fluid ounces of liquid air into the tube, and driving a wooden plug firmly in with a hammer, it is driven out almost immediately, and with such violence that boards overhead are indented by it. About 100 cubic feet of air are compressed into one gallon of the liquid, occupying 231 cubic inches. The liquid therefore occu pies but $\overline{7} \frac{1}{8}$ of the space flled by the gas at first, and on returning to its gaseous form at atmospheric pres sure, it must expand to 748 times its volume. The enormous pressure produced in this transformation is thus apparent. It would scarcely seem to be possible to construct apparatus in which it could safely be stored and allowed to come to atmospheric tempera tures.
Fig. 3 shows the effect produced upon iron by reducing its temperature to that of liquid air. An ordinary tin dipper placed in the liquid and allowed to cool til boiling ceases becomes brittle and breaks like glass upon being struck against a table or thrown upon the floor. Copper and platinum, on the other hand, remain tough at the lowest temperatures. The tensile strength of iron would be increased very greatly by cooling.

Fig. 7 shows a dish of liquid air in which a rubber ball is floating. It will be noticed that the vapor flows over the edge of the dish, not rising in a cloud from it, as does steam, since it is much heavier than gaseous air at ordinary pressures. This vapor presents the appear ance of a cloud of steam and would be easily mistaken for it. The chill which the hand receives on being ex posed to it would, however, quickly convince one of the difference. When the rubber ball has been cooled to the temperature of the liquid, it becomes exceedingly brittle, and on being thrown against a wall flies into many pieces. A very curious effect produced upon a billiard ball or other article of ivory by cooling it to the temperature of liquid air has not been explained. On exposing it to the arc light for a few seconds and viewing it immediately in a darkened room, it shines with a brilliant green phosphorescence. It is possible that nany other substances, such as eggs and bone, may be found to possess the same property. Whisky and alco hol are frozen with little difficulty by means of this liquid. It is a curious experiment (see Fig. 12) to hold

[^1]${ }^{s}$ Regnault. Muspratt's Chemie, IV.,

${ }^{\circ}$ Olzewski. Phil. Mag., 1895 (5), 40; 202.
${ }^{7}$ Olzewski. Ann. Phys. Chem., 1896 (2), 59, 184.
Clève. Compt. Rend., 1895, 120, 1212.
Dewar.
a tube in which is liquid air in a glass of whisky, which in a few minutes becomes frozen solid. On warming the outside of the glass the solid whisky may be removed, and we have a whisky tumbler composed of whisky itself, but the whisky is in a condition suitable only for consumption in the Klondike.
A jet of carbonic acid directed into a dish floating in a glass of liquid air (see Fig. 13) is immediately frozen and forms carbonic acid snow, in the open air, which, on being placed upon a table, passes into the gaseous state without melting. A jet of steam directed into glass of the liquid air causes a violent evaporation of the air and condensation of the steam, so that a cloud of particles rolls away from the dish, but in a remarkably short time round hailstones of the size of peas will be found floating quietly in the liquid air. They have cooled from $+212^{\circ}$ to -312° Fah. in the short space of a few seconds. Consider how much heat they have given up. The heat of evaporation of water is 967° Fah. 212° more to zero: 144° given off in freezing and 312 more in falling to the temperature of liquid air; 1,636 is the grand total. Eighty degrees per second would be a moderate estimate of the rate of loss. More re
markable still is it to see the air of a room condense upon the sides of a tube in which liquid air is boiling in a vacuum. Fig. 15 shows this experiment. When the pressure gage registers about half an atmosphere, the liquid air is seen to be boiling in the tube with violence. Ice crystals from the moisture of the outside air coat the exterior of the tube; but trickling down through these crystals, and falling off to the floor, are the drops of the atmosphere of the room condensed directly at ordinary pressure into the liquid form. They disappear almost instantaneously in a cloud of vapor upon the floor, not wetting it at all-a most sin-
gular sight to see a liquid which does not wet the surgular sight to see a liquid which does not wet the sur face upon which it strikes.
A most striking experiment has been designed by Mr. Tripler, as were many of the experiments which have been already described, to show the tensile strength of frozen mercury. Fig. 10 illustrates this Into a paper dish is poured a quantity of mercury Into the ends of the dish have been inserted a pair o heavy screw eyes. If this dish is placed in a basin of liquid air, the mercury is quickly converted into a solid, since its freezing point is relatively high; 30' below zero. Now this, suspended in the manner shown, will support a heavy weight for a long time. A block an inch square in cross section will not melt under 20 to 30 minutes. Of course, anything else could be done with the frozen mercury which might be done with any other similar piece of metal ; as, for example, it migh be used to drive a nail
Possibly the most striking experiment is this: A quantity of liquid air is poured into a tea kettle, and the kettle is set over a hot fire of coals; the liquid air evaporates and shoots in streams from the spout of the kettle in a straight column to the height of 3 to 4 feet -a sight which Watt never dreamed of. While this is going on, if a glass of water is poured into the kettle if the kettle is removed from the fire, its under surfa is found to be covered with the carbon dioxide of the fire frozen solid within a couple of inches of the red hot coals.
All the experiments usually performed in illustrating combustion in oxygen may be performed with height ened effect by means of liquid oxygen, separated from the nitrogen in the manner already described. A piece of sponge, saturated with the liquid oxygen, when touched by a taper from a safe distance, explodes with violence and is blown into fine shreds (see Fig. 6).
A most beautiful experiment is shown in Fig. 5, in which a newspaper crumpled into a roll has been saturated with liquid air, and is set on fire at one end. It burns with violence, iut not so rapidly as in the liquid oxygen.
An electric light carbon may be heated to a red heat at its tip, and then plunged vertically into a deep
glass of liquid oxygen, as in Fig. 14. A most singular glass of liquid oxygen, as in Fig. 14. A most singula
combustion takes place. The heat of the carbon evap orates the oxygen in its immediate vicinity, and the car bon burns with great brilliancy and violence, forming carbon dioxide, which is largely frozen in the liquid air before it reaches the surface and falls back to the bottom of the dish, so that the combustion is main tained and its products retained within the dish.
Of course matches will be relighted, a piece of paper take fire or a cigarette burn if a spark remains in any of these, upon exposiug them to the oxygen in the glass of liquid oxygen. Fig. 2 shows the mode of igniting a steel pen or watch spring in the liquid oxygen. It is only necessary to stick the point of the steel into a match and light it, to furnish a sufficient heat to communicate the fire to the steel, when it burns with the same brilliancy as in the ordinary experiment.
Fig. 11 shows a very brilliant experiment. A large flask, 10 or 12 inches in diameter, is filled to the neck with water. Into the top of the flask liquid air is poured. This at first floats, since the specific gravity of liquid nitrogen is 0.885 ; but as the nitrogen boils away, leaving the oxygen behind, the drops of oxygen
begin to sink into the water, since its specific gravity is
$1 \cdot 124$. As these drops sink, they are partially turned into vapor, which of course tends to rise through the
water. This action communicates a rapid whirling water. This action communicates a rapid whing may be many times repeated, giving a very beautiful exhibition, since the drops of oxygen may be as large as an inch in diameter
The magnetic character of liquid oxygen can be xhibited on a large scale in the manner shown in Fig. 1. A test tube with a side tube is filled with iquid oxygen, and a cork inserted. The side tube allows free evaporation to take place. This is then suspended, as shown. by a sling. If an electromagnet be brought near the end of the tube, the tube swing oward and adheres to the pole of the magnet just as if it were a piece of iron. This is, perhaps, the first scale
The enormous force of liquid oxygen is illustrated in Figs. 16 and 17-an experiment which was tried at the Figs. 16 and 17-an experiment which was tried at the
request of the inventor of one of our best known guns. request of the inventor of one of our best known guns.
A heavy steel tube 18 inches long and of about an inch bore, open at both ends, was securely fastened in a vise. Into the middle of the tube a plug of cotton saturated with liquid oxygen was placed. This was ouched off by a taper from a safe distance. The effect drawing from the tube itself.
The practical uses and applications of liquid air have not yet been made, but doubtless the inventive world will find a place and a use for this new power. Already inquiries in this direction are somewhat nu merous. The scientific aspects of the matter are of the highest interest. By boiling liquid air in a vacuum, the lowest degree hitherto attained has been reached and men are brought the nearest they have ever been o the absolute zero. It would appear that, at the point reached, chemical action has well nigh ceased Even that most active element fluorine, whose chemi cal affinities at ordinary temperatures are uncontrolla ble, becomes comparatively inert. It has recently been cooled in oxygen boiling in a vacuum to $-210^{\circ} \mathrm{C}$. without solidifying. It became a liquid at $-187^{\circ} \mathrm{C}$. In its liquid form it had apparently no desire to attac anything excepting only substances containing hydro gen, such as turpentine and benzine. Its well known action upon glass entirely ceased. It would seem pro bable that men have reached in liquid air boiling in a hecum a temperature quite comparable with that in a faint degree something of the time when stars and sun have ceased to shine and grown cold.

The Current Supplement.

The current Supplement, No. 1161, contains many articles which will interest our readers. As promised in our issue of last week, the present number contain the full biographical notice of the late Sir Henry Bessemer, taking up in detail his various discoveries and inventions. "Tests of Bicycle Wheels" forms the sub ect of an article on a new departure in the testing o bicycles. The continuation of Judge Greeley's "Re port of the Commissioner of Patents for 1897 " is spe cially important, as it takes up the development of in dustries through patented inventions, including elec trical railway, the telephone, the bicycle industry, the ypewriter, amateur photography, cash registers, cash carriers, basic steel, aluminum, and other industries. "The Annealing of Copper" is a timely and practical article. The "Photographic Investigation of 150,000 Volt Power Discharge" is illustrated with engrav ings made from photographs taken during a disrup ive discharge at a very high voltage. "The Solution f the Flight Problem" is an interesting study in avia tion, treating of the scientific flight of birds. Among the articles of popular interest are "Bernard Paliss and his Art," "Perrault's Colonnade of the Louvre, "German New Guinea," "The Egg of the Dung Beetle," and "The Manufacture of Compressed Oxy gen" on a Commercial Scale

The Warships of the United States Navy
Two full page illustrations, showing the comparativ dimensions of the vessels of the United States Navy, with descriptive text giving full particulars as to size and armament, will be found in the Scientific American Stpplement, No. 1046. Mailed on receipt of 10 ents by the publishers, or it may be ordered through booksellers and newsdealers.

Prrography on Velvet and Plush.-The design must be bold in its outlines. and the pile inside of the pattern is singed off with the platinum needle. Care should be taken not to hold the needle vertically, so as not to burn the ground of the material. It should be held more horizontally, but not too much, else the points of the bordering fibers will be scorched. A little practice is necessary before starting at a larger work. When the above is done, brush off the hairs and lay in the colors as desired in the ground thus deepened. Bronze or gold may also be employed for this pur Bronze or gold may also be employed
pose, and looksstill better.-Die Mappe.

Sclence Note

Prof. Alexander Graham Bell has been elected presi dent of the National Geographic Society, Washington.
London's big fire has led the County Council to au horize an increase in expenditures of nearly a million dollars right away, and to add $\$ 125,000$ a year to the estimates.
The Physikalische Verein, of Frankfort on the Main, proposes to erect a memorial to the late Philipp Reis, the inventor of the telephone. The society, of which Dr. Petersen is the president, has appointed a committee to further the scheme, the carrying out of which is estimated to cost about $\$ 7,500$
Prof. David P. Todd, Director of Amherst College Observatory, Amherst, Mass., U. S. A., has nearly completed a bibliography of eclipse research to join on with Ranyard's classic work published many years ago in the Memoirs of the Royal Astronomical Society. He would be glad to receive copies of papers and titles of works and articles published since 1875.
Father Kneipp left 850,000 marks for the continuance of the various Kneipp institutions at Wörishofen.
Dr. Thomas Egleston, emeritus professor of miner alogy and metallurgy at Columbia University, has pre sented the government of France with the sum of $\$ 5,000$, in aid of the mineralogical collection of the School of Mines at Paris, from which he graduated in Scho
1860.

Russia is beginning to honor her Siberian explorers. A statue is to be erected at Chabarowsik, on the Amur of Deshnew, the Cossack who went by sea, in 1648, rom the river Kolyma to the river Anadyr, thus sail ing through Bering Strait for the first time, and prov ing that Asia was separated from America. It is pro posed, moreover, to change the name of the East Cape nto Cape Deshnew, which will probably be objected to by geographers.
Snow statues are the latest fad among artists; in vented by Pierre Roche, a French sculptor of good eputation. The statue is made of copper, and in its owest part a vessel with liquid carbonic acid is placed whose slow evaporation generates great cold. On the metallic surface a snow or hoar frost-like covering is produced in a short time from the moisture of the air which is prevented from thawing by the freezing solu tion in the interior.
The coldest inhabited country appears to be the province of Werchojansk, in Oriental Siberia, says The National Druggist. The mean altitude of the terrain is about 107 meters (about 390 feet) above the sea. A Russian savant passed one entire year in this inhospitable region and kept a daily record of the temperature, which he has recently published, and from which it appears that the daily mean of the entire year is $19.3^{\circ} \mathrm{C}$., or $2.74^{\circ} \mathrm{F}$., below zero ! The daily mean for January, 1896 , was $53^{\circ} \mathrm{C}$., or $63 \cdot 4^{\circ} \mathrm{F}$., below zero.
Dr. Colajanni, an Italian sociologist, living in Naples, has just completed a little monograph descriptive of the quarters in European cities having the largest number of inhabitants to the 1,000 square meters. In London the average to every 1,000 square meters is 190 , in Paris it is 265 , in Rome 280. In Naples there are 939 and in the Pendino quarter of that city 1,254 . Dr Colajanni makes an appeal to his government to remedy the terrible conditions of life in his native city. Living pellmell in buildings that cannot be called human habitations, lacking air, light and proper food, these Neapolitans show a harvest of death that exceeds from a quarter to a third the average mortality of the rest of Italy. Dr. Colajanni adds: "The ancient legend, 'Vide Napoli e poi morire,' is a sad truth today. For, in the magic horizons and under the azure heavens are the most active laboratories of death existing on the face of the globe."
According to Dr. Bell, in The Scottish Geographical Magazine, the forest fires of Canada are generally caused by lightning. In the great forest between Alaska and the Straits of Belleisle the portions recently burned are easily recognized by the tenderer green of their foliage from the parts which have been longer spared. The fire rushes along with the speed of a galloping horse. The branches and dead leaves on the ground burn like tinder and the flames rise to nearly 200 feet. Resinous pinewoods burn fastest. One of them extended 160 miles in ten hours. The traces of a fire remain for nearly a century. Birds and beasts are stifled or burned. Beavers and muskrats, which are amphibious, have a chance of saving their lives. After the fire a few trunks of the largest trees are left. Next spring roots begin to sprout and seeds to grow In fifteen or twenty years the soil is covered with poplars, willows, etc., which shelter young firs and other trees. In fifty years the conifers are uppermost, and in one hundred the others are dying out beneath the pinewood. A third of the forest region of Alaska has trees of fifty years old, another third trees of fifty to one hundred years, and the rest trees over one hundred years old. The fire seems to suit the Banksian pine, as it opens the pines and sets free the grains. Without fires this species would hardly reproduce itself. Such fires took place even in the Pleistocene epoch of geology.

THE NAVIES OF THE UNITED STATES AND SPAIN

 A COMPARISONwould be the controlling factor, and it is the supreme
confidence of the American public in the pluck and discipline of the crews and the skill and daring of our with Spain may even yet prove to be capable of ad- naval officers which renders it so confident of final vic justment by peaceful methods, it is likely that if hos- tory. tilities come at all they will come quickly. It is equally
tilities come at all they will come quickly. It is equally If war should come, it would be the object of Spain certain that the issues of war would be determined to war should come, it would be the object of Spain upon the sea, and a brief comparison of the fighting strength of the two navies will be just now of special interest.
Could we defeat Spain upon the high seas? It is safe to say that there is not a citi zen of this country that doubts for a moment that we could. To the lay mind the task of annihilat ing the Spanish navy appears not only certain, but easy; to the professional mind, as represented by the men who de sign and fight our ships, the task appears equally cer tain, but by no means so easy of accomplishment.
It is better to over rather than underestimate an opponent, and it is best of all to rate him at his true value ; hence we may as well admit at the out set that Spain

THE FIGHTING LINE OF THE SPANISH NAVY.
cerned, with a homorens, compact and very the war would probably becarried on in Cuban waters formidable fleet-one which, if properly handled and The almost insuperable difficulties of coal supply would bravely fought, would be a by no means unworthy op- prevent any delay in risky attempts upon our now ponent for the powerful ships of the United States $\quad \begin{aligned} & \text { well defended sea ports. The same difficulty would ren- } \\ & \text { when }\end{aligned}$ ponent for the powerful ships of the United States
navy. Each fleet would be strong where the other is weak, and taking the two fleets as they stand-swift, pleted torpedo-boat destroyers, would be dispatched to give battle to our combined fleets in the neighborhood Cuba
We will suppose that only the armored ships would be placed in the first line of battle, and for the purpose of comparison, we will suppose that all the modern armored ships of Spain would be sent over in the effort to win a decisive battle
The Spanish line could boast of only one firstclass battleship, the "Pelayo." She is a 9,900 -ton ship, of 16 knots speed, carrying two $121 / 2$ and two 11-inch guns in 11,inch steel barbettes, placed high above the water line. Sh e has a $17 \cdot 7$-inch steel belt along the whole water line, and her secondary battery ondary battery contains nine $51 / 2^{\text {inch }} \mathrm{rap}$ idfire guns. She is a good ship, but possesses the fatal defect of having no armor protection between the barbettes and the belt. On this account, high explosive shells bursting hells bursting beneath the barbettes might easily put them out of ac tion. Toothe "Pelayo', we could oppose the "Iowa," of 11,410 tons, carrying four 12 -inch guns, eight 8 -inch guns, and a secondary battery of four 6 -inch guns. She is protected by a 14 -inch belt and the main battery is protected from the turre belt, and the main battery is protected from the turret oof down to the belt with 15 inches of steel. She is thus "Pelayo," and, saving the chances of a modern sea "Pelayo," and, saving the chances of a mode
fight, should easily silence or sink the Spaniard.

Cristobal Colon."

THE FIGHTING LINE OF THE SPANISH NAVY.
heavily armored cruisers and deadly destroyers against |general engagement. The approach of the powerful| With the exception of its one first-class battleship,
mighty battleships and more lightly armored cruisersthe issue, judged independently of "the men behind the guns," would be by no means socertain as is popularly supposed. The man behind the gun, however,
general engagement." The approach of the powerful such a policy. It is more than likely that a numerous squadron, comprising all the powerful armored fighting ships of the Spanish navy and their recently com-

With the exception of its one first-class battleship,
the Spanish line of battle would consist of a magnifithe Spanish line of battle would consist of a magnifiarmored cruisers, similar in size, speed and power, and admirably adapted to act together in a concerted fleet

action. There is no nation in the world that possesses such a fleet, not even England, and the fact that the ships are all built to carry the large normal coal supply of 1,200 tons would seem to indicate that they were built for just such an emergency as now confronts them.
The most important and largest of these ships is the "Carlos V.." of 9,235 tons and 20 knots speed. He curved deck plating is $61 / 8$ inches thick, and her second ary battery is protected by a continuous belt of inches of steel. She carries two 11-inch guns disposed in two barbettes of 10 -inch steel, and a secondary bat tery of eight $5 / 2$-inch and four $3 \cdot 9$-inch rapid-fire guns. Against her we could oppose the "Brooklyn," which closely resembles her in many points. She is of 9,250 tons displacement, $21 \cdot 9 \mathrm{knots}$ speed and is protected by a steel deck 6 inches thick on the slopes, to which is added a belt of 3 -inch steel extending in the wake of the engine rooms and boilers. She carries an exceptionally heavy battery of eight 8 -inch guns, protected by $51 / 2$ and 8 inches of steel, and a secondary battery of twelve 5 -inch rapid-fire guns. Unless a lucky shell from the great 11 -inch guns of the "Carlos V." should find its way into her engine or boiler room, she should prove more than a match for the Spaniard.
Following the "Carlos V." in importance is the "Cristobal Colon," built in Italy, whose sister ship, the " Varese," the Spaniards were very anxious to pur chase from Italy. This is a most interesting ship, and it is a question whether, in spite of her smaller size6,840 tons-she is not more formidable than the "Car los V." The remarkable feature in this ship is the extensive armor protection, which is so complete as to entitle her to be called a battleshıp rather than a cruiser. A 6 -inch steel belt encircles the whole waterline. Above this is a redoubt of continuous 6 -inch steel which com pletely protects a battery of ten 6 -inch rapid-fire guns and above this is another battery of six 4.7 -inch rapid firing guns. The main battery consists of two 10 -inch armor-piercing guns in 6 -inch barbettes. The speed is the same as that of the other cruisers- 20 knots. Against this boat we could oppose the "New York," a smaller edition of the "Brooklyn." She is of 8,200 tons displacement, 21 knots speed, and is protected by a 4 inch belt and a curved deck 6 inches on the slopes. The armament consists of six 8 -inch guns and twelve 4inch rapid-fire guns, the gun positions being protected with casements and turrets of from 7 to 10 inches of steel. The superior protection and heavier secondary battery of the "Cristobal Colon" should render her a fair match for the "New York."
Following these two ships in importance is a group of six sister ships, two of which are already very familiar to the people of New York. They are the "Almirante Oquendo," the "Cardinal Cisneros," the "Cataluna," the "Princesa de Asturias," the "Infanta Maria Teresa" and the "Vizcaya." The "Maria Teresa " represented Spain at the Grant Memorial services last year and lay for some time off Riverside Drive in the Hudson River, and the "Vizcaya" visited this port immediately after the Maine disaster
Each of these six ships is of 7,000 tons displacement and 20 knots speed. They are provided with a belt of 12 -inch steel, at the top of which is a 3 inch protective deck. At each end of this belt an armored tube rises to connect with a barbette of $101 / 2$-irch steel, and in each barbette is an 11 -inch armor piercing gun. Between hese guns is a battery of $5 \cdot 5$-inch quick-firing guns Against these speedy ships we could oppose powerful first-class battleships, the "Indiana" a "Massachusetts," the armored cruiser "Texas" and four powerful monitors, the "Puritan," "Terror," "Am. phitrite" and "Miantonomoh." In point of guns and armor the advantage would be vastly in favor of the battleships and monitors, though this would be offset by the speed, handiness and ability to use the ram of the Spanish cruisers. In an artillery duel there could be little doubt of the issue. In heavy guns the seven American ships have eight 13 -inch, ten 12 -inch, twelve 10 -inch and sixteen 8 -inch, a total of 46 armor-piercing guns aganst a total of twelve 11 -inch guns on the six Spanish ships. This superiority however would be greatly offset by the murderous discharge of the secondary rapid-fire batteries of the Spaniards, which would comprise sixty $51 / 2$-inch guns, against which we could only make reply with fourteen 6 -inch and eight 4 -inch guns. The result of such a duel would be that the unarmored ends and the central secondary batteries of the "Indiana," "Massachusetts" and "Texas" would be blown away, while the armor belts of the Spanish ships would be pierced and the ships either sunk or disabled
Thus far, however, we have taken no note of two other novel and hitherto untried elements, which would at least figure prominently in such a battle, if they did not prove to be its deciding factor. We refer to the armored ram "Katahdin." of the Ameri enemy. The "Katahdin" is a vessel of 2.150 tons and 16 knots speed, whose sole duty is to ram. For this purpose she presents but little of her bulk above the water, and that which is visible is curved and armor plated with a view to deflecting the shells of the enemy. She is quick in turning, and it would be an extremely
difficult task for a warship to elude or sink her before he fatal blow was struck.
The six destroyers, "Audaz," "Osado," "Terror, "Furor," " Pluton" and "Proserpina," are the fastest and most formidable of their class. They have a speed of 30 knots and carry two discharge tubes for the deadly Whitehead torpedo. As they are unarmored, they can be easily sunk by gun fire, and for this reason they will rarely make an unsupported attack in the open. In line of battle, however, they will be certain to play a very important part. Sheltering themselves behind the advancing ships (which they can easily do, on account of their small size), they will rush out at the opportune moment and fire their torpedoes at the enemy. So greatly is the torpedo dread ed that the hostile fire is certain to be drawn awa from the battleships and concentrated on the destroyers in the effort to sink them. This diversion will be of great value to the fleet possessing a torpedo flotilla. and may easily turn the tide of battle at a critical mo ment. The moral effect which these boats will produce in a naval battle is showa in the naval war gam which weillustrated in the last issue of the Scientific american Supplement. We have nothing of the size and speed of these 400 -ton destroyers which we could send against them, unless it were the "Porter" and "Dupont," of 28 knots. Our torpedo boats would be too small to accompany a fleet on the high seas.
The possession of a numerous torpedo flotilla by Spain goes far to restore the balance which, on account of our battleships and monitors, would be strongly in our favor in a pitched battle, and it is the knowledge of this fact which renders the sailing of the flotilla for the West Indies a matter of the gravest concern to this country. The flotilla consists of six torpedo boat destroyers and six torpedo boats convoyed by a couple of small cruisers. The boats have been stripped of their guns and torpedoes and they are being nursed across the water by the larger boats, which are ready to give them all necessary assistance. The flotilla in its present condition is as helpless as a brood of ducklings, and it is no doubt the knowledge of this fact that has led Spain to hurry them across the water in time of peace. It will be noticed that in the foregoing comparison we have taken no note of protected cruisers and gunboats, for the reason that these have theoretically no proper place in a battle between armorclads. Of protected cruisers Spain has two of 5,000 tons, three of 3,090 tons and three of 1,000 tons, besides some older wood and iron ships of less value. Against these we could at present oppose on the Atlantic two protected cruisers of 7,500 tons, one of 4,000 tons, one of 3,600 tons, one of 3,200 tons, three of 1,750 tons and sixteen of from 1,000 to 1,500 tons.
In torpedo gunboats and craft of under 1,000 tons displacement Spain is stronger. She has fourteen torpedo gunboats of from 500 to 850 tons displacement and 19 to $221 / 2$ knots speed, and over ninety small gunboats, many of which, however, are obsolete. We have three gunboats of less than 1,000 tons displaceits, among which is included the "Vesuvius," with its pneumatic guns for the discharge of dynamite shells. Should the war be prolonged, our navy would rapidly increase in strength. The "Oregon" would reach eastern waters, and in a few months we should have the powerful battleships "Kentucky" and "Kearsarge" in commission, to be followed later by that celebrated trio, the "Alabama," "Wisconsin" and "Illinois." Our torpedo fleet would grow apace, and it would not be long before we should have an overwhelming superiority upon the seas. We are indebted to La Ilustracion for our illustration of the Spanish fleet.

Government Alaska Literature

We have received from the United States Geological Survey three excellent works regarding the gold fields of Alaska and the Yukon district. The first is intended for general distribution. It is entitled "A Map of Alaska, Showing Gold-Bearing Rocks, with Descriptive Text Containing Sketches of the Geography and Geology of the Gold Deposits and Routes to the Gold Field." The map is large (57 miles to the inch) and clearly colored, showing all the gold districts, and the various routes to all parts of Alaska are clearly indicat ed. This important pamphlet is written by S. F Emmons, aided by W. H. Dall and F. C. Schrader. It will prove of great use to prospectors and miners who might visit Alaska. There are 40,000 copies printed The other two books are not of as great interest to the prospector but are important to those who are interest-
ed in geology and to the mining expert. The "Geo logy of the Yukon District, Alaska," by Josiah Edward Spurr, with an introductory chapter on the history and condition of the district to 1897, by Harold Beach Goodrich, an abstract from the eighteenth annual re port of the Survey. It is a quarto of 392 pages and is illustrated by 51 plates in addition to maps. The third book is "The Reconnaissance of the Gold Fields of Southern Alaska, with Some Notes on General Geo logy," by George F. Becker, which is also an abstract from the eighteenth annual report of the Survey. It is illustrated by maps and excellent half tone engravings. The books have been published most opportunely.
the total solar eclipse, january 22, 1898. There could hardly be a greater difference than be-解 the former case ran through a vast extent of . These which offered, however, but few suitable sites. Thes were clustered together at two or three main points, and in almost every case the intending observers were
disappointed of the spectacle which they had come to disappointed of the spectacle which they had come to
see. In 1898 the eclipse track lay chiefly in one single see. In 1898 the eclipse track lay chiefly in one single
country which offered a large number of easily accessicountry which offered a large number of easily accessi
ble sites, nearly all of which were occupied, and all were ble sites, nearly all of which were occupied, and all were
favored with the most perfect weather. Up to the favored with the most perfect weather. Up to the regards the number of observers, the character of their equipment, or the uncheckered favor which they experienced from the weather.

A victory all along the line " is what we have to record. The full significance of that victory, and what results may accrue from it, it will take us many months to learn.
As a sensation, the eclipse did not fulfill the popular descriptions. Whether, as has been asserted, the corona was unusually large and bright, or, from the special atmospheric conditions prevailing in India at the time, the darkness was much less than is usual in any eclipse of two minutes' duration, the general effects in color, light and the appearance of the landscape were very much those which were brought about nore slowly some four and a half hours later, some thirty-five or forty minutes after the sun had set. At any rate, the light at mid-totality was certainly greater, considerably greater, than we ordinarily get at night at the full of the moon.
The fall of temperature was, however, considerable, amounting to some twelve degrees; and it was noticed by some of those who had taken part in the Norway expedition of 1896 that, whereas on that occasion the darkness of the eclipse was felt to be a sensible relief rom the unceasing sunlight, so now the coolness of the eclipse was a relief from the too powerful heat of the sun.
Consistently with the small amount of darkness of the eclipse, the approach of the shadow at the beginning of totality was less marked than usual, and in
some places, though watched for, escaped notice. The some places, though watched for, escaped notice. The only record that has yet reached me of its approach having been distinctly observed is from Dr. Robertson, of Nagpur. The shadow bands were also looked for at some stations without success, though they were caught at both Jeur and Nagpur. At the latter place Miss Henderson, M.D., describes them as having been faint dusky ripples some two inches in breadth, and separated from each other by about the same interval, and in appearance and speed of motion resembling the ripples seen on the ceiling of a cabin in an ocean steamer as they are deflected through the porthole from the water outside.
Of the stars visible during the eclipse, one caught every attention, and was, indeed, seen after totality had passed. This was the planet Venus, some six degrees southwest of the sun at the time. Mars, though very small and further from the sun, was also glimpsed and some two or three other stars were noted.
The shape of the corona recalled at once that of 1896, and with it the two earlier years, 1868 and 1886. which it had resembled. To the southwest a long ray nearly in the solar equator was easily traceable for two, if not three, solar dianeters from the dark iimb of the moon. On the east side a pair of broader and less ex tended streamers formed a single connected structure in which the characteristic coronal curves were repeatedly seen.
Bearing in mind that these four years all fell at the time of small but not of minimum sunspot activity, it appears clear that we have here brought out a third coronal type as distinct and definite, perhaps even more so than those which have been already recognized as appropriate to the times of actual maximum and minimum ; and it may be hoped that we have now material enough to enable us to trace the course of change which the corona under,
It may be opportune here to correct a widespread misapprehension, that minimum coronæ are small and faint except for the two great equatorial rays. The reverse would seem to be the case, except in the imme diate neighborhood of the sun's pole. The corona, for instance, of 1878, so far from being small and faint was unusually large and bright : and the present one though we have not yet reached the actual minimum, possesses the same characteristics.
The feathery structure round the solar poles, which was so plainly seen in the eclipse of 1878, and which has been recognized more or less clearly at so many eclipses since-especially at or near the time of mini mum-was very apparent on the present occasion.
The photographs of the corona have been unusually numerous, and have been taken on every variety of scale, from a diameter of a single millimeter with hand camera, up to one a hundred times as great. The latter were obtained at three stations: by the Astrono mer Royal at Sahdol, with an aperture of nine inche and an enlarging lens; by Dr. Copeland, at Gogra, nea

Nagpur ; and by Prof. W. W. Campbell, at Jeur, with telescopes of about forty feet focal length. Next in order to these giant photographs come the standard instruments of the Joint Eclipse Committee, with their twin cameras giving images of an inch and a half and of six-tenths of an inch. These were employed by Prof. Turner at Sahdol and Captain Hills at Pulgaon. The cameras taking photographs of one inch in diameter and smaller were much too numerous to recount but special note should be made of Prof. Burckhal ter's device for obtaining both the inner and oute corona on the same plate by means of a revolving screen worked by a spindle passing through a hole in the center of the plate, which diminished the exposure given to the bright central regions of the corona so as to bring it more in accord with the faint light of the outer extensions
At the extreme ends of the line of stations a nove experiment in coronal photography was attempted. At Buxar, on the Ganges, and at Viziadrug, on the coast, a kinematograph was employed so as to obtain continuous series of photographs of the progress of the eclipse. The former instrument was supplied by Mr Nevil Maskelyne, and was worked by the Rev. J.
Bacon, the astronomer in charge of one of the two parties organized by the British Astronomical As sociation, and the other was in the hands of Lord Graham.
Of direct visual spectroscopic observations there were few. Mr. Newall and myself endeavored to trace the distribution of coronium-that is, of the substance which shows its presence in the 1474 K line; but the line was faint, and it could only be ascertained that it showed a general conformity to the shape of the brighter part of the inner coro na, without its being possible to ascertain whether it corresponded in minuteness of structural detail. No rifts were detected in it.
The photographs of the spectrum claim the highest interest, and these were of unprecedented number and value. Capt. Hills, at Pulgaon, with two great slit spectroscopes, obtained records of the "flash," both at commencement and end of totality, which give a complete history of the spectroscopic changes seen in the various strata of the sun, from its ordinary spectrum up to that of the prominences at Viziadrug on the coast. Mr. Fowler and Dr. Lockyer were equally successful with prismatic cameras of six inches and nine inches aperture, while smaller spectrographs of extreme
beauty, and ranging from C in the red far into th ltra-violet, were secured by Mr. Evershed, at Talni. The examination and interpretation of these photo graphs will be the work, not of days and weeks, but of months, and possibly years; but we may confidently look to them for a complete answer to many questions which are engaging the attention of solar physicists at the present time, and particularly for information as to the exact locale of the absorbing vapors which give rise to the Fraunhofer lines. Sir Norman Lockyer's theories, in particular of dissociation in solar and stel ar atmospheres, will be put to the severest test, and our knowledge of solar mechanism can hardly fail to receive a great advance
One inquiry which it was hoped the present eclipse would advance has failed to meet with success. $\mathbf{M r}$ Newall was endeavoring to ascertain if the spectrum of the corona, as obtained from the two opposite limbs of the sun, gave any evidence of relative motion in the line of sight due to rotation. It will be remembered that in 1893 M . Deslandres came to the conclusion that the corona rotated in essentially the same period as the photosphere. Mr. Newall had arranged an exceedingly beautiful instrument for this purpose-a spectro-

THE SUN'S CORONA, TOTAL ECLIPSE, JANUARY 22, 1898.
scope, the collimator view telescope of which was parallel to the polar axis. The spectroscope was also provided with a double slit, the one slit tangential to one limb and the second to the other limb; the one slit stretching from the sun's equator northward, the other rom the opposite end of the equator southward. The experiment, which abundantly deserved to succeed, was, however, frustrated by the faintness of the coronal pectrum
Of other observations it is scarcely possible to speak as yet. It should, however, be added that the polariscope, which has been almost forgotten in eclipse work for the last fourteen or fifteen years, was very successfully used, both at Sahdol and at Pulgaon, and the clearest indications were secured of strong radial polarization.
Such is a very brief outline of the principal results (so far as we yet know them) of this the most completely successful eclipse on record. The above article was contributed by E. Walter Maunder, F.R.A.S., to Knowledge.

The Correspondence Schools, Car.
A handsome car for the International Correspondence Schools of Scranton, Pa., has just been built at Wilmington, Del., and will shortly be sent on a tour through the manufacturing cities of the country. The length of the body of the car is fifty feet and the width is nine feet eight inches over the sills. The interior is divided into compartments as follows: A reception room eighteen feet long, furnished in quartered oak and fitted with bookcases, center table, wicker chairs, couch, etc. There are four sleeping sections of upper and lower berths, eight in all. The seats forming the lower berths are covered with plush and fitted with head rests. Tables are provided, to fit between the seats, for holding books, writing materials, etc. At the extreme end of the car there is a toilet salon. On the panels between the windows there are suitable inscriptions accompanying the names of the various inventors and scientists, such as John A. Roebling, George H. Corliss, George Westinghouse, Jr., Sir Henry Bessemer, Abram S. Hewitt, Thomas A. Edison, Michael Faraday, etc. It is proposed to locate the car for a time in the immediate vicinity of large manufacturing establishments, thus affording those interested a practical demonstration of the methods in which the work of the schools is carried on.

RECENTLY PATENTED INVENTIONS.

 Engineering.Rotary Engine. - Frank A. Boyd, New Rochelle, N. Y. This invention provides an en gine of comparatively simple construction which is designed to be of high efficiency and not liable to derangement of working parts in service. In a suitable casing,
the driving shaft carries a bucket wheel, on the sides of which and near the periphery are track rings having V grooves in their outer edges, while in an adjustable concave-faced bracket block supported from the casing, there being side plates on the block, are induction and exhaust passages having communication with the buckpassages.

Rallway Appliances.
Car Door Fastener.-Reynolds H. Johnson, Long Island, Kansas To hold a sliding car door in place and prevent its rocking or jarring back, the rear edge, pivoted bolts engaging the adjacent door jamb having bifurcated lever arms, a bar connecting the arms of the bolts, and the bar sliding in a mortised keeper. A drop key engages the keeper to hold the connecting bar at either end of its throw, and is provided with a lateral spur to prevent accidental displacement. All parts liable to be displaced and lost are dispensed with, and the arrangement is such that the seals cannot be
tampered with nor the bolts disturbed without its bemg readily discovered from the outside of the car.

Railroad Switch and Frog.-Charles E. Harris, Ellwood City, Pa. This unvention provides a peculiar construction of the rails by which objects which odge between the fixed and movable rails will be raised com of the groove by the operation of the switch. In the has a horizontal recess opening to one side and extending beneath the tread portion and the other rail has a side projecting flange fitting and adapted to enter the recess, one of the raile having the opposed surface of that one of
part ab
rail.

Dust Guard and Axle Wiper.James S. Patten. Baltimore. Md. The dust guard proper,
according to this invention, is composed of two metallic according to this invention, is composed of two metallic members, preferably flexible cast brass, and helical springs arranged in inclosing keepers which are composed
of integral semicrrcular portions formed on one member, and an integral face on the other member, the portions being opposite and adapted to slide on each other, the upper member having lateral lugs which form supports for the springs and slide with them into the keepers or pockets when the guard is adjusted to an axle. An integral lateral flange has angular niping portions that are flush with the concave edge, while intermediate bridging portions se
Railway Track Tie and Fastening.
-William a. Detwiler, Cincinnati, o. This invention re-
lates to means for quickly locking rails to metallic ties,
the fastening being easily removed, if desired. The tie may be of cast or sheet metal, with a concave body and pendent integral angular flanges having in thèir horizontal portion an opening with convergent or beveled sides, while rail clamps fitting loosely in the top openings bave claws to engage the tie, wedges holding
both the clamp and tie in locked position. A firm and cheap fastening is thus provided, which can be applied with great rapidity.
Uncoupling Lever. - Robert H. Munger, Quimby, Ia. To facilitate lifting the coupling pins vides a pin lifter of the Janney type, this invention provides a pin lifter comprising a two-part rock sbaft sup-
ported to rock on the end of the car, one part of the shaft having a crank arm loosely shackled to the coup. ling pin, and the other part of the shaft being flattened at the outer end and provided with a handle lever, a couphng box loosely connecting the two sections of an arm on the cranked sections of the rock shaft with a pin-lifting device on the roof of the car. Means are provided for temporarily maintaining the vertically slidable coupling pin in elevated position, to be a,
dropped by the impact of two meeting cars.

Mechanical.

Turbine Water Wheel. - Samuel and Artbur C. Martin, Muddy Creek Forks, Pa. The
hub of this wheel is carried on a vertical shaft, and is curved inwardly from the top and bottom, the blades consisting of metallic plates running througbout the having an extension which forms the bucket, the bnckets being below the plate where the water is introduced to the wheel at the upper side of a horizontal platform, here standing on the plate a series of tangential partitions forming sluices through which the water passes. With the special form of blade employed, the water re ceived on its upper curved portion is forced downward, so that water from one sluice cannot come in con-
tact with the water from the next sluice and destroy its tact with
force.

Check Row for Planters.-Firman S. Breckenridge, Caledonia, Mo. A simple and inexpensive attachment is provided by this invention, the
markers being adjustable so that the rows may be checked with great accuracy at any desired distance apart. The attachment comprises a marking wheel having a hub made in sections capable of adjustment one upon the other, there being locking devices for the sections and arms projected from one of them, points being adjustable upon the arms. The device can be ap-
plied to any two-horse corn planter, and to those having revolving seed drops as well as those having reciprocat ing slides.
Note.-Copies of any of the above patents will be
furnished by Munn \& Co. for 10 cents each. Please send name of the patentee, title of invention, and date
of this paper. of this paper.

charge for insertion under this head is One Dollar a
line for each insertion about eight words to a line line for each insertion; about eiaht words to a line.
Advertisements must be received at publication office as early as Thurs
ing week's issue.

Marine Iron Works. Chicago. Catalogue free.

" U. S." Metal Polish. Indianapolis. Samples free Emery, etc., etc. The Tanite Co., Stroudsburg, Pa. Gasoline Brazing Forge, Turner Brass Works. Chicago Yankee Notions. Waterbury Button Co.. Waterb's, Ct. Power Hammers. Jenkins \& Lingle, Bellefonte, Pa. Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O . SchwaabStamp \& Seal Co., Milwaukee. Send for cat'g. For Sale-Light Manufacturing Business. S. F. Newell, P. O. Box 449. Milwaukee, Wis.
FERRACUTE Machine Co., Bridgeton, N. J. Full ine of Presses, Dies and other Sheet Metal Machinery Improved Bicycle Machinery of every description.
The Garvin Machine Co., Spring and Varick Sts,. N. y. Gasoline Engines and Launches. Free catalogue.
The celebrated "Hornsby-Akroyd" Patent Safety oil Engine is built by the De La Vergne Refrigerating Machine Company. Foot of East 13sth Street, New York. The best book for electricians and beginners in elecricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$. Munn \& Co , publishers, 361 Broadway, N. Y. - Send for and other Books for sale by Munn \& Co., 361 Broadway, New York. Free on application.

NEW BOOKS, ETC

Library of the World's Best Literature. Thirty volumes. Charles Dudley Warner, Editor, and HamilRunkle, George H. Warner, Associate
Editors. New York: R. S. Peale, J. A. Hill.

It is impossible in any single review to give an adequate idea of the marvelous scope of this work, and the high plane on which it has been brought out, from both a literary and artistic point of view. The work has been
in progress of publication for the past two years, snd in progress of publication for the past two years, snd
the appearance of each successive volume has been a the appearance of each successive volume has been a
continual surprise, even to those who had formed the highest anticipations of its excellence. Its primary purpose has been the interpretation of literature in essays by scholars and writers competent to speak with the highest authority, such essays embodying critical, interpretative, biographical and listorical comments upon authors and their works. From a long list of eminent
contributors we note a few only of the great names contributors we note a few only of the grent names
which appear: Andrew
D. White, ex-president of Cornell University; William Dean Howells, the distinguished novelist and critic ; Ferdinand Brunetiere, the famous French critic ; Prof. Lounsbury, of Yale Uni-
famorsity ; Dr. Lyman Abbott, the successor of Henry

Ward Beecher in Plymouth Church, Brooklyn; Prof.
Charles Eliot Norton, of Harvard Unive Charles Eliot Norton, of Harvard University ; Dr.
Richard Garnett, of the British Museum ; Dr. R. H Hutton, editor of The London Spectator ; Dr. William T Harris, chief of the National Bureau of Education, Washington, D. C.; Prof. John Bach McMaster, the
great living historian ; Dean Farrar, Dr. Henry Van great living historian; Dean Farrar, Dr. Henry Van
Dyke, Julian Hawthorne, Col. T. W. Higginson, with Dyke, Juian Hawthorne, Col. T. W. Higginson, with
others which might be added-enough to fill a column in the enumeration of authors alone.
The Library is embellished with more than a thousand full page and vignette portraits of the highest order, en abling the reader to obtain an idea of the appearance of a host of literary celebrities. many of the portraits having acknowledged masterpieces of art
The work is made for botk practical use and literary enjoyment, being a library to be read as well as a library of reference. It affords a general view of literature from remote antiquity to the present time. and contains the brightest and best reading from the brightest and best writers, speakers and thinkers of ali ages, nations and peri-
ods. It treats of every important literary subject which the minds of men have considered for the past thirty centuries, and presents specimens of everyclase literary quality-poetry, prose, history, biography, etc. As one of the most important characteristics of the century has been the spread of scientific knowledge, the literary work of Huxley, Tyndall, Pasteur and Agassiz receives full attention, especially in the departments of Astronomy,
Geology, Geography; Navigation, Botany and Zoology, Geology, Geography, Navigation, Botany and Zoology,
the great thinkers and philosophers, from Socrates, Plato and Aristotle to Galileo, Spinoza and Darwin, being re presented by selections that are entertaining as well as instructive.
The last volume of this great work is now about to be issued, and it is reported that the sales thus far have reach

What is Life? or, Where Are We? What Are We? Whence Did We Come? And Whither Do We Go? By Frederick Hovenden. With cuts \& Hall, Limited. 1897 . Pp. 290 .
his work is based on the author's previous book en vitled "What is Heat?" Indeed, it is a sequel to that book is the suppression and prevention of human suffering, so that institutions for the mitigation of human suffermg may not be required to the present extent. The writer says that the facts in the text may be regarded as nd the deductions as up to date. The co-ordnation Observations Upon the Herring AND HERRING FISHERIES OF THE Northeast Coast. With Special Reference to the Vicinity of
Passamaquoddy Bay. By H. F. Moore, Ph.D., Assistant United States Fish Commissioner. Washington Commission Report for 1896. 1897. Commission
Appendix 9.
Pp. 387 to 442.

The Great Warner Library Cómpleted.

THE completione Special Iaroductory Club Price To Be Advanced. 1 the World's Best Literature is accomplished.
It is indeed the literary event of the present gen- That such marvelous survey plete sets may be delivered to the thousands of people who have taken advantage of the introductory price as offered by Harper's Weekly Club, is the printing of the last volume.
When this volume comes from the press, as it undoubtedly will some time during the present are just now offered by Harper's Weekly Club, will be withdrawn, and the regular subscription canvas at full prices will be inaugurated.
We have no hesitation in advising our readers to take advantage of the present opportunity, as we believe the Warner Library is a work of such
 of the world, with exposition and criticismature foremost living men of letters, can be had for a sum
less than the cost of the simplest collection of single volumes, makes this a Library which, from the standpoint of economy alone, no lover of books can afford to be without
A postal card sent to Harper's Weekly Club, 91 regarding the favorable terms upon which it is being offered (during publication) to Club members, and which will positively be withdrawn as In cas last volume comes from the press. In calling the attention of our readers to this
passing opportunity, we believe we are doing them special favor.

ROCK DRILLS
AIR COMPRESSORS
RAND DRILL CO.

WOODEN TANKS

To Inventors!

$T H E$ AMERICAN ORDNANCE COMPANY offers special facilities to 1 Inventors desiring the development of their patented or unpatented inventions. A department has been organized especially for the development of inventions in SPECIAL or AUTOMATIC MACHINES, MILITARY or SPORTING WEAPONS or AMMUNITION. Address inquiries to

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

MARCH 22, 1898,
AND EACH BEARING THAT DATE.
LSee note at end of list about copies of these patents.

-

Alarm gage. electrical, J. Hackney.

Block. See Thrust block.
Bower, rotary, W. Green.
Blowpipe, C. King

veneering with cellulodid covers and corners
of, A. C. Hafely et al.i.

Box. see Car spit box, Electric contact box.
Fruit box. Watch bor. securing in position
Boxes etc., mache for bottoms of pasteboard, M. Heinemann....... 600,

Bon burner.
Battoner, cuff; A. v. Groupe
Cab, hand

Car brake, electric motor, Haye
Car couping, J. Bryan......
Car couping, Reter \& Moors.
Car coupling W. T. Wilson.

Car fender, J. F. Eisenhower...
Car fender
C.

Car, street rail way, Gares $\&$ Landin............
Car ventilator and dust excluder, railway paisse
ger, G. W. Garrett.
Cars, pheumatic controiling system for electr

Carier, See Hay carrier.
Cartride e oading machine, H. P. Hall..
Case. See Folding case. Gear case.
Case. Se Folding case Gear case.
Cash register, W. .

Clamp, see Broom clamp. Scaifold clamp.
Clasp ratastening deviee, A. R. Pettit.....

Coat. Arnots, etc., locked holder for, w. $\dddot{\text {. Fow }}$

Conduit, L. Ska
Connection, W.
: Burneti...
on distribu ter and feeder, seed, C. M.S.Siming

Current motor, alternating. W. La
Curtain operator J. Akerr et ai.....
Custain pole holder. M. H. Marcus.
Cuspidor tonks, G. Prouty..........

Dental matrix retainer. J. M. Strou
Ditching machne, W. H. scott...
Door sadde, R.Wilson.
Drier. See Rotary drier
Drill. See Rock drill.
Drier. See Rotary drier.
Drill See Rock diril.
Dye, bueblack mixed
Ejectricisazo, M. Boniger.

Engine See Cardinn engmith Diontial enpine. Gas
engine. Internal combustion or detonating
engine. Internal combustion or detonating
entine. Rotary. engine. Rotary steam engine.
Enseme engin.
Engine GE W. Whinne
Steam engine.
Engine,
Enginetender.
Whiney
Enginete. der, traction, Ferguson \& Holimen....
Extracter. See Stump extractor.
Feeding grain to horses, device for, Morgan
Fence achine wire, J. A Watson..

Continued on page z211
 Star \star Foot powe
Screw... Automatic Automatic
Cross feed 9 and 11 -inch S wing.
w and Original Feature Send for Catalogue \mathbf{B}.

A Coillege Education for 7 Cents a Day

 barnes'

New Friction Disk Drill.

WOODWORKING MACHINERYにS

APOLLO BEST BLOOM differs from other makes in being of uniform softness and workable. Takes less time to do a job. Return to your jobber at his expense any sheet, or part of a sheet, that develo

Apollo Iron and Steel Company,

[^0]:

[^1]: ${ }_{2}$ Andrews. Deschanel Nat. Phil., II., 352.
 左 Comptes Rendus, 1895, 120, 1413.

