
a Weekly journal 0f practical information, art, science, mechanics, Chemistiy, and manufactules.

	NEW YORK, FEBRUARY 12, 1898.	

\$rientific American.

ESTABLISHED 1845
MUNN \& CO., - - - Editors and Proprietors.
published weekly at
No. 36I BROADWAY, - - NEW YORK.

TERMS FOR THE SCIENTIFIC AMEIRICAN. Estabished 184.).)
One copy, one year. for the U.S., Canada or Mexico.................\$3.01
One copy, six mont hs, for the U. S., Canada or Mexico............... 10 One copy. one year.to any foreign country,postage prepaid. \&J J lis....... 4. 4.01
Remit by postal or express money order, or by bank draft or check MUNN \& CO., 361 Broadway, corner Franklin Street, New York.

The Scientific American Supplemen (Established 1876)

Building Edinon of Scientific American. Established 1585.)

Export Edition of the Scientifle American Established 187()

竍t

NEW YORK, SATURDAY, FEBRUARY $12,1898$.

TABLE OF CONTENTS OF
Scientific American Supplement NO. 1154.

For the Week Ending February 12, 1898. Price 10 cents. For sale by all newsdealers.

 I. CHEMISTRY.-Modern Alchemy.-By W. E. ORD

ENTOMOIOGY.-Commercial value of Scale Insects.
II. EXPOOITIIONS-Trans.Misisissipi and International Exposi-

HI. FINE ARTS.-The U Unfished Statue of St. Matthew by Michel-

X. MEDICINEAND HYGIENE.-HOW Much Sleep Do We Need?
. MINING. - Minor Minerals and Metals in 1897
MISCELLANEOUS
Engineerning Notes
Siesecter
Sieter

XVI. STEAM ENGINEERING.-CCOMpound Portable Engine.- -1 i. fillustrations...

THE LIQUEFACTION OF AIR.*

If Baron Munchausen had recorded that he once came upon a people who were in the habit of changing air into the liquid state and carrying it around in ves sels, the statement would have been regarded as a par ticularly happy effort of that accomplished artist. An assertion so at variance with all human experienc would have failed to command belief, even if indorsed by the testimony of less impeachable witnesses than the observant baron.
We are speaking of a bygone age. To-day the pub lic knows better than to deny a statement offhand mere ly because it contradicts or does not agree with it common experience. The loophole of escape from un was by assertion of flat disbelief or ascription to witchcraft or the devil. To day, at the first announcement of the wonderful, the public neither believes nor disof the wonderful, the public neither believes nor dis-
believes; for the incredibly rapid march of science and discovery has taught the world that the marvels and impossibilities of yesterday may easily become the commonplace facts of to-day. But two brief years ago it was whispered from across the ocean that a certain German professor had succeeded in passing light through so-called opaque bodies-wood, leather, the flesh-and the technical press announced the fact with a prefatory "it is said," "a contemporary reports," etc., neither affirming nor caring to deny a statement apparently so preposterous. To-day the fluoroscope is a toy that has lostits charm, and an X-ray equipment is a necessary part of the surgeon's outfit
The liquefaction of air is another of those feats of ex perimental science which. having their birth in th laboratory, ultimately graduate into the broader field of the industrial arts, and lose all their wonder as they become useful and familiar to the public. It must not be supposed, however, that because it has only now be come possible to produce liquid air in commercia quantities, therefore the principles of its liquefaction quantities, therefore the principles of its haquefaction are new or only of late discovery. It has long been
known that air, like any other gas, was theoretically known that air, like any other gas, was theoretically
capable of liquefaction, and that its condensation was capable of liquefaction, and that its condensation was
merely a question of suitable apparatus. To Prof. merely a question of suitable apparatus. To Prof.
Dewar, of Glasgow, belongs the credit of first liquefying air in limited quantities, the necessary reduction of temperature being achieved by a successive series of evaporations. The process, however, was too costly to have any commercial value.
The economical liquefaction of air in large quantities has been recently accomplished by Mr. Charles E. Trip ler, of New York, after several years of experimental work. Two and a half gallons of the liquid were rework. Two and a half gallons of the liquid were re-
cently sent from his laboratory to Prof. Barker, of the University of Pennsylvania, and its properties wer exhibited in an extremely interesting series of experiments during a lecture delivered by Prof. Barker to his class and a company of invited guests. This was the first public exhibition of the kind of this article in the United States.
The laws governing the existence of air in the liquid or gaseous state are the same as those for waterto take a substance with which we are most familiar Above a certain temperature and pressure ($212^{\circ} \mathrm{F}$. and atmospheric pressure at the sea level) water exists as vapor; from $212^{\circ} \mathrm{F}$. to $32^{\circ} \mathrm{F}$. at the sawe pressure it is a liquid, and below that temperature it is a solid. In its normal condition air, as we know it, is a gas, just as in its normal condition water is a liquid; but if we lower the temperature or increase the pressure, or both, of air to a sufficient degree, we reach a point at which condensation takes place. The liquefaction point of air under normal atmospheric pressure is 311.8° below zero by the Fahrenheit scale
Mr. Tripler's method of liquefaction is based upon the fact that, if a gas be compressed and allowed sud denly to expand, it absorbs the heat of the surround ing medium, thereby producing intense cold. He com presses air to 2,000 pounds to the square inch, passes it through a coil and permits it to issue from a needle point orifice. There it expands and cools. This cold stream of air circulates around a second coil through which compressed air is flowing, reducing the tempera-
ture of the latter. The air issuing from this second coil has its temperature lowered to a point due to its own expansion, plus the cold imparted from the first expansion. The expanded and extremely cold air from the second coil is used similarly to cool a third coil, the air in which is brought down to a temperature of 311.8° F. and below, at which it condenses and flows from the end of the coil in a liquid stream.
In the course of his lecture Prof. Barker made a number of curious experiments with the liquid, illus trating the operation of the laws governing the forma tion of solids, liquids and gases. When it was poured into a tumbler it boiled until it had absorbed the heat of the glass. The cold gas given off condensed the moisture in the air above the glass, which fell in the form of hoar frost. A piece of tin thrust into the liquid made it boil and the tin was rendered as brittle as glass. Copper and platinum were not so affected,
*A series of valuable papers on this subject, by various anthors, includ ing Prof. Dewar, has been published in the following numbers of
Scientific American Supplement: $846,932,948,967,970,972,1042$.
and it is evident that these metals will make suitable receptacles for this new liquid. When it was boiled over a furnace the ebullition was, of course, excessive but the moment water was poured into the boiling liquid, the former was instantly frozen. Alcohol and mercury were frozen when brought in contact with the new product. The liquefaction point of the two con stituents of air is different, that of oxygen for given pressures being several degrees higher than that of nitrogen. Hence, as the temperature of the liquid rises, the nitrogen is the first to escape as a gas. The re maining liquid is proportionately rich in oxygen-a act which is proved by the bluish tint which a stand ing vessel of the liquid assumes if exposed to the air ust what the economic value of this new and ex tremely interesting product is, time will show ; but in experimental work in the laboratory it will be cer tain to find a ready field of usefulness

FALSE ECONOMY

The reluctance of Congress to push forward the coast fortifications proves that the sound business prin ciples which!govern men in the conduct of their privat business are too often forgotten or violated in the ad ministration of public affairs.
No one who is entitled to speak intelligently on the subject denies that the wealthy cities on the United States seaboard are at the mercy of an attacking fleet Our coastline is so extensive and the number of ship in our navy is relatively so limited that every one of our seaports should be in a position to repel, unaided by the fleet, a hostile attack. At present not one o them could do this. Admirable as are the plans of fortification drawn up by the War Department, they still exist, thanks to the indifference of Congress, argely upon paper.
Adequate fortifications are to the protected city what insurance is to a building. No good business man would think of putting up a factory without placing an adequate insurance upon it. No nation in the world but one would dream of allowing its wealthiest cities to lie exposed to the attack of any petty state that can afford to buy a cruiser or two rom foreign and competitive nations that are only too ready to furnish them. Looked at from a purely busi ness standpoint, the few million dollars asked for ortifications are to be spent in taking out an insur ance upon the thousands of millions of property which are now exposed to possible destruction.
This year's fortifications bill has suffered. as usual, a reduction at the hands of the House Committee, and the knife has been applied so effectively that less is to be conceded than for the two years previous, and the War Department's estimate is cut down two-thirds. Two years ago the appropriation was $\$ 7,377,888$, and last year $\$ 9,517,141$. This year a request was made for $\$ 13,378,571$, whereas the bill as reported provides for only $\$ 4,144,912$.
The policy of the present Congress may, perhaps, have been influenced by the fact that our foreign relations are less strained than they were when the liberal appropriations of two years ago were made. But it should be remembered that the building of fortifications and guns of the modern costly type is not or should not be emergency work. Activity in this line should never be determined by the aspect of political affairs. To return to our comparison, no one thinks of waiting until his neighbor's house is on fire before taking out an insurance upon his own.

GROWTH IN OUR EXPORTS OF AMERICAN

 LOCOMOTIVES.The American locomotive is evidently winning favor in the foreign countries into which it has been introduced. Whether the disastrous strike of the engineers in Great Britain has had anything to do with the large number of orders which have recently been placed in this country or not, it is a fact that the foreign trade has been growing at a steady pace and helped materially to keep our builders busy during the past few months. Japan in particular has shown her satisfaction with the American locomotives which she has already purchased by sending in large orders for more. Her first purchases were made in 1894, when fifteen locomotives were ordered. This was followed by twen-ty-three in 1895 and another twenty-three in 1896. The figures for the current year will undoubtedly show a considerable increase over its predecessor. Our best customer is Brazil, to which country eighty-four locomotives were shipped in the year ending in June, 1897. Russia comes next with a total of seventy-four, while Mexico purchased twenty-three and Chile twenty-two. There are many reasons why the American machine hould give good satisfaction to these foreign countries. In the first place, it is considerably cheaper (35 to 40 per cent) than the European machine, and the lessened cost is obtained, thanks to our improved machinery and economical shop management, without any sacrifice of quality. It is possible that the American locomotive does not show so much bright work and costly painting as the European engine, but in all points that affect its efficiency it is fully up to the standard.
To this must be added the simplicity and accessibility
of our machines-a feature of the greatest value in countries where skilled labor is comparatively scarce. The American locomotive bears the stamp of the practical men who have evolved it. It is essentially a "handy" machine. Moreover, the fact that its design has been modified by the requirements of the rough track and roadbed of our early railroads make it singularly well adapted to the new roads which are being built in such countries as Russia and Japan. The bar frame, the equalizing lever and the swinging truck combined give to the American locomotive a vertical and lateral flexibility which enables it to ride safely over track which would ditch a plate-frame engine before it had run a mile. It is also greatly in its favor that the generous proportions of its boiler give it a reserve ca pacity which must always render it popular with the pacity which must always render it popu.
superintendent and his staff of engineers.
superintendent and his staff of engineers.
In four years our exports of locomotives have risen from 195 to 338 , and if the present rate of growth keeps up, we may hope before long to take a leading position in this important branch of the industry.

GUN OF NEW TYPE SUCCESSFULLY TESTED

A very interesting and highly satisfactory preliminary test of a new type of steel gun was conducted during the latter part of January, at the Sandy Hook Proving Ground. The gun, which is of the 5 -inch rapid-fire class, is so simple in construction that no drawings are needed to describe it to our readers. It is made of a single forging of steel, which, having followed the course of manufacture usual for large gun forgings, was, at a proper stage of manufacture, cooled from the interior from such temperature as to produce properly disposed initial strains of such intensity as would place the wall of the gun in the best condition to resist interior pressure.
The manufacture of the gun is due to the suggestions of Capt. F. E. Hobbs, Ordnance Department, United States army, who pointed out several years ago to the chief of ordnance the advantages that could be obtained in the manufacture of guns by applying to forgings a modification of the Rodman principle of casting guns; that the process as applied to forgings could be made to produce exactly the initial strains desired ; that these strains could be easily increased or diminished at little cost and that guns so made, while quite as strong, would be much cheaper to make than those built up.
An experimental forging made under Capt. Hobbs direction at the Bethlehem Iron Works showed such excellent results, on being cut up and carefully examined, that the chief of ordnance ordered this 5 -inch gun to be manufactured.
The thickness of metal which the gun should have and the proper initial strains to be applied to give great strength were computed by Capt. R. Birnie, ordnance department, from his formulæ on the strength of guns. Capt. Birnie was an early convert to the methods of manufacture proposed, and has materially The gun is fitted with Gordon's breech mechanism, uses fixed ammunition, smokeless powder, a projec tile weighing 55 pounds, can be fired from six to ten times per minute, depending upon the conditions of loading and aiming, and has a range of more than six miles. In the Sandy Hook tests a velocity of over 2,700 feet per second at the muzzle was shown, and in the special high pressure test to which the gun was subjected, pressures were registered of nearly 50,000 pounds per square inch.
The method of manufacture can be applied to forg ings of any size that can be turned out by the steel producing plants of the country; consequently, the caliber of gun which can be made of a single forging may be, to-day, set at 8 inch, but, by using this method, the number of parts in guns of larger caliber could be much reduced, while the guns themselves would be stronger.
It is probable, also, that the commercial engineering interests of the country will be found ere long following the lead of the ordnance department in this latest improvement in the treatment of steel forgings, as they did many years ago, in demanding for their structures oil-tempered and annealed steel forgings, after that department of the army had shown conclusively, by careful experimental investigation and by actual test the safety and superiority of such metal.

A BRIEF REVIEW OF SOME BRANCHES OF THE WORK SCIENTIFIC AND PRACTICAL, OF THE HEALTH DE PARTMENT OF THE CITY OF NEW YORK.
In view of the fact that the daily papers have called attention to a bill introduced in the legislature, by which it is proposed to curtail to a great extent the powers of the New York City Board of Health, it will be of interest to the readers of the Scientific American to know just what this board has accomplished in the last
few years. few years
It is not the province of this article to go into an extended account of all the work of this department. Such an account can be found in the reports of the
board to the Mayor. A summary statement of the board to the Mayor. A summary statement of the most important work only can be given. The work of
the department to which we shall refer might aptly be
placed in two divisions-first, scientific research, and placed in two divisions-first, scientific research, and
second, the practical application of the same in the in terests of public health. The whole of this work is in charge of the sanitary superintendent, who, with the co-operation of his divisional superintendents, has been enabled to make a truly marvelous showing in the anitary condition of the city.
The research work, which is mainly carried on by the division of pathology and bacteriology, include the study of the cause and effect of diseases, and thei prevention and cure.
Every facility has been offered for this. Competent investigators with fully equipped laboratories are at their disposal.
Careful study has been made of the more important contagious diseases, so that the department is prepare to cope with any epidemic that might occur
This division also makes and prepares for administration to the people the following antitoxic remedies Diphtheria antitoxin for the prevention and cure of diphtheria; tetanus antitoxin, for the prevention and cure of lockjaw; vaccine virus, for the prevention of
smallpox ; tuberculin, for the diagnosis of tuberculosis smallpox; tuberculin, for for the diagnosis of glander in horses.
Other biological products of the laboratories that are being tested with a view of ascertaining their usefulness are : Typhoid antitoxin, for the cure of typhoid fevr; streptococcus antitoxin, for streptococcic infection such as occurs in erysipelas, tuberculosis, puerperal fever, scarlet fever, septicæmia, etc. ; pneumococcus
antitoxin, for the cure of pneumonia; antirabic virus, for the prevention of hydrophobia.
It is in the practical application of the products of the laboratories that their effectiveness is demonstrated. This is probably best seen in the treatment of diphtheria by antitoxin. The number of deaths caused by this disease have been reduced over fifty per cent since the use of this remedy was inaugurated, and it is needless to add that it has also been robbed of many of its most appalling features.
The department has diagnosis laboratories, where the bacteriological diagnosis of diphtheria, tuberculosis and typhoid fever is made.
During the year 1896, 25,049 cultures were examined for diphtheria bacilli; 1,856 specimens of sputum from cases of suspected tuberculosis were examined for tubercle bacilli; 16,796 vials of diphtheria antitoxin were issued; 918 cases of diphtheria were treated in their homes by the medical attaches of the laboratories, and 1,214 persons were immunized.
The diagnosis laboratories are of great benefit to the physicians of the city, in confirming their diagnoses They are utilized by the physician in the following manner: A case of diphtheria, for example, occurs in the private practice of a physician; he makes a culture rom the throat of the affected person, and sends it to the laboratory for examination. The day following that on which the culture is made he receives a report rom the laboratory, which states whether or not the diphtheria bacillus is present. Stations are located at onvenient places throughout the city, where physi ians can obtain the culture tubes and where they can lave the tubes after the culture has been made. Col lections are made from these stations every afternoon In the cases of tuberculosis and typhoid fever the sus-
pected discharges are sent to the laboratories in the same way, and are examined there bacteriologically.
A special corps of inspectors is assigned to the ad ministration of diphtheria antitoxin, and, on request, one of these inspectors will visit a person suffering from diphtheria in any part of the city, day or night, and administer diphtheria antitoxin, under the supervision of the attending physician.
Dwellings and tenement houses where tuberculosis exists are under sanitary supervision and, as occasion
calls for, are inspected and disinfected. There were over ten thousand inspections and disinfections for thi disease alone in the year 1897. A number of tenemen houses which were unfit for habitation, on account o their bad sanitary condition, have been condemned and torn down.
The disinfecting plant of the department is equipped with the necessary appliances to meet the needs of a city of the importance of New York. It is provided with apparatus for disinfecting by dry heat, steam, formalin gas and sulphur. Medical supervision of the public schools is exercised to the extent of keeping contagious diseases out of them.
Food products are kept under close watch, so that, a fas as possible, the people are given the benefit of only he purest and best. Milk cows in the city have been inspected, for the purpose of ascertaining the existence found affected with this disease they have been re noved from the herds.
Horses suffering from glanders are also removed to places where they do not become a source of danger to ther animals.
Investigations made by the department, showing is often infectious, led to the enactment of an amend-
ment to the Sanitary Code prohibiting spitting on the floors of street cars, ferry boats and other public convey ances, and requiring that all companies should post in heir cars, boats, etc., printed notices forbidding this. It is safe to assume that New York is as jealously guarded in the matter of public health as any city in the world.

ExCAVATIONS at branchide

The Archäologischer Anzeiger contains in its current number (1897.2) a letter of great architectural interest from M. Haussonllier respecting the excavations on the site of the Branchidæ Temple of Apollo at Delphi Some account has already appeared in the Bulletin de l'Académie des Inscriptions et Belles Lettres, January 15, and M. Haussonllier's letter to the Anzeiger is supple mentary to this. It is illustrated by a photographic view of the front of the temple as at present disengaged M. Haussonllier reports as follows

The whole of the principal façade of the temple is now laid bare. It stood on a basis of seven steps, further subdivided to form an approach of thirteen teps, extending over the five central intercolumnia tions. This approach was shut in north and south by two pylons placed against the thirteenth column, start ing from the angle column. These pylons, therefore, tand exactly where the line of the cellar wall, if pro duced, would fall. They would seem to have been in ended to serve as bases to sculptural groups never ac tually erected. The principal facade of the temple was never completely finished. Both the steps near the pylons bear mason's marks, which would have disap peared in the final process of finishing. The farade consisted of ten columns, not one of which is standing Of the bases of these columns, two were taken to the Louvre by Rayet and Thomas in 1873; the remaining ight have now come to light.
Like the steps and pylons, none of the bases are com pletely finished off. The bases are richly ornamented and pure in style, but unquestionably the most interesting point is the peculiar and so far unique character of the capitals. These are decorated with two head of divinities, each taking the place of a volute; be ween the two heads in the middle of the capital is the head of a bull. This last feature has, of course, ap peared before in Greek capitals, but no example hitherto has been known of the head of a god as a decoration to a capital. The two gods represented in the Didymaean capitals are Apollo and Zeus; one head of bull has also been found. All three heads are fine pecimens of decorative sculpture-large and impres ive in style, and recalling in some respects the Per gamene school. The frieze also was adorned with sculp ures of similar character, including a series of heads of Medusa-one placed above each capital.
A number of inscriptions complete the architectura interest of the excavations, among them a record of the expenses incurred in the erection of the temple From these inscriptions we learn the regulations in orce during the building and many of the architect ral terms employed, and more important still, the date of the temple; the work of building was in full ourse in the middle of the second century B. C. Alto gether the Didymaean Temple forms now an important chapter in the history of Greek architecture.-Archi tecture and Building.

THE CURRENT SUPPLEMENT.

The current number of the Supplement, No. 1154, ontains a number of articles of prime importance "Chief Joseph and the Nez Perce War " describes some interesting events in connection with the recent Indian wars. "The Lateen Ice Boat," by H. Percy Ashley, describes the construction of a speedy ice craft. It is accompanied by full working drawings and particulars which will enable the amateur to construct such a boat This article is published in response to many inquirie which we have received from our readers. "The talian Marble Mountains of Serravezza " is the subject f a most interesting and unusual article. These quar ries were opened at the beginning of the sixteenth cen tury by Michelangelo, but could not be worked in is time by reason of lack of means of transportation, bnt at the present time the quarries are producing narble which is superior to that of Carrara. "The Trans-Mississippi and International Exposition at maha "is an article which describes the new exposition which will open June 1, 1898, and will continue open for five months. It is illustrated by a bird's ey vew and illustrations of some of the buildings. "Th Philosophy of Hyper-Space," by Prof. Simon New omb, is an interesting address. "The Liquefaction of Air and the Detection of Impurities (Separation o Helium from the Gas of the King's Well, Bath)" is an article by Prof. James Dewar.
G. D. Brille, the Cornell graduate recently appointed director of a model farm and agricultural school a Wuchang, China, by Viceroy Chang Chi Tung, has now been appointed special Commissioner of Agriculture to China by Secretary Wilson, of the United States Department of Agriculture.

AN IMPROVED STEAM BOILER

The illustration represents a double fire box return tubular boiler, having a continuous water leg all around and a center leg extending from water end in front to water end in rear. The boiler shown is designed to be 7 feet long, 7 feet wide, and 9 feet 3 inches high, with 3002 -inch tubes and a double fire box affording 30 square reet of grate surface. The improvement has been \because atented by Melvin De Puy, of No. 19 South Street, New York City. The shell of the boiler is made in upper and lower sections, the upper section being turned downward at the sides to form the outer walls of the side water legs, while the lower section, of somewhat thicker metal, has transverse slots providing communication between the interior of the shell and the side water legs, which, as well as the central leg and the steam section, are braced by stay bolts, as indicated steam section, are braced by stay bolts, as indicated
in the broken away portions of the engraving. The in the broken away portions of the engraving. The
crown sheets over the fire boxes, being cylindrical, require no bracing. The spaces between the center water leg and the side water legs are employed as fire boxes, there being at the rear a flue box, through the flue sheet of which extend horizontal flue tubes ter minating at the front header. Somewhat more space is provided between the tubes directly over the central water leg, thus promoting the free circulation of water over and through such leg, and, the ends of the side and center water legs being open, the several legs practically form one continuous water leg. It is designed that there shall not be an inch of heating surface wasted or unutilized in this boiler, that all parts may be easily kept clean and readily accessible in

दुपासत\%

DE PUY'S STEAM BOILER.

case repairs are needed. Although especially adapted for a marine boiler, for tugs, yachts, etc., it is also suitable for use for stationary purposes. The invention has also been patented in Canada.

Utilization of old Magazines.

What to do with the magazines that crowd upon our tables in ever-increasing numbers is coming to be a torious problem, says a writer in The Evening Post. it probably is not an exaggeration to say that eight or ten periodicals in magazine form come each month to the tables of every one of us who essays to keep informed as to the currents of modern thought. Nowadays it is in the magazine that we expect to find the newest if not the best outcome, not only of the strictly literary art, but of the most recent fruits of investigation.

Here, however, begins the problem that we have hinted at. What shall we do with this printed mate rial after we have made our first perusal? The maga zines may well lie upon the table for a few days, bright ening the room with their gay covers, but in a week or so after the last one arrives another batch comes along to crowd the earlier ones aside, very likely before we have read the one particular article for which this and that number was bought. Most of all, the others contain something which is in the line of our study or hobby, or is too engaging in its treatment or illustrations to be thrown away without a struggle.
But magazines are bulky and of considerable weight Our houses are usually small and shelf room is limited. Moreover, one does not like to put unbound pamphlets upon his book shelves. To bind all the magazines twice a year, however, means a very considerable expense ; and, even if this in itself were not an objection, it would appear to almost everybody that he was paying out his money and taxing his shelf room for much that was not then, nor ever would be, of any value to him. It is probable that, leaving out of account three or four of the foremost magazines, it will rarely happen that more than two or three articles in a single number of any of our current periodicals will appeal to any one man as worth saving. On the other hand, it will be rare that a month's issue will appear in which some thing does not present itself as valuable for future reference and desirable to save.
The solution of the problem consists in tearing the
magazines to pieces and binding the separated articles together again, forming selected volumes, each containing what relates to a more or less limited subjectnot too limited, unless you are willing to wait a long time to complete a volume
We find that it is an easy matter to rip off the adver tising pages from a magazine by grasping the whole mass of them in the right hand, holding the remainder of the volume firmly with the left, when a sharp jer will bring away the advertisements without tearing, and at the same time will straighten out the wire stitching that binds the volume. The separation and removal of the remainder of the magazıne, signatur by signature, is after that a very simple matter, requiring only manual care and the aid of a paper knife. This usually becomes the employment of an otherwise dle evening, when a dozen or even twenty magazines can be disposed of without overtaxing one's time or patience. The rejection of the principal part of the andesirable material goes on as you pull each numbe to pieces, and your waste basket will fill up rapidly A second culling will take place later.
Each article, as it is separated from the mass, should be marked (preferably with a lead pencil) with the name of the periodical from which it has been taken, and its date; and should be pinned, to prevent its leaves from going astray. Frontispieces often go with an illustrated article, and should be attached to it at his stage, when, also, extra illustrations may be placed next to it or between its leaves, if they are at hand.
When a hundred or so magazines have been thus treated, an evening may be devoted to going over the pile of articles saved, sorting it out into classes, and preparing the volumes for the binder by arranging the matter in the order in which you wish it bound, remov ing the pins and placing the pages in an even and care ful pile to the amount of each volume.
From fifty to seventy-five articles can be put into a single volume. The more minute one's classification the longer, of course, he will be in acquiring the necessary number of articles to make each book-perhaps two years. The binding of the whole series should be uniform, but this is a matter of taste, and some persons may prefer to make only uniform those volum which follow one another upon the same subject.
It will often happen-though not so frequently as would seem probable-that two articles upon different subjects, and to go into different volumes, may be printed so that the last page of one is upon the back of the leaf.of the first page of the next. In this case, of course, one is obliged to sacrifice one or the other of these pages, but these cases do not occur often enough to cause serious annoyance.
Each man's classification will, of course, depend upon his tastes and pursuits, and each one will throw away a great deal of matter that his neighbor would preserve. It would be an excellent plan, therefore, for two or more families to pool their magazines and select from the mass what each one cared to keep. Undoubtedly this would tend to some cheerful battles, but this would lend interest to the pursuit, cultivate powers of argument, and endow the result with a personal interest which otherwise it would not possess.
Such a collection of bound magazine papers will grow year by year into a more and more valuable adjunct to a library, whether regarded as a means of reference or of recreation. A large number of handsome illustra tions can be kept, scattered aniong the literary mate rial, either with or without any accompanying text which would otherwise be thrown away. Lastly, this becomes a practicable method of preserving continued stories and series of articles such as are continually published in the magazines, which by this means are brought together into continuity and become a book This will often be found to have a bibliographic value because differing in some interesting way from the form in which the matter is subsequently reissued as a book. An interesting instance is "Trilby," which in its parts brought together, as it appeared in Harper's Magazine, contains several features not to be found in the republication.

The Telephones of the world.
Electrical Engineering, of Chicago, publishes the following list of the number of telephones in use in various countries. It is compiled, says our contemporary, from the latest statistics.

Angola, Province of...... 200	Hungary. 10,000
Austria.................. 20,000	Italy..... 14,000
Australia.... 2,000	Japan.................. 3,500
Bavaria.................. 15,000	Luxemburg.............. 2,000
Belgium..... 11,000	Norway................. 16,000
British India. 2,000	Portugal................. 2,000
Bulgaria..... 300	Roumania................ 400
- Cape of Good Hope...... 600	Russia 18,000
Cochin China............ 200	Senegal.................. 100
Caba................... 2,500	Spain................... 12,000
Denmark. 15,000	Sweden 50,000
England.... 75,000	Switzerland...... 30,000
Finland................ . 6,000	Tunis 300
France................... 35,000	United States900,000
Germany................140,000	Wurtemberg. 7,000
Holland.... 12,000	

The total number of subscribers represented in thi ist is $1,402,100$.

A SUPPORTING STAND FOR BICYCLES

To support bicycles for display or other purposes, the accompanying illustration represents a simple and strong device that may be quickly adjusted to suit different forms of bicycle frames, and which may also be compactly folded for transportation or packing Fig. 2 showing the device in its folded position, Fig. 1

webster's bicycle stand.
representing it in use, and Fig. 3 illustrating a plan view of a portion of the support. The improvement has been patented by Eảward H. Webster, No. 13 Evergreen Avenue, Rutland, Vt. The main post has three folding legs, and on its upper end is a saddle on which may be seated the lower brace bars of the bicycle frame, there being opposite the saddle a projecting ear to which is pivoted a supporting arm carrying a bracket and screw, designed to engage a notch in the ear, by means of which the pitch of the arm may be regulated to the pitch of the front brace bar of the bicycle frame, which the upper end of the arm is forked to engage. Pivoted on the upper end of the arm is a locking bar having a forked end to engage the center brace bar of the bicycle frame, and also a forked arm designed to engage the tire of the front wheel, the parts being held in adjusted position by a locking bolt, whereby the bicycle cannot be accidentally dislodged from the stand.

A SEAL AND TAG FOR RAILROAD FREIGHT CARS. The illustration represents an inexpensive device for convenient application to the doors of railroad freight cars, to seal the car, preventing its being accidentally opened and unauthorized abstraction of the contents. The improvement has been patented by Edgar De Lamater, of Ogden, Utah. The device is formed of a single strip of metal, the strip having at one end bent over edges or lips to form a passage, as shown in the small view, through which may be passed the other end of the strip, when the device is placed in position to seal the car door. After this has been done, the bent over edges and the end or tag portion of the strip are passed between the dies of a plier or similar tool, pro-

DE LAMATER'S CAR SEAL AND TAG.

ducing the crimps or corrugations, as shown in the large view, and providing the tag with embossed characters indicating the number of the seal, etc. It is evident that the parts thus securely locked together cannot be separated without breaking the seal and insuring immediate detection.

Vinegar flavor consists of the following mixture : 5 tarragon oil, 250 pear ether, 250 raspberry ether, 50 acetic acid, 100 cognac essence, 5 vanilla essence, 35090 per cent spirit. This is added to the vinegar according
to taste.-D. Drog. 7 tg to taste.-D. Drog. Ztg.

THE FLUOROMETER.

Surgeons know how quickly the hope sprang up after the discovery of the X rays that that new dis covery might be utilized by surgeons in the diagnosis of foreign substances in the human organism; and it is also well known that, while many brilliant operations have been performed with their aid, it was very early found that, wherever a foreign substance which was less permeable than its surroundings might be, it was certainly not in the position indicated by the so-called "shadowgraphs," and as a consequence two views taken at right angles would not disclose the location of the object. In attempting to make practical use of the Roentgen rays in the discovery and location of a foreign substance in the body, surgeons were at once confronted with the fact that the visible effect of the Roentgen rays, either on its action on the sensitive plate or paper, or its visular effect on the fluorescent screen, was a shadow and a shadow only, with all the limitations that the term implies. The surgeons found that this shadow (after the nature of shadows) was treacherous and unreliable. In other words, a positive change in the position of the patient will be marked by far less change in the general outlines of the shadow of the subject, while the shadow of the inclosed object was greatly distorted; thus producing a distortion in the picture which added a great element of uncertainty as to the exact incation of the object sought. with reference to any points on the subject.
Then there was the distortion caused by the angle of the rays. It was at once realized that, if this shadow was to be an aid in surgery, the distortion caused not only by the angle of rays but by the position of the subject must be eliminated. By repeated experiments it was found that locating a substance in another substance which was more permeable, by using right angles, was apt to produce unreliable results which would be likely to remain so until what, for want of

Fig. 2.-THE FLUOROMETER IN USE.
a better term, may be called a " correct shadow " could
be found, and then retaining the same relative position, be found, and then retaining the same relative position, a second angular view be taken. It must be remembered we are dealing with a shadow which is not only treacherous but is lacking in dimension of thickness.
Further investigation showed that the only practica solution of the difficulty was to establish a definite cross section of the patient or the limb by means of angle pieces, which would be less permeable than any portion of the subject and which could be made to retain their relative position to the subject and with the parallelism of the rays through the process of produc ing the angles. After long experimentation, an appliance was perfected which conforms in a general way to the shape of the body and at the same time preserve the position of the body squarely in its relation with an adjustable table.
The function of the instrument which we describe is to establish with precision the location of any foreign object within the human organism which is impermea ble or comparatively so to the X rays. In other words it is the province of the "fluorometer" to enable ob servers to form an exact and certain diagnosis of the presence of bullets, needles, calculi or any other sub stance which is comparatively more dense in its fluoro scopic shadow than the subject in which it is contained It is also its function, by eliminating the distortion of position and the distortion caused by the divergence of the rays, to provide the surgeons with absolute and reliable measurements in case of dislocations. frac tures or any abnormal conditions of the anatomy which are susceptible of reproduction in the Roentgen ray shadow.
It is a feature of prime importance in the fluorometer
that the observations, diagnosis and measurements ar made without the aid of photography, while at the same time, in case it is desired to preserve a record of the existing conditions. the fluorometer admits of producing in the form of a fluorograph exactly the conditions, including the measurements, which were shown

Fig. 1.- THE FLUOROMETER-TABLE AND GRATING.
by observations with a fluoroscope. It is hardly neces sary to dwell upon the importance of this instrumen as an adjunct in the use of the Roentgen rays in sur gery. It is extremely ingenious from a scientific point f view, and we are indebted to the Rochester Fluoro
meter Company, of Rochester, N. Y., who are the mak ers of the Dennis fluorometer, for the particulars which we present to our readers.
The fluorometer consists of a set of metallic angle pieces which in their use with the \mathbf{X} rays are capable of being squared with an adjustbletable The patient is laid on the table, Fig. 1, and a fluorometer appliance is adjusted as shown in Fig.2. The fluorometer is brought with the body into parallelism with the rays; that s, when the proper position of the crosssection is obtained, thetwo arms of the fluorometer will present a characteristic single shadow on the field of the fluoroscope. Adjustable to

Fig. 3.-LOCATING A FOREIGN BODY IN THE BRAIN CAVITY WITH THE FLUOROMETER.
the arms of the fluorometer are two pins or sights shown in our view of the table. By means of these sights, the foreign object having been brought in line with them and the proper adjustment having been made, a correct line is produced with the sights and the foreign object coincident. Attached to the table is a metallic grating with meshes of exactly one inch. This grating when in position is square with reference to the table upon which the patient is placed. and the normal position is close to the side of the patient opposite to the source of the energy. The fluoroscope is placed against this grating, and it will be seen at once that measuring from any point desirable on the surface of the patient to the foreign object is but the matter of a moment. The movablepins on the arms of the fluorometer now come into use. These pins are placed equidistant from the base of the fluorometer, which is of course squared with the table; then, when the table with its put is adjusted with its patient is adjusted so that the pins or sights coincide with the foreign object, it will be known that characteristic distortion caused by the angle of the rays has been eliminated, and the measurements taken with the eye, by means of the metallic grating, will thus enable the surgeon to chart unerringly the position of the foreign object with reference to the surface of the body which contains it.
How far "in" from the surface of the body it may be, however, is at this point a mystery. Now, without moving the patient or disturbing the position of the fluorometer, the second observation is taken. For convenience in using the fluoroscope a section of the top of the table is removable, as shown in our first engraving, and a proper fluorometric appliance substituted by means of which the second right line of the right angle is determined. The aperture in the table is also provided with the metallic grating and the fluorometer is provided with an attachment which closes the side of the instrument which was opened during the first observation. When the surgeon takes a position below the table, he obtains a view which is exactly at right angles with the first. The pins are again brought into use, and the table, patient and fluorometer together brought into parallelism with the rays, the tube having now been placed over the patient. It will be seen at once that, while the first operation locates the foreign object on an exact cross section, the second observation shows the exact position occupied by the foreign object in that cross section. The position of the foreign object again with reference to the points on the cross section of the subject and with reference to certain points on the fluorometer is at once charted by the aid of the meshes of the metallic grating. Necessarily, the foreign object must be situated at the point where the two lines coincide. All the elements of distortion have been eliminated-both the distortion caused by the position, also the distortion caused by the angle of the ray. Where the point is can, of course, be at once ascertained by measurements on the surface of the body.
In practice, the surgeon indicates the first cross section obtained by a line of India ink or iodine on the body, and is thus enabled to establish the position of the object by measurements from points on the exterior of the subject with as much exactness as if the body or limb were actually severed at the first cross section and presented to view. If it is desirable to preserve a record of the observations, all which is necessary is to produce a fluorograph by substituting the sensitive plate for the field of the fluoroscope back of the grating and making the necessary exposure.
In the case of a bullet in the brain cavity, elements of uncertainty of location, having in view the desirability of a possible operation for its removal, become very
grave. After what has been said about the nature of the Roentgen shadow, it requires no argument to show that a very slight variation of the position occupied by the head would produce a distortion which would pre clude successful exploration. By means of the fluoro meter the position of a foreign object in the brain cav ity is ascertained with precision, as in the case of the body already given. It becomes merely a matter of cross sections and surface measurements, a definite base line being at the service of the surgeon. Our third engraving shows the method of using the fluorometer on the head.

the riverside drive viaddct, new york.

The handsome steel viaduct now in course of erec tion across Manhattan Valley, which latter runs in a general east and west direction in the neighborhood of One Hundred and Twenty-ninth Street, New York, is intended to form a connecting link between the River side Drive and the newly constructed Boulevard Lafayette.
The Riverside Drive is the main thoroughfare through the famous Riverside Park, a strip of ornamental park land extending along the lofty banks of the Hudson from Seventy-second Street to Claremont, in the neighborhood of One Hundred and Twenty-seventh Street, a distance of two and three quarter miles. Here the ground falls somewhat abruptly to One Hundred and Twenty-ninth Street, and the drive swings around the brow of the hill, forming a loop by which horsemen and vehicles can return.
The Manhattan Valley has a width of about a quar ter of a mile and is intersected by six different streets one of which constitutes the main approach to the Fort Lee ferry and is traversed by horse and cable car lines, the latter feature alone rendering the valley unsuitable for the construction of an intersecting public driveway. At the north end of the valley the ground rises abruptly to the Washington Heights, a ridge or tableland which extends northward between the Harlem and Hudson Rivers to the extreme limits of Manhattan Island. At One Hundred and Fifty-seventh Street a handsome driveway, known as the Boulevard Lafayette, diverges to the left from the Boulevard-the main drive way of New York, practically a continuation of Broad way-and follows the lofty banks of the Hudson River for a distance of three miles, or nearly to the northern limits of Manhattan Island. Both this boule vard and the Riverside Drive to the south of it are rich in features of natural beauty. Following with easy curvature the bluffs of the lofty river banks, they give a broad outlook upon the waters of the Hudson River the frowning cliffs of the Palisades and the distant hills of New Jersey. Among the many handsome drives in suburban New York these are, in some respects, the finest-certainly they are the most unique.
The handsome viaduct which forms the subject of our front page engraving is being built for the purpose of connecting the two drives and affording a continu ous high level boulevard from Seventy-second Street to the west end of Dykeman Street, a distance of seven and a quarter miles. The latter street is practically the northern terminus of the Harlem River Speedway, which will shortly be opened to the public, and when this is completed it will add another three miles of spa cious roadway, thus providing a continuous drive of ten miles along the picturesque banks of the Hudson
and Harlem Rivers. An illustrated account of the Harlen Speedway will be found in our issues of Feb ruary 6 and $13,1897$.
The viaduct has been designed with a view to harmonizing its appearance with the surrounding natural and architectural features. Including the masonry approaches at either end, it will be 2,074 feet in length The southern approach is located just fbelow Clare mont, a villa rich in historic interest, and immediately to the south of Claremont rises the majestic pile of the Grant Memorial Tomb. The viaduct connects with the Riverside Drive at the center of the loop by which the latter encircles the northern span of the
high land on which the drive is located. The enhigh land on which the drive is located. The en
trance will be carried on a masonry approach 262 feet long, which includes a stone arch span across one of the east and west streets. The steel structure, 1,564 feet long, is carried on a series of steel arches of 65 feet span. supported on slender steel lattice piers. The roadway, which is 60 feet in width, is built at an elevation of about 70 feet above the ground level. Ten-foot sidewalks are provided on each side of the roadway, and at regular intervals balconies are built out from the footways to afford places for rest and observation. Elaborate scroll railings will protect the sidewalks, and upon these will be placed thirty-six ornate cluster lamps, a pair of lamps being placed over every alternate pier. The southern entrance will be widened out and bounded with semicircular parapet walls, at the center of which stone staircases will lead down to the lower level of the valley. The masonry will be finished in coursed ashlar limestone. The pe destals, copings, capstones, etc., will be of granite hammer dressed
The semicircular arches of the viaduct will be of
depth and will have a riveted connection to the tops of the steel columns. The latter will be oblong in section, measuring about 3 feet by 5 feet, and of latticed plate construction. The plating of the columns will be carried up between the spandrels of the arches to the level of the floorbeams, where it will finish off against a continuous cast iron fascia plate which will form an ornamental cornice below the footwalks. The spandrels will be filled in with vertical posts which will transfer the load of the floorbeams to the arches. These posts will be stiffened by light semicircular struts. The floor will be carried on floorbeams 5 feet in depth, of which there will be six to each span, and upon these will be thirteen rows of 12 -inch longitudinal I-beam floor joists. The crowning of the roadway will be secured by placing cast iron blocks of varying depth between the joists and floorbeams. Above the joists will be a solid floor of riveted $3 / 8$ inch buckle plates. The sidewalks will be carried upon brackets of $3 / 8$-inch steel plate, and covered with corrugated iron floor plates. The plating of the roadway and sidewalks
will be covered with a paving composition of coal tar residuum and broken stone and upon this will be laid the asphalt surface.
The structure is designed to carry a moving load of 100 pounds on every square foot of roadway and side walks, and 10 pounds per foot is allowed for snow and slush. In addition to this, provision was made in designing the steel work for the following concentrated loads: Twenty tons on two axles of a wagon or truck spaced 12 feet apart, the wheels being 5 feet apart. The roadway must be able to sustain this load safely at any part of the viaduct. The wind pressure is cal culated at 500 pounds per lineal foot. The contract price of the structure is $\$ 570,000$.
It will be seen from our engraving that the viaduct will present a bold and yet graceful effect, and will be thoroughly in harmony with its surroundings. The point of view is supposed to be from a position above the Hudson River to the south of the Grant Memorial and we are therefore looking in a northeasterly direc tion. The easterly brow of the Washington Heights seasily recognizable, and beyond it may be traced the ourse of the Harlem River, while on the distant horizon are the wooded hills of Long Island. To the west
of the viaduct is the Fort Lee ferry and its adjacent wharves and along the base of the bluffs at tide leve are the freight tracks of the New York Central Rail oad.
The plans of the structure were drawn by Mr. Francis Stuart Williamson, M. Am. Soc. C.E., of this city, to whom we are indebted for the data from which the present article was prepared.

Recent Archæological News.

After more than twenty years of discussion, and in spite of the systematic opposition of the military en ineers, the French government is submitting to Par liament a scheme for the demolition of the fortifi cations of Paris from the Seine to the Porte de Flandres, a stretch of about eight miles. It is expected, says The Builder, that the Chamber will ratify the proposal, which will be of great service to Paris, in removing a boundary which stands in the way of free extension of the city, while it is no longer of value as a fortification, and, in fact, counted for nothing in the defense of Pari in 1871. In its place (if removed) a grille or wall o some kind will be erected, in order to recognize th rights of the octroi: and around this it is proposed that there should be a zone of public squares and new roads, which will probably have the satisfactory
among others, of lowering house rents in Paris.
The new year will hardly have got well on its course when to the Doges' Palace in Venice will bs restored the great lion, erected there by Doge Andrea Gritti, who ruled from 1523 to 1538 . To Gritti belongs the honor of restoring to Venice all the possessions she
had held before the League of Cambrai. Gritti's monument was this lion, set up before the middle gallery of the palace on the west side, twenty-three meter rom the ground. After the fall of the Venetian oligarchy vandals swept the lion away. The restored work, from the sculptor Urbano Bottasso, represent a majestic beast, at whose side kneels a doge in robes of state.
The record of the antiquity of domesticated dogs does not even stop with the earliest known Egyptian monuments, says Knowledge. Not only were such breeds known in Europe during the iron and bronze ages, but also during the antecedent Neolithic or polished stone period. These have been described by Profs. Rütimeyer and Wöldrich, and those who are acquainted with the difficulty of distinguishing be ween some of the living species by their skulls alon in understand the laborious nature of the task the Swiss, Neolithic dog (Canis palustris) had certain cranial resemblances to both hounds and spaniels, and thus indicated an advanced type, which is con sidered to have been derived from neither wolves nor jackals, but from some species now extinct. Two other
breeds have also been recognized from the superficia deposits of the Continent ; and if, as is very likely to
be the case, any or all of these races are the forerunners of some of the modern breeds, it will readily be
understood how complex is the origin of the mixed group which we now call Canis familiaris

Cleaning old oll Paintings.

Long articles can be found on this subject in a great many books, of which the commencement has already been forgotten when the end is reached. If one desires o clean old oil paintings, the first thing to be done is to find out the cause of the darkening of the picture and according to this the remedies are applied.
It is obvious that the darkening of the picture must primarily be ascribed to the dust which has accumulated upon it and to the products of bad combustion, soot and its companions, and these parts one must always first strive to remove, which is either done with water or with soap and water (best fat soap). Thi will generally also take off some of the accumulated moke which has covered the picture with a brownish yellow veil and which is removed with spirit of sal ammoniac, diluted with twelve parts rain water, where by the former is sufficiently thinned so as to be per ectly harmless to the oil paint, while it is still strong enough to dissolve the smoke; whether it will do the work if still more diluted can be readily ascertained by experiments.
If this does not render the picture lighter, it has usually been varnished, in former times, over the accumu lated dirt and smoke and frequently, in the case of old pictures, with a very fat copal varnish, i. e., one rich in oil, which became quite dark yellow itself, through ge, and underneath which lies another sinoke film This layer is one of the worst. It may be removed in various ways, but great caution is necessary. If the picture is not too large, the varnish may be dissolved by alcohol vapors and removed with a turpentine wad. For the former purpose place pieces of cotton or linen cloth upon a glass or metal plate, saturate them with alcohol and lay wooden strips about 2 to 3 centimeters (3/4 to $11 / 4 \mathrm{inch})$ high around, and upon this the picture with the face downward. The spirit vapors soon soften the varnish, and when this is done it is taken off with turpentine. Care must be taken that the oil paint i not softened and taken off at the same time. Or mi wo parts of turpentine to about one part of spirit pour the mixture into a bottle which has a fine tube leading through the cork and sprinkle some of it upon the picture, whereby the oldest varnish will be dissolved in a short time. Soft colors, such as the blue of the sky, covered flesh tints, draperies, etc., are less apt to be attacked by this tincture than the glazings in the shadow sides, and particular caution should be exercised here. Fortunately, these can be easiest restored by a skillful hand. After the varnish has been removed there is frequently still some smoke on the picture, which must be taken off with the first-named al ammoniac water, using clean water to rinse off with In place of the last mixture one may be prepared of copaiva balsam and spirit in equal parts, or of the latter and caustic ammonia in equal parts. The latter will likewise dissolve the varnish, although mor slowly, which is no disadvantage, however. The am monia will at the same time dissolve the soot.
When the picture is clean it is saturated with oil, which is allowed to soak in for a couple of hours; then all that has remained on the surface is carefully wiped off with cotton wool and a little powdered starch. No oil should stay upon the colors, because it will turn yellow in a short time and render the picture dark gain.
For revarnishing the picture, we have found most suitable a thin dammar varnish, as it does not darken and can be readily removed.
Repainting or restoring pictures with colors is the most difficult job of all, and, if possible, recourse should be taken to erasing and then cleaning the spot under which there was still dirt.
For renovating, lakes of dammar varnish with a little oil are best suited, as they do not become darker to such an extent as oil colors.-Translated from the Maler Zeitung.
influence of wealth on Mortality.
On the influence of wealth on mortality, the Bresau statistician, Neefe, publishes an interesting paper in the Zeitschrift fuer Hygieine und Infektions Krank heiten. As a criterion of the means, the amount of the rent paid was taken. In 1896 there died of every 1,000 living persons who paid a rent up to 300 marks, 20.7 ; with a rent of 301 to 750 marks, $11 \cdot 2$; the rent ranging between 751 and 1,500 warks, only 6.5 ; the average being 17.6 persons. While according to these figures the mortality of the Breslau poor population is three times as large as that of the rich, it is in reality much larger, because the deaths not included therein servants, journeymen, persons who died in the hospitals, etc.) may be assumed to belong almost exclusively to the first class. The greatest difference in the mortality was, of course, shown by the babies: more than half of those born alive belonging to the poor population died in babyhood, while the deaths of babies of the rich amounted to only one-sixth.

Sorrespondence

＇Tapping the Rock for Water．，

To the Editor of the Scien＇ific American ：
I read with interest your article in last week＇s issue， ＂Tapping the Rock for Water，＂showing how pure water has been obtained from the granite rocks along the coasts of Norway，despite the old geological theory that water cannot be found in granite．
You say，＂The boring in hard rock would probably have the same result in other countries．＂Let me tell you the result here in South Carolina：
This town of 5,000 inhabitants is built over granite． The stratum is from 15 to 50 feet beneath the surface． Recently we became suspicious of water from shallow wells，because of the danger of surface drainage and contamination；and，there being no convenient strean from which to get a supply，an artesian well was sug－ gested．Notwithstanding the old theory against water in granite rock，the work was undertaken by the ad vice of
The first 40 feet was through clay and loam ；then a hard granite rock was struck．The drill was kept going for weeks．At the depth of 285 feet a stream was struck in a crevice of the rock．Every inch of the way， except the first 40 feet，had been through solid granite and only the short segment of 40 feet required to be curbed．A test was made with a steam pump and the minimum flow was found to be 200,000 gallons a day．
The water stood within 3 feet of the surface，on a steep hillside．A trench was cut，and for several months before the waterworks were completed it was a flowing well．
We have now an excellent system of waterworks with an abundant supply of water absolutely pure and wholesome－not simply wholesome，but possessing valuable medicinal properties，containing，among other ingredients，lithia and sodium sulphate．
The experience here has been repeated，under simi－ lar circumstances，at Chester， 50 miles away，and at Laurens， 30 miles．

Artesian wells have solved the question of pure water in South Carolina；not only in the marshy，malarial seacoast country－where fevers have been reduced more than 30 per cent－but in the middle and upper sections also that rest on solid granite

Newberry，S．C．，January 24， 1898.

Prices for Works of Art

The private or public sale of works of art by the great masters is always sure to a wake great interest in the cultivated．In the＂Almanach Hachette，＂for 1894，there is a table of fifty pictures which have sold for the highest prices in recent times．The largest price which a picture has brought was paid for Raphael＇s＂Madonna Ansidei，＂which was purchased for the National Gallery of London by the nation for $\$ 350,000$ ．The National Gallery also has the unique distinction of owning the second most expensive pic－ ture，a portrait of a man by Morone，which sold for $\$ 300,000$ ．Next in order comes Jean－François Millet＇s ＂La Bergère，＂which was purchased by M．Chauchard for $\$ 200,000$ ．The same collector is the happy possessor of the celebrated＂Angelus，＂which was sold to him for $\$ 110,000$ ．The Rothschild family have a number of almost priceless masterpieces．Edm．de Roth
schild paid $\$ 160,000$ for Rubens＇＂Jardin d＇Amour．， schild paid $\$ 160,000$ for Rubens＇＂Jardin d＇Amour ； he also purchased three of Gainsborough＇s portraits of women for $\$ 375,000$ ．Alph．de Rothschild paid $\$ 120,000$ for Raphael＇s portrait of Cæsar Borgia，and $\$ 250,000$ for two works of Rubens．Gust．de Rothschild paid $\$ 150,000$ for two works of Rembrandt．The late Duc d＇Aumale purchased Raphael＇s＂Three Graces＂ for $\$ 125,000$ ，and Madame Guinness，of London，paid $\$ 240,000$ for two works of Rembrandt．The Museum of the Louvre，Paris，purchased＂The Assumption＂by Murillo for $\$ 120,000$ ．The portrait by Albert Dürer in the Museum of Berlin was acquired for $\$ 90,000$ ．Mun－ kacsy＇s＂Christ Before Pilate＂was sold for $\$ 100,000$ ． Meissoniers bring ènormous prices in relation to their size．The＂ 1814 ＂was acquired by M．Chauchard for $\$ 110,000$ ；his＂ 1807 ，＂now in the Metropolitan Museum， was bought for over $\$ 60,000$ ．Van Dyck＇s portrait of the Marquise of Spinola was sold for $\$ 100,000$ ．The National Gallery，at the sale of the collection of the Duke of Lansdowne，bought three works by Velasquez，Morone and Holbein for $\$ 300,000$ ．There have been a numbe of other pictures sold for $\$ 60,000$ or over，among them being Mr．Havemeyer＇s＂Gilder，＂by Rembrandt which cost $\$ 60,000$ ．It is not of ten that a Raphael is on the market．At the present time the＂Virgin with the Candelabra＂is for sale．It was bought at the Monroe collection of 1882 for $\$ 100,000$ ．If this second or third
rate work of the great painter of Urbino is worth over rate work of the great painter of Urbino is worth over $\$ 100,000$ ，it is an interesting question to know what the market price of a masterpiece like the Mad
San Sisto or the Madonina of Foligno would be

Iv Buenos Aires（Argentine Republic）and Para Brazil）street cars are drawn by mules at a speed ten miles and over per hour．－La Vie Scientifique．

Miscellaneous Notes and Receipts．

Autographic Ink．－Autographic ink is made by melt ing together the following substances ： 10 parts soap （white grain soap）， 10 parts wax， 3 parts tallow， 5 part shellac， 5 parts mastic， 3 parts lampblack．
Formoform Powder．－This is recommended by the Crown Pharmacy，in Berlin，as a disinfecting remedy against perspiring feet．It is a white powder with faint thymol odor，composed of $0 \cdot 13$ per cent of formal－ dehyde． $0 \cdot 1$ per cent thymol， $34 \cdot 44$ per cent oxide of zinc and 65.27 per cent of starch．Applied to wounds and purulent secretions，a great disinfecting power is said to be attained in consequence of the splitting of of formaldehyde．
Negative Lacquer．－1．Amber， 50 grammes；sandarac 100 grammes ；alcohol， 1,000 c．cm．；castor oil， 1 gramme 2．（Hard negative lacquer．）Sandarac， 250 grammes Venetian turpentine， 25 grammes；oil of lavender， 30 grammes；ether， 30 grammes；absolute alcohol， 665
grammes．3．（According to Andres．）Sandarac， 150 grammes．3．（According to Andres．）Sandarac， 150
grammes；oil of lavender， 110 grammes；chloroform， 20 grammes；spirit， 720 grammes．4．（According to Andres．）Bleached shellac， 125 grammes；mastic， 25 grammes ；oil of turpentine， 25 grammes；spirit， 885 grammes．5．（According to Valenta．）Angola copal， 60 grammes ；amber， 10 grammes；ether， 600 grammes acetone， 100 grammes；chloroform， 20 grammes． 6 （According to Klaussner．）Dammar gum， 110 grammes mastic， 7 grammes；benzole， 883 grammes．－L．Drog Ztg．
Some Cosmetics．－The Seifen Fabrikant gives the following recipes
Wash．-1 liter of distilled water ；rice flour， $1 / 2$ pound； violet powder， 135 grammes；glycerine soap， 10 grammes；bergamot oil， 6 grammes；and iris oil， 5 grammes．
Skin Gloss．－Potash， 50 grammes ；spermaceti， 56 grammes ；rice flour， 500 grammes ；benzoin powder， 20 grammes；bitter almond oil as required．
Toilette Glycerine．－Glycerine of $20^{\circ} \mathrm{B} ., 2$ kilo－ grammes；rose water， 2 kilogrammes；sodium bicar bonate， 30 grammes．
Athens Water．－Calcium carbonate， 70 grammes sassafras wood oil， 250 grammes；rose water， 4 liters orange blossom water， 4 liters；spirit（ 96 per cent）， 1 liter Cold Cream．－Almond oil， 500 grammes；white wax， 90 grammes ；spermaceti， 90 grammes；rose water， 280 grammes；bergamot oil， 2 grammes；lemon oil， 8 drops rose oil， 2 grammes．
Castor Cream．－Castor oil， 500 grammes ；almond oil 160 grammes ；spermaceti， 65 grammes ；geranium oil， grammes；lemon oil， 5 grammes．
Mites in Sweet Wines．－For some time past there has been great excitement in the countries which produce sweet wines，says the Schw．Wein Zeitung，for it has been shown that a large number of mites are found in such wines as Malaga，Muscatel，Samos，etc．Up to the present it was believed that liquids，and especially alcoholic ones，were free from these animals and that nites only occurred on dry foods stored in dark and es pecially in damp rooms．Now this opinion must be discarded as erroneous，for the sweet tain isolated mites，but large quantities of them，full that they multiply readily and quickly in the liquid The mite discovered in the sweet wines is the Acarus passulorum，which is found on dried prunes，figs，etc Examination of the wines infested with mites has on a whole not given a very bad result，inasmuch as the taste of the wine is not changed and its alcohol is not perceptibly decreased．The mite seems to súbsist on the vegetable cells of the yeast，which it sucks out．It has also been established with tolerable certainty how the mites get into the wine．The name of Acarus passulorum，which has been given them，signifies mit of the dried currant，on which the animal is very fre quently met with，as well as on the dried grapes which are used for making wine．In the wine made from the latter the mites are mostly found，as they pass from the dried grapes，which are often kept for years，into the
beverage．They frequently show themselves in the beverage．They frequently show themselves in the
Grenache wine，which does not only come from Rous Grenache wine，which does not only come from Rous cipal exporting centers for dried grapes．As a general rule the wines produced from dried grapes are not considered detrimental to the health；but their com mercial value is much below that of the wine from freshly pressed grapes．To substitute the former for the latter is a deception which can now be more easily proved by the presence of the mites．If wine prepared
from fresh grapes should contain mites it may be taken from fresh grapes should contain mites it may be taken
for granted that it has been poured into an imperfectly cleaned cask，in which there had been a wine infested with mites．Hence attention should be paid to scald the casks previously with hot water．In any event it is not necessary to throw away wine containing mites． The animals remain on the surface，forming a whitish layer．Hence，it suffices to filter the wine before it i placed on the market．Finally，light also kills th mite，and by exposing the bottle to it for some hours， one is sure of exterminating the animals，if any are $\begin{aligned} & \text { mod } \\ & \text { still present．}\end{aligned}$

Prof．Lenard，of Heidelberg，who first discovered the cathode rays，has received from the French Academy of Sciences its prize of 10,000 francs．
There was a time when the government of India had to import annually $\$ 250,000$ worth of quinine，and did not get enough of it even then．After a great many experiments，the cultivation of the cinchona tree wa nade successful in India，and now there are 4，000，0：0 trees in Bengal，and every rural post office in India ells a five grain packet of the drug for half a cent while the government makes from $\$ 2,000$ to $\$ 3,500$ a ear out of the profits．
M．Flammarion，the astronomer，has been discussing he hypothesis of Schiaparelli，recently supported by Mr．Lowell and other observers，to the effect that the planet Venus，by rotating round her axis in the same period as she revolves round the sun，always presents he same face to the sun，as the moon does to the earth for the like reason．Flammarion thinks that the marks on the surface watched by Schiaparelli are effects of atmosphere and sunlight，and not on the body of the planet．He points out that the deep at mosphere of Venus probably absorbs so much of the ight from its surface that we are unable to see the atter．Even the earth＇s atmosphere absorbs one third of the light from the surface
Probably the most reliable data as to melting points is published by Prof．S．W．Holman，in conjunction with R．R．Lawrence and I．．Barr，in the＂Proceedings of the American Academy，＂November 13， 1895.

Aluminum，	elti		660 degrees Centigrade．		
Silver，	＂	＂	970	＂	
Gold，	＂	＂	1，062	＂	＂
Copper，	＂	＂	1，095	＂	＂
Platinum，	＂	＂	1，760	＂	＂

The aluminum experimented upon contained 99.93 per cent aluminum，with 0.07 per cent silicon．The silver， gold，copper and platinum were of the purest quality obtainable，probably with less than three one－hun dredths of one per cent of impurity in each case．
A life of the late Sir James Simpson has just been published，written by his daughter，and contain nany interesting facts connected with his life not gen erally known before．James Simpson was the son of the village baker at Bäthgate，in Linlithgowshire．At the age of fourteen he went to the University of Edin urgh，and was one of the hard－working，frugal race Scotch scholars．He lived on $\$ 50$ a year，his only extravagances being books．A significant entry is quoted from his diary，says The Medical Record．It is as follows：＂Finnan haddies，2d．（4 cents）；bones of the leg，$£ 110 \mathrm{~s} . "(\$ 7.50) \quad$ In 1838，when he was twenty seven years old，he became lecturer in obstetric medi cine in the Extra－Mural School．Two years after he was appointed professor of obstetrics at the university In 1847 he discovered chloroform．At the early age o fifty－eight he died，his end hastened by overwork．
Prof．F．E．Nipher has recently measured the fric tional effect of moving trains upon the air near them His apparatus consisted of a hemispherical cup，which he could fix at distances up to thirty inches from the window of a railway carriage．The mouth of this col－ lector was turned toward the direction in which the train was moving at the time of observation；and the pressure due to the motion was conveyed to a pressure gage by means of an India rubber tube attached to the back of the collecting cup．The results obtained showed that a large amount of air is dragged along with a rapidly moving train，the motion being also communicated to air many feet away．Most people believe that it is dangerous to stand near a train going at full speed，and Prof．Nipher has now proved that the moving air is a real source of danger．The air not only possesses sufficient power to cause one to topple over，but it also communicates a spinning motion tend－ ing to roll a person under the train，if the nature of the ground does not prevent such a result．
Attention has lately been called to the investigation of Dr．G．S．Hall，President of Clark University，on the hings that most arouse fear．Taking the subjects broadly，it appeared that out of 298 classes of objects dreaded by 1,707 individuals，thunder and lightning were the ones creating the greatest alarm and anxiety． And yet，as pointed out by one of the electrical jour－ nals，a thunder storm might compare with Mr．John Bright＇s express train as the safest thing on earth to be in．Records have been carefully kept of accidents and deaths from lightning stroke or thunderbolt，and they are apparently on the decline，the period 1890－93 show－ ing only 193 deaths a year for the whole United States． On the other hand， 200 people are drowned in New York City every year， 150 are burned or scalded to death，and 500 die from falls of various kinds．It is the rarest thing in the world，literally，for any one of Greater New York＇s citizens to be killed by lightning， and yet when a thunder storm invades this region most of the three million inhabitants are decidedly cearful and uncomfortable．The statistics show that，in espect of immunity from accident by lightning，the try． try．

MEDIUM AND SMALL INDEPENDENT REFRIGERATING machines suitable to the requirements of a single store of refrigerating adopted by the Atlantic Refrigerating PLANTS. \quad or dwelling were made by the makers of large machin
It is only within the last four or five years that the ery, and were not satisfactory. Although the laws of clusively to the manufacture of medium and small makers of refrigerating machinery have turned their artificial refrigeration are unvarying, the rules govern- sized plants of the kind above referred to. The reattention to the production of refrigerating plants ing its application will vary greatly. It is one thing frigeration is accomplished by the compression, conden-

A REFRIGERATING PLANT, SHOWING REFRIGERATING MACHINE AND REGULATOR AND COILS IN REFRIGERATOR.
suitable to the needs of small users. Previous to this to refrigerate a single unit in the shape of a great room sation and expansion of a highly volatile gas in a conperiod, the whole attention of manufacturers was given in a brewery, and quite another thing to refrigerate a tinuous cycle of operations, the compression and conto the construction of large machines, which are re- number of single units represented by a score of sepa- densation taking place in a small and compact maquired for refrigeration on an extended scale, and while rate refrigerating boxes; in the various flats of an apart- chine, which may be located in any convenient spot, the design and equipment of large cold storage plants ment house; hence the earlier attempts to introduce has been brought to a high state of perfection, and its small plants were almost invariably marked by failure. theory and practice are well understood, the moderate Of late years, however, the work has been taken up as user, in the person of the small manufacturer, the store- a specialty by various firms, with the result that it is keeper, the householder or "mine host of the inn," has now possible for artificial refrigeration to be secured in been left to the tender mercies of the door-to-door ice \quad small units for about the same figure as the ice is supvender. plied by the ice companies. , and expansion, with its attendant refrgeration taking place in a coil
The machine is of the ammonia compression type, the gas used being pure anhydrous ammonia, which the gas used being pure anhydrous ammonia, which
is composed of 14 parts of nitrogen and 3 parts of hyis composed of 14 parts of nitrogen and 3 parts of hy-
drogen by weight. At ordinary temperature it is a drogen by weight. At ordinary temperature it is a
gas, and at a temperature of about 30 degrees below

The first attempts to produce small refrigerating	$\begin{array}{c}\text { plied by the ice companies. } \\ \text { The accompanying engravings illustrate the methods }\end{array}$

MEAT MARKET SUPPLIED WITH A COMPLETE ATLANTIC REFRIGERATING PLANT.
zero F. it liquefies at the normal pressure of the atmosphere, and, of course, at higher temperatures it liquefies at higher pressures.
The refrigerating apparatus shown in the accompanying cut is an extremely compact and self-contained machine, all of whose working parts are inclosed, and run in a bath of oil. It is provided with a heavy fly wheel pulley, which may be belted direct to an electria motor or any suitable power shaft. At one end of the pulley shaft is a wrist plate which by means of a connecting rod and a rocker arm operates a rocker beam. Attached to the ends of the rocker beam are the piston rods of the two compressing cylinders, which are placed in the vertical position to avoid the uneven wear which would occur if the cylinders were placed horizontally.
The compressors are single acting and work with the smallest practicable clearance between the cylinder head and the piston. Particular attention has been paid to the design. of the suction and discharge valves, which are provided with offsets on the stem which permit the passage of the gas but prevent the valve falling into the cyliuder should any breakage occur. The discharge pipe from the compressor cylinders is led into a high and low pressure oil trap, located behind the cylinders, which is divided by a diaphragm into two separate receptacles. The compressed gas, at 150 pounds pressure, more or less, depending on the temperature of the condensing water, enters the high pressure half of the trap, where any oil which may have been carried over is deposited, and collects in a receptacle at the bottom. From the trap the gas is led down to a condensing coil located in the "condenser base" of the machine. This is simply a tank in which the coil is cooled by a constant circulation of cold water. Here the gas is condensed and passes down to another tank beneath it, known as the liquid receiver. The liquid ammonia is now ready for use in the refrigerating box.
The boxes may be one or more, close together or widely separated, and of any size (within the capacity of the machine) or shape desired. One of our illustrations shows the interior of a refrigerator such as might be used in a meat market, large grocery, or in any establishment where it is desirable to refrigerate a con siderable amount of material in bulk. The liquid ammonia is led by a small pipe from the machine to the refrigerator, where it passes through a very ingenious automatic expansion valve which controls the flow and adjusts itself to any pressure at which it may be set. The regulation is effected by means of a flexible diaphragm controlled by the pressure of the gas, which acts on a needle valve at the mouth of the liquid ammonia supply pipe. The moment the liquid enters the regulator, which is set for a pressure of fifteen pounds to the square inch, more or less, according to the
the compressor is shut down it will automatically shut off the supply of gas to the coils. After the gas has traversed the coils it is led back to the refrigerating machine and passed through a coil in the condenser and then led into the low pressure receptacle of the trap." From the trap it is again drawn into the con pressors and sent on its course through the pipes.
The method above described is known as the direct The method above described is known as the direc
expansion system. The Atlantic Refrigerating Com pany also make use of what is known as the combined system. This differs from the direct systen in the fact that a part of the expansion pipes in the boxes are submerged in tanks filled with strong brine, the contents of which become intensely cold. When the machine is stopped, the brine tanks act as a reservoir of cold, so to speak; that is to say, they take the place of the cold gas in the coils and absorb

SECTION THROUGH REGULATOR, AND COUPLING.
light and steam heat, in the rent. Such an arrange ment would insure the abolition of the ice box with all its attendant inconveniences, a relief which would be reatly appreciated by the average householder.

DREDGING FOR GOLD

Gold mining operations in the country lying west of the Rocky Mountains are just now being carried on by wo very different systems. In the frozen North the pioneer is searching for the rich placer deposits where he fragments of gold are so large and so thickly strewn that a single season's work with the miner's pan may bring a fortune. In his feverish haste to grow rich the miner pays no attention to the finer gold, which is allowed to run to waste in the tailings.
In the historic gold fields of California, on the other hand, mining men are giving increased attention to the recovery of gold from placer deposits, where the yield of zold per ton is very low. Improved machinery, capable of handling the auriferous material at the rate of thouands of tons per day, is being employed on gold bearing deposits which hitherto it has been considered unprofitable to work. The results have been very gratifying, and many discarded or neglected districts will now acquire a positive value.

The accompanying cut represents the Risdon Improved River Gold Dredge, as designed by R. H. Postlethwaite, consulting engineer, of San Francisco, California, patents for which are held by the Risdon Iron and Locomotive Works, of that city.
These dredges are the result of a process of evolution and many years of experiments by the designer and others in New Zealand, now recognized as the leading gold dred.r. ing country of the world, from which coull try Mr. Postlethwaite arrived in April layt for the purpose of introducing and operat-
the heat from the refrigerator box, maintaining the low ing his dredger in this country.
emperature until the machine is again started. The company also makes use of the brine system, which differs from those already described in the fact that the ammonia pipes are not placed in the rooms or boxes to be cooled, but in a brine tank (located usually in the basement of the building), and the cooled brine is cir culated through another set of pipes placed in the ooms or boxes.
The uses to which these compact and self-running machines can be putare many and various. The ac companying illustration shows a six ton plant, in stalled in a city meat market. At the far end is seen the large refrigerator box divided into a large beef room, a room for general storage and a freezing room, the temperature of which may be reduced to zero. At one side of the room is another box containing four large corned-beef tanks and tubs of high-class salted neats, and a further and entirely novel application is shown in the construction of the horseshoe shaped counter. This is nothing more or less than a continuous refrigerator box with a plate glass top, in which are shelves upon which plates of cut meats, chops

One of these dredgers is now operating on the Yuba River, in California, and is lifting and washing over 93 cubic yards of gravel per hour from a depth of 45 feet, and extracting and saving the gold therefrom, some of which is so fine that it cannot be seen by tie naked eye, at a cost of 3 cents per yard. The dredger consists of two long pontoons, each 96 feet long by 9 feet beam. These are connected at the stern by a small pontoon 17 eet long and 5 feet wide, the bow being connected by a heavy overhung beam. This practically makes one boat 96 feet long and 23 feet in width, with a well hole 5 feet wide running through the center for some 75 5 feet
feet.

The dredger is fitted with a power winch with six drums, all being under the control of one man. Four of these drums carry lines running from the four corners of the dredger, the other end of the lines being affixed to "dead men" or backers on the beach. The fifth drum carries the head line. With these five lines the dredger can be made to rapidly take up any position necessary, one man handling her with the greatest ease and nicety and with no loss of time. The sixth

RIVER GOLD DREDGE ON THE YUBA RIVER-CAPACITY, 2,000 CUBIC YARDS PER DAY.
amount of refrigeration required, it volatilizes, and in so doing produces extreme cold which absorbs the heat from the surrounding atmosphere. At this lowered temperature the gas then passes into coils of pipe which are arranged on the walls or ceilings of the refrigerator. When the expansion valve has been set at the proper tension, it will admit just sufficient ammonia to insure the refrigerator being maintained at whatever temperature is required. Moreover, when
teaks, etc., may be placed and inspected by the buyers. Another form of installation which is likely to neet with extended application is the refrigeration of apartment buildings.
Plans are being prepared for the equipment of a large six story apartment building with some thirty domestic refrigerators-one to each suite of rooms-all of which will be operated by a single machine in the
basement. The refrigeration will be included, like the
winch barrel carries the ladder line, raising or lowering the ladder as required. A ladder 67 feet long, built up as a heavy lattice girder, is hung at the stern end by a bar fixed across a heavy wooden framing. The lower end of the ladder carries a five-sided tumbler and is suspended by blocks and tackle to a cross beam. By means of a wire rope and blocks the winch can raise or lower the bottom end as required. The top tumbler is carried by the timber framing some 3 feet above the top end
of the ladder. The continuous bucket chain comes up the top side of the ladder on rollers round the top tumbler and back in a catenary curve to the lower tumbler. The top tumbler is driven through a rope transmission and heavy gears by the engine, a vertical compound condensing one, which also drives the pump and indicates 35 horse power.
The buckets discharge the material onto a delivery plate, down which it shoots into a revolving screen or grizzly. The centrifugal pump, throwing 3,000 gallons per minute, supplies water to a perforated pipe inside the screen. This water thoroughly washes the material, the finer wash dirt and gold going through holes in the screen and falling into a distributing box. From the distributing box it passes onto a set of gold-saving tables, 11 feet wide, over which the wash dirt runs in a thin or shallow stream, and thence into a flume. The tables are covered with cocoa matting and expanded metal, a finer gold saver than which was never used. The stones and rocks pass through the screen down a stone shoot, either direct into the river, or, when working into a high face of gravel, onto a tailings elevator.
Broadly speaking, with such a dredger as is above described, any ground which is not deeper than 60 feet below water level nor more than 20 feet above, and which contains bowlders of not more than say one ton weight, can be handled at from 3 to 5 cents per cubic yard. The ground need not be in a river, provided the seepage is sufficient to float the dredger and keep the water clean enough to wash the dirt with. The introduction of this dredger will revolutionize placer mining in this country and will render valuable large tracts of land heretofore, on account of their low grade condition, unworkable and consequently worthless.

How it Feels to be Asphyxiated.

Philip Rearden, superintendent Abbott Quicksilver Mining Company, of Illinois, Sulphur Creek, California, relates his experience with mining gas in The Mining and Scientific Press, San Francisco, as follows :
In our mine we sometimes have to contend with sulphureted hydrogen, chlorine gas, carbonic acid gas and marsh gas, sometimes called fire damp ; and lately have had all these to contend with at the same time and place. We had struck the ledge, finding, in addition to these gases, some petroleum, with a heavy flow of water equal to about 4 miner's inches when we were driven out of the tunnel by the excess of sulphuric acid gas, called by our miners sore eye gas, owing to the fact that, it affects the eyes so that the men are temporarily blind, and suffer great pain while the eyes are affected. We had discontinued work temporarily, while preparing to put in artificial ventilation. I and my brother went in to examine the tunnel. He had stopped to look at something about 250 feet from the breast. I went ahead to the breast carefully trying for carbonic acid gas along the floor with a candle, also along the roof of the tunnel for marsh (or inflammable) gas. I found neither with the light, but within a few seconds after reaching the breast, where a large flow of water was coming out of the ledge, I found that I was getting very short of breath. I tried to recover, but could not do so. My candle was burning brightly. I turned and ran back toward the mouth of the tunnel, perhaps 100 feet, at the same time calling to my brothel to come to me. I began to get weak, lose consciousness, and fell to the floor. I could not rise again, although trying hard to do so. I felt just like one in a nightmare, trying to move, but unable to do so ; but felt no pain whatever, not even strangling or coughing sensation. At this point my brother reached me, and pulled me back toward better air, where I revived within a minute or two. In this case asphyxia was probably caused by chlorine gas.
I have several times helped to take men who had been suffocated out of mines, and their faces and positions showed no signs of pain or any suffering. I had wonderer at this, but now I know how a person might be asphyxiated while his light burned brightly, and would suffer no pain whatever to warn him of approaching danger.

Feeding Plants.

The following note by Mr. Paul, of Cheshunt, in The Gardeners' Chronicle, October 23, 1897, on the method employed by M. Georges Truiffent of administering artificial food to plants, is of considerable interest to horticulturists. After an analysis of the ash of the living plant, the necessary salts for a given time, such as six months, are weighed out and inclosed in a metal cover to form what is called a "pill," which is presumably inserted in the pot, diffusion of the salts takiug place through the folds of the metal, and the thicker the metal, the slower the diffusion. As the
salts dissolve and disappear they are replaced by a core which expands until it completely fills the "pill." The which expands until it completely fills the "pill." The
salts have no action on the metal cover, which remains firm and hard. It is stated that the solubility of the salts can be so regulated that a "pill" may be made to last three or six months, as may be desired. By this method of feeding large well colored plants are grown in pots of less than half the usual size.

a Lateen ice boat.

During the past few years much study has been given to the best form of a sail for an ice boat, for the purpose of obtaining the greatest propelling result under a given force of wind pressure.
One fault of the ordinary square sloop sail was that the force exerted above the center of the sail was so great at times as to cause the wind ward runner to rise from the ice and tilt the sail to such an angle that the wind would spill over the top of the sail and prevent the attainment of high speed.
Lately it has been the study of ice boat experts to overcome this defect and provide a sail and rigging which would remain in a vertical position and prevent the leakage or loss of wind power. This has been successfully accomplished by the adoption of the lateen triangular sail especially rigged and designed by H. Percy Ashley, of this city.

It will be seen from the illustration that the center of pressure is quite low near the boat, and by making the sail taut or by bagging it the proper wind angle can be easily ascertained. The area of the top of the sail is so small as compared with the lower portion that there is never top pressure enough to raise the windward runner off the ice.
The mast, it will be observed, is composed of two parts forming an inverted \wedge, or it may be called a wishbone mast. The sail is held by a bridle which is raised and lowered by a halyard in the usual way. The runners are of the rocker type, curved at each end.

AN IMPROVED ICE BOAT.
Practical trials of lateen boats on the Shrewsbury River, Hudson River and in Canada have proved them to be more comfortable and speedy than the or dinary style. A model of one was exhibited at the Sportsmen's exhibition in this city lately and attracted considerable attention.
Working plans of this ice boat will be found in the urrent issue of the Supplement, No. 1154.

According to the latest edition of the "Repertoire General " of the Bureau Veritas, there existed upon the registers of the various maritime nations at the time of the publication of the work 29,315 sailing vessels measuring $8,894,732$ register tons (against 29,348 ships and $9,136,560$ tons in the previous edition of the book), as well as 11,271 steamers measuring $17,889,006$ register tons (against 11,155 steamers and $17,089,596$ tons). These figures show that steam tonnage is still increasing at the expense of sailing tonnage, but that the latter is decreasing in a smaller proportion than was noticeable a few years ago.
The publication of this new volume renders it possible, says The Marine Record, with the added assistance of Lloyd's Register and other authorities, to complete a list of the most important steamship companies of the world, and to show precisely how they compare with each other. According to the statistics thus available, it appears certain that the claim which has been frequently put forth on behalf of the Hamburg-American Packet Company of being the largest shipping company

British company (according to tonnage, the Peninsular and Oriental Steam Navigation Company) by 3,805 tons gross and 10,154 tons net. The following is the list:

Companies.		\%	
British.			
P. \& O. Steam Navigation Co. (London)	${ }_{9}^{60}$	252,140	164,836
British India Steand Navigation Co. (London).		251,429 159793	
Pacific Steam Navigation Co. (Liverpool)	41	128,336	77.774
Cunard Steamship Co... Limited (Liverpool).	27	119,471	65,011
Ismay, Imrie \& Co. (White Star Line) Liverpool	21	114,290	68,264
Union steamship Co. of New Zealand (London).	52	65,239	39,371
Irrawaddy Flotilla Co., Limited (Glasgow)..	42	20,393	12,367
German.			
Hamburg-American Packet Co. (Hamburg)	69	286,945	174.990
North German Lloyd (Bremen)		265,613	
Hamburg S. American S. Nav. Co. (Hamburg)	32	100,646	65.422
Hansa Steamship Co. (Bremen)..............	37	84,867	54,446
French.			
Meseageries Maritimes Co. (Marseilles)	${ }^{63}$	229,837	114,000
Comp. General			
Italian. Navigazione Generale Italiana (Rome).	96	171,041	105,598
Austrian.			
Austrian Lloyd (Trieste).....	72	146,560	87,800
Spanish.			
Compania Transatlantica (Barcelona)	36	121,161	78,702
Danish.			
United Steamship Co. (Copenhagen).	109	85,525	50,719
Russian.			
Russian Steam Nav. and Trading Co. (Odessa)......	75	80,659	53,342
Turkish.			
Idarei Massousich (Coustantinople).	69	57,84	35,664
Japanese.			
Nippon Yusen Kabushiki Kwaisha	68	161,6	3

The following are seven of the largest steamers afloat :

Name.		\%	¢	
Kaiser William der Grosse (Ger.).	62566	14.349	5,521	20,500
Lucania (Brit.)	${ }^{601} 65 \cdot 238$	12,952	${ }_{4}^{4.975}$	18,100
	${ }_{601}^{601} 65 \cdot 233^{67} 8$	12,950	4,974	18,000
$\underset{\text { Pennsylvania (Ger.)....: }}{\text { Kaiser }}$	${ }^{\text {che }}$	12,000 12,261	\%,861	- $\begin{aligned} & 18,000 \\ & 28.500\end{aligned}$
Pretoria (Ger.) \ldots. ${ }^{\text {a }}$............	${ }^{561}$ 562 620			${ }_{23.500}$
Augusta-Victoria (Ger.)....		8,479	3,568	15,260

Washington's Tree.

The great court of the pension office at Washington has, since the advent of the present administration, has, since the advent of the present adininistration,
been turned into a scene of tropical beauty and freshbeen turned into a scene of tropical beauty and fresh-
ness second only to the government greenhouses of ness second only to the government greenhouses of
the capital city. Through the efforts of Commissioner Evans, Chief Clerk Bayly, and especially Superintendent Barnes, donations of trees and plants have been secured from the National Botanic Garden and other sources.
A valuable addition to the collection was recently made by Col. Bingham, who has charge of the White House conservatories. As the palm house adjoining the Executive Mansion was needed to accommodate the Marine Band on state occasions, the largest trees were transferred to the pension office. Among the number are some noble specimens of Sabal, Cocos and Seaforthia, but by far the most interesting tree is a venerable sago (Cycas revoluta) which once belonged to George Washington. This priceless relic is known to be at least two hundred years old, and yet it appears to be in its prime, putting forth regularly every two years a new crown of beautiful, feathery leaves and a mass of woolly, yellowish-white flowers and fruit.
Many unsuccessful attempts have been made to obtain a complete history of this tree, which is perhaps the oldest specimen of its kind in the United States The following facts were obtained from Mr. Pfister head gardener of the White House, and it is probably all that will ever be known of the past life of the wonderful old sago :
About the year 1780, a Baltimore merchant, owning a line of small vessels plying between that city and Havana, brought over from Cuba this tree, which was then of advanced age. As it was probably the only specimen of its kind in this country at that time, it was a genuine curiosity, and the merchant presented his prize to the first president. The tree stood about en years in the grounds at Mount Vernon, and then it went back to Baltimore, Washington having given it to a lady of that city. For many years it remained in her family.
Fifty years ago there was a public sale of this lady's estate. Hearing of this, the head gardener hastened to avail himself of the opportunity to gain possession of the historical tree. He attended the auction for that purpose, and, after some sharp bidding, secured the prize (at what figure is now unknown) and placed it in the conservatory at the Executive Mansion, where it has stood ever since, until removed to the pension ffice.
The tree stands about six feet high above the surface of the earth in its box.
For these particulars we are indebted to Mr. L. S Perkins, of the pension office.
habitual attitudes of animals considered as A DEPARTMENT OF COMPARATIVE ZOOLOGY.

by j. carter beard.

The possible existence of a field for investigation in what may, perhaps, be called, taking words in their broadest sense, the geometry of character, must be assumed, and one or two aspects, however superficial, of obvious facts within its precincts be glanced at before the author's imperfect suggestions on the ject of the presen
gently considered.
A well known and universally recognized in stance of correspondence between the inter-rela tion of lines and angles and the character of the organisms they measure is, of course, found in the gnathic index, popularly called the facial angle, the angle formed by two straight lines, one extended from the most prominent part of the forehead in a skull (the nasofrontal suture) to the front edge of the upper jaw, at the insertion of the teeth, and the other from this point to the middle of the opening for the ear (the basion). The skull being so placed as to bring the second line into a horizontal position, the significant angle is formed that directs the other line, like an infallible hand upon the cosmic dial, to the rank and order in creation which the animal owning such a cranium must necessarily hold.
In the ideally perfect human skull, wherein is developed the greatest symmetrical capacity for the highly organized brain that occupies it, the hand upon the dial is vertical and orthognathus to the horizontal line; in skulls of a lower order it is proportionately depressed. But I cannot help thinking that there is, perhaps, no very good reason for calling a halt here, and that as the principle holds in one instance, it may be worth trying in another. If, for example, these two lines and their included angle can be used as a test in estimating the grade of intellectual capacity repre sented by any given specimen of a human skull, it seems possible we may find in them the
man as to his whole physical organism.
man as to his whole physical organisim. natural and habitual than to any other mammal, far more so than any of the apes, whom the bears surpass in this respect, and he covers in stauding a smaller portion, in proportion to his size and bulk, of the surface that supports him than any other animal. As to his complete frame, as well as to his skull, he represents wall, and stretching out his arms laterally at a right angle to his body, he touches the surface behind him angle to his body, he touches the surface behind him
with his head, his heels and all projecting parts, such with his head, his heels and all projecting part
as the calves of his legs and his shoulders, as as the calves of his legs and his shoulders, as
well as with his arms and hands. From finger well as with his arms and hands. From finger
tip on one hand to finger tip on the other a perfectly formed man, in such a position, covers a line exactly equal to one extending from the crown of his head to the soles of his feet. The measure of a man is four square, and the simplest expression of his framework is a Latin cross. It scarcely need be said that this measure and attitude is peculiarly his own. No other mammal is capable of sharing it, for no other mammal has the power of such lateral
movement at the shoulder joints combined with a perfectly upright position. In ordinary quadrupeds, as dogs and horses for instance. the limbs extend from the body parallel to the mesial plane, and when the animal is forced to take an erect posture, project forward and cannot be spread out to take a straight line across the back. In the highest of the anthropoidea, the great apes, a nearer approach to this crucial attitude is doubtless possible, but, as was iong ago pointed out by Prof. Owen,* the manner in which the skull is placed upon the bones of the neck, the shortness and comparative weakness of the loins and the position of the bones in which the thighs are articulated, almost in a line with the spine, make it practically impossible for these mammals to stand unsupported bolt upright upon the soles of their feet. A more or less semi-erect position, however, is characteristic of all the most distinctively manlike apes, and bending at the knees and the loins and the head, as they do, diagrams portraying the simplest possible expression of their distinctive attitudes would, instead of depicting a full faced aspect, as in the case of a human being, necessarily have to represent a profile view, and this is also true of all the lower mammals. Space would be wanting in a much longer and more elaborate arti cle than the present one to follow out this phase of the subject or even to notice, however cursorily
the curious results obtained by measuring the coin the curious results obtained by measuring the com-
parative length and graduated obliquity of lines produced by and expressing the habitual attitudes of mammals, neither reclining. crouching nor sitting, but Transactions or the Zoological Society, i, page 343 .
resting in as erect a posture as is natural to them, from the vertical, assumed by man alone, to the hori zontally prone position of the moles and the duckbill, and again descending to the depressed oblique in sloths, to end in the antithesis of that of the bimana, the reversed situation of the several.parts of the body in their relation to each other that is habitual to bats, when not in action, as they rest hanging suspended head downward.* It is worth remarking, as indicating

IAGRAM showing Natural attitude of certain mam
MALIA. THE LINE PASSES THROUGH EAR AND HEEL. relation between such widely separated animals, that certain groups of birds, as the crossbills and the par rots, show a tendency to assume this attitude, particu larly the genus Coryllus or bat parrots, as they are called. When sleeping, or even when feeding, these birds hang head downward from the branch upon which they roost or from the wires of their cages. More extraordinary still are the colies or mouse birds (Collina capensis), which, like certain species of bats, are said invariably to sleep head downward, congregated into globular masses, each consisting of a number of birds. The power of curling up into compact balls possessed by certain mammals is undoubtedly a sign either of low grade of orgation or
 head only above water for a moment, at a place several undred yards distant. When swimming and un molested it is buoyant and moves with its whole body
above water; but when in danger it sinks its body, above water; but when in danger it sinks its body,
leaving only the head and neck out of the water, pre leaving only the head and neck out of the water, pre
seuting the appearance of a portion of a large snake." euting the appearance of a portion of a large snake."
In the two sketches given, the ahinga or snake bird, in three characteristic attitudes, affords a sug gestion in restoring corresponding ones of the extinc long-necked aquatic lizard, the plesiosaurus, on the basis of the general truth that similarity of construc tion both follows and implies similar habits, as whales and dolphins have come to resemble fish, and also that such resemblance in conformation and arrangemen of parts involves and renders unavoidable a proportional similarity in characteristic attitudes, as is seen indeed in many cases, for instance in the swift and swallow, which, though be longing to different families, are almost identi cal in postures and manner of flight. There is nothing to show that the long-necked plesiosau rus, though essentially aquatic, was exclusive ly so. The proportional large size and development of both pairs of so-called flippers as com pared with those of its contemporary the ichthy osaurus, or fish lizard, or to the fins of the whales or sivena, seem to indicate other use than those of mere paddles. Certainly, as far as its anatomical structure is concerned, the plesiosaurus seems as well fitted to go ashore as walruses and fur seals, and there can be little doubt, I think, that these animals left the water occasionally, at least during the breeding season. In fact, among the myriad inhabitants of the water we know no long-necked anima that is exclusively aquatic or any that has well developed flippers, whether these flippers have claws or not, that does not come ashore; the tail, too, stout and shaped like that of many of the old dinosaurs or the modern kangaroos suggests its use, as in the animals mentioned for support in sitting upright. It may now be definitely asserted that it is altogether probable the digits were well marked and separated.
No attempt has been made to indicate re spective sizes of bird and reptile, the plesiosaurus being perhaps as many feet as the bird is inches in length.
Although, of course, any attempt to connect this bird and reptile by the methods ordinarily used by comparative anatomists would be futile the great similarity in the general plan of con struction in the two animals, and the conse quent identity of their characteristic postures, ought to aid greatly in forming a vivid mental
is found in the greatest perfection in the duckbill mole (Ornithorhynchus anativus) and the armadillos. It is trix) and to some the porcupine echidna (Echidna hys trix) and to some extent by the aardvark (Orycteropus * Of course such lines and measurements cannot be made to apply to aquatic mammals that are either footless, as the whales, or that do not rest
or support themselves upon legs and feet, as the seals, nor to those, to use or support themselves upon legs and feet, as the seals, nor to those, to use
a Hibernicism, whose standing position is a sitting one, as is the case with the kangaroos and the jumping mice. These require a different system of ine kangaroos and he jomp, do bindor, reptiles, batrachia and ineects.
diagrams,
picture of creatures extinct long before the light of th sun portrayed images of nature upon the human brain.
In another instance, however, the bridge between the extinct and surviving form is not so completely broken down, and not only the characteristic attitudes, but the anatomy of the bird, points too distinctly to extinct reptilian ancestors to be otherwise interpreted
(To be continued.)

recently patented inventions. Engineering.
 Drawbridge.-William L. Sampson,

 Dean Grove, N. J. A bridge of comparatively ligh weight. and which is strong and durable, and may bequickly opened and closed, has been devised by this inquickly opened and closed, has been devised by this in-
ventor. The draw spans each consist of a framework ventor. The draw spans each consist of a framework
traveling on wheels on tracks laid in the bed of the waterway, the spans being moved to open or closed position by a rope or chain passing over a pulley in the bed of the
waterway and around a drum on shore, the latter being waterway and around a drum on shore, the latter being
water operated by any convenient source of power. When the
draw is open the approaches to the draw span present an draw is open the approaches to the draw span present an
upward incline designed to prevent accidents by the atupward incline designed to prevent acci
tempted passage of teams or passengers.

Electrical.

Incandescent Lamp.-Forest W. Dunap and John R. Quain, London, England. This invention provides an improved light refracting and magnify-
ing envelope to concentrate the light rays downward or ng envelope to concentrate the light rays downward or direction. With this view the bulb is inclosed by a closely wound spiral of glase rod of circular or other closely wound spiral of glass rod of circular or other
section, having throughout its length the property of a
biconvex lens or prism, producing a concentrating and biconvex lens or prism, producing a concentrating and
magnifying effect. When not required to apply the enmagnifying effect. When not required to apply the en-
velope to the entire lamp, the upper or the lower half may be employed as desired.

Bicycles, Etc.
Bicycle Propelling Mechanism. Erling Slippern, Anaconda, Montana. Besides the usual foot-propelling mechanism, the handle bar, according to
this invention, is made with each side separate and with gear or toothed connections, whereby the up and down motion of the two sides of the handle bar may be comon the forward part of the frame, this wheel being connected by a sprocket chain with the main crank shaft The arrangement is such that the motion of the handle
hars will be opposite that of the pedals, the right handle ars will be opposite that of the pedals, the r
ar rising while the right pedal is descending.
Elastic Tire.-William F. Williams, London. England. This tire is made of a band of rubber or rubber and canvas in which are embedded juxtaposed
transverse spiral springs, the band having lateral extensions stiffened by non-coiled prolongations of the springs, and being transverselyarched whe:1 applied to the whee rim, on which it is retained by engage:nent of the lateral
extensions. The device is designed to combine the adantages of a pneumatic tire with the durability of solid rubber tire.

Warping Roller. - John Cocker, Philadelphia, Pa. This invention provides an improved sectional drum for beam warping machines, arranged to drum with new parts instead of procuring an entire new drum when renovating a machine. The drum shaft carries one, two or more rimmed webs, a drum rim formed with internal bosses or flanges registering with the web rims, and set screws in the web rims for adjusting and supporting the drum rim concentric to the ehaft. Drum
rims of different diameters may be used, and placed in rims of different diameters may be used, and placed in
position by the set screws on the webs, for the same warping machine, according to the work under treatment.
Roller Cotton Gin-Frederick L. Montgomery, New York City. This invention covers an
improvement on a formerly patented invention of the mprovement on a formerly patented invention of the properly strip the seed from the lint of upland or other cotton without danger of tearing or pulling the fibers
anart and without crushing or otherwise injuring the amart and without crushing or otherwise injuring the
ce.al. A fixed stripper plate has its inner face concave and in close proximity to the peripheral face of the gining roller, the upper end of the plate being formed into knife edge and a movable stripper operating over the plate, while under the plate is a drawing device with rollers, one in front of the otber, and held in peripheral contact with the ginning roller

Agricultural
Cattle Guard.-James Hensey, War en, Ark. To prevent cattle or other animals from passing over railroads or other dangerous places, this inven-
tion provides a simple and inexpensive guard or gate mounted to swing transversely of the track, across which 18 extended a rock shaft carrying a lever, there
being a link connection b:tween the lever and gate, arme eatended from the shaft, and a platform bearing on the arms. The platforms may extend any desired
distance at both sides of the gate or guard, and the ardistance at both sides of the gate or guard, and the ar-
rangement is such that, by an animal stepping rangement is such that, by an animal stepping upon
one of the platforms, the gates are drawn to closed one of the
Bee Catcher. - Ed ward Arrington, in the hive without danger of the operator boing st:ng in the hive without danger of the operator being st:ng,
this invention provides a suitable slide frame with grooves in which may be reciprocated a sliding door, controlling
the entrance of a receptacle. the whole being pivotally the entrance of a receptacle. the whole being pivotally
mounted on a bracket on an extensibie polle. Flexible pieces are provided to enable the operator to slide the
door to open or close the receptacle while the latter door to open or close the receptacle while the latter
is held in elevated position or near a tree limb, the avitation of the latter causing the bees to fall into the
receptacle. The receptacle may be held in any desired position with respect to its support, and raised close to the swarm of bees.

Miscellaneous.
Filtering Apparatus. - Charles Prevet, Paris, France. This invention provides a simple
and inexpensive filter, designed to be made in small pocket form for the use of soldiers, sportsme., etc., or
in larger sizes. The filter proper is composed of two shells of unsized filtering paper, between which is interposed a lens-shaped piece of perforated metal or of
Dorous material, preferably carbon, the arrangement oorous material, preferably carbon, the arrangement
being such that the water will be first passed through
the paper and then through the carbon, a free space be
ing left for the filtered water to collect in. The filtering ing left for the filtered water to collect in. Ther by fla ringe an
position.
Penholder. - Wellington Blend, Yonkers, N. Y. To give increased elasticity at the holding end of the pensock and thus render an ordinary stee penmanship with greater freedom and beauty of shading than can be ordinarily attained with a steel pen, this invention provides for an elastic coiled wire ferrule on the penholding end of the penholder, an elastic holder
plate being also attached to the penstock and projected outward into the ferrule.
Fountain Pen.-Carl J. Renz. New York City. To provide for the control of the ink from the barrel to the pen by a slight movement of a control-
ling valve or stem, the valve opening and closing the barrel close to the feeder, and the feeder being formed continuous with the valve, are the main objects of this
invention. The feeder is placed loosely in the barrel invention. The feeder is placed loosely in the barrel
nozzle, allowing a more than usual free circulation of nozzle, allowing a more than usual free circulation of
air, but allowing for a gentle vibration of the feeder, whose stem extends the length of the barrel, so that when the pen is in use a greater flow of ink is obtained
in rapid writing and a lessened flow in slow writing. The construction is such that the pen may be readily and conveniently placed in position on the feeder or detached therefrom.
Gas Burner. - George I. Woolaver, Quincy, Mass. A burner designed to utilize the expangion and contraction of metals to regulate the flow of
gas has been devised by this inventor, the burner being intended to stop or nearly stop the flow of gas when the flame is put out. Standing on the casing or body portion of the burner is an expansion tube, to the upper end of
which and extending through it is attached a gaeconducting tube, the latter having a bypass, while a valve held by the lower end of the gas-conducting tube is the usual cock, but on the extinguishment of the gas,
without turning this cock, the flow of gas is so far diminished as to pros

Kite.-Claison S. Wardwell, Stamford, Conn. This is a kite of simple and inexpensive con-
struction, arranged to be conveniently folded. It is of substantially diamond shape, with a longitudinal stick and a bow or cross stick, the bow of the cross stick
being maintained by a tightly drawn cross wire connected by bounding cords or wires which carry the
cover. The two sticks are preferably held in position by cover. The two sticks are
blocks and a binding cord.
Hitching Post. - Elmer J. Sellers, Kutztown, Pa. A post adapted, when not required for
use, to be dropped into a chamber or recess below the level of the ground is provided by this invention. The post is hollow, and is slidable in an embedded tube, in which are guides, there being means for locking the post in both its raised and lowered positions, and the ar
rangement being such that, by meane of springs, the partial elevation of the post is automatically accomplished by depressing or otherwise operating a trigger
or catch, making it unnecessary to stoop to the ground or catch, making it unnecessary to stoop to the ground

Neck Yoke Coupling. - Lord 0 . Snell, Athens, Pa. A coupling which permits the easy attachment to the harness 18 provided by the invention, the coupling not being liable to become accidentally tached in case of a broken whiffletree or harness. The
coupling consists of a head with shank for attachment to coupling consists of a head with shank for attachment to
the pole, the head extending above the shank and having a segmental guideway in which is free to move and turn the ball-shaped head of a link pivotally connected by a clip to the yoke har.
Broom Sawing.-Frederick A. Buck and Joseph D. Valentine, Urbana, O. To hold a broom edgewise or parallel to a saw blade while the handle is
being acted on by a band saw, jig saw or other suitable saw, to cut a curve or slit lengthwise through any portion of it, these inventors have devised a novel form of support by which the body is movable freely on the
table to permit the kerf to be waved and to reduce fricsuppo
table to
tion.

Clothing Boiler.-William P. Ry lander, Temple, Texas. This boiler has in its upper portion brackets on which rests a cover having a perforated upper cover, there being in the lower portion
of the boiler a false conical perforated base from whic a pipe leads upward to a soap box in the lower cover,
from which also a surrounding perforated pipe leads downward. The soap is thus adied to the water as the boiling proceeds, and there is no danger of
suds hoiling over the exterior of the boiler
Household Furniture.-Cbarlie E. Kuhn, Johnstown, Pa. A combination article of house
hold furniture provided by this inventor comprises a bench adapted to be used to support tubs in washing for other purposes, a step ladder, a child's crib and support for an ironing board or similar article, the inven tion covering a novel construction and combination of
parts, including end frames with pivoted locking diago. nal braces, removable sides and a removable slatted

Lock.-Henry 1). Smith and Josiah W. Batcheller, st. Louis, Mo. A lock especially designed for use on freight cars has been devised by these invent-
ors, whereby the doors may be securely closed by a lock located within the car. with only its operating
apindle appearing at the outside. The lock is provided with a dial or disk containing a combinaton, which, together with the hanuile or knob, may be quickly and
conveniently removed from or placed in engagement with the locking spindle to bolt or unbolt the lock. Note.-Copies of any of the above patents will be
furnished by Munn \& Co. for 10 cents each. Ylegse send name of the patentee, title of invention, and date of this paper.

Business and 2ersonal
line for each insert under this head is one Dollar Advertisements must be received at publication office as early as Thur
ing veek's issue.

Marine Iron Works. Chicago. Catalogue free. For logging engines. J. S. Mundy, Newark, N. J. Gasoline Brazing Forge, Turner Brass Works, Chicag Yankee Notions. Waterbury Button Co., Waterb's, Ct Power Hammers. Jenkins \& Lingle, Bellefonte, Pa. Ferracute Machine Company, Bridget
make a specialty of Minting Machinery.
Improved Bicycle Machinery of every description
The Garvin Machine Co., Spring and Varick Sts., N. Y. Concrete Houses - cheaper than brick, superior
tone. "Ransome," T57 Monadnock Block, Chicago. Manufacturers contemplating advertising should a
ways write to M'f'rs Adv. Bureau, New York, for rate Machinery manufacturers, attention: Concrete and Machinery manufacturers, attention. Concrete and
mortar mixing mills. Exclusive rights for sale. "Ran-
some," 5 IT Monadnock Block, Chicago.
The celeirated "Hornsby-Akroyd" Patent Safety Oil Hyine is built by the De La Vergne Refrigerating Ma

The best book for electricians and beginners in elec By mail et Munn \& 0 publise by Geo. M. Hopk doubles the pleasure of driving. Intending buyers carriages can save dollars by sending for the large, fre catalogue of the Elkhart Carriage a
facturing Company, of Elkhart, Ind.

HINTS TO CORRESPONDENTS.
Names and Address must accompany a all etters
on on attention will ve paid thereto. This is for oun
information information and not for publication.
References to former articles or answers should
give aite of paper and give date of paper and page or number of question.
In quirites not answered in reasonable time shonld
be repeated: correspondente will bear in mind that

Buor in this deparartment. cachl must take his turn tertise
nyers wishing to purchase any article not advertisee
in our columns will be furnished with addresses of

to may be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of
price.
Minerals sent for examination should be distinctly
marked or laheled.
mamination should be distinctl.
(7332) C. H. asks: 1 . How can I coat copper with quicksilver? A. Clean the copper by dip-
ping it into dilute sulphuric acid, and then put it into the mercury, or else pour the mercury upon it and rub it around. 2. Give me the address of some electric supply house in Chicago where I can get the material to
make the battery described in SuPPLEM ENT, No. 792. A Any dealer in Chicago will supply you. See our adver-
tising columns. 3. How many volts will one Bunsen cell tising columns. 3. How many volts will one Bunsen cell
5×7 give? A. About 1.7 volts.
(7333) W. C. P. writes referring to query No. 7321: The article I have seen sold for making a
transfer of a picture to a wLite paper resembles paraffine, colored to disguise it. I have used an ordinary paraffing canne or the purpose with entire success. The transfer
cannot be made very well after the ink of the picture is dry. An old print could not be transferred. Of course the picture is reversed in transferring. The right hand becomes the left. People with articles in their hands look thanded in the transfer
(7334) S. C. McKay asks: 1. Is there manufactured a mechanism by which current (either the
alternating or an intermittent commuted current) from a regular telephone magneto dynamo is utilized to mak and break a local battery circuit ? A. We do not know any such appliance on the market, but there is no difti-
culty in making the current make and break another circuit in the same manner as it rings a bell by a vibrating armature of an electro magnet. 2. Please explain the
seeming change or loss of polarty exhibited in the common noncentrally pivoted magneto ringer. One may find the clapper persistent in hanging over to one side,
but. in a few days or weeks, equally as determined to but. in a few days or weeks, equally as determined to
"stick" to the other side. Lightning sometimes makes this change, but I find that it often occurs in winter when polarized magnet is generally used. The armature is apt to stick on one side or the other. The shifting may
be due to some slight change of adjustment brought be due to some slight change of adjustment brough about by atmospheric changes. 3. I have repeatedly, by
putting my car to the transmitter of a telephone, heard putting my ear to the transmitter of a telephone, heard
talking that was going on over the line, my hook being talking that was going on over the line, my hook being
down at the time. This happens with carbon phones using either the carbon or the inetal diaphragm. Also
those with the extension arm. Is this not caused by the waves of sound being imparted to the body of the phone and thence to the diaphragm by the ringer coils? A
When the receiver is harging on its hook, the circuit of When the receiver is harging on its hook, the circuit of
receiver and transmitter is open, and the circuit of tie magneto and the bell is closed. The talking may be
caused by nduction from the bell coils as you siquest (7335) B. P. B. asks : 1. Can a common magnew generatur oe changed in winainge, commutator, power) lamp? Or is the current gotten ont of one kind, too weak ? I refer to common battery lamps. A If your magneto generator gives sufficient current, it
would light a lamp. No special kind of winding or commutator is required. 2. If one of the generators will
light a lamp, doea a special kind of lamp have to be
used \boldsymbol{q} If so, please tell me what kind? A. No. 3. Will
you please deseribe, in this issue of your paper, how an you please deseribe, in this issue of your paper, how an
electric needle, used to kill the roots of hairs, is made and electric needle, used to kill the roots of hairs, is made and
operated, and by what kind of batteries, etc. ? A. This No. 20 , qu (7336) G. L. asks how to apply. Rum orff's condenser to the medical coni des ine in Scien tific American Supplement, No. 56, al I would also like to know the difference, if any, between an induction and spark coil. A. The condenser for your coil should consist of 20 sheets of tinfoil, each 4×5 inches. Allow the sheets to project on the ends 1 inch, and the effective
surface of foil will be 4 inches square. Join one side of surface of foil will be 4 inches square. Join one side o
the condenser to the plus wire from the battery and the the condenser to the plus wire from the battery and the
other to the negative wire. A spark coil is an induction coil with a condenser. Both the spark and the induction coils are explained in Sloane's "Electrical Toy Making," price $\$ 1$ by mail. Or we can send you for $\$ 5$ the "Elec trical Library.
(7337) G. A. K. writes: I am about to construct a telephone line (metallic circuit), and wish to run electric light wires on same poles for a distance of 7
miles, bare copper. Will want to carry sufficient current for about 610 to 80016 candle power incandescent lights. line or will a 2 -line wire do for alternating current? How much current will twenty 16 candle power lights consume in one hour? Will there be any appreciable loss of cir rent transmitted through 7 miles of bare copper wire if well insulated? A. You can use single phase alternating current system, using two wires, each of No. 6 B. \& S gage, generating the current at 2,000 volts, transforming it to 5,00 volts for the line and again stepping down to
110 volts for the lamps. It would not be safe to use bar 110 volts for the lamps. It would not be safe to use bare
wire on account of the high potential. There will be a loss of about 10 per cent in transmission under the above conditions. The amperes of current represent the rate
of flow, and depend upon the ivoltage as well as the effiof flow, and depend upon the foltage as well as the effi-
ciency of the lamp. Twenty 16 candle power lamps, at ciency of the lamp. Twenty 16 candle power lamps, at
110 volts, would consume about 10 amperes. If used for one hour, it would be equivalent to 10 ampere hours If the
great.
(7338) G. E. C. asks : 1. Is there a more Scting battery than the plunge battery described in the
Scientic American of August 31, 1889, for running the simple electric motor described in March 17 , 1888 , number, or a more efficient motor than that one for run-
ning a sowing machine ? I think of making one, and ning a sewing machine ? I think of making one, and
want the best A. You can try the Edison-Lalande, some types of which will give as high an efficiency as the icbromate; but you must consider that you cannot have Fields a good and terials rapidly. 2. How would 8 cells of dry battery work, as it would be much cleaner and handier? A. You for open circuits and intermittent use only. They run down very rapidly on a closed circuit. 3. And would the
motor need to be so large for 1 machine as it is said to motor need to be so large for 1 machine as it is said to
run 2 or 3 ? A. While a maller motor might run 1 machine, it is not wise to have the motor so small that there is little excess of power to meet a heavier load than the is little excess of power to reet a heavier load than the A. Yes. 5. Is electricity of any value medically, if so,
how should it be used for catarrh and neuralgia and rheumatism, or where can I get information on that subject A. For the medical use of electricity, consult your physician. It is the only safe course. 6. Where can I get the tery; also, the carbon and zinc plates? A. These mate rials can be had of any dealer in electric supplies in you cily or New York. Glass jars can be used for the bat-
tery in place of gutta percha, and will be less expen-
(7339) S. W. E. asks: 1. Can a storage battery of 25 cells, each cell giving when charged $2 \cdot 1$ If so, in what manner A. Twent 5 -five storage cells require $25 \times 21 /$ volts $=621 /$ volts pressure in the charg ing currrent. You would need to divide the battery into two parts in multiple to charge it with your 52 volt dy namo. You should also arrange a wire resistance-iron wire is good ensugh-to take up the rest of the drop. Thus: $13 \times 21 / 2=33$ volts nearly. 52 volts are about $1 / /$ times 33, and you will require wire enough to have a
resistance about $11 / 2$ as great as that of your 13 cells. What resistance about $1 / 2$ as great as that of your 13 cells. Wha
that is we cannot tell you. The charging will be ver slow, as your dynamo gives but 2 amperes of current; and the charging will be at that rate per hour. Thus: If the cells are 30 ampere hours, a current of 2 amperes will
require 15 hours to charge them; and similarly for any require 15 hours to charge them; and similarly for any
other capacity. The better way is to use a heavier cur. other capacity. The better way is to use a heavier cur-
rent, and so reduce the time of charging. 2. Can it be charged through one mile of No. 12 galvanized iron wire charged through one mile of No. 12 gava, if there is current enough; but we do not see why any one should waste current on a mile of iron wire It would seem to be a better way to carry the battery to the electricity. rather than to carry the electricity to the battery. 3. Can 16 candle power lamps be manufactured to
use as low at 15 voits? A. Yes. Correspond with the principal lamp manufacturers.
(2340) R. C. F. writes: Will you please give an answer in the next issue of your valued publica tion to the following problem which we clip from local paper and which has created a discussion: "We have to send us an intelligent answer to. No. 1: A is a farmer who sells a horse to B for $\$ 90$. The followsells him to buys the horse back from's profits in the three transactions?" A. The profit of ail the transac tions is the cufference between the price of the first sale and what A had at the close of the operation, which amounts to $\$ 20$. A gained $\$ 10$ by the repurchase and
$\$ 10$ by the secrnd sale over the first sale, or he received $\$ 110$, the first sale being $\$ 90$. The apparent discrepancy between the repurchase and last sale is misleading at first glance, and the difference between the first sale and the last sale only should be credited to the second sale, which sbows the actual amount gained is the three
transactions to be $\$ 110-\$ 90=\$ 20$ profit. In commer-

The selling advance is the real profit, which in this case
will he $\$ 30$, the difference between the purchase and the will he
sale.
(7341) A. E. H. asks: 1. How long will a cinc last in an ordinary gravity battery of four cells, ered with copper deposit, it is difficult to tell just when it is completely worn out A. A zinc of regular weight will last for six months in a gravity cell. Take it out once in a while and scrape or wash off the muddy coating. 2. Is it not better to amalgamate the zincs in the above eravity cells? A. The zincs are not usually amal gamated in the gravity cell. They are made, however
of an amalgam, so that the mercury extends throughou the whole mass. Such zincs are called composite zinc and are in the market. 3. What is the right density of the solution around the zincs (epecific gravity) in a gravity battery to obtain the maximum current; an does a small percentage of iron sulphate, which is con tained in commercial copper sulphate, affect the outpu of the battery? A. The solution around the zinc be
comes saturated in a short time, and the excess of zinc sulphate then crystallizes out at the top around the side of the glass. This should be removed occasionally 'The iron has no effect. The largest current will be had with a very weak zinc sulphate solution, say sp. gr. $=1 \cdot 02$ but this cannot last long, since the action of the cell will raise the density of the solutiou around the zinc and reduce the current. An equally important condition for equally difficult to maintain, even if the zinc be amal gamated.
(7342) A. F. S. writes: I am building an arc lamp with a carbon ${ }^{5}$ inch diameter, to be used
on a 110 volt circuit. I want to feed the carbon in the usual way, i. e., by a break and magnet to reduce the same. 1. Is it proper to connect the magnet in paralle with the lamp? A. Yes; that is the usual way. 2. Of what resistance shall be, what size wire shall 1 use to
get the same? The coil is 2 inches long by 1 inch diameter, core $3 / 2$ inch diameter. A. Give the shunt coil 100 times the resistance of the direct circuit through th
carbons. With $3 / 8$ inch carbon the resistance of the ard is 5 or 6 ohms; bence, you will require 600 ohms in th shunt circuit. Use No. 30 , wind your spool full and put the rest in a separate coil within the lamp. 3. Would you recommend an extra resistance coil to be used in addition to that of the magnet? A. Yes, as above. What is the resistance of an arc flame at a gap of For $1 / 8$ inch arc, about 7 ohms; for $1 / 4$ inch arc, about
(7343) D. O S. writes: On page 408 of our book, "Experimental Science," there is decribed mation. First: What is the precise chemical chang which takes place between the solution and the zinc and iron elements? Second: What is the office of the black oxide of copper, placed within the cell? Third: Will wrought iron serve as well as castion? and, fourth, When this battery becomes exhausted, to what is this exhaustondued to this one by the simplicity of its constructio and the statement that it "will operate several month without replenishing." I have tried a bichromate bat tery, but the frequent renewals necessary compelled me to abandon it. A. The cell in question is the Lalande Chaperon cell, which has been improved in the United States under the name Edison-Lalande cell. You will find the chemical changes fully worked out in "Primary Bateries, H . S. Carhart; price $\$ 1.50$, by mail. Briefly,
the action of the cell is to break up the caustic soda, zinc taking the place of the hydrogen in it. The hydroge then takes oxygen from the copper oxide at or near the rron, the negative plate forming water, and leaving the copper in a metallic state. The object is to get rid of negative plate, would stop the current in a short time the hydrogen. Wrought iron is used insome forms of this cell. In this, as in all other cells, exhaustion is due to the chemical decomposition of the materials. Here the zinc is changed into a sodium zincate, $\mathrm{Na}_{2} \mathrm{ZnO}_{2}$ and th copper oxide $\mathrm{CuO}+\mathrm{H}_{2}$ becomes $\mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}$. When all the materials are changed, the battery stops its working There is in it no source of energy remaining. The iron not affected by these changes, and an iron pail will las will be exposed to rust from the action of the water which the soda is dissolved.
(7344) A. J. L. asks for a formula for a polish for polishing the nickel on bicycles, or if you the number of the paper that it was in. A. Rub the rom any dealer in bicycle sundries preparations for cleaning the nickel parts of a bicycle in an expeditious and safe manner. The polishing cloths now on the arket answer admirably to keep the nickel bright.
(7345) C. A. C. asks: How canvas can be made mildewproof without injuring the fabric. A hen add 1 pound of sodium carbonate; when dissolve add 2 ounces of tartaric acid. This holds the partially of the alkali used. The canvas, etc., should be soaked in this solution for 24 hours and theu dried withou wringing
(7346) C. B. W. asks how the paper is prepared of which dresses of dolls are made so that the color changes with the weather. A. Cobalt chloride dis solved in alcohol applied to artificial fowers or to the abric pink when the ir is humid; when the air is warm and dry, the papar will be purple or blue. A solution of the same constitutes one of the sympathetic inks.
(7347) T. P. B. says: Can you tell me if the phenomenon of lightning during a sno refer has occurred when the atmosphere has become uddenly warmed above the season's average norma temperature. Lightning never occurs in cold weather
without a current of warm air in the upper atmosphere.
he Social Mind and Education. By The Macmillan Company. Pp. 154
Phe Price $\$ 1.25$.
To give "greater unity and clearer purpose to our higher education" is the design suggested in "bares science of sciences," notes the development of the and of individual thought, and discusses " the integration of studies," and a "tentative curriculum," from the view point of a professor of sociology in the University o
Chicago, the author endeavoring to bring conception Chcago, the author endeavoring to bring conceptions
from social philosophy to bear upon the problem of edurom soc
cation.

Todd's New Astronomy. By David P Todd, M.A., Ph.D., Professor of As tronomy and Director of the Observa tory, Amberst College. New York Cincinnati, and Chicago: American
Book Company Pp. 500 Illus Book Company. Pp.
trated. Cloth, 12 mo. Price $\$ 1.30$.
This small textbook which Prof. Todd has just pre
pared is an elementary work for students. The clear ess of explanation and profuseness of illustration, to ether with the care which has been taken to give horough and accurate conspectus of the latest advance all along the lines of recent investigation, which include ucha wealth of new knowledge in every department, an notably in that of astrophssics, render this worknot only hensive review of astronomy up to date for the ho have studied that science before the spectroscope and the latest immense telescopes had contributed their quota of information as to the structure and com
and position of the universe. The beautiful pictures of the
on, moon and planets convey lessons to the younges reader; and the simple and practical methods of making ementary experiments of observation, such as the fin g of the true north pole ($\mathrm{pp} .22,116$, and all the poin un (p. 259) and moon (p. 239), without costly apparatue, hould make many a youth an amateur astronomer. A beautiful instance of simplif ying subjects which may puzle the student is the tub and hoop experiment to illus ate precession of the equinozes, described and illus tical value of astronomy is made evident, and a consp cuous application of science to everyday use is found in chapter viii, on the Astronomy of Navigation: in which he author applies the science particularly to the vo ge of the yacht "Coronet," in which he sailed for Japan,
in 1896, to observe the eclipse of the sun. The book is, edicated to the Messrs. James, who provided this yach and one of whom accompanied Prof. Todd in it to Japan oductory Course in Mechanica H. Lockwood, Instructors in Shef field Scientific School, Yale Universi
ty. With numerous illustrations and ty. With numerous illustrations and \& Brothers. Pp. 115. Price $\$ 1.80$
This is a book for beginners, to prepare students for of the elements of geometry, but omitting machine an bridge drawing, and the more advanced applications of nechanical drawing. The book also has a chapter comrehensively treaating of perspective.
The Barometrical Determination Surgeon United States Navy. New York: Spon \& Chamberlain. Price

This brief monograph affords a practical method of barometrical leveling and hypsometry for surveyors and ountain ciimbers, presenting formulæ therefor whic re free from errors, which cannot be said of some of hose heretofore in use, and a new metbod designe

The Sun's Place in Nature. By Si Yorman Lockyer. London and New York : Macmilla.

The interest in this book will be greatly heightened b he fact that its author has been at the head of one o solar eclipse, and the care which was taken to equip the party of which Sir Norman was the head is but the result of his long series of studies in this special line, the volume before us being only one of his numerous contri butions on the subject. Since the author's publication in 1887, of "The Chemistry of the Sun," when approx phere were carefully considered, there has been such reat improvement made in the instruments used, an a large accumulation of independent obser been very mach broadened, and yet without giving u sufficient data upon which to reach satisfactory concluions. All of the more recent auchoritative investiga ions touching this subject are here considered, in con pectra of the sun and different stars and photographic perentations of nebulx. The meteoritic hypothesis is es pecially considered in its many bearings as affording the nost ample data for fixing the place of the sun among its fellow stars.
'treet Cleaning, and the Disposa OF a CitY's Wastes. By George E
Waring, Jr. New York: Doubleday
$\& \quad$ McClure \& McClure
Price $\$ 1.25$.

It is not too much to say that the late Commissioner Street Cleaning of the City of New York has made fo imself a world-wide reputation in this particular line. Coming to the task of the supervision of the cleaning o in need of thorough and energetic work, and when the department had been for a long time suffering from want of anything like efficient organization, he introduced ystem and order into the business, and effected such an immediate change in the looks of our thoroughfares that
the subject became at once matter of general comment.
During the two years of Col. Waring's administration of the office the death rate showed a large decrease-a fact which leading physicians attribute mainly to the better ondition of the streets. As to the disposal of the city's
wastes, which is also treated of in this volume, ou aders will remember the full illustrations and descrip ion of Col. Waring's plant and process which appeare eresting to note that Col. Waring estimates that in the ear future the revenue derived from the city's waste will pay half the expenses of the work.
Oil Analisis. By Augustus H. Gill. philadelphia: Pp. 139. Price $\$ 1.50$.
To meet the needs of a professor teacbing oil and gas aly which only the more commonly occurring oils aredis cussed, considering their preparation, properties, analy ical constants, uses and adulterants. It is an excellen ook for one desiring right elementary guidance in the dging of oils, or for begining the study with the vie becoming an expert.
Arithmetic of the Steam Engine By E. Sherman Gould. New York
D. Van Nostrand Company. Yp 7\%. Price $\$ 1$.
The author, a member of the American Society of Civi ngineers, presents here a collection of simple and f practical use, touching the fundamental principles of the practical operation of the steam engine.
A Report Upon Salmon Investiga TIONS IN THE COLUMBIA RIVER Pacific Coast in 1896. By Barton Warren Evermann and Seth Eugene
Meek, United States Commission of Meek, United States Commission of
Fish and Fisheries. Washing ton. 1898.

The Fishes of the Klamath River Basin. By Charles H. Gilbert,
United States Commission of Fish and Fisheries. Washington. 1898.

The Fishes Found in the Vicinity OF WOOD'S HOLL. By Hugh M.
Smith, United States Commission of Fish and Fisheries. Washington.
1898.

THE JACK RABBITS OF THE UNITED United States Department of A Dri culture Division of Biological Sur vey. Washington. 1897. Pp. 88.
Outlines of Rural Higiene. By Har
vey B. Bashore, M.D. Philadelphia The F. A. Davis Company. Pp. 84 Price 75 cents.
The author, an Inspector of the Pennsylvania Stat Board of Health, here sets forth. for physicians, students
and sanitarians, the conclusions reached through his ow experiences relative to water supply and waste disposal the soil, habitations, and disposal of the dead. An ap pendix on "The Normal istribution of Chlorine" is con ibuted by Prof. Herbert E. Smith, of Yale University. The wonderful variety and the great bauty of many of the specimens of cal endar work braught before the public with the commencement of eachnew year is a marked feature of the development of modern processes of illustration. The National Chemigrap
Company, of St. Louis, Mo., Charles B wo Company, of St. Louis, Mo., Charles B. Woodward this line, the year's calendar consisting of six large plate pictures, 18 by 22 inches each, and each well worth framng, being specimens of chemigraph photo-reproduction The same company also send us a beautiful bass relief of he Davenant bust of Shakespeare.

INDEX OF INVENTIONS

 For which Letters Patent of the United States were Granted FEBRUARY 1, 1898 ,AND EACH BEARING THAT DATE

Acid, apparatus for making sulphuric, A. Staub. Advertising device, E. Steinhauser............ 98,347 , Air brake coupling, Air compressor, J. H. Hoadley Air compressor governor valve, N. A. Christen- Ammonium sulphate, apparatus for making, w. Animal trard A. Piain. Annunciator, self-restoring, Jiteiner. Asphatt, manufacture of, A. Hannemann......i. Axles rotary motion transmitter from car, Baby support, T. W. Southington. ${ }^{\text {Bag }}$ See Punching bag. Telescope bag. Balance, E. Bohmer Bank protecting device. G. .j. Hinkle Basket cover fastener, C. B. Porter. Basket cover fastener, C. B. Porter. Bearing, antifriction, E. Flannigain Bearing, ant ifriction, A. J. Grinnell. Bearing, ball, W. Diebel. Bearing, ball, W.J. Tripp. Bed rail clamp, L. Weaver, Jr Belaying grip. W. E. Sargent. Bell, bicycle, C. A. Tredwell Bellarized signal, F. R Mc̈ Berty. Beveling machine, v. Royie. Bicycle, C. S. Beebe... Bicycle, J. M. Gilbert

ical compound is．
 Biscuits，wafers．and the iike，home made，The
Misses wiesting and shoes machinery for manufäcturing，
Boots sand
InternationalG oodyear Sh oe Machinery Com．

ね几docrtisements．
ORDINARY RATES．
Inside Page，each insertion，－ 75 cents a line
Back Page，each insertion，－$\$ 1.00$ a line C⿴囗十
Higher rates are claseses of ofired．Advertisements，Special and
The above are charges per agate line－about eight

OOOD or METAL WORXERS

ootand Fand Power Macilinery
－Woor－working Machinery．
BKIEGA FALIS MFG．COMPATV．
THE COPYING PAD．－HOW TO MAKE

A College Education for 7 Cents a Day

THE UNITED CORRESPONDENCE SCHOOLS，
F．W．Ew ALD，Gen．Mgr． 154,156 ， 158 stb Ave．，New York
WALWORTH
PIPE VISES
Strongest vises made．
enewable Steel Jaws．
WALWORTH MFG．CO．
20 OLIVER STREET

piping．Price ${ }^{22.25 .}$ ．Size 12 inch．For book on the
C．FRICHARDSON \＆SON，
BABBITT METALS＿SIX IMPORTANT

＂QUEEN＂ARCHITECT LEVEL $\$ 50$

Cheinidetit：

Gyelet machines．

Blake \＆JOHNSON， P．O．Box．7，Waterbury，Conn．，U．S．A． ARMSTRONG＇S No． 0 THREADING MACHINE
 BICYCLE TIRE REPAIRING．－THE

THE OBER LATHES

Gonuine Yanke Shaving Soap，10 cts

VULGANIZERS
 \qquad

 Buy Telephones
 tee and instruments sure bothr guard． OESTERN TELEPHONE CONSTRUCTION CO argest Man South Cinton St．，Chicago． Largest Manufacturers of Teleph exclusively in the United States．
 FIREPROOFING TESTS OF FULL SIZE

Coolelnews！
5 まwaz＝ Wま＝ Montgomery \＆Co． MAKERS AND JOBBERS IN FINE TOOLS KLONDIKE GOLD FIELDS．－INTER－

Cbe Scientific American PUBLICATIONS FOR 1898.
The prices of the different publications in the United
States，Canada，and Mexico are as follows： RATES BY MAIL
scientiffe American（weekly），one year，
 Export Edition of the Scientifl American（month－
Y）in Spanish and Engisb，
Buiding Edition of the Scientific American
（monthly），
－

COMBINED RATES

Scientiffc American and Supplement，
Scientifc American and Building Edit
Scientific Americ an，the Supplement，and Building
Terms to Foreign Countries
The eearly subscription prices of Scientifc American
publications to for elgn cou n tries are as follows：

$\begin{array}{llll}\text { Scientifct American（weekly），} \\ \text { Scientific American Supplement（weekly } & -\mathbf{8 4 . 0 0} \\ 6.00\end{array}$
 Export Edition of the Scientific Amer－
ican（monthly）in Spanish and Englist
3.00
0 Combined Rates to Foreign Countries． Scientifc American and Supplement，
Scientific American and Building Edi－
tion，
 ientiff American，Scientifc American
Supplement，and Building Edition，-11.00
above rates include postage，which we pay．Re－ MUNN \＆CO．， 361 Broadway，New York．

