
a WeEkLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, DECEMBER 25, 1897.	WEEKLY.

[^0] inclosing brick walls

THE COMPLETED STRUCTURE, SHOWING MARINE TOWERS.

THE STEEL GRAIN BINS-CAPACITY $3,000,000$ BUSHELS.
FIREPROOF STEEL AND BRICK GRAIN ELEVATOR. BUFFALO N. Y.

stientifir smerican.

ESTABLISHED 1845
MUNN \& CO.,
Editors and Proprietors
published weekly at
No. 36I BROADWAY,
NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN. (Established 184.).) One copy, one year, for the U.S., Canada or Mexico........................10 One copy, six months, for the U. S., Canada or Mexico.................. 10. One copy, one year, to any foreign country, postage prepaid, $£ 016 \mathrm{~s} . \operatorname{sid}$. 4.00 Remit by postal or express money order, or by bank draft or check. MUNN \& CO., 361 Broadway, corner Franklin Street, New York. The scientific American Supplement (Established 1876) is a distinct paper from the SCIENTIFIC AmERICAN. THE SUPPLEMEN'I With SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, $\$ 5.00$ a year, for the U.S., Canada or Mexico. $\$ 6.00$ a year, or £1 4s. Sd., to foreign countries belonging to the Postal Union. Single copies 10 cents. Combined Rates.-The SCIENTIFIC AMERICAN and SUPPLEMENT will be sent for one year, to one address in U. S., Canada or Mexico, on receipt of seven dollars. 'T'o foreign countries, eight' dollars and fifty cent \boldsymbol{a} year, or $£ 114 \mathrm{~s}$. 11d., postage prepaid. Building Edition of Scientific American. (Established 1585.) The BuILDING EDITION OF THE SCIENTIFIC American is a large and splendidy illustrated periodical, iss ued monthly, containing floor plans and perspective views pertaining to modern architecture. Each number is illustrated with beautiful plates, showing desirable dwellings, public building and architectural work in great variety. To architects, builders, buildings and architectural work in great variety. To architects, builders and all woo contemplate building this work is invaluable. Single copies 25 cents. By mail, to any part of the United States. Canada Single copies 25 cents. By mail, to any part of the $\$ 3.00$ a year, or $\pm 012 \mathrm{~s} .4 \mathrm{~d}$ or Mexico, $\$ 2.50$ a year. To foreign countries, Combined rate for BUILING EDITION with SCIENTIIC AMERICAN, to one address, $\$ 5.00$ a year. To foreign countries, $\$ 6.50$ a year, or $£ 16 \mathrm{~s}$. 9 d Combined rate for BUILIN NG EDITION, SCIENTIFIC AMERICAN, and SUPPI.EMENT, $\$ 9.0$ a year. To foreign countries, $\$ 11.00$ a year, or $£ 2 \mathrm{~s}$. 2 d . postage prepaid.

Export Edition of the Scientific American

 Readers are specially reauested to notify the
failure, delas, or irregularity in receipt of papers.

NEW YORK, SATURDAY, DECEMBER 25, 1897.
Contents.

TABLE OF CONTENTS OF
Scientific American Supplement

No. 1147.

For the Week Ending December 25, 1897.
I. AERONAUTICS.-A New Steam-propelled Aeroplane.

Page
18338
The weeping spruce,-1 illustration …........................... 1833
 IV. CY'CLING.-Alfred Kocher and His Pace Makers. -1 illustration. 183 v. HOROLOG Y.-Repeating Bells in Clocks.-2 illustrations...
 tricity for Power Pur
ence ot Coal Cutting
Review Prize Essay..

IX. PHOTOGRAPh Y.-Marine Photography.
X. PHYSICS. - New System of Locating Bullets. -3 illustrations.
XI. SOCIOLOGY.-The Musee Social and its Work in Switzerland.
XIII. TEXTLLES.-Philadelphia Textile School-A description of an
important texite school equipped with the latest form of textile

FAMOUS ENGINEERING LANDMARK TO BE REMOVED. The laying of the new 48 inch water mains on Fifth Avenue, New York, has reached a point where it is possible to dispense with the distributing reservoir at Forty-second Street, and this famous engineering work will now be torn down to make way for the noble pile which is to form the home of the New York Public Library. The reservoir was built over half a century ago to provide a terminal for the Croton Aqueduct, in common with which it forms the most monumental engineering work of the first half of the century in America. The cost of this water supply was more than $\$ 12,000,000$, and the enterprise with which the city of only a quarter of a million souls faced so great a financial burden was only equaled by the skill and good taste with which the engineers of that day, Jervis, Allen and Davis, carried out the engineering and architectural features of the work.
The reservoir, which crowns the summit of Murray Hill, stood well out in the country at the date of its erection. Fault has been found with its architectural design; though it has always seemed to us that the simple and massive Egyptian style in which it is built is singularly adapted to express the purpose of the inclosing walls of the structure. The reservoir covers four acres and is built entirely above ground. The walls are carried up high enough to give a maximum depth of 36 feet of water and a total capacity of 24,000 . 000 gallons. The walls are double, with a space between them, varying from 9 feet 9 inches to 14 feet in width, and they are tied together at intervals with cross walls. The outer wall, 4 feet thick throughout, has a batter of 1 in 6 . The inner wall varies from 6 to 4 feet in thickness and is vertical. A puddled embankmeut is laid against the inside of the inner wall and the bottom is covered with 2 feet of puddled earth, above which is 12 inches of concrete.
The work was carried out with that conscientious care which marks the whole of the Croton water scheme and testifies to the skill of the engineers and the thor oughness of the contractors of an earlier day.

THE POSSIBILITIES OF HIGH SPEED ELECTRIC

 TRACTION.In view of the many impossible schemes for air-line electric roads with speeds of from 100 to 200 miles an hour which from time to time find their way into the press, it is a relief to find the subject taken up and dis cussed in a scientific way by professional men who have no other object than to place the actual possibilities and limitations of high speed electric travel before the reader. In a recent series of articles in the Engineering Magazine the authors discuss the engineering and financial features of an electric road between New York and Philadelphia which would carry passenger between the two cities in thirty-six minutes, or at th rate of one hundred and fifty miles per hour. It is the opinion of the authors that the scheme would present no civil or electrical engineering difficulties which could not be overcome. The cost, however, as figured out, would be $\$ 190,000,000$. The estimate is made on the bacis of a road on the third rail system, with trains running at three-minute intervals. Three-phase 10,000 volt current would be used for transmission lines, and 1,000 volt direct current on feeders. Each station would have an economical capacity of 30,000 horse power and each substation a capacity of 20,000 horse power. The travel, estimated on the basis of several existing ele vated and suburban roads, is put down at 187,040 pas sengers both ways per day. This is more than four
times the traffic of all the existing roads between these cities. It is considered, however, that the reduced tim and the low fare, assumed at twenty cents, would greatly increase the travel. It is evident that, in the opinion of the authors, Messrs. C. H. Davis and F. S Williamson, the difficulties would be rather of a financia than electrical nature, and their study of the question of high speed travel shows once more that the limits to engineering performance are set by financial rathe than technical considerations.

PROBABLE SOLUTION OF THE ARMOR PLATE QUESTION.

There is some prospect of a settlement of the armo plate controversy between the government and the firms engaged in armor plate manufacture, by the latter offering to supply a much superior plate at the price fixed upon by the Secretary of the Navy. It is well under stood in naval circles that the great Krupp factory is turning out nickel plates treated with its new gas process which have shown better ballistic results than the nickel-steel Harvey plates which have won such world-wide celebrity. It now appears that the Car negie and Bethlehem Companies have acquired the rights to the Krupp process in this country, and two experimental plates are being made which will shortly be tested at the naval proving station at Indian Head The Krupp plates have shown all the hardness of the Harvey plates, with a remarkable toughness which ren ders it practically impossible to break them. Extreme toughness and extreme hardness seemed to be incom patible in the same plate, until Harvey combined th
hardness, however, is always present in greater degree than the toughness in Harvey plates. The new Krupp process seems to render the plate absolutely proof against fracture.
If the two experimental plates show all the good qualities expected of them, the obvious course for the government would be to fix a fair price and close a contract for the supply of the much needed armor for the new battleships.

A YEAR OF PLENTY IN KANSAS.

It is a commonplace truth that the source of the prosperity of this country lies in the soil-that good crops mean good times; but it is only when we have before us such astonishing figures as are furnished this year by the Kansas State Board of Agriculture that we appreciate the supreme importance of agriculture. Omitting the odd thousands, we find that the yield of winter wheat in that State is fifty million bushels worth thirty-four million dollars, or 160 per cent more than last year. The corn crop totals one hundred and fifty-two million bushels, and the yield of oats is twenty-three million bushels, the two together bringing in thirty-two million dollars. The total value of winter and spring wheat, corn and oats is sixty-six million dollars.

This is the record of a year of plenty. Compare it with the crops of the previous year, when the combined winter and spring wheat, corn and oats brougnt only fifteen million dollars to the farmers.
The table of the yields and values of the crops and products of all kinds, including, in addition to the cereals already mentioned, potatoes, flax, sorghum, dairy products, etc., is one hundred and thirty-six mil lion dollars. The total value of crops and live stock is two hundred and thirty million dollars, and the total net increase of all agricultural products is over forty million dollars. In the presence of such figures one is prepared to believe there may be more truth than jest in the statement that Kansas will "forward a car load of canceled mortgages " to the forthcoming exposition at Omaha as a token of her returning prosperity.

ECONOMY IN DETAILS

There is a good story told in a Philadelphia paper of French officer of engiaeers who, during a visit to one of the large machine shops in that city, regarded with comparative indifference the massive tools and " show " eatures of the establishment but paid close attention to a little tool-sharpening machine-a type of those numerous ingenious labor-saving appliances with which an American shop abounds. At the close of his inspection he stated that he had visited all the most notable en gineering undertakings and establishments in America and that he should report to his government that the biggest things in America are the little things. He was struck with the fact that in some establishment which he had visited the profits were mainly realized in the saving of materials and labor by close attention o details which in Europe are unconsidered trifles, and as an instance of this he quoted the little grindtone which he had noticed in the shops.
The criticism of the French engineer went direct to the mark, for while we have engineering works as reat as any in the world, it is in our genius for inven ion of labor-saving appliances that we lead the world, and herein, too, lies the secret of the extraordinary re ductions which we have been able to make in the cost of manufacture.
With the ever-growing magnitude of industrial operations and the increasing keenness of competition the race will be won by the people who have a geniu or economy in details, who are untiring in their effort to save time and labor in the most insignificant trifles of shop and factory management. The rapidity with which the new inventions of one country are patented and bought up in other countries has an equalizing ffect which prevents any one nation from enjoying a monopoly of the fruits of its ingenuity, at least in the more important and costly inventions; but as long a the American mechanic continues to devise more rapid and less laborious ways of doing even the most insig nificant work, it will continue as easy for us to under sell the European producer as it is puzzling to him to understand how we can do it.

THE LIMITS OF HUMAN SPEED AND ENDURANCE.
The many forms of use and abuse to which the bicy le has been put have served to demonstrate that man is capable of feats of speed and endurance the mere uggestion of which would have been deemed absurd and impossible a generation ago. While it has long been known that the human frame was capable of ex ertion far beyond the powers of the brute creation, was reserved for the bicycle to show just what the measure of its endurance was. While we conside that six day races, such as have lately been concluded in New York, are to be condemned on obvious grounds of humanity and common sense, it is undeniable that they possess an interest as showing the amazing feat of strength and endurance of which a well trained ath lete is capable
The past year has been fruitful in record-breaking
performances on the bicycle, and the array of records is full of startling figures. The distinction most coveted by the racing wheelman is that of having ridden the mile in fastest time. This has been done first in England and a month or two later in America in 1 minute $35 \frac{2}{5}$ seconds, which is equal to a speed of over 38 miles an hour. The rider who first rode a mile in this time has also covered a distance of $32 \frac{2}{3}$ miles in one hour-an even more remarkable performance.
This, however, was eclipsed by the feat of another speedy rider who wheeled off over 616 miles in one day at an average speed of $25 \frac{2}{3}$ miles an hour. A study of the details of this ride reveals the remarkable fact that the rider was as strong at the finish as at the start, the average speed for the twenty-fourth hour being as
high as for the first hour, and the 610 th mile being high as for the first hour, and the 610 th mile being
covered in 1 minute 56 seconds, or at a speed of more covered in 1 minute 5
than 30 miles an hour.
The latest and, in respect of mere endurance, the most difficult feat was the ride of 1,983 miles in six days made in this city. The average speed from Monday morning to Saturday afternoon, when the rider practi cally left the track for good, was 14.7 miles per hour, and the average actual speed. exclusive of rests, was 15.8 miles per hour. The rider was off the track only $93 / 4$ hours, $41 / 2$ hours of which were given to sleep. From a medical point of view the remarkable fact was that h is pulse and temperature were about normal after this tremendous exertion, and that he showed no discern ible physical injury as the result of it. It is noteworthy that the rider's diet consisted almost entirely of boiled rice and milk and that no stimulants of any kind were taken.
In the presence of such performances as have been outlined above, the stories of ancient prowess become more credible, and it is certain at least that our race shows no signs of physical degeneration in the present day.

COPYRIGHT INJUSTICE.

An interesting example of the obliquity of vision with which men seem to be afflicted in regard to property rights in literature is given in the pending proposal for amendment of the copyright law. It is proposed to require authors obtaining copyright protection to supply at their own cost copies of their books to public libraries throughout the country. At first only a few libraries are to be designated as recipients of such gifts, four or five in all. But there is no reason why the number should not be indefinitely extended. If the public library in one city is to be
thus favored, why not that in another city? The chances are that if the principle is once established, the application of it will be extended until the author is compelled to give a copy of his book to every city, town, village and public school library in the land, or else forfeit his copyright. Or, if not, it would be uncommonly interesting for the authors of the proposal to explain why not.
The system, it is said, will result in the building up of a number of national libraries throughout the country. Yes. If every farmer who wants to have his ownership of his wheat crop protected were required to give a bushel to some government depository in
each large city throughout the country, the system would result in the building up of a number of national granaries. If every man who wants his right to his wages maintained were required to pay $\$ 1$ a week to a government collector in each large city of the Union, the result would be the accumulation of a magnificent surplus in the national treasury. If every man who wants to secure patent rights on the machines to every city in the land, to be loaned out to the inhabitants for free use, it would be a mighty out to the inhabitants for free use, it would be a mighty
nice thing for those who want to get something for nice thing for those who want to get something for
nothing. And assuredly there is no conceivable argument in favor of the one scheme that does not apply with equal force to all the others. There is no more reason why the producer of literature should be thu mulcted than the producer of any other commodity.
The scheme may have been suggested by contemplation of the Library of Congress, which is thus enriched with copies of all new works, and a desire to create
duplicates of it in other cities, and the question may be unthinkingly asked why the author may not properly unthinkingly asked why the author may not properly
be required to deposit copies of his book elsewhere, as well as at Washington. To such question the answer is obvious. The book is deposited at Washington not tor the sake of building up a library, but as a matter of record, to complete the act of securing copyright, as an inventor was formerly required to place a model of his machine in the Patent Office, or the owne of real estate has to record his title deeds at the office of
the county clerk or register. The process of securing copyright is completed at Washington for the whole country, and does not have to be repeated in half a dozen other cities. There is no justification, therefore for requiring one of its conditions to be repeated else-
where. Nor would the scheme have any such result as its projectors seem to suppose. It would build up libraries, but they would not be good libraries. The
room must consist of a mass of standard and classic works which are not daily being produced and copyrighted. Libraries secured by the proposed method would be altogether one sided. They would contain plenty of current literature, but no standard works; a host of ephemeral novels and minor poets, but no classics and no encyclopedias. Such a library would be a delusion and a snare. The government would have committed an act of gross injustice and spoliation, and have got no real benefit in return. The plan is a mischievous one from every point of view, and should be heard of only as a "horrible example" of freak legislation which never can be seriously considered.New York Tribune.

lievt. peary receives a ship.

The following cablegram, relating to Lieut. Peary's Arctic trip, has been received by the New York Sun:
A. C. Harmsworth, England's patron of Arctic exploration, has presented his Arctic ship 'Windward to Mr. Peary and will have her overhau led and sent to America for use in his coming expedition.

This generous act of Mr. Harmsworth is the lates incident in a series that has shown that England and America are bound in the strongest brotherly ties in their mutual interest in Arctic work. Grinnell fitted out the first and second Grinnell expeditions to assist England in the search for Franklin and his brave companions. America sent the recovered 'Resolute' back to England as a gift. England sent the 'Alert' to America to assist in the search for Greely and his companions. Now Mr. Harmsworth gives Mr. Peary a ship which has been engaged for the last three years in exploring Franz Josef Land."
The princely gift of Mr. Alfred Charles Harmsworth will materially assist Mr. Peary in carrying out his plans of Arctic discovery. The "Wind ward" is admira bly adapted to the purpose of exploration in northern seas. This act of the London newspaper magnate will
be another tie which, like the log of the "Mayflower," will tend to still more unite the people of Great Britain and the United States.
In 1894 Mr. Harmsworth equipped the JacksonHarmsworth expedition at a cost of $\$ 125,000$. This expedition, after spending three winters in Franz Josef Land, returned to England in September last. As the esult of their labors almost the whole of Franz Josef Land has been carefully mapped, and has been shown to consist, not, as was supposed, of large land masses but of a number of islands. Gillies Land, as to which there had been much controversy, he found to be con spicuous for its absence in the place usually assigned to it on Arctic maps.

the lasso.

The lasso is of great antiquity. It is said to be depicted in the ruins of Nineveh. An early Persian manuscript, preserved in the Escorial, shows a sportsman (whom I suppose royal by his Olympian expression and careless seat) in the act of catching a wild ass with a nicely plaited lasso. The monarch bestrides a white feet and lookng, dace a bow, quivers and a saber are hung from his saddle, and a sort of housing half covers the horse. How the wild ass is to be retrained, even by the hand of a monarch, is not at first sight evident, for the lasso is neither fixed to the saddle after the fashion of the gauchos, nor is a half turn taken round the pommel, in the style adopted by vaqueros in Mexico and Texas. Apart from this detail, all is as realistically set forth as it would be to-day in a photograph. The horse bears away from the beast lassoed, and the king sits a little to one side, exactly as a Texan cowboy or an Argentine gaucho sits under similar circumstances. Irises and Narcissi spring up under the horse's feet, and an applauding group of angels peep out of a cloud, while in the middle distance another Persiangaucho shoots an antelope with an arrow while galloping at full speed
The Laplanders are said to lasso their reindeer, and the Tartars and modern Australians use a rudimentary asso fixed to a long pole in order to catch wild or re ractory horses. The Poles, Croatians and Walla chians, with the Hungarians, seem to have used the lasso till about the beginning of the present century. A picture by the German artist Richter shows Polish emounts for the German cavalry being lassoed in the Zwinger, at Dresden. The horses look as wild as a Texan "broncho" or an Argentine "gagual," and the ttitude of men and animals, and the way the ropes are coiled and thrown, are identical with those adopted in Spanish America to-day. The lasso appears to run hrough a ring in the pommel of the sacidle. It is, however, in Spanish America where the art has been most developed. This is on account of the open country and the vast numbers of wild and semi-wild horses which, up to the middle of the present century, ove spread its plains.-Badminton Magazine.

The Boston Pneumatic Transit Company opene their pneumatic tube system at the general post office Boston, on Friday, December 17, 1897, at 12 o'clock.

dustless buildings.*

by C J. woodbury, boston, mass., member of the society.
The increased height of office buildings rendered possible by what Utis Tufts patented as the vertical railway, while bringing to their occupants relief from the noise of the streets, and affording comfort by exending above the fly belt, which is as well defined as the snow line on a high mountain, also exposes the oc cupants to the fine dust which pervades the whole structure and which the other salutary conditions of the building render more prominent.
The modern method of heating and ventilating such a building is by means of a blast of air drawn down a flue, warmed and forced through the building in such quantities that four times the volume of the building is frequently circulated through the rooms each hour.
This method of heating, although a more efficient pplication of radiating surface for heating the air than by direct radiation in rooms, and can be managed with far less expense for attendance, repairs and fuel and provides the sanitary requisite of ventilation with out cold draughts, yet this apparatus distributes large amounts of dust through such a building; and in a city using bituminous coal under the average conditions there is a fine carbon dust which is especially obnoxious, impairing drawings, books, delicate mechanism, and whatever may be injured by the shower of fine, impalpable dust, which produces black, indelible smutches whenever touched. This carbon dust is al ways an annoyance and at times a serious matter.
The writer undertook to abate the difficulty of dust in a building of nearly 500,000 cubic feet capacity through which 26,000 cubic feet per minute was usually blown, for heating and ventilation. The outside ai used for this purpose was drawn down a flue 37 square feet in cross section, and reached a velocity of 700 feet per minute.
The means taken to remove the foreign substances from the air were by use of cotton cloth filters so arranged that the air should approach the fabric at an acute angle by which the monentum would carry these particles beyond a point where the element o air under consideration would pass through the filter and the particles of dust would be carried by the place and, striking the cloth at a lesser angle, tend to glance off and be carried to the bottom of the filter, rather than to clog the interstices in the fabric. The area of the filters being larger than that of the flue, the rate of filtration was inversely slower than the velo city of the air down the flue.
The means by which this was accomplished were very simple. A timber frame, divided by partitions into fine rectangular openings, was placed at the top of the flue, and under each opening was placed a bag whose top was attached to a light wood frame slightly larger than the opening, making a tight fit, so that the arr entering the flue must pass down ward into these bags, which were over thirty feet in height. An arrange ment of guides, ropes and pulleys enabled the bags to be raised and lowered by a person at the bottom of the ue. The bottoms of the bags were made open, an closed with a drawing string, and hoops kept the lowe portion distended. An arrangement of lines extending long the sides from end to end facilitated turnin inside out and back again when they were being cleaned.
The whole of the mechanical arrangement is fully described in United States patent No. 589,772.
These bags were square at the top, where their combined area equaled that of the flue, but soon dimin ished to a cylindrical section, occupying about 40 per cent of the space, thus affording ample clearance for the exit of the air passing through the fabric
The area of the flue was $33 / 4$ per cent of that of the bags, and while the air passed down the flue at a velocity of 700 feet per minute, it passed through the fabric at 26 feet per minute
From half a peck to a peck per month of fine dust was gathered from the bags.
The efficiency of the device was tested by placing reshly painted boards at the bottom of the flue before the installation of the apparatus, and then giving an other coat of paint after the apparatus was in ser vice.
In the first instance the fresh paint collected fine dust until it resembled fine sandpaper, and in the second the paint dried with a smooth surface
In several of the offices split laps of absorbent cotton were placed in various parts of the building before and after the bags were in service, and one set was covered with fine particles and the other was free. The change was not a notable one at first, owing to the large amount of dust in the flues, but much of this was removed by running the blower at a very high rate of speed, and afterward removing the registers and washing them and the flues as far as could be reached.
The device has been solely under the care and management of the men employed on the engine and boilers, and has served its purpose in rendering a kuilding free from dust caused by the ventilating system.
*Presented at the New York meeting (December, 1897) of the Amer
ican Society of Mechanical Engineers, and forming part of yolume six ican society of Mechanical Engineers, and forming part of volume six
of the Transactions.

A NOVEL MONKEY WRENCH.

The illustration represents an improved wrench recently patented by Charles H. Avery, of No. 9 Linden Street, Binghamton, N. Y. Fig. 1 represents the working portion of the wrench, the handle not being shown, and Fig. 2 is a sectional view through the movable jaw. The latter, as will be seen, has a seat or re.

AVERY'S WRENCH.

cess, in which is located a clutch member, having at each side a slightly projecting ear. The teeth on the shank or stem of the wrench are inclined in the direction of the fixed jaw, and the clutch member, with the movable jaw, is held in engagement with the teeth by a spring. The arrangement permits the free move ment forward of the movable jaw, to engage a nut, while by a slight pressure on the ears of the clutch member the latter may be released from such engagement and the movable jaw moved backward, as desired. When the ears are released, the spring throws the clutch member into engagement with the stem and holds the movable jaw against movement away from the stationary jaw.

Fulton's Submarine Torpedo Boat

Nearly a century before Jules Verne wrote about the Nautiius, Robert Fulton constructed a submarine boat of that name. This fact is not generally known, and the recent memoir of M. Eugene Debosc, of the French navy, is of more than usual interest. He states that Fulton launched a submarine boat named the Nautilus at a point near Rouen on July 30, 1800 .
"On the same day," he continues, "Fulton made several experiments with his boat. They lasted for three hours, and the stretch of water occupied was between Bapannul and the woodyard of Citizen Thibault, where the depth was twenty-five feet. The experiments were as satisfactory as could be desired, in spite of the fact that there was a strong current. Next day the inventor went down the Seine to Hav where the new harbor was placed at his disposal.
"There a test was made as to the relative advantages of oars and of a screw moved by the arm, and the result was a convincing proof that by means of the screw much muscular force could be utilized. Seven minutes were required to work the Nautilus by means of oars and only four minutes by means of a screw, which Fulton styled a machine 'with wings like a windmill.'
"When a certain quantity of water was introduced the Nautilus sank readily, and in a direction parallel to herself, and she again came to the surface when the water was forced out by means of a pump. Some time afterward Fulton adopted a screw with horizontal wings, which was placed in front and which enabled him to remain under water almost constantly, even while the boat was moving. He moved to right and left by means of an ordinary rudder placed at the poop, and he also used a horizontal rudder divided into two parts. This method of steering, invented by him, is very like that which is used in modern submarine boats."

Finding that the French government would give him no aid, Fulton, who had spent a great deal of time and money in perfecting the Nautilus, crossed the channel and offered his invention to the British government.

But in London he met even with less success than in Paris. Pitt seems to have thought well of his proposition, but, powerful though he was, he failed to gain for it official approval.

Herr Marpmann has found microbes of various kinds in seventy-seven samples of ink--red, blue and nigrosine-supplied to schools, and some of the microbes were deadly enough to kill mice inoculated with them. He recommends that ink bottles should not be left open to the air in schools.
the pierce pneumatic cushion bicycle frame. The accompanying illustrations represent improve ments in a bicycle frame designed to throw upon the wheels all the vibration of a machine, relieving the rider of the most fatiguing part of the work of bicycle riding. The principal view shows the frame assembled, the other figures representing the detached parts which form the cushioning device, the steel tubing being of a high quality, especially drawn for this purpose.
The lines of the cushion frame are those of the best and latest wheels, the frame being of rigid construction, and the portion forming a part of the rear upright would not be noticed as differing from a regular pattern of frame, except for the nickeling. The inprovement is being introduced by the George \mathbf{N} Pierce Company, of Buffalo, N. Y., under the patents of the Hygienic Wheel Company, St. Paul Building, New York City. Messrs. Pierce \& Company are manufacturers of cycles and tandems, and also have branches in New York and Boston. The rear upright is, as will be seen, formed as a combination telescopic device, having but slight motion, but with a cushioning ar rangement for the rear portion of the saddle formed partly of a spring and partly of compressed air in the tubes.
It is, however, wholly unlike spring seat posts or spring saddles, as the distance is always uniform between the seat and the pedals, the feet and limbs not being vibrated, and the rider being thus saved from excessive jolting on uneven roads-an improvement which cannot fail to be especially appreciated by women riders. In the illustration showing the various parts, Fig. 1 represents the lower tubular socket on the rear fork, Figs. 2 and 3 forming inner tubular portions constituting a pneumatic socket and casing for the spring, 4, while Fig. 5 is a sectional view showing the parts assembled. It is to be noted, also, that the connection between the head and the rear fork is made by means of steel plates, which give great firmness and yet afford some degree of elasticity. It is said that with this improvement the tires can be blown to any degree of hardness without causing discomfort to the ider.
The improvement has already been in use for a suffi cient time to have received high commendation from a great number of practical wheelmen. The company make the springs of four different sizes, as may be re quired by heavy or light riders.

THE PIERCE PNEUMATIC CUSHION BICYCLE FRAME

A STOVEPIPE HOLDER.

A simple and inexpensive form of holder, readily applicable to one end of a length of stovepipe, and which may be contracted to be conveniently entered into a thimble in a flue or into a pipe opening, to hold the pipe in position, is represented in the accompanying illustration. The improvement has been patented by George Griswold and Harry P. Chase, of Salem, Ore gon. Fig. 1 shows the application of the device, Fig 2 indicating the movement of the inner expanding band. The two bands are pivotally connected by metal straps, each end of the outer band having an ear adapted to receive an adjusting screw by which it may be made to closely grip the pipe. The inner band has at one end a link, while at its opposite end is pivoted a curved lever, as shown in Fig. 2, whereby the band may be contracted for introduction into the stovepipe

GRISWOLD \& CHASE'S STOVEPIPE HOLDER.
thimble or flue opening, the lever being afterward thrown back, as shown in Fig. 1, to expand the band and cause it to serve as a support for the inner end of the pipe.

Caoutchouc and Gutta Percha Cements.
A gutta percha cement for leather is obtained by melting together 100 parts gutta percha, 100 parts as phalt or pitch, and 15 parts oil of turpentine. It is to be used hot.
Elastic gutta percha cement, especially for fixing soles to shoes, which does not crack in bending, on account of its great extensibility, is prepared by dis solving 10 parts gutta percha in 100 parts benzine and pouring the solution into 100 parts linseed oil varnish, shaking well. The leather must be roughened before using this cement, in order to insure greater durability. By a caseine-borax cement a handsome surface gloss is imparted to the leather. The borax is dissolved in boiling water and the borax solution poured into freshly prepared caseine. The durable thick cement is freshly prepared
Good caoutchouc cements, for rubber strips or rub ber goods on metal, are obtained by dissolving shellac in ten times its weight of ammonia. After standing for three to four weeks a transparent putty results, which is used without heating. The cemented places soften at first, but become hard and firm after evaporation of the ammonia, which may be assisted by heat ing. This cement is watertight and gasproof, and is also useful for hard rubber articles. A cement made of a mixture of gutta percha with asphalt is serviceable for the same purpose. This has to be applied hot and the pieces are to be pressed together
Very useful cement for leather belting is manu factured by kneading 10 parts carbon bisulphide and one part of oil of turpentine with gutta percha until a thick paste results. The portion of the leather where the cement is to be applied must be unoiled and roughened; the cement is put on and the ends are pressed together until the binding agent has become dry. Directions for caoutchouc cements are : 100 parts finely cut caoutchouc, 15 parts resin, 10 parts shellac, dissolved in sulphide of carbon. One part caoutchouc, 7 parts mastic, and 50 parts chloroform, left to stand several weeks.
Cement for rubber boots, etc : (1) 10 parts caoutchouc dissolved in 250 parts chloroform (2) 10 parts caoutchouc, 4 parts resin, 40 parts oil of turpentine, mixed and dissolved. For use, pour together equal parts of both solutions.-Translated from the Färben Zeitung.

Jade is found in the Bhamo, Chindwin, and Katha districts in Upper Burma. The chief workings are in the Bhamo district, from which 254.000 pounds were obtained in 1895 . Nearly all of this is sent to China, where jade stone is highly valued.

The Feather Evil.

All moralists have assured us that "when lovely woman stoops to folly," she stoops very low indeed And so when women attempt to emulate the glories of a Choctaw chief or a South Sea islander, it is not considerations of art or humanity or self-respect that will stop them, says Natural Science. Consequently, it is not likely that the insensate votaries of fashion, who disfigure their heads with baskets of artificial flowers disfigure their heads with baskets of artincial fowers
(irrespective of the season), virulently dyed scraps of (irrespective of the season), virulently dyed seraps of
ribbon, twists of steel. and unnaturally clipped or ribbon, twists of steel. and unnaturally clipped or
colored bird feathers, will pay any attention to a paragraph in a scientific journal. But we are willing to leave the irresponsible half of creation all their chiffons, their coal tar dyes and their scrap iron, if only they will leave us our birds. The rate at which some of the rarest and most beautiful birds on our planet are being destroyed to gratify this extraordinary taste can hardly be realized. On the 13th of April last nearly half a million birds were sold at an auction in London, and the details of the consignment were thus London, and the details of the consignment were thus
given by Mrs. Edward Phillips at the annual meeting given by Mrs. Edward P
of the Selborne Society :

Osprey plumes.	11,	ounces.
Vulture plumes	1863/	/4 pounds.
Peacock feathers	215051	bundles.
Birds of paradise.	2,362	
Indian parrots	.228,289	
Bronze pigeons, including the goura	1,677	
Tanagers and sundry birds	38,198	
Humming birds.	116,490	
Jays and kingfishers.	48,759	
Impeyan and other pheasant and jungle fowl	4,952	
Owls and hawks.	7,163	

A similar sale took place in February, and others were to follow in July and October.
It is small consolation to us to think that in a few years the price of these luxuries will be prohibitive, or that, unless fashion changes in the direction of seaweeds or turnip tops, there will soon be no more birds to destroy. Nor can we overlook the terrible suffering involved by this enormous slaughter: the young

THE BERLIN ALUMINUM BALLOON.

The ilea of conther, and the bearings, which weighed only a few by any means new, the first of this type having been $\left\lvert\, \begin{aligned} & \text { pounds and were of brass, the whole of the immense } \\ & \text { structure was built of aluminum. An idea of the true }\end{aligned}\right.$ constructed by M. Mares-Monges in 1842. It consisted meaning of this can be gained from the following

START OF THE ALUMINUM BALLOON.

balloon at elevation of 800 feet.
osprey bereft of their parents left to die in hundreds, the heron with the plumes torn from its back, writh ing into death.

A New Method of Inducing Sleep.
In the Journal of the American Medical Association of September 25,1897 , Dr. J. B. Learned describes the following method, which he used in his own case. For some years he suffered from insomnia following a fall from his car. He tried many methods of treatment in vain-drugs, hot water and cold water internally and externally, friction, over-feeding and under-feeding, exercise, gymnastics, deep inspirations and numberless mental occupations. At last the following method proved a success. 'The principle is to induce muscular fatigue by exercises carried out in bed. Lying on his back, the patient first reaches for the foot and head board at the same time. He then raises his head half an inch; at the same time he breathes slowly and deeply about eight inspirations to the minute, which are counted. After about twenty inspirations, the head, which begins to feel heavy, is dropped. The right foot is then raised (the reaching for the boards ancl counting being continued) and similarly dropped when fatigued. The left foot goes through the same process. The muscles which are used in reaching for the head and foot boards are then relieved, and the body is elevated so that it rests on the head and heels. He then turns on the right side and reaches for the head and foot boards again, and raises first the head and then the foot as before. The same process is gone through on the other side. Thus eight positions have l,een assumed and a large number of muscles used. If sleep has not been induced, the same cycle is gone over again.
loon construction, and Herr Schwarz, of Agram, designed and built a cylindrical airship of colossal dimensions which recently made a trial trip that ended in disaster.
With the exception of the driving belt, which was of
of a large hollow ball, 33 feet in diameter, built of thin sheets of copper, and filled with hydrogen gas.
The progress in the manufacture of aluminum and aeronautics to regard it as a suitable material for ba
figures: The body of the ship was 134 feet long, 46 fee high, 42 feet 7 inches wide, and the whole ship wit the car weighs 5,720 pounds.
The history of the trial trip, made on November 3, under the direction of the officers of the Royal Prussian Aerial Navigation Department, would probably have been quite different if the inventor and conhave been quite different if the inventor and con-
structor of the balloon had been in the car; but, unfortunately, Herr Schwarz, of Agram, died before the fortunately, Herr Schwarz, of Agram, died before the too much of the unfortunate but entirely unnecessary wrecking of the ship, without setting forth the causes thereof; although the ascension, in spite of the un-looked-for ending, demonstrated all that the inventor had claimed. This is the professional opinion, which could be obtained only after some delay, Schwarz had never been able to persuade the officers of the Aerial Navigation Department that his ship had sufficient lifting power to rise from the ground with its motor and ing power to rise from the ground with its motor and
passengers; and they maintained that, even if the expassengers; and they maintained that, even if the ex-
ceedingly delicate operation of filling the balloon with pure hydrogen by Herr Schwarz's method could be successfully performed, it would be found that the ship was so constructed as to be too heavy to rise. Upon the sudden death of Herr Schwarz, it seemed that his work had been in vain, but his wife, inspired by an unswerving faith in her husband's theories, undertook to complete what he had begun. She obtained permission from the minister of war to have an ascension of the apparatus from the Luftschifferpark under military protection, and the officers of the department afforded her most efficient aid ; but she could not overcome their doubt of the lifting power of the ship, and, therefore, in constructing the apparatus, they did away with everything that seemed to them to be at all superfluous. Unfortunately, in this category were included the arrangement employed by Herr Schwarz for securing the driving beit for the wind propellers, the device for regulating the descent and the device for lengthen-

AFTER THE WRECK.
ing the four feet of the car to lessen the shock in landing. It is a fact that the ship became unmanageable on account of the slipping of the driving belt, and then the courageous but inexperienced young man who had been chosen because no better captain could then be found, lost his head, and instead of operating the rear screw alone and trusting himself to the wind, as one :would do with a free balloon, he opened the valve wide, thus causing the sudden descent. The absence of the device for regulating the descent and the device for throwing out the feet caused a great shock when the airship struck the ground, so that it was completely wrecked.
As far as the lifting power was concerned, it was demonstrated that the apparatus had too great an ascending power for its light load. It could have carried not only the parts which were left off with such disastrous results, but three or four passengers instead of one, besides much more ballast than was put upon it. The calculations of the inventor have proved to be perfectly correct ; and furthermore, it was demonstrated that the ship could be filled by the Schwarz method, which many had declared to be impossible; and finally it was proved that the apparatus could be controlled. In spite of the immense surface that it presented to the wind, it attained a high speed while the motor was working at only half power. Moreover, it rose to a height of 820 feet against a strong wind, and started forward, but this movement was interrupted by the slipping of the belt, and the ship was brought to its untimely end by its to its untimely end by its
operator in the manner operator in the manner
already described. The already described. The
fact that the officers of the Aerial Navigation De partment, Frau Schwarz and her friends have courage to immediately begin the construction of a new ship, for which military protection has already been secured, shows that the principle on which the construction of the apparatus is based is considered correct and practical.
For our illustrations and particulars we are indebted to Le Monde Illustré and Ueber Land und Meer.

Elevators Abroad.

It is a curious fact that we do not hear of more serious elevator accidents in Europe. Of course, the larger hotels and stores have elevators which are in the hands of competent people who operate them but in many small hotels and private houses and shops the "lifts" are oner sted entirely frome oper ated entirely from th ground foor. When a per son wishes to go up in th elevator he tells the attend ant the number of the floor he wishes to stop at. An index is moved to that num ber and the car is started
up. When the car reaches the proper floor, the elevator stops and the door is unbolted by the car it self. These "lifts" afford many chances for accidents thus as the car passes each floor the door into the ele vator shaft is unbolted automatically for an instant until the car begins to rise past the floor. It is possible for a person to open the door at this time and fall into the elevator shaft. Probably the most curious ele vator in Europe is the one in the Ufizzi Palace, a Florence, which takes up passengers to the picture galleries. One franc is charged for the use of this elevator. and visitors are frequently asked to get into the elevator when it is making the downward trip to give it sufficient weight to reach the ground floor.

New York Rapid Transit.

By a decision, December 17, of the Appellate Division of the Supreme Court, it would seem that the greater part of the opposition to the building of the under ground rapid transit lines so much needed in New York City has been met and overcome. The plans of the Rapid 'Transit Commission, so laboriously and carefully perfected, and so long opposed in the courts, have been passed upon and confirmed by the court, but a clause of the decision stipulates that the commissioners must exact a bond of $\$ 15,000,000$ from the contractors who are to construct the road, and another clause disclaims any consideration of the question as to whether or not such construction will involve the city in debt beyond the constitutional limitations im posed.

Recent Archæological News.

"La Scala," the famous opera house of Milan, is in danger of being pulled down. It is a serious drain on the box holders. The theater is too large and inconvenient for modern tastes.
After many efforts, the thickly inhabited quarter of Athens known as Anaphiotika, lying immediately under the Acropolis, has been condemned by the government and turned over to the Greek Archæological Society for the purpose of excavation. The inhabitants will receive compensation and will be settled in the suburbs.
Another important archæological discovery has been made in Russia, at Maikop, in the northern Caucasus, where, in a burial mound, a great quantity of gold and silver ornaments has been found, probably belonging to some Scythian king, and dating centuries before Christ. There are gold rings, ornaments, jewelry, silver tankards, bronze axes and other interesting objects.
The Egyptian Exploration Fund has begun the pre paration of the first annual volume, which will consist of three hundred pages, quarto, and will be illustrated by plates. The new "Sayings of Christ" have already been published, and the selection from the unexam pled discovery of thousands of papyri found last spring promises to be most interesting. Every subscriber of $\$ 5$ or more will receive the volume, together with inter-

CAR AND DRIVING MECHANISM OF SCHWARZ ALUMINUM BALLOON. Abtheil., xxii, 1897, p. 397. years.

Dr. A. Grigorjew believes that the exciting cause of hydrophobia is not a bacterium, but a body belonging to the Protozoa. He has isolated from animals suffering from rabies a body with slow amœboid movements and exhibiting extension of pseudopodes. Its action may even be modified by the presence of bac-teria.-Centralbl. f. Bakteriol. u. Parasitenkunde, 1te.

Herr Goldstein has reported to the Berlin Observatory (Germany) that he is able by the means of cathode rays to imitate experimentally various phenomena observed in connection with the study of comets, such as the luminous radiation of the nucleus and the formation of the tail. He has also been successful in his attempts at reproducing some of the more recently observed effects.-Revue Scientifique
Another Danish expedition to the Pamir regions will be fitted out next year. Its object will be to make geographical and ethnographical explorations in the northern part of the Wakhan Valley. The expedition will be under the leadership of Lieut. Olufsen, and will include two scientific experts. Its cost will be partly borne by the Danish government out of the Carlsberg Fund, and the explorers expect to be absent for two

The issue of a special stamp in England, sold in aid of the Prince of Wales Hospital Fund, was so success
ful that it is decided to do it annually. It is not likely that philatelists all over the world will care to tax themselves for the benefit of a London charity ; so they will probably put them on the "Index Expurgatorius" of stamp collectors, as is done with some speculative issues of South American and othe countries, Such stamp countries. Such stamps by collectors.
The American Society of Naturalists and the socie ties affiliated with it wil meet on December 28, 29 and 30 at Ithaca, N. Y. The societies which meet with the American Society of Naturalists are: The Association of American Anatomists, the Associa tion for Botanical Mor phology and Physiology the American Morpholo gical Society, the Ameri can Physiological Society the American Psycholo gical Association, Section H (anthropology) of the American Association for the Advancement of Sci ence.
We find, says Health, from a newspaper direc tory recently issued, that the medical profession of the United States supports
esting reports. Subscriptions may be sent to the Rev Boston Mass

Last Issue of the Year-Renewal Subscriptions Now Due.
We take this opportunity to remind our old friends and readers that with this issue many subscriptions will expire, and, in order to prevent any break in the receipt of the paper, it is advisable to remit for the new year without delay, and we also believe that those who are not receiving the Supplement would find themselves repaid by subscribing for this journal also, and getting the advantage of the combined rates.

TERMS.

he Scientific American (weekly), one year.. $\$ 3.00$
Supplement of the Scientific American (weekly), one year... 5.00

Building Edition of the Scientific American (monthly), one
year. ... 2.50
Export Edition of the Scientific American (monthly, in Spanish COMBINED RATES.
The Scientific American and Supplement.... 3.00 ican and Bupplement..... $\$ 7.00$ The Scientific American, Scientific American Supplement, and 5 Building Edition
. 9.00
This includes postage, which we pay. Foreign subscribers should remit one dollar extra for postage on each publication. Remit by postal or express money order or check to order of Munn \& Company, 361 Broadway, New York.
directly or indirectly, 275 periodicals, of which 10 are issued weekly, 11 fortnight y, 225 monthly, 6 bimonthly and 23 quarterly, with combined yearly circulation of $16,017,200$ copies. Estimating that there are in round numbers 120,000 med ical men of all schools north of the Gulf of Mexico, of whom probably not over 80,000 subscribe to a medical journal of any kind, this vast amount of literature seems an enormous burden to carry.
The congress of German naturalists and physicists at Brunswick unanimously passed a resolution, introduced by Profs. Virchow and Waldeyer, to be for warded to the Kaiser, begging him to consent to the equipment of a German South Sea scientific expedition to be supported by imperial funds. It is estimated to cost 300,000 marks. German scientific men are anxious that their country should take part in an expedition to the South Sea, where so much still remains to be done. It is known that the Kaiser is favorable to the idea, but it is doubted whether the Reichstag will grant the money.

The Hudson Journal says the Scientific American should have a place in every dwelling, shop, office, school or library. Workmen, foremen, engineers, su perintendents, directors, presidents, officials, mer chants, farmers, teachers, lawyers, physicians, clergy men, people in every walk and profession in life, wil derive satisfaction and benefit from becoming regu lar readers of the Scientific American. We concur fully in what our good contemporary prints.

fireproof steel and brick grain elevator.

 (Continued from first page.)is nothing more nor less than a brick vault with brick and steel ceiling.
The main grain floor is fireproof, underlined with tiling with convenient openings; so that, in place of its being necessary to sweep it in order to keep it clean, it can be flushed every night with water and drained into the canal alongside of the building. The upper floors, joists, rafters, girders, garners, scale bins and all other parts of the building other than the brick wall surrounding the structure are built of steel. The power necessary to run the machinery is transmitted to all the different elevator legs, conveyor belts, marine towers, and other necessary machinery, by electricity conveyed from Niagara Falls, twenty-three miles distant.
The building has a pile foundation, the piles being driven down from 30 to 48 feet below water to solid rock. Stone piers 8 feet high were laid on top of this foundation, supporting the columns. The elevator bins are built cylindrical in form, with a cone-shaped buttom, and consist of thirty bins 38 feet in diameter, 70 feet high ; eighteen bins 15 feet 6 inches in diameter, 70 feet high; eighteen exterior small bins 9 feet 9 inches in diameter, 60 feet high; furnishing a combined bin capacity of $3,000,000$ bushels. All the 38 -foot and 15 foot 6 -inch bins are built on a patent circular girder plan as suggested by President James J. Hill and patented by Mr. D. A. Robinson, the builder. The steel in the bins varies from $1 / 4$ inch to $1 / 2$ inch in thickness and the total weight of metal in the bins is 6,000 tons.
The dock facing on Blackwell Canal is 24 feet wide, and is built of stone, with two standard gage railroad tracks, on which the movable marine towers rest. There are three marine towers constructed of steel throughout, each equipped with a marine leg, capable of elevating from vessels 20,000 bushels of grain per hour, and as each of these marine towers can be moved to connect with the hatches of a vessel, by means of a
wire cable run by an electric motor, it is possible to unwire cable run by an electric motor, it is possible to un-
load 60,000 bushels of grain per hour from a ship. The grip for moving the marine towers is practically on the same principles as applied on cable lines. The machinery in each marine tower is driven by a 100 horse power motor. The main building is equipped with ten elevator legs, and each of these is driven by an independent 50 -horsepower motor.
The cupola, which is built the whole length of the main building, is 40 feet wide, 400 feet long and 67 feet high. The top of the fourth story of the cupola is occupied by the elevator heads and gearing for reducing speed. The third story is occupied by 27 steel garners of 1,500 bushels capacity each. The second story is occupied by 10 (1,400 bushels capacity each) steel hopper scales. The first story on the top of the bins is double-jointed distributing spouts for distributing the grain from the scales and various bins. There are also two of these spouts used for distributing the grain from the four cleaners to the various bins. There are two belt conveyors, 60 inches wide, on the spout floor equipped with reversible motors and Robinson's patent reversible self-moving trippers. These are the largest conveyor belts in the world, and have a capacity of 40,000 bushels per hour each. Each one of the ten elevator legs in the main building is driven by an independent motor of 50 horse power, the power being transinitted from the motors of the geared countershaft at the elevator heads by Robinson's single leg rope drive.
There are four cleaners on the second floor of the cupola, driven by a countershaft from a 100 horse power motor, and on the same floor are two double fans, one for dust collecting purposes and the other for running the sweeper system in the top of the elevator. There is a 50 -horsepower motor on the work or ground floor, which is used for running the cable to move the marine towers. It also runs a cable operated under the building and through the railroad yard, enabling the elevator company to do its own car-switch the dust collector fan which is connected with all the elevator boots, as well as the double sweep-up fan, which runs the sweepers. There is a double system of dust collectors, upstairs and down, and a system of
sweepers, each independent of the other. This method sweepers, each independent of the other. This m
is entirely new and has never been used before. is entirely new and has never been used before.
The walls and roof of the steel cupola are
with corrugated iron. There is an electric passenger elevator running from the work floor to the scale floor and, also, a passenger elevator in each of the marine towers, which runs from the lower floor to the ma addition there are also spiral steel stairways in each marine tower, and two spiral steel stairways in each marine tower, and two spiral steel stairways in each
end of the elevator building. In addition to the motors above enumerated, the plant is equipped with a 10-hor:epower portable motor on the portable shovel machine, which can be used for unloading cars or shoveling grain from the floor to the elevator boots, in
case the basement of the elevator is filled with grain,
at the close of navigation. A steel awning on one side of the building covers double tracks for loading cars, protecting grain so loaded from adverse weather conditions. There are nine shipping spouts that go between the cars, loading nine cars at a time on either track.

The three marine towers have an unloading capacity from boats of 600,000 bushels per day of ten hours, and the warehouse has a shipping capacity of 400 cars per day, as well as a shipping capacity of 100,000 bushels per day at the end of the elevator for canal boats, and a shipping capacity of 200,000 bushels at the side of the elevator on the Blackwell Canal
The power is brought into the building on three wires, in the shape of a three-phase alternating curwires, in the shape of a three-phase alternating cur
rent, at 2,200 volts. These wires are connected to a primary panel of white marble, which contains three plug switches and three high potential fuse blocks. From this primary panel leads are run to two 560 -kilo watt transformers, which convert the current to two-
phase at 420 volts. From these transformers four leads phase at 420 volts. From these transformers four leads of $1,000,000$ circular mils each are run to the distribut
ing switchboard. This distributing switchboard is also built of white marble, and consists of nine separate panels, upon each of which are mounted starting and controlling devices for two of the motors. The starting devices consist of choke coils introduced between the 420 -volt mains, for the purpose of cutting down the potential in order to reduce the first rush of current. The motors are operated by means of a double throw switch, one set of terminals being connected to the choke coils and the other set to the full potential. Upon starting, the switch brings the choke coils into circuit with the motor, and, when full speed is reached, the switch is thrown over to the full potential terminals. The motor equipment consists of eighteen two-phase induction motors with a capacity aggregating 1,000 horse power. These motors are of the brushless type, the wires being attached to bind ing posts mounted upon the frame of the machine This insures absolutely sparkless running, as there are no sliding electrical contacts. All the motors are started and stopped from the switchboard with the ex ception of three motors in the moving towers, which have the switches and auto-starters mounted at the motors. This system of controlling all the motors which are located in the house from a central switchboard was adopted to prevent the ignition of the ex plosive grain dust likely to be caused by sparking.
The wiring from the switchboard to the motors was done on the three-wire system. All wires are run in the open and are supported on porcelain insulators at tached to 2 -inch by 6 -inch wooden strips, which in turn are fastened to the brick walls and iron beams by
means of lag screws and hook bolts. Wires throughmeans of lag screws and hook bolts. Wires through-
out are kept uniformly a distance of seven inches apart. All wire was tested to a breakdown potential of 9,600 volts before being installed. The current is carried to the moving marine towers by a trolley system. The three trolley wires, which are of the figure 8 section, are fastened to and run the entire length of the dock side of the building, the current being taken from these wires by trolleys mounted upon the side of the towers. The height of the trolley wires is 40 feet above the dock. Owing to the large amount of current being carried, trolley shoes 6 inches long and grooved to fit a figure 8 trolley wire were used instead of wheeis.

The building is lighted by incandescent lamps run on a two-phase system at a potential of 104 volts. The current for these lamps is supplied through two separate transformers, which are also located in the trans former room and whose primaries are connected directly with the 2,200 -volt three-phase mains.

The transformer room is a solid brick vault with arch brick sills resting on steel girders. The construction of the building is such that it is absolutely proo against fire, and the protecting of grain stored therein by insurance is almost a sentimental safeguard. The structure has been so recognized by the Board of
Underwriters in the making of the rate for this hazard so low that the cost of insurance is of but little moment. Just six months from the time the building was
tarted it was put in full operation; a remarkable fact, when the great size and novelty of the structure are taken into consideration.

Compressed Flour.

The British Admiralty and the War Department are testing, under various climatic conditions, the new method for preserving flour. One objection to the establishment of national granaries has been the difficulty of storing grain for any length of time. The grain germinates and is ruined, and to keep large quantities in sound condition has been pronounced impracticable. Experiments are being made with a system of compression into bricks by hydraulic pres sure. The trials show that the flour so treated is not affected by damp, even under unfavorable conditions. and is free from mould. The compression destroys al forms of larval life and the flour is thus rendered safe from the attacks of the insects. The saving in storage is enormous, as the cubic space occupied by 100 ponnds
of loose flour will hold more than 300 pounds of the of loose flour will hold more than 300 pounds of the
compressed article.

Sorrespondence.

Beet Sugar Iudustry in Nebrask

To the Editor of the SCIENTIFIC American :
In the continuation of your article on "The American Beet Sugar Industry," page 338, in No. 22 of the Scientific American, there is an assertion about Nebraska which I cannot allow to stand without correction, in the interest of the farmers and business men of this State. As an old practical European expert I have personally no interest whatsoever whether or not the group California-New Mexico or the group Nebraska-Utah is of greater promise as a sugar pro ducing district. I am only interested so far that the beet sugar industry will prosper with the best results in the United States. You may classify me, therefore, to be entirely impartial and unbiased, although being accidentally a resident of Nebraska, and you will undoubtedly follow the maxim of equal rights to all, not wishing to inflict an injustice to the farmers and business men of Nebraska by possibly a one-sided presump tion of your informant.
I wish to state that I had more than thirty years of practical experience in the line of beet sugar industry in Europe. Besides this, I have been for years a correspondent of the Viennese imperial meteorological central bureau, and as such I studied the weather observations in Europe carefully.
After this introduction, I request you to give space in your highly instructive and esteemed publication to the short correction; for it is not so much what your informant does say in conclusion of the article about the beet culture in Nebraska as what may be deduced therefrom between the lines by diligent reading capitalists or investors.
The American beet sugar industry is at present a topic of more than ordinary interest, for it means an important development of our rich agricultural resources to the lasting benefit of the whole country. In weighing the possibilities of different localities for beet culture, it is absolutely necessary to observe fair ness and correctness in the assertions. If it is said in the said article on the subject, " to sum up, therefore the future of the industry in California and New Mexico is quite rosy : in Nebraska and Utah it is somewhat problematical, though by no means dark," then it seems that the last inference is somewhat hasty, because there have been working with the best results beet su gar factories in Nebraska.
Comparisons between the European meteorologica observations and those of the United States Weather Bureau for the Nebraska eastern and center sections (furnished by Mr. G. A. Loveland, section director show that the normal annual precipitation, $25_{\frac{6}{10}}$ inches the average for the last twenty years in east Nebraska, * has been decidedly about one inch more for beet culture in the two eastern sections and in the central sec tion of the State than the normal annual precipita tion in the principal beet districts of Germany and of the Bohemian and Moravian parts of Austria. The average annual temperature in these three sections of Nebraska ($48 \frac{6^{\circ}{ }^{\circ}}{}{ }^{\circ}$) is about 4° to 5° Fah. higher, and therefore somewhat more unfavorable than in the German and Austrian beet districts, but this seems to be neutralized by the better soil and by the significant fact that in Nebraska (ill reputed for so-called deficiéncy in moisture) 67 per cent of the yearly precipitation has fallen, during the twenty years of official observations, in the period of vegetation, in the months from April to August inclusively. The maturing period of the beets extends very far into October. A better showing cannot be made by any European beet growing district, hardly as good a one by any one of them. The mistaken idea that Nebraska must be devoid of sufficient moisture for beet culture seems to be traceable to the exceptionally dry years 1893,1894 , and 1895 , remembered by all the people in the United States as the years of the great drouth, and perhaps to the fact that the arid western part of the State has been taken as a cri terion for the whole commonwealth.

The reports of the Weather Bureau are easily obtainable and ought to be made the basis of all such delibe rations, for they are the only reliable source of information on subjects in regard to this new industry. A study of these reports bearing on the climatic conditions of the eastern half of Nebraska will convince every unbiased observer that these conditions are most favorable for the successful development of the beet sugar industry. Essential tests, quality and quantity of beets grown in the State, in the existing sugar fac tories have proved this to be the case beyond any doubt or negation
Omaha, Neb., December, 1897
ZaAndam, in Holland, has been celebrating the two hundredth anniversary of Peter the Great's stay in the town, where he worked as a ship carpenter. They had historic processions and boat races, and performed a play. "Peter Michaeloff," by a local playwright The Czar sent a special envoy, and the Russian minis ter at the Hague was also present.

NEW METHOD OF MANUFACTURING HEAVY ORDNANCE

Many efforts have been made from time to time to produce a gun of the larger calibers which could be "knocked down" for convenience of transportation in the field and readily put together by the artillerymen wherever it was desired to use it. Some very successful guns of this type have been constructed for mountain service. A common form is that in which the two halves have a screwed connection at the trunnions; but no attempt has hitherto been made to subdivide the gun proper into more than two parts, and for this reason the building of "knock down" guns has been restricted to the nedium calibers. The weight of the individual parts in large guns and the pafficulty of making a factory screwed connection in them have apparently discouraged the inventor from any attempt in thi direction.
We have been favored by a correspondent with the accompanying illustrations of a system of "knock-down" construction which is intended to be applied to guns of any size and weight. Fig. 1 shows a view of the gun
ready for firing, and Fig.
2 is a longitudinal section of the gun, from which it \mid English parties which it is expected will be tested by will be seen that it is built up in sections, each of which consists of rolled sheet-steel disks held between terminal crossheads by steel tie-rods. Longitudinal support is also afforded to the rear half of the gun uy number of internal tapered tie-rods which gun drawn up by means of nuts at the breech. The rods are tapered in order to make it practical to knock that part of the gun down. After all the disks have been assembled and bolted up, they are bored centrally with a taper that fits the external diameter of the rifled steel liner or barrel, which is made in the usual manner, except that it is tapered and is ighter than the inner tube which is used as a nucleus upon which to build up heavy guns of the common type. The initial tension in the steel disks is secured by clamping a hydraulic jack to the breech crosshead and forcing the inner barrel into its tapering chamber. It is claimed that the enormous wedging effect due to the gradual taper of the tube, combined with the heavy pressure with which it is forced in, enables the desired initial tension to be secured in the body of the gun
The loading sleeve slides within a tubular steel screw, which serves to press the breech block so firmly in its place as to make a gas seal between it and the end of the inner barrel, at the same time holding the latter firmly in position while firing. The bolt in the breech crosshead enters a groove in the breech-block and precrosshead enters a groove in the breech-block and pre-
vents undue motion either way. One advantage of this construction is that the breech block may be taken out and carried away, thus rendering the gun use less sisould it be captured by the enemy, without rendering it unfit for use if recaptured. It is claimed that this system of construction in sures thorough inspection and high quality in the material throughout every part of the gun and therefore removes the risk of faults or flaws, which is always more or less present in the large forgings of which the jacketed gun is built. It also largely reduces the time which is necessar for the construction of large guns, both because of the small size of the parts and the distribution of the work among several shops, where at present it must be contined to a few.
A further advantage is that the inner barrel may be readily removed and another one substituted, if it should become powder-burned or if the rifling should be cut, so that the life of the gun is thus prolonged indefinitely. A large gun can be constructed for less cost per pound than a small gun, whereas in the present system price increases in geometrical proportion to the size of the gun. Moreover, because this system of construction permits the
the Ordnance Department of our government at the proving grounds, Indian Head, Md. It is to be understood that the sectional view, Fig. 2, is not drawn general method of construction.
firmly driven in center tube will give the necessary transverse strength.

repairing the leak at dry dock no.

BROOKLYN NAVY YARD.

The large wooden dry dock at the Brooklyn navy yard, officially known as No. 3, is just now the scene of a costly and difficult engineering work of a kind which ans and has rarely been undertaken before. It will be remembered that this structure is the latest and largest wooden dock constructed in this country. It was built to accommodate the large battleships and cruisers which have recently been added to the navy, and it was more than anything else the necessity of having dry dock accommodation at the earliest possible moment which led to the dock being built of wood instead of the more lasting and reliable stone.
A detailed description of the dock was given in our issue of February 20 of this year, about the time of its opening. The length over all is 670 feet breadth 151 feet, and the depth on sill 29 feet. The site consisted largely of made ground and in preparing the designs special care was taken to prevent the seepage of

1.-REMOVING MUD FROM APRON IN FRONT OF CAISSON GATE.

Fig. 2.-LONGITUDINAL SECTION THROUGH "KNOCK-DOWN" GUN.
The design is certainly novel, and if it does not deelop transverse weakness, the gun may mark a step in advance in the art of heavy gun construction. It will be remembered, however, that the 110 -ton guns of the English navy failed for want of transverse strength and showed a tendency to droop at the muzzle after a few rounds had been fired. This weakness was attributed to the fact that the rings of which the gun is built up did not possess sufficient length to impart stiffness to the chase of the gun. The defect was remedied by making the outer rings at the weak point about three times as long as they were before. In view of these facts it will be interesting to see how far view of these facts it will be interesting to see how far
the heavy tie-bolts of this new gun combined with the the heavy tie-bolts of this new gun combined with the from the river to the dock

In orde and mer to examine the break was make the needed repairs it was necessary to build a huge cof ferdam across the entrance channel and pump out the water. The magnitude of the task may be judged from the fact that the channel is 156 feet wide and the depth of the water is 34 feet, measured from mean high water mark. This gives a total hydrostatic pressure of 2,885 tons, which had to be withstood by the cofferdaim. The construction of the dam is clearly shown in the accompanying photographs, and in the sectional diagram, for which we are indebted to Naval Construc tor Bowles, of the Brooklyn navy yard. The dam consists of a central wall of clay puddle contained within three lines of sheet piling, backed up by two embankments of graveily clay, the toe of the inner embankment being held by a fourth wall of sheet piling as shown. By reference to the large engraving, Fig. 4 , it will be seen that the cofferdam is curved, presenting a convex face toward the river, or, to speak more strictly, it is built with five plane faces, those on the river side cor responding to the chords of a circle of 125 feet radius. This is done to secure an arch effect and cause the
pressure of the water to be trans ferred to the walls of the channel the latter acting as abutments The lateral pressure thus set up is supposed to compress the lines of sheet piling and assist in keeping sheet pilng and aist keeping the joins waternt. Owing to the yielding nature of the sides of the channel, however, and the dif ficulty of driving the piles at the angles with a snug fit, it is a ques tion whether a straight dam would not have been preferable. It would certainly have been cheaper, for it often took as long to fit and drive the angle piles as to drive the whole of one bent between them.
Soon after the commencement of operations, Naval Constructor Bowles was placed in absolute charge of the work, with instruc tions to push through the repair with all possible speed. Contracts were at once let for the 600,000 feet of timber required; a temporar electric light plant was installed and six pile drivers were put to work. Sticks of the size and quality required for the piling are not kept in stock, and when the con tracts were let the $600,000 \mathrm{~B} . \mathrm{M}$. wa yet standing in the Georgia pine forests. This had to be cut, dressed hauled to a Southern port, and brought up to New York. Delays due to the non-de- \mid to the wales and the guide piles. The structure was livery of the timber were frequent, and it was only by also braced at each end against the sides of the dock unflagging attention that the work has been brought to the present stage.
The first operation was to drive eight lines of 14 by 14inch guide piles, in pairs. Then the guide wales (horizontal lines of timbers to keep the sheet piles in line) were bolted in place. As three of these lines on each set were under water, they had to be adjusted by divers. This was slow and laborious work. Where the guide piles were out of line, blocking had to be inserted or notches cut in the guide wales and the piles drawn up to the wales by U-shaped yokes and bolted. for supplying the 18,000 yards required by using thed for the adjoining Wallabout dock ex The sheet piling is 12 by 14 inches and tongued and grooved. It is driven 16 feet into the mud, and in the four walls there are 1,100 separate sticks 56 fe 1,100 sepa in length. The sheet piling was carried well into the banks of the channel, the concrete coping of the dock being blasted out for this purpose. The three walls of piling were then braced by a system of $11 / 2$-inch tie bolts and 12 by 12 -inch braces, the latter being notched onto the guide wales and well spiked both

4.-COFFERDAM ACROSS ENTRANCE CHANNEL--DRY DOCK No. 3, BROOKLYN NAVY YARD.

RECENTLY PATENTED INVENTIONS．

Engineering．
Steam Generator．－Henry C．Chris topher，Meridian，Miss．In this generator the gasenu proper into the water space，to more fully utilize the heat and economize fuel．The combustion chamber is locate ia and entireiy surrounded by water in a primary boiler， and the upper end of the combustion chamber is con－ nictel by a flue and valved pipe with a second boiler， into which the gases and products of combustion are dis
charged from a submerged outlet，the gaseous products charged from a submerged outlet，the gaseous products
of combustion being mingled witi the stoam in the of combustion being mingled witi the steam in the
second boiler，and used therewith in driving machinery， etc．The two boilers are so connecterl that an even pres－ sure may be maintained iul b th，anıl steam may be taken sure may be maintained in b th，and st
from either or both of them as desired．
Boiler attachment．－William I． Miller，Atchison，Kansas．To prevent freezing in the feed pipe of a boiler，more especially a locomotive boiler．
his invention provides an attachment which allows a circulation of hot water through the pipe when the feed pump or injector is not working．The main or boiler check valve and the lower intermediate valve are each
provided with a small passage to permit the leaking of provided with a small passage to permit the leaking of
hot water around and past the valves when the feed or hot water around and past the valves when the feed or
injector is not in operation，the leak of the intermediate valve being always open，and the other subject to con－ trol，the feed pipe being thus always kept clear without affecting the ordinary operation of the feed．
Gage Cock．－George Johnson，Allen－ port，Pa．According to this invention a casing secured to
a boiler has at its inner end a valve seat，the valve being seated by pressure from the boiler，and the stem of the valve extending through the casing and a stuffing box，
while a cam on the stem is adapted to engage a cam sur－ while a cam on the stem is adapted to engage a cam sur－
face on a cam attached to the casing．The device is not liable to get out of order，as it is without springs or other breakable parts，and leakage is completely avoided．as the valve is held firmly to its seat by the boiler pres－
s：rre，and is always ground in its seat on opening and closing．

Railway Appliances．

Car Ventilator：－Andrew J．McAr thur，Gainesville，Fla．For refrigerator cars，this inven tion provides a simple and strong ventilator which may be elevated in sections in either direction with relation to the hatchway，and may be swung wholly away from the hatchway．The invention comprises a hatchway haring
walls extended above the car roof，a frame hinged to the hatchway carrying a screen，while a cover in two sec－ tions is hinged to swing，one relatively to the other， there being means for removably securing the sections
to the frame and holding either one of them in open o the fr
position．
Refrigerator Door．－The same in－ htor has likewise obtained a patent for a door more particularly adapted for cars and cold storage rooms，the door being so made that it may be casily opened，and when closed will form a practically airtight joint between
the door and its casing．Arranged between the door and he door and its casing．Arranged between the door and having inner and outer walls formingan air chamber which may be packed with charcoal，sawdust，etc．
Car Door．－John M．Smith，Van Wert， Ohio．In freight car doors mounted to slide，this inven－ to any sliding door，and designed to render the door storm proof，dust proof，and burglar proof．An angle
iron lies against one side of the door frame，and is held iron lies against one side of the door frame，and is held
capable of adjustment toward ar：d from the door，a wing capable of adjustment toward ard from the door，a wing
being pivoted to the angle iron and a latch holding the wing in connection with the door．The door does not bind at the bottom，and the locking and sealing devices
are so mounted that the door may be as readily opened when the sides of the car are bulged or sprung outward by heavy loading as when the car is unloaded．
Street Tramway Track Cleaner． －Louis Lege，Hanover，Germany．An instrument
adapted to run along the rail and scrape off accumulations therefrom has been devised by this inventor．It is at－
tached by means of a post to the under side of the car tached by means of a post to the under side of the car
floor，and has a receptacle adapted to receive material from the track the receptacle having rearwardly and
outwardly extending branches to deliver the material at the sides of the track，and the cleaner having a tongue the sides of the track，and the clea，

Mechanical．

Grinding Machinf．－George W．Kirs－ ten，West Orange，N．J．For grinding sphericai or
curved surfaces and twists of various kinds，this ma－ chine is arranged to properly support and adjust the
work，and to hold the grinding wheel in the desired posi－ tion，according to the shape to be given to the cutting edge．The machine has a carriage adapted to travel backward and forward，and holding an adjustable head
with holder carrying a grinding wheel mounted to turn in the head，there being means for adjusting
the holder laterally in the head．The operator is only required to adjust the work on the centers and
adjust the grinding wheel vertically according to the adjust the gri

Mattress Tufting Machine．－Ed－ ward B．Dixon，Grantsborough，N．C．This invertion pairs of needles are forced up through the mattress while hell by suitable clamps on a suitable bed or frame．It is designed to enabile the needies to be raised and forced
up through a matress with greater ease than heretofore； up through a mattress with greater ease than heretofore；
reduce the weight，number and cost of parts；provide reduce the weight，number and cost of parts；provide
lateral guides or holders for the mattress while on the frame，and make such guides vertically adjustable to ac－
commodate mattresses of different thucknesses，while also commodate mattresses of different thuckness．
providing a temporary holder for the tufts．

Pumping Power．－George W．Grimes． Bluffton，Ind．This invention provides a simple and powerful machine by which the pumps of several sur
rounding wells may be simultaneously operated，all the parts of the machine being conveniently aspembled，and
a large frame and supporting rods being dispensed with．
Eccentrics and Eccentrics and a power wheel are mounted to rotate
on a tapered post，the lower end of the post engaging a socket in a base on which is an adjustable bearing plate ing plate on which the hub of the power wheel rests．

Agricultural．

Tree Protector．－Charles C．Coul－ on，Riverside，Cal．This improvement embraces a se－ ries of frames connected by tracks on which canopies are
adapted to slide，foot blocks resting on the ground sup－ porting the frames，and stakes engaging the foot blocks－ whereby the frames may be readily moved to a recumbent or upright position．It is designed more especially for use in climates liable to a frost on still and clear nights， etupand taken down．
Clod Cutter．－Peter R．Campbell， Brierfield，Miss．This is a cultivating apparatus sup－ ported by runners，in which the clods are broken by
knives or blades held to run along the ground．A knife rame is employed carrying longitudinal blades，and there are plowshares which throw the earth inward as the machine passes along the ground．The cutters have aw blades adapted to travel through the hardest clods
Roosting Device for Fowls．－Fred D．Dimcck，National City，Cal．For a poultry house or
similar inclosure，this invention provides a device adapt－ similar inclosure，this invention provides a device adapt－
ed to remove the droppings of the fowls and deposit ed to remove the droppings of the fowls and deposit
them in a suitable receptacle outside the house．The roosting poles are arranged in a tier，and below them is a mounted on rollers and extending through an apeiture in the inclosure．A scraper blade is mounted adjacent to the outside roller，by which the material on the apron

Fence－Bennett 「．Hoshall．Sham－ burg，Ma．This is a fence in which the rails，riders and
stakes are bound together by wire locks，the rails of adjacent panels lapping at their ends against the post， and the wire ties passmg over each of the rails near their
extremities，thence under another rail and having a portion passed around the post．The several locks may be clamped to the post by nails or staples．
Cow Milking Apparatus．－Modestus Cushman，Waterloo，Iowa．In this apparatus both Naction and traction are simultaneously applied to the animal＇s teats，the main parts of the apparatus compris－ ng pipe extending horizontally the length of the cow stall in front of the stanchions，and a series of attach－ ments or sets of teat cups connected by flexible branch tubes with the main conductor，there being means of
applying traction to the branch tubes．An automatic applying traction to the branch tubes．An automatic
vacuum apparatus and a water receptacle or holder are connected with the main milk conductor by branch
tubes，A novel vacuum regulator is provided，and also means of readily adjusting the degree of traction to be mployed．

Receiver for Gases or Liquids．－ Rudolf Kelting，Eschweiler 2，Prussia，Germany．In order that large receivers may be made of sheet metal，
this inventor provides the receivers around their base with an exterior shell forming a space adapted to receive a filling，such as water，which will partly counterbal． ance the outward pressure of the contents of the re
ceiver．Such receivers，when used as water tanks，etc when made of extra large size or h tight．have had to be made of or strengthened with concrete or brickwork， necessity which the improved construction provided for by the patent is designed to obviate．
Process of Making Nitrites．－Au－ gust Knop，Rheinau，Germany．For the manufacture of alkali nitrites，this inventor subjects to the action of
heat a mixture of a nitrate of the same alkali，the heat a mixture of a nitrate of the same alkali，the
caustic alkali of the same element，and carbon，accord ing to a specially devised process designed to afford great economical advantages，the process rendering
possible the use of carbon in its cheapest form by adding a certain quantity of caustic alkali to the molten nitrate It is claimed that it is possible to produce in the same time nearly twice as much nitrite as can be made by the lead process，with a corresponding economy of fuel and
wages，the amount of coke consumed being insignifi－ cant．
Ironing Table．－William R．and Ed－ ward N．Murray，Parramatta，New South Wales．This
is a table adapted for use as an ordinary kitchen table， is a table adapted for use as an ordinary kitchen table，
and readily convertible into an ironing board．It has four legs rigidly joined at the top and bottom by rails， carrying a ledge forming part of the top of the table The removable top of an ordinary kitchen table is sup－ ported by cleats，and a leaf adapted to be used as an
ironing board may be readily placed in position，either paf when not in use being held out of the way
Cleaning Water Heaters．－George J．Dehn，Iron Mountain，Mich．To prevent the accumu－ lation of lime or similar matter in boilers，water back or
frontranges and connecting pipes，this invention pro－ front ranges and connecting pipes，this invention pro
vides simple means for automatically supplying a com vides simple means for automatically supplying a com－
pound to the water to prevent lime，etc．，from adhering for cannection surfaces．On a length of pipe designed the compound is placed，the cover of the vessel being
removed for that purpose and afterward secured in posi－ tion，when，on opening valves arranged for the purpose， he compound is fed in through the feed pipe
Hearse．－－James Burns，Cincinnati， O．This hearse is provided with a table for carrying a
casket，and that slides forward and backward，admitting of very readily placing the casket in the hearse or remor－ ing it therefrom．By the adjustment of brackets the
table may be held in any desired position，or it may be taken out entirely for cleaning purposes．The table may also be lowered so that the pall bearers may with may also be lowered so that the pall bearers may
greater convenisuce，place the sagket on the table．

Fire Extinguishing Apparatus．－ Joseph O．Banning，New York City To facilitate han－
dling and operating storage cylinders for fire extinguish ding and operating storage cylinders for fire extinguish． ing solutions，this inventor has devised a pump which will not siphon and whose handle may be locked when not in use，the pump having ball valves of metal to se－
cure more perfect continuity of ejecting power，while the cylinder cover is provided with a removable liquid tight cap which may be quickly adjusted or detached． Cigar or Cigarette Holder．－ George B．Schmidt，New York City．This device com－
prises a base portion provided with a pin，and from which extends a wire bent upon itself at its outer end to form an open loop or socket adapted to receive the end
of a cigar or cigarette．The cigar，cigarette，cigar holder or pipe，carried by the device，may be brought to the mouth and held in proper position for smoking，leaving both hands of the smoker free．The device may also be
Stirrup．－William H．Wilson，Nocona， Texas．To so construct a stirrup as to prevent its strap
bar from hurting the instep of the user and wearing his bar from hurting the instep of the user and wearing his being offset with respect to the tread bar and rigidly connected therewith，the strap bar being relatively in the tread bar and held from binding against the leg or instep when the boot is inserted to cause the
heel to bear against the tread bar．There is no danger of the foot being caught in the stirrup in the event of the

Vehicle Wheel．－Philip J．Parker， Brooklyn，N．Y．The tire of this wheel is formed of a
series of tubular sections with closed ends，there being series of tubular sections with closed ends，there being
an air tube within the inner periphery of the rim from an air tube within the inner periphery of the rim from
which posts lead into the tire，while valves in the sec－ tions of the tire are provided with tubes projecting into may be quickly located．and each section of the tire may be indeperdently inflated or all or any of the sec tions may be inflated together．The invention is de－
signed for bicycles，or for sulkies，road wagons and her vehicles．
Buckle．－Chrystie F．Nicholson，New York City．This invention relates principally to buckles for belure anile it is a blank consists of a single piece of sheet metal，which comprises the loop portion，short integral tongue，rea transverse bar and tang，etc．

Designs

Playing Card．－Michael F．Carey，Al－ my，N．Y．The leading fealure of this dengn consit
 shape．
Guard for Keys．－Thomas M．Hil－ liard，New York City．This design relates to a sheath or
guard for a bunch of keys to prevent keys worn on the approximately belling furniture，etc．，the sheath being ed for connection with a belt to be worn around the

Plow Stock．－John W．Barnard， Shannon，N．C．This stock has an upright section ter minating at its upper end in a fork，and a lower horizon－ outer free end，there being in the side surface of the
oresenting a landsid，with a shoe at its Toe Clip．－～David Basch，New York City．This design relates to toe clips for bicycle pedals， and comprises rear lips continuous with the base，the
base，toe guard and side guards being otherwise of the usual shape，while a pendent member extends downward from the rear end of the base
Belt．－William H．Carr and John G． Wolf，New York City．This design relates to inside the corset cover or corset，and the central back portion angular slot adapted to receive and engage with angular
button．
TAC

Tackle Block－Thomas R．Ferrall consistile，Mass．The leading feature of this design consists in the cheek pieces of the block，which are
elliptical in contour and have ends extending substan－ tially to a point，the cheek pieces having circular orna－

Lemon Squeezer．－George R．Blake， Winchester，Va．This design is for a squeezer adapted
to rest upon a glass，the base portion having centrally grouped segmental openings，and there being an up－ wardly exten
corrugations．
Covered Dish．－Robert L：Johnson， Hanley，England．This is a shallow outwardly flaring dish，the shape of the cover conforming to the upper
portion of the body，with curved horizontal handles at the ends of the body，ail appropriately ornamented．
Note．－Copies of any of the above patents will be
furnished by Munn \＆Co for 10 cents each send name of the patentee，title of invention，and date of this paper．

NEW BOOKS，ETC．

The Standard Manual of Soda and pecially adapted to the requirements of druggists and confectioners．By
Emil Hiss，Ph．G．Over fifteen hundred formulas．Chicago：G．P．P．
Engelhard \＆Company．189\％．Pp Engelhard \＆Comp
242．8vo．Price $\$ 4$.
What has long been needed is a thoroughly practica hook of formulas for soda and other beverages．There
have been a few books published on this subject，but in the main they are impracticable，largely because their compilers were neither chemists nor practical manufac
turera of soda water．The present work is prepared on a
proper plan．Special contributors furnished formulas
and they have been edited by a competent result is highly satisfactory．There are nearly fifteen hundred formulas，including the very latest flavors of beverages．The soda water business can be greatly ex－
tended by careful attention to details and it gives a hand some return to the pharmacist for his trouble．

Handbook for Chemists of Beet Sugar Houses and Seed Culture
Farms．Conta FARMS．Containing selected methods
of analysis，sugar house control，re－ ference tables，etc．By Guilford L． Spencer．First edition．First thou－
sand．New York：John Witey \＆
Sons．London ：Cbapman \＆Hall．
1897．Pp． 475 ．Price $\$ 3$.
The beet sugar industry promises to be very importar．t he subject，which was deficient a few months ago，is now being increased by several admirable works，of which the
present is not the least．The author is connected with the Department of Agriculture Washington，D．C．and is well acquainted with the subject．We feel sure an ex－
ex amination of this work would be of value，not only to
the sugar chemist，but to the general chemist as well． Mandal of Assating Gold．Silver， LEAD，Copper．Br Walter Lee
Brown．Seventh edition．Chicago：
E．H．Sargent \＆Company．1ヶ97． E．H．Sargent \＆Company． $1 乞 97$ ．
Pp． 533 ．Price $\$ 2.50$ ． This is a valuable book and is strictly up to date，and
those who are thinking of going to the gold fields of the those who are thinking of going to the gold fields of the
Klondike or elsewhere should not fail to possess a copy of th：s work．It is impossible in the limits of an ordinary notice to describe the methods which are adopted，but the subject．The book is pocket size and is handsomely printed．
Sleep：Its Physiology，Pathology，Hy－ giene，and Psychology，By Marie de
Manaceine（St．Petersburg）．Illus－
trated．London：Walter Scott， Limited．New York：Charles
ner＇s Sons．1897．Pp．341．Pricite $\$ 1.25$.
This is a most interesting work，treating of the physi－ ology，pathology，hygiene and psychology of sleep．It is
published in Russian and in English．It is curious to see what an interesting book can be made upon the subject of sleep．One－third of our lives is passed in sleep，and it is fitting that we should know something at least of the hygiene of sleep，if not of its psychology．The biblio－
graphies which are scattered through the work are very graphies which are scattered thro
Festsichrift zur 38．Hauptversamm－ lung des Vereins Deucscher Inge－
nieure，Cassel．1897．Pp．176． This book deals with the various points of interest in the town of Cassel and the neighborhood and gives an
account of the notable buildings and industrial estab－ account of
Gold and Stlver Currency．In the light of experience，historical，eco－
nomical and practical．A series of papers written for the Travelers＇Re－
cord．Hartford．Conn．：The Case Lockwood \＆Brainard Company． This is a series of paper
This is a series of papers written for the＇Travelers＇Re－ cord by Mr．James T．Batterson，president of the Tra－
velers＇Insurance Company of Hartford，Conn．，whose large experience in matters of finance specially fits him for the task of writing on gold and silver as currency
Iowa Geological Survey．Vol．VII． Ang papers．Samuel Calvin，State Geolouist；A．G．Leonard，Assistant
State Geologist．Des Moines． 1897. State Geologis
Pp． 555 ．4to．
Little Masterpieces：Poe，Irving，
Hawthorne．Edited by Bliss Perry． HawThorne．Edited by Bliss Perry． Company．Cloth， 30 cents；full leather， 60 cents．
This series，each volume of which includes a discrimi nating selection of the characteristic short pieces of
well known authors，is most daintily got up，the au－ thorized text being used in all cases，with a short in thorized text being used in all cases，with a short in－
troduction by the edtor．The volumes are small enough to be conveniently carried about in one＇s pocket，to con－ tribute to the enjoyment of a leisure hour wherever one may happen to be－an enjoyment which is enhanced by
the fact that their printing and style are in such excel the fact that their printing and style are in such excel－
lent taste．Each volume contains a beautiful picture of the taste．Each volume contains a beautiful picture
the author from whose works the selections are made．
Easy Lessons in Mechanical Draw
ing and Machine Design．By J ING AND Machine Design．
G．A．Meyer．Quarto，in 24
Price 50 cents each．
Theeighth number of this valuable work and reference for the draughting room，as well as a self instructing
guide to the student and amateur，has just been issued．
Popular Scientific Lecturfs．By
Ernst Mach．Translated by Thomas Ernst Mach．Translated by Thomas vised and enlarged．Chicago：The Open Court Publishing Company． ner $\&$ © Company．
Price $\$ 1$.
Prof．Mach has an international reputation as a profes sor of physics．He is now professor of the history and theory of inductive science in the University of Vienna．
The subjects of his lectures are as follows：The Forms of Liquids；The Fibers of Corti；On the Causes of Harmony The Velocity of Light；Why Has Man Two Eyes？On Symmetry；On the Fundamental Concepts of Elec
trostatics；On the Principle of the Conservation of Energy；On the Economical Nature of Physical In
quiry；On Trangformation and Adaptation in Scientific

Thought: On the Principle of Comparison in Physics
On the Part Played by Accident in Invention and DisOn the Part Played by Accident in Invention and Dis-
covery; On Sensations of Orientation; On Instruction in the Classics and the Mathen the History of tics. II. Remarks on the Theory of Spatial Vision. Photograms for 1897. London: Daw barn \& Ward, Limited. 1897. Pp. 114.
$8 v o . ~ P r i c e ~$
80
cents in cloth; 40 cents in paper.
This is a pictorial and literary record of the best phothe staff of The Photogram, assisted by Gleeson The staff of The Photogram, assisted by Gleeson
White. This publication is supposed to represent the pictorial side of photography in various parts of the world. In this respect, since it began and the subsequent years have proved it to be uniformly successful, especially from an artistic point of view. This excellence is fully maintained in the present volume for 1898. We note several
of the landscapes and views on the river during foggy of the landscapes and views on the river during foggy
days, in which the English amateurs excel. Possibly the most striking photograph in the whole work is drawing the charge from the retort in the gas works This would make an ideal subject for a realistic painter In addition to examples of artistic photographs are to be found others showing the progress in Roentgen pho tography and the kinetograph, among the latter being
page or more of minute pictures representing the crow of photographers leaving the convention hall at Ya moun last summer. These are so distinct that note personages may be readily picked out. It is a book whose annual appearance is always appreciated and is
the bes printed annuals that comes from London.

Sixteenth Annual Report of the VEY TO THE SECRETARY OF THE IN
TERIOR. $1894-95$. Charles D. Wal-
cott, Diretor. Washington. 1896. cott, Direstor
4to. Pp. 910.
The present volume contains the Director's Report an papers of a theoretic nature. It details the remarkable work which has been accomplished by this importan
bureau of the government. After examining this splen did volume, it is easy to see why the publications of the United States government are so much thought of abroad. Many of the articles in the report are of course
only interesting to specialists, but anyone who is inter only interesting to specialists, but anyone who is interested in sclence can easily spend an hour in examining
it. The engravings adequately illustrate the work Th. The engravings adequately illus trate the work
There are 117 plates and 169 engravings in the text There are 117 plates and 169 en
besides valuzole geological maps.
The Architects' Directory for 1897 98. Containing a List of the Archi da. Together with a Classified Index turers of Building Material and Ap pliances. New York: W. T. Com ptock. 1897. Fourth annual edition Pp. 112. Price $\$ 1$.
This excellent little book contains a classified list of
the architects of the United States and Canada, and as it the architects of the United States and Canada, and as it
is issued by the publishers of Architecture and Building certainly should be
The Vivian Polling House, M. D., F. R.C. G. George Lon-
Vivian Poore, M. D., F. R.C.P. Lon
Pp. 178. \$1.25.
The proper sanitation of dwelling houses is a leading subject in this handbook, a great portion of whose contents has been previously published in papers delivered
before the Royal Institution, the British Medical Associ ation, etc. Its illustrations and comments relate almost exclusively to the ideas and practice of English builders.

Engineering. By John Perry, M. E
D Sc., F.R.S. London: Cassell \&
Company, Limited. Pp. 678. Price
$\$ 3.50$. $\$ 3.50$
merical and graphical exercises, and who would like to merical and graphical exercises, and who would like to
review an entire course of instruction m applied mechan ics, this volume presents the ready means, as it embraces a two years' course of such lectures at the Finsbury (London) Technical College. A11 mechanical and elec trical engineering students in their first year have two lectures a week, and the substance of these lectures is here printed in large type, while the mechanical engi-
neers had three lectures a week in their second year, and these are printed in small type, the whole forming a volchemical and building students also attending in the mechanical department. The Appendix contains many

A New Illuminated Edition of the holy brble, brought out by the American Bible Union, 230-238 South Eighth Street, Philadelphia (copyrighted by Frank E. Wright). presents a wealth of illustration such as, we believe, has never before been at-
tempted in a volume designed for general circulation, and offered at popular prices. The text conforms to that of the Oxford Bible, of the University Press, Oxford, with full marginal references and a Concordance. The work is embellished with 800 pictures, designed not only to give the Bible student all possibls assistance to the proper understanding of the Sacred Word, but to be faithfuly and artistically illustrative of the text, as it
has been interpreted at various times in the long period has been interpreted at various times in the long period
durng which the Biblc has been looked upon as the first of aii books. The pictures also cover oriental scenes of many types and all ages of the world, including representations of recentiy discovered ancient monuments,
with uheir almost undecipherabie hieroglyphics, and fracwith their almost undecipherabie hieroglyphics, and fra,
ments of papyri manuscripts which are now the objects of study by the most learned scholars. The typography and mechanical execution leave nothing to be desirea,
the type being large, clear and delightful to the eye, the type being large, clear and delightul to the cye,
while all of the several types of binding in which the work is offered to the public, from the silk cloth to the full turkey, are
edition de luxe.

Wusiness and Personal

line for each insertion; about eight words to a line avertisements must be received at publication offic as early as Thur
ing week's issue.

Marine Iron Works. Chicago. Catalogue free,
"U. S." Metal Polish. Indianapolis. Samples free. Yasoine Brazing Forge, Turner Brass Works, Chicago Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O. Wrench patent No. 588.049 for sale. See page 404.
dress C. H. Avery, 9 Linden St., Binghamtorf, N. Y. lmproved Bicycle Machinery of every description
hhe Garvin Machine Co., Spring and Varick Sts., N. Y. Concrete Houses - cheaper than brick, superior
tone. "Ransome," \ddagger Tit Monadnock Block, Chicago. The celebrated "Hornsby-Akroyd" Patent Safety O hine Company. Foot of East 13sth Street, New York. The best book for electricians and beginners in elec
ricity is "Experimental Science," by Geo. M. Hopkins. y mail, $\$$. Munn \& Co., publishers, 361 Broadway, N. Y. nd other Books for sale by Munn $\&$ Co., 361 Broadway

mints to correspondents.
vames andAddress must accompany all letters
or no attention will be paid thereto. This is for ou or no attention will be paid thereto. This is for ou
information and not for publication. References to former articles or answers should
give date of paper and page or number of question
nquities not answered
 or in this ee endeavtment to reach to to all either by lette Buyers wishing to purchase any article not advertised
in our columns will be furnished with addresses o
houses mand houses manufacturing or carrying the same.
pecial WVItten Incrmation on matters of
personal rather than general interest cannot be expacted without remuneration.
cientific American Supplements referre

price.
Miner sent for examination should be distinctly
markee or labelec.
(7278) X. asks: Will you please give me making your colum of Notes and Queries a receipt for ink? I would like something better than the plain glue and glycerine composition, and also for an ink that would not rub and smcar. A. Formulas for pads. also inks, are
given in Supplement, Nos. 1071, 1092, 1110 and 1119 pricé 10 cents each by mail
(7279) W. R. asks (1) how a drum arm ature can be wound so that it can be connected to a two segment commutator. A. Connect the coils on one side in series end to end.; also on the other side, and join the nds to the two part commutator; but there is no
vantage in doing it. 2 . What is the claim made for the drum armature over the shuttle? A. With a drum armature as many impulses of current flow into the line for each revolution as there are coils, and the current is rendered even and uniform. With a shutle armature there is a decided fluctuation of current at the same speed, ince there is but one coil. This is not a claim, but a fact. 3. What is the size and sustaining power of the smallest
electromagnet ever made? A. We have not at hand the accounts of small magnets. You can find accounts very small electromagnets which sustained very large weights in "Lentures on Electricity," by Prof. George Forbes, price $\$ 1.50$ at this office. 4. In the Supplements describing the simplified Holtz machine, can the curved rod, G, forming the bearing for the sleeve, c, be placed in for of the revolving disk, or must it form the bearing there be a firm support for the revolving parts. 5 . Does it make any difference if the revolving plate is back instead of in front of the stationary? A. The side on which
he discharge balls are is the front. It is much more the discharge balls are is the front. It is much more
convenient that the revolving plate should be on this side. There is also much less leakage. 6. Can a sal ammoniac battery be made with copper and zinc for the eleice. It gives less than one volt.
(7280) W. J. W. asks: Please inform me through your valuable paper how to resilver a looking
glass? A. Valuable articles on this subject are contained in our Scievtielc american Supplement, Nos. 105 $21, \varepsilon 95$ and 1006 : price 10 cents each by mail.
(7281) F. H. M. writes : I wish to enlarge dynamo of which you give plans in Scientific sions given in paper. Would you kindly answer the following questions through the columns of your valued paper the Scientific American? 1. Should I use 48 diisions on commutators, or 24? A. The number of coils n the armature should not be changed. Wind 24 coils
as before. 2. If 48 divisions are used on commuta cylinder, would it be necessary to use same number of di visions on armature core? A. Yes. 3. By doubling dimensions of dynamo gives it four times its capacity using 14 wire on armature, 12 wire on field, would it rui 3216 candle power lamps more or less? A. Yes. 4. Coun and bol ts run down through field waists connecting al the fiela firm? If so, what size bolts, diameter? A. The castings as possible, as -every joint causes some leakage. The top may be in one piece, and bolted as you suggest; $3 / 4 \mathrm{inch}$ bolts may be usect.
(7282) F. S. G writes: I have three charge them I put in 8 ounces of blue vitriol in each and charge them I put in 8 ounces of blue vitriol in each an
filled them up with water, then to start the action
added 2 ounces of sulphate of zinc. I short circuited
them, but the blue line will not come up any higher the hem, but the blue line will not come up any higher tha can I remedy it ? The way they are now, the three of hem will not work one sounder. A. Fill the copper sul jar with water till the zinc is covered. Short circuit fo a few hours till the solution is clear like water to a poin below the zinc. Your trouble is that you have not used
blue vitriol enough. It is not necessary to use any sulphate of zinc in starting the gravity battery. It will form nite soon enough and will then have to be got rid of
(7283) A. M. asks what the different compositions in the carbon for the brushes and arc light re cemented together with. Would silicaie answer the purpose? A. We are not able to give formulas as use t.je different manufacturers of carbons; but the sugar and gum and shaped by pressure. They are the baked in an oven to carbonize the adhesive substances. The detalls of the process are considered trade secrets The Carre carbons are said to contain of powdered cok 15 parts, calcined lampblack 5 parts, special sirup 7 to
parts, mixed with water, moulded and dried in a cruci
(7284) J. C. P. writes: I have a dynamo giving a current at terminals of 60 volts, 16 amperes. I
wish to light a small Foucault arc lamp carrying $1 / 4$ inch arbons. 1. What esistance should 1 introduce in serie satisfactory results, i. e., quiet arc? A. The voltage and satisfactory results, i. e., , quiet arc? A.
current taken by an arc lamp vary with the jength of the are, when properly lighted. Measurements with 1 inch carbons gave these results:

Volts. 35 40 50

Assumin olts, you will need to provide for 25 volts and 9 am $\mathrm{C}=\frac{\mathrm{E}}{\mathrm{R}}$; or $\mathrm{E} \stackrel{\mathrm{E}}{\mathrm{C}}-\mathbf{2 5}_{9}=3$ ohms. The lamp has the other 4 ohms which are needed to pass 9 amperes.
35 $R=\frac{35}{9}=4$ ohms nearly. The resistance box should allow of varying the resistance from the smallest to the largend to burn to a slim pencil poist. Why? A. Your lamp gets too much current. 3 : In my 90° arc lamp,
taking current of 40 volts and 12 amperes with cone cartaking current of 40 volts and 12 amperes with cone carto short-circuit the arc. Why is this? How can it be voided? A. By giving the lamp more resistance in boz,
(7285) M. L. F. asks for the best receipt or a powder or dry mixture fire extinguisher-some. will keep a long time without losing its strength A Vienna Fire Extinguishing Agent : A solution of 5 parts ferrous sulphate (copperas), 20 parts ammonium sulphate, 125 parts water. Johnstone's: Make a mixture of equal parts of prrolusite (manganese dioxide), potassium chlo-
rate, potassium nitrate. Moisten with water glass and rate, potassium nitrate. Moisten with water glass and
press into a block. Place the block in a pasteboard box. Several boxes, conn
the ceiling of a room.
(7286) W. J. A. says: A few evenings ago, a friend of mine tork out of his pocket a box contining long white "pilis," tapered at each end. Laying
one of these on the edge of a table, he applied a match and lit the end of it. . Burning slowly, the "pill" transformed itself into gray material about 5 inches long. This gray matter seemed to writhe like the body of a snake while forming. After the "pill" stopped burning, give me a receipt for making them? A. Pharaoh's serpents are made as follows: One grain of dry mercury sulphocyanide is mixed with some gum tragacanth which has previously been soaked in hot water. When the gum is completely softened, it is transferred to a mortar and the mercury sulphocyanide (in fine powder) is mixed with it by aid of a little water, so as to tarn out a somewhat dry pill mass. This is then formed and cut into pellets the desired size, which are dried on glass. These are
very poisonous, and must be handled with care. Do not inhale the fumes.
(7287) G. S. M. asks : Can aluminum be used in castings for a gasoline engine of 1 horse power? gun metal instead of iron? A. Pure aluminum can be used in many of the parts of a 1 horse power gasoline en-
gine. Ii lightness is the principal object: An alloy of 90 gine. Ti lightness is the principal object: An alloy of 90
parts of aluminum, 0 parts of silver, 1 part of copperall by weight-makes a very hard but workable metal, suitable for cylinder, piston and valves. The specific
gravity of this alloy is but very little more than pure gravity of this alloy is but very little more than pure
aluminum. The cylinder could be covered with a thin sheet metal water jacket, and thus make a very light and beautiful engine. This alloy makes close grained castings and can be easily soldered.
(7288) W. M. Z. asks: 1. How fast will ir travel through a pipe leading into a vacuum? A. vacuum if wholly unobstructed, is 1,347 feet per second. The coefficient for an orifice is 0.707 , which limits the quantity value to 952 feet per second. The friction of the air in the pipe still further retards the flow according to its length. 2. How much in bulk will air compress under different pressures? A. There is no known limit to the
compression of air at ordinary temperatures; 15,000 pounds per square inch has been attained without liquefaction. At a temperature of 220° below zero, Fah., it liquefies at 573 pounds pressure per square inch. 3. How long will it take an air pump, say 10 horse power, create a vacuum in a vessel of 1,000 cubic feet? pump. The time of obtainining an any ordinary vacuum depends npon the relative volume of the pump and vessel, as also the speed of the pump; an approximate time volume from the volume remaining in the vessel for each stroka of tha pump.

INDEX OF INVENTIONS For which Letters Patent of the United States were Granted DECEMBER 14, 1897
AND EACH BEARING THAT DATE.

Office Desks

Chairs, Tables, etc. Manufactured by

Derby Desk Co. ${ }_{1}^{138}$ Portland Street Boston

10WALNORTH
PIPE VISES are the Heaviest and
Strongest vises made. enewable Steel Jaws. WALWORTH MFG. CO. 20 OLIVER STREET, BOSTON, MASS. ROTARY PUMPS AND EN GINES

Tools For All Trades

 MONTGOMERY\&CO FINE TOOLS,
105 Fulton Street. New York City.

ACETYLENE APPARATUS

che

Garmon hangee, C.H. Garrigis

Water Emery
Tool Grinder

\$5 Printing Press
OVERHEAD
TRAMWAY
The Coburn Trolley Track Mig. Co.
PERPETUAL MOTION

CHUCKS

Gas Blast Furnaces

GAS PRODUCERS

The Perfection of Pipe Threading

POU USE GRINDSTONES ?
 specialtyof selecting stones for all spe
cal purposes. EAk for catalogue-
The CLEVELAND STONE CO. 2d Floor, Wilshire, Cleveland, 0 .
EDGE TOOLS-0.

NO MORE "POISON IN THE BOWL"

Phonographs, Graphophones,
Projectoscopes, Kimetoscopes,
 The Edison Phonograph $\mathbf{C o , 4 2 7}$ Yine St.,Cincinnati, 0 .

 MIANUS ELECTRIC COMPANY, . - MIANUS. CONN. ELECTRO MOTOR, SIMPLE, HOW TO make.-By G. M. Hopkins. Description of a small elec-
tro motor devised and constucted with a view to assist-
ing amateurs to make a motor which

CARBORUNDUND

Electric a Coy \& IIIaking

DYNAMO BUILDING
ELECTRIC MOTOR CONSTRUCTION. By Prof. T. O'CONOR SLOANE.
140 Pages, Very Fully
Illustrated, Price $\$ 1.00$.

experimenting, people are dain busily en-
gaged in making electrical
toys and apparatus of various
kinds. The present work is
ogive the much needed inf
\qquad
We can also furnish Prof. Sloane's works on electricity
as follows: Arithmetic of Electricity, 138 pages..... $\mathbf{8 1 . 0 0}$
Electric Toy Making, 140 pages Electric Toy Making, 140 pages 1.00
How to Recome a cian, 189 pages....................... 1.00

Cond for special circular containing full table of
contents of the above books.

c

Dam, Ir igating, Hemet.
Dance or T usayans.
Destroyer, turpedo boat.

D

Dry dock, Havana.............................247 Dry dock problem................ Dust and clearness of air.					
	$\begin{aligned} & \text { Gowe } \\ & \text { Give } \\ & \text { duce } \end{aligned}$				
				Roa	
		thund			
	Grarena doick				
			(eater		
dnatil				Roit	
dramin					
			actuee		
spe					Traemark
Soll					
迆	aras.			Soter	
			Earl cobit		
Brt					
cotre					
, Japson, rears			sm. Cail		
,om, patary			Seroileme siaie		
tion tratioerema		duset			
Exan					
					nne
Byy					
ate	sami	Metasis castirs, strinkage...... 1 19			
lightning, the.	\%		${ }_{\text {cose }}$		
			年		
, racemat					
			Posatal Iube. .pn		
			Power		
any.				icam	
	fore				Water
	K10				
			coil		
				ateren	
					,
					sin
					- $\quad \mathbf{x}$
Ga		-			

BOOKS WORTH HAVINC NATURAL HISTOR Y. THE NATURAL HISTORY BOOK STORE
BRADLEE WHIDDEN, PUBLISHER.

NICKEL Electro-Plating

 SO SIMPLE A CHILD CAN USE THEM
 $\underset{\text { MAGAZNE CAMERA. }}{\text { STM }}$

 SUNART PHOTO CO.
ROCHESTER, N.
Y.
There is Comfort in it.
THE HARTFORD
 WOODEN TANKS.

THE U. S. GOVERNMENT
 ORGANS and PIANOS

MASON \& HAMLIN CO.,

Fitchburg

- Railroad
 J. R. WATSON, neral Passenger Age
Boston, Mass.

APPARATUS

 SUSPENDER BUTTONS

FOR SALE $\begin{gathered}\text { The entirep plant of the Gagerstom } \\ \text { Steanm } \\ \text { Enine } \\ \text { and }\end{gathered}$

For Sale at Half Price
 Anyone sending a sketch and descritition may invention is probably patentable. Communica-
tions strictly confidential. Handbok on Patents

Scientific American.

WANTED catangeng and pricas of smant rotary

 MODEL MAKER 1 make Mod fill for Fleatiral and

 ICE Mactives grifit Euyines Revers

 NOVELTIIS \& PATENTED ARTIILES

Experimental \& Model Work

VOLNEY W. MASON \& CO Friction Pulleys, Clutches\& Elevators PROVIDENCE R.

THE MODERN ICE YACHT.-BY GEO.

 Drying Machines

PUBLICATIONS FOR 1898.
The prices of the diferent publications in the United
States, Canada, and Mexico are as follows: RATES BY NIAIL
RATES BY NiAIL.
$\begin{aligned} & \text { Scientiffc American (weekly) one year, } \\ & \text { Scientifc American Supplement (weekly), one year, }\end{aligned}{ }^{\$ 3.00}$
5.00
 Building Edition of the Scientific American ${ }_{2} .50$ COMBINED RATES Scientific American and Supplement,
Scientiftc American and Building Edit-7.00
-5.00

Scientic American and Building Edition, -5.00
Scientific American, the Supplement, and Building
terms to Foreign Countries.

Scientific American (weekly),
Scientific American Suple (1y) ${ }^{-84.00}$
Scientific A merican supplement (weekly)
Building Edition of the Scientific Amer Building (Edition of the Scientific Amer
ican (monthly), Export Edition of the Sceientific Amer-
ican (monthy) in Spanish and English 3.00 Combined Rates to Foreign Countries.
 Scientific Ameriran. Scientific American
Supplement. and Building Edition.
and
Proportionate Rates for Six Months. The above rates include postage, which we pay. Re-
mit by postal ur express money order,ordraftto order of
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New York.

Dovertisements ORDINARY RATES. Insice Page, each insertion, - $\mathbf{7 5}$ cents a line
Back Page, each insertion.
$\mathbf{- \$ 1 . 0 0}$ a line मig For some classes of Advertisements, Special and
Higher rates are required.

 received at Publication O.fice as arearly, as Thurs
hurning to appear in the following week's issue.

Elipse í bicycles

Hutomatic Coaster and Brake.

Motor of $19^{\text {th }}$ Century Wifd $\begin{gathered}\text { ANY PLACE } \\ \text { BYO ANYNE } \\ \text { FOR ANY WO }\end{gathered}$
No Fire! No Boiler:
No Gauges! No Engineer:
 CHARTER GAS ENGINE CO.. Box 148, STERLING, ILL. PRIESTMAN SAFETY OIL ENGINE

Pressug Gauges
metes
numm Gauges . Volt

 Iars and Spe imen chart. Waterbury, Conn.

is even better than a nerve tonic

SMITH \& WESSON
14 Stockbridge St.

1 X RayCubs

WITH AUTOMATIC ADJUSTABLE
VACUUM ATTACHMENT.
Imposisile to run too high in vacuum.
Life prolonged indefnitely. Roentgen Ray Apparatus Coils (Induction and High Fre-
quency, tor-Generators, etc. MINIATURE INCANDESCENT LAMPS, EDISON DECORATIVE \& MINIATURE LAMP DEPT.

Oiouno Writing

 A SPLENDID HOLIDAY GIFT.

Stage Illusions and Scientific Diversions, Including Trick Photography.
By A. Hopkiv

 is a simple instrument for use with glass plates. Makes pictures $31 / 2 \times 31 / 2$
inches, and has space in back for inches, and has space in back for shutter. Fine achromatic lens.

 "Enstman's Extra Rapld Dry Plates, $31 / 2 \times 31 / 2$, per doz., ${ }^{.55}$ For sale by all dealers. Booklet of Eurekas and
Bicycle Kodaksfree at agencies or by mail.
EASTMAN KODAK C0.

Rochester, N. Y.

 Marine Vapor Engine Co., it. Jersey Av., Jersey City, N.J.
PIERCE 2 ACTUAL H. P.

A Big Money Making Business! The CINEOGRAPH A LIFE MOTION PICTURE MACHINE
 ALL FOR \$75.00.

IMPERIAL BALL BEARING AXLE
 Endorsed by the Leading Carriage Builders Endorsed
TO RIDE EASY, GET RUBBER TIRES
The Kelley, Maus \& Co. Tire is the best on the market. KELLEY, MAUS \& CO., Imperial Ball Bearing Axle and KELLEY, MAUS \& Co., Imperial Bali Bearing Axie and
Vehicle Rubber Tire Dept., 439 Wabash Av., Chicago.

RAY CAMERAS

ERS' TOOLS, a valuable assistant. It contains 400
pages, over 1800 illustrations of all that is best in the pages, over 1800 illustrations of all that is best in the
line of Woodworking Tools and Machinery. Sent, post-
paid, upon receipt of 25 cents paid, upon receipt of 25 cents. (Your moner, back if
you're not satisfied, and vou can keep the book too.)
The Chas. A. Strelinger Co .
 This beats WETROIT, MICH. WEBSTERER We otoer the torse
GAS ENG Morse power for \$150, less 10\% discount for cash.
Buitit on interchangeale plan. Built
of best material. Made in lits of ion
theretore we can make the price Boxof best material. Made in lots of 100
theretore we an make the price. Box-
ed for shipment, weight 803 pounds.
Made for Gas or Gasoine.

THE IMPROVED GAS ENGINE. Occupies leysingers in one one casting
and weing
less for is pow than any engine
made Can beuse arde. Can be used whereve
er in equired. Either sta-
tionary or marine. No er is requirea. Either sta-.
tionaryor marine. No fire.
Non heat Nosmoke.
censed engineer required. Send for catalogue.
SINTZ GAS ENGINE INTZ GAS ENGINE CO
Grand Rapids $\underset{\text { Mich., U.S.S. }}{\boldsymbol{G}} \mathbf{\text { rand Rapids. }}$

Are You

 An Inventor?Or are you interested in Inventions? In either
case you like to know what is going on in the way of New Discoveries, the Improvements in Machin ery and Manufactures, the Advancement o Chemistry, Electricity, Photography, etc. The standard authority on all matters of Science an
the Mechanical Arts is the

Scientific American

a sixteen-page 1 yustrated weekly, that costs 93.00 a year, or $\$ 1.50$ for six months. Everything of
interest to Scientists and Scientific Students ventors, Patentees, Engineers, (Chemists, Manufac turers, etc., is gathered from all parts of the world

Specimen Copy \$ent Free.

PRINTIING INTKS

[^0]: were being carried up, and also when the building was completed.
 The elevator, which was built for the Great Northern Elevator Company, of Buffalo, New York, covers an area 120 feet wide by 400 feet long and is located on the Blackwell Canal and Garrison Street, Buffalo. 'The structure is composed wholly of stone, brick and steel, and there is no wood or other inf mable other inflam building or used in its construction, other than above set forth, excepting the roller top desk of the elevator superintendent, and this is locat ed in his office, which ed in his office, which
 (Continued on p. 407 .)

