
1.-PUSHING THE skelp into the welding furnace.

2.-WElding flanges on a 22 -inch pipe.

THE MANUFACTURE OF STEEL TUBING-PIPE MILLS AT THE NATIONAL TUBE WORKS, McKEESPORT, PA.-[See page 392.]

Srientifir Smmerian.

ESTABLISHED 1845

MUNN \& CO.
Editors and Proprietors.

BLISHED Whekly at

No. 361 BROADWAY
 NEW YORK.

TERMS FOR THE GCIENTIFIC AMERICAN One copy, one year. for the U. S... Canada or Mexico.
One copy, six mont hs, for the U. S., Canada or Mexic

MUNN \& CO., Z\$il Broadway, corner Framklun street, New York.
The scientific American Supplement
(Established 1s86)

uuiding E Established 1s8.5.)

Export Edition of the Scientific American Established $1 \times 7 \times$)

or Spanish edition of typuraply with the ACIENTIFic AMERLCAN. Every number contains about low payes, profusely illustrated. It is the finest Cuba, the West Indies, Mexico, Central and south America, spain, and SCIENTIFIC AMERICAN EXPORT EDTION has a large guaranteed circulation 12 s .4 d ., postpaid to any part of the world. single copies, 25 cents. MUNN \& CO., Publishers, Bil Broadway, New York. The safest way to remit is by postal order, express money order, draft or bank check. draft or bank check. Make all remittances payable to order of MUNN

NEW YORK, SATURDAY, DECEMBER 18, 1897.

TABLE OF CONTENTS OF
Scientific American Supplement
No. 1146.

For the Week Ending December 18, 1897.

I. BUILDING.-Straightening a Chureh Spire

CHEMISTRY-Further Experiments on the Liaquefaction of
Fluorine. By M. MOISNANADS DEWAR.-An important chemical paper.aiciu Carbide industry.

 On the Constitution of the Electric Spark.
EElectric Loco
Lise locotive for Mines.
VI. FINE ARTS.-Lafcadio Hearn on Japane
VII. FUELS.-Converting Sludge into Fuel...
VIII. MAREVE ENGINEERLNG.-Notes................................
the Use of Aluminum in Marine Construction.-By RICHMOND
PEAHSON HOBSON PEAHSO Of Aluminum in Marine Construction.-By RICHMOND
Roller Boats.-Furtier Detais of the Bazin and Otier Röle

 I. METALLLURGY- -Notes on the Yacht Defender and the Use of
Aluminum in Marine Construction- - By RTHMOND PEARSON
Hobson.... Hobson …d Hardening steei.

```
1. MISCELLAN EOUS. - Keith's A
```


CONDITION OF THE LABORING CLASSES IN MEXICO The discontent following the recent years of business drawing has caused us to the social and commercia conditions of other nations and especially of those whose natural advantages, climatic, physical or political, bring them into comparison with our own people. We have involuntarily turned our eyes to Canada and Mexico, and especially toward the latter, owing to the fact that silver has been made the standard of value in that country, and because during the campaign of 1896 many allusions were made, by political speakers in various parts of the country, to the great prosperity of this neighboring republic. With a view to iscertaining the true condition of affairs as touching the civilization and social and commercial conditions of Mexico, Mr. Theodore C. Knauff made an extensive trip through this country. The question so often asked was, "Why is it that the Mexican peon, with his sixty cents a day, is making more than the American farmer with all his knowledge and invested capital?" In the current issue of the Scimytific American Supplement w publish in full Mr. Knanff's lecture recently delivered under the auspices of the Franklin Institute, in Philadelphia, in answer to this question.

The author explains how little conception the ordinary citizens of the United States have of the extent of or even the natural and physical conditions which prevail in Mexico. The ignorance of our people concern ing our neighbor of the south is almost incomprehen sible. A map of Mexico projected on a map of the United States of the same scale extends from Maine to Texas. Mexico is sixteen times the size of New York State. Sonora equals Iowa and Ohio combined. Chi huahua equals Pennsylvania and New York combined. Mexico's mountain system is a continuation of the Andes, and widens out into two ranges, leaving in the middle a high flat table land from 4,000 to 8,000 fee above the level of the sea, while many volcanic peaks reach an altitude of 18,000 feet. The city of Mexico is 7,469 feet above sea level or nearly 1,200 feet higher than Mount Washington. Its inhabitants feel the alti tude and the great dryness and rarefication of the air The population of Mexico is about $12,500,000$. The lecturer states that two-thirds of this number have never slept in a bed or worn stockings, and that they are able to live at a less expense per diem than it take to keep the meanest farm horse. Many of the inhabi tants wear a single garment called a "sarappe," or thick woolen garment, with a hole at the top through which the head is inserted. This garment forms at the same time the Mexican's coat, hat, and even his bed. The feet are usually bare or clothed in domestic sandals. The women wear a kind of cotton shawl over the head and shoulders, called a "robosa." "The Mexican farm labor ers' conditionsare inferior to those of the late slaves of our Southern States. Their huts have but one opening, no windows and dirt floors. When wishing to go to bed, they simply unroll their mats, and, without removing their clothing, lie down and go to sleep. The laborer has a certain wage and is given time and place to build himself a house. If he does not build it he has nothing with which to cover his head. The houses are built by the people who live in them. Some of the houses are mud roofed and others roofed by palms or banana leaves or some fiber that will shed moisture when ne

essary."

These adobe houses are made of large blocks of mud pressed into shape in a mould and then hardened and baked in the sun and laid in flat layers, one on top of the other. This method of construction makes quite a substantial building, which requires a long time, even in the rainy season, to become watersoaked. A church and plaza are required before a settlement can become a city. There are shops in the cities, but the business is largely conducted by peddlers and sidewalk mer chants. It is a common thing to see a man working a modern sewing machine in the streets. All branches of trade are carried on outside of the houses. In the cities the houses of the better class are made of stone Among the rich the rooms are furnished in great mag nificence. Mexico is at the same time a land of million aires, for the land is most unevenly divided among the people. Out of the total population of over twelve million, six thousand people own all the land, "with influence enough," says the lecturer, " to avoid practi cally all taxation, which falls on the poor." There is no "middle class," so called. The railroad by which one travels passes through one estate for a distance of eighty miles, which enormous landed property belong to one individual. In another place is an estate of $1.500,000$ acres, in another one of 250,000 acres. "A present," says the lecturer, "there is no possible dange of an uprising of the people, because the people are perfectly contented in their lot." If the peon has a few coppers in his pocket, he is perfectly happy, and doe not feel compelled to go to work until he is driven to it by hunger or necessity.
Mr. Knauff not only gives a picture of the life habits and customs of the people, but he also depict at length the commercial growth of the country, its products and manufactures
facturers have made earnest efforts to enlarge ou trade with Mexico--especially since the completion of the direct all-rail route from the Rio Grande to the city of Mexico-and the commercial travelers and lead ing merchants of our principal cities are pretty wel acquainted with the commercial and social condition as they are and have been in Mexico. There has been, within a comparatively recent period, some improve ment in this trade, and, owing to the introduction o American capital in mining and other enterprises, and an infusion of American enterprise in some depart ments of industry, there has been better promise than ever before that Mexico was in some degree awaking from its long period of lethargy. The decline of the past five years in the price of silver has, however proved a serious setback to the progress of Mexico, for to this extent has been enhanced the price of all im ports-silver being the main product and the standard of money of the country; and in like ratio has also been increased the interest payable on the nationa debt. The value of the imports for the year ended June 30, 1896, was $\$ 42,253,938$, and the exports for the same period were $\$ 105,016,902$, and the total debt of th country in American money was $\$ 213,600,000$. Ye Mexico has now in operation about seven thousand miles of railway and over forty thousand miles of tele graph, nearly all of which is of comparatively recen construction, and, notwithstanding the decline in sil ver, there are many encouraging signs for those who have been so long looking for a better development of her industries and increased trade between Mexico and he United States.

THE SUPREMACY OF THE STEAM TURBINE

If the compound steam turbine fulfills its presen promise, it is likely that in certain branches of engineer ing it will hold absolute possession before many year have passed. It is announced in the Russian press that the Russian Admiralty has placed orders with the firm of Hawthorne, Leslie \& Company, of Hebburn-on-Tyne England, for the construction of two 38 -knot torpedo oats built on the model of the Turbinia and pro pelled with turbine motors working on four shafts, each of which carries three propellers. This is eight knots faster than the fastest torpedo boat destroyers in the British navy
Just how much courage is required on the part of he naval architect who signs his name to a contrac or a 38 -knot boat- 38 knots is 44 miles an hour-is evi dent from a comparison of figures. The 300 -ton "de troyers" just mentioned require 6,000 horse power to drive them at 30 knots an hour. At these high speeds the resistance of the water increases as something more than the cube of the speed. The cube of 38 is more than double the cube of 30 , and hence the 6,000 hors power of a 300 -ton destroyer would have to be raised to ver 12,000 to enable her to catch one of the new torped boats. But 12,000 horse power reciprocating engines of he common type, with the necessary boilers and coal would sink a 300 -ton torpedo boat, supposing they could ver be stowed away in her hold
Evidently then a speed of 38 knots involves a radica change in the accepted methods of propulsion. Some orm of motor is necessary in which the weight pe indicated horse power shall be reduced to a very low figure. Indicated horse power is tlee product of steam pressure and piston velocity. If either or both of thes be increased, there will be a proportionate increase in horse power without a proportionate increase in weight In the present type of high speed marine engines the team pressure is as high as can be used to advantage, and the piston speed is as great as the reciprocating ype of engine will allow.
The present year has seen the advent of a phenome nal little boat, the Turbinia, in which the problem ap pears to have been completely solved for speeds from 30 to 40 knots an hour. Steann turbines of the type de igned by Mr. Parsons, son of Lord Rosse of telescop ame, were substituted for the ordinary reciprocating type of engine, and by driving them at a speed of 2,100 evolutions per minute, 1,576 horse power was realized rom an engine weighing only $4 \frac{1}{10}$ tons, or $5 \frac{1}{10}$ pound per horse power. As the total weight of all the ma chinery and boilers is only 28.7 tons, the turbines develop 55 horse power for every ton of machinery, and 384 horse power per ton of engines. Compare this with the latest battleships, which develop only 91 horse power per ton of machinery, and 27 horse powe per ton of engines.
In the trials just mentioned, the Turbinia's engines were handicapped by too small a steam pipe, the pressure being 200 pounds at the boiler and only 130 pounds at the turbines. This was remedied, and sub sequent trials gave a speed of 35 knots with 2,400 ind cated horse power. The corresponding figures for this horse power would be $831 / 2$ horse power per ton of all nachinery and 585 horse power per ton of engines!
One feature that renders these turbines so unusually promising is their remarkable economy. The con sumption of steam per horse power hour is only 14 pounds, as against from 18 to 21 pounds for the most conomical reciprocating engines, working under fa
stage the steam engine, as represented by those of the turbine type, is far in advance of the steam generator, judged on a basis of power for weight. It now remains for someone to make as big a reduction in boiler weights as Mr. Parsons has in engine weights. This will probably come in the direction of the rapid generation of steam in boilers of small capacity, of the kind used by Serpollet in his steam carriage, or that exhibited by De Laval at the Stockholm Exhibition, which is credited with carrying a pressure of 3,000 pounds to the square inch. The difficulty, of course, in the case of steam pressure running into the thousands would be the high temperature it would carry. A small and compact boiler capable of instantly generating 1,000 pound steam from small quantities of water supplied to it as required would be the logical counterpart of the turbine running at 2,000 revolutions per minute and expanding the steam to zero, which is what the Parsons triple expansion turbine now accomplishes.

WARNING TO INVENTORS.

As the new amendments to the patent law go into effect on January 1, 1898, it is well that inventors, both here and abroad, should bear in mind several of the very impor

their rights.

1. Under the new law a patent cannot be obtained for any invention which has been patented or described in any printed publication in this or any other country more than two years prior to the application.
2. No patent shall be refused nor shall any patent be declared invalid by reason of its first having been patented in a foreign country, unless the said application was filed more than seven months prior to the application in this country.
3. The application must be completed and prepared for examination within one year after the filing of said application. In default thereof it shall be regarded as abandoned.
4. An interference will not be declared between an original application and a patent issued nore than t wo years prior to the date of filing the said application.
In view of these changes in our patent practice, it is desirable that those who are interested and who will be affected by the laws as above mentioned should file their United States applications before January 1.
We have a number of times called attention to these impending changes, but they are of such great importance, particularly those mentioned in paragraphs 1 and 2 , that we take this occasion to again call attention to these points.

It should at the same time be borne in mind that the term of the United States patent will not be short ened by the prior filing or issuing of a foreign patent for the same invention. It is possible, therefore, for the American inventor now to proceed with foreign applications without waiting for his United States patent to be issued.

LIEUTENANT PEARY IN ENGLAND.

Lieut. Peary has arrived in England, and before he sailed he stated that after delivering a lecture before the Royal Geographical Society on December 6, and later before the Scottish Geographical Society at Edinburgh, he would go to Dundee, Peterhead and Aberdeen to look over the whaling fleets there and pick out a vessel from 300 to 500 tons register for his next expedition to the Arctic regions. We have already outlined Lieut. Peary's plan of campaign
Speaking of the doubt that Nansen had thrown upon the genuineness of the meteorite which Mr. Peary recently brought from the Arctic region, the Lieutenant said: "Nansen spoke hastily on his arrival, but when he found he was wrong he frankly and courteously ad mitted his error. The impression has gone abroad that there is some feeling over the matter between Nansen and myself, but that is not true. I have the utmost admiration for Nansen and the magnificent work he has done." On the afternoon of December 8 Lieut. and Mrs. Peary paid a visit to the British Museum, where they were met by the Director Si William Fowler and Curator Fletcher, of the Mineral ogical Department. Mr. Fletcher examined a specimen of the Cape York meteorite discovered and brought to New York by Lieut. Peary, and unhesitatingly declared it was certainly of meteoric origin. He added that no specimen in the British Museum had meteoric characteristics more sharply or more clearly shown
than those of the Cape York meteorite. The opin ion of Mr. Fletcher, who is an expert, has so thoroughly convinced Dr. J. Scott Keltie, Secretary of the Royal Geographical Society, that it is considered by him to have settled the controversy as to the Cape Yor meteorite.
Mr. Peary complained in London of Captain Sver drup's unfairness in going to Smith Sound next sum mer, but a dispatch from Christiania states that Capt Sverdrup wrote to Mr. Peary some time ago that he did not aim to reach the Pole, but only intended to ex plore Greenland and to make a study of the ice. He imagines that Lieut. Peary cannot have received his letter.

ONE OF THE USEFUL APPLICATIONS OF THE STORAGE BATTERY.

When the storage battery first came prominently be fore the world, it was thought that its great field of usefulness would be that of the transportation of energy from coal fields and large water power sites to centers of industry. It was also believed that it would enable the electric motor to become a formidable rival of the steam locomotive, not only because it would reduce the cost of hauling a train, but because, in addition, it would remove many of the objectionable features of steam transit, such as smoke, cinders, etc. When put to the test it was found that the batteries, at least as then constructed, could not withstand the hard usage to which they were subjected in railroad work; and as to their value as transferrers of energy from the source of supply to the points of demand, it was found upon investigation that they could not com pete with existing methods, even if made sufficiently substantial to endure constant usage with slight deterioration, and so perfect electrically as to have the greatest storage capacity, per unit of weight, consist ent with theoretical possibilities. In this latter field
they would necessarily fail, because, if made as light a possible, they would weigh at least twelve pounds for each horse power hour capacity, and as good steam en gines can develop the same amount of energy from three or four pounds of coal, the weight of batteries to be transported back and forth would be three to fou times that of the coal necessary to do the same work
The batteries then made weighed from one hundred and fifty to two hundred pounds per horse power hou capacity, instead of twelve; hence, the difference in weight to be transported under the actual conditions was so great as to render it impossible to accomplish anything practical in that field, even if the energy could be obtained free of cost.
When it was seen that the storage battery could not accomplish anything of a revolutionary character those interested in its development began to study it adaptability to less pretentious work, and soon real
ized that it would be decidedly valuable as an adjunc ized that it would be decidedly valuable as an adjunct
to electric lighting stations, as it would be to these what the gasometer is to a gas distributing system-a eservoir from which the demand of customers could be supplied, should it become necessary at any time to stop the machinery for a few hours. Without the aid of storage batteries, if from any cause the operation of the generators is suspended, the lights will instantly go out and remain out until the generators are set in motion again. After years of persistent and very commendable experimental work, the inventor f storage batteries succeeded in making these devices sufficiently durable to withstand the wear and tear they are subjected to in station work, without unreason able deterioration. Since that time they have been
used to a considerable extent in that field, and within the last two years their use has been increasing at a very rapid rate; in fact, a first class station of to-day would not be considered complete without a storage battery plant
The first battery plants installed in lighting station were intended simply as a safeguard, to render it pos sible to keep up a supply of current in case of accident to the machinery; but it was not long before it was realized that by enlarging the capacity of the batteries, the output of the station could be greatly increased without materially increasing the expense of operation. How this result can be accomplished will be readily understood when it is considered that the demand for light is not uniform throughout the whole twenty-four hours, but varies from little or nothing, during the day and the early hours after midnight, up to the maximum mount between nine and ten in the evening. The tation capacity, however, must be sufficient to meet the greatest demand; therefore, during the greater
part of the time the machinery is only worked to a raction of its full capacity. By using storage batteries the generators can be worked to their full capacity all the time, and when the demand of consumers is smal he surplus energy is stored, to be given out when th demand is in excess of the amount developed by th machinery.
From the very fact that the demand for current is vaiable, it becomes possible for batteries to be used no only to reduce the cost of production and increase the ca pacity of the station, but also to reduce the cost of line
wires. This last result can be accomplished in any cas wires. This last result can be accomplished in any case district in which the current is distributed. To illustrat this point, suppose the station is located say one mile from the center of the city or town in which the lights are used. If the current runs direct from the generator to the customers' lamps, the line wires must be of suffici ent size to carry the maximum supply with a loss of pres ure low enough to not interfere with the brilliancy of the light. If the maximum demand lasted for a consid wire would be of the day, the full capacity of the line wire would be used to a reasonable extent, but the dura tion of this maximum demand is seldom over one-half the time a large portion of the line capacity may be re-
garded as wasted. The difference between the average and the greatest demand varies within wide limits, in different stations, but in the majority the ratio is not much below one to two. Whatever it may be, how ever, if the current could be supplied at the average rate, and the excess over the demand when the con sumption is small were stored, the amount so stored could be used to supply the deficiency when the demand is large. This is accomplished in many cases a the present time by placing a storage battery plant a the center of the district in which the customers are lo cated. The wires coming from the generating station are so connected with the battery and the distributing mains that, whenever the drain is less than the current coming from the station, the batteries are charged, and when the demand is in excess of the current from the tation, the battery feeds into the distributing mains. The current passing from the generating station to the battery station is about ten per cent more than the average demand, so as to cover the loss in the charging and discharging of the batieries.
The saving in wire by this arrangement will run from about twenty-five to seventy-five per cent, depending upon the relation between the average and the maximum current, and also upon the amount of energy that is lost in transmitting the current from the generator to the battery. When the generating station feeds directly into the distributing mains, the loss of energy in transmission is governed by the condition that the pressure of the current must not drop so much as to interfere with the brilliancy of the lights, and therefore the line loss is generally low; but when batteries ar used, located at the center of distribution, they regu late the pressure of the current supplied to the lamps and, therefore, the loss between generator and battery may be made anything desired, without affecting the brilliancy of the lights. If the power is obtained from a waterfall or from coal near a railroad, when it can be obtained at a very low price, it may be more economi al to increase the loss of energy between generato and battery, and thus reduce the cost of line wire, but such conditions cannot be taken advantage of if the battery is not used.

FURTHER RECORIS FOR THE KAISER WILHELM DER GROSSE

The Kaiser Wilhelm der Grosse has added further records to those which she has already placed so rapidly o her credit. As already mentioned in previous issues, he has accomplished the longest all-day run by cover ing 564 knots within the twenty-four hours, and she now holds the record of an average hourly speed of $2 \cdot 35$ knots for the whole trip across the ocean. Thi is 0.34 knot faster than the best trip of the Campania When she left New York on her last passage she passed the Sandy Hook Lightship 4:30 P. M. Six days later she passed the Needles at 3:10 P.OM., the total distance covered being 3,065 knots, and the actual time five days, seventeen hours and eight minutes. This is equivalent to a railway speed of $251 / 2$ miles per hour and when we remember that this speed was maintained ninterruptedly for a distance equivalent to 3,524 land miles, we realize that steamship travel is well up to he average performance of the overland trains of but few years ago.

AN EXCELLENT HOLIDAY GIFT.

As the Christmas season approaches we desire to call the attention of our readers to the appropriateness of our new work, "Magic: Stage Illusions and Scientific Diversions, including Trick Photography," as a holiday gift. It is a large octavo volume of 568 .pages, embel ished with 420 illustrations, and is tastefully bound in mported cloth stamped with ink of three colors. The book appeals to all classes, and purchasers have the atisfaction of knowing that the profession have indorsed it as "the standard work on magic." The press notices have been quite exceptional. A number of interesting letters have been received from promi nent magicians. Our readers hardly need to be informed of the quality of the illusions or the thorough manner in which the tricks are exposed, as excellent ex amples have been in the Scientific American sinc the publication of the book.

SINKING OF THE HAVANA GRAVING DOCK.
In our issue for October 16, 1897, we illustrated the new floating dock for the port of Havana, procured in England at great expense and transported to Cuba with great difficulty. On December 6 the dock began to sink slowly. It is now beneath the waters of the bay The unexpected disappearance of the dock created great consternation in the navy department and in the palace of the captain-general. The floating dock went down slowly and majestically and no one appears to know what was the matter with it. It is thought by some that the Cuban insurgents did something to it which caused it to sink, but this seems hardly possible, as there was no difficulty in guarding the dock. It is for tunate it went down slowly ; for, had it gone down sud denly, there would probably have been great loss of life Over two hundred men are working to float the dock, but their efforts thus far have been unavailing.

THE REM-SHO TYPEWRITER

Our illustrations represent a typewriter which, be: sides its standard carriage, taking paper nine inches wide, is provided with a readily interchangeable carriage which will take paper fourteen and five-eighths inches wide, and which may be set to print on any ruled line. Other specially distinctive features of this machine are its shifting basket, the method of hanging
alignment, as when dependent for position entirely upon screws. To overcome the effect of wear, a taper-headed screw is located between the bearings, as shown in one of the views, a slight turn of the screw spreading the bar and taking up all looseness or shake. This spreader screw is not liable to work loose, owing to the long grip of the sleeve into which it fits.
The basket disk, carrying the typebars, connecting wires and ribs, is hung upon three ball bearings, allowing it to move freely backward and forward, without friction and without noise. It stands back normally to print lower case, and is shifted forward $\frac{80}{100}$ of an inch to print single capitals by pressing down on the "cap" button, returning automatically, while for a line oî capitals a "cap" lock piece is pressed down. The platen or cylinder, with paper feed complete, can instantly be removed from the carriage frame, allowing the substitution of another without disturbing work in process of execution in the first. This permits the employment of extra platens specially ground to reduced diameter for heavy manifolding, which is of great importance in securing uniform alignment for such work. There is also a right hand rack release lever which permits the separation of the movement of line spacing and rack releasing, so that either movement can be made separately or both at once with the right hand alone.
The ribbon movement is exceedingly simple, being of the older form, feeding with the grain and signaling for reverse, the ribbon being one and onequarter inches wide and nine yards long. It feeds directly from one spool to the other, the ribbon being re-

THE "REM-SHO" TYPEWRITER, AND SEPARATE LONG CARRIAGE

and taking the shake out of the typebar, and the roller bearing carriage. The machine is manufactured by the Remington-Sholes Company, of 125 Rees Street, Chicago, of which C. N. Fay is president and F. Remington general manager. This firm has no connection with another well known typewriter manufacturing company, but its machine is the invention of Mr. Zalmon G. Sholes, who, as well as Mr. Remington, are sons of the original producers of the machine bearing the name of the latter.
The machine has the universal keyboard with a nonshifting carriage, the type basket only being shifted,

THE RIBBON MOVEMENT

and, being firmly locked at each end of the shift when printing small letters or capitals, leaves both the paper carriage and keyboard undisturbed. The long cariage enables the machine to be used for work for which a second machine is ordinarily euployed. The which a second machine is ordinarily employed. The the hanger, of the same material, has two independent the hanger, of the same material, has two independent
sides, the bearing sockets being drilled, reamed, burnished and case-hardened, and the sides fitting accurately into slots in the basket frame, where they are held by lock screws. This prevents all possibility of the hangers turning and throwing their bars out of

THE CARRIAGE BEARLIGS
versed by a slight touch to the octagon wheel shown in the cut, which both starts the ribbon winding in the opposite direction and moves it crosswise one-eighth of an inch, exposing a fresh printing path to the type until the entire face of the ribbon has been used. The octagon wheel, on whose sides the letters L and R are cut alternately, shows at a glance which way the ribbon is feeding. The spools are readily removable, and a winding crank winds the ribbon rapidly onto either spool.
In the carriage bearings, as will be seen from one of the views, rollers are used instead of wheels or long and over one-quarter of an inch in diameter. It is said that no amount of wear seems to flatten or change the shape of these rollers, of which there are two on each rail, held at a fixed distance apart by a light truck frame. The carriage rests lightly upon them, and accidental tilting is pre vented by an overhanging lip running the length of each rail, but not touching the carriage.
The paper feed is quite original, the pressure of the feed rolls when the platen is up being so light that the paper may be pulled as desired. There are three separate sets of feed rolls, upon none of which the pressure is unduly great, the front feed roll and pape fingers sliding with a mere touch easily to right or left, remaining where set, and feed ing with equal ease and certainty wide or narrow sheets, envelopes, postal cards and carbons. The keyboard of the No. 2 "Rem Sho" is the universal or standard, and con tains 76 characters, while that of the No. 3 has 86 characters, and is particularly adapted to foreign use, or where special characters are required. One, two and three line spacing is provided for and a reversible detent printing above or below the line.
The company make a machine with a special fine bronze finish, in which the frame casting is heavily plated with oxidized copper, the key levers, ribs, and connecting wires with red copper, the carriage rails and escapements also with copper, the small working part aickel plated, and the scale black, with white graduation lines. The machine s designed to be one of the first in the market in beauty of design and richness of finish. The frame was de signed by the late lamented Charles B. Atwood, designer of the Art building and Peristyle at the World's Fair a Chicago.

ACCORDING to the most recent meas urements, one kilogramme of wate occupies $1000 \cdot 101$ cubic centimeters at Centigrade.-Monatschrift für de Oeffentlichen Baudienst.

AN IMPROVED GATE HINGE.

The illustration represents a hinge of simple construction, designed to permit a gate to swing freely in ither direction, but which will automatically return he gate to a normal central or closed position when the gate is released. The improvement has been pa tented by George H. Choate, of Hailey, Idaho. The large view represents, in perspective, the application of the hinge, the gate being in central position, the small figure being a plan view. On each side of the fence post is secured a plate to which is hinged an arm, the arins being one above the other, and coiled

Choate's gate hinge.
round each pintle of the hinges is a spring, one end of each spring engaging the fence post and the other end being provided with a hook which engages opening in the arms. The plates are crossed and hinged at their other ends to plates secured to side faces of the inner gate post, the disposition of the springs being inner gate post, the disposition of the springs being
such that they tend always to keep the parts in the normal central position shown.

an apparatus for projecting moving pictures

 The illustration represents an improved apparatus for projecting living and moving pictures, with which every movement of actual life may be depicted on the screen. It is being placed on the market by Messrs. Riley Brothers, optical lantern outfitters, of No. 16 Beekman Street. New York City. The apparatus is shown with a biunial lantern, which enables the operator to project the title of the picture from the upper lantern or show ordinary slides while anothe film is being introduced. He may also illustrate his lecture by ordinary lantern slides, and at suitable in tervals project animated pictures from the lower slide, or he may use the lantern in an ordinary way, and in a few moments remove the bottom tubes and fix the kineoptoscope in position, and so close an entertain ment with a demonstration of animated photos. The construction is such that vibration is reduced to a minimum, and the machine takes any standard films, which will pass through without tearing and quite un injured. The machine may be fitted into the stage of any ordinary lantern which is open at the bottom with a slight lengthening of the bolts. The lantern is furnished in a variety of styles, and the kineoptoscope accessories include the apparatus fixed on brackets and rails, with special short focus lens of high quality fitted in an adjustable diaphragin, etc. The mech anism is so simple that the machine is not liable to ge out of order.Mayence has a special museum of Roman antiquities found on German soil. It embraces 14,760 objects, many of them of great value

WRAY'S KINEOPTOSCOPE AND THE "MONARCH" BIUNIAL LANTERN.

EXPERIMENTAL ACETYLENE GAS BUOY FOR NEW YORK HARBOR.

We have been favored by Lieut.-Col. D. P. Heap, Corps of Engineers, United States Army, with the particulars of an experimental acetylene gas buoy which he has designed for river and harbor service.
The new buoy, in addition to being more powerful and economical than the electrically lighted buoys, is more reliable. If one of a chain of the latter goes wrong, all the others are affected; whereas the acetylene buoy, being an independent and self-contained unit, will not affect any other buoys by its failure.
In order to save expense in carrying out the experiment, a first-class can buoy was pressed into service and modified for the test (see accompanying engravings). A cylinder, C C, of boiler iron, closed at the bottom, but open at the top, was attached to the diaphragm, D , of the buoy and firmly supported at the lower end. In this cylinder were placed and securely fastened three tanks, T T T, containing each about twenty pounds of liquefied acetylene gas under a pressure of six hundred pounds to the square inch. These three tanks are connected by piping to the regulator, R , which reduces the pressure to that of a two-inch water column.
From the regulator a pipe leads to a Naphey burner, so placed that the flame will be in the focus of a lens lantern provided with cut glass prisms, so as to concentrate the light in a horizontal plane. The candle power of the burner is twenty-five. This is increased by the lens lantern so that the emergent beam is about two hundred and thirty candle power.
One pound of liquefied acetylene will expand to fifteen cubic feet of gas; so the charge in this buoy equals nine hundred cubic feet. As the burner consumes a little less than one cubic foot per hour, the buoy should burn continuously for at least nine hundred hours.
On October 30 the buoy was lighted and placed in the water near the north dock at the lighthouse depot. It burned continuously until November 10, when it was taken up and placed next day near Bay Ridge for convenience of examination by the Lighthouse Board. On the 12 th it was replaced in its former position and continued to burn brilliantly until November 26, when the light began to grow less bright. The buoy was taken up, and an examination of the burner showed that carbon had deposited at the orifice. This was pro bably due to the burner being defective, as other burners of the same type had given far better re sults. The cost of the gas consumed in this trial was about one cent per hour, which is a remarkably low figure, especially in view of the brilliance of the light.

Experiments have also been carried out with liquefied acetylene gas for beacon lights, and it gives promise of equally good results in this direction.
The Lighthouse Board considers these tests so successful that additional and more severe experi ments are to be made with ments are to be made with an acetylene gas buoy moored near the entrance to Gedney's Channel and with an acetylene gaslighted beacon on Romer
Shoal. The same buoy Shoal. The same buoy
will be used, such modifications being made as have been suggested by the Bay Ridge experiments.
The two principal advantages which would obtain if this method of lighting proves after extended trial to be successful and practical are, first, large reduction in first cost of gas-lighted buoys and, second, large increase in the power of the light.

Trolley car ambulances are to be introduced in the city of Pittsburg, running independently over all the street car tracks as called for.

ACETYLENE GAS BUOY FOR NEW YORK HARBOR.
Light, 230 candle power ; capacity, 900 hours ; cost, one cent per hour.
tion of the turbines. The power from the turbines amounts to 220 effective horse power, there being two turbines of, respectively, 120 and 100 horse power. The two boring machines require 60 horse power. Some 30 to 40 horse power will be required for ventilating purposes, there being some two or three ventilators coupled, the one behind the other, so that the one delivers into the other
Some 15 horse power will be wanted for the two elec tric locomotives, which are intended to replace the horses used at present for the purpose of removing the debris. There being agradient of 2 to 5 in 1,000 , the loaded wagons will almost run by themselves, the locomotives being really only wanted for the purpose of pulling back the empty trucks. The machine tools trucks. The machine tools worked by power from the turbines, transmitted by electricity. This takes some 15 horse power, and the dynamo for lighting purposes some 25 horse power. The smaller turbine, of 100 horse power, works the two hydraulic pumps for the boring ma chines. The surplus, of some 40 horse power, it is intended to use for two electric drills.
The whole installation. which has been in opera tion for some two or thres months, works perfectl satisfactorily. The nuinber of hands employed amounts to 125 men at the west side and 35 at the east side. Barracks have ordinary gage being adopted. With regard to brick- \mid been built for the men at both places, with shops, work, it is calculated that only about 3 per cent of its dairy, laundry, bath house, etc. At Opsät, the average length will have to be lined. These circumstances advance per day has been about 3 feet, making some 75 bring about a great difference in cost in favor of the feet to 80 feet a month of 25 working days. About 2 Norwegian tunnel, which will only cost some 500 kr . or pounds to $21 / 2$ pounds of dynamite have been used for £27 10s. per lineal meter, whereas the usual cost of similar tunnels elsewhere amounts from $£ 100$ to £110

ECTION THROUGH VERTICAL ELEVATION OF ACETYLENE
per meter. Both the ends of the tunnel are at an eleva-
 GAS BUOY.
tion of some 2,900
feet above the level of the sea. The results arrived at as to the quality of the rock by the special committee appointed to inmatter have so far proved correct and the rock has and the rock has not been very difficult to handle. The work difficult to han-
duel. The drillers in the rock earn some 6 s . to 10 s . pei
commenced ot the
day. Board costs 1 s . 4d. per day less for those who
keep house themselves. An experiment with some 20 west side, at $\begin{aligned} & \text { keep house themselves. An experiment with some } 20 \\ & \text { Italian men proved entirely unsatisfactory, and they }\end{aligned}$ whole of 1896 , carried on by hand boring, the necessary preliminary investigations as to the employment of water power not having been completed.
In order to procure water for the turbines, it was ne cessary to construct a reservoir on the mountain itself and fears were entertained that the water would be so cold that it would freeze before it reached the turbines, even if the pipes were well protected. Thesefears were, however, dispelled, as the water's temperature never fell below $0.5^{\circ} \mathrm{C}$. at the spot intended for the installabeen made during 24 hours on the average, but the consumption of dynamite has been three or four times s large in proportion. According to the experience at Gravehals, machine boring does not come cheaper than and boring. The tunnel has to be ready for rails by April 12, 1903, and there is every prospect of its being eady some time before then; according to the plan about 14,000 feet will be done from the west end $-1,000$ eet by hand and 13,000 feet by machine-and some ,600 feet from the east by hand.
Some trouble has been experienced with the men, who ill not settle down, although they can save considerably ; but they rarely stay more than six months. The verage pay for all piecework is 4 s . 2d. per day, in addi tion to which the men have free lodging, light an: fuel. The drillers in the rock earn some 6 s . to 10 s . pe mad to be sent back.-En

A New Map of th
The Coast and Geodetic Survey have prepared and will soon publish a new will soon publish a new
map which will cover the entire length of the Yukon River and most of its tribu taries including the Klon dike region. The scale is twenty miles to the inch. The section embraced extends from the Selwyn River, several hundred miles above Dawson City miles above Dawson City to the mouth of the Yukon and the section is wide enough to give a fair idea of the extent and charac ter of all the streams. I Opsät, in October, 1895. The work was, through the shows the location and extent of the St. Michael Mili:

HORIZONTAL SECTION ABOVE TANKS. tary Reservation and gives the location of all towis: and mining camps.

AfTER forty-eight years the Arundel Society, estab lished to reproduce in color and popularize the master pieces of painting, has come to an end, the improved and cheapened methods of reproduction having made its work unnecessary. Isochromatic photography has been one of the most powerful factors in rendering work of this nature obsolete. very cubic meter of rock. This is by hand boring. By machine boring an advance of 7 feet to 8 feet has

Sclence Notes

In investigating the properties of certain substances whose critical point had not been definitely ascertained, Messrs. A. Leduc and P. Sacerdote made use of an original method. They took the critical point to be that at which light ceases to be diffracted by the surface of any as yet unvolatilized liquid. By this method they were able to calculate their results to within 0.5° Centigrade and one atmosphere.-Revue Scientifique.
A number of S wiss lakes were recently sounded, the results being as below :

-Revue Scientifique.
London fog absorbs $11 \cdot 1$ per cent of the luminous rays from an ordinary gas flame, while $20 \cdot 8$ per cent of the light from an incandescent mantle are lost in it. This is of course due to the fact that the first mentioned light contains far more red rays than the other and that fog permits the passage of red rays to the exclusion of the blue is evident from the deep red color which the sun assumes when seen through mist. Cosmos.
In the light of the recent researches on the oxydases recently recorded before the Académie des Sciences and the influence of manganese on vital oxidation, it is interesting to find that Guerin states that this metal is universally present as an organic compound in the ligneous tissues of trees. If sawdust is treated with feebly alkaline water and the extract is acidulated with hydrochloric acid, a precipitate will be obtained which, when washed with acid water and burned, is found to contain no iron, but 0.4 per cent of manganese and 4.6 per cent of nitrogen.-Comptes Rendus.
A Parliamentary return shows that the total number of visitors to the British Museum in the year 1896 amounted to 581,906 , the highest number reached since 1890. This increase is partly accounted for by the admission of visitors on Sunday afternoons since May 17, 30,136 persons having been thus admitted. On the other hand, the number of evening visitors has further diminished since 1895 to 29,769 . The total number of visits of students to the reading room during the year was 191,363 , being 3,600 less than that of 1895, which again was lower than that of 1894 by 8,000 . This diminution of numbers may perhaps, in some degree, be accounted for by the growth of local libraries in the metropolis, which have satis fied the requirements of students who would other wise have had recourse to the British Museum. The daily average was about 630. The number of visitors to the Natural History Museum during 1896 was 417,033 on week days and 36,923 on Sundays, making a total of 453,956 , as compared with 446,737 (on week days only) in the year 1895. The average attendance for all open days, including Sundays, during the year was 1,316 ; that for week days only, 1,336 , as compared with 1,436 in 1895.

An optical device for the intensification of photographic pictures is described by Lord Rayleigh in the Philosophical Magazine for September. Photograph ers often obtain negatives which are so thin that in tensification by chemical processes is insufficient to bring out any effective contrast between the trans parent and opaque parts. The method devised by Lord Rayleigh is purely a physical one, and it may be
described as a means of using a weak negative twice described as a means of using a weak negative twice
over. It is well known that by placing a feeble transover. It is well known that by placing a feeble trans-
parency upon a sheet of white paper, the picture becomes clearly visible, even though nothing can be seen when the transparency is viewed by holding it up to the light. Through the transparent parts the paper is seen with but little loss of brilliancy, while the opaque parts act, as it were, twice over, once before the light reaches the paper and once again after reflection on its way to the eye. This is the principle of Lord Rayleigh's method. Instead of the paper, a flat polished reflector is used, the film side of the negative being placed in close contact with it. On the other
side of the negative, and fairly close to it, is a condens ing lens, which gives parallelism to the rays from the candle used as a source of illumination. The candle is placed just alongside of the copying lens. The light from it passes through the condensing lens, and falls as a parallel beam upon the negative. After reflection, the light again traverses the lens, and forms an image of the candle centered upon the photographic copy ing lens. An optically intensified positive is thus ob tained, and by copying it in the same way in the camera a negative with more pronounced contrast than the original may be made. To obtain satisfactory results, the false light reflected by the optical surfaces em ployed must be eliminated. In the case of the condens ing lens the difficulty is overcome by giving the lens a slight slope with reference to the face of the negative. The false light reflected from the glass face of the negative to be copied may be got rid of by fixing a wedge-shaped glass plate to the glass side of the nega tive by means of fluid turpentine.

The Treasures of a scrap Pile.

A scrap pile, if properly exploited, is not without its atent treasures. The Industrial World calls attention ing fact of the Baltimore \& Ohio Railroad er
"The particular scrap pile from which the pile driver was evolved was recently enriched by the ad dition of the remains of the old bridge over the Mus kingum River at Zanesville, which was taken down and replaced by one of modern design. In this increment was seen the opportunity for building a much needed pile driver, and the order was accordingly issued. Not a single dollar's worth of new material was ordered, except the sills of the platform, which were particularly heavy, and the hoisting engine and boiler. The castings required were made from the castiron columns of the old bridge, with the addition of enough pig iron to insure a good quality of metal. The trucks ere a pair of second-hand ones formerly used under low flat car, put in good condition. The platform wa built after the style of a flat car heavily braced. It is 40 feet long over the end sills and is supported by ten longitudinal sills. The center and intermediate sill are 5 by 9 inches, and the side sills are composed of two double sills 6 by 12 inches, spaced about 1 inch apart and trussed, with 1 inch rods on 6 inch queen posts. The whole floor is well trussed with $13 / 4$ inch rods on 12 inch queen posts, fastened to 8 inch tie timbers. Underneath is a capacious tool box. The body and truck bolsters are of the combination type, with six flitch plates $3 / 4$ inch thick, both bolsters being extended beyond the body for convenience in block ing and steadying the machine while at work. The hammer weighs 2,800 pounds and has a total fall of 38 feet. The superstructure is pivoted on a carriage that is made to travel the full length of the platform by power, so that the driver can be turned in a complete circle at any point on the platform by power from the engine. A cabin of substantial design frame with angle iron protects the engine and operator from the weather. The leads can be taken in and stowed in longitudinal position for transportation by means of jointed brace, using the hammer as a counterweight."

A New Developer-Diamidoresorcine

This is a new developer derived from aromatic series and christened with an English name. Ortol is one to which MM. Lumiere and Leyewetz have already iven considerable attention. The properties of thi developer are essentially the same as those of amidol but with some additional qualities. It can, like ami dol, be put up in powdered form and be easily dissolv d when wanted.
One of its advantages over amidol is that its action may be considerably retarded by bromide of potassium, which allows, to a certain extent, the correction of any rors due to over-exposure
The following is the formula:
Water
Anhydrous sulphite soda... 100 grammes
If the proportion of the diamidoresorcine is increased or diminished, the reducing power is lessened and the mage lacks vigor in both cases.
By increasing the quantity of sodium sulphite the re ducing or developing power is proportionately increa ed, 10 grammes of sodium sulphite being the limit however. An excess of sulphite beyond the amount mentioned is liable to produce fog. The solution slow ly changes ; after eight days its reducing power is con iderably weaker, but as has been previously mentioned ts rapid solubility permits the developer to be quickly prepared and thereby renders the keeping of a stock solution on hand unnecessary.-Paris Photographi Gazette.

A Word to Mall Subscribers.

At the end of every year a great many subscription to the various Scientific American publications ex pire.
The bills for 1898 for the Scientific American, the Scientific American Supplement, and the Build ing Edition of the Scientific American are now being mailed to those whose subscriptions come to an nd with the year. Responding promptly to the invi ation to renew saves removing the name from ou ubscription books, and secures without interruption the reception of the paper by the subscriber

PRICES.

The Scientific American (weekly), one year......... $\$ 3.00$
Supplement of the Scientific American (weekly), one year..... 5.00
Building Edition of the Scieutific American (monthly), one
year. ...
Export Edition of the Scientific American (monthly, in Spanish and English), one year. COMBINED RATES.
The Scientific American and Supplement..... $\$ 7.00$ The Scientific American, Scientific American Supplement, and 5 Building Edition.
This includes postage, which we pay. Foreign sub cribers should remit one dollar extra for postage on each publication. Remit by postal or express money order or check to order of Munn \& Company, 361
Broadway, New York.

Basle, Switzerland, is celebrating the four hundredth anniversary of Hans Holbein's death by an exhibition of his paintings and drawings, to which other Swiss museums have contributed
While making some repairs to Heidelberg Castle recently, some workmen came across a window the recently, some workmen came across a window the
style of which revealed the fact that the castle was not begun in 1411, as heretofore believed, but two hundred years earlier. Certainly, to all appearances, it has always seemed to date from a much earlier period than the beginning of the fifteenth century.
The French school at Delphi has lately unearthed wo slabs of limestone which bear an inscription which is of great interest, dating. as it does, from the fourth century before Christ. This inscription, which consist of about two hundred lines, gives the price of work for building operations in Greece at the period named, and from it we learn that an architect was paid at the rate of under $\$ 150$ per annum. This is not a great sum, even if its purchasing power is multiplied, as it should be, by five or six.
Three important finds of manuscript from the lost cities of central Asia are reported by the Asiatic Society of Bengal. They were found in sand-buried tombs and other buildings in Chinese Turkestan, and were picked up by peasants and passed on to traders. They vary in age, and consist of bark, palm leaves, or very coarse paper, sometimes coated with gypsum, and of ten very flimsy. Dr. Hoernle, president of the society at Calcutta, after examining them, believes that they elate mainly to religious ceremonies.

Skias has been conducting excavations on the lef bank of the Ilissus in the neighborhood of the Kallir rhoe. About one hundred steps from the spring he dis covered the foundations of the celebrated "Ionic tem ple on the Ilissus," which was seen and drawn by Stuart and Revett in the last century. Thereafter the temple disappeared, and its destruction was so complete that he present ruins would scarcely be regarded as the oundations of a temple but for the drawings of Stuar and Revett, with which they correspond exactly. Dörp feld regards this as the temple of Artemis Agrotera which Pausanias mentions immediately after he had cossed the Ilissus, and before he turned toward the Stadium.
A considerable part of a lost play by Menander has ust been published at Geneva under the title of "Le Laboureur de Menandre." Hitherto, with the excep tion of quotations enshrined in the works of othe authors, the only authenticated specimen of Menan der's work was a fragment of twenty verses that wa discovered by Tischendorf. Now Jules Nicole has brought papyri from Cairo which prove to be a part of one of Menander's most celebrated plays. These papyri contain nearly a hundred verses containing the essence of the plot, enabling a reconstitution of the dramatis personce, and also the best part of the come dy. The authorship is established by the occurrence of three passages that are quoted by ancient writers as being from the play in question.
A correspondent of the English Colliery Guardian writes that the site of the prehistoric Celtic lake vil age, near Glastonbury, has been further excavated ince July last, under the superintendence of the dis coverer, Mr. Arthur Bulleid. The sites of the dwell ings are marked by mounds. One of these contained the greatest depth of clay yet found, no less than 9 feet, the accumulation of successive hearths which were found necessary as the weight of the clay gradually compressed the peat beneath. This mound contained 300 tons of clay, all of which must have been brought in their boats by the inhabitants from the neighboring hills. Under the mound was found the framework of a loom with brushwood and wattlework to form the foundation. Another mound was very rich in fragments of pottery and other evidences of the nanufacture of hardware. A neatly cut iron file about 8 inches long was found. Parts of three broken millstones were unearthed, and in one mound a clay oven measuring 2 feet by 9 inches. One glass article only was brought to light this year, a blue glass bead with a wavy line of dark blue running round it.

Remarkable Speed of the Yacht Ellide,'

During her last trial run over a measured mile on the Hudson River, the 80 -foot yacht "Ellide" made the remarkable speed of 37.89 miles an hour. This places her far ahead of any steam yacht, large or small, in the world. The fastest steamship of any kind afloat to-day is the "Turbinia," an experimental torpedo boat, propelled by the Parsons steain turbine, which has a record of 40.35 miles per hour. The "Ellide" is 80 feet long, 8 feet 4 inches beam and 3 feet 6 inches draught. She is of composite construction, with steel frames and scantlings and mahogany skin. The motive power is furnished by a quadruple expansion engine, with cylinders of $9,13,18$ and 24 inches diameter and 10 inches stroke. The mile course over which the run was made was measured by the United States Coast Survey.

Sorrespondence

PROBLEMS OF THE PYRAMIDS.

To the Editor of the Scientific American
Fig. 1 represents the earth's orbit, divided into 365×24 day parts, having thesun in the center

Fig. 1.
The diameter of the orbit is $116: 26$ day parts and the radius is 58.13 day parts. A right section of a pyramid is also shown whose height is the sun distance and whose base is equal $91 \% 31$ day parts. This pyramid is a type of the Great Pyramid of Egypt, whose height of 5,813 inches is evidently 100 inches to the day part. It is a π pyramid, and therefore the base is 100 inches to the day part, or 9,131 inches. It is stated by Pliny that the height of the Great Pyramid was 500 Roman feet. The Roman foot must have then been one-tenth of the earth's orbit in day parts, and called inches, $11 \cdot 626$ inches

The base side length then was $785 \cdot 4$ of these feet and the circumference $3,141 \cdot 6$ of these feet.
The height of the pyramid was then intended to re present the sun distance ; and by a late estimation it is one-billionth of that distance, which would be equal to $500,000,000,000$ Roman feet. And if so, the circumfer ence of the base would be one-billionth of the earth's orbit of $3,141,606,000,000$ feet.
As to the coffer in the pyramid, according to the measures of Professor Greaves, the outside dimensions are equal to ten times the two foot cube, and the inside dimensions, within the measures of Professor Smyth, are equal to ten times the two foot sphere. Whethe

Fig. 2.
this was intentional or not, the measures which we call avoirdupois are derived from the one foot cube; and the troy and apothecaries' weights and measures are derived from the one foot sphere, the grain being 0.004 cubic inch of water, and 250 grains in the cubic inch of water.

The one foot sphere is peculiar. It is $3 \cdot 1416$ feet in circumference. It has a surface of $3 \cdot 1416$ square feet. It will contain the apothecaries' pint of 28.8 cubic inches $31-416$ times.

It will contain $31 \cdot 416$ apothecaries' pounds of water or wine of 7,200 grains to the pound; and $31 \cdot 416$ troy pounds of wheat of 5,760 grains to the pound.

If there are eight pints in a gallon, it is equal to $230 \cdot$ cubic inches, which has been rounded off by legislation to 231 .
The two foot sphere will contain $31 \cdot 416$ of these gal lons and $314 \cdot 16$ pounds troy of water or wine.
This was probably the origin of the old wine barrel, which is now set down at thirty-one and a half gallons. Two of these barrels will make a hogshead of 62.832 gallons, now rounded off to 63 . Four of these barrels will make a pipe or butt of $125 \cdot 664$ gallons, rounded off to 126. Eight of these barrels, or the four foot sphere, will make a tun of wine of $251 \cdot 328$ cubic inches, now rounded off to 252 .
Ten of these barrels will make a chaldron. A tun of wine will just balance a chaldron of wheat. The out side content of the coffer by measure of Prof. Greaves will hold 6,000 pounds troy of 5,760 grains to pound; 5,000 avoirdupois pounds of 6,912 grains to the pound ; and 4,800 pounds apothecary of 7,200 grains to the pound; also 600 troy gallons and 500 avoirdupois gal lons of water. No measure but the one foot rule will produce these results, and it is the radius of the two
foot sphere.
W. F. Quinby. Wilmington, Del.
[Mr. Quinby's interesting letter adds a few more to the many striking coincidences, which have been pointed out by various writers, between the dimensions of the pyramids and the various measurement of time and space. Perhaps the most celebrated writer on this subject was Prof. Piazzi Smith, whose volumin ous work was largely devoted to proving a relation to exist between the dimensions and order of the various stones in the great gallery and the history of the world. Although Prof. Smith, in common with many others, allowed his zeal to carry him beyond the
bounds of probability and pointed out so-called analo--
gies where only a prejudiced eye could see them, there are certain coincidences of the kind ingeniously worked out by our correspondent which are widely recognized. It is conceded, for instance, by many that the builders of the Great Pyramid seem to have intended that its height should bear to the perimeter of its base the same ratio as the diameter bears to the circumference of a circle. If this is true, all that our correspondent says about "day parts" would follow; and the ques tion as to whether the Egyptians intended any refer ence to "day parts" becomes a matter of interesting conjecture.
The height of the Great Pyramid is variously given, the difference between the determinations being several feet. Our correspondent gives the height as 5,813 inches, or 484 feet. As the upper tiers of stones are gone and the exact angle of the slope is not determinable, the precise height of the pyramid is a matter of conjecture, though the height given agrees approxi mately with the generally accepted height. Upon the other point discussed in the note, viz., the relations of the sphere, whose diameter is one foot, to our numerous English measures of capacity and weight, his deduc tions are very curious. We have not verified them
It cannot be implied in all or any of these compari sons that this was the manner in which our system of weights and measures came into existence; for, as a mat ter of fact, most of the units have been changed in value many times and have at the same time had different values among different nations. A perusal o the article on weights and measures in the Encyclopedia Britannica will convince one of this. The agreements above, so far as they are exact, are to be classed as coin cidences, and where they fail in exactness is proof that no agreement was intended historically.-Ed.]

The Theories Upon which the Knapp Roller

To the Editor of the Scibviric Aubrican

I am not a scientific man, but even an unscientific nan of good ordinary intelligence can understand sci entific matters when clearly explained, and, being un trammeled by any preconceived ideas, may be even
better able to apprehend the principles of an entirely better able to apprehend the principles of an entirely novel design than one technically trained.
It was doubtless just this freedom from the trammels of technical training which made Ericsson actually cross the Atlantic in a screw steam vessel while the sci entists were figuring out proofs that it could not be done
It is possible, then, that in spite of my frank confession, the following statements respecting Knapp's roller boat may be worthy of some attention, more especially as I have had the advantage of a close intimacy with the inventor, and frequent discussion with him during practically the whole time he has been inventing it.
Your article is one of the very few which have gone to the real point of the problem. The speed of the present type of vessel is limited by the amount of power required to force the hull forward against the resistance of the water, which in
creas the cube of the velocity
When the cube of the velocity
When the water is set in motion by the wind in a contrary direction to the progress of the vessel, this re sistance is enormously increased, and has perforce to be reduced by a corresponding reduction in the vessel's speed. Thus the Campania, which in calm weathe can travel 560 miles in a day, is brought down to 180 miles in a strong head sea. I say a head sea rather than a head wind, because the weight of water meeting the 33 feet of submerged hull is obviously so much greater than the weight of wind meeting the uppe works that it must be regarded as the chief element in the retardation of speed. It is, in fact, the only ele ment needing serious consideration, the water bein 700 times heavier than an equal bulk of air.
The effect of this resistance is, however, very diffe ent as regards ordinary vessels and the roller boat The vessel of to-day is practically a water plow, fore ing its way through the water, which, as long as no reat speed is attempted, easily yields before it.
But as the speed of the boat increases, the resistanc also increases in a vastly greater ratio, and conse quently an enormous increase of horse power is neces sary to increase the speed. How great this increase is is strikingly shown in a comparison of the Campania and Turbinia
The Campania, making from 20 to 21 knots an hour, has $21 / 2$ horse power for every ton of her displacement The Turbinia, making 32 knots, requires no less than 50 horse power per ton displaced. Nothing could more eloquently tell of the disproportion between the increased rate of speed and the increased resistance of he water.
The Bazin boat is but a modification of the plow principle. Her rollers are plow-shaped, i. e., they are disks, thin at the circumference and thick at the center They do, indeed, roll, but they roll through and in the water, not upon it; and, although the proportion sub merged is not so great as in an ordinary vessel, ye they are being forced through the water in the sam way. They do, it is true, decrease somewhat the skin friction, and this, at low speeds, is a consideration But, when high speed is reached, although skin fric-
tion exists and is increased by the speed, it is not the main obstacle to progress, but the water resistance which cannot be overcome save by a greater increas of engine power than his boat is capable of carrying. And this is also true of all the roller boats planned or tried during the last half century
The Knapp roller boat, however, is not a plow. Al though a small portion of it is submerged, its mode of progression is essentially that of a broad-tired whee rolling on the water. If it could rest on the wate without any displacement, it would be a wheel or cyl inder moving on a level surface. But, this being im possible, its partial submersion produces the effect of a wheel or cylinder rolling up a hill. What will be the ef ect of water resistance on such a mode of progression ? I think it must be admitted that, if the resistance were nil, the progress would be nil also. The paddle and skin of the boat would simply slip round and round, without going forward. But the more resistance can be increased, the faster the boat will go forward. It matters nothing how this resistance is gained, whethe by paddles or by increased speed (utilizing the ski friction for all it is worth) or by the propulsion of the water toward the boat by the wind. For example, cylinder or barrel will turn round and round in the water; but, placed on a solid, resisting body, it not only turns round, but moves forward. And the effect is the same, whether the power is applied from out side, as by hand or foot rolling the barrel, or from inside by gravitation, as by the squirrel revolving his age, or from inside by leverage applied to the axle as in the unicycle you described some months ago, or in Mr. Knapp's design for his boat. For the method of applying the power in the Toronto model is not his idea, nor has he ever approved it.
The increase of resistance to the ordinary vessel may be compared to a solidifying of the water in front of her. It becomes, so to speak, harder and harder to force the boat through, and at last a point is reached where she is no longer able to carry engines sufficiently owerful to overcome any more resistance. Of cours the water is not actually hardened. but the effect is nuch as if it were; for, water being incompressible, it is also incapable of displacement at a high rate of speed
With the Knapp boat, the more resistance is in creased by her speed, the more easy becomes her for ward movement, not through but on the water. In tead of reducing resistance by reduction of speed, the resistance will lift her out of her displacement, thus reducing resistance without reducing speed, and if suf ficient speed can be obtained to increase resistance until it equals the weight of the boat, she must roll on the surface of the water without any displacement. At his point far less power would be necessary to keep he roing than would be necessary previously to lift he out of her displacement and roll her up the hill. Th eal question to be solved, then, is : What power wil e needed to start her and acquire the necessary speed Some idea as to this may be gained from the pre liminary trials. Her engineers say that only about twelve horse power was developed at either attempt Some of this was lost by the unfortunate slipping of the wheels on the track. Yet this small horse power was sufficient not ouly to revolve her about six or seven imes in a minute, but also to send her forward at the rate of four to five miles per hour. This horse powe is only about one-ninth horse power per ton displaced It seems probable, therefore, that a comparatively small power will give her considerable .speed, but this, of course, has yet to be tested. The slipping of the wheels, due to the moisture on the rails from the ex haust steam (a matter which the builders ought to have foreseen), will be guarded against during the winter, and next spring we may hope to see the rea trial of her speed capability
To sum up. The ordinary vessel is built on the finest possible lines to obtain the least point of resistance. The Knapp boat is built to go broadside on to obtain the greatest possible contact with the water and, consequently, the greatest resistance, because the esistance tends always to lift her out of her displace ment and decrease the power necessary to acquire speed. This is the real point of the invention
It is perhaps necessary to say that Mr. Knapp is not responsible for anything in this article, save when his own words are quoted. Robert W. Rayson. 392 Alfred Street, Kingston, Ont.
[We publish the above letter as being, we believe the first statement of the theories upon which the Knapp roller boat was built. We cannot agree with the writer that, if the boat could be driven fast enough to roll herself onto the surface of the water, the power necessary to propel her would be less than in a vessel of the normal type and the same displacement. If the normal draught of the Knapp boat is say 2 feet and her weight 200 tons, a certain proportion of the horse power of the boat must be expended in raising 200 tons 2 feet and maintaining it at that level. In the ordinary boat the weight is carried by the water, and the whole effort of the engines can be devoted to propulsion; but in the Knapp boat, as explained by our correspondent, the engines have not only to propel the boat but carry a part of its weight as well. -ED.]

THE STEEL PIPE AND TUBE INDUSTRY.

 III.-THE PIPE MILLS.In our previous articles on the steel pipe and tube industry we have traced the manufacture of steel tubing through the blast furnace plant, where the iron ore is smelted and cast in the shape of pig iron, and through the steel plant, where the iron is converted into steel
been raised to a red heat, it is placed sidewise in the bending rolls. These consist of two lower rolls and a third vertically adjustable roll placed above and between the upper and lower rolls, the upper roll being gradually depressed until the plate is curved to shape with the scarfed edges overlapping. This method of

3.-LAP-WELDING A 16-INCH PIPE

by decarburization with the air blast and rolled into long strips of various widths and thicknesses which are technically known as skelp. The third and final stage of manufacture occurs in the pipe department, where the skelp is rolled or drawn up into shape and welded into tubing.
Perhaps the best idea of the scope and detail of this department is gained from the fact that from the diminutive $1 / 8$ inch gas pipe up to the 24 and 36 -inch water, oil or gas main there are more than 1,000 different sizes of tubing turned out of the pipe mills and listed on the books of the National Tube Works Company as carried regularly in stock. Broadly speaking, however, all the tubing may be divided into two classes -butt-welded and lap-welded-the former including all tubing from $1 / 8$-inch up to $1 \frac{1}{4}$-inch and the latter all sizes of pipe from $1 \frac{1}{2}$-inch up to 36 -inch. The pipe mills in which the small gas and water pipe is made contain seven welding gas furnaces, together with the necessary cutting and threading machines and testing apparatus and a large stock house for the finished pipe, the whole being under one roof. The lap-weld mills, in which the larger sizes are made, contain ten double bending furnaces and twelve welding gas furnaces of the Siemens regenerative type. The pipe mill department also includes two large machine shops, a pipe coupling forge, a flange welding shop, a foundry and many departments of lesser importance. All of the furnaces are fired with an artificial gas known as "producer gas," which is manufactured on the premises by seventy-five producers.

The previous article closed at a point where the steel had been rolled into long strips of the required size 'Those intended for the larger sizes of pipe are fastened upon a traveling table where the edges are "scarfed" or beveled by the plate being drawn past a set of cut ters. They are then pushed into a gas-fired " bending furnace," which, like all of the furnaces in this mill, is double ended, the material being introduced at one end and withdrawn at the other. As soon as the plate has

tween them. The plate is rolled back and forth be-
orming up the pipe is adopted only for sizes from 8 inches up; the skelp for smaller sizes is formed by being drawn through a die, as shown in Fig. 5. The die is carried on a table at the level and just in front of the mouth of the furnace. It may be described as a stout iron tube, the front half of which, next the furnace, is split open and flattened out. Inside the die is a mandrel of the shape shown in the small sketch, Fig. 5 whose rear portion, lying within the closed end of the die, is of the size of the finished pipe. As the plate is pushed out of the furnace it is seized by a pair of heavy tongs and drawn through the die, the flaring sides of which gradually urve the plate until its edges meet and lap as passes through the tubular end of the die.
The plates, scarfed and rolled or drawn up to shape, with their edges lapping, are now pushed into gas-fired welding furnace, Fig.

4.-LAP-WELDING ROLLS AND MANDREL. 1, by means of a steam "pusher." The pusher is controlled by the man of a hydraulic ram at one end of the machine (see Fig. who is shown seated between a pair of hand wheels, and the lengths of skelp are brought successively in front of the furnace by the workmen, and rolled into position from the table onto which it is delivered from the bending rolls. As soon as the skelp has been raised to a welding heat, a door at the back of the furnace is opened and it is pushed into the welding rolls, Figs. 3 and 4 , which are located just outside the rear door of the furnace. The rolls are concave and are curved to the outside radius of the finished pipe, and between them, held in position by a long and stout bar, is a flanging, crushing and bending tests, as will be ex plained later in the present article. The pipe is now placed in the hydraulic testing machine, Fig. 8. Thi consists of a fixed and a movable head, the latter being shifted on the bed plate and keyed in a position corre sponding approximately to the length of the pipe to be tested. The latter is supported between two face plates, in which are recessed a number of concentric annular grooves, corresponding to the various sizes of pipe. The grooves are filled with rope packing, and after it has been lifted into place the face plates ar pressed firmly against the ends of the pipe by means . At the center of one face plate a nozzle leads from maller aulic pump into the interior of the pipe. The nch and the larger sizes at 1,000 pounds. Two inch line pipe is subjected to 1,500 pounds, and for oil well tubing the test runs as high as 2,500 pounds.
Among the many branches into which the pipe mil department is subdivided, there is none that reflect greater credit than that in which the work of welding on the flanges is carried on. The interior of this shop is shown in the large front page engraving, where one
ball" or mandrel of the same diameter as the inside of the pipe. As the skelp enters the rolls its lapping edges are squeezed together between the rolls and the mandrel and a perfect weld is made. The rolls are perforated with a number of countersunk holes to enable them to bite the skelp and insure its being driven forward over the mandrel. This produces the rivetlike projections which appear on welded pipe in the larger sizes. The reliable character of the welding is due to the perfect homogeneity of the steel (a result, as we have explained in the previous article, of excep tional care in the iron and steel process), together with the perfectly even welding heat which is secured in the gas furnace and the absence of the dirt and cinder which are unavoidable in welding furnaces heated by solid fuel. Moreover, as soon as it has passed through the welding rolls each piece is carefully examined, and all doubtful welds are rejected. The rough pipe is next passed through sizing rolls, in which it is brought to exact gage, and then through cross-straightening rolls, in which the axes of the two rolls are inclined a a considerable angle. It is then cooled on a movable table, where it is subjected to a cold blast of air and kept rolling to and fro. This prevents it from warping badly, as it would be apt to do if left to cool in one position, and relieves it of the strains which would be set up by uneven cooling. It is finally straightened in dies controlled by hydraulic pressure
The pipe is then placed in a lathe where the rough ends are cut off. These ends are taken to the testing department, where they are put through various end and the flange of a 22 -inch pipe are shown being raised to a welding heat in a gas furnace. We have spoken of the screwed flanges which are fitted to the smaller sizes of pipe. Formerly this method and rivet ing were used for all sizes, and while the high quality of the steel enabled an excellent job to be done, the ex pansion and contraction of the screwed flanges, es pecially in the larger pipes, was apt to produce leaky joints in the course of time. The company, at the urgent request of one of their patrons, and after lengthy experiments, have succeeded in welding on the flanges and making the job as perfect as the lap weld in the pipe itself. The results in the mediun sizes were so successful that the experiment was tried on pipes up to 30 inches in diameter, and with invaria bly excellent results. The flange is formed up out of a bar of steel. This is placed in a lathe, bored out and then faced on the inner face, care being taken to leave a $1 / 2$-inch fillet on the inner edge. The end of the pipe is then swaged down slightly, say about $1 / 4 \mathrm{inch}$, and the flange is pushed on over it, the edge of the pipe being beaded over with a few taps of the sledge ham mer to keep the flange from coming off in the furnace The latter, which is gas fired, is built in two semicir cular halves, the upper of which is removable. It built to the size of the pipe that is to be handled and is deep enough to permit a good body of flame to play around the flange and end of pipe. When the work has been raised to a welding heat, the pipe is swung round onto a concave anvil, which is stepped to receive both the pipe and the flange. The hammer is made L shaped, so that the horizontally projecting portion
may enter and strike the interior surface of the pipe, and as the latter, with its flange, is turned round on the anvil the welding up is quickly completed. The operation is very speedy and the result thoroughly eliable and of course greaty superior to a screwed connection. Flanges have been welded on pipes up to 30 inches in diameter, and preparations are being made for flanging 36 inch pipes by the same method.
The manufacture of pipe The mas is shown of pipe couplings is shown in Figs 6 and 7. They are made from bars of steel of the thickness and width of the coupling. Thesmallersizes are made in a special ma chine (Fig. 6), which cuts off the desired length and forms it up on a mandrel with surprising rapidity. The pieces are then heated in a welding furnace and welded under the quick acting steam hammer shown in Fig. 7. The ends are then swaged down, the thread is tapped, and they ${ }^{\text {of wrought iron and steel tubing. They were made on }}$ are then ready to go on the pipes. As many as 40,000 couplings can be turned out in twenty-four hours.
One corner of this huge department, which, by the way, employs 3,400 hands, is devoted to making bends. The pipe is first filled with sand to prevent its distor tion, and it is then heated and forced by hydraulic pressure into a die of the desired radius. The result is so smooth and regular that these steel bends might easily be mistaken for cast iron pipe.
In addition to the standard pipe work, this department turns out a bewildering variety of special work, the mere enumeration of which would exceed the limits of this article. Among other special work we noticed working barrels for oil well pumps; steel trolley poles in which each length is swaged down and shrunk on over the end of the next smaller section; hydraulic pipe intended for a pressure of from 2,500 to 5,000 pounds to the square inch; Pintsch gas cylinders, made to stand a test of 600 pounds to the square inch; ammonia cylinders; compressed air hoists, and a lot of 16 inch pump columns for the great shaft, 4,000 feet deep, at the Homestake Mine. During our visit, the mills were employed on an order for 10,000 cylinders for the Liquid Carbonic Acid Gas Company, Chicago. The cylinders made for this company are numbered consecutively, the last of the present order being numbered 70,768 . They are tested to 3,700 pounds to the square inch. The shells are 5 inches in diameter and have a concave flanged bottom welded in. The neck is swaged down and a solid steel plug is then welded into it, bored out and threaded.
We present illustrations of some typical tests that are daily being carried out at the works; for, in addition to the hydraulic tests already referred to, the tubing is continually being subjected to a variety of tests to determine the quality of the welds, etc. In cutting tubes to length, the rough ends are subjected to a longitudinal crushing load. If any tube fails at the weld, it is sent back to be rewelded. Other tubes are rolled with a Dudgeon expander and the ends beaded over, just as they would be if set in a boiler. Others again are subjected to side pressure, and in a comparative test of iron and steel tubes (Fig. 10) the former invariably cracked, while the steel showed no sign of fracture, even when the speciture, even when the speci-
mens were completely flattened out. The cold flanging test (Fig. 10) speaks for itself, the toughness of the steel showing up in marked contrast to the fibrous fracture of the wrought iron.

We have before us a report by Prof. Henry M. Howe, of Columbia College, of a series of tests undertaken this year to determine the relative merits

8.-HYDRAULIC PIPE TESTING MACHINE.
of the metal across the grain, and that, while wrought iron is weak across the grain, steel is nearly as strong across as along the grain. Of the twenty-three steel pipes that burst at all, 17.4 per cent burst elsewhere than at the weld.
2. Tensile Tests. - In these eleven wrought iron and eleven steel pipes wer tested, with the result that the steel exceeded the wrought iron on an aver age by 32 per cent, 22 per cent, and 52 per cent in the 2 -inch line pipe, the 2 -inch tubing, and the $55 / 8$-inch casing respectively.
3. Friction Tєsts.-The hydraulic test was applied to 104 feet of 2 -inch wrought iron pipe and a similar length of 2 -inch steel pipe. Water was run through at hydrant pres sure and the loss of pres sure noted. The stee showed a small but con stant superiority to
of wrought iron and steel tubing. They were made on \mid wrought iron, the pressure being about one-tenth three classes of wrought iron and steel pipes: 2 -inch pound per square inch greater at the discharge. line piping, 2 -inch tubing, and $55 / 8$-inch casing. The iron pipes were obtained from three makers of good standing and the steel pipes from the National Tube Works.

The conclusion of the third article closes our descrip tion of the steel tube industry as carried out in the establishment of the National Tube Works Company. In the vast scale on which the works are laid out, 11
the endless variety of labor-saving machinery employ

1. Bursting Tests.-Hydraulic bursting tests were ap

7.-WELDING COUPLINGS.
steel pipes, with the result that the steel pipes exceeded the bursting strength of the iron pipes on an average by 62 per cent, 41 per cent and 119 per cent, in the respective classes, and except in the case of three 2 inch line pipes, "the weakest steel pipe of each class was stronger than the strongest wrought iron pipe of that class." This is explained by the fact that the
he military precision with which the veritable army of employes is controlled, and in the exac cientific the various processes, the reader has been in-
troduced to an excellent example of that sysem of industrial economy which has won for us such a commanding position in the iron and steel industries of the world.

To Produce Photographs on Watch Cases
A subscriber of the Keystone asks that journal for information as to the method of repro ducing photographs on watch cases. The editor replies as follows
There are several processes by which such transfers can be made, but there is really only one proper method for doing such work, and this is performed by a species of enameling the details for the process of which, we think have never been given in full. The following can be taken as the outlines of the process, and any workman accustomed to enameling can readily perfect the details. The cap is first prepared by giving it a coating of transparent frit, which gives the appearance of the cap be ing coated with transparent lacquer, and it i on this glassy coating that the picture is produced by what is known among photographers as the "dust ing in" or "powder" process. In carrying out the details, proceed as follows: Take a good negative o the actual size of picture required. Next provide piece of plate glass of suitable size, and after carefu cleaning rub the surface with powdered talc, but leav ing none of the dust on the plate. Now prepare a so ing none of the dust on the plate. Now prepare a so lution composed as fol lows: Select pure, clean bits of gum arabic to weigh sixty grains; glucose, forty-five grains; gly cerine, ten minims; bi chromate of potash, thirty grains; distilled water, two ounces. Mix, warm and filter through muslin. Th plate glass has a film of this mixture flowed evenly upon it and dried in th dark. This surface is ex posed under the negativ above alluded to, for the proper length of time (to be ascertained by exper ment); after which th coated glass (carefully pre served from the action of light) is taken into a cellar or some other place wher the air is moist, under which conditions it absorb moisture proportionate to the action of the light. The portions screened from the light receive the most moisture, and consequent
ly are the best fitted to take and hold any dry powder brushed over the surface. The parts of the surface where the light has had full force do not hold any dust. The dust for the purpose under consideration is dial painter's black, a species of intensely black glass ground to an impalpable powder and now used dry. This powder is brushed over the face of the print with a soft camel's hair brush, and all particles, except such as are held by the tacky surface, carefully removed. The positive pictures by this pro cess are very beautiful and perfect. To transfer to the watch cap, the picture on the glass has now a coating of tough collodion flowed over it and allowed to dry, after which the collodion film is separated from the glass and the coat of gum and dextrine washed away.
The positive picture is now placed on the watch cap (which was previously coated with transparent enamel) with the collodion side out. On heating the cap in a muffle, the collodion burns away and the black enamel pigment fuses and incorporates itself with the transparent glaze on the watch cap.
The st. Lawrence River Canal at Massena, N. Y. Massena is situated in St. Lawrence County, New York State, on the Grasse River, which, nine miles below the village, empties into the St. Lawrence. The St. Lawrence River Canal will extend from a point on the St. Lawrence three miles northerly from Massena, having its intake just above the Long Sault Rapids, which have a fall of a little over fifty feet from the point of intake to the mouth of the Grasse River.
The canal, three miles in length, will be 225 feet wide and have an average depth of 25 feet, although in places cuts will reach 90 feet in depth. The canal will thus receive an almost level course, falling but 4 feet to the mile. At the mouth, where the water empties into the Grasse River, there is a fall of 47 feet. The volume of water will be much greater than is used at the Niagara power plant. The fall, however, is much less; therefore the turbines and generators will be differently arranged. A vertical shaft 140 feet in depth is used at Niagara; at Massena the turbines will be placed upon an inclined shaft. A ring of steel encircles each dynamo, the central revolving portion being the field magnets and not the armature, as in most other dynamos. The extreme diameter of the ring is 15 feet and the width 3 feet. This flywheel-like ring revolves within a stationary cylinder upon a surface made of thin soft steel set edgewise, which contains slots filled with copper bars parallel to the shaft, these bars being insulated with mica. The current will be delivered at 2,000 volts to the purchaser, and for long distance transmission it will be raised to 20,000 volts. The power house, the largest in the world, will be built upon a solid rcek foundation. It will be about 600 fee long and 130 feet wide and 60 feet high; and will be provided with an electric traveling crane capable of lifting 85 tons. The generators of which there will be 15 , will weigh 350,000 pounds each and will make 180 revolution per minute. They will be capable of devel pering 5,000 hor power eat or a oping 5,000 horse power each, or a total of 75,000 horse power. The total
the canal is 150,000 horse power.
the canal is 150,000 horse power.
From the power house the circuits will ex tend to the factories to be constructed near by, one syndicate already having contracted for 35,000 horse power, for the purpose of manufacturing acetylene, this being made possible because of the limestone formation that underlies the whole section about Massena. Elec tricity converts this rock into calcium carbide, the basis of acetylene gas. Numerous other chemical compositious essential to the manufacture of gunpowder will be produced. Saltpeter will be refined and manufac tured as in France and Germany. Other enterprises are contemplated, principally those which have in view the manufacture of certain chemicals which are now imported. The company already assert that they have contracted for all the power they can supply for some years to come.

The large operations upon the work of excavating the canal and the building of the power house attract húndreds of visitors to Massena almost daily, and that quiet little town, formerly in obscurity, except for its curative sulphur springs, has become in one brief month a thriving, bustling community. Midway along the canal, and at the point on the survey, has grown up what has been christened the "White City," the distributing point of the construction company. Here it will, for some distance, be necessary to excavate between 60 and 90 feet of earth. Over one hundred twohorse scrapers are at work. Two large graders, with eight mules in front and four behind, remove the surface dirt to a depth of fifteen inches, and roll it up from a plow-shaped blade into an endless belt, finally dumping it into wagons, a dozen or more being required to carry away the dirt from each grader. The graders are the most efficient excavating machines yet pro-
duced. They will excavate to within five feet of the water's level, and six, and later fifteen, big steam shov els then finish the work. These powerful machines, built much upon the plan of a harbor dredge, scoop the dirt out by means of cantilever cranes, carry it over the banks or upon dump cars, for a temporary railroad is being constructed the entire length of the canal. The soil! is soft and sandy, with the exception of some very fine clay strata, and no serious engineer ing problems are encountered in the process of excava tion. Occasionally a streak of quicksand is found, which causes temporary embarrassment, but otherwise the work is accomplished with very few difficulties. The number of steam shovels, graders, and the force of men, now numbering six hundred, will be increased a the work progresses, it being calculated that thre

9.-DETAILS HYDRAULIC TESTING MACHINE.
years will be required to comp.ete the canal. The pay oll at present exceeds $\$ 15,000$ per month.
The railroad facilities at Massena are favorable. The New York Central, by the R., W. \& O. branch, and the Grand Trunk meet here. The navigation companies on the St. Lawrence are numerous, and this waterway will undoubtedly receive the greatest share of patronage when the works are finished. It is estimated that the volume of water emptied into the Grasse from the canal will raise that river by ten feet, thus making it a most favorable outlet for the products to be manufac ured.
There is heard much talk that the projectors of the

0.-COMPARATIVE TESTS OF IRON AND STEEL TUBING the steel pipe and tube industry.

 builders. ments, 9 tons.
THIRTY KNOT TORPEDO BOAT CATCHER "BAILEY."

 lieut. G. l. cardenThe accompanying engravings represent the new orpedo boat catcher Bailey, so named by order of the havy department after the distinguished naval office Theodoric Bailey, who was second in command to Far ragut in the action of passing Forts Philip and Jack son on the Mississippi. The Bailey is one of three tor pedo boat catchers for which provision was made a the last session of Congress. The sum appropriated or each boat was $\$ 250,000$. In advertising for bids the navy department stipulated that a speed of 30 knots per hour would be exacted on the official course. The details of the design were left to the discretion of the

The contract for the Bailey was awarded to Charles L. Seabury \& Company and the Gas Engine and Power Company, of Morris Heights, New York. The work was obtained by this establishment at its bid of $\$ 210,000$. The time in which the boat is to be finished is stated at eighteen months. A peculiar feature in connection with the contract is the fact, as stated above that all designing work is left entirely to the builders If the boat fails to do what is asked of her, the faul will be that of the contractors, and not of the navy de partment. In calling for bids, berthing space for forty officers and men and ability to carry the armament in dicated, besides the 30 knots speed, were made condi tions. Attention was called to the fact that all ma terial used in hull and engines must conform to the navy department standards.
The Bailey is the first torpedo boat catcher ever built in the port of New York. The yards of the contractor are located on the Harlem River. When completed, as she will probably be, before the close of 1898 , the Bailey will stand for the fastest craft possessed by the United States government. This statement is made on the expectation of the builders to attain a speed with the new boat of 33 knots per hour. Just what may be expected of the two sisters of the Bailey cannot at this time be conjectured. They have yet to be heard from. In making the great speed demanded of the new torpedo boat catchers there will be no opportunity for jockeying work. Specified weights must be car ried, and on the occasion of the official trial run the boat must be in service trim. The designs which have been submitted to the navy department; by the contractors, and approved, embrace the following principal features: Length, 205 feet; beam, 19 feet depth of hold, 13 feet 5 inches; displacement on trial 235 tons ; and displacement when in commission, 265 tons. The trial weights must not be under the follow ing figures: Hull, $67 \cdot 5$ tons; machinery, 115 tons; water 10 tons; ordnance, $12 \cdot 6$ tons; coal, 20 tons; and equip

The armament will be a powerful one for a boat of this size. It will embrace four 6 -pounde rapid-fire guns and three 18 -inch torpedo discharge tubes. The latter are for White head torpedoes.

The 6 -pounder guns will be mounted two on the main deck, one on each side anid ships, and two on platforms supported by the conning towers. The deck guns will have an arc of fire from sharp on the bow to right astern. The guns on top of the con ning towers will have an almost all-around fire. The province of the torpedo boat catchers, or, as the British term them, "destroyers," is literally to destroy or capture torpedo boats proper. The average torpedo boat does not posses speed much exceeding ${ }^{2} 2$ to 23 knots. A torpedo boat like the Ariete of the Spanish navy, which is credited with a 26 knot showing on the measured mile is an exceptionally high-powered craft Even the Ariete could be easily over hauled by such a craft as the Bailey Having run the little torpedo boat down, the catcher annihilates her with
ion purposes, thus makirg a water route on the American side that will compete with the Long Sault Canal, about nineteen miles long, which brings vessels below the Long Sault rapids. If this were done, it would shorten the canal route by nine miles and give essels but three miles of canal to traverse under slow speed. Although this is a feasible enterprise, it is yet only a future possibility. Locks, which would be neces sary under those circumstances, are not being constructed or provided for, and the navigation feature of the canal could only be realized after our government had dredged the Grasse River and opened it to navigaion. It would undoubtedly be of great assistance to St. Lawrence River navigation, as well as a source of revenue to the owners of the canal; but whether it i thoroughly feasible to combine the two enterprises is problematical. The water for the Massina Canal come entirely from the American side of the river and from this side of the Long Sault Island, therefore no inter ational questions or complications can arise

Edwin Wildman.
a heavy fire from her 6-pounder guns
The 6 -pounder is a heavier piece than is given to tor pedo boats. In consequence, the light 1 -pounder which the latter usually carry are no match for the heavy guns of the pursuer. In the case of the Bailey his government has for the first time placed 6 -pounder cuns on its torpedo boat catchers. The Dupont and Porter, both torpedo boat catchers now in service, ar armed each with four 1-pounder guns. The British practice is to equip their destroyers with one-12-pound r rapid-fire gun and three 6 -pounders.
As in the case of all high speed vessels, there is no feature more interesting than the motive power. The Bailey will be supplied with engines capable of developing 5,600 horse power. This power is more than one-half the power employed on the Cunard steamer Umbria. The latter is a vessel of some 8.000 tons displacement, while the Bailey on trial will displace but 235 tons. The Bailey's engines are of the four cylinder triple-expansion type. The diameters in inches for the high, intermediate and low pressure cylinders respectively are $20,30 \frac{1}{2}$ and 32 . The com-
mon stroke is 18 inches. The development of 5,600 horse power is expected when the engines are making about 400 revolutions per minute.
Steam will be furnished by four Seabury water tube boilers. Each boiler will be equipped with two furnaces. The working pressure will be 250 pounds to the square inch. As arranged, there will be two firerooms. Each boiler will have its own funnel, making four in all.
All steam pipes are to be constructed of steel, and all pipes leading into the bilge must be constructed of copper. The hull plates, frames and angle irons below the water line will be galvanized. The metal used in the construction of the "Bailey" will be so thin and light that no portion of it can be afforded to be wasted in rust. Although galvanizing is commonly under
stood to weaken metal, it is deemed safer to accept this initial reduction in strength than to trust to the un-
certainties of water action and untreated plates.
In the crew space forward there will be folding
berths for thirty-three men. Of this number, eight will be for the machinists. The officers' bunks will b Pullman car berths, fitted into the sides of the boat aft in the wardroom.
The Bailey, like the Dupont and Porter, will be able o do battle with battleships after the fashion of torpedo boats. When thus engaged she will have recourse to her torpedo tubes. But, as above shown, the principal duty of the new craft will be to drive off and annihilate with gun fire the torpedo boat torments of the battleships and cruisers. Speed alone will enable
pected, by reason of her size, to maintain in a high The Bailey is essentially a seagoing vessel. Her bunker capacity is deemed sufficient to enable her to steam three thousand knots at economical speed. In ime of war she may be expected to accompany the battleship fleet, and to serve both as a scout and deense for the heavier vessels.
From the price to be paid for the Bailey, it will be seen that a torpedo boat catcher is an expensive craft. A torpedo boat possessing a speed of twentythree knots per hour can, nowadays, be turned out for about $\$ 75,000$.
The inspection work on the Bailey for the navy department is in the hands of Passed Assistant Engineer Carr, United States navy.

THIRTY KNOT TORPEDO BOAT CATCHER ' BAILEY," BUILDING AT NEW YORK FOR THE U. S. GOVERNMENT.

RECENTLY PATENTED INVENTIONS. Engineering.
Rotary Engine. - Ward B. Story, Freehold, N. Y. Two patents have been granted this inventor for an engine in which abutments are mounted to swing on a cylinder, folding into recesses in the cylinder wall, and resting with their free ends against should-
ers on the cylinder heads, a piston revolving in the cyliners on the cylinder heads, a piston revolving in the cylin-
der having a fixed head extending in its working chamber, and the hub of the cylinder having inlet and exhaust ports. The arrangement is such that the steam is cut off puring a part of the revolution to allow it to act expansively in the cylinder on the piston head, to which two impulses are given during every revolution of the main shaft. 'The piston may also have a plurality of piston heads, in con-
nection with a series of movable abutments in the cylin der, a rotary valve connected with the supply and with an exhaust being adapted to connect with a series of ports leadng into the cylinder, each port forming alter nately an inlet and an exhaust port.

Railway Appliances.

Railway Signal.-John D. Taylor Chillicothe, O. This invention relates to highway cross ing signals provided with an electric bell which is autond cut out of circuit by the train when it passes the and cut out of circuit by the train when it passes the
crossing, the invention being designed to simplify such apparatus and reduce to a minimum the cost of con truction and maintenance, while also lessening the liability to derangement.

Bicycles, Etc.

Saddle. - David Basch, New York City. This saddle is made with a removable and interchangeable cushion at each side of its center, the of the eaddile by a tie plate secured to the saddle body. The cushions are also provided with removable covers, held on by means of the tie plate, the cushions being light, durable and elastic, and resuming their original shape the moment they are relieved from pressure. All the parts of the saddle are readiiy and quickly disman led and as readily assembled.
Bicycle Air Pump.-Albert S. Noonan, Rome, N. Y. An air pump which may be con
veniently operated by one hand is provided by this in-
vention, the pump having the usual cylinder and piston mounted on an outwaraly extending stem to which is attached a handle, and the cylinder having a reduced outlet with which is connected a flexible tube, the other end of the tube beng provided with a holder for attach-
ment to the valve leading through the rim into the tire The flexible tube allows the pump to be engaged with at a elight incline relatively to the wbeel, the pump bein held rigidly in place by the adjustable holder.
Device for Locking Bicycles. Emil Buebel, of Altoona, and Jack Hall, of Juniata Kipple, Pa. This is a device for application to the fron or left, thereby preventing the unauthorized use of the machine. The lock is applied to the lower head tube fitting, adjacent to the crown of the forks, and the locking device proper and adjuncts are inclosed in a thin metal casing detachably secured to the fitting, the locking bolt sliding vertically, and its lower end when depressed entering a socket in the cone or fork crown bearing. thus
locking the fork so that the front wheel cannot be turned to the right or left

Mining, Ete

Portable Gold Washer. - Felix Kahn, Laredo, Texas. According to this improvement two rotatable basins are mounted one above the other on tank, means being provided for breaking up clods and tirring the pulverized ore as the basins rotate and also for discharging the liquid contents of the tank as re quired. The basin, spindle and connected parts are mercury may be placed in the basins to amalgamate th free gold. The device is particularly adapted for use by prospectors and in laboratory work.
Automatic Dumping Cage. - William K. Gorion,"Thurber; Texas. For use in the shafts of made and hung as to avoid pounding and racking of the guides and tower huilding, the platform turning on a lrue circle. Means are provided for automatically restoring the platform to a horizontal or carrying position after it has been dumped, locking the platform, and
atomatically unlocking it for dumping. The platform made to prevent the spilling of coal from the car into shaft.

Mechanical.

Round Bar Rolling Mill.-Paul J. Delay, Boucan, France. For making straight shafts or axles, and shafte of varying diameter, this mill is adapted to receive the blank, slides carrying the roller and being arranged to move radially in the frame of the machine, the rollers being carried bodily by the slides rollers remain parallel to their oriminal positions. Mea are provided for moving the sldes radially with the rollers, and for rotating the rollers while they are being moved inward against the blank. A hollow blank may be worked by inserting in it a mandrel, and blanks of orig nal polygonal cross section may be worked in the Shafting Collar. - Heinrich Melt zer, Ratibor, Germany. An abutment ring or collar for hafting, to diminish the friction between bearings or loose pulleys, is provided by this invention, the collar which is a channel ring in which are located anti-friction balls. The channel ring bearing against a loose pulley permits the latter to turn independently of the shaft and at the same time holds the pulley from sliding on the shaft
Patching Saws.-Michael D. Ahearn Green Bay, Wis. For cutting or grinding a concave recess in the side of a metal plate for the purpose if patching fractures in saws by brazing across such places cross sections, this inventor has devised a machine comprising horizontal guide rods on which slides a nonrotary frame, an oscilating frame being arranged within
the non-rotary frame and carrying a horizontal shaft with drive pulley and cutting wheel, there being means for vertically adjusting this shaft and wheel.
Sandpapering Machine.-George C. Bonniwell, Hickory, N. C. A machine more especially designed for sandpapering the edges of door panels,
etc., is provided by this invention, the machine abradng disks with oppositely arranged abrading faces, and permitting of readily fastening the paper to the
disks. The invention provides for a disk with inner ind outer beveled edges, and clamping devices for holding a sheet of sandpaper on the edges, the disks being free to yield according to any unevenness in the work, to inranderig or Mechanical Movement. - Sumpter L. Harwood, Uniontown, Ala. To transform reciprocating into rotary movement, and vice versa, this invention being spirally grooved, but in opposite directions, a collar cngaging each of the sections, and means being provided for moving one relatively to the other, and at the ame time preventing the rotation of the collars except having no dead center, and the stroke of the reciprocating member may be varied without affecting the rotation of the shaft.
Nut Lock. - Townson Hand, North Vernon, Ind. According to this invention, any attempt to unscrew a nut on which this lock is employed will canse a cam member of the lock to rotate and bind firmly gaving an inclined surface concentric with the bolt opening, and upon which rests the inclined inner surface of an annular locking cam, adapted to rotate and ride up the incline on the fixed member, and wedge firmly against the inner face of the nut, whenever the nut is turned in a Papme Windi
Paper Winding Machine.-William H. Decker, Rumford Falls, Me. A machine more especially designed for use with machines for making wide paper has been designed by winding shaft of its load, to prevent the shaft from springing, and, consequently, prevent irregular winding. Sliding bearings are provided for the shaft on which the paper is wound, and a supporting drum adapted to support the paper on the shaft is journaled in bearings fitted to slide at an angle to the line of movement of the shaft. The device is simple and arr Edge Setting Machine.-Adam H. Prenzel, Reading, Pa. For setting and polishing the
edges of the soles of boots and shoes, this improved machine affords a novel coustruction, arrangement and adjustment of the reversible head carrying the setting and polishing tools. The arrangement is such that two tools may be alternately brought into use or thrown out in a very convenient and practical manner ;
and, if desired, a hand rest may be employed below the shoe to hold it steady in turning the tool, a lamp or ga flame being placed adjacent to the tool not in use f
alternately heating the tools.

Agricultural

Animal Cleaning Device. - Orson . Fretwell, Cedar City, Utah. This device comprises ounted sh mounted in a framework in which is als similarly covered tire on one or more operating wheels, he rotary brush being operated by pushing the devic long in contact with the animal's body. Different orms of brushes and cleaners may be used, to be ope ated by the gear connections, for doing rapid an

Cane Planter.-Jacob, C. D'Azevedo, Brooklyn, N. Y. This invention relates to machines in hich the operations of making a furtow, planting the ane, and covering the furrow are accomplished in sucing the planting of cane of any desired length, planting the cane in multiple in the same furrow, and dropping the va ious pieces simultaneously. When the ground is covered with pea or other vines. the machine provides means for atting the vines in advance of the plow, so that they ill not interfere with the planting, and the machine lso provided with a marker not liable to
Connecting Rod for Reapers. Mow Rrs, Erc.-Daniel J. Crosby, Kadina, South Australia reapers and mowers, etc., in such a mauner that whe bstructions are met with, the connecting rod, which conerts the rotary into reciprocal motion, shall lengthen o hortel, and thus avoid breaking of the knife or othe part of the machine. The rod has a spindle longitu in ally movable through two bearings of a frame, a spring eing located between the bearings, while two pins slid解作in the spindle confine the spring, the pins being capable of engaging the bearing as the sinde recipro
Band Cutter and Self-Feeder. Henry J. Fourtner, Hazelton, Iowa. This machine is which it is connected only when it is desired to untomat ally feed the grain to the feeder of the thrasher. It is imple and durable machine, readily applied to an larashing machine and arranged to feed the grain in
 thrasher, to prevent over-feeding and consequent in erior thrashing. The operatis, by throwing off the ny time, to feed the grain by hand

Miscellaneous.

Photographic Camera.-Daniel P. 'Leary and Samuel B. Kull, New York City. This in ention covers an improvement upon a formerly patented of vention of the same inventors, in which the movemet mechanism. The camera has a partition forming suide for the portion of the film to be exposed, a casing or the film at the rear of the partition, a guide boar carred to the rear of the gaide board at the top and bottom being formed with recesses, while an index roller has its end rovided with toothed wheels adapted to engage the film the recesses.
Transferring Designs.-William R. Fish, Brooklyn, N. Y. To facilitate taking prints from lithographic stones or metal, etc., and converting them
nto sensitive transfer sheets, regardless of the age the print or the number of times it has been used, thi nvention provides for first treating the sheet or film ontaining the drawing or design with a mixture o water and albumen, gelatine or one of the mucilaginous
gums, then washing in water, then treating it with a reasy ol printing ink, and then transferring to a stone plate or printing eurface.
Gas Generating Machine.-Frank make gas for illuminating or heating cylindrical generator, with perforated partitions, and packed with an absorbent material, the generator being
mounted to be partially rotated occasionally, to facilitate he complete combustion of heavy oil An uninterrupte low of air is secured by means of two pumps with flexiie plungers, the air being forced from an air pressure cyl forced cut through service pipes, and the motor being utomatically stopped or retarded when the air pressure becomes too great, there being no danger of bursting.
SPRAYER. - Jules Bengue, Paris, France. This invention relates to devices for sprayin therefor a capillary diseharge opening with a pro tecting filter, but instead of the ordinary closing valve aving a movable plug, a washer is used of suitable sof material, inclosed in a metallic cap. The washer pressed against the oring che capillary opening hy pparatus being readily manipulated, while it may be tightly closed.
Movement of Fluid in Pipes, etc. htes to fire espinkers and other apparatus containing luid normally dormant, but adapted to flow when valve or other device is opened, and to apparatus con-
taining a fluid normally in motion and liable to have its low interrupted. A new and improved method and meane are provided by the invention for indicating the vement and cessation of movement of a flud in tomatically given when the fluid is flowing or its move ment ceases.
Reservoir Pen.-Carl J. Renz. New York City. This pen has a tapering tubular shank open gral tongue extending beyond an opening at the branch.
ng of the nibs, it being designed to so construct an ordinary writing pen that, at one dipisig of ink, it will the writing of cne or more letters of medium length without the necessity of a second supply. The pen, herefore, becomes practically a fountain pen without the id of the extended reservoir and other accessories of an ordinary fountain pen.
Cash Receptacle.-Alpheus C. Sine tanford, Ky. At the foot of the main casing of this shell which tolds a rotarich is a casing supporting may be placed or from which they may be removed sill, the upper casing holding gearing by which the co carrier is operated, and the base casing carrying a which notice is given when the apparatus is operated

Axle Box. - Franz A. Surth, Dort of plates and ring to constitute a closure for the epac etween axles and the walls of the openings in axle oxes, through which openings the axles pass, th losures serving to prevent the passage of dust in such apaces and also preventing the escape of the lubrican fom the axle box. The cons
Kitchen Table.-Rudolph J. Hentze Kersey City, N.J. This table is provided wit holding flour, etc., protecting the contents from insect interfere with the ordinary use of the table. In the ody of the table is also concealed a pastry board which may be drawn entrrely out and placed on
the table. The table is also provided with drawers
Shoestring Holder. -- Henderson T Small, Chanute, Kansas. This is a simple device, com-
posed of a bracket having at one end a screw shank, the racket being provided with a contact surface and wit adapted to be resdily applied to a cabinet or other support to hold a number of strings in such manner as to permit the ready removal of any one of the strings with out displacing or disarranging the other
Fence Wire Stretcher.-John W schaal, Logan, \mathbf{O}. The wire clutch mechanism em eries of clutches is attached, a tension bar and arms be lutches, the apparatus being adapted to stretch one wir r to stretch several wires simultaneously. It is adapte whether the ground be flat or undulating and rence he tension automatically as the pickets are inserted, or he posts.
Flute.-Carlo T. Giorgi, New York ity. This flute has a mouthpiece curved in direction of hs length of the flute, with a mouth hole on its top and
resounding chamber extending beluw the line of communication between the mouthpiece and the body of the lute. It has all the eleven holes necessary to the chromatic scale, each hole being adapted to be closed inde ecessary. The mouthpieee is at the upper end of the pipe, along which the air is blown straight, the notes the iowest to the highest.
Lock for Flushing Valves.-Charles H. Shepherd, New York City. Combined with the flus ing valve lever, according to this invention, is a lock elevated position until released by the descent of the float ball of the supply pipe, the design being to accom-
plish thorough flushing when the valve is raised by a uick pull of the handle and the ordinary quick closing an be rea. This lock is of simple cons in, an valve mechanism without making any change in the ex ing construction.
Fireproof Floor Construction. rancis Omeis, Moultrieville, S. C. As an improveme hangers suspended from the floor beams, auxiliary beams whose ends enter the hangers and are supported thereby etween adjacent heams, the auxiliary beams having oles through which pass wires or rods connected to the nain floor beams, while the auxiliary beams and wires uxiliary beams are of novel form and may be cheaply

Bin - Walter Thomas, Palatka, Fla. is in. Waler Thouas, oods, the bin having a novel arrangement of a number of compartments in one entire and inseparable structure,
he elements of which are very closely combincd, and each of which has an essential structure and relative
position. The several compartments may be readily Lemon Squefzer.-William H. Cox and Charles Hughes, Red Bluff, Cal. This is a simple nd inexpenive device with which, by a single movement, the operator may cut a mime or lemon and extrac cut from its bottom nearly to the to without severing the upper portion, thus preventing any upward escape of juices during the operation of compressing. and compelling all of the juices to pass out through the exit pro-

Merri-Go-round.-Thomas T. Tem plin, Paris, Ky. This is a circula cheap construction, to be operated by one of the rider and consists of tro seats suspended from the ends of pivoted beam, there being means by which one of the maintain an even balance between the two a post, and the rotation being effected by a rope from one the seats connected with a pulley on the central standard
Note.-Copies of any of the above patents will be end name of the patentee, title of invention, and date

Pusiness and 2ersonal.

 line for each insertion ; about eight words to a lin Advertisements must be received at publication offic as early as Thuring week's issue.
arine Iron Works. Chicago. Catalogue free For logging engines. J. S. Mundy, Newark, N. J.
U. S." Metal Polish. Indianapolis. Samples free. Yankee Notions. Waterbury Button Co., Waterb'y, Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O Improved Bicycle Machinery of every description Concrete Houses - cheaper than brick, superior
tone. "Ransome," 757 Monadnock Block, Chicago. Machinery manufacturers, attention! Concrete an
mortar mixing mills. Exclusive rights for sale. "Ran ome," 757 Monadnock Block, Chicago.
The celeorated "Hornsby-A kroyd" Patent Safety 0 Engine is built by the De La Vergne Refrigerating Ma
chine Company. Foot of East 133 th Street, New York. The best book for electricians and beginners in ele
ricity is "Experimental Science," by Geo. M. Hopkin mail. \$4. Munn \& C.., pu and for new and complete catalogue of Scientia Vew York. Free on application.

INTS TO CORRESPONDENT
Names and Address must accompany all letter or no attention will be paid thereto. This is for ou
information and not for publication. References to former articles or answers should
give aate of paper and page or number of question
Ingiries not answed quiries not answered in reasonable time should
be repeated :correspondents will bear in mind that
ome answers require not a little research, and
though we endeavor to reply to all either by lette or in this department. each must take his turn letter
Buyers wishing to oprchase any article not advertised
in our columns will be furnished with addresses of houses manufacturing or carrying the same.
Special Wiaters ritten In ormation on maters of
personal rather than oeneral interest cannot be
expected without remuneration.
 Books referred to promptiy supplied on receipt of
price.
Ninerals sent for examination should be distinctly
marked or labeled.
(7272) G. B. C. asks: 1. Can the 3 or 6 nch call bell be worked by the incandescent light wire especially for that purpose? A. The magnets of call bells should be wound to a very high resistance if the are to be connected directly to a lighting circuit. 2 Should there be lamps in series with the bell, and how many? A. A bell with a lower resistance may be used in series with an incandescent lamp. 3. There are bell made especially for light current; where can thes be got, ize used in electric car heaters? A. Any dealer in elec ric supplies can furnish both bells and German silver wire. 4. Can the 3 inch diameter carbons that are use in the aluminum furnace be used for call bell batteries I will work as a negative plate, but is needlessly (7273) J. L. T. says: Can a meerschaum pipe be cleaned so that it will color again by boiling in
milk, or otherwise, and what is the process ? A. Whe once burnt the pipe caninot be satisfactorily colored unless the burnt portion is removed and the surface again prepared. We are not familiar with the process of boil ing in milk. The bowls of the pipes are prepared by oaking them first in tallow, then in wax (beeawax) and inally polishing with shore grass or silk. The pipe is preferably boiled in the wax. The oil from the tobacco is re-
tained under the wax and gives the color. It is sadd that the color can be developed by careful heating, which drives the oil toward the surface. A new pipe should (7274) F. H. asks: 1. How many bi field of the little alternating current dynamo of ScIENtific American. September 11, to light two or three 16 candle power 110 volt lamps? A. Five bichromate of of No. 18 magnet wire on each spool. About 35 feet. Approximately, 350 feet for the ten poles. 2. How many
amperes will this little dynamo give ? A. Two amperes, amperes will th
approximately.
(7275) O. J. asks how to make a good strong battery to use with a gas engine and to run per in the place of carbon. A. The bichromate plung battery described in SUPPLEMENT, No. 792, is a very po erful battery, one of the most powerful. It can be easil he carbon in this battery
(7276) L. S. asks for a formula or formulas for flash light powder, for use in photography, which of smoke and noise? A. Valuable formulas for flash light powders are given in Supplement, Nos. 1062, 1088, 1115 and 1116 ; price 10 cents each by mail.
(7277) C. W., writing about the small alternator recently published in the Scientific americast asks (1) whether the ring and armature core can be the same kind of iron as sash weights are made of, that scrap tin and pig iron? A. No. You must use the best soft iron to be had for field and armature cores of a dy namo. Sash weights are made of the poorest quality of
iron. 2. About how much wire would it take for the
pounds of wire No. 20 double cotton covered in 12 layer 120 feet for each spool. Armature teeth must be wound magnet wire, about 2 pounds in all, approximately 80 feet on each prong. 3. Could it be charged with fou tery are not enough to charge the field. When wound as above it should be charged from an incandescent light ing circuit.

NEW BOOKS, ETC

The American Annual of Photogra Phy AND Photographic Time
ALMANAC FOR 1898 . Edited by Wal ter E. Woodbury. New York: S.o
vill \& Adams Company. 1898. P!
370. 8vo, 300 illustrations. Price 75 cents.
This annual, now the twelfth of the series published appears this season embellished with a beautiful colle, typical of the progress that has been made in this lin he book is replete with many useful articles and hin photography, particularly as regards its relation to the mateur worker. Details regarding process work a fully explained, while such topics as printing, develop ment, enlarging, lantern slide making, cancra making, treated in a practical way casily understood. Printing in colors (the tricolor proces) is also described and examples shown. There is the usual collection of the best and latest formulas conveniently arranged for use every photographer. The editor is to be congratulate Centrifugal Analisis. A manual , the use of the Y . rated. Roche, N. Y.: Bausch \& Lomb Optic Company. Pp. 36. This neat pamphlet is supplied grat milk, urine, blood and other liquids or semi-liquids describes the apparatus and methods of arriving at sults. The book is readable and instructive.

TO INVENTORS.

INDEX OF INVENTIONS For which Letters Patent of the ited States were Granted december 7, 1897,
and bach bearing that date.

195,096

 Ampone vive icivis． Mechinc oue sechools bit il，and Sanitary Engin eering，
Architecture，Metal Work－
 it installments．Send for beautifully
inlus． 100 page ．A．． illus． 100 page S．A．catal．，postpaid

＂It＇s Dot what

you Pay，but what you get for what you pay．＂$\quad \begin{aligned} & \text { Send for Cautogue } \\ & \text { and Discounts．}\end{aligned}$ The Best Office Desks at reasonable p
Derby Desk Co， 114 Possau Street，New York

Tools
 Every kind of

 Cot eatier P．R．Campboll．．．．．．．．．．．

 cring Thind oanging infing machine，M．Denn

 Electric batempson ．．．．．toorm Eectric cable，J．H．Keltman．EEectric oonductor termman．
Electric switch， \mathbf{F} ．A．Gilbert
 Elevar．See
Itor．
Evat，G．Westinghouse，Jr
Elevatorcontroller，electric C

${ }^{\mathrm{F}} \mathrm{Fa}$

Fire extinu uishink apparaius，J．o．Bannink．．．．．． Fireproof loors，fats，walls，etc．，constructing，

Fish hooks，untoratic．．Schiniäie
Fishing reels，pivot ball bearing for，A．F．\＆W

Fracture apparatus．D．Fortney．
Vruit Eatherer，F．F．Funk．．．．．．．
Fuik bided fifinime

Furnace．See Baking，cooking and heating fur

Gate．See Water gate．．．．．．．．
Generator．See Gas enerato
Gener

GATES ROCK \＆ ORE BREAKER， Steam Ore Stamp， Mining Machinery， 50 years experience as builders．
GATES IRON WORIKS，
Dept．C， 660 EIston Ave．，Chicago．

Eyelet machines．

 Blake \＆JOHNSON， P．O．Box 7，Waterbury，Conn．，U．S．A． ＂QUEEN＂ARCHITECT LEEVL $\$ 50$

Matrix bars for line casting machinio．．．．．eth
and means for making，W． S ．scudder．． Mattress tutting machine．E．B．Dixon
Measuring device．annle．O．H．Bapquin．
Mechaniinal movement．B．W．Bennett
Meter．See Liauid

ntel．A．J．Fair ．．．．．．．．．．．．． iquid meter，W．W．McCausen，A．A．F．
Ooad dumping apparatus，T．Carroii： Locking pin or bolt，F．Erxle ben
I．oom，Northrop $\&$ Bikelow oom picker．．F．A．Wardwell． abricator，W．F．Van Guisling

 EM： B：发皆管 | \％ |
| :--- |
| \％ |
| 0 |

\qquad

moves Any UJay You Like

ARMSTRONG＇S NO． 0 THREADING MACHINE

NO FIRE，SMOKE OR heat．absolutely safe

Engineers Of all kinds

Steam，Gas，Electrical，Mining，and Railroad scientific American．

Every issue contains information of great value to them．It is a weekly chronicle of all happen－ ings of importance to engineers－mechanical or otherwise．New inventions in machinery，for any purpose，are duly recorded and explained in its pages．No engineer should miss a single issue，for there is nut a publication in the world that gives so much valuable information on mechanical and scientitic matters． lts price puts it within the reach of all．$\$ 3.00$ yearly，$\$ 1,50$ half yearly，$\$ 1.00$ for four months． Send check，draft，express or money order， payable to
MUNN \＆CO．，Publishers， 361 Broadway，New York City．

Sargent＇s
Easy Spring
Locks

Fluting，Grooving and Channeling
 ills and prinds work the whold
asy to adjust．
other machine．
more and ength of lathe．Hasy to adosine．
better work than any other machine．
FANEUIL WATCH TOOL CO．，Boston，Mass．，U．S．A． ＂It＝Cells e Hboute Cools＂
 WILLIAMS SHAVING SOAPS． REAL SHAV SOAPS MONTGOMERY\＆CO，

 HOISTING ENGINEG

＂WOLVERINE＂GAS and GASOLINE

SOLD EVERYWHERE Williams＇Shaving Stick， 25 cts．
Genuine Yankee Shaving Soap， 10 ct Luxury Shaving Tablet， 25 cts． Swiss Violet Shaving Cream， 50 cts．
Jersey Cream（Toilet）Soap， 15 cts．

THE J．B．WILLIAMS CO．

Every issue contains information of great value

 ings of impurtance to engineers－mechanical orotherwise．New inventions in machinery，for any purpose，are duly recorded and explained in
its pages．No engineer should miss a single issue，for there is not a publication in the world
that gives so much valuable information on mectanical and scientinc matters．
lts price puts it within the reach of all．$\$ 3.00$ Send check，draft，express or money order， MUNN \＆CO．，Publishers 361 Broadway，New York City

This $\$ 300.00$ Launch for $\$ 200.00$ ，guaranteed or money
ref unded．
eq
METS OFL EASTNGS
GEAR WHEELS．\＆PARTS OF MODELS
GOODNDW．\＆WIGHTMANN

KRAFTUBERTRAGUNGSWERKE RHEINFELDEN．Societ of the Uulizaton of the Water s．

 maginable kinds of slides. Hire
lists free. RLEY BROTHERS, Bradford, Eng. 16 \& 18 Beekman St., NEW YORK
 A DESIRABLE HOLIDAY GIFT, DRAPER'S Recording Thermometer Standardized and Warranted. in ink on a weekly chart. THE DRAPER MFG. CO.

A.W. PABER

LEAD PENCILS, COLORHD PENCILS, SLATE PENS, INKS, PENCLL CASES IN SILVER AND IN,
GOLD, STATONERS RUBER GOODS, RULERS, 78 Reade Street

Manufactory Established 1761.
 actory trap in exis
-therenin ThRA
Suaranteed wear out. Lookzer the
cutant seo how it
done! Pay mee wh

A Bunch of Keys

$\$ 10$ TEN DOLLARS $\$ 10$

 COMPLETE TELEPHONE OUTFIT

HAWKINS' ${ }_{\text {A }}$ NRWACTICAL CRMEATISE

THE " INDUSTRIAL

Ra
Ra
Ra
Re
\qquad
 Rug making machine, O. Rice
Running gear, w. D. Widders

 Saw teeth, machine for side
Sawing machine. . E. Pooler
Scanfolin.
Scale, H. Sad M. Herbst....

Seam turning thoo, metal, , D.
Seat post and handle bart fast
Secondary batery, R. Ashley
Seesaw, G. H. Carlson.......

Sewnears. Saech Iron slatingrs.
Shice, H. S. Ayr
Sheet metal can, F. Westerbeck (reissue)

$$
\vdots
$$

Soring. See Door spring. Spur, B Cury Suare and bevel.......

\qquad
Station indicator, Black \& Greg
Steam boiler, R. C. Carpenter
Steam biler, J. A. Palmer..
 St. Hennip. trap, R. Cha
Steam trap, H. Lucas

Takeup mechanism, Hut chins $\&$ Thompson
Telegraph and telephone system, central station
Telemone circuit, G. K. Thompson
Testing plug. J. P. Mern.....
Thill coupling. J. C. Dale...
Ticket, railway, W. F. White

Pennsyluania Iron ZJorks Qompany
 BUILDERS OF THE

 "GLOBE" GAS

GASOLINE ENGINES FOR STATIONARY AND marine service

Address, 50th Street and Lancaster Avenue, PHILADELPHIA, U. S. A.

NOW IS THE TIME TO SUBSCRIBE

Scirvinc Mencen

The most popular Scientific Paper in the World

The Scientific American has been issued every week by the present publishers for a period of over fifty years. It is the only Journal published in this country which is devoted to a general treatment of the development of the sciences, arts and manufactures. Each issue is embellished with numerous illustrations showing great engineering works, the most recent inventions in bicycles and motor carriages, new forms of machinery, photography, the latest additions to the navy, new guns, locomotives, etc., sixteen pages each week. Many of
our patrons have been on our subscription our patrons have been on our subscription
books for a period of thirty or forty years and we often receive letters from old readers stating that owing to a careful reading of the paper since boyhood, they owe their success in life more to having had the Scientific American as their constant friend and companion than to any other

The Scientific American should have a place in every dwelling, shop, office, school or library. Workmen, foremen, engineers, superintendents, directors, presidents, officials, merchants, farmers, teachers, lawyers, physicians, clergymen-people in rive satisfaction and benefit from a regular reading of the Scientific American.
As an instructor for the young it is of peculiar advantage. Try it.-Subscribe for yourself-it will bring you valuable ideas; subscribe for your sons-it will make them manly and self-reliant; subscribe for your workmen-it will please
and assist their labor; subscribe for your friends-it will be likely to give them a practical lift in life
A yearly subscription to the Scientific American is a most acceptable gift to a son, employee or a friend.

NEW VOLUME COMmENCES JaNUARY 1 st
Subscription Price,
$\mathbf{\$ 3 . 0 0}$ a year, or $\$ \mathbf{1 . 5 0}$ for six months.

啹 Send your address for a free spe cimen copy.

> MUNN \& CO., PUBLISHERS,

361 Broadway, New York

1 Collefe ${ }^{4}$ C CHITS fouctionho（awerk

Fow ictidewnad ga mond we cive STEAM ENGINEERING

ALL WHO STUDY TAUGHI Guaranteed Success．

 Easy Lessons in Mechanical Drawing \＆Machine Design

©he Trudepenumut

NEW YORK．

More widely and favorably known than any other
weekly newspaper of the world．For nearly firty years it has held the first place．It has a larger list of famous

TABLE OF CONTENTS WEEKLY： POEMS，
CONTRIBUTED ARTICLES， FINE ARTS， SCIENCE，
SURVEY OF THE WORLD， MUSIC，
DITORIAL NOTES
RELIGIOUS INTELLIGENCE， BIBLICAL RESEARCH MISSIONS，
LITERATURE－BOOK REVIEWS， FINANCIAL， COMMERCIAL，
OLD AND YOUNG， STORIES，
PEBBLES AND PUZZLES， WORK IN DOORS AND OUT PERSONALS．

Subscription \＄3．00 a year，or at that rate for SPECIMEN COPIES FREE．

A SPECIAL OFFER． The INDErendent，one year
The Century Magazine，one year
$\stackrel{\$ 14.50}{\mathbf{\$. 5 0}}$ The＂Century Gallery of $\mathbf{1 0 0}$ Portraits＂$\$ 7.00$ ． best likenesses of 100 of the most prominent persons in the world which have appeared in the Century Maja zine．Size $934 \times 131 / 2$ ；put up in handsome box delivered very desirable for Holiday zifts． A remittance of 97.50 to the independent will se and Century Manazine，and the＂Century Gallery of 100 THE INDEPENDENT
130 Fulton Street，New York （T）Mention the scientifc american．

Tile with partially removed corners，w．S．Mac

 Tobacoion Dackete maiciine for wripping an
 Trap．See steam trap．

Umberla．a．H．Bastide．．．．．

veil coranpe，E．．Hines．
E．D．Usher

DESIGNS：
Radge，T，B．Stephenson．
Basket， S ．M．Rutter
Bes．

TRADE MARKS．

A printed cony of the specitcation and drawing or

 VELOX PAPER 5 GLOSSY Or MATT．No dull or rainy weather to in terfere with jour work．

$s 50$

EXCELSIOR INCUBATOR

 Fol LhE R MACCHINES ICE MACHINES，Mariiks Enjines Rrewers

 Sugy

WANTED $\begin{gathered}\text { foreman blacksmith in large ma－} \\ \text { chine shop，one that } \\ \text { has had ex－}\end{gathered}$
 Experimental \＆Model Work IMPORTANT DISCOVERY．

 w．E．CALDWELLL CO．Man ．

 ACETYLENE APPARATUS

TO THOSE INTENDING BUILDING.
To insure a perfect and permanent finish on all natural interior woodwork the use of the

WHEELER PATENT WOOD FILLER

BREINIG'S LITHOGEN SILICATE PAINT

enitects and owners, in their own interests, should seet their speciftcations carried out in full, and examine bills
for the articles specifled before aceepting work as satisfactory. THE BRIDGEPORT WOOD FINISHING CO., New Milford, Conn.

Eclipse Bictycles
Hutomatic Coaster and Brake.

The Coaster consists of automatic clutch in the

on the pedals.
The Brake applied by back pressure on the Red-
als. which throws aspoon on tire of rear wheel. Reals. Which throws a spoon on tire of rear
leased by forward movement of pedals. Touring Made Easy. Street Riding Made Safe. Send for Circular describing in detail Box x ECLIPSE BICYCLE C. CO.

ALL ARITHMETICAL solved rapidly and accurately
by the coll by the Comptometer. Save
6o per cent oftime and entire 6. per cent of time and entire-
ly relieves mental and ner
vous strain vous strain. Adapted to all
commercial and scientific commercial and scientific
computation. Why don't you
get one? Write fur pamphlet. FELT \& TARRANT MFG. CO
S2-56 ILLINOIS ST. CHICAGO.

Che Fifty Dollar

Cribune

The Best Wheel for the

Price in the World
Do not tnink of buying
Cbe Famous Blue Streak. ૬aster Chan Guer.
Write for Advance Sheets. 1898 Prices Ready.
Che Black Mifg. Zo., Eric, Pa.

WALTHAM WATCHES.

Every watch movement that leaves the factory of the American Waltham Watch Company has the word "Waltham" engraved on the plate. That name is a full guarantee by the Company which has more Watches in use throughout the world than all other American companies combined.

For sale by all jewelers.

A USE OF POWER

CHARTER GAS ENGINE CO .. Box 148, STERLING, ILL

American Celegraph Reys

Lavchlle foumtan pen

 $\mathrm{At} \frac{1}{4}$ PMiCb

Repeated tests enable us to say that even from precisely the same steel the tubing produced by any other method falls short of ours in strength about

WITH EQUAL DUCTILITY.
This emphasizes the excellent effect of our accuracy, of our annealing process and the total absence of pickling during the operation.

is safe insurance to the rider and means success to the manufacturer and dealer. It is essential to a really high grade wheel. Weral run, and to take any piece they choose to select as a sample of excellence. No specially prepared samples :
POPE TUBE COMPANY, - Hartford, Conn. "PIONEERS" in Correct Composition.

JESSOPS STEELUTM

Our

Fifteen Years Experience

Is Embodied in the
Premo Camera.

IMPERIAL BALL BEARING AXLE

Endorsed by the Leading Carriage Builders.
TO RIDE EASY, GET RUBBER TIRES TO RIDE EASY, GET RUBBER TIRES Write for Descriptive Catalogue. KELLEY, MAUS \& CO., SYNCHRONOGRAPH.-A NEW METH-

THE

PRINTING INKS

