
a WEEKLY JOURNAL 0F PRACTICAL INFORMATION ART, SCIENCE, MECHANICS CHEMISTRY, AND MANUFACTURES,

	NEW YORK, AUGUST 14, 1897.	

GREASE SETTLING TANKS.

EXTERIOR OF GARBAGE WORKS.
THE UTILIZATION OF NEW YORK CITY GARBAGE.-[See page 102.]

§rientific simprican.

ESTABLISHED 1845

MUNN \& CO.,
Editors and Proprietors.
PUBLISHED WEEKLY AT
No. 36I BROADWAY, - - NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN. (Established 1845.)
One copy, one year, for the U.S., Canada or Mexico....
One copy, six months, for the U.S., Canada or Mexico.

MUNN \& CO., 361 Broadway, corner Franklin Street, New York.
The Scientifle American Su
(Established 1876)
is a distinct paper from the SCIENTIFIC AM ARICAN. THE SUPPLEMENT
is issued weeky. Ever number contais 16 octavo pages, uniform in size
with Scievticic Avever

Building Edition of Scientific American. (Established 1585.)

Export Edition of the Scientifle American
(Established 1878)

MUNN \& CO., Publishers, 361 Broadway, New York.
The safest way to remit is by postal order, express money order Tr. Readersares gpocially reausted to noiff the

NEW YORK, SATURDAY, AUGUST 14, 1897.

Contents.

TABLE OF CONTENTS OF

Scientific American Supplement

No. 112e.
For the Week Ending August 14, 1897.

 Iv. FINE ARTM...
VI. MECHANICAL ENGINEERING. - The Working of Sheet Aluminum. An important teconical article.................. 18
vil. MISCELLANEOUS:
Miscolianeous Not
Selectical Nores.
Sele Formule

IX. NAAPAL ENGINEERING.-The British Battleship Renown.- 1
x. OPTICAL INSTRUMENTS.-Machine to Locate Fires,
 Xi. RALLWAY ENGINEER ING.-Dos Tra
 giving the result of.
XIV. TECHNOLOGY.-The Man

the alaskan gold fields.

The announcement of the return of two steamers from the Alaskan gold fields last month, with a smal party of miners on board who carried about a million and a half in gold between them, has gone through the world like an electric shock and bids fair to end in a "gold fever" comparable only to the wild excitement of the California discoveries in 1849. Already the "rush" has begun, and in spite of the warnings of the miners who have just come out of the country, and th detailed account by the press of the inhospitable and inaccessible nature of the placer districts, the symp-
toms of that wild scramble incident to a gold excitement are more or less manifest throughout the conti nent.
As compared with the California discoveries of half a century ago, those in Alaska will differ greatly in the nature of the climate under which the work of the mi ner must be carried out, the one being as rigorous an trying as the other was mild and favorable.
This is a fact that should be carefully considered by every inexperienced but adventurous spirit that may be contemplating a trip to this remote corner of the
earth. The fact that in 1849 clerks were able to leave earth. The fact that in 1849 clerks were able to leave
the desk and counter, and business men the snug comforts of home and office, and plunge without hurt to themselves into the hardships of California camp life is no proof that a similar venture may be made in these ining camps of the far North, where the thermometer year, and sixty degrees below is a common experience in the winter. Of all the incidents related by returning prospectors, nothing is more significant of the peculia difficulties of Alaskan mining than the fact that the gravel beds have to be thawed out by building wood fires above them before the material is ready for the miner's pan and the sluice-box.
The Klondike River, in which the rich gravel beds lie, is a minor tributary of the great Yukon River Although the gold fields are, and probably will be popularly known as Alaskan, they lie to the east of the boundary line and are therefore in the Canadian Northwest Territory. At present there are two routes by which the district can be reaehed from Seattle, the nearest American port. The longer and less trying journey is made by ocean steamer to St. Michael at the mouth of the Yukon, and thence by river steamer to Dawson City at the confluence of the Klondike and the Yukon. This route is estimated to be about 4,700 miles long. The cheaper and shorter route, and that taken by most of the miners, is by steamer from Seattle to Juneau, and overland from this point to Circle ctity. Although this route is less than haf of the former, it involves an overland journey of
tan nearly nine hundred miles, in which traveling is difficult and in some places attended with considerable hardship.
As to the placer deposits themselves, they are undoubtedly of extracrdinary richness. The fact that miners should come out after a few months' work with from twenty thousand to two hundred thousand in gold proves this beyond a doubt ; but just what the extent
of the gold field is, and how many other tributaries of of the gold field is, and how many other tributaries of tell. This much however is certain : the outside world will only hear of the larger fortunes, and little will be said about the host of unsuccessful adventurers who form the background upon which the alluring bags of gold dust and jars of nuggets of a mining excitement are displayed. Except to the few thousands who locate the richest claims in the first rush of prospectors, the average chances of digging up and washing out a speedy fortune are very slim. It is easy to estimate that of the thousands who will probably go to the Klondike in the spring, but very few will find claims that have no already been staked out. There are probably at this writing some four or five thousand miners on the Yukon, and they will flock, as is the miners' wont, to the new El Dorado. The length of the permissible claim along a stream is five hundred feet, and a simple calculation showsthat these men alone could cover five hundred miles of the best clains before the arrival o next season's crowd of adventurers
Next to those fortunes which are made in the placer mines the most speedy and largest fortunes will be realized by the prospectors who discover the rich quartz deposits from which nature has broken out and ing has been done apparently in the way of quartz prospecting, although it is likely that rich veins exist somewhere within the watershed of these various tributaries of the Yukon. At best placer mining is but introductory to the more extended and enduring quartz mining, and when the latter has once been put
fairly under way, we may look for the systematic defairly under way, we may look for the systematic de country.

The present discoveries of gold come as a furthe vindication of the wisdom which dictated the pur chase of Alaska from the Russian government jus thirty years ago. Its purchase price was $\$ 7,200,000$ and it is estimated that the royalties from the fu and it is estimated that the royalties from the fur
sealing company, the rich returns of the saluon in
dustry, not to mention the annual output of the great Treadwell gold mine on Douglass Island, the largest mill of its kind in the world, have together paid back the purchase price many times over to the United States. It is stated that there are indica tions of the existence of coal and the various leading minerals; but at present there is no evidence that the country is capable of producing the necessaries of life, though more than one explorer has given it as his opinion that certain crops could be raised in the summer months. Undoubtedly the great and enduring drawback to Alaska will be the dark and hitterly cold winter, in the depth of which there are twenty hours of darkness and but four of daylight, and the thermometer goes down, as it did last winter to 70 degrees below.
Apart from the benefit conferred by the placing of additional gold in circulation-a benefit which in its total effect, however rich the mines may turn out to be, will be considerably less appreciable than is com nonly supposed-these gold discoveries give an in direct impulse to trade and quicken the pulse of the industrial world. In this respeci the Klondike ex citement has already produced a marked improve ment on the Pacific coast, and this greatly depressed country seems to be in a fair way to recover some of its old time prosperity

STEEL WAGON TRACKS ON COUNTRY ROADS

It is the narrow tires of heavy farm and freigh wagons that do the most serious damage to country oads, especially during or after heavy rains, or whe the frost is coming out of the ground in the spring. A ingle wagon track, but slightly depressed below th general surface, forms a channel in which the wate will stand on the level and down which it will run on the hills, softening or cutting out the material of the oadway, and preparing the way for the traffic to grind out a couple of deep and unsightly ruts. These re sults are seen at their worst in a country where the soil is alluvial or clayey; but in any country and on any oad except a first-class macadam the destruction of the urface by formation of ruts is only a question of time The adoption of broad tires on all wagons, and care in flling the ruts, would mitigate the evil ; but as thing bo to-day in most country districts, these remedies ar conspicuous by their absence.
The United States Department of Agriculture is car ying out experiments with a view to saving country oads from this quick deterioration. The device conists in laying down in the center of the road two flat teel tracks to the gage of the average farm wagon The steel rails, for they are nothing less, are to be $\frac{7}{16}$ inch thick and of an inverted trough shape. They will be bedded in gravel laid in trenches, and they will be tied together at the joints and in the middle. On all hill the rails will be slightly corrugated or roughened to nable horses to take a good foothold. In addition to the durability of a road made on these lines, it is laimed that such a road would reduce the tractive re istance from forty pounds per ton on a macadam sur ace to eight pounds per ton on the trough rails
It is estimated that the cost of the rails and fittings or a short stretch of road will be at the rate of about $\$ 3,500$ per mile; though a line several miles in length could be built for about $\$ 2,000$ per mile. This estimat is for a track which would weigh about 100 tons pe wile; a track for lighter traffic, weighing about fifty tons per mile, could be built for half the above named sum. These figures represent the cost of material only the grading and track laying not being included.
As regards the value of such a road, there may be ome districts where its construction and maintenance would be more economical than that of a first-clas nacadam, but we doubt whether it would prove to be so in cases where the materials of macadam construc tion are within easy reach. As regards the increased hauling capacity of the steel-tracked road, there is no doubt that it would be greatly increased, though scarcely, we imagine, to the extent-five hundred pe ent-claimed by the ad vocates of the system.

PROPOSED COMPLETION OF THE HUDSON RIVER TUNNEL

It is gratifying to learn that there is prospect of the arly completion of the tunnel under the Hudson River which was begun in the year 1874, and upon which work was suspended in 1892, when about four-fifths of the work had been completed. It is stated by the legal representative of the English bondholders that steps are o be taken to foreclose the mortgage of $\$ 2,750,000$, re organize the company, issue new bonds, and push the work to completion. The tunnel starts from a shaft on the New Jersey side of the river, which is located at Fifteenth Street, Jersey City, and it is to terminate in a shaft on the New York side at the foot of Morton treet. The total distance will be 5,400 feet, and of his, as we have said, about four-fifths have been con pleted. It was originally intended that the terminus on the New York side should be at Washington Square, but under the new scheme it is probable that it will be placed nearer Broad way. The cost of the undertaking has reached about $\$ 4,000,000$, and it is estimated that
the tunnel can be completed by $\$ 1,000,000$ more. It is likely that the engineers who have just brought to a successful completion the great Blackwall tunnel, London, will have charge of the tunnel under the Hudson, and the fact that they overcame the many serious obstacles encountered in the prosecution of that work is a guarantee that the Hudson River scheme will this time be carried to a successful termination. One of the chief causes of the abandonwent was the difficulty experienced in carrying the tunnel through the bed of the river at the point where the overlying material was extremely shallow. A similar difficulty was met in the Blackwall tunnel, but it was overcome by dumping material from barges and forming a false bed to the river. The unfinished tunnel is at present flooded with water, which it is estimated can be pumped in about two weeks' time, and if the work is pushed through with vigor, it will probably take about nine or ten months to complete the whole work.

the fastest train in the world.

The distinction of running " the fastest train in the world " now belongs to the Atlantic City Railroad, which has recently inaugurated a summer schedule which includes a one hour train between Philadelphia and Atlantic City. The palm for fast running which was held for so many years by the Empire State Express had latterly been claimed by the Caledonian Railroad, Scotland, which was running a regular passenger train on a schedule of about 60 miles an hour. This, which was considerably higher than the booked speed of the New York Central train, has in turn been greatly exceeded by the railroad above mentioned.
The new train leaves Camden at 3:48 P. M. and is timed to reach Atlantic City, $551 / 2$ miles distant, at 4:40 P. M. The new service was inaugurated by a train which, in spite of the fact that it started $21 / 2$ minutes late. reached Atlantic City $11 / 2$ minutes ahead of time, the $551 / 2$ miles being run off in 48 minutes, or at the rate of $69 \cdot 35$ miles per hour. The train sheet shows that the 4.8 miles between Egg Harbor and Brigantine Junction were covered at a speed of $82 \cdot 26$ miles per hour.
Judged by the mere standard of speed, this was an excellent performance. Even if it had been maintained by a special drawing one or two coaches, it would be worthy of record; but when it is remembered that the train weighed 320,300 pounds and that much of the distance was runagainst head winds and in a heavy thunderstorm, the feat becomes truly exceptional.
The train was made up of one combination car, three standard passenger coaches, and a Pullman vestibule parlor car. It was hauled by a Baldwin four cylinder compound with cylinders 13 inches and 22 inches
diameter by 26 inches stroke. The heating surface is 1,835 square feet, the drivers are 7 feet in diameter and the total weight of engine and tender is 226,900 pounds. The total weight of engine and train was thus about $2731 / 2$ tons. It will be seen that the locomotive is a very powerful machine, its weight being about two thirds that of the train, and the distance is short com pared with that covered by the Empire State Express On the other hand, the Atlantic City train was longer by one more car than the New York Central train, and its booked speed is about 11 miles per hour faster.

death of prof. moclure.

Prof. Edgar McClure, of the Oregon State University at Eugene, fell 300 feet over a precipice on Moun Rainier late on July 27 and was killed. Every bone in his body was broken. He belonged to a party which was ending one of the most successful ascents ever made. At an altitude of about 5,000 feet the party got off the trail. McClure went in search of it. Others followed, but he warned them to go back, as the place was too steep. Just then the snow gave way under him and he fell. The body was recovered the next day. McClure was one of the most successful moun tain climbers of the Pacific coast, and was to be made president of the Oregon University, says the New York Sun. The Mazamas party of fifty climbers, of which he was one, will return at once instead of camping out two weeks.
Dr. De Witt Connell, of Portland, Ore., McClure's traveling companion, believes every bone in the pro fessor's body was broken by the fall. His face wa lacerated and his skull was fractured. His blankets, which he carried in a roll on his back, were ripped into ribbons, and his instruments for testing the velocity of the wind and the atmosphere for the government were crushed to atoms. The force of the fall
was so great that the body rebounded and shot off was so great that the body rebounded and shot o forty feet from the point where it struck the rocks.
Prof. McClure was married and about thirty years department of the annual mountain climbing expedition of the Mazamas, the coast Alpine society. He and his friends did not go with the regular party; who numbered fifty, and which made the ascent and descent in safety, using a line. The McClure party used no life line, and that recklessness and traveling by night accounts for the accident. In the darkness
the party lost the trail on the Muir glacier. McClure warned his companions to be careful and started to reach what looked like a pile of rocks, a few feet
away. The rocks were a hundred feet below. Webster Pierce of Pens were a hundred feet bover one of the precipices, became partly deranged and could not ascend the mountain. No barometer has been safely brought down from Mount Tacoma, and McClure, on starting to descend, promised to preserve his at al hazards.
elevated tries foel oil-unsuccessful experi ment with one train on third avende.
Engine 49 was run on a trial trip on the Third Avenue elevated road, New York City, August 2, with oil for fuel. The Consolidated Fuel Company was the promoter of the experiment.
A tank containing five barrels of fuel oil occupied the space formerly devoted to the coal bin. The oil was forced through two feeders by a pump, which sprayed it directly behind the boiler, where it was kindled. It took the boiler twenty minutes to generate 145 pounds
of steam. At 11:04 the train, composed of five cars, left the Ninety-ninth Street station and started downtown on its way to the City Hall. On board the train were
Hugh Moore, president of the Fuel Company. S Zerbe inventor of the appliance, and Superintenden S. B. Smith.

The motor had much difficulty in pulling the train up the hill at Seventieth Street, and when the Fifty ninth Street station was reached it was running very slowly and two minutes behind the regular time. The fuel made a great deal of smoke, which poured into the cars in blinding clouds.
At Twenty-third Street the train was six and a hal minutes late. Train Dispatcher Morrison, who was riding on the engine, came back and told Superintendent Smith that the pressure had fallen to 45 pounds and that it was impossible for the train to reach City Hall.

The cars were switched back on to the uptown track at Ninth Street and pulled uptown by an extra locomotive, which had been following the train. Mr. Zerb attributed the failure to a leak in the oil tank.

TRIAL OF A SEXTUPLEX TELEGRAPH SYSTEM
A sextuplex telegraphic system was successfully ope rated at Boston, August 2, in the presence of repre sentatives of New York and Boston newspapers. The circuit was to New Haven and return, a distance of
three hundred miles. Three different messages were three hundred miles. Three different messages were
sent over the wire simultaneously, and were easily and accurately received on the receiving sides.
The inventor is Thomas B. Dixon, of Kentucky, son of the late Archibald Dixon, once a senator of tha State. He is a practical telegrapher.
"Other experimenters," said Mr. Dixon, " have pur sued one of two methods-either they have used a vibratory current or else have subdivided the current into more than two parts. I have virtually a combina ion of a quadruplex and duplex wire. I send two messages over one-half of the current as a quadru-
plex, say at 100 volts, and the third message over the other half as a duplex, by increment-by making th current 300 volts. The great gain is in the saving of wire. We can work the sextuplex with the same current that is used on the quadruplex. We have used one quadruplex over thirteen hundred miles of wire on about two-thirds the current commonly employed. Both quadruplex and sextuplex have been ased in all kinds of weather, and they do excellen work. The tests have all been made through a dis rict where the wires were exposed to induction. The thirteen hundred mile test was on a wire that ran
from Boston to Buffalo, then back to Boston; then to New Haven and back to Boston again."

THE BELGIAN ANTARCTIC EXPEDITION

The necessary funds having been assured, the steam er Belgica, which has been fitted out at Antwerp, will sail on August 15 on an expedition to south polar waters.
The Chamber of Deputies has voted an additional credit of 60,000 francs for Gerlache's south polar expe dition.
Lieutenant de Gerlache, of the Belgian navy, organized and will lead this expedition. The Belgica has been specially strengthened for ice navigation and ar ranged for the convenience of scientific workers. The vessel is provisioned for three years. A laboratory has been built on the deck, and the expedition will be particularly devoted to geological and zoological research This Belgian expedition will be the only one in the Antarctic field.

MAGIC : STAGE ILLUSIONS AND SCLENTIFIC DIVERSIONS.
The interesting new book, entitled "Magic: Stage Illusions and Scientific Diversions," will be published about September 1. For further particulars our read ers are referred to our advertising columns. A large tion, and will be mailed free to any address.
moving to the new library, washington.
The old Congressional Library at Washington has been closed, and the work of removing the books to the new building has been commenced, a work which it s expected will take about three months. The moving according to Assistant Librarian Spofford, embraces "the loading of books from their present shelves in the Capitol building into boxes, separately numbered the ticketed, so as to indicate the place they will occu py in the ironstacked rooms of the new library. Each division will be preserved in distinct order, and such rearrangement and classification as the detailed treat ment requires will be gradually worked out. It is proposed to leave in each library division and subdivision enough shelf space for several years' growth, so that no further removal of books need be made for a long time to come."
Supt. Green has an ingenious arrangement for re moving dust from the books before they are placed upon the new shelves. He has attached an ordinary ubber hose to the air compressor of the pneumati tube system, and, to use his language, will just "turn the hose" on the dusty books. Instead of water, how ever, a stream of air, under heavy pressure, will do the work. At the end of the hose is a broad nozzle, one-sixteenth inch by four inches, which will enable the air to play on the books in a stream the shape of a brush. "It is likely," said Mr. Green, "that the general public has very little idea of the number of people who visit the new congressional library building. All during the spring and early summer our visitors averaged 1500 a day. Even now with the city emptied averaged 1500 a day. Even now with the city emptied
by the summer exodus, the number is about 1,000 visitby the sum
Assistant Librarian Hutchinson says the new library is "the most gorgeous public edifice in America. It has the largest golden dome in the world, with 10,000 square feet of surface. It is lighted by 1,800 windows there are $25,000,000$ bricks and $\$ 1,250,000$ worth of granite. Congress appropriated $\$ 6,000,000$ for its cost. The builder turned over $\$ 300,000$ to the Treasury of this money when he handed over the keys." In the rotunda or reading room, over which Mr. Hutchinson will preside, there will be room at the tables-allowing four feet for each person to spread himself in-for 260 eaders at one time, and this is exclusive of the alcoves or students pursuing some special line of research On the great dais in the center will stand the librarian and his clerks, taking orders for books and telephoning to the men in the distant book stacks. From the stacks the books will be sent to the reading room in traveling trays like those employed in retail stores for conveying bundles and money. A tunnel three feet underground and containing an endless chain railway connects the library with the Capitol, so that when a member of either house needs a book, even in the middle of a speech, it can be supplied at a moment's notice. The library of Congress ranks sixth among the libraries of the world in its present contents. France has the largest, England next; then comes Russia, and Germany follows with her libraries in Munich, Berlin and Strasburg, the last named holding almost equal rank with ours at Washington.

SALICYLIC ACID IN FOOD.

It is well known to-day that salicylic acid is a powerful antiseptic. As such it retards the action of organized ferments like the yeast plant and putrefactive bacteria. It hinders and prevents fermentation, the souring of milk, and the putrefaction of milk. Its action upon unorganized ferments is even more powerful. It completely arrests the conversion of starch into grape sugar by disease and pancreatic extracts. This action is directly opposed to the process of digestion, and, were there no other reason, the use of salicylic acid should be universally condemned. These facts in connection with salicylic acid have been recognized very thoroughly in legislation. The use of the acid has been condemned by most of the European countries having pure food laws. In France it is forbidden by law. In Austria, Italy, and Spain it cannot be used without the danger of incurring a heavy penalty, and all South American states having pure food laws have absolutely forbidden its sale. The laws of many of the States forbid its use. By a decision of Mr. Wells, the dairy and food commissioner, the use of salicylic acid in food is prohibited in Pennsylvania. I wish to call attention here to another fact in connection with the use of salicylic acid which is of extreme importance, viz., the sale of preservalines, preservatives, etc., under various high-sounding names, intended for use in private families. A number of these, claimed to be perfectly harmless, are on the market, but actually contain salicylic acid as the main ingredient. The conscientious and careful housekeeper should put an absolute veto upon the use of any such compound. There is rarely any need for them since, when pure fruits and vegetables are used and the proper directions for sterilizing by heat, etc., are carried out, canned or preserved goods of all descriptions can be prepared that will remain in good condition for years without the aid of any preserva tive.-The Sanitarian.

RAILWAY MAIL CATCHER AND DELIVERY DEVICES A subject which has been of much interest to inventors through many years, and in relation to which many patents have been issued, is that of delivering mail bags to and receiving them from moving railway trains. Numerous devices for this purpose have been tried with more or less success, but the greatly increased speed with which trains are now run, and the immense growth of the mail carrying business, with the necessity in all cases of securing the promptest possible service, render the attainment of practical success a more difficult matter than it was some years back. With the devices at present in use on many roads, it has occurred that mail bags have been run over and cut to pieces from the delivery arm of the mail car striking a switch stand or something else, the mail being partially destroyed, and even trains have been derailed from this cause, while persons have been killed by mail bags striking them when thrown off a train.
The Post Office Department at Washington, however, has been diligent in seeking for the best forms of practical devices among the many which have been brought forward, and insisting upon their adoption by the railroad companies. With this end in view the department has had many tests made, under the supervision of experts, and now gives its official approval to three different devices of this character, such approval having been withdrawn from a fourth device, " until certain defects which cropped out in the practical use of the device are remedied.'
One of the devices thus expressly approved by the Post Office Department, and manufactured by the Fleming Mail Catcher and DelivererCompany, is shown in the accompanying illustrations, one of the larger views showing the mail car approaching the station, with its bag held out ready for delivery, while the mail bag at the station is held on an extended arm of the device, ready to be taken upon the car; the other view showing both of these operations completed, the car having delivered and received a mail bag.
The standard of the mail crane, at the side of the track, has at its top a pivoted, counterbalanced supporting bar, at whose outer end is a cross bar having at each end a dependent hook, and from one of the hooks the station mail bag is suspended by means of a ring. Lower down on the standard is a catch arm which assists in holding the bag in proper position, the catch arm being connected with the standard by a universal coupling which permits it to swing both horizontally and vertically. The catch arm has at its outer end a cross bar with notches adapted to engage the station mall bag ring, and with detent fingers to retain the car mail bag ring, when the latter bag has been delivered, as shown in the second view.

On the mail car a sleeve with inwardly extending handle turns on a supporting rod arranged across the doorway, and an outwardly extending arm of the sleeve carries at right angles to its length a needle-like catch arm adapted to hold on the rear end the bag which is to be delivered at the station, the bag being supported by means of a ring, as in the fo:mercase There ar also holding springs or catches, pre venting the bag from be coming easily detached unti engaged by the catch arm at the station. A retaining arm alsobears ainst th mail bag rin to hold it right angles to the car in pro per position for engage ment by the catch arm and prevent it from being shifted by the wind or the motion of the car

As the mai car moves past the mail crane the mail clerk or attendant on the car, by turning down the handle holds the mail

BEFORE.
bag extended, the arm on which it is carried entering the ring of the station mail bag, and taking the latter from its supporting arms, while the catch arm of the mail crane enters the ring of the car mail bag and removes the latter from its support. Owing to the speed of the train, the car mail bag is thrown against the catch arm with considerable force, and the arm is swung horizontally at the same time that it drops, by reason of its universal coupling connection with the standard, striking the chain by which the counterbalance weight is supported, whereby the blow is cushioned and the arm and the bag are brought to a state of rest with a minimum of jar or strain. At

dIagram showing transfer of mail bags.

the same time the operator on the car, by releasing or turning up the handle, withdraws the extended arm and brings the bag which has been taken up at the station to the door of the mail car. The ring holding, catch ing and cushioning devices are identical on both side of the mail crane and the carrying arm of the car, so that mail bags may be exchanged when the car move in either direction.
The system shown has been in successfuluse formore han "two years on leading railway lines, without any throwing or kicking off of pouches, and without dange to the trainmen or mail clerks, while the delivered mail is positively and securely hung in asafe place. The ex tended arm of the catcher, also, is short, and not likely to strike an obstruction near the track. From the manner in which the mail sacks are suspended from rings, it is obvious that there must be a saving, under this device, in the cost of repairs for mail pouches, as compared with former methods, according to which the pouches were caught up by hooks. The expense to the
overnment on this account for the year 1894 was $\$ 128,781$.

Do Earthquakes Vary with the Time of Day? Students of earthquake phenomena have for a long time believed that the violence of earthquake shocks was greater in the morning than in the afternoon; in other words, that the earthquake activity varies throughout the day in a manner similar to that of the barometer. Mr. C. Davidson examined the question very closely, and reached the following conclusions. The data which he used were the curves furnished by registering instruments, which were installed in Japan and in the Philippine Islands:
"1. The daily variation of the frequency of earth quakes finds support in the approximate agreement of observations during the entire year at Tokyo and Ma nila, and for the middle of summer and winter respectively, at Tokyo
" 2 . In the course of ordinary earthquakes, there is almost always a marked daily period, whose maximum is generally between $10 \mathrm{~A} . \mathrm{M}$. and noon. The half is generally between 10 A. M. and noon. The halfmarked; its maximum is always between 9 A . M. and noon and between 9 P. M. and midnight Other lesser agreements have also their own importance.
"3. Although there are not sufficient data to draw a complete conclusion, it seems that the daily periodicity of the feeblest shocks is the most marked.
"4. In the case of the return shocks of great earth quakes, the diurnal periodicity is always strongly marked. The maximum of the daily period occur several hours after midnight, but the epochs of the others are subject to great variations, due, no doubt to the short intervals that separate the indications of the registering instruments. A peculiar feature of the return shocks is the more marked value of the eight hour and four hour components.
"It appears not improbable that the daily variation of ordinary earthquake shock is chiefly due to the velocity of the wind, and that of the return shocks principally to the barometric pressure."

International Association for Testing Constructive Materials.

The following is the substance of the statutes adopted by the international congress. The object of the association is the development and unification of test methods for determining the quality of build ing and other materials, and improving apparatus for he purpose, by the deliberations of the association, by congresses, by the publication of a journal, and by any other measures that may be deemed advisable, the ne cessary funds being raised by the annual subscription of members, profits on the journal, and donations Candidates for admission must be proposed by two members of the association, while authorities, consti tuted bodies and societies will be admitted on their ap plication, which must be addressed to the president The annual subscription is 5 fr . (4 marks or shillings) Each member, who must undertake (on being elected) to contribute to the success of the association's object \ldots.. has the righ of voting and also of receiving the jour nal at a re duced $r a t e$ The busines of the associa tion is carried on by (1) the managing committee, consist ing of the pre sident, vice sident, vic president
three assessors three assessors, and member elected by the congress on
the proposi the proposi tion of $t h e$ functions ex tending from one congress to another generally a pe riod of two years; (2) by the council composed of delegates elected by members of the association in the different coun tries; and (3) by the con gress.

sir join evans.

if marcus benjamin, phid

The distinguished scientist who will succeed Sir Joseph Lister as president of the British Association for the Advancement of Science has long been favorably known in this country for his studies in archæology, geology and numismatics, and the following brief sketch of his career will be of interest to those who know him only as the one who has been chosen to preside over the meeting of the British Association to be held in Toronto next week.
John Evans is a son of the late Rev. Dr. A. B. Evans, who for many years was head master of Market Bos worth Grammar School in Leicestershire, England, and was born in 1823. He received his education under his father's direction, during which time he developed an interest in scientific studies. These, however, have been for the main part his recreation and pleasure, while the chief occupation of his life has been that of a paper manufacturer, in which he has been successful, and he was for some time the president of the Paper Makers' Association.
His first important book was one devoted to numismatics, and his "Coins of the Ancient Britons," published in 1864, gained for him the Allier d'Ilantersche prize from the French Academy. Among his best known archæological works are the "Ancient Stone Implements, Weapons and Ornaments of Great Britain," which he published in 1872, and of which a French translation appeared in 1875 . Also his "Ancient Bronze Implements, Weapons and Ornaments of Great Britain and Ire land," which was published in London in 1881 and in Paris in 1882.
Dr. Evans has also written papers on "Flint Implements in the Drift," and other archæological papers for the "Ar chæologia," and he is a contributor to the Numismatic Chronicle, of which he is one of the editors.
The honorary degree of D.C.L. has been conferred upon him by Oxford, and that of LL.D. by Dublin, and that of Sc.D. by Cambridge. More recently he has been made a knight commander of the Bath. His own associates have hon ored him conspicuously, for, in 1875-76, he was made president of the Geological Society; in 1878-79, of the Anthropologi cal Institute; in 1875-97, of the Numis matic Society ; and in 1885-91, of the So ciety of Antiquarians. In consequence of the latter office he is an ex-officio trustee of the British Museum. He has long been a member of the Royal Society and is now one of its vice-presidents and its treasurer. Of many foreign learned societies he is also an honorary member and is a correspondent of the French Institute in the Academie des Inscrip tions.

Sir John Evans has his home at Nash Mills, Hemel Hempstead, and his neigh bors have testified to their appreciation of him by electing him a justice of the peace and deputy lieutenant for the county of Hertfordshire, where he also served as high sheriff in 1881-82. He is chairman of quarter sessions for the St Albans division of Herts, and also vice chairman of the Hertfordshire County Council.

The knowledge and experience of Sir John Evans fully demonstrate the wisdom of selecting him to preside over the meeting of the British Association, and we hope that the splendid welcome that he will receive from his American con frères will fully compensate him for. his visit to the new world.

English Versus Amerlcan Locomotives In Japan.

It is very interesting to note the discussions which go on in the Japanese journals on the relative merits of English and American machinery and manufactures. The great development of railways in Japan has naturally led to the discussion of the relative merits of English and American locomotives. In a recent issue of the Chuo Shimbun the editor reproduces the arguments advanced by the advocates of each class of engine. The speaker in favor of the English engines appeals to actual experience, and expresses the opinion that, judged from that point of view, there is no need for discussion. He points out that when Viscount Inonye was at the head of the railway bureau, he resolved to make a trial of American locomotives, and in 1891 two were imported. The result of the experiment was thoroughly unsatisfactory, for within a year they were useless. He then enters into a long account of their defects, which, if at all correct, shows that they were deficient both in design and workmanship. After Viscount Inonye's retirement, his successor, Mr. Matsumoto, who had received part of his education in the

United States, and who has therefore a great leaning for things American, imported in January, 1894, four American locomotives, which, however, fared no better than their predecessors. From the very outset repairs and alterations were required, and after a year or two this experience the railway bureau decided that the English engine was the better; and recently, when English engine was the better; and recently, when
an order was given for eighteen locomotives, it was an order was given for eighteen locomotives, it was
stipulated that they must be of English make. The writer in favor of the American locomotives expresses the opinion that it is a mistake to judge so hastily on the subject, as the engines hitherto imported by Japan from the States were not of the best kind. He says that there are other and better makers of locomotives in the States, and that it is absurd to suppose that the Americans cannot make good engines. Even Japan is beginning to develop that ability, and America is not new to the work as Japan is, as she has been at it for years. Above all, she can turn out much cheaper locomotives than England can, there being a difference of as much as one-third of the price in favor of the American engine. This means, of course, that, if the American locomotive lasts seven years against the English locomotive's ten, the advantage is still on the side of the former. He makes the rather

SIR JOHN EVANS
astonishing statement that materials and labor are cheaper in America than in England. Probably he is nearer the truth when he says that the British manu facturer is a stiffbacked person. He has been at the top of the manufacturing tree for such a long time that he fails to observe the changes going on below. He will not concede anything to a customer or mak any effort to suit the latter's convenience. But the American is looking for custom, and will spare no pains to reduce his prices or accommodate a client in any other manner. In conclusion, he adds that the proof that the Japanese government understands these things is that it has recently ordered eighteen loco motives from Rogers, and they are to be examined and passed by Mr. Crawford, an American engineer for merly in Japan. We believe that Mr. Crawford was the first engineer of the Hokkaido Railway, and introduced cheap methods of construction, which, howver, were not followed. On this subject we may note that the question of state versus private railways is at present being much discussed from all points of view. The general conclusion seems to be that all ailways ought to be built and superintended by the overnment but worked by the people, as experienc in Japan shows that official lines are managed with a degree of officialdom to which the public has a righ to object, and private lines are built on principles so commercial as to be distinctly dangerous. The intelli-
gent expression of public opinion which is taking place on these matters is certain in the end to lead to efficiency and public convenience.-Engineering.

Guides to Gears.

To have the wheel you ride properly geared is so very important that two points must always be borne in mind when buying machines. One is that the novice, even though he may be strong and muscular cannot use as high a gear as the man who has had long practice in pedaling, for not only will the parti cular muscles called into requisition in riding requir to be developed, but the novice has not the knack of xerting his powers to the best advantage. The other point is that gears which were suitable on a machin built several years ago are not, as a rule, high enough on a thoroughly up-to-date machine, since the latte is lighter, easier to propel, and faster than the former For this reason it will be found that experienced iders have slightly raised the gear every season fo years past; and the fact that they can now use, with perfect comfort, a comsiderably higher gear than they could a few years ago they attribute partly to practice and partly to improvements in the manufacture of machines.
It is very difficult to lay down definite rules for the guidance of others in deciding on the best height of gearing, as the most suita ble gear depends on so many conditions. The first and perhaps the most important question is the character of the rider's muscles. If he is strong, but slow in his movements, he will certainly need a high gear. If he is weak, but quick, he will need a low gear. But the character of the machine he is riding also has to be taken into account. With a heavy machine fitted with full roadster tires, the gea must not be as high as with a light one equipped with racing tires, and with 6 inch cranks it must not be as high as with $61 / 2$ inch. Another very important consideration is the nature of the roads to be ridden over. In a level country, blessed with good roads, a much highe gear can be ridden than in a hilly coun try; and, again, if the rider only goes out when the roads are dry, higher gear can be ridden than if he goes out a all times, no matter whether roads be dry or muddy.
While it is not the intention of this ar ticle to recommend to the average cyclist a very high gear, yet it cannot be denied that many riders fall into the error of having their machines geared too low. Although low gearing requires less pres sure on the pedals, it necess:tates moving the feet round faster, and thus in reality adds to the amount of work which has to be performed by the energy which the rider expends. In any case, the machin and its load have to be propelled, but with a low gear the riders feet and legs have to be raised a greater number of times. Of course, the low gear has the advantage up hill or against a wind ; but at other times the rapid movement of the legs is apt to become exhausting, be sides which, it makes ankle action very difficult, if not impossible, and increases the liability of the rider to lose his pedals, and danger in regaining them. Far mor riders complain that the gears they use are too low rather than too high. As to back pedaling, no doubt that a low gear is, on the whole, the best for holding a machine back going down hill. But even here the advantage is not al ways on the side of the low gear, for the pedals may go round so fast that the rider can do nothing with them. What any experienced rider eventually learn to believe in is a moderately high gear and a good brake.
The average woman's wheel should be geared some half dozen inches or more lower than that of the aver age man; but in each individual case the precise gear which will be most suitable can only be determined by a careful weighing of all the points which have been mentioned above.-The Wheel

Coloring Marble and Similar Stones.
A newly discovered process for treating marble or other similar stones in order to give them any colored shade veins or spots, says the Chicago Tribune, consists in leaving these stones in one or more baths composed of a solution of alcohol and one or more colors of aniline or other coloring materials. The coloring materials are fixed by leaving the colored stones in a bath of oil or any other fat substance, or by applying upon the stones layers of the same stuff. The absorption of the organic coloring materials and of the fat substances by the stone may be accelerated by heating or boiling the bath which contains the stuff to be treated.

THE UTILIZATION OF NEW YORK CITY GARBAGE. It was only a question of time before the city of New York should awaken to the necessity of finding a better way of disposing of its wastes or general refuse than by emptying it into the sea, a practice which was at once pernicious and wasteful. That it was pernicious is proved by the unsavory and unsightly fringe of rubbish which the sea has cast up on the shores of New bish which the sea has cast up on the shores of New
York Harbor and the Jersey coast. Moreover, the York Harbor and the Jersey coast.
heavier matter, settling to the bottom, heavier matter, settling to the bottom,
became, under the influence of the became, under the influence of the
tides, an active agent in silting up the entrance channels of the bay. That the practice of dumping at sea was wasteful is proved by the fact that it has lately been shown that there is sufficient commercial value in a considerable portion of the city refuse to more than pay for the cost of its collection.

In former days the household refuse, consisting of ashes, garbage (table and kitchen wastes), and paper, rags, etc., was collected indiscriminately and taken to the scows. The present system requires the householders and the management of hotels and industrial concerns to place their refuse for collection in separate lots, according as it is ashes, garbage, or light refuse. By this threefold division the city wastes acquire a positive value, each class being available for some specific use

Under the head of ashes is included not merely the residue from boiler furnaces and household grates, but such material as broken crockery, oyster and clam shells and all material that is suitable for filling-in purposes. For a description of the methods of handling this matter the reader is referred to the issue \mid of eight to ten hours, until the garbage is thoroughl of the Scientific American for June 5, in which are il lustrations of the new steain dumping scows, which are to be employed in carrying away the ashes-at present to the outside dumping ground, but ultimately to Riker's Island, at the entrance to Long Island Sound where it will be used for reclaiming swampy ground.
The present article is devoted to a description of the plant on Barren Island for the disposal of garbagethe second class of refuse-and in an early number we shall give an account of the experimental plant which the city has in operation at the foot of Eighteenth Street, on the East River, for the handling of the third class of refuse, such as paper, rags and kindred matter
Under the present system the garbage is carried by the carts of the street cleaning department to seven different dumps conveniently situated along the river
front. Here it is loaded into the scows of the New front. Here it is loaded into the scows of the New York Sanitary Utilization Company and is towed by their tugs to the large factory on Barren Island, views of which will be found on the front page of this issue. The garbage is taken away daily, and the amount removed averages about 800 tons per day through out the year. At the factory it is unloaded onto the buckets of a large cantileve elevator which has a capacity of hand ling a thousand tons of this material pe day.

This work was formerly done by singl hoisting buckets, but the operation was slow, and the present large elevator has lately been installed in their place

When the conveyor is at work the outer end of it rests upon the deck of the scow, and the upper end delivers the material onto a small cross conveyor, which to work the refuse screenings, which will be cremated in retorts and will yield a certain amount of sulphate of ammonia.
It will thus be seen that the unsightly mess which eaches the factory on the garbage scows is tranzỉme ed ultimately into two most essential and valuable commercial products-fertilizer and soap. It is certainly a triumph of science and art that the material which we reject from our tables should render us service once more as the producer of food and agent of

Barren Island, the site of the above very interesting olant, is about five miles distant from Canarsie and lies one mile distant from the eastern end of Coney Island. It is in some respects the most unique spot to be found in the United States, for within its restricted be found in the United States, for within its restricted miles long-are five different factories, all of which are devoted to the reduction of animal and vegetable wastes to commercial products. In addition to the works we have just described there are also a fish fac-
cal tanks of plate steel, $51 / 2$ feet in diameter and 18 feet long, are arranged vertically as shown in the illustra tion. They are tapered at the ends, the mouths being closed by steamtight covers and the bottom terminat ing in a short lengths of pipe which are furnished with large stop valves. After the digesters are filled with the garbage, they are hermetically sealed and steam at 50 pounds pressure is admitted through the lower
material is unloaded through a bottom door into a conveyor, by which it is carried to the screen room, in which are a series of revolving cylindrical screens Here all rubbish, such as fine metal, bits of tin, rags and similar material, is separated from the "tankage," which falls through the sieves as a fine powder. Tankage is the name given to this powdered material. It is used for fertilizer filler, and for that purpose is sacked for fertilizer filler, and for that purpose is sacked nd shipped to the fertilizer works. At this stage of the process it contains $41 / 2$ per cent of ammonia, 14 per cent of bone phos phate, and $1 / 3$ of 1 per cent of potash.
The grease and water from the presses is led by pipes to a set of set tling tanks, ten in all, which cover a pace 20 feet wide by 75 feet long the depth of the tanks being 6 feet. Here the grease rises to the surface and is recovered in catch basins. In the illustration on our front page showing these tanks the workman is employed in skimming off any mechanical refuse which may be floating on the top of the tank. From the catch basins the grease is pumped into large storage tank, from which it is barreled for shipment. It is used for the manufacture of soap, candles, etc. and is known commercially as "soap grease." The water from the presses which contains about 14 per cent of soluble ammonia and $1 \frac{1}{2}$ per cent solu ble potash, is pumped into a large eva porator in which these substances ar recovered, and the product is then mixed with the tankage and serve to raise its quality and value. In ad dition to the plant already erected the company is about to put up a plan
 cleanliness. disintegrated and reduced to a pulplike consistency all germsin the meantime being thoroughly destroyed The matter is then dropped into twelve storage tanks, there being four digesters to each tank. On the outside of each tank there is a curved telescopic de livery pipe, and through these the matter is unloaded onto the press platens carried upon small trolleys, which are run underneath the pipe for this purpose.
Upon the platen is placed a mould or outer frame which is covered with burlap, and after a sufficien amount of the material has been run into the burlap to fll up the mould, the burlap is folded over above it and covered with a rack or wooden gridiron about $1 / 2$ inch in thickness. Another mould with burlap is place above this and more of the cooked garbage is run in he process being repeated until there is a pile about feet in height. This is then run into the presses where it is subjected to a pressure of 250 tons. Th presses work at a very slow speed, and it takes about tory, a phosphate works, White's rendering factory and another smaller rendering actory. The employes and their families number 800 and in the course of the year over $\$ 250,000$ are paid out in wages. We are informed by Mr Thomas F White who is largely interested in the utilization works and the various other factories on the island, that the health of the community is remarkably good throughout the year. We are indebted for facilities in the preparation of our illustrations to Mr. White and Mr. McDonough Craven, C.E., of the New York Street Cleaning Department.

Sir Walter Scott's manuscript of The Lady of the Lake" has just been

DIAGRAM (NOT TO SCALE) SHOWING PROCESS OF GARBAGE REDUCTION.

clined elevators which carry the garbage up to the top of the factory
Here it is delivered into bins from which a series of large swivel pipes lead down to the mouths of what are known as the digesters. There are forty-eight of these digesters in all and they are arranged in rows of four through the center of the building. Each of the swivel pipes swings through a sufficient radius to reach the top of four digesters. The latter, which are large cylindri-
three-quarters of an hour to compress the mass from 4 sold in London for $\$ 6,450$; thirty years ago it brought feet to 18 inches. The material, which is now in cake $\$ 1,385$. The manuscript of "Old Mortality" sold for form, passes to the "strippers," men whose task it is $\$ 3,000$. Lord Nelson's autograph memoir of his own o remove the burlap and take the cake from the life with some autograph letters was sold for $\$ 5,000$; moulds. It is then carried by conveyors to the drying twenty-three other letters of his to Trowbridge fetched oom, where it is put into a dozen cylindrical steam- $\$ 1,400$. Robert Burns' private journal, begun in 1787, jacketed driers. A steel shaft carrying a set of arms "The Edinburgh Commonplace Book," brought $\$ 1,815$. rotates in the interior of the drier, and serves to pulver-
ize the material. When manuscripts of A. C. Swinburne, poems published ize the material. When this operation is complete, the $\left.\right|_{\text {in his first volume, sold for } \$ 198 .}$

According to the Journal de Médecine de Bordeaux, a man placed under arrest for illegal practice of medicine, claiming to be a graduate of an American college, presented a diploma which excited the suspicion of the magistrate. Calling in the services of an
expert, the document was submitted to the action of a expert, the document was submitted to the action of a Crookes tube, and the result showed distinctly the outlines, in the substance of the paper, of a name which had been erased from the surface to make room for that of the man who was convicted upon this evidence.
Dr. Judson Deland, of Philadelphia, has invented an instrument for counting blood corpuscles. It works on the centrifugal force principle, and accomplishes the measurement by means of comparative bulks. A quantity of blood is placed in a finely graduated tube and the latter revolved at a speed of about 1000 revolu tions a minute. The corpuscles divide by force of gravity and form on the side of the tube in easily traceable divisions of red corpuscles, white corpuscles and serum. The new method permits of larger, and consequently more representative, quantitatives being used in experimenting, besides doing away with actua microscopic counting.-Microscope.
The results of some recent researches on the direct union of carbon and iron at a high temperature have been cornmunicated by the author, M. Moissan, to the French Academy of Sciences. He states that when pure iron and carbon are melted together in an electric furnace and allowed to cool slowly, the metal is found to contain only a very small quantity of combined carbon, a gray pig iron being obtained that solidifies at $1,150^{\circ} \mathrm{C}$. By suddenly cooling in water iron saturated with carbon at $3,000^{\circ}$, the metal became
crystalline in structure, and from it were separated brilliant crystals of the carbide of iron, identical with that occurring in steel. Though this was one of the first metallic carbides known, it has proved the last to be prepared in quantity by direct synthesis.
It was announced recently, says the Electrical Review, that the National Meseum, at Washington, D. C., had secured the famous Cyrus W. Field collection of docu-
ments, autographs, telegrams and cablegrams relating to the first Atlantic cable. It has been donated by Mrs. Isabella Field Judson, of Dobbs Ferry, N. Y., and is being arranged for exhibition by Prof. Maynard. The journal kept by Mr. Field, and the notes of deep sea soundings made by him and the officers of the Great Eastern, are part of the collection. Mr Field's private library forms another part of it. There
are also copies of medals presented to him by Congress and the French government, engraved resolutions gress and the French government, engraved resolutions Europe, a cane made from the wood of the Great Eastern, cases containing sections of the first cable and those evolved from it, and the globe used by Mr Field while working out his plans.
The electric light has been used in night fishing, and now a French entomologist has devised a plan to secure specimens of insects. He took an incandescen
lamp of three or four candle power, he then placed a lamp of three or four candle power, he then placed a
small portable battery on the bank of the pond. The small portable battery on the bank of the pond. The
battery was connected with the lamp by wire ; the lamp was fixed to a semicircle of iron, and below the semicircle and lamp was placed a large net having an opening thirty-two inches across and similar to those used for snaring birds. The whole contrivance was lowered very slowly into the pond, the current was turned on and the lamp lighted. The insects, fish larvæ, frogs, tadpoles, etc., rushed in in great number A string is now pulled which closes the net, and by
single movement several pounds of victims may be captured, with a considerable number of fish and tadpoles that happen to be in the pond. A small Geissler tube can be used in the same manner.
Schumburg (Deutsch Med. Woch., No. 10, 1897) describes a new method of sterilizing water by the use of bromine, one grain being sufficient to destroy all the bacteria in one quart of water, the bromine afterward being neutralized by ammonia, so that a clear and
tasteless water is obtained. For this purpose a twentyper cent solution of bromobromiodide (bromiodide, one part; bromine, one part; water, five parts) is used. Thirty minims of this solution are sufficient to sterilize in five minutes one quart of river water. If the water is very hard or very foul, the lime salts and the ammonia contained in it neutralize a part of the bromine and in such cases it is necessary to add the bromine persists for at least half a minute. An equal quantity of a nine per cent solution of am monia suffices to neutralize the free bromine. It is desirable that these amounts should exactly correspond, although a faint taste either of bromine or of ammonia is not objectionable. When the bromine is exactly neutralized, the the original water, while the amount of bromine salt which it contains is so small that it has no effect upon the system. This method bids likely to be of especial use in times of epidemic, in war, etc.

Equilibrium in Flight.
 by jamiss mictardson.

In a critical review of recent progress in aeronautics, Mr. Octave Chanute, the well known engineer and pro moter of aviation, pointed out a fatal defect in most if not all the attempts that have been made to fly by me chanical means.
"The machines," he said, "have almost always come to grief for lack of that stable equipoise which the bird naintains by ins
Wight and wing."
Without assured equilibrium safety is uncertain and without a reasonable degree of safety, flight whether for pleasure or for business, is out of the ques tion.
In Mr. Chanute's judgment-a judgment shared apparently by most workers in this field-the surest and least difficult way to discover and demonstrate the means required for meeting this primary and most imperative need in flying machinery is through imitation of soaring birds. Such birds rise high and fly fast, apparently with little effort, by taking advantage of the ction of the wind on their outspread pinions. Men it is asserted, should study their structure and copy their methods; a slow, costly, and essentially hazard ous process, but the best.
"The experimenters will doubtless meet with many ailures and mishaps. They may break their machines and possibly their limbs; but there seems to be no safer or surer way of ascertaining the exact ct
This sounds reasonable; yet it involves several unproved assumptions. For example, that if men were to work out something equivalent to the bird's equip ment for flying, they could use it as a bird does, or learn to do so. But that is simply impossible. A man on a machine and a bird in a body are very differently ituated. Consider a young bird when about to leave the parent nest. Its physical organism is completethat is, structurally complete. It has everything to fly with that an old bird has. But it cannot fly, though it may flap its wings with regularity and vigor. It gets into the air more or less, but its progress is erratic, and its early flights end in tumbles. Thanks to its light and elastic structure, the bird can tumble without serious risk of injury, and it keeps on trying and tum bling until it has acquired the difficult art of keeping its balance in air. Instinct does not teach the art an more than reason could. It has to be learned in action The proper nerves have to acquire, in connection with he proper muscles, the habit of feeling and counter acting all balance disturbing influences instantly and harmoniously, not through conscious perception and volition, but automatically, without thought or hesi tation. By virtue of inherited capacity the young nerves and muscles learn fast and do not forget; and in a little while the bird ceases to tumble, and flie teadily, if not gracefully.
Very different is the case of man with a machine of his own making, however wisely planned or skillfully constructed. The members of a lifeless machine have no sensibility, no capacity for learning. no power of independent action. They cannot acquire habits by use. Besides, the engineer in charge of a machine is some thing apart from the machine, and can never be so closely in touch with its working elements as a bird is with its bodily members. As a consequence, he can never do with the machine what a bird can with its body, and the bird's best, volitionally, is not enough to insure its equilibrium in air. The engineer may be quick to see, prompt in action, and infallible in judg ment. And the machinery at his command may re spond perfectly to its controlling valves or levers. But
action by the roundabout way of perception and voliaction by the roundabout way of perception and voli
tion will not be quick enough to meet the exigencies of fight in his case any more than in the case of a bird Educated nerves and muscles will automatically do the right thing ten times while the mind is perceiving the need of the action and ordering it once. Having an inherited capacity for acquiring the habit of performing such instant, unordered, infinitely various yet har nonious muscular movements, the bird can learn to balance itself in air. Lacking such capacity, the ma chine never can, neither directly nor by proxy.
Just here the designer of a flying machine encoun ers a new and peculiar problem, one that never arise in connection with earth-supported machinery. If he wants to fly securely, he must make a machine that will balance itself. He must give it a mechanical substitute for the bird's sense of poise and capacity to maintain it. And the machine must not only balance itself, but do it forcefully, since the influences tending to upset a flying machine are apt to be violent as well as sudden in action. Only a positive, unresting, power ful working device will meet the demand. More than that, the device must do its work in practical indepen dence of the engineer. The stability of the machine in air cannot safely depend on any man's perception or judgment or volition.
These difficult requirements are as imperative as fundamental. They cannot be minimized or avoided without constant peril. At all times while the machin is off the ground the balancer must be not merely in
readiness, but in action, with a steadying force com petent to overcome any influence likely to disturb the equilibrium of the machine, whether acting constantly ike gravity or intermittently like varying air pressure due to change of wind or speed.
This necessity is apt to be overlooked. The main enance of equilibrium is usually made an incident of fight; to be secured by shifting ballast or by means of inert structural devices for the air to act or react upon. As a consequence, most attempts at flight end in disaster. In steady winds or with considerable speed in still air such things may serve. But the air is seldom still, winds vary in speed and in direction, and the machine cannot always be moving with the requisite speed to insure stability. Wings may be folded sails furled, and fan-like aeroplanes closed or opened to vary their action, but not with the promptness and exactness needed for safety. And it must not be for gotten that any structural devices capable of support ing or steadying a machine in air under favorable conditions of wind and weather must offer the same areas or adverse forces to act on in sudden emergencies The balancing mechanism of a flying machine rust not only be active and efficient, but constant in action and incapable of being taken by surprise.
For insuring equipoise the working elements of the lifting, propelling and steering machinery are as little to be trusted as inert structural devices. Of necessity their motion is inconstant, and must be arrested a times without reference to balance disturbing possibilities, making them least efficient as balancers per haps just when equilibrium is hardest to maintain The faster the machine flies and the higher it goe under such conditions, the worse for the rider-when he falls; and he is sure to fall sooner or later.
It would be a good thing to fly, no doubt; but men can live without flying; and most men will prefer to worry along on the earth rather than rise above it at the risk of their necks. Safety is the first consider ation; speed, economy, and the rest are secondary problems.
True, some men are willing to risk their lives in air, the forty-seven showmen, for example, who were killed last year fooling with balloons; but they are as little to be considered typical men in this connection as rational promoters of aerial navigation. They were chiefly sensation mongers. The unfortunate Dr. Wolfert and the more venturesome and possibly more unfortunate Dr. Andrée belong to a different class. So too, Herr Lilienthal, and others like him, who risked life or lost it experimenting with soaring devices. Their aims were in all respects commendable in purpose and their efforts have been useful ; chiefly however in showing that bulky and fragile constructions for wind sailing are as ill adapted as balloons for practical aerial navigation. Free flight, self-sustained, self-balansing and reasonably independent of wind and weather, from definite startings to predetermined landings, with comparative safety by the way, seems inompatible with such appliances
To get into the air is not as hard. Many have done that to their sorrow. To stay in the air master of the situation is another matter. To be able to rest in air without risk of overturning, competent to move in any direction at will, and able to return to the point of starting surely and without shock-that is the critical test.
When man has made a machine that will lift itself a foot from the ground and remain poised there in any ordinary weather, he can safely venture further. When all its movements have been thoroughly proved, close to earth, higher and faster flights will be in order, and will not be foolhardy or useless, as premature fights are sure to be.
Above all, the maintenance of equilibrium should be and practically must be the first problem settled. It is a prerequisite: not something to be worked out in air or after all the other elements of the flying machinery have been perfected. Suicide, however scientifically or picturesquely attempted, is not commendable: and smashed machines, however cleverly contructed, are not worth any more than dead inventors for the promotion of aerial navigation.

Our New Supplement Catalogue

There arestilla large number of readers who have not sent for our new 1897 catalogue of valuable papers in the Scientific American Supplement. This catalogue is sent free to any address in the world. A special edition, on heavy paper, has been printed, and this edition, which is cloth bound, is supplied at the nominal price of 25 cents each copy. This catalogue is really a valuable reference work, an index to some of the most valuable technical papers ever published. We feel certain that many of our readers are unfamiliar with the sale of the back numbers of our Supplement. These papers usually furnish information of the utmost value, at small cost.

A postage stamp exhibition, which is said to be the onen in London. The exhibits are valued at $\$ 1,250,000$.

DRILL IN THE UNITED STATES NAVY.
In the frequent discussions which take place upon the question of the personnel of modern navies it is a common complaint that the present day man-of-war's man is not the thoroughgoing seaman that his forerunner was in the days of the sailing frigate and the three-decker. The complaint is urged not merely against the navy, but it includes the whole merchant marine. It is claimed that, with the entrance of steam and the passing of masts and sails, the able seaman lost his occupation, developing into a mere laborer, for whose round of daily tasks there was needed neither skill nor intelligence.
Now, although there is a small measure of truth in the statement as applied to the navy and a large measure of truth in it as concerning the merchant marine, the case is not quite so strong as many pessimistic writers would have us believe. Of course it cannot be denied that, as far as pure seamanship in the popular sense of the term is concerned, there was more of it to be learned in early days aboard a Bon Homme Richard or a Constitution than there is to-day upon a Brooklyn or an Indiana. To keep an old three-decker up to concert pitch-and with rare exceptions they were maintained in splendid condition both below and aloft-was
though in some cases it is extended to ten or twenty minutes. The movements are similar to those used in any course of calisthenics, and, as its name implies, it is intended to straighten up the men, expand the chest, square the shoulders and give them that erect carriage and alert movement which are supposed to distinguish the naval and military man from the civilian. The setting up drill takes place regularly at the hours named on every day of the week.
There are a number of other drills which differ from the setting up drill in the fact that they not merely give muscular development and erect carriage to the men, but have to do with the working of the ship and the guns. These are practiced in their order on different days, so that the whole course is gone through once in a week. Among others may be mentioned the gun drill, the rifle drill, which is similar to that carried out in the army, the pistol drill, fencing or the broadsword drill, the artillery drill, practiced aboard those ships which carry field guns, in which is included the landing drill, the collision drill, in which the men are trained in the use of the collision mats, etc., the "abandon ship" drill, in which the crew are taught how to leave a sinking ship without disorder or panic. In addition to these the crew are drilled in the arming
movements shown, one-half are done without arms and the remainder with the rifle. It should be men tioned that there are altogether eighteen points in this drill, or two more than we have shown, and the whole set is gone through in regular rhythm and time. The movements are so well chosen that there is not a mem ber or muscle of the body that is not exercised, the arms, legs, hips, shoulders and chest being successively and specially brought into play by the different move ments.
On the battleship, Maine, Captain Sigsbee, who is an ardent advocate of the adoption of a more ex tended system of drilling in the navy, is having the men taught the full Development Drill as carried out at the United States Naval Training Station, Coasters' Harbor Island. This drill, which began with the Swedish movement, has been tried on various occa sions, and Admiral Bunce, when some years ago in charge of the training station at Newport, investigated the system, and had it standardized for use on ship board. When Captain Sigsbee was in charge o the training ship Portsmouth he had the system taught in its entirety, this being the first time that it was adopted in any ship afloat.
The value of this drill when it is thoroughly carried

DRILL ON THE UNITED STATES ARMORED CRUISER BROOKLYN-WITH ARMS.
a task that gave its crew hard work and plenty of it,
besides requiring a considerable amount of technical knowledge and skill.

The coming of the age of steam has practically dismasted the battleship and has very largely turned the sailor into a mechanic. It has also undoubtedly lightened the daily labors of the crew, and this to such an extent that it has become necessary to institute special drilling exercises with a view to leeeping the men in good physical condition. Not that the daily drill is a new institution, but there is a tendency among naval officers to give it a more prominent place in the daily routine and bestow upon it more thought and care than was formerly the case.
At the same time it must be admitted that the change from sail to steam, from wooden hulls to hulls of steel, from cast iron smoothbores to rifled breechloaders, has brought on board certain new duties which to a certain extent compensate for those which have passed away.
Any visitor who may chance to be aboard a United States warship at $9: 30$ in the morning or at 5 or $5: 30$ in the afternoon will see the crew going through a series of arm and leg exercises and ending it usually by a run on the double in single flle around the deck. This is what is known as the "setting up" drill, and it is in universal use throughout the navy. The drill is carried out as laid down in the manual of infantry tactics, and, in the case of most ships, lasts about ten minutes,
and equipping of the boats, and also receive sailing and rowing instructions.
In all this instruction there is, of course, a fair amount of exercise, for the various operations are carried out exactly as they would be in actual service. Thus, in the gun drill, whether it be at a small 6-pounder rapid fire gun or in the turret of a 60 -ton gun, the detailed movements of opening the breech, raising the ammunition through the hoists-dummy shell and powder charge being used-ramming home the charge and sighting and firing are gone through with precision, every man being in his proper place and station.
As we before stated, however, there are many naval officers who consider that more time and attention could profitably be given to development drill, that is to drills which are intended to develop the chest and muscles and give to the seaman something of that old time agility for which he was distinguished in the days of the sailing ship. Accordingly, in some few of the ships the setting up drill has been varied and extended according to the ideas of the officers on board, and in every case the changes have been in the direction of making the drill more interesting to the men and more gymnastic in its effects. By the courtesy of Lieut. W. R. Rush, of the U. S. S. Brooklyn, we are enabled to present our readers with instantaneous views of the various movements of a drill which he
has introduced on that fine ship. Of the sixteen
out lies in the fact that it is very precise, and the rhythm of the movements is maintained in such a way that it rivets the attention of the men to the drillmaster. Moreover, by its indirect effect the Development Drill is a great assistance to the other drills on board ship. The drill is divided into five sections : Free exercises, leg work, body work, arm work and extension exercises. No apparatus is necessary, though at the training station each man uses a pair of light wooden dumbbells.
There are usually from two to four counts to one movement, and the counts are repeated over rapidly so as to insure a total series of sixteen to twenty-four counts at one time. To give a clear idea of the method we quote from the manual the following movement, known as the vertical push:
"Count 1. Jump the feet apart, at the same time swinging the dumbbells between them.
"Count 2. Jump feet together, at the same time bring bells to top of shoulders, elbows back and on the same level as the shoulders.
"Count 3. Push to a high vertical, striking bells together, palms in, elbows stiff and upper arms close to "ars.
"Count 4. Back to position in count 2."
'This movement acts on the inside of thighs, side walls of chest and top of shoulders.
In conclusion it should be noted that these exercises,
simple as they appear to an onlooker, really call for an astonishing amount of energy. Captain Sigsbee states that even a gymnast, if he were unused to the movements, would have to take a rest before he could go through the whole series as given in the Training Station Manual.

Causes of Sudden Death.

Roughly speaking, about one-half of the total number of cases of sudden death from natural causes in adults is, more or less, due to heart disease, which has existed for some time, and in which no further chaiige is in progress at the time of death-such as valvular disease, angina, fatty heart, and stierosis of the cardiac muscle from chronic myocarditis. In many cases concurrent lung or kidney disease complicates the statistics, such cases frequently being tabulated as deaths solely due to heart disease. Spontaneous rupture of the heart, mostly in men, may exceptionally occur ; the left ventricle, of ten toward the front, is almost invariably the seat of the rupture. It is to be remembered that in traumatic rupture of the heart the right side, usually the auricle, suffers more frequently than the left in the proportion of about as 70 is to 54 . Apoplexy and other cognate brain lesions rank second as natural
of the cases to be predisposing causes. Koetschau, however, observed hemorrhage into the pancreas in a woman-an alcoholic-in her twenty-fourth year. Occasionally it occurs in spare people who are free from obvious disease and who are abstemious as regards alcohol. The sufferer may die within half an hour after the occurrence of the hemorrhage, or he may survive for twenty-four or even thirty-six hours. Draper records five cases between the ages of twenty-six and fifty-five years, of which three were men and two women. Fitz tabulated sixteen cases, of which eleven were males between thirty-one and seventy years of age, and five were females between twenty-six and forty-seven years.
Sudden death has in instances followed spontaneous rupture of an enlarged spleen, the result of tropical malarial influences, the individual immediately before rupture being to all intents and purposes quite well. Pellereaux gives the history of thirteen cases of rupture of the enlarged spleen; in five the rupture was spontaneous, and in the remainder it was due to apparently inadequate causes, such as a simple fall in the street. It is to be borne in mind that when the spleen is thus enlarged a mere pat with the palm of the hand may enlarged a mere pat with the palm of the hand may
while in Ohio, between August 25 and 28, there is to be a tornado. A similar storm should occur over the southeastern part of Europe, followed by unusua floods.

Governments Costly Archives

'Those persons who are interested in the archives of the government, but do not know what they are, are told by a correspondent of the New York Times that they nclude some very costly as well as interesting papers. The papers of George Washington, in 336 volumes, cost $\$ 45,000$. James Madison's papers, in 75 volumes, were purchased for $\$ 25,000$. The papers of Thomas Jefferson, in 137 volumes, were acquired at a cost of $\$ 20,000$, besides $\$ 6,000$ appropriated for their publication. Sixty-five volumes of Alexander Hamilton's papers, bought for $\$ 20,000$, were also published at a cost of $\$ 6,000$. The papers of James Monroe, consisting of 22 volumes, were bought for $\$ 20,000$. Benjamin Franklin's papers, in 32 . volumes, were bought in 1882 at a cost of $\$ 35,000$.
Although the government paid $\$ 165,000$ for these papers, they are regarded as priceless. Still, they are not so valuable as the papers of the Continental Con gress, which are included in the collection of the De -

DRILL ON THE UNITED STATES ARMORED CRUISER BROOKLYN-WITHOUT ARMS.
causes of sudden death. It is to be noted that miliary I in the absence of a knowledge of the experience of partment of State. These and other historical papers aneurisms of the vessels of the brain, although most \mid others, might readily be assumed to be the result of common in persons past middle life, occasionally occur criminal violence.
in young people, even in children, and by bursting cause death from apoplexy. Chronic alcoholism, a potent factor among the causes of sudden death, is frequently associated with rapidly terminating heart and brain disease.
Asphyxia, a not unfrequent cause, may be due to odema of the glottis, membranous deposit in the trachea, pressure of a neoplasin on the trachea, spasin of the vocal cords, pulmonary embolism, air embolism, rupture of a vessel or of an aneurism into the air passages, asthma. whooping cough, preumo and hæmo thorax, pleuritic effusion, and epilepsy. The rupture of a gastric or intestinal ulcer, of an aneurism, of a varicose vein, of the surroundings of an ectopic gesta tion, the formation of a peri-uterine hæmatocele, may severally prove quickly fatal. Nephritis (uræmia and apoplexy), diabetes, exophthalmic goiter, and Addi on's disease may also terminate with unexpected ra pidity. Hemorrhage into the pancreas occasionally causes sudden death, apparently from the impression produced on the contiguous nerve centers. It is most common in males over forty years of age who may up o the occurrence of the hemorrhage to all appearances be in perfect health. Obesity, the habitual use of alcohol, and the presence of heart disease appear in many

It is to be remembered that some of the above named diseases may exist without giving rise to any symptom until the fatal moment arrives; this applies with spe cial force to diseases which have a prolonged course during which, as a rule, symptoms indicative of the disease derlare themselves. Such a disease is gastric ulcer. I have seen more than one case in which, until the fatal rupture occurred, absolutely no symptoms were experienced, not even such as might have been attributed to simple dyspepsia; in one such instance a second ulcer was present in the walls of the stomach in addition to the one that ruptured and caused death, and yet until perforation occurred the patient neve elt any abnormal sensation whatever.-J. D. Mann M.D., in London Lancet.

Astronomical Weather Predictions.
Mr. A. J. Devoe, predicating his predictions on astronomical causes, believes that a cyclone will occur from the 10th to the 15th of August, the severest part being along the eastern coast of England and Scotland and may extend over the North Sea
A second cyclone will be due between August 25 and
0 off the coast of North Carolina and move northward
of great and fascinating interest to the student of history are kept in part for the study of the historians of the future, and are accessible under proper guards and restraints to all who believe they have occasion to consult them.

Bibbon Books for the Blind

Prof. D. Wallace McGill, at a convention of the Missouri National College Association of the Blind, held in St. Louis some time ago, suggested the idea of an attachment to a typesetting machine for perforating simultaneously a ribbon of paper with the same letters set up in type. These ribbons are then to be bound in book form, and by a transforming instrument passing over the perforations, the letters can be easily read by a blind person.
It is a better plan, he thinks, than raised letters, as the book leaves would take no more space than an ordinary printed book, while the expense would be trifling. As a rule, however, depressions are not as easily read by the blind as raised letters.
It would seem as if an attachment to a typesetting nachine of this character could be easily invented and worked out. The idea of thus putting all the best literature into readable shape for the blind is certainly worthy of study by our brightest inventors and leading educators.

The Drinking of Water.

A physician in the Western Bottler states the necessity which exists for the presence of water in the diet and in the tissues of the body. The fact is well known, but the doctor writer has clearly given the reason for the beneficial action of water on the differ-
 persons will be the better from adopting its suggestions. Although water is not a food in the sense of directly contributing to the production of force or heat, it is yet a food in the sense that, without its presence in the body, all vital action must come to a standstill, as no change is possible in its absence. Our tissues contain an indispensable proportion of water: we are constantly losing large quantities by breathing, by perspiration and the various excretions, and, as just hinted, its presence is required for the occurrence of those various chemical changes by which we live and move and have our being. This being so, its value as an article of food may be taken as granted, and we may consider more particularly its action and uses when taken not as a food, but as a means to preserve health or to ward off or remove disease.
The effects produced by the drinking of water vary with the manner in which it is drunk. If, for instance, a pint of cold water be swallowed as a large draught, or if it be taken in two portions with a short interval between, certain definite effects follow-effects which between, certain definite effects follow-effects which
differ from those which would have resulted from the same quantity taken by sipping.

EFFECTS OF SIPPING.

Sipping is a powerful stimulant to the circulationa thing which ordinary drinking is not. During the act of sipping the action of the nerve which slows the beats of the heart is abolished, and as a consequence that organ contracts much more rapidly, the pulse beats more quickly and the circulation in various parts of the body is increased. In addition to this, we also find that the pressure under which the bile is secreted is raised by the sipping of fluids-a fact the importance of which we shall notice directly.
Many individuals may have been at times unpleas antly conscious of the fact that a glass of wine or beer sipped gets into the head much quicker than if drunk at a draught. They will now be in a position to under stand why this is so ; the explanation being that the temporary paralysis of the inhibitory nerve of the heart, and the increased stimulation of the circulation, favor the rapid absorption of the alcohol and the production of its consequent effects. The same thing occurs if the fluid be sucked through a straw, the effects of sipping and sucking being identical.
Swallowing in the usual way has not the stimulant effects of sipping, but it has one or two special effects not produced by sipping, the use of which we shal mention a little later

EFFECTS OF DRINKING

The effects of drinking cold water are these: If, say, a pint of cold water is swallowed straightaway, the temperature of the body is slightly lowered-about one degree Fahrenheit-the pulse rate is somewhat decreased (not greatly increased, as by sipping), and the respirations are slightly accelerated. The blood
vessels in the lining membrane of the stomach are at vessels in the lining membrane of the stomach are at
first contracted; they very soon, however, rapidly dilate, the blood flow in them is increased, and the secretion of gastric juice is stimulated,

drinking warm water.

There are, on the other hand, many persons who find that these effects are brought about better if they take warm water instead of cold, although at first sight it way appear somewhat strange that like
effects are produced by both hot and cold water. The effects are produced by both hot and cold water. The
explanation is simple. The warm water acts exactly as does the cold, only without the previous contrac tion-its action being to at once dilate the vessels after its reception by the stomach. The practice of drinking at meals
large quantities of liquid is bad; but small quantities may be taken without harm, although undoubtedly it is wiser to drink either before or after the meal, if we cannot limit our consumption of fluids to a distinctly small amount. Whenever a meal is particularly rich in fatty material, it is a good plan to drink some time after the meal, as in this way the digestion of fat in the intestines is aided.

> its purgative action.

That water possesses a purgative action is a thing well known to many people. This particular effect is due to its power of stimulating the secretion of bile and also of increasing the peristaltic action of the intestines; bile being a natural purgative and increased peristalsis being the enemy of constipation and
sluggish bowel action. If plain water be taken, its purgative effects are best produced by its being cold; if natural mineral waters are taken, they should be mixed with a small quantity of hot water so as to be at about the same temperature as the stomach. Warm water is morelreadily absorbed than cold, and moderate quantities thatiarge ones, absorption beld retarded
taken at once. The best time to obtain the purgative effects of water is on rising in 'the morning. A glass of cold water taken on rising is often quite sufficient result will be the more certain if the water be sipped result will be the more certain if the water be sipped
while dressing. This sipping operation should not, while dressing. This sipping operation should not,
however, be hurried, but should be gone through slowly and at short intervals.

EFFECTS OF FREE DRINKING.

Free drinking of water produces effects upon the kidneys and tissues of the body generally no less im portant than those we have been considering. There is every reason to believe, from observations, the nature of which it is unnecessary for me to state, that the increased excretion of urine which follows the drinking of plenty of water not only clears the body of many poisonous and effete substances, but is itself an index of changes within the body which have for their end the enhanced health and comfort of the in dividual.
Much harmful material which has often to answer for malaise, want of energy, and various aches and pains, is undoubtedly washed out of the tissues and excreted by the kidneys as the result of free water drinking. This alone is decidedly beneficial, but, in addition, the drinking of much water causes the tissues to be changed, with the result that vitality is increased and strength augmented. So great in this direction are the effects of cold water, that persons
leading sedentary lives may often obtain, by drinking plenty of water, much of the feeling of health and exhilaration which results from taking exercise-
a fact not difficult of belief when we remember that a glass of cold water, slowly sipped, will produce great er acceleration of the pulse for a time than will a glass of wine or spirits taken at a draught. In this connec tion, too, it may not be out of place to mention the fact that sipping cold water will often

allay the craving for alcohol

in those who have been in the habit of taking too much of it, and who may be endeavoring to reform, the effect being probably due to the stimulant action of the sipping.

AN IMPORTANT DECISION.

A decision of much importance, owing to the magnitude of the interests affected and the questions of law involved, was handed down by the United States Cir cuit Court of Appeals for the Second Circuit on the 21st ult. in the suit brought by the Thomson-Houston Electric Company against the Hoosic Railway Company to restrain the infringement of letters patent No. 495,443, granted April 11, 1893, to the administrators of
Charles J. Van Depoele for traveling contact for electric railways. This is the well-known trolley patent which its owners claimed covered every practicable form of under-running trolley, and the case was before the court on an appeal from an order of the Circuit Court granting a preliminary injunction against the defendant. The opinion, written by Judge Wallace, holds, upon the authority of Miller v. Manufacturing Company (151 U. S. 198), that the claims sued upon are
invalid, because the same invention was patented by invalid, because the same invention was patented by
Mr. Van Depoele in patent No. 424,695, dated April 1, 1890, and the order of the Circuit Court granting the preliminary injunction was reversed.
Both of these patents originated in a single applica tion filed by Van Depoele March 12, 1887. The application was subsequently divided, and patent No. 424,695, containing thirty-five claims, was issued on one of the divisional applications on April 1, 1890. The other divi ional application was delayed in its progress through the Patent Office by an interference, and the patent in suit, containing sixteen claims, was issued thereon April 11, 1893.
The features covered by the claims in controversy are
all shown in the accompanying drawing, which is idenall shown in the accompanying drawing, which is iden Incal in both patents.
In each patent there are shown a hinged trolley arm pivotally supported on a post on the car roof, the arm arrying the contact wheel and having at its lower end spring with a suspended weight.
It will be observed that the construction, arrangement and necessary operation of the trolley, the trolley arm, the post on the car, the means of securing and support ing the arm on the post, the spring and weight, are ex actly the same in both patents, not only in construc ion and arrangement, but in necessary operation.
The earlier patent purports to clain only a certain switch plate, switching devices, and certain details "which are not essential features of the contact device itself, considered without reference to the switch." and disclaimed the contact device which forms the subject f application No. 230,649.
If the claims of this earlier patent had been clearly imited to the details which were not "essential fea tures of the contact device itself," or to the switch plate, the right of the inventor to claim broadly in his later patent the essential features of the contact device would have been unquestioned, but the claims were
patent are the following among others that are not limited in the respects mentioned :
" 15 . In an electric railway, the combination of a car, a conductor suspended above the line of travel of the car, a contact carrying arm pivotally supported on top of the car and provided at its outer end with a contact roller engaging the under side of the suspended conductor, and a weighted spring at or near the inner end of the arm for maintaining said upward contact, substantially as described.
32. In an electric railway, the combination, with an overhead conductor and a vehicle, of a trailing contact arm guided at its outer end by the overhead conductor, and movable laterally relatively to the vehicle, but having a normal centralizing tendency by means of a spring or weight.
33. In an electric railway, the combination, with an overhead conductor and a vehicle, of an intermediate contact device consisting of an upwardly pressed trailing arm having a grooved contact wheel at its outer end by which it is guided by the conductor, the said arm being free to swing laterally relatively to the vehicle, but tending to remain in its normal central position by means of a spring or weight."
The presence of these claims in the earlier patent alone goes far to justify the decision of Judge Wallace.
The claims of the patent in suit of which infringement was charged were five in number, of which we give two examples, as follows :
" 7 . In an electric railway, the combination of a car, a conductor suspended above the line of travel of the car, a swinging arm supported on top of the car, a contact device carried by one extremity of the arm and held thereby in contact with the under side of the electric conductor, and a tension device at or near the other end of the swinging arm for maintaining said upward contact, substantially as described.
" 8 . In an electric railway, the combination of a car, a conductor suspended above the line of travel of the car, an arm pivotally supported on top of the car and provided at its outer end with a contact engaging the under side of the suspended conductor, and a tension spring at or near the inner end of the arm for maintaining said upward pressure contact, substantially as described.
"12. In an electric railway, the combination with a car of a post extending upward therefrom and carrying a suitable bearing, an arm or lever carrying at its outer end a suitable contact roller and pivotally sup ported in said bearing, and provided at its inner end with a tension spring for pressing the outer end of the lever carrying the contact wheel upward against a suitable suspended conductor, substantially as described."
After holding that the court should undertake to examine and "in a sense to review collaterally" the decision in the previous suit on the same patent, brought in the District of Connecticut, against the Winchester Avenue Railway Company, in which Judge Townsend, holding that the earlier patent did not claim the same invention, sustained the patent at final hearing, from which decision no appeal was taken, Judge Wallace says:
"The operative parts of the contact device are described in identical language in each patent, and the language of the claims aptly describes these parts. While the function of the tension device is stated with more particularity in the earlier patent. the description does not contain a word or hint by which its characteristics can be differentiated from those of the tension device of the later patent. . . . In the later patent, as well as in the earlier, the tension device is a spring and weight, so arranged as to 'perinit lateral motion by the arm,' lateral motion being afforded because, as the specification of each patent states, 'the arm is hinged, and should, in most instances, be pivoted to the top of the post, although a reasonable amount of looseness in, the hinged joint will answer the purpose of the pivot.' In the earlier as well as in the latter patent, the spring and weight 'are so arranged as to constantly tend to restore the arm to its normal central position,' and thus 'assist it to partake of the lateral movement of the car,' because this is the necessary action of the spring and weight at the short end of the arm. As described in each specification, the tension device is a spring, which is held in its proper place by the

veight.

Of course, if the claims of the earlier patent do not specify such a tension device as is described and claimed in the later, but, specify one which embodies only a subordinate improvement upon it, the patents are not for the same invention. . . . Inasmuch as the only tension device, or means for imparting upward pressure to a trolley arm, described in the specification of the later patent, is that which consists of the weight and spring as it is described in the earlier patent, the verbal
differences in defining its functions in the several claims are of no significance. The thing itself is the same in the claims of both patents. The spring which tends to retain the arm in its normal position is exactly the same spring and no other than that which maintains upward
contact or pressure between the contact device and the suspended conductor. If any importance is to be at tached to these verbal differences, the earlier patent claims a tension device. the chief function of which is to exert a normal centralizing tendency upon the arm, but which of necessity must maintain the upward pressure, while the later patent claims one, the chief function of which is to maintain upward pressure, but must of necessity also exert the normal centralizing tendency. If there had been in the description anything by which it could be ascertained which of the structural features exercises one function and which the other, a different case would be presented. The matter sought to be covered by the second patent is inseparably involved in the matter embraced in the former patent, and this, under the authori ties, renders the second patent void.
"It is manifest that both patents are intended to, and do, secure to the patentee the same general inventions. though the earlier patent also covers im provements in the switches, and subordinat provements in the switches, and subordinate
combinations between these devices and the combinations between these devices and
elements of the principal combination.

We are of the opinion that claim 15 of the earlier patent describes and embraces everything of substance which is covered by claim 7 of the patent in suit.
"We are also of opinion that claim 33 of the earlier patent specifies essentially the same combinations embraced in claims 8,12 and 16 of the patent in suit, and that the 'spring or weight' of claim 33 is the same thing as the 'tension spring' of claims 8 , 12 and 16 , the 'weight' being only an alternative element."
As the facts which were before the court on this appeal must necessarily be the same on final hearing, and as this decision does not extend the rule laid down in the much cited and much abused decision of the Supreme Court in Miller v. Manufactur ing Company, it seems to be generally believed that this decision will be followed not only in this circuit but by the Supreme Court, if the controversy should be carried there.
The patent has been in constant litigation almost since the day of its issue, and injunctions have, on the strength of Judge Townsend's decision, been granted against numerous roads using the under-running trol ley, and also against manufacturers who have fur nished stands and other parts used in trolley road equipment, on the theory of contributory infringe ment.
As late as May 17 last. the Circuit Court of Appeals for the Sixth Circuit affirmed an order of the Circuit Court for the Northern.District of Ohio, granting a pre liminary injunction restraining the Ohio Brass Com pany, manufacturers of trolley road equipment, from infringing the claims now held to be invalid. Precisely the same question was presented to that court, but the court, while evidently entertaining grave doubts as to the correctness of Judge Townsend's opinion, held that the decision of a circuit court of another circuit sustaining the patent should be of controlling weight in the court below, and that on appeal the case should be reviewed merely to ascer-
tain whether there had been any abuse of discretion in the circuit court. The variance between the two decisions was simply as to whether Judge Townsend's decision should be examined collaterally. Judge Taft, speaking for the Ohio court, thought it should not, and Judge Wallace thought it should. The two decisions on the principal points at issue are therefore not inharmonious.

Dangerous Inks.

The London Lancet calls attention to the serious injuries which sometimes result from an apparently trifling scratch or puncture made with the pen. The made with the pen. The the ink which is introduced
by the pen into the wound are not capable of producing septicemia, but microscopic examination prove that the ill effects are due to the liability of ink to contain pathogenic bacteria. Dr. Marpmann, of Leipsic, has recently published the results of the microscopic examination of sixty-seven samples of ink used in schools. Most of them were made with gall nuts, and contained saprophytes, bacteria, and micrococci. Nigrosin ink, taken from a freshly opened bottle, was found to contain both saprophytes and bacteria. Red and blue ink also yielded numerous bacteria. In two
instances Dr. Marpmann succeeded in cultivating from nigrosin ink a bacillus which proved fatal to mice within four days. This ink had stood in an open bottle for three months, and the inference to be drawn from the inquiry is that ink used in schools should always be kept covered when not in use. The practice of moistening the pen with the tongue is likewise a dangerous one.

The Bertillon System for Identifying Criminals.
H. P. Flower Mayor of New Orleans, who has bee
massive blocks of concrete upon a suitable bed at low tide, and transport them suspended beneath a scow at igh tide to the site of the work
The system herewith illustrated, and which is protected by patents, differs entirely from the foregoing and possesses some points of practical advantage which will commend themselves to the engineer. Unlike the others, the whole of the sea wall, pier or bulkhead is built upon a platform suspended above the level of the water, and lowered as it is built until it rests upon the bottom of the river or harbor. In this way the the bottom of the river or harbor. In this way th use of the cofferdam, the pneumatic sys tem, or of piling is unnecessary, and, judged on the face of it, the system should be considerably cheaper than any of those above mentioned. Its range of usefulness would of course, be limited to those sites which offer a fairly homogeneous bottom, free from large bowlders or projecting rock, and capa ble of being dredged to a true and leve surface.

The illustration speaks for itself and needs but little explanation. Two large oblong barges are moored parallel to each other and at a little greater distance apart than the width of the foundation. Massive trans verse girders, spaced a few feet apart, are laid across from roof to roof of the barges Below them and just above the surface of the water is suspended a platform which is carried upon a series of girder spaced the same distance apart as the over head girders above mentioned A series of steel sheares are suspended from two longitudinal stringers laid on the overhead gird ers, and a simiiar series is attached by stee: straps to the girders of the platform. A wire cable is rove through each set of sheaves and its ends are wound on two winches located at
VAN DEPOELE UNDER-RUNNING TROLLEY.
to Paris to study the Bertillon system for the identifi cation of criminals, has just returned. He said that hrough the kindness of M. Bertillon, he had had an opportunity to master the system, which will be adopt ed by the Police Department of New Orleans. The mayor will teach the system to the police captains The system was described in the Scientific Ameri can for April 3, 1897.

A NEW METHOD OF BUILDING SUBMERGED FOUNDATIONS

We recently had an opportunity to inspect a full size working model of the proposed system of building sub merged foundations which is shown in the accompany ing illustrations. Its author, Mr. D. Jordan, a con tractor of 800 Fulton Street, San Francisco, Cal., has fo many years been engaged in the construction of vari ous kinds of pier and bulkhead work, and the present nethod has been devised with a view to expediting the onstruction and lessening the cost of such work on ll sites which offer a suitable foundation.
There are at present in use two or three leading sys tems of building such work. The first and most com mon is the pneumatic process, in which a caisson containing a working chamber is sunk to bed rock or othe ufficiently firm material, the caisson being filled in with concrete and the masonry pier built upon it he ends of the barge. The masonry or concrete wall or pier is then built up on the platform, which is lowered as the building goes on until it rests on the bottom, which has already been dredged out for it. To insure that the rate of lowering shall be even on each side, the cables after leaving the drums are given a double turn around the heavy roller, shown in the engraving, before they pass to the sheaves. To give the barges lateral steadiness they are each provided with a pair of deep centerboards, and they are secured from fore and-aft movement by heavy anchors. They are also secured by cables to auxiliary anchor barges, which are themselves provided with longitudinal and trans verse centerboards, and are anchored in three direc tions as shown. The cables which connect the pier barges to the anchorage barges pass from the side of the former through sheaves on the latter and are carried back to the pier barge and drawn taut with a windlass.
It is claimed by Mr. Jordan that by this system he can build a sea wall or bulkhead in lengths with a tongued and grooved joint at the ends (Fig. 1) up to the wate level, and from this point up construct them of con inuous masonry. In the case of bridge piers which were too massive to be built on a single platform, the pier would be built in two halves up to the water line and continued up to the desired height as a single block of masonry.

The system is also well adapted to the construction of dry docks. In such structures the blocks of concrete are packed watertight at the end joints. The outer wall surrounding the dock is first built, a temporary cofferdam being constructed at the entrance, then the water is pumped out and the inner concrete floor and abutting steps are made. Another suggestion of its use is the building of a harbor of refuge. The sea wall is first made quite high, and two hundred feet to the rear is a lower wall, the space between the two being filled in with sand, while the surface is arranged in a series of steps adapted for use in supporting artillery and pro-
of war. Mr. Jordan's tem-
to the required height. In .this system the caisson is surrounded by a cofferdam which permits the masonry to be laid dry until it is well above high water, the weight of the masonry serving to sink the caisson. A common method is to sink an open cofferdam, pump out the water, and excavate the material with dredges. Another plan is to drive piling, cut it off just above he river bottom, sink a grillage of 12 by 12 timbers upon it, building the masonry pier upon the grillage to the required height. Another system, frequently
used in the construction of breakwaters, is to build

SUSPENSION METHOD OF BUILDING SUBMERGED FOUNDATIONS. tecting breastworks in case of war. Mr. Jordan's tem-
porary address is Hotel Empire, Sixty-third Street and porary address is Hotel Empire, Sixty-third Street and
Boulevard, New York City, from whom further information may be obtained.

A monument to the memory of Daguerre has been erected by public subscription at Bry-sur-Marne, and was inaugurated on Sunday, June 27. The memorial is a bronze bust on a stone pedestal, and is the work of Madam Bloch. At the close of the ceremony wreaths
were placed upon Daguerre's grave.
recently patented inventions

Rallway Appliance:

Roller Bearing for Car Journals William J. Tripp, New York City. This bearing comorming ball races with the collars, the outermost ring be ing held against movement while the other rings are fre o move toward the outer ring; balls are held in the race a sectional rings carry pivots for the balls to turn on n adjustable dust cap is held on the inner end of the box and engaging the innermost ring, to adjust the several r

Dumpina Car. - John A. Hughes, Hon lulu, Hawaii. A car which may be employed in an mainly for use on sugar plantations, to transport cane to he mill, etc., is the subject of this patent, the principal ob ject being the discharging of the car by power, saving the bor of a number of men. The platform is inounted to ock laterally in either direction on the truck frame nd at each side, somewhat inward from the edge, the platform 18 provided with two hinge sections. Attache each side of the rocking plarform are two hook wire rope from a hoisting drum. The stakes are, by special arrangement, easily removed.

Electrical.

Fuse Holder and Cut Out.-Harry Norlstown, Pa. The invention covered by this patent comprises an improvement on a former simila vice to be arranged in the line wire to relieve the buildng or other place to which the wire leads from the danger of a strong or excessively charged current, by he building. A circuit breaker has a spring-pressed er adapted to make contact with an arm connected adapted to lock the first lever in contact position, and hermostat having a fixed tube at one end presses at it ther end on the second lever, a coil of wire formin

Propelling and Steering Barges. Alba D. Archibald, Covington, Ky. To supply a pos nive steering force at the head of ain, under the dire nd immediate control of the pilot on the propelling peller with a dynamo electric machine to be connecte with one or more steering and propelling craft each side of the fleet of barges near the front, and
connected to and flanking the fleet. The steering craft connected to and flanking the fleet. The steering craft re each equipped with an electric motor and a propel ing screw driven thereby, and the motors are connected by movable circuit wires passing rearwardly over the barges to the propeller, to suitable switchesand rheo
 to the right or left.

Bicycles, Etc.
Tire.-William D. Snow, New Milford, J. A tire which changes automatically from a pne vised by this inventor. Resting in the usual rim is solid cushion portion, oval in cross section, and from each side edge of this portion projects a resilient lug or flange to which is attached by cement or other means a
flexible pneumatic portion, adapted to be distended by flexible pneumatic portion, adapted to be distended by
forcing air into the tire, the side flanges then forming forcing air into the tire, the side flanges then forming by reversed position of the side flanges into contact with he cushion portion, forming a cushion tir
Brake.-Frank J. Coombs, Columbia alis, Montana. This invention is for a brake mechanwhin in connection with the pedal shaft and sprocket
whe brake being set to braking position by back pressure on the pedals, the device also permitting the sprocket rim to rotate freely while the pedals are at rest. According to the improvement shoes are adapted to be forced against the interior of the sprocket rim, and the
locking mechanism thereof is connected with a siding block in a tubular handle bar, the hand grip having a cam portion engaging a cam portion of the block.

Agricultural

Planter. - John S. Earhart and Charles Miller, Millersville, Ill. A triple row planter, devised by these inventors, is designed to increase the
capacity of the ordinary planter about one-half. Accord ing to the improvement, the central or middle row plantplanting mechanism, and the connection with the frame over uneven land without affecting the end planting depth of planting are also provicther seed by the middle planter, and thereby indirectly controlling the depth which the seed shall be deposited by the end planters.
Stake for Plants or Flowers. Theron N. Parker, Brooklyn, N. Y. This device comthe lower ends of the legs having anchors of subetantially triangular form. A lower main member is in the form of a frame at the top, with open loops which re cive the legs of an upper member, while a still higher member may be connected with the stake by means of readily adjustable, inexpensive framework, for the support of a plant of any required height, the members of the stake being readily separated and put together.
Vehicle Seat.-John Q. Black, Lone Rock, Wis. This invention provides a seat especially adapted for agricultural machinery, affording a seat de-
signed to prevent the careening of the machine from tlirowing the operator from his seat. The improvement comprises a standard plate whose upper end is bent to
form a table, and the seat has on its lower surface a
longitudinal convex rib forming a rocker adapted to rest
on the table, there being means whereby the seat proper is held within the lower surface of the rib bearing on the table so as to rock from side to side. The rider, with his feet on the foot board, is able to balance himself readily cramped and uncomfortable position due t the tiltin of the machine

Mining, Etc

Treatment of Gold and Silver Ores.-Joachim H. Burfeind, Salt Lake City, Utal This invention is for a method of treating the cyanid nstead of melting it in crucibles with fluxes, resulting in reat loss from volatilization, and producing very impure bullion, while very impure products have to be shipped o refining works. The method consists in subjectin the product, with a suitable amount of water, to a cur ent of sulphurous acid for about ten hours, the produc eing agitated by a stirrer; after settling and drawing of he liquor, strong sulphuric acid is applied, after whic ing designcd to produce bullion about 950 fine

miscellaneous.

Can Opener. - Walter A. Simond, ilton, N. H. This is a device of the central piv ype, having but few parts and with a cutter which ma
be readily adjusted to open cans of different diameters he cutter always opening the can top at the same disance from the side edge, whether the can be large or mall. On the stem of the handle slides a yoke with guide spur engaging the outer side face of the can, an thin the yoke is a hub carrying a disk cutter.
Inkstand.-William L. Stewart, Wil merding, Pa. This invention relates to a fountain type inkstand, providing one that is simple and inexpen ve, and in which the ink is not likely to evaporate. The fount is in the form of a botle, and the origina bock portion is extended into an ink cup and has a tub ar stopper of cork or soit rubber, a valve closing the iner end of the opening through the stopper, while stem extends from the valve through the opening in th stopper and is adapted to engage against the bottom of the ink cup, the \mathbf{v}
from the ink cup.
Elevatior Clutch and Brake. William Weismantel, New York City. To hold an ele ator from dropping should the hoisting apparatus giv way, and stop the elevalor, in case of accident, before rack attached to the building at one side of the elevator well, into which meshes a pinion journaled on the elevator cage, a ratchet wheel normally engaged by a pawl being connected to the pinion, but with means for disengaging it at will. A friction cylinder is also connected
to the pinion in such manner as to provide means for elevator in case it becomes stopped betwee

SAFE.-Wilhelm Kock, Cincinnati, 0. In putting together the plates of a safe door, to render ar by the use of tools, this inventor flunges the dynamite the built-up plates at right angles to their body and each pair is secured by bolts passing from the inside through the flanges of the inner plate and into the flange of the one next outside, while boltwork is secured by bolts
screwing into flanges parallel with the front face of the oor.

Liquid Vessel.-George W. Brown, Williamsburg, Pa . To retain the solid matter in a vessel from which the liquid is being poured, this inventor places inwardly projecting pins or lugs on the inner surcover adapted to be placed and to rotate between the luge, such cover having its periphery broken at different points and having downwardly projecting flanges. Used connection with a suitably adapted drinking vessel or
umbler, it will retain the ice, lemon skins, or other materials forming a portion of the liquid, or the device may be used in cooking vessels to retain solid matter while the liquid is being poured off.
automatic Photographic Appara-TUs.-Margarita Mann (administratrix of Charles Mann,
deceased), New York City. Information to be had of \mathbf{N}. deceased), New York City. Information to be had of \mathbf{N}.
Torres, 76 University Place, New York City. This paent is for an imply operated photographic apparatus, and comprises a camdevice below a plate receptacle and adapted to hold a
plate in the field of the lens, while a motor operates the lens, shutter, the plate receptacle, and a bath carriage sliding beneath the camera, the carriage having compound, and a washing compound, there being also comfor delivering the exposed plate from the bath carriage to the exterior of the apparatus. The invention provides or complete control of the time of exposure, and of development and delivery of the finished picture, the apparatus being operated by a motor, and being automatic in
Picture Frame.-Gotthelf M. Seidel tasthampton, Mass. A frame made of sheet metal or sheet material is provided by this invention, according to which the top, bottom and sides have pockets at their itself to form the front member of the pocket, while the rear member extends down parallel with the main porand backing. The frame is durable and inexpensive and is designed to prevent dust or insects from getting into any of the parts or injuring the picture. Instead of
the usual screw eyes for hanging, openings are made i
Ventilator. - Thomas R. Harper Wheeling, Mo. To carry off bad air from roomsand steam and odors from kitchens, according to this invention, a hollow foot piece or bowl is placed on the heater
or range and adapted for simple connection with the
smoke pipe, there being side openings in the foot piece
and a draught tube extending upward from it to a epider connected with a funnel in the ceiling, a discharge tube leading from the funnel to a flue or other outlet. There is a coupling in the draught tube by which it may heights, and a valve for regulating the draught, and the nd simple application of the improvement the read also its use in rooms where a fire is not usually kept
VESSEL SCRAPER. - Nichọlas Gilroy, New York City. 'To facilitate cleaning the interior o metal kettles, pots and similar vessels from rust, scale, nd in which is held a beveled gear and pinion rotated b a crank to revolve a shaft on whose lower end is a spring ead formed of spirally coiled wire, the spirals growin the head are looped rings, the head thus forming a cone haped basket, the rings acting as scrapers when the ead is rotated by operating the crank, the head being moved around from place to place until the whole in-

Lemon Juice Extractor.-Nicholas Giiroy, New York City. This device consists of two pivotally connected hand levers, one of which supports a juice cup in which is a dome-shaped support, while the
other is connected with a concaved plunger having a other is connected with a concaved plunger having a
scalloped edge by means of a spirally grooved stem exending through an opening in the lever, a spring sur one end on tbe lev tates as it moves down, so that the juice is extracte from the lemon by a rubbing motion designed to avoid
taking out the bitter principle of the skin to mingle with the juice
Pocket Book.-Bernhard Wilentshik New York City. In addition to the usual functions of a
pocket book, this invention provides a pocket book which is also adapted to carry a comb, looking glass and which is also adapted to carry a comb, looking glass and
other articles. It has a change pocket and a front and back pocket with their mouths adjacent to each other, with the opposite sides of the change pocket, while adjacent faces of the pockets are provided with auxiliary pockets, loops, etc., for carrying various articles,
Coat Holder. - Rubert J. Stuart New Hamburg, N. Y. This is a device for holding a coat out in position to be put on by the wearer. It con-
sists of two pairs of spring-held clamps whose fingers sists of two pairs of spring-held clamps whose fingers
are adapted to engage the coat collar, one-half of each clamp set being fixed to the ends of a horizontal pip and the other half to a bar lying in the pipe, while treadle. The coat is secured in the clamping fingers by is device being fixcd at the proper height.
Finger Nail Trimmer.-William J combined with a lead pencil to form a rubber tip holde and a binding for the pencil, the pencil being used as a handle to facilitate using the trimmer in fling the nails. The nall trimmer consists of a metallic tube adapted to it on the pencil and carry an eraser at its other end, the of which are provided with teeth to engage the finger

Bo
Bottle and Closing Cap. - Alfred this invention, the Peden, Johnstown, Pa. According tapering lower portion, above which is a shoulder and straight smaller portion, tbere being through the latter two opposite registering openings. A cap of glass
down over the tapering portion of the neck, abov which the cap is internally recessed, forming an inner peripheral shoulder. The cork being inserted in the through the registering openings in the sides of the neck, wardly wardly pressed ends of the spring, when the cap
cork cannot be removed without breaking the cap.
Jar Sealing Device.-John Schies, invention, has an outwardly and upwardly extending marginal flange, with an inner face affording an annular seat for the cover, whose upper side has circular ribs and of a T-shaped clamping device of spring material, whose outer extremities engage the neck of the jar. Between
the flange of the cover and the flange of the jar a washer may be interposed, or the fastening clamp may be with cement.

Billiard Cue. - Romeo Ghezzi and erdinando Bertoncini, New York City. According to with an annular groove just below its side edges, where the base portion is adapted to be sufficientiy compressed to pass within a notched flange of a ferrule or cap to be secured on the end of the stick, the base of the tip being hammered to form a rivet head on the under side of the fiange and preventing the tip from turning in the ferrule in which has transverse notches under the tip surface, the ferrule and form wedges to assist in holding the ferrule firmly in place when driven onto the end of the stick, both tip and ferrule being thus quickly and firmly secured in position.
Mustache Shaper.-Paul S. Ferdy, an Francisco, Cal. This is a device adapted to press mustache has been suread in proper shape, the device thus holding the mustache in position for a desired period material of two layer , are received, the layers being united by stitching in th middle, and there being at the ends of the band elastic

Notr.-Copies of any of the above patents will b
furnished by Munn \& Co. for 10 cents each. Please send name
of this paper
$\mathfrak{2}$ Business and ${ }^{2}$ ersonal.

Insertion under this head is one Dollar

 line for each insertion: about eioht words to a line.Advertisements must be received at publication office as early as Thursday morning to appear in the follow-
ing week's issue.

Marine Iron Works. Chicago. Catalogue free.
or mining engines. J. S. Mundy, Newark, N.J.
Yankee Notions. Waterbury Button Co., Waterb's, Ct. Machine Shop Equipments. S. M. York, Cleveland, 0 Combined Ink, Pen, and Penholder Carrier. Patent Improved Bicycle Machinery of every description.
The Garvin Machine Co., Spring and Varick Sts., N. Y. Concrete Houses - cheaper than brick, superior Machinery manufacturers, attention! Concrete and some," 757 Monadnock Block, Chicago.
The celebrated "Hornsby-Akroyd" Patent Safety Oil
Engine is built by the De La Vergne Refrigerating Machine Company. Foot of East 138th Street, New York tricity is "Experimental Science," by Geo. M. Hopkins. The Norwich Line. Direct route New York to WorThe Norwich Line. Direct route New York to eas.
cester, Nashaa, Portland, and points north and east.
Leaves Pier 40, North River, $5: 30 \mathrm{p}$. m . Week days only.

NEW BOOKS, ETC.

Practical Ice Making and RefrigERATING. A plain, common sense and operation of ice making and refrigerating plants and machinery H.S. Rich \& Company. 1897. Pp. The present work is a most practical and timely one. on the subject worthy of the name, but now, thanks very largely to our excellent contemporary Ice and Refrigeration, of Chicago, we have some practical books upon this much neglected subject. This book deals with cooling surfaces and circulation, the construction and piping of brive tanks, the ammonia compressor, oil injection, sugeqstions to engineers, operating instructions, compressor of water, etc. There is an appendix containing most of water, etc. There is an appendix containing most
valuable tables. The book contains a few illustrations. Railway Technical Vocabulary. With 22 tables. By Lucien Serrailier. London: Whittaker \& Company.
New York: Macmillan \& Company. New York: Macmillar $\&{ }^{\&}$.
1897. Pp. 222 . Price $\$ 3$.
This is a most valuable work ; railroad terms are comparatively modern; many terms have been coined in each country. Some international nomenclature is needed which will give the technical equivalents of thesc
terms in each language. These consideratoons have led terms in each language. These considerations have led
the anthor to compile this vocabulary, confining himself to French, English and American terms. He has adopted a method of classification by grouping the terms according to the subject matter. This arrangement is really preferable to the ordinary alphabetical way, as the constituent parts of the appliances can thus be placed under the head of such applinnces and synonymous terms can
be shown together. The book will prove of the greatest be shown together. phe book will prove of the greatest
possible value to all who are engaged in railroad work in any important capacity.
Statistische Zusammenstellungen ber Blei, Kupfer, Zink, Zinn, Silber, Nickel, und Aluminum. Technischen Bericht von der Metal
lurgischen Gesellschaft a. G., Franklurgischen Gesellschaft a. G.,
fort am Main. 1897. Pp. 78.
The Chlorination Process. By E.
B. Wilson, E.M. New York : John
Wiley \& Sons. Pp. 125. Price $\$ 1.50$. The leaching of gold ores by chlorine solutions has
proved among the most effective of methods of comparatively recent introduction for enlarging the yield and reducing the cost of modern gold mining, and the pro cess and the kinds of ore where it may be most advan
tageously employed are now pretty well understood tageously employed are now pretty well understood
among those who have followed up the literature of the trade on the subject. To a large number interested in the mining business, however, the matter is by no means clear and free from technicalities, and to all such thi

Picture Ribbons. By C. Francis Jen
kins. Washington, D. C. Pp. 54. kins.
Price $\$ 5$.
The demand for a more explicit knowledge of the manufacture of picture ribbons for the production of photographic images in rapid sequence, in such a way the sense of motion is the to the ese and thus conve his work. The old way was to put the images on th face of a revolving disk, which on account of its limited rea could not contain as many glimpses of a moving ob
ject as is now obtainable by the use of a narrow con tinuous strip of celluloid, to which is applied the name of picture ribbon. Mr. Jenkins in this book describe in clear language the operation of the machine camer for making the pictures in the first instance, and the graphic pictures of the apparatus itself, so that any un skilled person familiar with the ordinary process of pho sography may, by following the directions described, himself. In the back portion of the book are severa formulas for the successful treatment of the film. On one page is a list of the fifty different names by which this
style of machine is called, and is of itself a curious featur style of machine is called, and is of itself a curious featuro of the development of ribbon photography. We think
the book is likely to be very useful and especially valua

The Old South of Newburyport Edited by Rev．H．C．Hovey．
Damrell \＆Upham．Pp． 223.
We acknowledge with pleasure the receipt of a neatly printed and illustrated little volume entitled＂The Old South of Newburyport．＂The book puts into lasting form the addresses of the different speakers at the oue hundred and fiftieth aniversary of the founding of this historic edifice．The principal one of these addresses，
which deals with the history of the church from its in ception and with the causes which led up to its founding of this pastor，Rev．Horace C．Hovey，whom reader contributors．Dr．Hovey tells the story in his clear concise style，and is ably seconded by Rev．A．G Vermilye，a former pastor．As this church is in the middle of our New England sea coast，in a region where the Pilgrim Fathers settled，and which has since bee good example of the founding and growth of a Presbs erian church in America．The book is well illustrated with half tone pictures of the church and pastors，and contains，besides the above mentioned addresses，a com－
plete report of the celebration services，including several plete report of the celebration services，incl．
poems which were written for the occasion．

SCIENTIFIC AMERICAN

BUILDING EDITION

AUGUST，1897．－（No．142．）

TABLE OF CONTIENTS．
No．1．Two perspective elevations（one in colors）and recently erected at a cost of $\$ 3,500$ complete Mr．Elfred Bartoo，architect，Binghamten，N． An attractive design in the English style．
No．2．A cottage at Scranton，Pa．，recently erected r．E．Healy，at a cost of $\$ 7,000$ complete，Pe pective elevation and floor plans．A moder design well treated．Mr．Edward H．Davis architect，Scranton，Pa．
No．3．A residence at Prohibition Park，S．I．，recently erected for Mr．J．W．Hoban，at a cost of $\$ 3,30$ omplete．Excellent design of modern Amer Mr John Winans，architect and builder，Proh bition Park，S，
No．4．A suburban school house at Overbrook，Pa．，de signed to resemble a private residence instea of a public building．An exceedingly attractiv esign．Mr．William L．Price，architect，Phil delphia， Pa ．
No．5．Residence at Larchmont，N．Y．，recently erected or Mr．Henry A．Van Liew．Pleasing design， with many excellent features．Two perspectiv
 th ground plan M．H．C．sta，
6．New York Cly． erected for the Protective Building and Loan Association，at a cost of $\$ 1,500$ complete．T perspective elevations and floor plans．Messrs．
Hobbs Brothers，architects，Newark，N．J．A neat design．
No．7．A residencee at Larchmont，N．Y．，recently erected for Miss Flint．＇Two perspective elevations and loor plans．The design presents a good，mo－ treated with Colonial detail．Messrs．G．F Harney and W．S．Purdy，architects，New 8．Residen rected for Prince＇s Bay，Staten Island，recently cost of $\$ 8,000$ ．A rustic design of much ar tistic merit．Perspective elevation and floor
plan．Mr．F．W．Beall，architect，New York plan．
City．
o．9．Cott or Mr．Charles W．Clayton，at a cost of $\$ 3,800$ omplete．An attractive design．Ferspectiv elevation and floor plan．Mr．
Teneyck，architect，Newark，N．J．
No．10．Residence at Evanston，Ill．，recently erected fo I．C．B．Congdonl．A substantial and digni－ floor plans．Messrs．A．M．F．Colton \＆Son oor plans．Messro．
No．11．A pulpit of the Cathedral of Treves．Half page engraving．
No．12．Washington Monument，Philadelphia．Presented to the city by the State Society of the Cincin－ nati and unveiled by President McKinley．One
of the most important and imposing monu－ ents ever erected in the United States．Cost 250，000．Designed by Mr．Rudolph Siemering， the German sculptor．
No．18．Miscellaneous Contents：Palais Royal to be de molished．－Largest hotel on earth．－A quick piece of work．－Drawing materials，surveyors nstruments，etc．－statue of Mercury at the board．－Improved heaters and furnaces，illus rated－Stair builders＇goods．－Architects＇and builders＇directory．
The Scientific American Building Edition is issued monthly．$\$ 2.50$ a year．Single copies， 25 cents．Thirty－ two large quarto pages，forming a large and splendid
magazine of Arcirecture，richy adorged with interesting examples of Modern Architectural Construc or improving homes or structures of any kind，have in his handeome work an almost endless series of the latest and best examples from which to make selections， thus saving time and money．
The Fullness，Richness，Cheapness and Convenience of this work have won for it the Largest Circulation of any Architectural Publication in the world．Sold by MUNN \＆CO．，PUBLIsHers，

四

HINTS TO CORRESPONDENTS Names and Address must accompany all letters information and not for publication． References to former articles or answers should give date of paper and parce or number of quaestion． some answers require not a little research，and，
though we endeavor to reply to all either by lettel
or in this department． Buyers wishing to purchase muny article hist at advertised
in our columns will be furnished with addresses pecial mritituring or carrying the same． peciar
personal rather than general interest cannot be expected without remuneration． to may be Amed at the on Suphe．Pricements refents reacred
Books referred to promptly supplied on receipt of price．
Minerals sent for examination should be distinctly
marked or labeled．
（7185）L．F．writes ：I am about to build a compound permanent magnet（built up of plates of
sheet steel） 2 inches thick， $11 / 2$ inches wide and 3 inches ong，and would like to know what kind of steel would and the best way to age it？Some fellow workmen（of the Chicago Edison Company）of mine and myself are in
an argument over these questions and would like to have you settle the same．A．The best tool steel is usually aken for magnets．Its fine and uniform grain adapts it for this use．Magnetize the separate bars before the
are finally fastened together and keep them carefull with their poles in the same direction，so that when as sembled the parts shall all have their poles similarly di－ rected．A coil of wire and an electric current will mag netize the bars most strongly．The coil should only be large enough to allow the bar to slip easily through it． The coil may have several layers，as the magnetizing
power depends on the number of ampere turns，and the arrent used must of course be such as the coil will carry The common method is to put the bar into the coil til n the current，and move the bar to and fro in the coil， topping finally at the center．Then turn the current of A large bar would need to be treated longer than a smal ne．To make the magnetism as permanent as possible， hard，then place in steam at the boiling point of water 212° ，for 20 to 30 hours，or longer for very massive mag－ or five or more hours in steam．Much information re garding permanent magnets is to be found in S ． Thompson＇s＂Electromagnet，＂chapter 16，pages 381， 41. （7186）P．W．C．asks ：What material is cest suited for making the brushes of a Wimshurst ma－ know what sort of tinsel to use．A．For the brushes of
a Wimshurst machine tinsel is the best material，since it is softer than fine brass wire and will not cut away the infoil disks so rapidly．Get the best tinsel cord used
for military embroidery．It will be well to test it with n electric current to flnd if it is made of metal．Some electricity．It is made of tinsel paper，and would worthless for your purpose．

TO INVENTORS．

An experience of nearly fifty years，and the prepara－ or patents at home and abroad，enable us to understand unequaled facilities for procuring patents everywhere． A synopsis of the patent laws of the United States and sons contemplating the securing of patents，aither home or abroad，are invited to write to this office for prices，which are low，in accordance with the times and
our extensive facilities for condusting the business Address MUNN \＆Co．，office ScIENTIFIC AMERICAN INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

AUGUST 3，1897，
AND EACH BEARING THAT DATE．

 ET Price List on application to
WALWORTH MFG．CO．， 20 Oliver St．，BOSTON，MASS． ＂QUEEN＂ARCHITECT LEVEL \＄50 Mfnctinal mpoved ransits 2 Levels

Transits ano Leveling instruuments．
NLATED ELECTRIC LEVELS

筒

变多 New Friction Disk Drill．

Eyelet machines．

Blake \＆JOhnson，
P．O．Box 7，Waterbury，Conn．，U．S．A．
ARMSTRONG＇S PIPE THREADING

CUTting－ －AFF MACHINES

ACETYLENE GAS AND CARBDE OF

Tools For All Trades

 587,298
 587,538
587,437

 | 587,570 |
| :--- |
| 587,454 |

 587,326
57,599
$.587,353$
58752
oop，chickenilk coolier．
orof．．．
ornholder， \mathbf{W} ．W．Stebbins． 587,551
587,393
587,618

 鱜

 $\substack{587,480 \\ 88,6610}$

587，341

 ${ }_{587,623}^{587}$
587,535
5876668
57568
58750
57316

AMERICAN PATENTS. - AN INTER esting and valuable table showing the number of patents
grant to tor vithe various subjects upon which petitions
have been fled from

THE OBER LATHES

For Yurnng Axe, Adze, Pick,
Sledge, Hatchet, Hammer, Au-
ger, File K nife and Chisel Han
dres, Whiffitetreas, Yokes, Spokes,
Porch Spindles, Stair Balusters
, diles, Whifietrees, Y Okes, Spokes,
Porch Spindles, Stair Balusters
Table and Cair Legs and other Table and Chair Legs and other
Irregular work.

DORMAN'S

UULGANIZERS
Exclusive Manufacturers of Steam Ma-
chines for Rubber Stamps. We alsom mate
Dry Heat vulcanizers.

ONLY ALALt steel Belt e Pulley

 See Scientific american, reo., ,

 IT COSTS NOTHING TO TRY

Hawkins' New Catechism of Electricity
 The Van Norman - • Universal Bench Lathe.

 Sprang fithod, MAS

Dew Supplement Zatalogue!

An entirely New Supplement Catalogue is now ready for distribution ; it includes all of the papers up to and including the first half of the year 1897. It is arranged on a clear and easily understood plan, and contains 10,010 papers more than the former one. It will be sent free to any address in the world on application.
A special edition on heavy paper, handsomely bound in cloth, has also been issued. It is supplied at the nominal cost of 25 cents, and thus ena bles the possessor to preserve this val MUNN \& CO., Publishers,
361 Broadway, New York City.

Ook, Picicinit

Manbag lok
Katuruing madinime EMrate:

Meter. See Rotary meter.
Mill coller, L. L. R. Le iemige, A. Konig..
Mill. See Grinding mill. Püverizing Mining post, extenilion, J. J. Sullivan............
Motor
tor See Electric motor. Wave or sweli mo Motors. operating alternating, C. P. Steinmetz.
Mouthpiece for preventing snoring, S. Anderson.
Musical instrument, G. W. Sherman... Musical instrument, G. W. Sherman
Nailinn machine, H. H. W. Morgan.... ame plate. J. C. IVe.
Net leade, E. Hataja
Niple holder, O. B. H

Permutation lock, Paxton. Juado...........
Pianotorte action, upright, F. L. Becker
Pin. See Safety pin.

Post. See Mining post.
Potato digger, E.Grenberg.
Power Gee Pumping powe.

 pulverizing miii, rotary, c. io. Day.
Pump, air, Haw. Ser 1 Biis.
Pump ing power, well:

 ter.
Regutar. See Pumping regulator. Windmill
speed regulator. Reversing mechanism. J. Lizotte.
Rock drill enine. Ja, Grandoaison.
Rods or the like, machine for threa Ro Heslop . it. fed. . E. Prötberoe
Rolling machine for finishing shafts metal, J.
Rotary meter, $\begin{aligned} & \text {. H. Turthrier } \\ & \text { Rotary } \\ & \text { steam engine, re }\end{aligned}$
\square

 Signal. bee eetephone switchboard signal.
Signal box, electri, Whittesey \& Dogge..
Siknaiing apparatus, electric, M. Du Perow.

 Speed governor atachment, N. Lombard.........
speed indicating andistatance easurng mechan
Sism, E. Gorchester.
speed indicator and holder therefor, J. E. Löner

Spraying ap paratus, iiquia, i. . . Schiuite........
Spring roller, apparatus for making heilical,
Wratt

tateroom for vessels. E. L. Hazara.
Seam engine, Pr. Mund
Steam separator, G. I. Roberts.
Stocking folding
Stone for street pavements
fcial, J. Jungbuth.
Stone. ointer, LIarson....
stool, N. O. Gandy........
tove, gas, Jand J..............................i.3i3
Stoves, ombined fre pot and grate for, E. G
ves, drip pan for gasolene, Loop \& Meikie
Strainer

Buy Telephones Michigan colleae of mines
 Rem
 Largest Manufacturers of Telephones Largest Manufacturers of Telephone
exclusively in the United States.
 Preserve Your Papers.

MUNN \& CO., 361 Broadway. New York SO SIMPLE A CHILD CAN USE THEM

 SUNart photo co.

A.W. FABER

LEAD PENCLSE, COLORHD PENCLLS, SLATE
PENCILS, WRITING SLATES. STEEL PENS, GOLD PENCILS, WRITING SLATES. STEEL PENS, GOLD
PENS, INKS, PENCLL CASES IN SILVER ANDIN
GOLD, STANIONERS' RUBBER GOODS, RULERS, 78 Reade Street, - . . New York, N. Manufactory Established 1761

 THE CHICAGO DRAINAGE CANAL-

 The IVDewnitel EXCHANGE, $\frac{12}{2}$ Barclay St., New York. 156 Adams St., Chicago. 38 Court Sq., Boston.
818 Wyandotte Street, Kansas City, Mo

THE TIN PLATE INDUSTRY IN THE

17th Edition Revised and Enlarged

840 pages, 782 fine cuts, substantially and beautifully bound. Price in cloth, by mail, \$4. Half morocco, $\$ 5$.

This splendid work is up to the times. It gives young and old something worthy of thought. It has influenced thousands of men in the choice of a career. It will give anyone, young or old. information that will enable him to comprehend the great improvements of the day. It furnishes sug gestions for hours of instructive recreation.

Send for illustrated circular and
complete table of contents. ...
MUNN \& CO., Publishers,
SCIENTIFIC AMERICAN,
36. BROADWAY, - NEW YORK.

OSBORN'S

hird edition. Just read. The Prospector's tield Book and Guide in the Search

 HENRY CAREY BAIRD \& CO HENRY CAREY BAIRD \& CO.,
810 Walnut St., Philadelphia, Pa., U. S. A.
Ready September 1st.

MAGIC

Stage Illusions and Scientific Diversions Including Trick Photography.

TITH AN INTRODUCTION BY
HENRY RIDGELY EVANS.
Over 500 pages. Over 400 illustrations.
This is a new and unique work on magic art. It conthusions of the most famous conjurors of modern times. It is profusely illustrated with over 400
engravings. The subjects treated include interesting Biographies of Celebrated Conjurors, the Myseries of Modern Magic, Ancient Magic, Science in graphic Diversions. The very latest developments he projection of moving pictures is taken up for the frrst time in book form.
will be mailed on request to any part of the world. MUNN \& CO., Publishers

MODGIWORK We are prepared to assist the trade and inventors in
solving meechanicil problems, also manufaco
turing models amd stock. ENTURY MACHINE CO., 576 W. Broadway, New York

IWOODEN TANKS. For Railroads, Mills and Manufactories.
Buildersorstel Towersand Tanks.
La. Red Cypress Woon cranks a specialty.

Twelfth Edition Now Ready. THE SCIENTIFIC AMERICAN CYCLOPEDIA OF
Receipts, Notes and Queries 12,500 RECEIPTS. 708 PAGES.
 and parts of the World, the information given being of the nighest
value, arranfed and condensed in concise form, convenient for ready use. Almost every inquiry
that can be thought of relating to orormula used
in the various manufacturing industries, will here be found answe
Those who are engaged in almost any branch
of industry will fna in this book much that is of practical value in this book much that
ings. Those who are in search of independent ings. Those who are in search of independent
business or employment, relating to the home
manufature of samable. articlece, will find in it
hundreds of most excellent suggestions. hundreds of most excellent suggestion
Sena for descriptive circular.

MUNN \& CO., Publishers, 36I Broadway, New York.

DESIGNS.

TRADE MARKS.

 Lanterns, cyicie. Hiemann

PRINTS.

KRAFTUBERTRAGUNGSWERKE RHEINFELDEN. Soleter for the UH112tyon of the Water

CROOKES TUBES AND ROENTGEN's

Q COPY LETTERS
ifteen a minute, allepible, use my
proveautomatco copyng mathine.
Send for ulustrated circular. JOHN H. ANDERSON,
O10 Monadnock, CHICAG

PREPARATORY SCHOOOL

 DRY BATTERIES,-A PAPER BY RL K.

Coed "SpRcKS" send to

MICA WASHERS

For all mechanical uses. Perfect o. schoonmaker, 168 willam Street, New York.

CAUSE OF LUMINOSTTY IN THE

Tubitethall Cerminal
new entrance to new york city VIA B. \& O.-Unequalled Facilities.

Whitehall Terminal, the new entrance into New York City, opened for business by the Baltimore and Ohio R.R. on Monday, July 19, is the most convenient station to and from all parts of New York City and BrooklynThis terminal is at South Ferry, east of Battery, and from it, under the same roof, direct connections are made with trains of the Second, Third, Sixth and Ninth Avenue Elevated Roads; Broadway, Columbus and Lexington Avenue Cable Lines; East and West side Belt Lines of horse cars; South Ferry, Staten Island Ferry, Hamiton Avenue and Thirty-ninth Street (Brooklyn) Ferry. Ask for tickets to New York via B. \& O. and save inconvenience. D. B. MARTIN, J. M. SCHRYVER,

PROPOSALS.

Abstract

 Experimental Pattorn Ad Mod Mork optical
 MODEL AND EXPERIMENTAL WORK

Experimental \& Model Work

Bliss School of Electricity

 probabiy patentabie. Communications strictily
 SOIENTIFIC AMERICAN,
 361 MUNN \& CO. ${ }^{\text {B }}$.
"HEAVEN AND HELL" From mitings heard

How to Build a Home

gestione ind practical sug Architectural Magazine ever published

"The Scientific American

 Building Edition.Each number is illustrated with a Colored plate and numerous
handsome engravings made direct from photographs of buildinys. together with interior views, tloor plans, description, cost, location, owners' and architects' names and addresses. The illustrations
include seashore, southern, colonial and city residences, churches, schools, public buildings, stables, carriage houses, etc.
All who contemplate building, or improving homes or structures of any Whnd, have in this handsome work an almost endless series of
make selections, thus saing time and mones. Published Monthly. Subscriptions \$2.50 a Year. Single Copies 25 Cents. roo alat at all neems standad adreas MUNN \& CO., Publishers, 361 Broadway, New York

DVocrtisements
ordinary rates. Inside Page, each insertion, - 75 cents a line
Back Page, each insertion, -81.00 a line Hipher rates ame clase rexuires. of Advertisements, Special and

HALF A CENTURY OF CYCLES.-AN
 moderement. The pneumatic tire. A hand and for
 $\xrightarrow{\text { To be bad at this offee and from all newdrealers. }}$
 Computing Figures

 easy, is twice as quick, in
sures acuracy and ireve
sulmental and nerous strain
all
 FELT A TARRANT MFO CO. THE PARK SPRING SADDLE

With the Park spring. the rider 19 reile eved

Farmers
Charter Gasoline Engine Stationaries, Portablos,
and Tractions.
Charter Gas Engine Co. steikilise
HOISTING ENGINES

"WOLVERINE" GAS AND OASOLINE

γ, lutely safe. Manufact' d by THE SANDBLAST PROCESS.-BY J. J.

Dayton Combined Gas and Gasoline Engine.
2 to 50 H. P. Cotalog fre Manufactured by Every Engine Guaranteed THE DAYTON GAS ENGINE \& MFG. CO.,
DAYTON, OHIO, U. s .

STEAM YACHTS, NAPHTHA LAUNCHES MARINE ENGINES, WATER TUBE BOILERS

The Largest, Most Modern. and Complect Yacht Building Plant in the World.

Gas Engine \& Power Co. and Chas. L. Seabury \& Co., Consolidated, Morris Heights, New York HHE BICYCLE: ITS INFLUENCE IN

THOROUGH IMSPECTIONS

At $\frac{1}{4}$ Pricusazazazaziz

MANUFACTURE OF BICYCLES. -

Which would yourely on?

We make our "PIONEER"

Tube of Fifty Carbon Steel

 While Weiget for Witget to a Biegcle our Fifty Carbon Steel will last so long and TWENTY-FIVE CARBON Steel will last only so long NOTE THE FULL IMPORT OF THE PARALLEL LINES tlons of the mompart practical experts of the worla. That the tests in our owt laboratory corroborate these results is merely so much to its credit;
that the game ts trae of actual trial in the road equally proves the trial to have been made in
bicycles of correct desimn and construction

Send for Cataloopue.
THE POPE TUBE CO., HARTford, Conn.

H.W.JOHISS

STEAM PACKING

Boiler Coverings, Millboard, Roofing Building Felt, Liquid Paints, etc. oescriptive price list and samples sent free
H. W. JOHNS M'F'G Co,
"Ericson" Automatic Bicycle Bell

为

ELECTTRIICLAMP

Cribume \because Bīycle

Tested and True.

The Easiest Running Wheel in the World.
ETH Sor Catalogue.
the black mfg. co., erie, pa.
Imperial Darning IMachine

IMPERIAL BALL BEARING AXLE
 perwe Write for our Illustrated Catalion oue and Testimo-
nials, which we send free on application. Imperial Bail
Bearing Axle Dept., 439 Wabash Avenue, Chicago, ill.

BALL BEARING AXLES AND RUBber Tires.-A paper read before the Carriage Builders,
National Convention, Philadelpha, October, 1894, show. ing the advantage to be derived from the use of ball
bearings and pneumatic tires in road vebicles. Con-
 ${ }^{\text {Fischenks }}$

aricle

DIVIDER AND ANGLE PROTRACTOR

ALCO VAPOR LAUNCH

POWER? POWER? POWER!

This beats Wind, steam. or Horse
WEBSTEWER. We weler the WEBSTER ${ }^{23 / 2}$ actual horse powe
 of best material Made the lots of 100
thererorewe can make the price. Box-
ed for halment wint
 WEBSTER M'F'G CO.,
1004 West 15th Street, CHICAGO.
ELECTRO MOTOR, SIMPLE, HOW TO make.BB G.M. Hopkins. Degription of a Bmall ele
tro motor Covised and constructed with a vie to asvisting anateurs to make a motor which might te driven
With advantage bya current derived rromatiterr, and
whic Which would have sufficient power to operate a foot
lathe on any nachite reuring not over one man pow-
er. With
figures. Contained in Screntric AMERICAN SUPPLEMENT, No. 64 . Price
had at this offce and from all newsdealers.

naid-ristiven:
 Golding a Co. BOSTON. MASS

 PRINTIING INKSThe SCIENTIFIC AMERICAN is, printed with CHAS,
ENEU JOHNSON COM INE, Ienth and Lombard
Sts., Philadelpha, and 47 Rose St., opp. Duane, New York

