

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

ROTARY PLOW PUSHED BY THREE ENGINES.
FREIGHT TRAIN BURIED IN A TWELVE FOOT DRIFT.

OLD STYLE "SNOW BUCKER" STRIRING A DRIFT AT FULL SPEED.

ROTARY CLEARING CUT THREE-QUARTERS OF A MILE LONG.
FIGHTING SNOW ON THE RAILROADS OF THE NORTHWEST.-[See page 22.]

Sricutifir smmerican.

ESTABLISHED 1845
mUNN \& CO., - - - Editors and Proprietors.
PUBLISHED WEEKLY AT
No. 36I BROADWAY, - - NEW YORK.
TERMS FOR THE SCIENTIFIC AMERICAN. Established 1845.)
One copy, one year, for the U. S., Canada or Mexico.....
One copy, six months, for the U.S. Canada or Mexico.
One copy, one yearto
$\begin{array}{lll}\text { One copy, one year,to any foreign country,postage prepaid, } £ \mathrm{j} 16 \mathrm{l} & 1.50 \\ 4.00\end{array}$ mit by postal or express money order, or by bank draft or check.
MUNN \& CO., 3 Bl Broadway, corner Franklin Street, New York.

The scientiflc American Supplement (Established 1876)

Building Edition of Scientifc American (Established 1585.)
The BUILDiNG EDITIoN of THE SCIENTIFIC American is a large and
splendidy ill

Export Edition of the Scientifle American (Established 1898)

 .
Mu., postpan \& CO., Publishers, 361 Broadway, New York.
MUNN
 T. Readers are speially reauested do notify the p

NEW YORK, SATITRDAY, JULY 10, 1897.

TABLE OF CONTENTS OF

Scientific American Supplement
No. 1123.
For the Week Ending July 10, 1897.
Price 10 cents. For sale by all newsealers.

\qquad

iv. entomology.-The Theater of Insects.
V. GEOLOGY.-The International Geological Congress in Russia...
VI. HYDRAULIC ENGINEERING.-The Use of Turbines with a

vili. MECHANICAL ENGINEERING.-Punching and Shearing Ma-
IX. MEDCINE AND HYGIENE.-OXXgen, Fresh Air and Health.-

x. MIScELLANEOS.-Confetti and Serpentines.-2 illustrations.

THE NOBEL BEQUEST TO SCIENCE.

Look at it from whatever point of view we may, it must be admitted that the present age is pre-eminently the age of science. Whatever the future may have in store,
it is certain tiat the past history of the race cannot show another period in which human life was so completely environed, dominated and impelled by a maste influence as it is to-day. Neither superstition, nor re ligion, nor art, nor militarism, nor trade, nor even vir tue or vice, has, in any age, shaped the course of hu man life with such controling power as is exerted by the omnipresent influence of modern science.
Of all the forces above mentioned, religion-as is natural and right-has left, and will continue to leave behind the most enduring monuments of its work But it cannot be said that even this beneficent influ ence has, in any age, impressed itself upon the life and works of the race in the supreme degree that science is doing in the latter half of this century. The time has passed when any theological school openly believes that there can be a possible antagonism between science and religion, and it is a fact that the successive discov eries of science have invariably served to establish the essential truths of religion.
The world has lately witnessed a striking evidence of the tendency to give the claims of science their rightful recognition in the splendid bequest which was made by the great Swedish inventor, Alfred Nobel. In leaving his vast fortune of nine millions of dollars for the pro-
motion of science and the furtherance of civilization, he motion of science and the furtherance of civilization, he
has not only endowed systematized and individual scientific research, but he has planted in the minds of men a valuable suggestion, which will not fail to bear fruit in the years to come.
The will provides that the income from Mr. Nobel's fortune shall be divided into five equal portions, which are to be distributed as follows: One-fifth to the person having made the most important discovery or invention in the science of physics, one-fifth to the person who has made the most eminent discovery or improvement in chemistry, one-fifth to the one having made the most important discovery with regard to physiology or medicine, one-fifth to the person who has produced the most distinguished idealistic work of literature, and one-fifth to the person who has worked the most or best for ad vancing the fraternization of all nations and for abolishing or diminishing the standing armies, as well as for the forming or propagation of committees of peace There is also an express stipulation in the will that no
discrimination shall be made on the ground of race or discrimination shall be made on the ground of race
nationality. The competition is to be world wide.
Now the measure of stimulus which will be given to scientific investigation and social advancement by the announcement that five prizes, each of $\$ 60,000$ to $\$ 80,030$ value, are to be bestowed upon successful invention and discovery, depends in the first place upon the realization by the world at large of the bona fide nature of the bequest, and further upon the public conviction that five separate fortunes are actually to be bestowed every year
The scheme is so novel and the reward so fabulousbeing far beyond anything in the way of money value before offered for human competition-that it will possibly receive but a passing thought from the majority of busy workers in the world of science. But if the bequest is upheld in the courts of law and the awards are duly made for the first year's inventions very far reaching. It will undoubtedly give a power ful impulse to all scientific research and experiment.
In saying this we are well aware that it has been from time immemorial one of the unspoken and unwritten boasts of the votaries of science that their rewards consist in the honor and esteem which their re searches win for them-that they work for the pure love of their calling, and gladly forego the more lucra tive pursuits of life. As a matter of fact it was this
consideration which originally led to men's making consideration which originally led to men's making idea being that the professional man worked for his profession and the tradesman for pelf. Whatever truth there may once have been in the distinction, it has faded to a very specter of its former self in these latter days. Nevertheless the fact remains that modern millionaires are not made in laboratories, and that wealth is rarely to be found by way of the student's desk or the professor's study.
And yet it must be confessed that if wealth and all that it can bring is due to any one set of men more than another, it is due to the scientists, who give us from time to time those great fundamental truths upon which the industrial achievements of our complex
modern civilization depend. Close the laboratory of the man of science and our boasted march of civiliza tion would be brought to a full stop; and yet it is a fact that the great majority of these pioneers who un lock to the world the great truths upon which the industrial and much of the social fabric of our modern
life is built up, reap practically nothing of the harvest life is built up, reap practically nothing of the
of wealth for which they have done the sowing.
To such men in particular, and to that class of in ventors which has the genius for discovery but no
faculty to transmute its ideas into wealth, the bequest
of Nobel will come as a richly merited but too long de layed reward.

TWO HUNDRED MILES ON A BICYCLE IN ONE DAY.*

New York to Philadelphia and back, a distance of two hundred miles, in 21 hours and 54 minutes, does not look so formidable a feat in retrospect as it did when a few days ago the writer lit his lamp and said good-bye to the night clerk of the Astor House, New York, at $1: 50$ A. M. and took the two o'clock ferry to Jersey City. That the journey was made with com fort and with never at any time sufficient fatigue to spoil the real pleasure of the trip is to be attributed to a good constitution, careful judgment as to speed, which varied from eight miles an hour to twenty, ac cording to the road, and last, and above all, to the perfection of that mechanical marvel of the last de cade of this century-the pneumatic bicycle.
Undoubtedly it is the pneumatic tire above every thing else that has doubled the distance which can be covered on the bicycle for a given amount of fatigue and in this respect it holds the same relation to the solid rubber tire that this did to the iron tire of the primitive bone shaker. The writer speaks from ex perience, and as he wheeled his "safety" aboard the New York ferry at 11:30 the same night, his mind ran back to his first mount of twenty-two years ago-a veritable wood rimmed, iron tired, 70 pound "bone haker" of the late 70's. And just here, be it said no subsequent century or double century run has afforded the supreme satisfaction that was felt at the close of the first long run-forty miles-on this cum bersome compound of buggy wheels and bar iron The next machine, purchased in 1876, had a larger ront wheel, forty-two inches in diameter, and the iron tires were replaced by strips of half round rubber, which were tacked to the rims. Then followed the "spider" or "tension" wheel, and the bone shaker gave place to a fifty-two inch roadster, built by the Coventry Machinist (Jompany, England. On this, in 881, during a fortnight's tour, the writer made a run of one hundred and sixty miles in one day. That was sixteen years ago, and it was as much as anything else to test the relative merits of the "ordinary" and the "safety" types that the present two hundred mile trip was undertaken. The one hundred and sixty mile jour neywas made on faultless macadam roads and at a time when the writer was probably more vigorous than he is in his fortieth year; and moreover, in the present ride, only eighty-eight of the two hundred miles of road could be called really first class. Altogether, the capa ity-if we might use the term-of the pneumatic, a compared with the ordinary bicycle, for touring, is probably about as two to one, and it is the pneumatic tire, and in a lesser degree the higher gear, that have made the difference.
The start from Jersey City was made at 2:20, and the first stretch of the journey to the further side of Newark was about as excruciating a piece of riding, taken as it was in the dark, as can be found in all America The course leads across the Jersey meadows by way of the "plank road," over which the riding is only a trifle less rough than over the mile of cobble stones by which it is approached, or the three miles of rough Belgian blocks which extend from the plank road through blocks which extend from the plank road through
Newark. On the further side of Newark the macadam Newark. On the further side of Newark the macadam
is reached. It has taken an hour and twenty minutes to jolt this ten miles by lamplight, and the nervous irri tation has already taken some of the fine edge off one's condition. But with the macadam road comes the first peep of day, and taking to the side paih, the five miles to Elizabeth are reeled off at a swinging gait-but somewhat warily, for it is yet dusk. Another mile of stone paving through Elizabeth and at last, on turning sharp to the right, the swift, easy stroke of our eighty-four gear announces that one is on the truly magnificent twenty three mile stretch of macadam from Elizabeth wenty three mile stretch of macadam from Elizabeth rom seventeen to twenty miles an hour, and for the next one and one-half hours the miles are reeled of ver an undulating road that runs through the pretty villages of Roselle, Cranford and Westfield and through Plainfield and Metuchen to New Brunswick. This is the very beau ideal of cycling, and at this speed the cool, early morning air goes singing by in a way that makes one think there must be a brisk head wind to contend with. But the smoke wreathing lazily upward from the cottage chimneys shows that the air is perfectly still. At a quarter to six we are crossing the stone bridge over the Raritan River into New Bruns wick and bumping over our enemy the stone pavement The clay road from New Brunswick to Kingston-15 miles-makes one painfully aware that he has left the nacadam behind, and the wheel is turned from road to side path and from side path to road in search of the most eligible track. Much of this road is rocky, especially between Franklin Park and Kingston. Here we are on historic ground, for it was over this very route that Washington made his famous counter march from Trenton to New Brunswick-a piece of

* Notes of a journey awheel recently made by one of the editors of the
skillful strategy that marked the turning point in the War of Independence.
As one picks his way down the rocky hill into Kingston, the first glimpse is had of "the distant towers, the antique spires," of picturesque and historic Prince ton, crowning the opposite hill and forming, with the dense massing of its ancient trees and the far perspec tive of the rich valley beyond, one of the choicest landscapes that the writer has seen in either hemisphere. Princeton, 54 miles from the starting place, is to be the first checking point, and as mine host of the inn is yet abed, the local night watch signs the Century Road Club certificate, and attests that this much of the journey had been completed at 7:20 in the morning. A cold bath, a rough crash towel, poached eggs and tea -the last our invariable beverage on a long trip-con sume forty-five minutes, and shortly after 8 A . M. the wheel is once more humming its merry tune over the crisp surface of new macadam. The twelve and a half miles to Trenton are made in forty minutes; this is followed by some heavy jolting over rough pavement through Warren Street, and a ride across the broad ex panse of the Delaware, by way of the combined rail road and highway bridge
One is now in Pennsylvania, and it is good-bye to fast riding and the careless, swinging gait of the past twelv miles. The roads proper are rough, sandy and posi tively unridable; but the wheelmen have worn out a good side path through Bristol to Torresdale, a distance of sixteen miles. And here let it be said that howeve good its surface may be, there is more nervous strain tance of crowded side path twelve or eighteen inches wide than in riding twice the distance on a broad thoroughfare. On this run there are fifty-eight miles of such riding, and usually there is but one path. This necessitated a slow-up for every wheel that was met, and to the risk of collision was added the effort of repeated acceleration. From Torresdale to Frankfort, eight miles, the road is macadam, modified-greatly modified-by recently laid car tracks, and from Frankfort, by turning to the right at Rising Sun Lane, the celebrated Broad Street is easily found. And here at the far end of it long vista one sees, yet several miles away, the towering mass of the City Hall, crowned with its giant statue of William Penn. It is a glorious finish to the century run, this four or five mile spin over the asphalt of a great city thoroughfare, gay as it is with the bright costumes and glittering machines of a thousand wheel men. Broad Street is a truly noble thoroughfare, and I could recall only two others that had impressed me as being more grand and spacious; those were Pennsyl vania Avenue, Washington, and Collins Street, Me bourne. The latter is the pride of Australasia, an probably the finest thoroughfare of its kind in th world.
The stamp of the Hotel Lafayette was placed on the checking sheet at $11: 36$, and the next hour and a hal was divided between a cold bath, a moderate lunch of steak and boiled rice, and a lounge. At one P. M. one was in the saddle again, and on turning into Broad Street the first genuine disappointment of the day was realized in the fact that the fresh summer breeze which had blown on the side on the outward journey had turned to the north and was now well ahead This, with an 84 gear to push, meant a careful hus banding of strength, and the original intention of making faster time on the return trip was abandoned.
Trenton was passed at 4 P. M., and $5: 10$ P. M. found Trenton was passed at $4 \mathrm{P} . \mathrm{M}$., and $5: 10 \mathrm{P}$. M. found
the cold bath and the crash towel again in requisition at Princeton. This was followed by the regulation meal of brown bread, poached eggs and tea, and at six P. M. one was again speeding by the classic lawn and shade trees of Princeton University. In another hour and a quarter the spires of New Brunswick were peeping above the distant trees, and a few minutes later the wheel was humming its merry tune over the welcome macadam of the famous Elizabeth turnpike
The sun was westering, and with its decline the wind had died down. The invigoration that always come with the cool evening air on an all day ride such as this was upon us, and home and a soft couch were again within reach. The glorious twelve mile stretch to Plainfield was swept over at just a twenty mile an hour gait, and here a dismount was made to light up for the concluding twenty-six miles to New York. was intensely dark, and speed was slackened accord ingly. The only memorable portion of this concluding
stretch was the nerve-tormenting Belgian block, cobstretch was the nerve-tormenting Belgian block, cob-
ble stone and plank road jolt and jar through Newark and the Jersey meadows. The Astor House at City Hall Park, New York, was reached at a quarter to twelve, where our ally, the cold bath and crash towel, prepared the way for surely the most sweet sleep that ever fell upon weary eyelids.
The only after effect noticeable on the next day was a numbness of the hands, due to the vibration of so much riding over Belgian blocks; otherwise the trip will be remembered principally as a successive panorama of lovely country scenes. That the trip was
made without fatigue was due to careful diet for a made without fatigue was due to careful diet for a
couple of months previous and judicious husbanding couple of months previous and judicious husbanding
of strength on the trip. For the guidance of all
tourists who like to travel far afield in a limited vaca tion, the writer has this to say : Vary the speed entirely according to the road, riding easily when the road is trying, and briskly when it is favorable, and do notunless you feel that you must-try to ride two hundred miles in a day.
In conclusion, the writer would advise all wheelmen who may not be accustomed to vigorous exercise to preface a century run or an extended country tour with a little preliminary training. In the present case his amounted to little more than living up to simple hygienic rules for a few weeks before the journey, a follows: Rise at six A. M., drink juice of half a lemon in water; cold sponge bath; two or three mile ride on wheel at a lazy gait; breakfast of shredded wheat and milk, poached eggs, brown bread and tea; for lunch teak (no potatoes), brown bread and cooked fruit stewed rhubarb preferred; for dinner, roast beef or mutton, vegetables (no potatoes), brown bread, cooked fruit and tea. Half an hour later a fifteen or twenty mile spin, starting quietly but coming home at a good gait. Then a rub down followed by cold sponge bath and bed not later than ten P. M. On the road the diet was just the same, supplemented by an occasional raw egg and sherry (the latter carried in small flask in tool
bag) at any convenient roadside house or farm. Do not drink on the road, and you will not be troubled with thirst.

A NEW LIBRARIAN OF CONGRESS

It is reported that President McKinley has decided to appoint Mr. John Russell Young, of Philadelphia, to be librarian of the new Congressional Library Mr. Spofford, the present librarian, in a letter ad ressed to the President, declined to be considered in connection with the more responsible and laborious position of librarian of the new library, on account of advanced years. Under the act passed by th ast Congress the reorganization of the library will be made on July 1, and Mr. Young will assume the
duties of librarian immediately upon confirmation by duties of librarian immediately upon confirmation by
the Senate. The salary of the librarian will be $\$ 5,000$ the Senate. The salary of the librarian will be $₫ 5,000$ per annum, and he will have the appointment of the
assistant librarian, who will receive a salary of $\$ 4,000$ It is understood that Mr. Young will tender this place to Mr. Spofford, and that the latter will continue to give his services to the library, with which he has been connected for thirty-five years. Provision is also nade under the new law for a superintendent of the new library building, at $\$ 4,000$. This place has been given to Mr. Bernard R. Green, who has rendered such efficient service during the construction of the new library building. There is also to be a superintendent of copyrights, with a salary of $\$ 3,000$. It is satisfactory to note that the government has at last seen the fallacy of attempting to link a learned profession like that of a librarian with a clerkship.
Mr. Young, who is a lifelong friend of Mr. Spofford, was born in 1841 at Downingtown, Pa. He was edu cated at grammar and high school, and began his newspaper career at the age of sixteen years. He acted as war correspondent during the greater part of the civil war. He held important positions on the Phila delphia Press, the New York Tribune and the New York Herald, and during his residence in London, while having charge of the foreign news service of the Herald, in 1877, Mr. Young was invited by Gen. Grant to accompany him on his famous tour around the world. Mr. Young wrote many brilliant articles de scribing the scenes and incidents of the tour and afterward recast and published them under the title of "Around the World with General Grant." He reurned to New York in 1879, and occupied a position on the editorial staff of the Herald, which he retained until his appointment as minister to China. He returned to the United States in 1885, and since that time he has been connected with the Evening Star, of Philadelphia.

NEW RAPID HARBOR MAIL SERVICE.

The plan of discharging the foreign mails from steamers while waiting at quarantine, to a harbor the mail, went into effect in New York Harbor for the first time on July 1, 1897, and worked very successfully The mails were placed in bags for western and east rn cities while on the steamboat and delivered at the Battery, Jersey City, and near the foot of West Fortysecond Street, from whence they went forward without delay by the first trains to the respective western and eastern sections of the country.
It is expected that from ten to twenty-four hours time will be saved by this arrangement, while the gen ional work.

At Chita, the chief town of the transbaikal district of Siberia, a museum has been established already. It contains rich collections relating to Buryate Buddhism, as well as objects belonging to natural science, archæology, and mining. The museum has a little botanical garden annexed.

LOTTERY INDUCED PATENTS.

Our attention has been called to the methods of an Eastern patent firm who, in order to increase thei business, are offering money prizes for inventions con sidered and pronounced as most meritorious by a board of awards operating in connection with the firm. "The offer of such a prize," writes a well known patent attorney, "serves as a bait for the unsuspecting inventor, inviting him to spend his money in a lottery scheme, the fruits of which are far more disappointing and disastrous than were those of the Louisiana Lottery, now prohibited by law. The only prize which a eputable attorney can offer is superior work, the earn est application of his energies to the securing of claim cominensurate with the merits of invention, and the obtaining of patents which will stand the scrutiny of skilled attorneys, and pass muster in a court in which they may be the subject of adjudication. Such a prize makes one's patent reward one for one's inventive genius, as it is only a good patent that can be disposed of with profit. The legitimate reward of genius is not a prize in a lottery scheme, nor is it a silver medal worn or carried about the person; but it is the solid cash which a patent with well drawn claims will realize or the inventor
The evils of this " lottery prize" process of working inventors are so glaring that Congress will probabl abate the whole scheme during the present session Senate bill 1057, introduced by Senator Hansbrough, March 22 last, aims at this result. It provides: "That hereafter it shall be unlawful for any person or persons, firm or corporation, engaged in procuring and prosecuting patent claims to offer or award to thei business correspondents or clients any gift, prize, or chance to win one, medal of honor, certificate of stock or any other article or thing of real or supposed value, intrinsic or otherwise ; and any person or persons vio lating the provisions of this act shall be deemed guilty of a misdemeanor, and on conviction thereof shall for each offense be punished by a fine of not less than five hundred dollars, and not more than one thousand dollars, or by imprisonment at hard labor for not less than six months nor more than one year." Other sections of the bill provide for the proper enforcement of section 1, as given above.-The Age of Steel.

DEATH OF PROFESSOR DE VOLSON WOOD.

Prof. De Volson Wood, of the chair of mathematics of the Stevens Institute of Technology, Hoboken, N. J., died June 27, aged 65. He graduated from the Albany Normal School in 1853, and two years later from the Rensselaer Polytechnic Institute, Troy. He was appointed professor of civil engineering at the University of Michigan the same year, which place he held for fifteen years. He then received a call to the chair of mathematics at Stevens Institute, and ater to the chair of mechanical engineering. He was a member of the American Society of Civil Engineers, the American Society of Mechanical Engineers and of the American Association for the Advancement of Science. He was the first president of the Society for the Promotion of Engineering. He was the author of many text books on mechanical engineering.

electric light and sailors' eyesight.

Owing to the intensity of the electric light used on board of men-of-war, men are frequently affected with eye complaints, which in some cases have led to total blindness. It has been observed that eyes in which the iris is not heavily charged with pigments, that is to say, gray and blue eyes, are more likely to be injuriously affected than brown eyes. These eye troubles are ascribed to two causes, viz., the intensity of the light and the action of the ultra-violet rays. Oculists recommend the interposition between the eye and any powerful light of a transparent substance which will intercept the ultra-violet rays, such as, for instance, uranium glass, which is yellow. The French naval authorities supply dark blue glasses for the use of those men who have to do with search lights, etc., and the cases in which injury has been caused to the eyes were those of men who had neglected to use these spectacles,
which, however, do not appear to afford any prowhich, however, do not appear to afford any proMilitaire.

DEEPENING THE ST. LAWRENCZ

The Dominion government proposes to complete the deepening of the St. Lawrence River from Quebec to Montreal this season. Already about $\$ 3,500,000$ has been expended to make the 160 miles of river of a depth of $271 / 2$ feet. It will require $\$ 500,000$ more to finish the work, and that sum has been voted to the Minister of Public Works for the purpose.
The government also proposes to construct three new wharves at the center of Montreal harbor. The Minister of Public Works says that Montreal harbor is in a poor condition for shipping, and he proposes to take immediate steps to remedy it. After the close of Parliament he will visit Belgium and Germany with an ongineer to inspect the harbors in those countries, in order to devise the best plan for the improvement of Montreal harbor.

A SPECIAL BRAZER FOR BICYCLE WORK. In bicycle manufacturing and repairing an efficient portable brazer is a necessity, and we herewith illustrate such a brazer, adapted to generate a very high degree of heat, and so, easily managed as to make of the work of brazing only a light, clean task, which one

THE STRAIGHT-TURNER GASOLINE BRAZER.

may carry on without soiling the clothes. It is manu factured by the Turner Brass Works, No. 122 Kinzie Street, Chicago. The head is equipped with firebrick, which increases and retains the heat, and the burners may be turned low, like a lamp, when not in use, a single turn of the valves bringing on the full blast. The tank is made of boiler steel, galvanized, and tested to 150 pounds. It should be flled not more than three-quarters full of 74° stove gasoline, the air pump connected, and a pressure of 25 to 50 pounds ob tained, when commencing work. The flame is readily adjustable to the desired size by means of the valves at the sides, the flames being preferably balanced so that they will meet squarely over the tee in the center of the head. This brazer is used by many of the prominent bicycle manufacturers, and, in addition to its high effi ciency, is said to be very economical in its consumption of gasoline. The burners may be easily cleaned, should they become clogged by impurities in the gasoline.

A PUNCTURE PROOF BICYCLE TIRE.

The accompanying illustration represents a tire which, while practically solid, is designed to have al the resiliency of an ordinary pneumatic tire, being at the same time puncture proof. It has been patented by Franz A. Hamp, of 210 East Pearl Street, Cincinnati, Ohio. One of the figures shows the tire partly in sec tion, while the other represents it with the exterior tube, which is preferably made of rubber, partly re moved. As will be seen, the body of the tire is formed of sections of cork fitted together to form a perfect ring around the rim, the sections being held connected by a

HAMP'S BICYCLE TIRE.
central wire whose ends are twisted together and car ried in opposite directions. The ends of the casing tube are preferably brought together at the point where the tie is secured, and here, as shown in both views, a metal sleeve, also rubber covered, is tightly fitted around the tire, there being preferably two of these sleeves embracing the tire at opposite points in its circumference. The outer section or casing of the
tire need not necessarily have two ends, but the casing may be filled by means of an opening on the inner side. The tire is cemented upon the rim, through which and through each sleeve is passed a set screw, one of the screws engaging the extremities of the twisted wire. The inventor has constructed machinery for preparing the cork, which it is designed to subject to hydraulic pressure and impregnate with a fluid to enable it to maintain its elasticity.

An old Nail in old wood.
English papers report that, while a workman was recently sawing a beam taken from the roof of Win chester Cathedral, a nail $21 / 4$ inches long was discovered in the middle of the piece about 9 inches from the surface. The conclusion drawn from a nail in that position is that it was driven into the young oak and that before the tree was cut down, the wood had grown around the nail, that process likely occupying a couple of centuries. It is assumed that the beam was intro duced in the course of the reparation of Wincheste Cathedral, which was undertaken by Bishop Walkelyn and carried out between 1079 and 1093 , but it should be remembered that some of his successors had works executed up to the end of the fourteenth century, when William of Wykeham commenced his restoration. It is thought that in any event the nail must have re mained concealed for nearly 1,000 years.

AN IMPROVED BULLET LUBRICATOR.

To properly lubricate bullets before they are placed in cartridges, the device shown in the illustration has been patented by William W. Tracy, of Pittsfield, Mass. The bullets are formed with the usual annular recesse adapted to receive grease in a plastic state, and are placed, as shown in the prin. cipal figure, in bores arranged in a circle in a disklike head whose interior has a series of radially ar ranged channels communicating with n annular chamber into which all the bores open, as repre ented in the sec ional view. The head is centrally onnected with the barrel of a pump, the plunger of which is actuated by a handle to press the lubricant down and outward through the channels into the annular
 hamber, and thence to the bores and into the depressed recesses or channel round the bullets. The entire number of bullets in the bores is thus simultaneously lubricated. The bores are designed to fit the bullets closely above and below the sections in which the annular recesses are formed so that no lubricant can escape by way of the bore.

The American Druggist suggests the following remedy for the annoying mosquito: Take some powdered pyrethrum (Dalmatian flowers), moisten and mix into a paste, mould the stuff into conical lumps as big as chocolate drops, and bake in an oven. "When fired at the point," says the journal just referred to, "such a cone will smoulder slowly and send up a thin column of pungent smoke, not hurtful to man, but stupefying to mosquitoes. In actual experience two or three such cones burned during the course of an evening have given much relief from mosquitoes in sitting rooms."

A NOVEL PLANT PROTECTOR

An improved device for insuring the rapid outdoor growth of plants early in the season, without the use of hothouses or hotbeds, is represented in the accompanying illustration and has been patented by Samuel Taylor, of Winters, Cal., and Joseph Gardam. It con sists principally of a glass hood, with a funnel opening at the top adapted to be opened and closed by a valve controlled by a thermostatic spring actuated by the heat of the surrounding atmosphere. The valve has a stem fulcrumed on a bracket, to the outer end of which one end of the spring is attached, and near the free end of the spring is a lug in which is a slot adapted to engage a pin on an extension of the valve stem. The contraction and expansion of the spring with the variations of temperature cause the lug to act on the pin to impart to the valve an up and down swinging motion, as indicated by the dotted lines. The bracket is itself adjustable up and down on an arm clamped to the fun nel, whereby the device may be set to the degree of
heat at which the valve is desired to close the upper end of the funnel, the valve controlling both the in ress and egress of air to and from the hood. In a mod fied form of the device the valve is held directly on he free end of the spring, whose other end is attached to the arm clamped on the funnel. By employing this

TAYLOR'S PLANT PROTECTOR.

device, transplanting and its incidental retarding of the growth of plants may be generally avoided.

AN EFFICIENT ELECTRIC BICYCLE LAMP

The illustration represents a convenient, highly ser viceable electric lamp for bicycles, adapted to burn for six or eight hours, which is being introduced by W. Pollack, of No. 565 Boulevard, New York City. It has two made up positive elements and two negative zinc elements, connected in series, the elements being inserted in sockets in the top of the lamp, and each held in place by a cap and screw nut, a rubber washer being placed on top of each. These appliances are also shown in the illustration. The liquid charge is prefershown in the illustration. The liquid charge is prefer-
ably made of water and sulphuric acid, of which a meas ably made of water and sulphuric acid, of which a meas-
ured quantity is supplied through the sockets provided for the positive elements. The zinc element is only about half the length of the positive element, and is thus held out of contact with the liquid when the lamp is in the position shown, the light being then extin guished, but the circuit is completed and the light es tablished when the lamp is turned the other side up The positive elements are furnished ready for use wrapped up so as to take hardly the space of a smal pocket knife each, and in riding it is generally best for one to carry an extra bulb and a pair of these elements. The new bulb is readily screwed in place in case one burns out or is damaged, and a new positive element is as readily inserted. It is said the cost of using these lamps constantly is only eleven cents a week. The rider need not carry any acid with him, other than that in the lamp, the renewal of a light, should it go out, being

effected simply by inserting another new element. There is absolutejy no local action and the lamp may be used any time within a year after charging. The lamp is readily fastened in place by a swivel clamp at the back, not shown. In addition to its use on bicycles the lamp is adapted for carriages, mining purposes, country residences and stables, night watchmen and policemen, etc.

The Origin of Medicines.

The fact that certain herbs and plants produce certain effects upon the human system, and alleviate or cure certain ills, has been known from time immemorial. Perhaps the most ancient of medicines-properly authenticated, that is-is hops, which was used in the dual capacity of an intoxicating beverage and as a medicine in $2000 \mathrm{~B} . \mathrm{C}$. This is attested by pictures of the plant on Egyptian monuments of that date. Creosote was discovered in 1830 by Reichenbach, who extracted it from the tar of wood. Potassium was discovered in 1807 by Sir Humphry Davy, but alcohol was first distinguished as an elementary substance by Albucasis in the twelfth century.
Scheele discovered glycerine in 1789. Nux vomica, which is nearly as old, is the seed of a tree indigenous to India and Ceylon. Peppermint is native to Europe, and its use as a medicine dates back to the middle ages. Myrrh, which comes from Arabia and Persia, was used as medicine in the time of Solomon. Hemlock, the extract of which killed Socrates, is a native of Italy and Greece. Iodine was discovered in 1812 by Courtois, and was first employed in a hospital in London in 1825. Ipecac comes from South America, and its qualities are first mentioned in 1648 by a Spanish writer, who refers to it as a Brazilian medicine. Ergot is the product of the diseased seeds of common rye, and is one of Hahnemann's discoveries. Aconite grows in Siberia and Central Asia, and was first used as medicine by Storck in 1762. Hasheesh, or Indian hemp, is a resinous substance produced from the tops of the plant in India. It has been used, as has opium, since Indian history began. Caffeine, the active principle of coffee, was found by Runge in 1820. Ordinary coffee contains about 1 per cent, Java coffee $4 \frac{2}{5}$ per cent, and Martinique $6 \frac{2}{5}$ per cent. Arnica hails from Europe and Asia, but the medicine is made from artificial plants grown for that purpose in Germany and France.-Pall Mall Gazette.

A REMARKABLE PEAR TREE.
One of the most remarkable of old trained pear trees that we are acquainted with is the splendid specimen
"the tree is admired at all times of the year, but more especially when covered with large handsome clusters of flowers. In autumn, when laden with quantities of big fruits, it also presents an attractive appearance, and there are many who also admire the tree when the stems are bare, and certainly at this season it is interesting, as the training is very remarkable. The tree seldom fails to ripen a heavy crop of fruits, cropping right down to the ground. It has never been fed or root pruned, and its roots are in the bed of the carriage drive, gravel also encircling the stem at the base, where it measures six feet in circumference. It is, however, very probable that the roots have penetrated a considerable distance and come into contact with the stable drains, thus deriving the nourishment required by so large a tree. The fruits are seldom thinned, as the tree is so vigorous as to be capable of carrying very large crops, and yet the fruits weigh from half a pound to one and a half pounds each. The total weight of the crop last year was two hundredweight. Many first prizes have been won from this tree, including firsts at the Crystal Palace in 1894 and 1895."

a carthaginian mask.

In 1893, the Rev. A. L. Delattre, having had his at tention called by an Arab to several small objects that he had discovered while making some excavations at Douimes, decided to make some researches in the vi cinity. Toward the latter part of the summer of that year, having engaged some laborers and set them to work, he was soon rewarded, after excavating through six feet of soil intermixed with rubbish, by the discovery of the primitive argillaceous earth in which the Carthaginians found a last resting place for their dead In November, 1893, there had been discovered sixty tombs, almost all of which were placed at right angles with the seashore. The majority were simple trenches covered with slabs of tufa, the only kind of stone employed in the primitive structures of Carthage. Infil trations had filled each trench with a fine yellow sand the color of which was often confounded with that o the natural earth.
The funereal furnishings usually consisted of two medium sized urns with a handle on each side, of two small jugs with a single handle of a flat bicornous lamp and its patera (a sort of saucer), and sometimes of a bronze hatchet, a hand bell, cymbals and a mirro or other objects of ornament, such as collars, rings, bracelets, earrings, painted vases, figurines, amulets, shells, etc
One of the most interesting finds was a curious terra cotta mask, which was brought to light in the month of September, and which is illustrated herewith
It was discovered at a new point of the Punic necropolises of Carthage, very near the site of Serapeum, in a very small space where had just been found more than twenty Carthaginian tombs, always containing funereal furnishings of the same character save that the pottery was more highly orna mented and of finer quality.

The mask is 8 inches in height and 5 in width, and the hollow part $31 / 2$ inches in depth. This grotesque face, with low and narrow forehead, projecting eyebrows, wide and flat nose, and angular cheeks and crooked mouth, preserves a few traces of black paint. The mouth and eyes are cut out through the thickness of the clay and the ears are ornamented with rings.
Around the mask are distributed five
holes-one at the top, and one beneath and one above each ear. These holes certainly served for fixing the mask in place. There is nothing Egyptian nor Greek about the style of the work, and the specimen seems to be an authentic one of local art. In fact, at the base of the forehead and at the origin of the nose, it bears the mark of its Punic origin in the crescent surmounting the disk, which it embraces with its depressed horns-an emblem that is very frequent upon the votive stelæ of Carthare, and which we often find engraved upon the bezel of rings or arranged so as to be strung and worn as an amulet
One peculiarity that this mask exhibits is that it changes physiognomy according as it is viewed in profile, at an angle, or full face.
This mask constitutes a true caricature Contrary to the opinion held up to recent years, the Carthaginians must have prac ticed the art of portrait taking. Prof
of Uvedale's St. Germain at Weston House, Shipston on-Stour, the residence of the Countess of Camperdown. The accompanying illustrations are reproduced from photographs taken by Mr. S. Freeman, of Moreton-inMarsh, and published in the Gardeners' Magazine. Mr. Masterson, the gardener at Weston House, writes that

Duhn, in an article recently published at Berlin, observes that several Punic masks in the Saint Loui Museum remind us of Japanese rather than of Mediter anean art, on account of the extraordinary natural ism exhibited therein, and that makes true portraits
study of these interesting pieces permits us to recognize an entirely archaic art in them. The mask under consideration is less than natural size and consequently could not have been applied to the face of a corpse neither was it suspended in the tomb. Notwithstand ing the holes with which they are provided, these sort of masks, as well as the clay statuettes that are found

A CARTHAGINIAN MASK.
in the necropolis, were simply placed alongside of the dead. The object of the relatives or friends who inclosed these objects in the tomb was merely to know that the body of the defunct was accompanied with an bject to which they attributed a magic virtue capa ble of protecting the mortal remains in their final dwelling.
Such masks have been discovered in the most ancient necropolises of Sardinia. The Cagliari Museum pos esses several of them.
For our engraving and the above particulars, we are indebted to Cosmos.

Caution to Middle-aged Bicyclists.

Any form of exercise or sport which makes serious demands on the attention, on quickness of eye and hand, and on endurance, ought not be taken up by people who have reached middle life and are en gaged in sedentary occupations, only with great cir cumspection. The lesson has been learned by Alp ne climbers though many bitter experiences. It is pretty generally held by them that most of the fatal accidents in mountain climbing occur through the failure at the critical moment of some man who has taken to mountaineering too late in life, and who is, perhaps, also out of condition. An old dog cannot be taught tricks, according to the proverb; and though it is disagreeable to have to realize that we have passed the age when we can excel in a new pastime requiring special skill to avoid accidents, and youthful adaptability and elasticity to avoid overstrain, it is the part of wisdom to accept the inevitable. There is no reason why middle-aged men, and even those who have passed middle age, should not take to cycling; but it should be with a frank recognition of the limitations which age imposes. Great speed, long distances, and hill climbing put a strain upon the constitution, and will find out the weak places, the parts of the system which are aging faster, perhaps, than the rest-the heart, it may be, or the vessels of the brain. So, also, in regard to riding a bicycle in crowded thoroughfares, the strain on the attention is considerable and the risk not small, if man has lost the quickness of youth.-British Medical Journal.

It is said that F. W. Christian has returned to Syd ney after two years spent in exploration in the South Sea Islands. The details are very meager as yet. It is stated that he discovered ancient records, weapons, etc., which prove that the Asiatic races traded in the islands.

FIGHTING SNOW ON THE RAILROADS OF THE ON THE RAIL NORTHWEST.

The past winter proved to be the most trying in the history of the railroads of Dakota and Minnesota, both in respect of the enormous quantity of snow that fel at any given time and the unprecedented length and frequency of the storms. Those of our readers who live east of the Mississippi have but a faint idea of the heroic struggle which is made during a winter of heavy snows to keep open the railroads between the various cities, and maintain the lines of communication between East and West by way of the great transcontinental railroads.
We have received from Mr. E. W. Hadley, of Santa Barbara, California, a graphic description of his former experiences when, as division superintendent, he was
"fighting snow" on one of the great Western railroads. "fighting snow" on one of the great Western railroads. The accompanying illustrations are reproduced from photographs taken by Mr. H. Steinhauer, of Groton, Mr. Hadley writes as follows
The Dakotas, Minnesota and northern Iowa are the haunts of the blizzard and the home of the Storm King. haunts of the blizzard and the home of the Storm King.
The windswept prairies of Nebraska and Kansas, leveb as a billiard table, while trying enough in midwinter, do not possess the essentials of a great snow country. The general contour of Dakota and Minnesota is rolling -sufficiently so that on many of the railroad lines cut succeeds cut, with an average, on many of the worst portions, of ten to the mile. For a long term of years the destinies of the "chain gang" on several hundred miles of the Dakota and Minnesota lines of one of the largest Western railroads, spending some six or seven months out of the twelve in a ceaseless battle with snow. I do not think I can give a better idea of this species of war-for it is nothing less-than by describing a snow bucking expedition in the midst of the winter campaign. Like "the days of old, the days of gold, the days of ' 49 ," these days will come no more. The advent of the " rotary " has robbed the blizzard of its dangers and has added many thousand dollars
witalized valuation of the
ber, and with no uncertain sound. The writer has ber, and with no uncertain sound. The writer has
seen water pipes within the brick walls of a steam heated building frozen solid on the twenty-fifth day of September, and was unable to lay up his snow plows until past the middle of the following May. The latter end of summer in the shops and roundhouses at division points is devoted to putting in trim the snow fighting outfit. Engines are overhauled, plows buckled on, " flangers" and " white wings" got ready; the lists of engineers and conductors are carefully scrutinized and those of most experience, or better fitted for the service told off to run plows and "drag.outs." Let us skip the opening skirmish, however, and get into the thick of the fight. The superintendent surveys the yards from the watch tower of his office, and listens with a sense of its restful hum to the ceaseless click of the instruments in the next room. The connecting door opens, the chief dispatcher looks in long enough to say that Mandan or Medicine Hat has just reported a blizzard coming up. Now Medicine Hat is the weather maker of the Northwest. The genuine blizzard is born there and comes thence a thousand miles to pile up the snow on your own particular track.
Again the door opens and the watchful dispatcher announces that "Medicine Hat says blizzard getting worse." Without, everything is brilliant sunshine and trains are all on time, but the cautious superintendent goes to the 'phone, calls up the roundhouse, and tells the foreman that he had better "put a fire in 321 and a couple of the lighter plows." A few hours pass-a subtile change comes over the weather-the sun doesn't seem to shine quite so brightly-there is a trifle of haze in the air. Suddenly there is a quick change of scene The sky grows dark and leaden colored in the north west; the thermometer drops a few degrees and there is a trace of fine snow in the air. The last act comes
on quickly ; with a rush comes the howling wind out of the Northwest, filled with fine snow, and where, but a few hours before, the sun was shining the blizzard now rages in full force. The wind is a hurricane of forty miles an hour, and the air is so full of snow that it is impossible to see the length of a telegraph pole. Now all is hurry-the superintendent takes up his quarters in the telegraph office, and together he and the dispatcher watch the progress of the few trains still out upon the road and devise measures to get them under cover. No. 1, the night express, which left the southern terminus of the line several hours before, has run
into the blizzard and is making slow progress. She left Colgate a full hour ago, but has not yet shown up at Pinto, the first station north, although her running time between the two is about twenty minutes. Pinto here calls up the dispatcher and ticks off a message from the condiactor of No. 1, who has just walked in announcing that his engine blew out a cylinder head three miles south of Pinto-that she is short of water and that he has "killed her." In swift succession
orders are sent to hold at terminal points two branch orders are sent to hold at terminal points two branch
line passenger trains now due to leave, and an order is
sent to Hooker, and engineer of plow engine 119 which has been held in reserve at Fairmount, to run to Pinto, and flag from there to where No. 1 is stalled and try to get her out. The chances of getting out No. 1 before midnight look very slim, and the conductor of No. 1 is instructed to hire any available sleighs a
Pinto, load them with fuel and provisions, and ge back to his train. This order had hardly been got off the line before the wire goes down and all communica tion is shut off. Now comes a period of forced inaction which grows many a gray hair in the superintend tion which grows many a gray hair in the superintend-
ent's head. What of the two hundred or more pasent's head. What of the two hundred or more pas-
sengers on No. 1-the women and children out on the trackless prairie exposed to the full force of the bliz zard ? What of the carloads of cattle and horses on the first section of No. 17?
There is nothing to be done in the way of sending out additional plows, however, until the blizzard shal have blown itself out, but the superintendent finds a vent for his activity in preparing for the coming fight. Getting on his buffalo overcoat and snow boots, he visits the roundhouse to see that everything is in perfect readiness for an attack on the snow as soon as the blizzard shall have let up. He sees that plow engines are abundantly supplied with oil, tallow, waste and steam hose-that water cars are cleared of
ice and filled, and that a couple of box cars equipped with stoves, tables and chairs are loaded with pro visions. Engine and train crews are notified to keep within instant call, and messengers are dispatched to gather an army of snow shovelers. Toward morning of the third day the superintendent is awakened by the caller, who hands him a message from the night dispatcher advising him that the blizzard shows signs of dying down. It is welcome news, and a few minutes nore finds him at his office ready for the start. The dispatcher has not been idle, and by the time the blizzard shows signs of dying down the yard is full of snow equipment. Two heavy freight engines, each ready to be launched against the drifts on two branch lines. The outfit for the main line is a more ponderous one. An immense Congdon plow, faced with wood and shod with steel, is backed up by two 17 by 24 engines, the pilot having been removed from the rea one so that it may be coupled up close. The face of this huge plow rises almost to the top of the engine stack, and in order that some view ahead may be ob tained, a small cupola has been built upon top of the engine cab in which the conductor may ensconce himself and thus be enabled to direct the engineer. On the main track, a few rods behind this immense plow stands the drag-out, a 19 by 26 ten-wheeler, coupled to which is a train made up of three or four coaches, the cooking and provision cars before referred to, a water car, a coal car, and the conductor's caboose. The oaches are filled with a crew of two hundred navvie equipped with shovels and scoops.
The wind has now almost completely gone down and the thermometer has fallen to thirty-five below. Al of the men moving around wear shaggy fur overcoats, fur caps and felt boots an inch thick. Nothing but the matted hair of the buffalo, a native of these barren prairies, will withstand this intense cold. The gray dawn comes on apace, and with it comes the conductor of the plows with the yellow copies of his orders flut tering in his hand. He climbs aboard. There is a hrill blast of the whistle, repeated by the second en ine, and the plow is off. If you are now in the cab of the forward plow engine, climb up on the fireman side, brace your feet against the front end of the cab and the fireman will hand you a small piece of greasy waste. You can keep the frost off the, window and gain
glimpse ahead. The engineer opens her up a little and we strike a thirty mile gait. Nothing in sight but the boundless prairie looking like a frozen sea
And now the engineer, without waiting for an admonition from the conductor, slows down, for he knows that he is close upon a long curving cut that hould be full of snow. Running up close to the be ginning of the cut, he makes a full stop, and conduct or, superintendent and roadmaster unbuckle the snow curtains, get out and walk ahead to have a look at it. A peculiarity of drifts in these high latitudes is the solidity with which the tremendous wind pressure packs the snow. The crystals are small and angular ike meal, and the driving wind presses and fits them ogether with a solidity that is but little short of ice. The long, shallow approach to the cut is the most dangerous part of it, for there the snow is sure to be hardest and the depth is not sufficient to insure the plow staying on the track. While there are a hundred
dangerous chances in bucking snow anywhere, good dangerous chances in bucking snow anywhere, good judgment demands that they should be minimized a far as possible, and the roadmaster is therefore sen
back on the run to hustle out his force. Getting with in hailing distance of the drag-out, which has now come up, his stentorian voice and waving arms quickly bring to the front a force of husky snow shovelers whom, with the tact of a general disposing his forces, he soon has scattered over the snow drift, some shovel ing away the shallow snow and putting a "face" on it
rift in its deepest parts. The drag-out is now ordered back out of the way and the plow gets back a few miles in order to gather momentum for a run. In al these operations time is at a heavy premium, for every hour that the road is blockaded means a heavy finan cial loss. Standing upon the highest point of the drift, the burly roadmaster urges on the efforts of his men with hoarse shouts and commands.
Away from the distance comes the piercing whistle of the eager plow, announcing that she is ready. The roadmaster gives a final glance at the face of the cut to see that it is properly undercut so as to hold down the nose of the plow, then climbs to the highest spot and signals that he is ready. Now, if you are perched on the fireman's seat, you begin to get a realizing sense of the delights of flight. The throttle is wide open and the engineer is giving her notch after notch. If you are an old hand at the business every consideration of fear is wallowed up in the intense excitement of the mad rush; but if you have never ridden behind the plow before, there comes over you a sickening sense of utter helplessness and a strong realization of the grim nature of the work. But sixty or seventy miles an hour quickly cover the few miles of race track, you catch a glimpse or a second of the lines of navvies on either side of the cut and then plunge into complete darkness You feel as if you had dropped into deep water the engineer throws her forward into the company's notch, and with almost human struggles and efforts you feel the tremendous machine pushing her way through the snow. As she strikes trench after trench, the wheels take a fresh hold upon the clear rail and the plow plunges forward a few feet further; but at last, with a final whirl of the drive wheels, you come to a full stop. The engineer pushes back the sliding sash on the side of the cab, and with a gasp of relief you find that you are about on a level with the top o the drift, and crawl out of the window to find the plow almost completely buried in snow. The drag-out has followed up close behind, and the roadmaster has every available man hard at work digging away from around and behind the plow.
Now the ponderous ten-wheeler is brought up, and proceeds by main force to drag the plow out of the drift. Hardly does she clear the cut before the shovelè re driven thick into it to put a new face upon the drift and carefully clear the rails leading up to it, ready for new run. Back again toward the horizon, this time to a distance of five or six miles, goes the plow. Thi time you watch her as she comes out of the distance like a black speck, growing rapidly in size, and as she picks up a few shovelfuls of snow, throwing it off the plow in graceful curving rainbows. With a hoarse scream she dashes into the cut, and for an instant it appears as if a mine had been exploded under the drift. The snow is at first thrown high in air, but as she loses speed, it is rolled out of the cut in immense masses weighing tons. For an instant it looks as if sh would be stuck again, but the drift has been skillfully trenched, and with the renewed impetus gained from few feet of clear rail, she dashes through the diminish ing drift, and with a growing feeling of confidence you start ahead for the next struggle.
The next serious cut is four hundred feet long, ten eet deep for some distance in the center and full of the hardest snow. It is critically examined and probed with a bar to detect any stratum of ice which might run through it, and it is decided to trust to a long and hard run to get through without spending time in trenching it. The plow is sent at it with a will. But the cut is deep and narrow and the snow hard packed. It is like running into a stone wall. Although shot at it at speed of sixty-five miles an hour, the plow stops with a mighty shock in what seems to be her own length. The snow bursts in the cab windows and comes pour ing in like an avalanche; the tons of coal in d l. 3 tender can no longer be restrained, but break the gate and are hurled against the boiler head. The cab is filled with escaping steam and falling glass, and you seek wildly for some means of escape. Again the plow is dug out the snow shoveled out of the cab, boards nailed over the windows, and the engineer, tying a handkerchief around his forehead to stop the flow of blood from the cut made by the broken glass, sounds a retreat, but with a grim determination to "put her through this time or break a steam pipe."
And so the fight goes on day after day-it may be ten days before the line is again open to traffic. The dead engines are found and resuscitated-their crews having ound a refuge in the nearest farmhouse. The passen er train is discovered completely buried in snow with fence board stuck in the engine stack to indicate it grave. The train crew have managed to keep their passengers from starvation or freezing by drawing on the scattered farmhouses for provisions, and by using the coal from the tender of their dead engine to keep the cars warm. The broken telegraph line is found and repaired, and the superintendent's first message sets other plows at work from the southern terminus. The wo outfits finally meet, and with triumphant whistle and a few brief words of congratulation, the snow buck ing expedition is over
The fight has resulted in a victory of brute strength
over the elements, and that is always a costly proceeding. Fifty dollars per mile of main track is the usual
estimate for keeping the line clear of snow during the year, but of course in many instances the figure is much higher. This amount also is intended to cover merely the direct cost of removing snow, but does not by any means reach the indirect loss through damage to motive power and rolling stock, and by loss of traffic.
The narrator had just returned from a ten days' snow bucking expedition, when the first rotary which had been brought to the Northwest was turned over to him. With feet still wrapped in bandages from the effect of With feet still wrapped in bandages from the effect of
frost bites, he painfully climbed from the plow into a frost bites, he painfully climbed from the plow into a
comfortable chair in the front end of the rotary, and memory still brings back the sense of complete triumph and deep satisfaction with which, from this comfortable position, he saw this "whirling wheel of fortune," as the machine was instantly dubbed by a quick-witted conductor, hurl his ancient enemy in a snowy Niagara high in air and beyond the right of way. But yet he was obliged to confess that while snow bucking, with a rotary, had lost almost all of its discomforts, it had at the same time deprived him of a source of keenest en joyment.

The Annual Battle with Insects.
 by george ethelbert walsh.

The protection of our common birds from ruthless destruction assumes a new importance in the eyes of many, now that special attention is drawn to the great economic value of these creatures by the Department of Agriculture. It is estimated that about $\$ 100,000,000$ are saved to the farmers of the country by the birds and if this is true to-day, what must have been the case fifty years ago? We had ten song and field birds case fifty years ago? We had ten song and field birds
then to every one that is now in existence in this country. Insect life has been steadily multiplying in direct proportion to the slaughter of the birds; and with the disappearance of every species of birds there has come into existence new insects that help to make agriculture more uncertain and precarious.
Our birds were the appointed guardians of our crops in field, forest, and garden. Most of them depend for a living upon insects, vermin, and rodents. When Audubon stated that the woodcock would eat its weight in insects in one day, he merely called attention to the generai omnivorous habit of most of our insectto the general omnivorous habit of most of our inse
ivorous birds. They are all great insect destroyers.
For a quarter of a century science has been laboring in the cause of agriculture to reduce the number of garden pests and to hold them in check. The annual battles with the insect foes are carried on energetically from early spring until late autumn; and the farmer or gardener is never quite sure of his crops until they have been actually harvested. In spite of all the protective agencies that science has surrounded the fields and gardens with, disasters of gigantic proportions will break out occasionally through the sudden growth of some species of obnoxious insect or fungous growth.
It is the destruction of the potato crop one season by the Colorado beetle; the total failure of the wheat yield in certain States by the rust or blight another year; or the widespread injury to the cotton plants by the boll worms. Somewhere within the United States some crop is pretty sure to be seriously damaged the insects or fungous growth nearly every season.
An idea of what this annual battle means to the farmers can be faintly appreciated by examining some
of the common insect pests that regularly appear in of the common insect pests that regularly appear in
our gardens and fields. Spring has barely opened before the first foes appear. Usually in our Northern and Middle States the currant worms are the first for midable enemies to appear in numbers. These appear early in June and sometimes late in May. The saw-fly weeks before this has deposited its eggs on the gooseberry and currant bushes; and from these eggs emerge
the deadly and destructive currant worms. Before the fruit has set they will completely defoliate the bushes, unless the farmer energetically sprays them with helle bore in kerosene emulsion-the best remedy so far devised.
An early, and two subsequent, sprayings of this emulsion must be made to save the currant and gooseberry bushes. While work is in progress on the currant bushes, the cherry and plum trees will be attacked by their most formidable foe-the plum curculio. The cherry trees do not suffer so severely from the curculio as the plum. All sorts of remedies have been tried and suggested for this tough little insect; but so far nothing has been found that will kill the cu not also destroy the foliage of the trees.
A peonliar habit of the curculio has been discovered, howerer, which enables the farmer, with a little labor to capture it. When a limb is jarred, the curculios roll uy and drop to the ground, feigning death. If not disturbed in the grass, however, they very quickly recover their normal activity and return to their work. By spreading white sheets under the trees and by jarring
the limbs with a long pole, the farmer can very easily collect a crop of the insects and burn them. To avoid doing injury to the trees, the poles are shod with piece of rubber, which can strike against the limbs and piece of rubber, not cut the bark.

The codling moth comes next upon the scene. The moth begins active operations on the apple trees before
the blossoms have fallen, and it is at this season that the blossoms have fallen, and it is at this season that
the farmer must begin spraying for them. The curculio has not been disposed of by any means before th codling moth appears on the trees. The two must be fought at the same time. The apple trees must be sprayed with London purple just as soon as the petals begin to fall, and a second spraying should be adminstered in two weeks or less. As the codling moth may also appear on the pear trees, it is safer to spray with the same mixture
The grapevines are subject to attacks from anthrax early in the season, and they must be swabbed with a solution of copperas, one pound to ten gallons of water Later the Bordeaux mixture must be applied to pre vent fungus spores from lodging on the vines. This is applied before the blossoms appear, and twice there after at intervals of ten to twelve days.
The apple and pear trees are liable to be attacked by anthrax or the scab, and the same celebrated mixture is used on them too. Where the scab appears on the bark in large blotches, the bark is scraped with a dul knife and washed with a kerosene emulsion and Bor deaux mixture
The aphis and hop louse abound in great number on many trees and vines. They kill all the new
growths of the cherry and plum trees, and later they growths of the cherry and plum trees, and later they
warm on the rose bushes. Their growth must b checked early in their career. This can be done gen erally by spraying them thoroughly with a strong kerosene emulsion.
Next come the potato beetles, and, if the potatoes have not been soaked in corrosive sublimate before planting, the scab will ruin the crop. Paris green is the celebrated remedy for the potato beetle. Fire rot appears on the blackberry and raspberry canes in
June, and there is no remedy for this except to cut out June, and there is no remedy for this except to cut out
the affected parts. and stimulate the growth of the plants. The plum knot and peach yellows are the great summer foes that try the patience of farmers and baffle the ingenuity of scientists. The former is a fungous growth which appears early in June, but the pores of which are sown in September of the preced ing year. The plum knot must be cut out with a knife in the spring and fall. In New York there is a law compelling all farmers to cut out the plum knot, under severe penalty. The knot must be burned immedi
tely. When trees are covered with the ately. When trees are covered with the knot, the best way is to cut them down and burn every part of them. The peach yellows is also a fungous growth; and, like the plum knot, the most effective way is to cut it out and destroy it by fire. Liberal applications of the Bordeaux mixture sometimes prove a remedy for the yellows. The yellows cause enormous losses to the peach growers of the Delaware peninsula.
By the middle of summer insect foes are swarming all over the garden and on every plant. Plant lice o aphides attack all weak plants, and they multiply at the rate of five to twenty millions in a season from one progenitor. The red spiders appear in dry seasons,
and the scale insects attack the bark and fruits of and the scale insects attack the bark and fruits of
nany trees. Scraping the trees and applying a was many trees. Scraping the trees and applying a wash of kerosene emulsion is the best remedy. The slugs of of hellebope trees must be treated to anetle must be attacked with the arsenites. The tomato rot seems to be invincible, and the squash bugs can only be de stroyed by picking thein off. The grub of the corn and cabbage fields is likewise a bad foe to deal with. The birds are its most formidable foes.
These are only some of the most common and for midable foes the farmers have to contend with in th summer season. Others appear at special times and in special localities. It would require a volume to write of all of them. The poisons used for remedies have been tried and recommended by the Agricultural De partment, and every owner of a piece of garden land ought to be able to mix them at home.
The Bordeaux mixture is made of six pounds of cop per sulphate, four pounds of lime, and twenty-fiv gallons of water. This is a strong solution, and a
weaker one can be made by reducing the quantity of weaker one can be made
copper sulphate and lime.
A kerosene emulsion is made by mixing thoroughly one gallon of kerosene, one-half pound of good soap and half a gallon of water.
London purple mixture is composed of one-eighth of a pound of London purple to twenty-five gallons of water.
tures
A wa

A wash for scale insects is made of twenty pounds resin, two and a half pounds of caustic soda to twenty five gallons of water.

Many spiders use their rope-making power in seizing their prey. They not only stab and poison their vic tim, but tie it, wing and leg, rapidly throwing over it coil after coil of sticky ligament, which soon not only render it helpless, but convert it into a mummy, thor oughly wrapped, and not only easy to carry, but put up for preservation, should the spider not desire an im mediate meal.

Science Notes.
Prof. W. Crookes will be nominated as president of he British Association for the Bristol meeting of 1898.
The American X Ray Journal is published at St Louis. The first number has just appeared. It is edited by D. Heber Roberts.
The Physikalish-Technische Reichsanstalt is now using carborundum crystals to a great extent to replace diamonds in the production of finely divided scales, says the Electrician. Small flat hexagonal crystals are chosen of from half to one mm. side and mounted in a steel holder by means of a drop of shellac. The lines are said to be much more even than those produced by a diamond; they have been examined when mag nified fifty times and found to be still sharply defined.
Mr. Clement E. Stretton, the general secretary of the National Railway Museum Association, speaking of his letter which was published in the Scientific Ameri Can for May 29, says that the total number of English engines sent over was practically one hundred. He said that ninety-nine are certain, and probably one hundred and one is more correct. He is at present nvestigating the history of the two doubtful engine in order to settle the question in a satisfactory manner
Efforts are being made throughout the State of New Hampshire to preserve Mount Washington from the umber company which recently purchased it for $\$ 100,000$. The State makes no provision for the pre servation of the forests, but the Appalachian Club at its next meeting will endeavor to induce the State to make a law which will cover the case. It is said that if the lumber company is not restrained, the highest and best known peak in the East will be totally stripped of all verdure
Two medical biographies of considerable importance have just appeared. The first is the "Life and Times of Thomas Wakley," by S. Squire Sprigge. Wakley is principally remembered as the founder of the London Lancet, but he was also celebrated as a politician in he best sense of the word, and his efforts in the cause of medical reform were eventually successful. The ther work is "Vita Medica : Chapters of Medical Life and Work," by Sir Benjamin Ward Richardson, M.D. LL.D., F.R.S. In this volume, which was completed before his death, the author has given varied chapters on his memories of the last sixty years, with descrip tions of some of the ideals he formed in the course of a long professional life. The book includes a considerable number of essays treating of personal observations and on subjects in the domains of science and philo sophy.
It is bad enough when private individuals get in the hands of charlatans, but it is certainly difficult to think there exists not only private persons but public bodies who put more trust in the wild assertions of the charlatans than in the matured conclusions of science. The latest instance of gullibility, says Nature, comes from Bedfordshire, England. The local government board of a town wished to secure a water supply and they nanimously resolved to employ a water diviner. This ifted gentleman was employed, and the district counsel applied for a loan to carry out their plans, but for tunately the government auditor refused to audit the accounts. A boring of 700 feet had been made at this ime and no water had been obtained. The audito said it had been held that "the pretense of power whether moral, physical, or supernatural, with intent to obtain money, was sufficient to constitute an offense within the meaning of the law," and he therefore thought that, as the diviner claimed to exercise some uch power, his employment was clearly illegal, and the mount of his fee would be disallowed and the gentle men who authorized the payment surcharged with it The decision ought to materially reduce the number of believers in alleged divining rods, mineral rods, etc This evil is as rife in our own country as in England.
Before deciding on the system of illumination to be adopted for a new girls' school in Vienna, the authorities invited firms experimentally to fit nine of the school rooms with lamps, says the Trade Journals Review This request was responded to, photometric measure ments were made, the cost question entered into, and a well attended conversazione held in the rooms. The Zeitschrift des Oesterr. Ingenieur und Architekten Ve eins gives a plan of the rooms, with the positions, power, etc., of the lamps, and particulars respecting consumption of gas, or electricity, cost of maintenance and installation, etc. The diagrams and tables occupy one page of the journal. A great deal of information is offered in the most condensed state, but more explanatory notes would be desirable. The photometric tests were made after Weber and after Kauer. Th committee have come to the conclusion that the lamps ncandescence, electric or gas lamps, should not be di rectly seen, but that diffused light should be applied,
and that the lamps should be suspended $81 /$ feet above and that the lamps should be suspended $81 / 2$ feet above
the desks, which in the rooms in question means about the desks, which in the rooms in question means about
$31 /$ feet below the ceiling. The installation of the elec $31 / 4$ feet below the ceiling. The installation of the elec
tric lamps was considered cheaper than that of gas lamps, but the incandescence gas lamps would prove more economical to maintain.

SOME NOTABLE STEAY YACHTS

We present two engravings of steam yachts which have recently been built in Scotland for American owners. We refer to the steam yacht "Andria," built by the Ailsa Shipbuilding Company, to the order of Mr. John E. Brooks, of New York, and the steam yacht "Mayflower," built by the Clydebank Engineering and Shipbuilding Company, Limited, at Clydebank, near Glasgow, to the order of Mr. Ogden Goelet. The photographs and the particulars of the yachts were furnished us by Mr.A.J. Sinclair, of Gourock, Scotland.
The "Mayflower" is the larger of the two boats. It is a steel twin screw yacht of 1,806 tons. It is the eighth a steel twin screw yacht of 1,806 tons. It is the eighth
largest yacht in the world and was built from the delargest yacht in the world and was built f
sign of Mr. George L. Watson, of Glasgow.
sign of Mr. George L . Watson, of Glasgow.
The "Mayflower" is built on the spar deck principle,
the builders, consist of two sets of inverted triple expansion engines having eight cylinders, the diameters of which are $221 / 2,38$ and 40 inches respectively, with a piston stroke of 27 inches. Steam is supplied by two double-ended return tubular boilers. The auxiliary engines on board are very numerous, including a refrigerating plant on the Kilbourn system. There is duplicate electric machinery, as well as a large battery of accumulators. Two powerful search lights are provided.
The "Mayflower" was launched at Clydebank, No vember 7, 1896. Her trial trips began on May 3, 1897, and on May 6 her official speed trial took place, the mean speed attained for several hours with continuous steaming being $163 / 4$ knots per hour, equal to $19 \cdot 288$ statute miles per hour. The engines indicate 4250 horse power.
"Mayflower" built at Clydebank from Mr. Watson's de sign. It is exactly the same as the "Mayflower," and was launched on the 20th of February, 1897, when she was christened the "Nahma."
The "Andria," the other vessel which we illustrate, was made from the designs of Mr. G. L. Watson. She was constructed entirely of steel and has a clipper stem and square stern and is lightly rigged as a twomasted schooner, with two pole masts and bowsprit. The length on the load water line is 161 feet; the breadth is $231 / 2$ feet; the moulded depth of the hull is 13.7 feet; the tonnage is 433 tons according to Thames (yacht) measurement. The hull is divided into six watertight compartments by five bulkheads. She was launched on the 18th of February, 1897. She was towed to Glasgow to have her machinery and boilers

MR. J. E. BROOKS' ENGLISH BUILT STEAM YACHT "ANDRIA."

MR. GOELET'S NEW STEAM YACHT "MAYFLOWER."
with a well aft of the raised forecastle head and forward of the foremast, while the promenade deck extends from the foremast to within a few feet of her stern. It is rigged as a schooner, having two masts with fitted topmasts. She has a standing bowsprit and running jibboom. Her dimensions are as follows: Length on load water line, 275 feet; between perpendiculars $288 \cdot 8$ feet; while the length from over the figurehead to the taffrail is 320 feet; the breadth is 36.7 feet; the depth of the hull is $17 \cdot 7$ feet. The net and gross tonnages are respectively 1008.89 tons and 1778.93 tons, with a tonnage of 1806 tons according to Thames yacht measurement, or 378 tons smaller than Mr. W. K. Vanderbilt's steam yacht "Valiant," which is the largest yacht in America.

The "Mayflower's" engines, which were supplied by

On June 5 she was towed to Gourock Bay, where she emained until the next day, when she left for Cowes. It was while she was in Gourock Bay that our correspondent had an opportunity of examining the beautiful vessel. Accommodations are provided for the crew and officers, who number ninety men all told. The space from the stem to the foremast is given up to
them, but the rest of the vessel, fore and aft of the them, but the rest of the vessel, fore and aft of the
engines and boilers, is taken up by cabin space. The reason that the vessel was sent out in the unfinished state as regards some of the paneling and upholstery was that Mr. Goelet wished to have the "Mayflower" at the review at Spithead, where all the important yachts of Great Britain and many of those from abroad were in evidence at the Jubilee Naval Review.
Mr. Robert Goelet is having a sister vessel to the
put in place by Messrs. D. Rowan \& Son, of Glasgow. On May 22 the yacht went on an official trial trip : a f 31.47 peed of 14.66 knots being obtained for a distance of 3142 miles. The engines, which are of the triple expansion type, made 159 revolutions per minute with a pressure of 175 pounds of steam; they indicated 1,200
horse power. The diameters of the cylinders are 16,26 horse power. The diameters of the cylinders are 16, 26
and 41 inches ; the stroke of the piston is 27 inches. and 41 inches; the stroke of the piston is 27 inches.
Steam is supplied by a single ended multitubular boiler 14 feet in diameter and $101 / 2$ feet long. There are three corrugated furnaces. The vessel has bunker space for 70 tons of coal. In the engine room there are a number of auxiliary engines, including refrigerating, pumping, electric light engines, etc. The electric lighting plant supplies the 250 lights and a search light. The crew are berthed forward, aft of which are the
officers' quarters. The deck erections are of teak; the forward deck house, which will be used in warm climates as a dining room, is done up in mahogany. From here a staircase leads down to the dining saloon, which is an elaborate apartment, the sides of which are of ebony. Throughout the cabins there is a complete installation of electric bells and hot water heating arrangements. Forward of the saloon on the pbrt side is Mrs. Brooks' room, which is finished in rosewood. Opposite Mrs. Brooks' room is the owner's room, adjoining which is a light bathroom and lavatory, the floor ing which is a light bathroom and lavatory, the floor
of which is mosaic. Aft of dining saloon, on the port of which is mosaic. Aft of dining saloon, on the port
side, is the pantry, with a lift to the galley, which is aft of the forward deck house. Near the pantry there is plenty of storage accommodation. Aft of the engine and boiler casing there is th casing there is the wh ich will be which will b used as the smok ing room. It is a nice light compartment done up in rosewood. Going downthe staircase from the smoking room we come to two handsomely got up staterooms on the portand star board side. These are excellently furnished, the paneling being of sycamore wood. Abaft of these rooms are a large stateroom and the ladies' cabin, both finished off in white enamel The "Andria" carries quite a complement o
boats on her davits, including a Dartmouth built ten and one-half knot steam launch.
The "Andria" was one of the yachts which took part in the Jubilee Naval Review at Spithead on June 24.

ROMAN BATHS

In the earliest times we have records of people bathing in the rivers Nile and Ganges. From an early period the Jews bathed in running water, using both ped in running water, using both modate at one time 1,600 people and the baths of of the many amusements which the enormous club period the Jews bathed in running water, using both
hot and cold baths and employing ointments. Baths

THE FRIGIDARIUM, OR SWIMMING BATH OF THE BATHS OF CARACALLA, ROME.
which were provided for those who wished to enjoy them. Sometimes a second bath was taken to prepare for the evening meal. It will readily be seen that as three or four thousand people visited the great baths every day, a very large number of servants and slaves were necessary to care for them.
The arrangements which were adopted to run the establishment are so interesting that we reproduce several engravings from the work of the late J. Henry Middleton, "The Remains of Ancient Rome." These illustrations show the methods of heating and fireproofing the baths. We also give an illustration of the
present condition of the "frigidarium" or swimming present condition of the "frigidarium" or swimming
bath of the Baths of Caracalla. The portion of the baths which we shall consider is entirely separate from the constructions which were devoted especially to the entertainment of the bathers. The chief rooms in the largest establishments appear to have been put to distinct uses, but in the smaller baths, one chamber was made to do duty for more than one purpose. The chief departments in the large baths were:

1. The apodyterium or spoliatorium
bathers undressed.
2. The alipterium or unctrarium, where the oils and ointments were kept (although the bathers often brought their own pomades), and where the "aliptae" anointed the bathers.
3. The frigidarium, or cool room (cella frigida), in which usually was the cold bath, the piscina or baptisterium.
4. The tepidarium, a room moderately heated, in which the bathers rested for a time, but which was not meant for bathing.
5. The calidarium, or heating room, over the hypocaustum or furnace; this in its commonest arrangement hal at one end a warm bath, the alveus or calida lavatio; at the other end in a sort of alcove was
6. The sudatorium or laconicum, which usually had a labrum or large vessel containing water, with which bathers sprinkled themselves to help in rubbing off the perspiration.
The rooms which were devoted to bathing proper were often of enormous size. The walls were usually constructed of brick or concrete and the roof was also of concrete. It was necessary to have the walls and ceilings fireproof, as a certain amount of wood was used in the construction.
We present an engraving giving a perspective sketch and section to illustrate the Vitruvian system for protecting the wooden ceiling joists over the hot rooms of the baths by an inner ceiling of tiles. The air space helped to keep the room at an even temperature. The whole under surface of the woodwork had a series of iron bars at intervals of two feet. These bars were supported by iron hooks nailed to the ceiling joists. Tiles two feet square were laid on the rows of iron bars, thus covering the whole area of the ceiling. The under side of the tiles was covered with a very hard cement side of the tiles was covered with a very hard cement
called the "opus signinum." Entirely over this was called the "opus signinum." Entirely over this pounded white marble, the so-called "opus albarium." This was so constructed as to prevent the condensed steam from the hot baths striking through the plaster ceiling and the tiles, and causing the wooden joists to rot.
The floors of the baths were carried upon what are called crypto-porticoes, which allowed the servants to appear suddenly in all places, enabling them to attend to the requirements of the bathers without crossing the halls or interfering in any way with the noble Romans.
The description by Vitruvius of the hypocausts or hol low floors used for heating the calidaria or hot rooms agrees closely with the existing ruins. We present an engraving, Fig. 2, from Prof. Middleton's work showing sections of the floors and walls of the baths of Caracalla, illustrating the different methods of heating. The tepidarium being heated by the hypocaust only, and the calidarium both by the hypocaust and the flue tiles up the walls. The following reference to the engraving shows the method of the construction in detail : AA, concrete wall faced with brick; B, lower part of wall with no brick facing; CC, suspensura or upper floor of hypocaust supported by pillars ; DD, another floor with support only at the edges : EE, marble flooring ; FF, marble plinth and wall lining; GG, underfloor of hypocaust paved with large tiles; HH, horizontal and vertical sections of the flue tiles which line the walls of the calidarium; aa, iron holdfasts; JJ, socket jointed flue pipe of tepidarium ; K, rectangular rain water pipe, used where there was a copious down flow of water; LL, vaults of crypt, or basement, made flow of water; LL, vaults

The lower floors were laid with 2 foot tiles over a bed of concrete ; and on this all over the room rows of pillars were built to support the upper or hanging floor (suspensura). These pillars were 2 feet high and were constructed of tiles 8 inches square, set not in mortar but with clay in the joints. In the existing examples these clay joints have been baked into brick by the action of the fire which played among the short pillars all over the space below what is called the suspensura (C C). The example of the hypocaust on the left side of Fig. 2 agrees exactly with the description of

Vitruvius. Thaton the right is a later variety. It was from these hollow or hanging floors that Roman baths were sometimes called "balnea pensilia" or "bal-
nece pensiles." In later times the architects became bolder in their use of cements and concrete, so that the tiled pillars were frequently omitted and the whole upper floor was supported only at the edges as if it were one immense slab of stone. 'The suspensura or floor was about 18 inches in thickness and was formed of four distinct layers. This main mass was of rough concrete, then came a layer of pounded brick and potsherds. Over this was laid a thin bed of hard white potsherds. Over this was laid a thin bed of hard white marble cement, and upon it was embeder surface of the
tesserae or slabs, which formed the upper surf floor. The furnace was at one side or below the hypo causts, and the heated air or smoke from it, after circu lating between the two floors. escaped up the flue which wasformed in the thickness of the concrete walls. This flue was usually formed of a jointed pipe about 10 to 12 inches in diameter. The fluid concrete was poured around these flues. It is probable that the flues were continued above the roof, terminating in a chimney pot for the exit of the smoke, so that there was little risk of any rain water leaking in around the chimney pot
Another method of heating is given by Prof. Middle ton, and is shown at H H, Fig. 2. This was done by lining the hollow wall surface of the bath room with
upright lines of flue pipes rectangular in section. These upright lines of flue pipes rectangular in section. These
flues communicated at the bottom with the space flues communicated at the bottom with the space top of the building, where the hot air and smoke escaped. Thus the whole wall surface, as well as the hollow floor, was strongly heated. It is believed that the exits of a large row of flue tiles were converged at one point before issuing to the roof.
The methods of heating which have been described were used not only under and around the hot air baths in the great "Thermae," but in the baths of private houses, as the "atrium vestae," or house of the vestal virgins.
Fig. 3 gives a section of the small bath room in the upper. floor of the atrium vestae, showing methods of the flue tiles he the walls. The hollow hypocaus passes under the floor of the room and also under the hot water bath, which is made of concrete faced with thin slabs of white marble. The mouth of the furnace is immediately under this bath, which is 6 feet long, $33 / 4$ feet wide and 2 feet 4 inches deep. The pillars made of
tiles, which support the suspensura, rest on the barrel tiles, which support the suspensura, rest on the barrel
vault of the room below. The space between the arches was filled in level with concrete and then paved with tiles, and upon these tiles the pillars rest. Three of the four walls of each of these rooms are covered with a hot air jacket in the form of a rectangular flue tile, which are bedded and covered with a thick mass of ement, against which the
whole surface of the walls.
This is shown in the horizontal section in Fig. 3. It also shows the nails which are driven into the joints of the brick work to form a "key" for the cement into which the flue tiles are bedded, also the T shaped clamps which are used at a few places to hold the flue tiles, and also the long iron or bronze clamps to hold the marble slabs. One end of these clamps is driven deep in the concrete wall, the other end is turned down in the upper edge of the marble slab. This interesting time of Severus, about $200 \mathrm{~A} . \mathrm{D}$. ., when important alterations and repairs were carried out. As the house decreases in importance, of course, the size of the bath rooms also decreases, but the general principle which governs the structure is the same, and therefore it affords an interesting study for the architect and archæologist. It is a curious fact that many of our modern systems of fireproofing structures depend largely upon the methods which the Roman architects used in constructing their baths.
The ruins of the Baths of Caracalla seem very confusing, but as soon as the orientation is understood the plan of the enormous construction begins to unfold itself to the visitor, and he begins to understand how it was that the Romans were able to build masses of buildings easily and economically. When we consider the vaulting, which will probably always remain the crux of the architect who attempts to build in the Roman style, we must remember that it is not arched construction, but is monolithic. With his semiliquid cement the Roman architect was enabled to really cast his vaults. "Grandeur was the dominant trait of empire could not efface the racial feeling for mass.

Dr. Kandt, a German explorer, has started out to find the ultimate sources of the Nile. Having the promise of assistance from the Congo authorities when he
reaches their territory, he has set out from German East Africa, intending to make his way to Urundu Uhha, and Ruanda. There he will ascertain the size of Lake Akenjaru and measure the volume of water in the rivers Kagera, Ruvuru, Nyakirongo, and Aken having the greatest volume to its source.

INTERESTING RECENT INVENTIONS.

We give herewith a group of recent inventions for which patents have been issued by the United States Patent Office within the last few weeks. They show the versatility of inventors, and seem to indicate that subjects for invention are not wanting. These examples are taken because of their novelty and originality. Almond's Rotary Engine.-We have shown an mprovement in that class of rotary engines in which tangential cylinders provided with outwardly movable pistons are contained within concentric casings. This invention has some features of interest which we do not remember to have seen in previous forms of rotary engines.
The housing, A, is stationary. The shaft, B, is ar anged eccentrically in the housing and carries the head of the engine, consisting of four tangentially ar ranged cylinders, C, D, E, and F, provided with pis tons, $\mathrm{C}^{2}, \mathrm{D}^{2}, \mathrm{E}^{2}, \mathrm{~F}^{2}$. The outer end of each cylinder is open so as to allow the piston to protrude. The inner end of each cylinder has a port, \mathbf{j}, for the admission and exhaust of steam. Steam is admitted by a pipe G, to an inlet pipe, k, formed in the head, d, of the housing, and it is exhausted through the pipe, \mathbf{H}, from housing, and it is exhausted through the pipe, H, from an outlet port, l, which is also formed in the head, d.
The inlet port, k, is of such length as to allow the cylinder, F, as soon as it moves from the position shown, to receive steam, which it continues to receive until it reaches the position of the cylinder, D . The outlet port, 1 , is of such size and length as to allow a cylinder to exhaust when it reaches a position a little in advance of the position of the cylinder, D , as here shown, and it continues to exhaust until it reaches the positio occupied by the cylinder, F .
Each of the pistons carries on a tubular central stem a pivoted shoe, having a steam passage in its pivotal ortion communicating with a steam space formed in the shoe, and between the shoe and the cylindrical wall of the housing, A. When steam is admitted to a cylinder, it passes through the tubular stem into the steam space in the shoe, forming a cushion which op oses the outward pressure of the piston, thus avoid ing friction, the steam space in the shoe having approximately the same area as the piston itself.
Rotary motion in this engine is the resultant of the utward pressure of the pistons and their angular ad outware.
This interesting machine is the invention of Mr Thomas R. Almond, of Dun woodie Heights, New York Turner's Field Magnet.-This improvement in field magnets of dynamo electric machines and electric motors was invented by Mr. Charles P. Turner, of this city.
The magnetic permeability of iron used in the field magnet cores of dynamos and motors is much affected by the presence in the iron of carbon, phosphorus and other impurities, which decrease the power of the field magnets for creating lines of force. Alloying iron with ther metals also causes losses which are considerable.
This invention is designed to partly or wholly preven these losses and thus increase the efficiency of th dynamo or motor. The invention is extremely simple It consists in the combination with the polar extremi ties of the cast or wrought iron field magnet of a facing of pure iron on the surface adjacent to the armature The pure iron is deposited electrolytically, and being homogeneous throughout, insures greater permeability than can be realized in the best forgings or castings.
Livingston's Sounding Board.-The engraving only half conveys the idea of the important invention is designed to illustrate. This is a new sounding board for pianos and other musical instruments, which is designed to give the instrument a greatly improved quality of tone in both the treble and bass, the reson ant qualities of the sounding board being proportioned to the requirements by using soft grained wood in the board in the regions vibrated by the lower strings, and fine hard grained wood in the portions vibrated by the higher strings.
In the construction of this sounding board the in ventor not only improves the quality of the board, but he is enabled to useshort pieces of hard grained lumber which have heretofore been wasted.
The inventor, Mr. James C. Livingston, of Little Falls, N. Y., has succeeded in securing broad claims for his simple but important invention.
Lotherington's Sall attachment for Bicycles -The illustration shows an attachment to bicycles,
which will be appreciated by wheelmen, who, after which will be appreciated by wheelmen, who, afte and go without exertion in the opposite direction.
The invention is a simple and compact attachment by means of which sails, carried by spring rollers, are spread and held in the position of use by gaffs hinged by a ball and socket joint to the upper end of the roller casings. The gaffs, when the sails are furled, lie over he sails in the casings or tubes, closing them. The rider may readily set the sails by pulling chains or cords ttached to the gaffs.
The inventor of this device is Mr. Thomas Lotheringon, of Ardmore, Indian Territory.
Berg's Feed Water Regulator.-This is a differential feed water regulator, used for regulating the
supply of feed water to a steam boiler or a battery of tom walls of the interior chamber. It has three groups the chamber formed in the inverted float, C , so that boilers, and is to be used in connection with boiler of ports, the groups-upper groups-being arranged the air space therein is constantly supplied with air. feeders of various kinds, and, when it is desirable, it is near the upper end of the valve cylinder, while the The upper part of the casing, A, is connected with the
furnished with a high and low water alarm.
The shell or casing, A, is divided into four chambers the main chamber, a, the interior chambers, a^{\prime} and a^{2}, in the lower part of the casing, and a sediment chamber, a^{3}. This chamber is connected by a pipe, a^{4}, with the water space of the boiler. As the difference be tween high and low water in a boiler is comparatively
lower group is located in the chamber, a^{\prime}. The valve steam room of the boiler by pipes, a^{5}, a^{7}. With the cylinder, B, is provided with inwardly projecting an- rise of the water in the steam boiler, the float valve is nular ribs, to which is fitted a connecting tube, \mathbf{B}^{\prime}, moved upwardly, so that the middle group of ports is forming in the interior of the valve cylinder two gradually closed, and the pressure in the discharge spaces, a cylindrical space and an annular space. The pipe of the feed pump gradually increased and the middle and lower groups of the ports communicate with motion of the feed pump retarded. The steam cylinder this annular space, while the upper groups of ports of the feed pump is provided with a pressure regulator

SOME RECENT AMERICAN PATENTS.

small, the motion of the water from a steam boiler to communicate with the interior space of the tube, B^{\prime}. \mid which causes the opening or closing of the steam valve the bottom of the chamber, a^{3}, and back into the boiler is slow and steady, so that the sediment contained in the feed water can be readily collected at the bottom of the chamber, a^{3}. There is a screw plug in the bottom of the casing for removing the sediment.
The casing is provided with the usual accessories, such as a water gage, pressure gage, etc. On the exterior of the casing is formed a lip which is located on a level with the main water level of the steam boiler. A valve cylinder, B, is supported in the horizontal top and bot- ing of the feed water. The air rises and is collected in pressure in the discharge pipe of the feed pump is de-

The intermediate group of ports is located in a groove or depression, which is larger than the ports. This roup is opened or closed by the float valve, C.
The chamber, a^{1}, is connected by a pipe, d^{4}, with the the feed pump is connected with the bottom chamber a^{2}, by a pipe, d^{5}. In the chamber, a^{2}, is arranged a mall perforated brass plug e which conducts to the
f the pump according as the pressure in the discharge pipe is increased or decreased.
When the pressure regulator is not used, the piston valve, D , is made to control the steam passing out of the pipe at the top and supplying the pump with steam.
When the water level in the steam boiler falls, the float valve is lowered by its own weight, and the
creased, so that the motion of the pump is accelerated and the steam boiler is supplied with water according to the quantity of steam used.
The inventor of this feed water regulator is Rudolph Berg, of Pittsburg, Pa
Nagel's Process for the Manufacture of Camphor.-Early in the present century it was known that a product sometimes called "artificial camphor" could be produced in the laboratory, by passing hydrochloric acid through turpentine until the latter was saturated. The product, however, was not camphor, nor artificial camphor, but a hydrochlorinated ter pene. It has lately been discovered that camphor can be made from hydrochlorinated terpene, and it is possible to produce camphor artificially on a commercial scale.
Oskar Nagel, of Vienna, Austria-Hungary, has in vented a patented process in which hydrochlorinated terpene is converted into true camphor. In carrying out this invention, the inventor employs anhydrous hydrochloric acid and anhydrous turpentine; but a slight departure from the absolutely anhydrous state in either of the materials named does not cause a failure in the process. Hydrochloric acid gas is first produced and dried, and the turpentine, which may be any pure commercial article, is made by adding calcium chloride, which absorbs the water, and which is settled by filtration.
The anhydrous hydrochloric acid gas is passed through the turpentine until the saturation point is reached. During the passage of the gas through the turpentine both are cooled by a refrigerating agent such as ice and salt. When the point of saturation is reached there is found in the vessel in which the operation has been carried on a crystalline substance and a heavy liquid. The latter is pumped off and filtered to obtain the crystals held in solution. These crystals with the crystalline precipitate are the hydro chlorinated terpene. These crystals are recrystallized with benzine or washed with alcohol; then the in ventor mixes the same with lime, using about three parts by weight of crystals to one of lime; then distilling and producing camphene, and first a by-product, calcium chloride. The camphene is then treated with nitric acid under moderate heat, thus freeing the oxygen, which is taken up by the camphene, the product being camphor.
The apparatus by means of which the camphor is made is illustrated by the cut which shows the tank, A, in which is formed the hydrochloric acid gas, the heavy products being deposited in the tank, C. The ga then passes through the worm, D^{\prime}, which is cooled by water. It is then discharged into the closed tank, F. In this tank the moisture is condensed and separated from the gas and the dried gas passes off through the tank, G, containing calcium chloride. The gas is then passed into the tank, H, which is provided with an inner tank containing the turpentine. In this tank the combination of the hydrochloric acid gas with the turpentine is effected. The tank in which the combi
nation is effected is kept at a low temperature by ice The gas escaping from the turpentine in this tank is introduced in the same manner into the turpentine contained in the tank, H^{\prime}. After the crystals are formed in the turpentine and precipitated, they are transferred to a vessel, J (shown in the lower figure) and the lime is added. The mixture is then distilled the gas passing off through the pipe, K, to the worm in the vessel, M, where it is cooled.
The product at this stage of the process is camphen $\left.\mathrm{C}_{10} \mathrm{H}_{10}\right)$. This camphene is then treated in the vessel, N , by adding thereto nitric acid. Other oxidizers may be employed in place of nitric acid. The result o this process is a body of crystals which may be com pressed into a solid, and which is the same as th natural camphor found in commerce
Brooke's Cigar Lighter is designed to act as shield for the end of a cigar while the match is intro duced and the cigar is being lighted.
It consists of two similar halves stamped from shee netal and fastened together with a rivet to form a hamber, into which the end of the cigar is inserte and which shields the flame of the match so as to pre vent it from being extinguished.
This invention is due to Isaac Brooke, of Potts own, Pa.
Morris' Ball Pulverizer. - The machine shown in the engraving was invented by Mr. William L Morris, of Cleveland, O., and is designed for pulveriz ing rock and ores carrying deposits of precious metals In the upper part of the casing there is a circular chan nel or track, 9 , in which are placed balls, 10 , which are caused to roll around on the track by the carrier mounted loosely on a vertical shaft so that it will not turn on the shaft, while it is capable of adapting itsel o the work to be done
The top of the carrier is provided with a disk, 19, on which the ore is delivered. When the shaft is revolved, he carrier, which rests upon the balls, causes the ball o travel around the ball track, and the material fed on the machine and thrown outwardly by centrifugal orce is pulverized by the combined action of gravity and centrifugal force. The material pulverized drops into the chute, 29 , and is delivered at the side of the machine. The spiral springs hold the driver down to

Fleischer's Rotary Engine.-In this engine the piston consists of a cylindrical carrier, \mathbf{F}, having three radial guides containing pistons, each having a rod exending inward and provided on the inner end with an rm carrying a roller which runs in the cam, \mathbf{E}, and serves to keep the pistons in contact with the inner surface of the cylinder throughout the entire revolu tion of the engine, and to carry the pistons over the abutments which are on diametrically opposite sides of the cylinder. Steam is admitted through ports, I, J, and valves, K and K^{1}, in the abutments, and the expacked and the abutments are provided with packing at H, H. Steam can be cut off at any desired point
by means of the valves, K and \mathbf{K}^{1}. Mr. Richard J Fleischer, of Milwaukee, Wisconsin, is the inventor of his engine.
Barrett's Hydrocarbon Burner. - In this burner an oil feed pipe, C , is inclosed by the steam pipe, A^{2}, and a retort, F, extending outwardly, and is nade in the form of a coil, upon the end of which is placed a burner, G, having a flaring mouth reachin under the retort, F. Steam issuing from the pipe, A^{2} tomizes the hydrocarbon and passes it through the retort, the mixture being in condition to burn as it sues from the burner, G. The inventor of this burne is A. Barrett, of San Bernardino, Cal.
Kersten's Bottle Washer.-This machine con ists of a disk carrying a number of pins projecting from the face thereof at an angle, the disks being mounted on a shaft and arranged to rotate in a tank filled with a cleansing solution. On the front of the tank at one side is arranged a guideboard which en ages the butt ends of the bottles as they move down ward into the liquid, and the tank is of such a width as to prevent the bottles from sliding off the pins dur ing the time they are traveling through the liquid in the tank. As the bottles descend into the liquid the readily fill, and as they rise upon the opposite side they discharge the cleansing liquid back into the tank The bottles are removed from the pins as soon as they merge from the sterilizing liquid.
The engraving shows front and side views of thi nachine, which has been patented in the United State and several foreign countries by Emil Kersten, of Richmond, Va.
Seufert's Can Washing Machine.-The rubber feed pipe, C, carries the filled cans forward under the cover, E, while the cans are acted upon by the brushes, F, \mathbf{F}^{\prime}, mounted on endless chains and running in oppo site directions. By means of this arrangement the ans are turned around several times in their passage through the machine. It is almost unnecessary to say that the cans and brushes are submerged in a cleansing liquid during the operation of washing. Guards are provided for preventing the water from splashing
This invention was recently patented by F. A. Seu ert, of The Dalles, Oregon
Marchaut \& Dormoy's Valve.-The annexed en graving represents an improved valve designed fo raining the water of condensation from a steam pipe On the end of the steam pipe is secured a thick fange, which receives bolts passing through the flange of the adjacent section. The bottom of the thick lange is formed of an enlargement into which is screwed an outlet or discharge pipe, having at its upper end a valve seat, and in the top of the same flange is threaded opening above which is arranged a stuffing box. The valve is screwed into the opening, and the valve stem extends across the diameter of the pipe and holds the valve formed on the end thereof in contact with the valve seat. The valve stem is turned by the hand wheel when it is desired to open or close the valve. The inventors of this valve reside in Bordeaux France

recently patented inventions. Engineering.

Condenser.-Albert Hoberecht, Enenada, Mexico. For locomotives and other engines, team or vapors, this inventor has devised a condenser nith cold air tube extending centrally through its body ing chambers having perforated portions, there being hteral air tubee and baffle plates. The condenser is de signed to save the water now pasing off in the eexhaust
and permit its use over and over again. The body of he condenser is divided into sections by the baffe plates, with an annular perforated air chamber in each bly arranged in
Sight Feed Lubricator. - Alexander Λ. De Witt, New York City. The reservoir forming pith the lower portion of this connected at its lower end a check valve between the feed tube and reservoir and a check valve between the feed tube and reservoir and ervoir to regulate the height of the liquid in the feed tube. Any desired pressure may be applied upon the column of liquid in the reservoir, to make the feed of the reserve column in a measure automatic, and the both the reeervoir and the sight tube

Mechanical.

Tool for Stone Planers.-Charles A. Thomson. Kearney, N. J. This is a tool for forming
corrugated or tooled surface at right angles to the travel of a planing machine, and is attachable to the ordinary tool head, to which the body of the device is
bolted. Its lower portion has recesses to receive a camcarrying shaft actuated by a flexible shaft connected with ony convenient revolving shaft, and the body of the te-
vice bas guides for the movement of a reciprocating plate vice bas guides for the movement of a reciprocating plate
to which is bolted the cutting tool, the plate having lugs 0 which is boited the cutting tool, the plate having lugs
embracing the cams, whereby the motion of the plate will be positive in both directions. The cutting tool may be of any width necessary to cover the surface of the stone operated upon, and the device may be attached to a tool head adapted to work on the side of the stone as well as on top.

Agricultural.

Corn Harvester. - James L. Hart Grenola Kansas. This is a machine which may be at
cutting to a lumber wagon or or similiar vecticicle, when apparatus will be fastened to the
cut ander side of the wagon bed in front of the hind wheels, and the dropping mechanism to the lower end of the which are received on a dumping platform and delivered npon the ground when a ficient quantity has been cot the stalks being carried out of the path of the ground wheels. The machine may be accommodated to rows of different widths.

Miscellaneous.

Hardening Rails.-Harry C. Clement, New York city. To secure a more thorough and nform hardening or rails this inventor provides a hardning tank having passage for the rall and aprinking which is received by carriages traveling on the tank有 of the track of the rail being inverted so that as the water heated by contact falls away its place is supplied by fresh, cool water, and the hardened rail, while still inverted, having ite

Heating and Ventillating Appara TUs.-William L. White, Princeton, Ind. According to this invention a jacket or casing surrounds a fire box or furnace proper, and is separated from it by a space for
the air to be heated and passed into living rooms, the casing being made and supported independent of the fire box, and an outer casing surrounding the inner one, being attached to its cornice and supported at the base independently. The fire box and its casing may be used lone, the outer casing constituting an independent ventilating attachment which may be easily and quickly R
RADIATOR.-Augustus Eichhorn, Orange, N. J. To make an e:lsily adjustable hot water radiator, for varying the degree of heat thrown off, this inventor employs a series of raciating loops communi-
cating at each end, excepting one loop which has its tiguous loops and itrom communication with the conthem. This loop communicates at its lower end with a water feed pipe, and each end loop communicates with a return pipe, the latter pipes being valve-controlled and having air vents. The loops on each side of the feed
may be thrown in and out of action by the opening or closing of the valves to the return pipes.

provides a device of which the shaft or spindle extends on both sides of the lamp, there being at each head for turning the shaft, there being at each end a he teeth of the the shaft, and each head having teeth, tion. As one places the fingers on the head the direction of the teeth indicate the way in which the head should

Fire Kindler. - Nicoll MacDonald, Mount Oliver, Pa. This is a kindler designed to produce come a glowing mase for abonten minutes, and then be until entirely consumed: It is made in the form of a hollow brick with detachable base section and transverse partitions, of pulped paper, sawdust and pulverized coal, and, after moulding and baking in an oven, it is saturated with a combustible compound, which preferably consists of a speciffed mixture of coal tar, crude
petroleum and resin. A surface binding solution of flour, resin and water closes the pores and gives the article a glossy surface.
Hat Holder.-Julia Egan. Savamah, Ga. To securely hold a hat in a trunk or box, prevent ing the hat from being crushed or otherwise injured, hats of different provides a holder readily adjustable for be fastened by screws or otherwise to a tray or other fixed part, and ou the base is a short post from which extend a series of arms each carrying a slidable spring
clamp adapted to engage the hat brim and hold the hat in place. When the device is not in use, the arme hat be removed from the post and folded to take up but little room.

Rocker.-Joseph S. Byrnes, Brooklyn, . Y. This is a device for use on chairs, bicycle eaddles, etc., and consists of a base made in three sections
and having a curved top, while a rail curved in an op and having a curved top, while a rail curved in an opposite direction to the top of the base is adapted to ride
on it. On the under side of the central fixed section of the base is a lug to be screwed on the bicycle saddle post, and each of the two side sections is connected by a hinge to the central section. The rail, connected to the sade, as it rocks forward on the top surface of the
base, draws the rear section upward, swinging on its hinge, and when the rail rocks rearwardly the front sec tion of the base swings upward, the rail being always permanently connected with the base, and the rail and
seat readily following the movement of the rider's body.

Meat Hanger. - Joseph Beaulieu,
hanging bacon is provided by this invention, one which
will hold the meat without mutilation and permit it to be sliced uniformly. It is preferably made of steel wire in two sections, one section having a loop, one side of which is free, and forms a pin capable of engaging with the meat, while the second section is capable of bein two sections.
Shirt.-Bennett Berenstein, New York City. A sleeve piece, according to this invention, es
tends beyond the armholes and forms the sleeves, e tending also over the shoulder and down the back and front, being stitched adjacent to the armholes and at its lower front and rear edges, the central portion form
ing a bosom and reinforce for the back and shoulders of the shirt.

Whistle Drum.-Orville R. Noble, Granville, Mass. On the inside of the shell of a drum, an eyelet, thus forming an air passage to the inside of the casing, on an annular shoulder in which is secured a whistle. The whistle is so supported as not to be dam causes a whistling sound to be produced.
Notr.-Copies of any of the above patents will be furnished by Munn a Co. for 10 cents each. Plesse send name of
of this paper.

SCIENTIFIC AMERICAN BUILDING EDITION

JULY, 1897•-(No. 141.)
TABLE OF CONTENTS.
No. 1. Perspective elevation, in colors, and floor plans of a Colonial residence at Overbrook, Pa . A
unique design. Mr. Thomas P. Lonsdale, ar chitect, Philadelphia, Pa.
No. 2. Colonial house at Richmond Hill, N. Y., recently erected at a cost of \$4,200. Perspective view
and floor plans. An attractive and pleasing design. Architects, Messrs. Haugaard Brother Richmond Hill, N. Y.
ence, in the Colonial style, recently erected at Larchmont, N. Y., for Mr. William Murray, elevations and floor plans. A pleasing design with excellent interior arrangement. Mr. Frank A. Moore, architect. New York City.

No. 4. A cottage at Prohibition Park, Staten Ieland, re cently erected for Mr. August Mayer at a cost o
$. \$ 2,250$ complete. A very attractive design fo a modern cottage of small dimensions. Per spective elevation and floor plans. Mr. John Winans, architect, Prohibition Park, Staten
o. 5. "Wyandank," the country residence of Lieut. Morton at Southampton, Long Island. A mos excellent design in the Colonial style. Two James B. Lord, architect, New York City.
No. 6. A modern dwelling at Binghamton, N. Y cently erected for Mr. William Mannis at a cost urban house tere. A good example of a subfloor plans. Messrs. T. Q. Lacey \& Son Binghamton, N. Y., architecta.
No. 7. A Colonial residence at Ardmore, Pa., recently elevation and floor plans. Mesars. Boyd Boyd, architects, Philadelphia, Pa .
No. 8. A Colonial residence at Bensonhurst, Long Island recently erected for Mr. Thomas A. Ritson. Two perspective elevations and floor plans. Brothers, Brooklyn, N. Y.
No. 9. A residence at West Chester, Pa., recently erected floor plans. A Perspective elevation and features. Mr. Edward s. Paxson, architect Philadelphia.
No. 10. A residence at Attleboro, Mass., erected for E. P. Clafin, Eeq., at a cost of $\$ 5,500$ complete. An. Barther \& Company, architects, Knozville, No. 11. Perspect

Ratiebon ond interior view of the Walhalla of ion of the Parthenon at Athens. This temple was erected at a cost of aboat $\$ 6,000,000$, and is devoted entirely to the display of busts of distinguished Germans.
No. 12. Design for a "cozy corner."
No. 13. View of tbe library of Mr. Henry L. Hotchkiss New Haven, Conn.
No. 14. Miscellaneous Contents: Fatalities to workmen Scaffolding.-Lime water in freezing weather -How to make a cheap greenhouse.-Making Improved sash lock, illustrated.-An improved door hanger, illustrated. -A novel wood work ngy machine, illustrated. - Gray bricks. gage for carpenters and builders, illustrated. The Scientiffc American Building Edition is issued wo large quarto pages, forming a large and splendid M A gazine or Architrcture, richly adorned with elegant plates and ine engravings, illustrating the most iteresting examples of Modern Architectural Construc tion and allied subjects. All who contemplate building, this handeome work an almost endless series of the atest and best examples from which to make selections, thus saving time and money.
The Fullness, Richness, Cheapness and Convenience of this work have won for it the Laraest Circolation all newedealers. MUNN \& CO., Publishers,

\mathfrak{Z} Business and 20 ersonal.

he charge for insertlon under this head is one Dollar
line for each insertion ; about eioht words to a lin Advertisements must be received at publication offic as early as Thursday morning to appear in the follow ing week's issue.
Marine Iron Works. Chicago. Catalogue free. "U. S." Metal Polish. Indianapolis. Samples free. Yankee Notions. Waterbury Button Co., Waterb'y, Ct. Improved Bicycle Machinery of every description.
he Garvin Machine Co., Spring and Varick Sts., N. Y. Concrete Houses - cheaper than brick, superior to
tone. "Ranome," 757 Monadnock Block, Chicago.
For static machines for all purposes, and X ray apparatus, write Reedsburg Electric Mfg. Co., Reedsburg,

The celebrated "Hornsby-Akroyd" Patent Safety O Enginie is built by the De La Vergne Refrigerating Ma-
hine Company. Foot of East 138 th Street, New York. The best book for electricians and beginners in elec ricity is "Experimental Science," by Geo. M. Hopkine mail, Send for new and complete catalogue of Scientil d other Books for sale by Munn \& Co., 361 Broadway

HINTS TO CORRESPONDENTS
Names and Address mast accompany all letters
or no attention will be paid thereto. This is for ouu
information and not for publication.

be repeated: correspondents will bear in mind tha
some answers require not at little reeearch, and
though we endeavor to reply to all either by lette
or in this department. each must take his turn.
Buyers wishing to purchse any article not advertise
in our columne will be furnished with addresees of houses manufacturing or carrying the same.
Special
personal rathten Imfornmation on matters of than general interest cannot be
expected without remuneration. interest cannot be
Scientific American Supplements referred
to may be had at the office p to may be had at the offce. Priee 10 cents reach.
Books referred to promptiy supplied on recelpt MInerals sent for examination should be distinctly
marked or labeled.
(7172) W. J. C. asks: Will you kindly uform writer how to plate a round globe outside the ame as a looking glass? Have failed to find any receipt. A. You will have to coat your globe with silver on th nside. If you coat it on the outside, it will have a lass globes :

Nitrate of silver................... 1Distilled water.......................... 8Alcohol.................... 88

Dissolve the nitrate of silver in the water, add a monia in a quantity just sufficient to redissolve the pre cipitate formed at first, add the alcohol, allow it to rest
four or five hours and filter. The grape sugar is dis four or five hours and filter. The grape sugar is dis
solved separately in 1 ounce of water, and added to the silver solution at the moment of uing. The glass globes and the globes are turned on all sides in front of a mod rate fire, so that the liquid tonches every part alike The coating is done in a few minates, when the excess o
quid is to be removed and the globe washed with dis led water first, and lastly with alcohol. The succes of the operation depenos in a great degree on the clean st speck of dust or grease spot is sure to show. A good way to clean the globes would be to wash them with warm solution of soda, then with dilute nitric acid, and lastly with alcohol, care being taken not touch with the ngers any part of the globes which is intended to be sil-
(7173) A. H. G. says: Will you kindly give me the recipe for making the composition that take are by merely putting a arop of water on it? What I have refence to is an article sold on the streets, that looks ke strips of cardboard, and all you have to do is to made in a form that can be painted on, or cardboand paper dipped into it? A. The substance you refer to is undoubtedly metallic sodium which is cut in thin strips. It flames violently on coming in contact with water. We do not consider its use safe. It could pro bably be used only in strips or chips.

NEW BOOKS, ETC

Standard Text Book List. Contain ing the Publishers' Authorized Price Books of all Publishers. Specia Priced List of Klemm's Relief Pracing, Evolution of Empire Series and lications of William Beverley Harri son, 59 Fifth Avenue, New York
The Locomotive: Its Failures and REMEDIES. By Thomas Pearce larged. Wolverhampton : Thomas
Pearce, 25 Ewins Street, Stafford
Pearce, 1897. Pp. 96. Price \$1.
To any locomotive engineer who has a true scientiff
terest in his business this work, largely in the form o catechism, which details the English practice, would be, we should imagne, of very great interest. We cannot
bat believe that merely as an illuatration of the methods
of the English, the work would have a wide popularity in this conntry. The American engine runner is of so ad-
vanced views that he enjoys the study of his science, and we feel that in commending this hook to him we compli ent his range of thought. He should not restrict him self to the American engine as an object of study, bu
should know what is doing abroad.

TO INVENTORS.

An experience of nearly ffty years, and the prepara-
tion of more than one hundred thousand appications
for patentat home and abroadenabien toundertand
the laws and practice on both continents, and to possess

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

JUNE 29, 1897,

AND EACH BEARING THAT DATE
[See note at end of list about copies of these patents.]

Fifth whoel, vebicie, Ẅ. F. Kiramer.

reight transferring apparatus, McCabe \& Ander-
Funace. See Biaiait furnace." ore roasting fur-
nace.

luing press, A. Dolige..............................
o. Jomore chlorination process of obtaining

$\underset{\substack{\text { gex } \\ \text { xisw } \\ \text { xis }}}{ }$

Phoertisements.
ORDINARY RA'TES. Inside Page, each insertion $-\mathbf{- 7 5}$ cents a line

 nurn ing to toppear in the thintowing weeks sistue.

 WORK SHOPS 9
 BARNES, FOOT POWER
 W. F. \& JOHN BARNES CO 1
CREENERD ARBOR PRESS

anal
The Queen Acme No. 5 Microscone NEW MODEL AS PER CUT. The Ideal. Microscope for A Amateur and accurate adjustments and optical
excellence. Withobjectives giving from
50 to 500 diameters, in case, $\$ 35.00$. end for new Microscope Oatalogue B.M.
QUE EN \& CO. INC. WIDE APART
in their size, use, and cost are the numer ous implements described and illustrated in the wonderful " BOOK OF TO
The vast variety will astonish you.

 This beats Wind stam. or Horse

 WEBSTER M'F'G CO.
1004 West 15th Street, CHICAGO

Dayton Combined Gas and Gasoline Engine.

ROCK DRILLS AIR COMPRESSORS
 =

Lum
Lumil
Mail

Mat

\qquad

 - $\begin{aligned} & \text { Priniti } \\ & \text { Prin } \\ & \text { Printi } \\ & \text { Printi } \\ & \text { Pint }\end{aligned}$

\qquad 2 to 50 H. P. Catalog fr THE DAYTON Every Engine Guaranteed ice avenue, ENGINE \& MFG. CO.,
DAYTON, OHIO, U.'s.
Pierce gas ơ or Gasoline Engine Marine and and launch Outfit STATIONARY ENGINES
 PIERCE ENGINE CO.,
17 N. 17 th Street, Racine, wis
THE EDISON PHONOGRAPHIC NEWS
tells where and how you can procure cheaply a Phonograph or a kinetoscope great money-earning wonders.
Sample copy free.
Edison Phonograph Co., 427 Vine St., Cincinnati, 0. ALCO VAPOR GMmuxwlit/ ${ }^{\text {LAUNCH }}$

MONITOR:MMOGUL
 MONITOR VAPOR ENGIME AND POWER COMPANY

STEAM ENGINEERIMG

TELEPHONES

 Julius Andrae \& Sons $\mathbf{C O}$. milwaukee, wis.

Buy Telephones | THAT ARE GOOD.-NOT "CHEAP THINGS." |
| :---: |
| $\begin{array}{c}\text { The difference in cost is litlle. We guarantee } \\ \text { our apparatus and ruarantee our customers }\end{array}$ |

 Largest Manufacturers of Telephones Largest Manufacturers of Telephon
exclusively in the United States.

NOW IS THE TIME TO SUBSCRIBE
-for the -

ESTABLISHED 1845.
The most popular Scientific Paper in the World The Scientific American has been issued every week by the present publishers for a period of over fifty years. It is the only Journal published in this country which is devoted to a general treatment of the development of the sciences, arts and manufactures. Euch issue is embellished with numerous illustrations showing great engineering works, the most recent inventions in bicycles and motor carriages, new forms of machinery, photography, the latest additions to the navy, new guns, locomotives, etc., sixteen page our our subcription books for a period of thirty or forty years and we often receive letters from old readers stating that owing to a careful reading of the paper since boyhood, they owe their success in life more to having had the Scientific American as their constant friend and companion than to any other one cause.
The Scientific American should have a place in every dwelling, shop, office, school or library. Workmen, foremen, engineers, superintendents, directors, presidents, officials, merchants, farmers, teachers, lawyers, physicians, clergymen-people in every walk and profession in life, will de rive satisfaction and benefit from a regular reading of the Scientific American.
As an instructor for the young it is of peculiar advantage. Try it.-Subscribe for yourself-it will bring you valuable ideas; subscribe for your sons-it will make them manly and self-reliant; subscribe for your workmen-it will please and assist their labor: subscribe for your
friends-it will be likely to give them a practical lift in life.
A yearly subscription to the Scientific American is a most acceptable gift to a son or a friend.

NEW VOLUME COMMENCES JULY 1 st
Subscription Price,
$\mathbf{\$ 3 . 0 0}$ a year, or $\$ \mathbf{1 . 5 0}$ for six months.雼 Send your address for a free specimen copy.

MUNN \& CO., Publishers,
361 Broadway. New York.

AMERICAN PATENTS. - AN LNTER-

 SO SIMPLE A CHILD CAN USE THEM

 nisstrated catalogue. SUNART PHOTO CO. 5 Aqueduct Street, Rochester, N. Y.
"It = Cells = Aboute Cools"

Scientific Books

 AUTONO RILL,
 For particulars, prices, etc.
MEVER TOOL CO. PROPOSALS.
OFFICE IIGHTHOUSE ENGINEER, TOMPKINS-

THE OBER LATHES

Red dles, Whiffitrees, Yokes,
Porch Spotes Spindles, Stair Balusters, Porch spindies, stair Balusters,
Table and Chair Legs and other
Irregular work. CTI Send for Circular A.

Drying Machines

PERPETUAL DATER 25C.

 SOMSECVTIVE NUMBERER, ROCT. Hi IMEERSOLL \& BROTHER.

Water tube safety boiler and furnace for siame
Wate. Humprey

Whien rim, Kydd $\&$ Mitchel.

 TRADE MARKS.
 Beer, mait tonic, ale and porter, Minneapoilis
 ing atd Trading syndicate ititie Caip inajoun.:

 Sta
Sta
Sto

 DESIGNS

Patock caas, E.T.T. Fraim
Ratimb
Ribon M. M. W. Wade.

LABELS.
"King of Cereals"

PRINTS.

"Biçcle Girl" (for Cigars), American Lithographic

 Cann dian par ents may now be obtained by the in-
ventors for any or the inventions named in the fore

THE APOLLO COMPANY never turned out a false-gauge sheet of galvanized iron.
apolio Iron and Steel Company

ROSE POLYTECHNIC INSTITUTE

 TIME NEW BRISTOL. COUN'IRIE

Q COPY LETTERS
 i) fifteen a minute, all legible, use my im-

 Send for illustratea circcular.JOHN H. ANDERSON,

- $\begin{gathered}\text { JOHN H. ANDERSON, } \\ \text { O1O Monadnock, CHICAGO. }\end{gathered}$ STEREOPTICONS

$$
\begin{aligned}
& \text { I EREOP MICUNS, } \\
& \text { \& MAGIC LANTERNS }
\end{aligned}
$$

125 and 127 Worth st., New York

You USE GRINDSTONES ?

 The CLEveland stone co
2d Floor, wilshire, Cleveland, 0 .
 TRADE MARK
DEESIONS,
COPYRICHT8, Anjone sending a aketco and deocorition mat.

 SCIENTIFIC AMERICAN,
 361 MUNN \& COAdway, New York.

AMPLIPHONE Speaking Trumpet For country, shore, and mountains.
By tits ane ordinary peeco can be
distinctly heard for long distances. IT Send for Crircular
NICKLE PLATING WANTED.

 FOR SALE.- Deslign patent. No. 27,020 on Kitchen
 MODELS

Experimental \& Model Work

VOLNEY W. MASON \& CO Friction Pulleys, Olutches \& Elevators PROVIDENCE R.
Fif 500 Colebrated "Syracue" Bu-

WOODEN TANKS.

LEHIGH PREPARATORY SCHOOL

AARBORUNDUMO

BRASS BAND

MANUFACTURE OF STARCH FROM

Prdvertisements. Inside Page, ench ingeriont Inside Paze, ench insertion--75 cents a line
Back Paze, each insertion --- 81.00 a line Rig For some classes of Advertisements, Special and Higher rates are required.
The above are chares per agate line-about elight
and Treds per line. This notice per amate tine-about widh of the lnee.
and is set in agate type. Engraving may head adver-

8"Magnolia" BEST ANTIFRICTION METAL MAGNOLIA METAL CO. For one 3-cent stamp, we will send any Engineer, men
tioning this paper, a 15 -inch Brass Edged Ruler.
"Search=Light" Always Bright.

The Leader!
A lantern that does not jar or blow out. Reflecting surfaces are always bright. All riders say it is-THE BEST. for sale everywhere. Bridgeport Brass Co. Send for Catalog
No. 196.0 \quad BRIDGEPORT, CONN.

NEW PRICES
Golumbia Bicycles
The Standard of the World.
1897 COLUMBIAS
reduced to $\$ 75$
I896 COLUMBIAS
Second only to 1897 Models
reduced to 60 1897 HARTFORDS Equal to most bicycles, HARTFORDS
reduced T 50

HARTFORDS
Pattern 1,
reduced to 45
reduced to 40
HARTFORDS
Patterns 5 and $6, ~ R e d u c e d ~ t o ~$
N
Nothing in the market approached the prices; what are they now ?

POPE MFG. CO., Hartford, Conn. Catalogue free from any Columbia dealer by mail from us for one $\mathbf{2}$-cent stamp.

FXPGRIFIGF!

Has Won Its Position es * Purely On Its Merit.

Adopted and used by the United States Army. We are prepared to offer direct to the rider special price where we are not represented. Write us for particulars.
THE MARTIN \& GIBSON MFG. CO., BUFFALO, N. Y. (Drawer C.)

Strictly high grade. Features-attractive, prace-
tical and substantial. Special price to riders direct in unoccupied territory.

${ }^{\text {The }} 5.00$

Falcon Camera
 Uses our Light-Proof Film Cartridges For 12 Exposures and LOADS IN DAYLIGHT.

Improved safety shutter, set of three stops, fine \begin{tabular}{|l|}
\hline sa, 853.00 in Prizes

For Kodak Plctures.

 EASTMAN KODAK CO,

\hline Por

$\$ 1,475.00$

in Gold.
\end{tabular}

\qquad A Mricenberr bul LAMP. ciate, is the wheelmen will appre
BELL ELECTRIC LAMP

 PRIESTMAN SAFETY OIL ENGINE
 No Wxtra Insurance, No
Steam No Gas. No Gasolino.
Rellable. Sate. EComomical.
and Convenient. Chosen by
Nine Goverrments. Used for
 HANDY WHEN IN A HURRY

ribune Bizycle

Tested and True.

Penetration send for: REVOLVERS Hably

The Easiest Running Wheel in the World. * Send for Catalogue.

HALF A CENTURY OF CYCLES.-AN

SMITH'S ROLLER Spring Seat Post All Sizes. 7 备 to $13 / 16$. Price $\$ 2.50$. GIVE sent on trial. Write, and We'll tell all about it. JOS. N. SMITH \& CO. 30 Larned Street, Detroit, Mich.	
$\text { At } \frac{1}{4} \text { PliCh }$	

 The FARROW \sim
\because AUTOMATIC ${ }^{\text {BRAKE and }}$ CoASTER.

 ECLIPSE BICYCLE COMPANY,
Box \mathbf{X}. ELMIRA, N. Y. THE PARK SPRTN SADDLE

 particulars. c. 2. I row \& Co., Toled o, Onio
 -(

KEUFFEL \& ESSER CO., Drawing Materials
 2-s=

PRINTING IINKE

