

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

AMERICAN BUILT CRUISERS FOR JAPAN. ticular line. The unfortunate decadence of our mer- being done by England and France for foreign govern	There is good reason to hope that the recent plac-	chant marine has left our shipbuilding yards with	ments, it would keep our leading shipbuilding yards in
ing of orders for the construction of two foreign war-	small prospects of securing many orders for ocean	steady employment, and the trade being once estab-	

 building up an extensive foreign business in this par- a reasonable share of the warship construction which is The good work of the Union Iron Works, of San

SHEER AND DECK PLANS OF JAPANESE CRUISER BUILDING AT THE UNION IRON WORKS, SAN FRANCISCO.

JAPANESE UNARMORED CRUISER BUILDING IN AMERICAN YARDS.
Water line length, 396 feet; beam, 49 feet; draught, 17 feet 7 inches; displacement, 4,760 tons; speed, $221 / 2$ knots.

Francisco-the leading shipbuilding plant on the Pacific coast--has borne fruit; and the firm is to build a craft for the imperial Japanese government in substantial token of the impression made in the East by the Charleston and the Olympia, the fabrications of that yard. An order for a duplicate vessel was placed at the same time with William Cramp \& Sons, of Philadelphia.
The new vessel, designated by the Japanese as a second class, unarmored, protected cruiser, is unlike any vessel in our service; and is modeled after several swift cruisers of English build constructed for other nations, the best of which boats is the Japanese Yoshino, which took a very active part in the late Chino-Japanese war, and during her wide service proved herself an exceptionally effective craft.
The cruiser to be built by the Union Iron Works is an enlarged and bettered Yoshino; and it is no small credit to the Pacific yard that it is willing to trust its standing upon the development of lines peculiarly English and to start afresh where the patient practice of its rival has halted
The new ship will have a load water line length of 396 feet; an extreme beam of 49 feet; and upon a normal displacement of 4,760 tons will draw 1 '7 feet $7 \frac{1}{4}$ inches of water.
There will be t win screws, each screw being driven by a triple expansion engine. These engines, which are in separate compartments, are of the four cylinder type ; and each will have a high pressure cylinder of 40 inches, an intermediate pressure cylinder of 60 inches, and two low pressure cylinders of 66 inches in diameter. The common stroke is three feet, and when they work at their maximum power the engines will develop 15,000 indicated horse power, and will induce a speed of quite 221 อ knots an hour. The probability is that this speed will be exceeded.
Steam will be supplied by four double-ended and four single-ended boilers, in four separate watertight compartments; and forced draught will be induced by large blowers exhausting directly into the closed fire rooms. The normal coal supply will be 350 tons, but the bunker capacity will be for 1,000 tons; and upon this liberal allowance the vessel will have an exceptionally wide radius of action. The coal will be stowed abreast the boilers and the engines for the sake of added protection; and to lessen the tax of handling, it will be arranged to fall right in upon the fire room floors.
There is a double bottom from stem to stern, and a cellular form of structure prevails along the water line region. This arrangement, in conjunction with the dis position of coal, and a protective deck, $41 / 2$ inches thick on the slopes and $13 / 4$ inches thick on the flat portion, extending from bow to stern and generally about the level of the water line, offers excellent protection against high explosive shell fire, and guarantees shelter for the vitals and the preservation of stability.
The Japanese know only too well the danger of conflagration in action and its vital menace to efficiency, and with a view to protection, every bit of woodwork will be fireproofed. The ship will be lighted by electricity and ventilated by natural and artificial means and comfortable and healthful accommodations ar planned for the complement of 405 persons.
The armament will consist, in the main battery, of two 8 inch quick-firing rifles and ten $4^{7} 7$ inch quickfiring rifles, and, in the secondary battery, of twelve 12 pounders and six $21 / 2$ pounders. The 8 inch guns are mounted one on the forecastle and one on the poop deck, and each will have an arc of fire of 270°. These guns are protected by steel shields, and, in their rapidfire mechanisms, are beautiful evidences of skill. Each projectile weighs 210 pounds, and a speed of fire of four aimed shots in sixty-four seconds has been attained by a well trained crew. While our own 8 inch guns fire a shell of 250 pounds, our best practice has been one shot in a minute and a half. The 4.7 inch guns are mounted on the main deck, in 3 inch armored sponsons, and are further protected by shields. The forward and aft 4.7 inch guns fire dead ahead and dead astern, respec tively, and have a total arc of fire, each, of 130°. The rest of these guns, in broadside, have a radius of fire of about 100°.
The 12 pounder guns are mounted on the main deck amidships and one at the bow and one at the stern, on each side, in sponsons. These guns likewise have ef fective arcs of fire. The $21 / 2$ pounders are carried on the hammock berthing and in the military tops

The whole armament is capable of great rapidity of fire, and all the guns will be manufactured by the cele brated Armstrong firm, of Newcastle, England. The ammunition for the heavier guns is raised by electrical hoists, while that for the secondary battery will be raised by hand. There are five torpedo tubes, one in the stem and two on each broadside, for the discharge of 14 inch Whitehead torpedoes.
The new ship will have the characteristic handiness of maneuvering common to the Yoshino and her type and will form, with her sister ship, a valuable addi tion to the new Japanese navy
We are indebted to the Union Iron Works, of San Francisco, for plans and particulars.

ESTABLISHED 1845

MUNN \& CO.,
Editors and Proprietors.

No. 36I BROADWAY, = = NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN

 (Established 1845.)One copy, one year, for the U.S., Canada or Mexico...
One copy, six months, for the U. S., Canada or Mexico
One copy.one year,to any foreign country
One copy. one year,to any foreign country, postage prepaid, $£ i 16$ lis. 5 d . 4.00
Remit by postal or express money order, or by bank draft or check. MUNN \& CO., 361 Broadway, corner Franklin Street, New York.

The scientific American Supplemen Established 1876)

Building Edition of scientific American (Established 1585.)

Export Edition of the Scientific American (Established 1878)

NEW YORK, SATURDAY, JULY 3, 1897.

TABLE OF CONTENTS OF

Scientific American Supplement No. 112.

For the Week Ending July 3, 1897.

 carriages which were presented in the competition.-The reasons
for giving up the race are also given. -5 illustrations............

Tration..........i....... iiiustration....
III. CHEMISTRY. - The Prevention and Removal of Smells.-By
 ing work, acco mpanied by illustrations of the engineers the com-
pleted tunel and the machinery ised in constructing the same.-
A most full and elaborate papery. -13 illustrastions............... v. GEOLOGY.-The Arctic Sea Ice as a Geological Agent.-By RALPH 17. I. HYGIENE.-Efficiency of Kerosene Tests............................ 179 III. MARINE ENGINEERING.-Note on the Bessemer Fleet....... 17:9
viII MEDICINE.-The Study of Crime and Degeneration from a X. METALLURGY.-Smelting Furnace Burning Kerosene as Fuel. X. MISCELLLANEOUS.-Reception of the Emperor and Empress of
Russia by the French Acadeny, October 7 , isyt.--1 illu stration....
Engineering Notes....all Engrineering Notes....
Encetrial Notes
Misceellaneous Notes.
XI. MUNICIPAL ENGINEERING.-Lighting American Cities..... XII. PHOTOGRAPHY -X Rays and Photographic Compounds.-
Some researches in fuorescent action.-By V . JoHNSON.......
XIII. STEAM ENGINEERING.-Independent Surface Condenser.- rina

PROPOSED BRIDGE ACROSS THE ST. LAWRENCE

 at quebec.We have received from Mr. Charles Baillairge a sketch of a design which was made by him some forty years ago, for a proposed trussed railway suspension bridge across the St. Lawrence River, opposite Quebec. Our correspondent points out that the question of a bridge of this kind at Quebec is by no means a new one, and that this design, which we now have before us, was submitted as being the best solution of the problem of conveying the railroad and highway traffic across the river. Attention is called to the fact that this sketch of over forty years ago embodies the best features of modern practice for long span railway bridges. The distance across the river, opposite Dufferin Terrace, from cliff to cliff, is 4,800 feet, and this was to be spanned by three 1,200 foot river spans and two 600 foot shore spans. The bridge was to have been built on the trussed suspension system and was to have a double deck, the lower deck being used for railroad traffic and the upper deck for highway and pedestrian traffic. The foundations were to have been carried down more than 150 feet below high water, the piers being built of solid first-class masonry up to the level of the lower floor or deck of the bridge.
The plan view shows an arrangement of five cables. The center cable was to hang in a vertical plane, the four outer cables being considerably "cradled." Mr. Baillairqé points out that this old design is quite applicable in its broad features to the conditions of modern bridge building, and that it would merely be necessary to make such changes in the details as would be called for by modern developments in the manufacture of steel and general bridge material. It is pointed out that the deep foundations could be constructed on the principle of the Hawkesbury River piers erected a few years ago in Australia by the Union Bridge Company, of New York, in which some of the piers were carried down through mud and sand to a depth of 180 feet.

the new rules of practice of the patent

 OFFICE ABROGATED.The revised rules of practice of the Patent Office which were promulgated by the late Commissioner of Patents, were abrogated Saturday, June 19, by Secre tary Bliss on the recommendation of Commissione Butterworth, and the original rules of practice, which were in force April 1, 1892, have been reinstated. The original rules referred to numbered in all two hundred and twenty-nine, and they were condensed by the late Commissioner to eighty-eight
In abrogating the revised rules of his predecessor, Mr. Butterworth has incorporated several amendments bearing upon the practice of the Patent Office. Of these, rule 17 reads as follows :
"An applicant or assignee of an entire interest may prosecute his own case, but he is advised, unless fami liar with such matters, to employ a patent attorney, as the value of a patent depends largely upon the skillful preparation of the specification or claims.

An applicant may be represented by
(a) Any person who, at the date of approval of this rule, is in good standing as a practitioner before the Patent Office.
"(b) Any attorney-at-law in good standing in any court of record in the United States or in any of the States or Territories thereof.
'(c) Any person of good moral character who shall show to the satisfaction of the Commissioner of Patents that he is duly qualified to act as attorney in the prosecution of cases before the office.

the fatigue of metals

An investigation of the fracture of a steel rail on the Great Northern Railway, in England, has brought out some interesting facts bearing upon the question of the fatigue of metals. On the occasion in question a Bes semer steel rail, which had been in use for about twenty-two years, broke into nearly a score of pieces beneath the wheels of a Great Northern express train causing a serious wreck. An examination was carried out by Mr. Thomas Andrews, M. Inst. C.E., and in a paper on microscopic observation on the deterioration by fatigue in steel rails, he gives some very interest ing particulars regarding the appearance of the broken fragments of the rail. The composition of the rail was as follows: Carkon 0.53 per cent, silicon 0.12 per cent, phosphorus 0.08 per cent, sul phur 0.09 per cent. The microscopic examination revealed a large number of fine hair cracks, and Mr. vealed a large number of fine hair cracks, and Mr.
Andrews concludes that the continual hammering of Andrews concludes that the continual hammering of
the wheels had developed these minute fractures the wheels had developed these minute fract the
throughout the body of the metal and produced the remarkable simultaneous failure which occurred at many points of the rail. The occurrence of such hairlike cracks in manufactured steel is not uncommon and just what it is that causes them is an open question. It is possible they occur in the process of rolling, and that in the case of steel rails they are to be traced to this origin more than to the severe concus sion of the traffic which passes over them. This sup position is borne out by the fact that such cracks are
and if they are to be prevented, the cure will have to be found in the process of manufacture. The fatigue of metal is a pretty theory, and one which was largely
accepted a few years ago. To-day, however, it is beaccepted a few years ago. To-day, however, it is believed that such fatigue does not take place, except, perhaps, in cases where the metal
violent and long-continued strains.

MUNICIPAL GOVERNMENT WITHOUT TAXATION.

The city of Glasgow, Scotland, is in the fortunate position of being able to pay all the expenses of the city government out of the revenue derived from its public improvements-a state of things which has earned for this city the title to be called the most advanced and best governed city in the world. The details regarding the system employed by the municipal authorities are given in a letter from Mr. Joseph Asbury Johnson, in the Morning Call, of San Francisco, from which it appears that the progress of improvement of the city dates from the year 1854, when a number of philanthropic citizens formed an association for the improvement of the condition of the slum population. This was practically the beginning of a reform movement which ultimately resulted in an act of Parliament empowering the city corporation to carry out the work which philanthropy and private effort had failed to accomplish. It is claimed that at this time the condition of the poor in the city was worse than in any other of the cities of Great Britain. On June 11 occurred the thirty-first anniversary of the passage by the British Parliament of the Glasgow Improvement Trust Act. The measure has worked so well that to-day the slum districts are practically eradicated. The city condemned the wretched tenements and erected in their place the very best form of modern sanitary buildings, containing one, two, three, four, or five room apartments, which the city rents to the tenants at from $\$ 3$ to $\$ 17$ a month. The water and gas rates which are paid to the city are merely nominal and reduce the cost of living to a minimum. There are altogether over one thousand of these suites of rooms or flats owned by the city and rented at the prices named above, and at the average rate of six persons to the flat, there are over six thousand people accommodated
in this way. The scheme has been so well managed in this way. The scheme has been so well managed
that the income derived by the city not only covers the interest of the investment, cost of maintenance, and all incidental expenses, but there has actually accumulated a sinking fund which is gradually wiping out the debt incurred in the purchase of the condemned property and constructing the new tenements.
Encouraged by the success of this experiment, the city organized a system of relief and benefit for widows and widowers with small families who are obliged to go to their daily labor and have no one in whose care they can leave the children. A large building was erected, containing one hundred and seventy-five bedrooms and a number of nurseries, bathrooms, kitchens, and playrooms for the children, and a staff of nurses was engaged to look after the little ones during the entire day. The charges are extremely low, including as they do light, heat, washing and care of the children, etc. The prices paid are as follows: For a mother and child, 79 cents per week; a mother and two children, $951 / 2$ cents; with three children, $\$ 1$, and $121 / 2$ cents for each additional child. For a father and one child, $\$ 1.04$ a week; father with two children, $\$ 1.21$ per week; with three children, $\$ 1.38$ per week, with a charge of 16 cents extra for each additional child. In addition to this, board is provided for adults at 5 cents for breakfast, 8 cents for dinner, and 6 cents for supper, or 19 cents per day. Summing up these items, we find fortably for $\$ 3.38$ per week, and a man with three children for $\$ 3.75$.
A further extens
A further extension of the operations of this laudable system of government is now being carried out, by which the city will be given parliamentary power to expropriate property to provide sanitary dwellings for all the working classes. So excellent is the credit of the city that it is able to borrow all the money it needs at $21 / 2$ per cent, a rate of interest which will go far to make the venture a financial success; and it is reasonably expected that the social and sanitary results will fully compensate the city for the outlay. It may be mentioned here that many years ago the city established public wash houses where, for 4 cents an hour, a woman is allowed the use of hot and cold water washtubs, and may have the washed clothes machine-dried and mangled all within the hour. It is claimed that of all the vast number of operations of this kind undertaken by the city none has proved a failure, and what this means can be understood when it is said that the authorities have under their care city farms, city markets, dairies, libraries, scientific schools, and many other things of like character. Indeed, the city has realized in fifty different ways the reduction of the cost of service to the public which comes from the public ownership of lighting plants, street cars, waterworks, markets, and other public utilities. In conclusion it may be said that no clearer tribute to the success of the system can be paid than by the fact that the entire revenue of the city is derived from its public works and institu-
tions, and that the hours of service of the public employes have been shortened and their daily wage increased.

SETTLEMENT OF THE VACANT PUBLIC LANDS OF THE UNITED STATES.

The settlement of the middle and far West of the United States presents the most striking example in history of the rapid subjugation of a virgin country by an enterprising race. The records of ancient or medieval times fail to show a single instance in which a people has taken possession of the land so swiftly and covered it as if by magic with the evidences of an upto date civiiization. Nor is it likely that such a development as that of the past thirty years will be repeated in any other quarter of the world. The great railroad which is under construction by the Russian government across Siberia is not likely to produce any such a transformation as followed the completion of our own transcontinental lines to the Pacific coast ; and judging from what has already been accomplished in the civilization of Africa, it is likely that its development will be slow in comparison with that of our Western territories.
If we wish to trace the history of legislation on the subject of the disposal and settlement of public lands in the United States, we must go back to the earliest days of the republic. An ordinance was passed in 1787 which provided for the organization of the territory lying to the northwest of the Ohio, and declared that the new States should never interfere with the disposal of the soil by the United States. In an interesting article in the National Geographic Magazine, by Mr. Emory F. Best, assistant commissioner of the General Land Office, we are told that in all subsequent admissions of new States into the Union the absolute proprietary power and primary right of disposition of the soil has been uniformly reserved by solemn compact in conformity therewith. Cessions of territory to the United States were made upon the condition that the land should be held in trust for all the States, the original purpose being to create a fund for the redemption of the public debt.
The basis of the public land system is found in the plan submitted to Congress in 1790 by Mr. Hamilton, in which it was sought to raise revenue from the sale of the land. It provided for the disposal of the public domain at public offering, by private cash sales, and by the allowance of the preference right of purchase to actual settlers under the several pre-emption laws. These laws were at first temporary, being limited in their operation, until the general law of 1841, which continued in force until its repeal by the act of March $3,1891$.

The general policy of sales for revenue remained unchanged until the question of free homes for the people came to be agitated, and resulted in the homestead law of 1862 . The homestead law provided that
any citizen who is the head of a family, or who has arrived at the age of 21 years, may acquire title to 160 acres of land by residing upon, cultivating, and improving the tract for five years immediately preceding his final proof, free from all cost except the Land Office fees.
The homestead law was one of the most beneficent ver recorded in the statute books of a nation. Coming about the same time as the extensive grants of land in aid of the construction of the Pacific railroads,
it proved to be a powerful factor in the building upon of the vast extent of country lying to the west of the Mississippi River. Thirty-five years ago the Indian roved over this country, much of which was known as the Great American Desert, and dwellers in the Eastern States only caught an occasional glimpse of its natural riches, when observant travelers returned with stories of its rich grass lands and endless ranges of orest-clad hills. How largely the settlers have availed themselves of the law is shown by the fact that up to
the last fiscal year 508,936 homestead entries have been allowed, embracing an area of $67,618,451$ acres.
Altogether, during the period under review, 247,000, 000 acres have been sold for cash. In this total are included the homestead entries, which have realized about $\$ 280,000,000$. This item, with the grants to railand internal improvements, includes the greatest portion of the public lands already disposed of by the government.

There remains some $600,000,000$ acres of vacant public and, exclusive of Alaska, of which $100,000,000$ acres only are favored with sufficient rainfall for the success-
ful cultivation of crops. The title to the soil is in the ful cultivation of crops. The title to the soil is in the
United States, but the control of the water rests with the State. Mr. Best is of the opinion that unless these two elements are combined, the land is valueless, and he asks the question: "Are the laws which have operated so favorably in the disposal of the well watered and fertile lands of the Mississippi Valley adequate to the conditions that confront us in the arid West ?" The act of March 3,1877 , authorizing the entry
of 640 acres of desert land upon the condition of paying of 640 acres of desert land upon the condition of paying
$\$ 1.25$ per acre and reclaiming the land by irrigation, which was designed to meet these conditions, has failed
to yield any commensurate results of the kind intended; for while the lands lying along the borders of the streams, which are capable of easy irrigation, have been taken up, the arid lands proper, or those that cannot be reclaimed by the individual efforts of the settler, are still lying neglected.

It is estimated that of the $500,000,000$ acres of vacant lands within the arid region only 20 per cent can be lands within the arid region only 20 per cent can be
brought under cultivation, and that this can only be brought under cultivation, and that this can only be
done by good engineering treatment of the problem, done by good engineering treatment of the problem,
and a careful use of the water that is brought in. The special committee appointed by the United States Senate in 1889 to investigate this subject, says: "The irrigable lands are limited in extent. The area of the arid region which can be irrigated is a small fraction of the entire region. 'This arises from the fact that all the waters that can be used are insufficient to serve all the possible irrigable lands. It therefore becomes necessary to select the lands to be redeemed. On the wisdom of this selection vast interests depend. It is possible to irrigate lands on the mountains and on the high plateaus, but if the water is used there it cannot be used below, and these elevated lands will not make the best homes for the people. The climate there is rigorous, and the variety of agricultural products that can be raised is limited, being chiefly hay and vegetables. To use the water on such lands is largely to waste it, and to drive agriculture into the mountains is to doom the people engaged therein to a dreary life in a subarctic climate. It is therefore manifestly to the interest of the greatest number of people that the agriculture of the arid lands should not be established in the mountain regions. The valleys and plains below are warm, salubrious, and rich, the variety of agricul tural products is great, and if the waters are used on these lands, they will give support to a prosperous people."
It is argued from the above report that the vacant public lands should not be disposed of until they have been brought into an agricultural condition by irrigation, and it is suggested that the best way to accomplish this result would be to let the States control the waters within their respective borders. The right to use the water being under the absolute control of the State, it would, if it also controlled the land, be in a position to secure, by a judicious choice of the land to be irrigated, an economical and profitable use of the water. At present 76 per cent of the arid land is in the hands of the government. In Nevada 95 per cent of the area is vacant, and these lands contribute nothing to the revenues of the State, and therefore it is impossible for the State to undertake a system of irrigation itself. It would surely be good policy for the government to dispose of them to the State, so that they may become an available source of revenue. It is true the Carey act of August 19, 1894, authorizes the Secretary of the Interior to contract with any of the desert land States to donate to the States such lands as the States may cause to be irrigated, reclaimed, occupied, and cultivated by actual settlers; but it fails to give the State sufficient control over the lands to enable it to pledge them as security for their reclamation, and hence it cannot contract for the construction of works on the most favorable terms. The assistant commissioner argues with much reason that if the Carey law were so amended as to provide for the granting of the lands to the State upon application, leaving the State free to contract for their reclamation and to pledge the lands as security therefor, it would be of practical benefit, and under its provisions the State might be enabled to secure the reclamation of all the lands within its limits that could be utilized.

INTERESTING MARINE STATISTICS.

The merchant marine of the United States on June 30,1896 , comprised 22,908 vessels of $4,703,880$ gross tons -a decrease of 330 vessels, but an increase of 68,000 tons over the previous year. Wooden sailing vessel numbered 16,244 , of $2,310,819$ gross tons. Iron and steel steamers numbered 880 , of $1,004,113$ gross tons. Vessels documented at the Atlantic and Gulf ports numbered 16,786, of $2,667,313$ gross tons ; at Pacific coast ports, 1,560 , of 437,972 tons ; on the great lakes, 2,333, of $1,324,068$ tons ; and on the Western rivers, 1,229 vessels, of 274,527 tons. Vessels registered for the foreign trade numbered 1,257 , of 844,954 tons, of which 244 are steamers. Vessels built and documented during the year number 723 , of 227,096 gross tons, or more than double the construction of the previous year. On the great lakes 117 vessels, of 108,782 tons, were built.-Re port of Bureau of Navigation.

DEATH OF PROF. FRESENIUS.

Prof. Carl Remigius Fresenius, the great chemist died June 10, from a stroke of apoplexy. He was born in 1818, at Frankfort-on-the-Main, and was made pro fessor of chemistry at the Institute of Wiesbaden. He founded a laboratory at Wiesbaden, which resulted in great developments, particularly of an industrial and agricultural nature. He was the author of several works on chemistry, the most famous being probably his "Qualitative Analysis" and his "Quantitative
Analysis." These works have a world-wide reputation.

AN IMPROVED BICYCLE BRAKE.

The illustration represents a bicycle brake of such construction that the brake may be applied by the rider throwing his weight rearward on the saddle, the dotted lines, as shown in Fig. 1, indicating the movement of the saddle and brake shoe as the brake is applied, while Fig. 2 shows the brake shoe and its attach-

BORGFELDT'S BICYCLE BRAKE.

ing devices partly in section. The improvement has been patented by Heinrich G. Borgfeldt, $850-852$ Broadway, Brooklyn, N. Y. The brake shoe is attached to a block connected by a forked link and collar with the king post, and the upwardly extending brake rod is connected with the rear portion of a horizontal saddle support extended through a sleeve on the upper end of a connecting post engaging the king post. The saddle support is pivoted to have a limited rocking movement forward of the rocking point, there is no danger of the rider accidentally setting the brake, which is the rider accidentally setting the brake, which is effected by throwing the weight rearward on the sad-
dle. The saddle support has a series of holes rearward of its pivotal point, for the adjustment of the brake rod to give more or less throw to the shoe, and the lower portion of the rod has notches, as indicated in Fig. 2, to permit of the higher or lower adjustment of the will cause the shoe to be applied to the wheel slightly
made under the careful supervision of Mr. William J. Gray, who has given his affidavit as to the accuracy of he results as herewith published.
The accompanying diagram, in which the results are drawn to scale, was furnished to this office by Mr. Furness, and it certainly forms a very valuable and reliable contribution, which will be welcomed by architects and builders in general.
In carrying out the tests the specimens were cemented to identical blocks of sandstone, each of which weighed twenty-one pounds. The samples prewhich weighed twenty-one pounds.
sented a surface six inches square, and the thickness of sented a surface six inches square, and the thickness of
each sample was the same as that commonly used in each sample was the same as that commonly used in
the various floorings. In the diagram the upper figures represent the specimens attached to the blocks before being tested, the thickness of the specimen being shown to scale. Thus the interlocking rubber tile specimen was $3 / 8$ inch thick, the No. 1 Vermont marble was 1 inch thick, the Oregon pine $23 / 4$ inches thick, and so on.
The samples were all placed face downward upon a horizontal iron rubbing wheel 10 feet in diameter, which was run for a space of one hour at a speed of 75 revolutions per minute. A suitable frame held the blocks loosely in place and prevented them from rotating with the wheel, care being taken to let the full weight of the blocks bear upon the wheel. The face of the wheel was freely supplied during the test with the best sharp rubbing sand and water.
The wear of the various flooring materials is shown in the lower line of diagrams, which represents the lower left hand corner of each specimen drawn on a half size scale. The diagonal shading shows the portion of the materials which remained intact, and the clear space beneath shows the amount that was worn away by the wheel.

The diagram is extremely valuable and we are in formed by Mr. Furness that great care was taken to secure reliable results. It is full of surprises. By far the best showing was that made by the interlocking rubber tile, which only lost $\frac{1}{64}$ of an inch as the result of an hour's grinding. On the other hand, the marble mosaic collapsed altogether, the one inch strip being rubbed entirely away within fifteen minutes under a pressure of a little over half a pound to the square inch. The whole slab disappeared in thirty-five minutes under the same pressure
Next to the rubber, the English earthen tile showed by far the best results, losing only $1 / 8$ of an inch in thickness; and of the stones, the granolithic made the best showing, losing $3 / 8$ of an inch, flagstone coming next, with ${ }_{16}$ of an inch wear. The marbles wore awa
very fast, No. 1 Vermont marble losing $3 / 4$ of an inch

Their averageresistance, indeed, was not as high as that of the woods.
One of the most curious results is shown in the action of the woods, where teak lost nearly double as much as the softer white pine, the wear being respectively $\frac{18}{16}$ and $\frac{7}{16}$ of an inch. Yellow pine showed the same wear as white pine, and the oak specimen lost the same amount as its great rival Oregon pine, which was reduced by $5 / 8$ of an inch.

A VALVE TESTING AND LOCKING DEVICE.
The illustration represents a simple testing and locking device for balanced valves of locomotives, enabling

SADLER'S VALVE TESTING AND LOCKING DEVICE.
the engineer to readily determine whether the valve on one or the other side of the engine is leaking without removing the outer plates or covers, and, when the en gine is to be uncoupled on the road, to securely lock its balance valve. The improvement has been patented by James A. Sadler, Clarendon, Texas. Fig. 1 is a sectional view through the valve of a cylinder, the stop pin being in position, and Fig. 2 is a longitudina section showing the stop pin in locking engagement with the valve. The valve casing is of the usual con struction, and within it is the steam chest cover, the balance valve plate and the balance valve, the latter having in its top, at one side of the center, a releas opening, and at a central point a V-shaped cavity. An exteriorly threaded sleeve is screwed into suitable openings in the steam chest cover and valve plate, the sleeve being interiorly threaded near its ends and be ing held in place by jam nuts. A test plug is normally screwed into the upper end of the sleeve, and by its

naus Enartuen ine.

above its axis, causing a wedge-like action between the tire and the shoe.

TESTS OF THE WEAR

 ING QUALITIES OF FLOORING MATERIALS.At the suggestion of Mr. Frank Fur of Mr. Frank Fur ness, the well known architect, of Phila delphia, an extreme ly valuable series of tests has been car ried out to determine the relative durabili ty of various flooring materials. The ex periments were carpedments were car ed out on May 15 by Messrs. William Gray \& Sons, who are the largest contractors for stone work in Philadel phia, and they were

removal the engineer may readily neer may readily
discover at what side of the engine any leakage occurs as the leakage wil pass up from beneath the balance valve through the release opening and thence out through the sleeve. To lock he sleeve tho loc the valve, the revers ing lever having been centrally placed and the valve cen tered, the test plug is removed and the stop pin screwed downward in the sleeve until its lower end firmly locks with the valve as whown in both shown in both views. The sleeve will also be found useful for oiling the valve.

AN AUTOMATIC RAILWAY SWITCH

A switch more especially designed for use on cable railways, but which may also be used in modified form with other street railways, is represented in the accompanying illustration, and has been patented by William Lickstrom, of No. 5• Manhattan Street, New York City. Figs. 1 and 2 are plan views of the switch

LICKSTROM'S AUTOMATIC RAILWAY SWITCH.

connecting a cable track and a track operated by horses or electricity, and Fig. 3 shows a modification adapted for use with railways of any kind, Fig. 4 representing a pivoted lever for throwing the switch and Fig. 5 a section of a special form of rail to be used, Fig. 6 showing one end of a car and its switch-operating lever. The switch point is connected by a link or rod to a bar movably retained by springs in a recess in a bell crank lever, from opposite arms of which extend ods connected at their other ends with bell crank ore pivoted close to one side of a cable conduit the evers pivoted close the such that when an arm of one of the leversprojects across the conduit slot the corresponding arm of the other lever lies alongside of the slot. In Fig. 1 the cable line is curved and in Fig. 2 it is straight, and a cable car coming to first the switch would be turned on the curve by the engagement of the grip with the lever arm extending across the conduit. As shown in Fig. 2, where the conditions are reversed, the car would be continued on the straight track. To hold the switch in either position to which it may be set, a rod or link connects one arm of the central bell crank lever to a pivoted guide rod under spring tension, as shown in Fig. 4, the spring resist ing the throwing of the lever during the first part of its motion and assisting it during the latter part, thus acting to hold the switch in whatever position it may be placed. In the modified construction for use with any kind of railway, a grooved guard rail is used, as shown in Fig. 5, the inner wall of the groove having a short longitudinal slot through which project the snds of the levers which in the other case extend over the conduit. The projecting ends of the levers are en gaged and forced to one side by a lever extending down from the car plat form, and thus made to move the switch point

The new mineral roeb lingite is described by H . W. Foote and S. L. Pen field, in the American Journal of Science. It is a new silicate from Frank lin Furnace, N. J. It is remarkable for containing sulphate dioxide and lead

BRONZE FIGURE "WINGED VICTORY" ON FORWARD TURRET OF BATTLESHIP MASSACHUSETTS
inside of the dome, and a series of massive bass reliefs of the same building.

AN IMPROVED SWING.

The illustration represents a double swing of perfected construction, all steel but the seats, having a arge canopy top or adjustable awning, and with mov-

BAUSMAN'S STEEL SWING.
able reclining seats which may be adjusted at any angle. It is one of several varieties of swings, embodying late improvements, manufactured by D. H. Bausman, of Bausman, Pa. The swing shown in the picture occupies a floor space of $71 / 2$ by $51 / 2$ feet, and is 10 feet high. These swings are painted in lemon and raw sienna tints, and are shipped in parts, adapted to be set up in a few minutes.

Insanity in Animals.
Insanity in the human subject is supposed by some to have no analogue in the lower animals, says Popular Science News. Yet many causes, according to Dr. Snelison, will lead to the permanent loss of self-control. Cattle driven from the country through a crowded town will often work themselves into a renzy. Horses have gone mad on the battle field. At Balaklava an Arabian horse turned on its attend ant as he was drawing water, seized him in his mouth, threw him down, and, kneeling on him, at tacked him like an in furiated dog. He bit off another soldier's finger. An instance is related of a docile horse suddenly going mad on-a hot day Everything that came in its way it seized in its teeth and shook as a terrie does a rat. It raided the pigsties and threw the inmates one after anothe in the air, trampling on the bodies as they fell Afterward it almost killed its own master, after maiming for life the farrier who was called in. This must have been a case of insanity, the cause of which is often to be found in congenital malforma tions of the bones of the head. A scientist of authority even goes so far as to prove by what ap pears to be incontestable evidence that cats, dogs, and monkeys have been observed to have delusion very similar to those of in sane people.

[^0]The Liquefaction of Fluorine.*
The physical properties of a large number of mineral and organic fluorine compounds led to the theoretical prediction that the liquefaction of fluorine. could only be accomplished at a very low temperature.
While the chlorides of boron and silicon are liquids at the ordinary temperature, the fluorides are gaseous, and well removed from their boiling points. The same difference is noticeable in their organic compounds, ethyl chloride boiling at 12°, ethyl fluoride at - 32°, propyl chloride boiling at $+45^{\circ}$, ethyl fluoride at -2°.
Similar observations have been previously made by Paterno and Oliveri, and by Vallach and Heusler. These facts can also be connected with the experiments of Gladstone on atomic refraction. Finally, although clearly a member of the chlorine group, fluorine in some of its properties also presents some analogies to oxygen. The whole of these observations appear to clearly establish that fluorine would only with difficulty be reduced to a liquid, and it has already been shown by one of us that at -95°, under ordinary pressure, it does not change its state.
In the new experiments that we now publish the fluorine was prepared by the electrolysis of potassium fluoride in solution in anhydrous hydrofluoric acid. The flucrine gas was freed from the vapors of hydrofluoric acid by passing it through a small platinum spiral cooled by a mixture of solid carbon dioxide and alcohol. Two platinum tubes filled with well dried sodium fluoride completed this purification. The liquefaction apparatus consisted of a small cylinder of thin glass, to the upper part of which was joined a platinum tube. The latter contained another small tube of the same metal. The gas to be liquefied arrived by the annular space, passed into the glass bulb, and passed out again by the inside tube. This apparatus was united to the tube which led in the fluorine.
In these experiments we have used liquid oxygen as the refrigerating substance. This oxygen was prepared by the methods described by one of us, and these researches have necessitated the employment of several liters of this liquid. 'The apparatus being cooled to the temperature of quietly boiling oxygen $\left(-183^{\circ}\right)$, the current of fluorine gas passed into the glass bulb without liquefying; but at this low temperature the fluorine had lost its chemical activity, and no longer attacked glass.
If now the pressure on the boiling oxygen be reduced, it is seen, as soon as rapid ebullition is produced, that a liquid trickles down the walls of the glass bulb, while no gas issues from the apparatus. At this moment the exit tube is closed with the finger to prevent the entrance of any air. Before long the glass bulb becomes filled with clear yellow liquid possessing great mobility. The color of this liquid recalls the tint of fluorine seen through a layer a meter thick. According to this experiment, flaorine becomes a liquid at about -185°. As soon as the little condensation apparatus is removed from the liquid oxygen, the temperature rises and the yellow liquid begins to boil, furnishing an abundant evolution of a gas which presents all the energetic reactions of fluorine.
We have taken advantage of these experiments to study some of the reactions of fluorine upon bodies maintained at very low temperatures. Silicon, boron, carbon, sulphur, phosphorus, and reduced iron, cooled in liquid oxygen, and then projected into an atmosphere of fluorine, do not become incandescent. At this low temperature, fluorine does not displace iodine from iodides. Its chemical energy, however, is still sufficiently great to decompose turpentine or benzine with production of flame even at -180°. It would seem that the powerful affinity of the fluorine for hydrogen is the last to disappear.

Finally, there is one other experiment that we ought to mention. When a current of fluorine gas is passed into liquid oxygen, there is rapidly produced a white flocculent deposit, which soon settles at the bottom of the vessel. If the mixture is shaken and poured on a filter, this precipitate is separated. It possesses the curious property of deflagrating violently as soon as the temperature rises. We are pursuing the study of solidification of fluorine, in which further experiment are required.

Have Bacteria Uses?

So much has been said about bacteria as causing and propagating disease that it is difficult to make the public regard these minute organisms as anything but mischief makers. Nevertheless, an American scientist, Prof. (Jonn, of Wesleyan University, and Simon C. Keith, of Boston, are demonstrating by experiments that they serve a useful purpose in nature, and contribute quite as much to one's pleasure as to one's discomfort. The outcome of their investigations, as stated in the New York Herald, is that it is to the develop ment of bacteria in milk that the delicate flavor of butter and cheese is due, and that the reason some kinds of butter and cheese have better flavors than others is *"On the Liquefaction of Fluorine," by H. Moissan and J. Dewar. Trans
lated by Nature from Comptes Rendus of the Paris Academy of Sciences.
that different species of bacteria have been developed. They have succeeded in isolating these different
In 1891 Prof. Vilhelm Storch, of Coponhagen, succeeded in isolating certain acid bacteria from ripened cream, and was able to cultivate and utilize them in the creameries for accomplishing an artificial ripening in the cream and consequent fermentation, in order that a more uniform and better flavored butter might be produced. But it was not until two years ago, when Prof. Conn discovered a germ for the ripening of cream which was radically different from any hereto fore used, that the subject began to be studied in this country with the view of developing its commercial possibilities. Since then a laboratory has been fitted up in Boston by Orrin Douglass for the separation, cultivation and investigation of bacteria from a commer cial standpoint. Mr. Douglass has associated with him Mr. Keith, who is a graduate of the Institute of Tech nology.

The Fastest steam Yacht Afloat.

The steam yacht Ellide, in the course of her second seed trial over a measured course, has made a new record for the mile, doing the distance in one minute and thirty-eight seconds. This is at the rate of thirtysix and a half miles an hour, or within a mile and a quarter of the speed attained by the torpedo boat Tur binia on her famous trial.
This result in a boat only eighty feet long has been attained by a special design of hull, engines and boilers. The hull is of composite construction, the frames and scantling being of steel and the skin consisting of two thicknesses of mahogany. She is divided into watertight compartments by five steel bulkheads, and stability is further assured by providing a number of copper air tanks.
The boiler is of a special type water tube designed by Mr. Mosher for high speed vessels, and combines a large steam raising capacity with a minimum of weight. Special attention is paid to the draught and to the circulation of the water. The arrangements for the former are such that the gases pass through the length of the boiler twice before entering the uptake. The boiler is arranged in two sections, with a view to
enabling one of them to be used if the other should be enabling one of them to be used if the other should be disabled by the bursting of a tube or other mishap.
If we except the engines which have been put into some of the recent airships, the engines of the Ellide are probably the lightest for their horse power that
have ever been built. They are quadruple expansion, the cylinders being 9 inches, 13 inches, 18 inches, and 24 inches in diameter by 10 inches stroke. On the trial in question, with a boiler pressure of 250 pounds to the square inch, they ran at 650 revolutions a minute.
In the official trial which is shortly to be made the Ellide will be lightened by about 3,000 pounds of weight in the shape of the twenty guests which were on board at the time of the last trial. Her engines will also have worn down to a smoother bearing and it is quite possible that the $373 / 4$ miles an hour record of the Turbinia will be broken. Below is a list of the fastest yacht and torpedo boats in the world :

*Driven by triple compound steam turbine

Building Roads Too Fast.
The Canadian Magazine raises the question whether Canada has not gone too far in giving aid to railroad building. It appears that on June 30, last year, there were 16,091 miles of track laid in Canada, and the Dominion government has contributed to this building at the rate of $\$ 9,369$ per mile constructed, the Provincial government at the rate of $\$ 1,847$, and the municipalities at the rate of $\$ 881$ per mile. That is for the net result of 16,091 miles, Canada has contributed, in round numbers, the very liberal sum of
$\$ 195,000,000$. In Cape Colony the proportion of net revenue to capital cost of railways is 5.75 per cent; in India, 4.96 ; in South Australia, $3 \cdot 13$; in New South Wales, $3 \cdot 46$; in New Zealand, $2 \cdot 73$; in Queensland, $2 \cdot 13$; and in Canada, $1 \cdot 57$. In only one British colony is the proportion lower than in Canada, and that is Tasmania The Magazine thinks that this seems to indicate that Canada is building railroads too fast. It further quotes the Dominion statistician as saying: "The cost of a railway, it has been said, should not be more than ten times its annual traffic-that is, that the annual traffic should be ten per cent of its capital cost. If this standard is applied to Canadian railways, their
cost will be found to very far exceed the limit" In 1895 the gross receipts of the Canadian railroads amounted to only $\$ 46,785,487$, while the paid-up capital
was $\$ 894,660,559$, the percentage of traffic to cost being about five and one-quarter per cent instead of ten per cent.

perter (Coming , 8 O

 1903.Time Within Which Reissues Should be Applied For.-Application for the reissue of a patent must be filed within two years or it will be considered abandoned under U. S. Rev. Stat., Sec. 4894.
Ex parte Musgrave \& Nye (Commissioner's Decision), 78 O. G., 2046.
Non-patentability of a Process.-A process which employs low heat for a long time is not patentable over another which uses a high heat for a short time when the result is the same in both cases. Here the result was the partial distillation of coal. Therefore, the alleged invention of N. W. Musgrave and H. P. Nye has been held to be not patentable.
Wurts v. Herrington (Commissioner's Decision), 79 O. G., 335.

Proof of Reduction to Practice.-When complete reduction to practice amounts to two years' practical use, the effect of such reduction to practice must be established by evidence of the same degree as that required to establish two years' practical use. The fact that one device was operated only for a short time and then laid aside and not used until others began making and advertising the device raises the presumption that such former alleged use was experimental and that it amounted to nothing more than an abandoned experiment. The fact that the device was exhibited in a room ordinarily used to exhibit complete devices ready for the market is not proof in itself that such device was complete and on sale
Wurts v. Herrington (Ct. of Ap., D. C.), 79 O. G., 337. Reduction to Practice.-Reduction to practice by the junior party before the senior party does not require more than a preponderance of evidence. Certainly the evidence need not be so strong as to establish it beyond a reasonable doubt. But where a patent has been regularly issued, a strict rule as to the proof re quired to overcome the patent should prevail, at least where the evidence is suspicious.
Shelleberger v. Schnabel (Ct. of Ap., D. C.), 79 O. G. 339.

Dissolution of Interference.-When the commissioner in an interference case decides that there is no patent able invention in issue, the interference is thereby dis patentable thing
Arnold v. Tyler (Ct. of Ap., D. C.), 79 O. G., 156.
Presumption as to Priority on Appeal.-The decision of the Patent Office as to the priority of invention must stand, unless the evidence shows beyond any reason able doubt that the appellant was the true inventor.
Advice of Attorney. - The mistaken advice of an at torney, whereby longer delay resulted in the reduction to practice, is immaterial as against those who hav been diligent.
Bruel v. Smith (Ct. of Ap., D. C.), 78 O. G., 1906.
Consistency of the Patent Office.-The Patent Office must be consistent and should not give so liberal construction to the terms of the issue as to enable it to in clude a structure which had previously been held to be patentably distinct therefrom. A device which differs from the terms of the issue in the particular feature which the office held once to have been sufficient to constitute a patentable distinction does not amount to a reduction to practice of the issue.
Duff Manufacturing Company v. Forgie (U. S. C. C., Pa.), 78 Fed., 626
Infringement of Jacking Apparatus.-The Barret patent, No. 455,993 , for " lifting jacks" adapted to pro duce also horizontal motion, such improvement being based on the principle of a yielding, as distinguished from a rigid plate, has been construed and held in ringed as to claims 1 and 6 by a jacking apparatus de igned to produce horizontal circular motion to unscrew oil well tools, for, while they differ in form, the princi ple, design and functional purposes are substantially he same.
Clinton Wire Cloth Company v. Hendrick Manufactur ing Company (U. S. C. C., Pa.), 78 Fed. Rep., 632. Coal Screens.-The Philipps patent, No. 500,508, for revoluble coal screens providing the woven wire segments with protector plates connecting them together and covering their joints, the plates having inward ex tending projections to form tumblers, has been held void on the ground of showing mere mechanical skill.
Travers v. Hammock and Fly Net Company (U. S. C. C.
Wis.), 78 Fed. Rep., 638.
Mechanical Process for Making Hammocks.-The Rood patent, No. 296,460, which describes a method of forming the ends of hammocks by drawing a cord straight through the end loops of the hammock body to form the converging strands which are gathered in a suspended loop or eye, has been held to cover a mere mechanical operation and, therefore, to be not a patentable process and void on its face,

Sorrespondence.

Expansion of Rails in Hot weather.
To the Editor of the Scievtific American :
Before the art of laying railroad iron was brought to its present state of perfection, the main line of the Chicago, Burlingrton \& Quincy Railroad west of Burlington, Iowa, was the scene of a most peculiar accident, due entirely to natural causes.
In 1868, that portion of the road described had never been ballasted, the wooden ties having been merely laid upon the loose dirt of the prairie, and not much trouble had been taken to tamp them. The rails had been laid upon these ties with their ends brought close up together.
James Roberts, a trusted engineer on the above road, left Burlington at eleven o'clock on a hot day in August, 1868, a little late. The train was scheduled fast for those days, but he made up the time before he reached Fairfield, Iowa. As the train was speeding west, three miles from Fairfield, Engineer Roberts was amazed to see the track about a mile ahead of him sudlenly rise from the roadbed, writhe and bend like a wounded snake, and then slowly settle down into a perfect curve at the side of the roadbed upon the level prairie. He reversed his engine and whistled for orakes and brought the train to a standstill. Crew and passengers went forward and inspected the phenomenon. Not one tie had broken loose from the rails, and the new position of the track at the side of the roadbed seemed secure and safe. At least a mile of track had changed its position, and, after examining the track for the entire distance, it was decided to go on, and the train, moving slowly, passed safely over. The circumstance was reported, and the engineers visited the scene without delay. They reported the occurrence to be due to expansion of the rails, which, having been placed with their ends touching each other, allowed no room for expansion. The weather being so hot, the expansion became a force greater than the weight or gravity of the rails and ties, and lifted them bodily until the longitudinal pressure was removed, when the whole structure settled to one side in the form of a curve. The greater length of the curve was identical with the length of the expansion.
This is the only instance of the kind ever reported, but they would be of frequent occurrence were not the matter of the expansion of the rails taken into account when rails are laid, and a suitable space left between the ends of the rails to accommodate their increased length in very hot weather.
C. M. Ginther. Hagerstown, Ind.
[In stating that the above remarkable case is the only instance of the kind ever reported, we presume that our correspondent refers to the fact that the track lifted bodily from the roadbed before settling into a curve, and that the actual change of position occurred before a reliable eye witness. "Kinks" in a roadbed are not an uncommon occurrence on the unballasted roads of the western prairies, though the translation from a tangent to a curve usually occurs by the ties and rails being pushed bodily sideways over the ground. The remarkable feature in the occurrence above mentioned was the sudden rise of the track, when one would have expected it to be gradual. In all probability there was a slight vertical curve in the track at this point. The initial expansion would be accommodated by the elasticity of the rails; but as soon as the vertical component of the thrust of the rails exceeded the combined weight of ties and rail, the latter would commence to rise with an accelerated movement due to the enormous elastic thrust of the metal.-ED.]

The Heavens for July.
 THE SUN.

The sun's right ascension on July 1 is 6 h .43 m .43 s.; and its declination north 23 deg. 4 m .24 s .

On July 31, the sun's right ascension is 8 h .44 m .27 s ; and its declination north, 18 deg .6 m .6 s .

On July 1, at 9 h ., the sun is at its greatest distance from the earth.
On July 29 will occur an annular eclipse of the sun, visible throughout the United States as a partial eclipse, beginning, for Washington, at 8 h .42 m ., and ending at 11 h .2 m. A. M. At Washington the greatest obscuration will be 7 digits. To all places north it will be less, and to places south the obscuration will be wreater. The path of annulus, about 25 miles in width, extends from a point in the Pacific Ocean 20 deg. west of the west coast of Mexico, passes across Mexico, the northern edge of Cuba, just touches the northeastern point of South America, and ends in the mid-Atlantic Ocean, in 21 deg. south latitude.

MERCURY
Mercury is morning star the first half of the month It comes into superior conjunction with the sun on July 15, when it changes to evening star.
On July 4, at 12 h. . Mercury is at its ascending node on July 9 at perihelion, and on the 19 th at its great est heliocentric latitude north.

Mercury is in conjunction with the moon on Juiy 30,
at 7 h .38 m ., when the planet will be 3 deg. 18 m . north of the moon.
The right ascension of Mercury on the first of the month is 5 h .42 m .59 s ; and its declination north, 22 deg. 53 m .38 s .
On the last of the month its right ascension is 9 h . 49 m.
49 s.
venus.
Venus is morning star, and a most beautiful object it is, as it heralds the approaching dawn. Venus reaches its greatest elongation west of the sun, 45 deg. 44 m ., on July 7, at 11 h .
On July 17, at 4 h. , Venus is at its greatest heliocentric latitude south.
On the 25 th , at 2 h .24 m ., Venus will be in conjunction with the moon, when the planet will be 6 deg. 44 in. south of the moon.
On July 28, at 4 h ., Venus will be in conjunction with Neptune, when Vonus will be 1 deg .21 m . south of Neptune.
On July 1, Venus rises at 1 h .57 m. A. M., and crosse the meridian at 8 h .52 m. A. M. On the last day of the month Venus rises at 1 h .40 m ., and crosses the meridian at $8 \mathrm{~h} .59 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.
On July 15, the right ascension of Venus is 4 h .30 m . 31 s ., and its declination north 18 deg .38 m .51 s .
mars.
Mars is evening star. In its rapid orbital motion among the stars it will be seen to overtake Regulus on July 5, when it will be within one degree of that well known star. Compare the ruddy light of the planet with the light of the star.
On July 25, at 10 h. A. M., Mars will be in conjunction with Jupiter, when Mars will be only seven minutes of arc south of Jupiter. This close approach may not be seen, but the planets will be found very near to each other on the evenings preceding and following the time of conjunction, forming an interesting celestial picture.
On July 3 , at 8 h .31 m ., Mars is in conjunction with the moon, when the planet will be 3 deg. 21 m . north of the moon.
On July 1, Mars crosses the meridian at 3 h .14 m . and sets at $10 \mathrm{~h} .3 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On July 31 Mars crosses the meridian at 2 h .25 m . and sets at $8 \mathrm{~h} .50 \mathrm{~m} . \mathrm{P} . \mathrm{M}$ The right ascension of Mars on July 15 is 10 h .25 m 49 s . ; and its declination north 10 deg. 56 m .54 s.

UPITER.

Jupiter is evening star. and is a very beautiful ob ject in the western heavens soon after sunset. Tele scopic work should be made at an early hour, while the planet is at a fair altitude.

Some of the phenomena of the satellites which occur at a sufficiently early hour for observation are here given.
On July 5 , at 9 h .22 m ., the ingress of satellitc I in transit will occur. On July 12, at 8 h .14 m ., satellite II will disappear by occultation. At 8 h .57 m . satellite III will reappear from an eclipse.
On July 13, at 8 h .35 m. , satellite I wili disappear by occultation. On July 14, at 8 h .10 m ., satellite I will egress from transit; and at 9 h .4 m . the shadow of satellite I will pass off the disk of Jupiter.
On July 21, at 8 h .28 m ., satellite II will pass off the disk, and at 8 h .41 m . the shadow of satellite I will enter in transit. On July 4, at 2 h .24 m ., there will be a conjunction of Jupiter and the moon, when the planet will be 4 deg. 10 m . north of the moon.
On the first of the month Jupiter crosses the merid ian at 3 h .53 m . and sets at $10 \mathrm{~h} .28 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the last of the month Jupiter crosses the meridian at 2 h . 15 m ., and sets at $8 \mathrm{~h} .43 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
The right ascension of Jupiter on the fifteenth of the month is 10 h .42 m .6 s ; and its declination north 9 deg. 23 m .9 s.

SATURN.
Saturn is also evening star, and a very beautiful object in the southern heavens. Its wonderful ring sys tem is quite widely opened out. The separation of the two bright rings may be well observed now with tele scopes of very moderate aperture, under good atmo spheric conditions.
On July 10, at 4 h. 10 m. A. M., Saturn is in conjunction with the moon, when the planet will be 7 deg .18 m . horth of the moon
On July 28 Saturn is apparently stationary.
On the first of the month Saturn crosses the meridian t $8 \mathrm{~h} .50 \mathrm{~m} . \mathrm{P}$. M., and sets at 1 h .54 m . after midnight. On the last of the month Saturn crosses the meridian at $6 \mathrm{~h} .50 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. and sets at $11 \mathrm{~h} .50 \mathrm{~m} . \mathrm{P}$. M.
The right ascension of Saturn on the fifteenth of the month is 15 h .29 m .39 s ; and its declination south 16 deg. 47 m .12 s .

uranus and neptune.

Uranus is also in the southern evening heavens, about two degrees south of Saturn ; its right ascension for the middle of the month being 15 h .31 m .18 s ; and its declination south 18 deg. 50 m .46 s .
Neptune is in the morning sky, but too near the sun for observation.
Smith Observatory, Geneva, N. Y., June 21, 1897.

Science Notes.

Arrangements have been perfected for the establishent of zoological gardens in San Francisco.
It is said that an establishment for the manufacture calcium carbide will be established at the new hydraulic power plant at Rhinefelden, Switzerland
A fulgurite has been found in Rome, N. Y., which Atends to a vertical height of forty-five feet. A fulguite is a vitrified tube caused by lightning striking rite is
sand.
The International Submarine Telegraph Memorial Committee has granted "the Sir John Pender gold medal " to the Glasgow and West of Scotland Technical College. It is given annually to the best student, who at the same time obtains the college diploma in electrical engineering.
Natural Science has completed its tenth volume and will be hereafter published by J. M. Dent \& Company, of London, It is remarkably well conducted and shows conclusively that science need not be dull American science has been given more attention than in any other foreign journal. If for no other rea son, it should have a good circulation in the United States.
In a recent number of the Comptes Rendus M. De Wateville gives a method of obtaining large and trans parent crystals. The small crystal is so mounted that, while in a saturated solution, it can be continuously rotated on itself with a speed of several rotations a second. Potassium and ammonium alums, copper sulphide and sodium chlorate are said to give particu larly fine results.
Until lately M. Moissan had not succeeded in prepar ing metallic titanium by pyro-electric reduction. He always obtained as the result of his experiments a hard, reddish-brown nitride of the metal, TiN_{2}. But recently he found that totally different results were obtained if a stronger current, and therefore a higher temperature, was used. By this method Moissan re duced titanium oxide in a mixture with carbon to a bead of metallic titanium surrounded by a coat of oxide. The metal contained about 2 to 6 per cent of arbon.-Uhland's Wochenschrift.
The Grand Duke of Bavaria had, in 1893, detected the monogram of Albrecht Dürer and the date 1521 on a painting in the possession of Mr. F. Bürger, in Munich. Still many doubted the authenticity of the picture. The painting was lately examined by means of X rays. On the screen appeared, to the surprise of the Brothers Haller, at whose laboratory the experiment was conducted, and of all others present, a per fectly clear image of Christ in a crown of thorns, and also the monogram of Dürer and the date were clearly visible.-Electrotechnische Rundschau
A remarkable glacier eruption occurred during the early part of the present year in the south of Iceland A postman was crossing the sands of Sakeitara when he heard sounds proceeding from a glacier two miles in ront of him and saw large masses of ice being hurled up into the air from the glacier. This was followed by a flood which began descending to the sands below. He promptly fled, and when he returned, about a week later, he saw a belt of ice waves extending from the rlacier to the sea, a distance of at least twenty-five miles. The average breadth of this belt was about four miles. The height varied from seventy to ninety eet. On the other side of the ice field were newly ormed torrents which sprang from the glaciers. No one was injured by the glacier eruption, which, it is thought, may have some connection with the severe earthquakes of last summer.
Edward McIlhenny has sailed from San Francisco for two years' scientific work in the northeastern part of Alaska and the basin of the Mackenzie River. He was the ornithologist on the Cook excursion, which was wrecked in Davis Straits. He has associated with him W. L. Snyder, of Beaver Dam, Wis.; Norman G Buxton, of Johnstown, Pa. They will take supplies or two years' work in the Arctic regions, most of their ood being in condensed form and adapted for trans portation in sledges. Point Barrow will be made the headquarters and expeditions will be made from it to northeastern Alaska, which is comparatively unknown. The fauna and flora of the Alaska and Mackenzie regions will be carefully studied and specimens sent back to the coast, from which they will be shipped to the National Museum, at Washington, and to the nuseum of the University of Pennsylvania. Mr. Mc lhenny hopes to make a careful exploration of the Romanzoff Mountains, in Alaska, which are said to be rich in fossil remains.

Bound Copies of Our Supplement Owing to the request of librarians and many of our readers we have a issued a special edition of our new Supplement catalogue. It is printed on heavy pape and is bound in cloth. These catalogues will be sup plied by mail at the nominal price of twenty-five cents Public libraries will be furnished with a copy free of charge. The ordinary edition of the catalogue will be sent free to any of our readers as heretofore free of charge, and all should avail themselves of the oppor tunity of obtaining a valuable reference catalogue.

PARSEVAL'S KITE BALLOON.

The usual form of balloon adopted by all the leading armies of to-day is the pear-shaped, captive balloon, connected to earth by means of a steel rope. Now, while this shape is suitable enough for a freely traveling balloon, there are great drawbacks in its use for military purposes. In such cases what is required is steadiness in spite of the fixing rope and of the ordinary power of wind. It is found that a wind
meters per second is sufficient to make the ordinary pear-shaped balloon absolutely use less as a captive balloon. Now such a wind blows about one day out of three, so that the practical value of the aeronautic department of the army is greatly diminished. Still, so much importance remains attached to it, on account of its invaluable aid under favorable circumstances, that, in spite of all difficulties, balloons are always carried into maneuvers and into war.
As alluded to before, the great difficulty hitherto was that the balloon is pressed down to earth by the wind, the rope assuming a position inclined at an angle to the ground, and permitting such extravagant motions and lurches as to make all observation impossible.
A new form of gas reservoir has, however, been devised by the German Captain Parseval, which overcomes the difficulties explained above, while it enables its occupants to use to a full extent and under all circumstances the excellent opportunities that an ordinary balloon offers only in a dead calm. The principle on which the new balloon is built is the wellknown action of a kite. Its shape is that of a kylinder with hemispherical ends. The volume cylinder with hemispherical ends. The volume
of the reservoir is about 600 cubic meters. The car is attached to the back, and the rope to the front end. When the balloon is filled the front end rises under the upthrust exerted by the atmosphere, and the whole assumes such a position that its axis is inclined about 50 deg . to the horizontal, and is in a plane parallel to the direction of the wind. Consequently the wind strikes the lower surface and acts as it does on an ordinary kite. But, as simple as the principle of the thing looks, in practice the inventor found many difficulties of important and by no means trifling character which could not have been foreseen, and which experiment alone revealed. It was, for instance, found on trial that the wind crushed the balloon, curving its back into an undesirable shape, so that the tension there was considerably greater than below. To avoid this distortion an in genious contrivance was added to the main body of the reservoir. On the lower surface the constructor at tached another reservoir with funnel-shaped mouth this catches the wind, and the air collected keeps the shape of the balloon constant by its counterpressure.

The mixing of the air thus admitted with the gas is avoided by placing a loose partition of plaited fabric between the two. The pressure required to keep the balloon in shape is thus automatically provided; fo
the stronger the wind, the greater the tendency to kite balloon may be used in any wind, so long asthe curve, but the greater also the pressure in the wind filling and the ascent are possible. reservoir. Moreover, another danger seemed imminent. In strong wind the balloon tossed a great deal, and there was even some fear of its capsizing. The solution of this difficulty was not an easy matter. It was found in the form of an air cushion, a sort of bag, attached to the back end of the lower surface, and serving as a rud-
ling and the ascent are possible.
At Berlin the inhabitants often had opportunity to see the kite balloon ascend side by side with the spherical (pear-shaped) balloon, at the practicing grounds of the aeronautic division. It could clearly be seen that the kite balloon was still when its spherical companion was subject to considerable rolling. We are indebted to Prometheus for the above particulars.

TESTS OF THE PARSEVAL BALLOON.
air pocket arrangement to that of the main part of the balloon for keeping its shape. Although this addition effected a mitigation of the evil, it was found necessary to take some further precautions, and the end was finally attained by attaching to the back, where the oscillations are greatest, an auxiliary balloon. This is ring shaped, the diameter of the inner circular opening being ten centimeters, and is connected to the main balloon by a rope 50 meters long. The external diameter of the ring is ten-sevenths of the diameter of the main balloon. Below this ring there is yet an at tachment corresponding to the tail of a kite. The lower surface of the annular balioon, i. e., the one exposed to the wind, is perfectly smooth. This auxiliary balloon appears near the ground in one of the cuts.
The
These two steering contrivances produce a perfectly satisfactory stability, such as is enjoyed only in an absolute calm when using the ordinary balloon. Th

The engravings were prepared from illustrations sent us by a correspondent in Germany.

An Egyptian Crocodile Mummy.

The varied and interesting collection of mummies, mummy cases and funereal furniture contained in the British Museum has recently been enriched by the acquisition of an enormous crocodile mummy, says Knowledge. This creature measures thirteen feet in length, and is well preserved, having a swarm of young crocodiles on its back. Dr. Pritchard, in his "Analysis of Egyptian Mythology," says : "The ancient Egyptians believed that the souls which emanated from the primitive source transmigrated through various bodies; nor was this change confined to emanations of a lower and secondary order. As the souls of men transmigrated through different shapes, so the higher order or spiritual agents could, as occasion required, assume any form they chose; and some times the gods appeared in the world under the disguise of bulls, lions, eagles or other creatures."
This accounts for the vast army of gods, re presenting so many species in the natural world, which abound in European museums. These were maintained in their day at great expense in sacred parks and lakes, and persons were appointed to nourish them with the greatest care; and when they died the same sacred rites were performed over their bodies and the same preparation was made for their interment as if they had been one of the highest functionarie of the state.
The famous fellow that has just been added to our national collection was discovered at Kom Ombos, in upper Egypt, a city where this creature was venerated as early as $2500 \mathrm{~B} . \mathrm{C}$., and where ruins still remain having paintings relating to the adoration of Sebek. At the south side of one temple the remains of a large pond have been found, which probably served to satisfy the amphibious instinct of this adorable monster. Dur ing the reign of Ptolemy Philadelphus, B. C. 330, the worship of the crocodile reached its highest point.
The method employed in making crocodile mummies seems to have varied with taste and means. While some are exquisitely bandaged, others (as in the case of our latest addition) were simply dipped in a solution of wax and pitch, which renders them perfectly hard, and by which the young progeny are securely fixed in the hollow parts of the back
This is one of the finest specimens of a mummied cro codile that we have seen. It was presented to the British Museum by the Egyptian government

THE PARSEVAL KITE BALLOON FOR USE IN THE GERMAN ARMY

THE LAST OF THE YUKIAHS

by enos brown
At the time of the Spanish conquest of California the Indian population in the territory was known to have been very large. In Northern California alone it is estimated that over fifty thousand aborigines roamed in undisturbed security all over this fertile land. With the advent of the conquerors the Indians began to decline in numbers, owing to the cruel treatment of the Spaniards and the introduction of hitherto unknown diseases which were very fatal to them, so that when the State came into possession of the Americans, not onehalf as many Indians emained in the country as existed a century before.
The destruction of the tribes progressed more rapidly even under American under American domination than under the spaniards. The fatal vice of drink became more general among them and they succumbed to the new civilization. When the settlers of the country discovered how well the northern half of the State was half of the State was adapted for stock raising, they appropriated the lands of the helpless Indians, and drove them back into regions less fertile. The Indians resented this hardship by killing the white man's cattle, and then vengeance, cruel, swift and strong, was visited upon the inferior race, and a war of extermination was waged. Thousands of Indians were cruelly massacred, and the war ended when there were no more to kill.
Sonoma County, one of the most fertile in the State, the present home of a most prosperous and thrifty people, carefully suppresses in its annals all mention of the early treatment of the Indians by its pioneer founders. Its groves were shambles where the Indians were tortured by fire and exterminated by the sword.
Certainly, no more worthless types of humanity ever existed than the California savages. They were only a step in advance of the Australian in intelligence and were not the equal of that lowest type of humanity in the ingenuity of their devices for trapping game. The original California Indian was an abject and bestial obabject and bestial ob-
plies them, but an Indian will barter everything he has for a bottle of whisky, and generally finds some unscru-

To this cause, and to diseases incident to civilization, the decimation of this remnant of the old Gallionomeros or Yukiah Indians may be ascribed. Every year shows their number decreased, and a generation hence will

The World's Biggest Pump.
In a letter from Houghton, Michigan, to the Chicago Record, the writer describes the Calumet and Hecla pump named the Michigan, which is a truly marvelous piece of mechanism. It can deliver 2,500,000 gallons of water every hour in the twenty-four without being crowded to its limit of capacity, and it will do the work with scarcely as much noise as is made by the operation of an old style sewing machine. Outside the doors of the great building which houses it no sound is heard from within, and, standing beside the monster, upon the brink of the pit connected with the lake from which the water is taken, almost the only sound heard is the noise of the suction, as with every stroke more than a thousand gallons are lifted.
Briefly, it is a triple expansion pumping engine with a capacity of $60,000,000$ gallons, standing nearly fifty feet in height and requiring 1,500 horse power for its operation. It has been proved by actual tests that the nominal capacity can be easily maintained for an indefinite time without injury or strain, and that pushed to its full capacity the pump could handle approximately 75, 000,000 gallons in twenty-four consec utive hours.
The duty of the pump is to furnish water for the grea stamp mills of the Calumet and Hecla Company, which has twenty-two steam pumps in continuous operation, daily pulverizing 5,000 tons of conglomerate rock into sand so fine that it can be carried away by a stream of swiftlyrunning water. The pump is housed in a special building nea cial building nea the shore of Torch Lake and below the extreme extreme weather, when their nakedness was protected the more ambitious have frame houses, but many prein some degree by hides and skins. They ate the most fer homes after the picturesque style of their forefathers, repulsive reptiles, snakes, lizards and worms. Roasted formed of saplings curved at the top and covered with grasshoppers were a delicacy only matched by a feast straw.
of tainted fish. They derived their name of "diggers" These people have some virtues : hospitality,.for infrom the custom of digging into the ground for roots stance. The women make baskets which are someor game. Their sole object in living was to exist with times artistic, being ornamented with different colored as little trouble to themselves as possible and they were so lazy that the laziest white who ever breathed was a monument of industry in comparison.

There still lives the remnant of this once numerous tribe at Hopland, Sonoma County, California. Only two or three hundred are left. There has been secured
pulous dealer to supply him find the last of the tribe awaiting his final call.
to them a tract of worthless land upon which they have settled, and where they make a feeble pretense of rais ng vegetables and fruit. They own a little stock and re called civilized.
missionarch, out of its large charity, has sent them missionary who has taught them agriculture, and has morals. They have a school where then taught the rudiments of education and instruction given them in the common utilitarian arts. The women make good seamstresses and fair cooks, and both sexes,

THE YUKIAH INDIANS OF CALIFORNIA

TYPICAL HUT OF THE ABORIGINES OF CALIFORNIA. upper portions of the mill, where innumerable smal jets play upon the great slime tables and jigs. Here the specific gravity of the fine particles of copper contained in the rock separate the mineral from worthless sand, and the size and force of the streams of water are so nicely regulated as to wash away the sand and yet carry with it the minimum of copper.

A bronze bust of Maria Mitchell has been unveiled in the Obser:atory at Vassar College. It was cast by the Gorham Manufacturing Company, from a plaster bust made in 1877.

RECENTLY PATENTED INVENTIONS.

 Engineering.Throwing Engines Off Dead Cen TERs.-James B. Rauch and Thomas Kennedy, Galena sists of a pivotally supported jointed arm carrying a sho at its outer end, the shoe departing from the pivotal cen ter as the sections are straightened, and then bindin against the wheel rim. The arm may be connected by a
lever with a pitman or other operating mechanism, and when the engine is on the dead center the shoe is put in binding contact with the wheel rim by straightening th arm, the further movement of which then carries the wheel off the center, the contact being broken and the friction shoe freed from the wheel when the arm comes
in contact with a stop. The shoe section of the arm is adjustable lengthwise for shoe section of the arm heels.
Pipe Boiler.-Alexander M. Lemke and Rowland Weston, Saginaw, Mich. According to on suitable legs, are connected at their ends by vertical water legs with two upper separating drums, the latte central steam drum ta the top. Coils of pipe are arrange between the sets of water legs at the sides, the upper
ends of the coils discharging into diagoially opposite druns, and the lower runs of the coils are at a suitable distance above the grate to form a fire box, the rear end of which is also closed by a coil of pipe. The construc
tion is designed to insure perfect cireulation and the quick generation of dry steam.
Motor.-Sumter B. Battey, New York City. A fluid pressure and hydraulic motor, patented
by this inventor, is designed to utilize the motive agen with the highest efficiency. A wheel has in i's peripher conduits or buckets into which water under pressure discharged from nozzles in a surrounding pipe to rotate
the wheel. The surrounding pipe is connected with vessel from which the water is forced out by a pressur pipe. From the motor casing the water flows to a tank the motor, and a pressure pipe opening into the tank the motor, and a pressure pipe opening into the tank
forces the water into the vessel, whereby the motor may be operated without waste or loss of water.

Electrical

Secondary Battery Plate.-William P. Patton, Jersey City, N. J. The rectangular bod of this plate is hollow, hut is intact at all its edges, and one or more thin metal partitions are held within the
cavity of the plate by engagement at the edges, forming a light and strong plate with great surface for the forma tion of an active coating. The partitions are ciamped at all the edges between two sections of a mould wherein the side walls and edges of the battery plate are cast into
form from molten metal that passes through perforaform from molten metal that passes through perfora
tions in the partitions near their edges, whereby the cast sides of the battery plate are integrally joined. Th construction affords great internal area for a battery ing on the inner aud exterior surfaces is formed by electrolysis a con
Telephone Transmitter. - Horace C. Alexander, Bonham, Texas. To transmit the greates possible volume of sound without grating or rattling, the
diaphragm and shell, according to this invention, are formed from one piece of metal, the diaphragm being se cured to a block of insulating material to which is secured nipple on the diaphragm extends into a cell formed in the nipple in the cell, and a yielding material being diaphragm
Lighting Arrester and Fuse ment having a . Gast, New Orleans, La. An instru matically closing or restoring an electric circuit whe broken by the fusion of the conducting wire by lightning The invention comprises more especially a shunt circuit of variable or graduated resistance through which th arm, when its fusible a connection is broken tom one trip whose fusible connection is intact, so that a sudde tock and it is enabled to resist and hold the spring arm.
Electric Railway.-Henry M. Jones Meriden, Conn. For electric roads weere the current arried in a conduit beneath the track rail, this invento light and a sim and hexpensive constracton, wit light and strong device for normally closing the slot tact with live wires. The conduit extends longitudinall between the rails, and has a slot normally closed by ubular cable made of spirally wound wire adapted to open or stretch at points lifted from the slot, a device being carried by the car for raising the cable from the lot. The cable is supported in the conduit by flang hich also serve as tracks upon which travel the rolle of the cable lifter of the car.

Bicycles, Etc.

Tire - Charles H. Paschke, Chicago II. The rim is of the usual construction, according to pairs of chains with an outer rim, the latter being made of a series of four or more wires spaced apart and transersely connected by cross bars to form a slightly ova f the chains with the outer wires. The end piece the wires are connected together by screw rods, by to the degree of elasticity desired.
Changeable Gear.-Thomas \mathbf{S}. Drummond, Punxsutawney, Pa. According to this in the gear wheels at opposite sides of the wheel being of
different sizes, and being encircled by runways adapted
to receive bals, and each runwa to the passage of a gear wheel into and out of engagement being brought into engagement by the movement of lever. By this means the rider can quickly change from
a high to a low gear, and vice versa, according to the nature of the road upon which he is traveling. The construction is designed to be simple and inexpensiv admitting
damage.

Mechanical.

Honing Machine.-Terence F. Curley Brooky, N. Y. For sharpening the blades of razor nd other tools, this inventor has devised a simple, easily perated machime which whl hold the catting edge the blade in proper position to the grinding stone, draw-
ng the blade over the stone and reversing its position automatically. The machine has a reciprocating carage in which is journaled a blade holder adapted to be
arned at the end of the stroke of the carriage to re verse the position of the blade. The operator can give a hort stroke to the carriage, to avoid reversing the position of the tool, the latter being then moved forward
and backward over the stone with one face only in enand backward over the st

Miscellaneous.

Nozzle.-Charles A. Snider, Colum bus, Ga. To facilitate the discharge of a large or smal tream of water, according to the condition of a fire, o tion provides an easily manipulated nozzle which may be banged to graduate the outlet opening. The discharg pipe has a spherical end on which rotates a cap at an
oblique angle to the middle line of the pipe, and having series of graduated openings adapted to register with he mouth of the pipe
Pole Tip.-Arthur F. M. Brooke, Cal ary, Alberta, Canada. A pole tip designed to prevent pole consists, according to this invention, of a hollow casing on the outer end of the pole, having an angular yoke, which prevents the latter from sliding further back n the pole. On the lower side of the tip is a slot wher catch or latch is pivoted, adapted to catch the ring and
Seal for Packages.-Lewis F. Mus Son, Winona, Minn. A plastic seal, according to this
invention, bas pieces or particles of paper fabric com pressed therein, of predetermined design and delinea ions and in predetermined order, to be used in connec o that practically no two seals will be alike. For veri fying the genuineness of the seal, it is provided that,
while the wax is still warm, certain pieces of particle re removed from the sealing strip and sent to the pur posed destination of the letter or package, that the re
ceiver may compare them with the design on the Sign.-William N. Ley, Wilbur, Wash ington. This sign has slat sections connected by loops,
the rocking of one of the slats reversing the entire series nd presenting their rear faces to the front, while
nother movement restores the slats to their norma nother mas the coir norm the uppermost slat turned moved along the line of slats the bottom. The invention also provides for constantly rocking the uppermost slat by a motor, producing

Mattress. - John Hoffman, New Ulm Minn. A mattress designed to be inflated by air is pro-
vided by this invention, together with a covering which vided by this invention, together with a covering which tire construction precluding the harboring of insects. tire construction precluding the harboring of insects.
An inflatable sack fits within a frame adapted to fit in a bedstead, the sack resting on webbing. The covering may be of ticking, with an open end closed
Cooking Apparatus. - William E. Baxter, Frankfort, Ky. This is a portable apparatus fo in small space. When set up the oven adjoins the packe and the latter may be used for heating purposes alone o for cooking other than baking. The oven is adapted to
receive several pans, which form part of the outfit. When folded for transportation, the parts may be se ared by a lock and safely carried as freight or baggage.
Stove.-Ernest C. Cole, Council Bluffs Iowa. This stove has a top draught tube supported by universal joint, to give it a swinging motion and preven by the fuel, also enabling the draught to be pointed at any desired angle. The air supplied by this tube is heated in its downward fiow, affording a hot biast to be
thrown directly on the fire in a manner designed to af ord a perfect combustion of the fuel.
Game Apparatus.-William P. Wetz has parallel partitions extending from opposite edge nearly across, while arched strips between pairs of par itions have holes in their central portions, the strips be ing of different colors corresponding with different col ored marbles with which the game is playcd. The
marbles are run back and forth over the strips, the object being to place the different marbles in the holes or depressions of the strips belonging to therr several

Game Apparatus. - Reinhold F. de Grain, Washington, D. C. In a suitable casing, according to this invention, is a series of disks carrying numthe revolving mechanism rotating or stopping them separately or together for the registering of the symbol with reading points. As the operator pushes a rod in until coming to a top by gravity when the characters ntil through sight openings, exhibiting the characters to three sides of the box. The characters are preferably ordinary dice spots.

Fluid Pressure Regulator.-Pete Abertine, Jr., Carlstadt, N. J. This is an improved ga ply and service pipes. It consists of a casing having liquid into which dips the lower edge of a float carrying a valve stem whose valve moves toward ai:d from seat in the casing, the seat being arranged between t! inlet and outlet. A guide on the stem engages guide
ways in the casing, the guide receiving weights to in ways in the casing, the guide receiving weights to in
Fire Escape.-Daniel Cronin, Mannington, West Va. A drum carrying a wire or rope
adapted for attachment to a window has at its ends wheels for brake straps, and is journaled in a fram from which dropsa her ared to an belt etting frame of novel construction, the handle bar which is grasped by a person seated in the strap, where by the brake may be applied with the desired force to egulate the speed of descent.
Purifying Water by Ebullition. Ifred Dervaux, Brussels, Belgium. An apparatus more specially devised to free water from carbonate of lim ing column of water is heated to the boiling point by ntroducing steam at the bottom of the column and the subjecting the steam escaping to a spray or sheet of cold t the same time heating the spray, whereby steam is drawn through the water by suction, and the water thoroughly boiled and forcibly agitated.
Hunting Apparatus.-Benedict Ott a Crosse, Wis. 'To facilitate forcing wolves, foxe
abbits, etc., out of their subterranean holes or burrow this inventor has patented a novel device, comprising stiffly fiexible cable, made of tubing or wire rope, and ulb at one end and a rotating crank at its other end, the bulb being hollow and having ventilating holes to re eive cotton waste or other material saturated with som
freely burning substance. The cable has sufficient igidity to enable it to be forced into a burrow and be rorated by the crank, it being designed to force or smok out the animal.
Insect Trap.-Edward G. Lewis, St ouis, Mo. A superior fiy trap is afforded by this inven tion, one which may be folded to occupy but little space Sox form. nd an integral top is orificed and is scored from the orifice toward the angles of the body, the orificed por ght orifice and an insect inlet orifice the two orifice light orifice and an ins.
being widely separated.

Designs

Spoon.-Vincent P. Tommins, Hobo en, N. J. The bowl of this spoon has a representatio lag and eagle and its wider portion has foliate wreat argin.
Game Board.-James A. Bush. Port Gibson, Miss. This game board affords a puzzle, with ward toward each other and merging into broad round ing ends, the inclosures communicating with each other at points out of registry.
Spoon Handle.-William A. Jameson, iagara Falls, N. Y. The front and back face of this handle are of violin shaped outline, with scroll orna
ments at the sides of the widest portions and beaclik rnaments at the sides of the narrow portion, extendin from the bowl to the scroll.
Nore.-Copies of any of the above patents will be
urnished by Munn \& Co. for 10 cents end name of the patentee, title of invention, and date of this paper.

NEW B00KS, ETC

Der Schornsteinbau. Von Gustav Lang. Mit uber 120 Abbildungen im Text, und 2 Tafeln. Hannover: Hel wing'sche
1896. Pp.
Pe.
To those who read German and are interested in the essor Lang's work on chim ney building will be most useful, touching, as it does, pranch of chimney building
Steam Heating Data. By William J. tilation. Published bv the Author Nos. 106 and 108 Beekman Street The Bravest of Them All. By J. Maw ?" etc. New York: The Eskdale Press. Pp. 68. Price $\$ 1$.
This little work may figure as a prolonged ※sop fable. Rudyard Kipling, in his "Jungle Book," ha in the same field of literature in an attractive form and which will meet with a warm reception from many

Reagents and Reactions Known by THE NAMES OF THEIR AUTHORS A. Schneider. Revised and Enlarged by Dr. Julius Altschul. Translated from the German by Richard Fischer. Milwaukee, Wis.: Pharmaceutical
Review Publishing Company. 1897. Review Publishing Co
Pp. 82. Price 50 cents.
This pamphlet is very attractive from its interesting ness. In its pages we find many an old friend, such as Fehling's solution, Herapath's quinine tests, and many others which might be cited as examples of the author's
work. It is not, however, restricted to reagents, for we
find tests for zinc given and many others. It is pub lished in pamphlet form, and we cannot imagine that any
working chemist would be content to dispense with so iseful and valuable a work.
California Game "Marked Down."
Scenic Mountain Woodland Coverts Scenic Mountain Woodland Covert Lakes and Streams for Trout, and the Generous Pacific for all Desirable Marine Contributions to Sporting Cal.: Passenger Department, South ern Pacific Company. 1896. Pp. 64 Oocket Manual of Ready Refer ENCE. For the use of Copy Editors
Proof writers, Copyists, Telegraphers, Stu
dents of La.w, ers, etc. Containing a Complete
Vocabulary for Double Words fron Webster's International Dictionary Wor Five Hundred Legal Phrases and Colloquial Expressions, with their Definitions and Aobreviations commonly met with in Writing and Printing ; Com plete List of County Names in the United States arranged alphabeti cally by States; Declaration of Inde pendence, with the Names of the
Signers; Constitution of the United Signers; Constitution of the Urited
States, with Amendments and Dates of Ratification; together with a ColHandy at all Times for Quick and Reliable Reference. Compiled and
arranged by P. J. Haltigan. New York. 160. Price 50 cents.
We have cited at length the somewhat full title pas of this useful little work, which will answer instead of
review as showing what it contains. It is nicely bound and well indexed.
A Systematic Treatise on Electric AL MEASUREMENTS. By Herschel
C. Parker. New York: Spon \&
Cbamberlain, 12 Cortandt Street
London: E. \& F. N. Spon, Limiied,
125 Strand. 1897. Pp. vi, 120. Price 125 S
$\$ 1$.
This well quite careful in it contruct well carried out, is largely a reproduction of a series o To a certain extent it shows that the articles were of th. origin, and the author apologizes for it on that basis. We hardly think it requires apology, and think it will be an acceptab
library.
A New Dairy Industry. Preparation New DaIRY Industry. Preparation
and Sale of Artificial Mothers' Milk,
"Normal Infants' Milk." By James
Fred. Sarg, Black Forest Farm, Fred. Sarg, Black Forest Farm, Pp. 162
The new dairy industry may be defined to be the appli-
 This little work, devoted more especially to the provil ing of milk for the feeding of infants, is an excellent
plea for cleanliness in the barn, and the author certainly eems, in his plea for small establishments, to lay an e ground for cleanliness.
The Ratlway Builder. A Handbook Railway Construction and Equip ment. By B Philadelphia: J. B. Lippincott Com$\begin{array}{ll}\text { pany. London: } \\ \text { Covent } & \text { Garden. } \\ \text { Henrietta Street } \\ \text { 1897. } & \text { Pp. }\end{array}$ Price $\$ 2$.
This little work, with an excellent index, really at empts to cover, in less than 300 small pages, the entir subject of building railways. The author evident but we believe that this book will be useful for practic railroad men, to give them assistance in estimating the probable cost of construction and equipment of ways. So many works of this kind are devoted to Eng lish construction that we are glad to see the America Easy Lessons in Mechanical Draw InG AND Machine Design. By
J.G. A. Meyer. The fourth number of this excellent work on draughting room practice is now out. It holds good its frrst
promise, and is largely illustrated with figures of the promise, and is largely illustrated with figures of the
draughtsman's methods, with formulas worked out in a manner that is a reminder to the regular draughtsman and a teacher to the amateur. The work is to be fin-
ished in twenty-four parts, at 50 cents each, at which ished in twenty-four parts, at 50 cents each, at which price we mail the parts as issued.
Building Edition of the Scientific American.
We take pleasure in informing our readers that the entific American is now on sale. It is tastefully bound in Peatherette covers and is sent by mail on receipt of $\$ 2$. It contains most charming half tone engravings
of picturesque country houses, and the views are accompanied by floor plans, and interior views are also given. In addition to this most prominent feature of the Building Edition descriptions of large public buildings are given,
as St. Luke's Hospital ; the new Massachusetts state as St. Luke's Hospital ; the new Massachusetts State Honse with its superb library ; the Library of Columbia University, and other architectural works. One of the most interest ng with the aid of music, flowers, and works of art Each monthly number of the Building Edition has a finely exeorms the cover, consequently there are six such piates in the book. 'The present volume surpasses in interest any of its predecessors.

Names and Address must accompany all letters or no attention will be paid therett. Thi is for our information aud not for publication. References to former articles or answers should give date of paper and page or number of question. Inquiries not answered in reasonable time should Inquiries not answered in reasin bear in mind that some answers require not a little research, and, though we endeavor to reply to all either by letter or in this department. each must take his turn. Buyers wishing to purchase any article not advertised in our columns will be furnished with addresses of houses manufacturing or carrying the same. Special WVitten Information on matters of personal rather than general interest cannot be expected without remuneration. to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of Minerals sent for examination should be distinctly

(7168) E. T. asks: Why do you have to put in a magic lantern slide upside down to make it sho lantern
(7169) F. L. C. says : Please give me through Notes and Queries, a recipe for a hard cemen gether two parts pitch and one part of gutta percha (7170) E. Y. M. asks: 1. What is the best way of cutting down a 500 volt current for charging way of charging cells from a 500 volt circuit is to use equired, perhaps 10 amperes at 25 volts the current Will a rheostat made of German silver wire per cell. 2 of the current? A. The rheostat affects current by its re sistance, according to Ohm's law-current=volts divided wire should b for charging the storage cells? A. It is not economical or feasible to reduce a 500 volt current for charging cellis
with a wire resistance of any kind. 4. Would iron wire do as well ? A. Iron has about one-half the resistance o German silver, and, therefore, about twice as much, size many watts will be consumed in charging a 150 amper our cell? A. Two and one-half volts are required charge a storage cell; hence $2 \cdot 5 \times 150=375$ watt hours. 6 what voltage should the cu
(7171) L. C. T. says : Please send me a (17pe for removing freckles from the skin. One that is not injurious, if such a thing is possible. A. Under the an and the milder variety of freckles, a foreign surge has devised the following

Potass. iodid... dr. ii. Iodine pur............................... gr. vi. Glycerine...................... dr. iii. Infus. rosæ.............................. oz. iv. Dissolve the iodide of potaseium in a small quantity of the infusion and a drachm of the glycerine; with this fluid moisten the iodine in a glass of water and rubit down, gradually adding more liquid until complete solution has been obtained; then stir in the remainder of the ingredients, and bottle the mixture. Solution B. Sodæ hyposulph. thiosulphate............ oz. iss. Aqua rosæ exot........................... pt. i. Dissolve and filter. With a small camel's hair pencil or piece of fine sponge apply a little of " Albadermine A" to the tanned or freckled surface, until a slight but tolerably uniform brownish yellow skin has been produced. At the expiration of fifteen or twenty minutes moisten a piece of cam bric, lint or soft rag with " B," and lay it upon the af fected part, removing, squeezing away the liquid, soaking it afresh, and again appiying until the iodine stain has disappeared. Repeat the entire process thricedaily, but diminish the frequency of the application if tender ness be produced. In the course of three to four days to as many weeks the freckles will either have disappeared entirely or their intensity will be greatly diminished. "Summer freckles " yield very speedily to this treatment.

Tools For All Trades

MONTGOMERY\& CO. FINE TOOLS, TF You Hre a manufacturer of sheet metal
 No. 1. ROLLING MILL MACHINERY FOR SHEE
No. 2. TUE AND WIRE MILL MACHINERY No. 3. SILVERWARE AND COINING MACHINERY No. 4. HARDWARE AND
No. 5. BICYCLE MACHINERY
THE WATERBURY FARREL FOUNDRY \& MACHINE CO.
"Quen" Builder's Transit 觕每" IMPROVED TRANSITS AND LEVELS

 PLUMBERS' IRON LEVEL With lumble

al piping. Price 22.25. Size 12 nnch. For book on thell le C. F. RICHARDSON \& SON,
o. Box 97\%, ATHOL, MASS., U.'S.

$$
\|
$$

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Granted
JUNE 22, 1897,
AND EACH BEARING THAT DATE.

$$
\frac{1}{2}
$$

ers, .a. . j. Siromvii.
Coin, actuated machine

Coupling. See Car coupling. Rod
Crank., Thaillibeouling. trow, A. Anthony
Crate for shipping wild game birds

Cup. See Medicine cup

Envoiope maghine , Miectas

Eyelet machines.

Blake \& Johnson,

$1 / 2-I_{\text {nch }}$ AUGER BITS THEAEA

A fne cutting tool. perfeet olearance especially good THE FORD SIT CO., Holvone, MASS. SCIENTIFIC AMERICAN SUPLE-

 ovLr ALL
WRoubtr steel belt a Pulley

"'MOON" HUTOMATIC GREASE ZUP 2.
 AMERICAN INJECTOR CO. Chere's a Reason for Euerything,

Scientific American

It is a weekly reflex of the whole world's scienEngineering, Chemistry, Electricity, and, in fact,
faithful chronicle of scientitic matters relat a faithful chronicle of scientitic matters relat-:
ing to all trades and professions. It is contributed ing to all tradey and professions. It is contributed
to by the most distinguished writers and is regarded in every land as the leading scientific publica-

Noteworthy inventions and patents are recorded and explained in its pages. Nothing of interest
to science or scientists is ever omitted from its The subscription price is $\$ 3.00$ per year; six ont s, 1.50 ; four montbs, \$1.0. Remit by check, MUNN \& CO., Publishers, 361 Broadway, New York City.

 The Long-Sought-For Found at Last

ELECTRO MOTOR, SIMPLE, HOW TO

The "Wolverine" Three Cylinder Gas-

WWIER VIOIOB
GAS ENGINES \& VENTILATING FANS

 SCRE W - CUTTVING DIE HEAD

in sizes suitablit for cutt ing threand from

DORMAN'S

 VULGANIZERS

1897 Supplement Zatalogue Ready!

ALCO VAPOR LAUNCH

MONITOR NMOGUL
 MONITOR VAOR ENGINAND POWER COMPANY
Little Hustler Fan

THE CARBIDES AND ACETYLENE

The publishers of the Scientific AmeriCAN announce that an entirely new 48 page SUPPLEMENT Catalogue is now free to all on application. MUNN \& CO., Publishers, 361 Broadway, New York City.

 COLORS AND ARTISTS' MATERIADS.

NOW IS THE TIME TO SUBSCRIBE

Cux. Min Mex

ESTABLISHED 1845.

The most popular Scientific Paper in the World The Scientific American has been issued every week by the present publishers for a period of over fifty years. It is the only Journal published in this country which is devoted to a general treatment of the development of the sciences, arts and manufactures. Euch issue is embellished with numerous illustrations showing great engi-
neering works, the most recent inventions in bicycles and motor carriages, new forms of machinery, photography, the latest additions to the navy, new guns, locomotives,
etc., sixteen pages each week. Many of our patrons have been on our subscription and wer a period of thitters from ers stating that owing to a careful reading of the paper since boyhood, they owe their success in life more to having had the Scientific American as their constant
friend and companion than to any other one cause.
The Scientific American should have a place in every dwelling, shop, office, school or library. Workmen, foremen, engineers, superintendents, directors, presidents, officials, merchants, farmers, teachers, lawyers, physicians, clergymen-people in
every walk and profession in life, will derive satisfaction and benefit from a regular reading of the Scientific American.
As an instructor for the young it is of for yourself-it will bring you valuable ideas; subscribe for your sons-it will make them manly and self-reliant; subscribe for your workmen-it will please and assist their labor: subscribe for your friends-it will be likely to give them a practical lift in life.
A yearly subscription to the Scientific American is a most acceptable gift to a son or a friend.
new volume commences july 1st.
Subscription Price,
\$3.00 a year, or $\$ 1.50$ for six months.嚅 Send your address for a free specimen copy.

MUNN \& CO., Publishers,
361 Broadway, New York

Hav
lave You a Friend Interested in the fine a rt of printing? THE INLAND PRINTER

 NOW READY.

"Inexpensive Country Homes."

 Build. A bandsome cloth-bound portfolio, consisting of 9
pages 11×14, printed on heavy plate paper, and containing 43 designs, with floor plans, of practical, have been carefully selected as embodying the best Every one of the hitects throughout the councry. nd all of the illustrations are half-tone engravings, views of the same house are shown. Several illus mong the designs.
 a description of the dwelling thus enabling if

Architects, Builders, and those intending to buil up-to-date

Price, $\$ 2.00$ by mail, postpaid
MUNN \& CO., Publishers,

EXCHANGE $\frac{1}{2}$ Barclay St., New York 156 Adams St., Chicago 38 Court Sq., Boston. 818 Wyandotte Street, Kansas City, Mo. We will save you from 10 to 50 per cent. on Typewriters
of all makes.
Send for Catalogue. ACETYLENE APPARATUS.-ACETY Ine number of the sciENTRPIC AMERICAN SUPPLE

SO SIMPLE A CHILD CAN USE THEM
 S UNART MAGAZINE CAMER

 SUNART PHOTO CO 5 AQueduct Street Rochester N Y THE TIN PLATE INDUSTRY IN THE Onited States.-An interesting paper. showing the ex
triardinary development of the thin plate industry in
this country, and the serious competition into which it

Sap macoune, spring tongue. . . . C. Covert..........
sole or heel trimming, rotary cutter for, A. Mi

Stone channeling toil, A. E. Biaiar.....
Stone cutting machine, T. A. Jackson
Stone curting machine, W. Kne, A. Jackson
Stone, making artificial. J . W. Tur
Stone, making artificial, Tho
Stopper. See Bolttle stoppe

Telescope, E. Abbe......
Tellurian, J. Buxton.
Tellurian, N. J. McArth
Thill coupling, H. B. \& J. N . Young.

Wheel. See Car wheel.

 Window ventiliator, G. B. Pattison
Windows, removabie pulley stile
Wire dra wing machine, J . Rady. Wre dra wing mac
Wrench, I. Eatan
Yarnch
Yarn clearer, E .

DESIGNS.

TRADE MARKS

 Soansim cal
Burke...

 Canadian parents may now be obtained by the in

 BURNS ELECTRICITY.
 THE ELECTRIC PORTABLE LAMP CO., Drawer B, ELIIIRA, N. Y

AMPLIPHONE

Speaking Trumpe its use ordinary speech can be
stinctly heard for long distances NE Send for Crecula
04-606 Chestnut street, Philadelphia, Pa.

Worcester Polytechnic Institute

LEHIGH PREPARATORY SCHOOL

KRAFTUBERTRAGUNGSWERKE RHEINFELDEN, Society for the Utilization of the Water
 German (Badish) or the swiss side of the Rhine, in the vicinity of important railwary hines. Cheap labor.

3yin. Astronomic and Landscape
inch elescone, 840.
WE BUY PATENTSE small novelties. Colum-

|CE MAABINES, Cor liss. Engines, Brawers,

Experimental \& Model Work

A. P. Dicery Mrec. Co., מacome. Wis

\qquad

 COPYRICHTS \&c. probably patentablee, whether an invention in in
contaontiat. oldest agency for seations strintety in America. We have a Washington oatice.
Patents taken through Munn \& $C o$ receive

SCIENTIFIC AMERICAN

\qquad ELTING of Various Styles, ELEVATORS, CONVEYORS, The JEFFREY MANUFACTURING CO., COLUMBUS, O.

Phovertisements. Didocrinsements.
ordinary Rates. Inside Page, each insertion--7.5 cents a line
Back Page, each insertion--- $\mathbf{S 1 . 0 0}$ a line
 The above are charges per agate line-about eight
Words pertine. This onotice showsthe widh of the dine.
and is set in agate type. Engravings may head adverand is set in agate type. Engravings may head adver-

Ride Che "Olive"

Strictly high grade. Features-attractive, prac tical and substantial. Special price to riders

KEUFFEL \& ESSER CO.,

Drawing Materials

Write for Kegrpel it ESSER Co.s. "S. A." Cata
Logot of 1897 28th edition, 424 pages. The most com-

"Pullman" Bicycle Ђanger

Merv comprehensive article giving the details. of - A
 PLEMENT, No. 908. Price 10 cents. To be had at this
office and trom all newsdealers.

Preserve Your Papers.

Which would you rely on?

 We make our"PIONEER" "PIONEER"

Tube of Fifty Carbon Steel

While Weight for Weight in a Bicycle our FIFTY CARBON Steel will last so long and TWENTY-FIVE CARBON Steel will last only so long

NOTE THE FULL IMPORT OF THE PARALLEL LINES. The comparison which they graphically make indicates the result of the prolonged investiga
tions of the most practical experts of the worlic.
 bieycles of correct design and construction. by the ise of this tube. Wvery bicycle manufacturer The margin of safety is greatiy increased by the use of this tabe. Wvery bicycle manufacture
should use ite every dealer should insist on having tit; every rider should demand it.
Send for Catalogue.
THE POPE TUBE CO., HARTFORD, CONN.

Tested and True.

The Easiest Running Wheel in the World.
THE BLACK MFG. CO., ERIE, PA.

IMPERIAL BALL BEARING AXLE

PRINTIING INKS

[^0]: A special dispatch from Naples, dated June 4, say that Mount Vesuvius is in eruption. An area of 2,000 yards long by 500 wide is covered with lava, and it is dangerous to approach within 400 yards of the principal crater.

