
a Weekly journal 0f practical information, art, science, mechanics, chemistiy, and manufactures.
Vol

COALING WARSHIPS AT SEA.

 In dwelling upon the advantages conferred upon the warship by the introduction of steam, it must not be forgotten that the must not be forgotten that the new power imposed one very serious burden which is making itself increasingly felt as thespeed and size of modern ships speed and size of modern ships
continue to increase. For wherecontinue to increase. For where-
as the masts and sails of the frigate were good for a cruise of indefinite length, the boilers and engines of the modern cruiser or battleship are available for pro pulsion only so long as there is coalin the bunkers. The radius of action of the steam-driven ship is determined by her capa ship is determined by her capacity for carrying fuel and her
distance from an available coaldistance fro
ing station.
ing station.
There are perhaps no opera tions of a naval war in which this limitation of the steam bat tleship has caused greater incon venience tban in the work of blockading an enemy's port. In the days of the sailing frigate a ship could lie for months if need be in the blockading line, and be in the blockading line, and
the full strength of the fleet was the full strength of the fleet was
maintained unbroken for months at a stretch; but in a modern

the temperly transporter, for coaling vessels at sea.
blockade it would only be possi ble to count upon a certain percentage of the ships as available the others being absent in turn, taking on coal at the nearest station. It has been estimated that during the blockade of Charleston in the civil war fully onequarter of the ships were absent at any given time for coaling purposes.

The same difficulty presented itself at the blockade of Charles ton Harbor, during the recent naval maneuvers. Ships whose draught was not over 15 feet entered the harbor, where the water was quiet, and were coaled from barges lying alongside in the usual way. but had th larger vessels, such as the Indiana, Maine, New York and Columbia, drawing from 20 to 26 feet, required recoaling, they would have been obliged to steam away to Port Royal or Newport for the purpose. As it was, all of the vessels that took on coal were obliged to leave their position in the blockade and its efficiency was impaire in proportion to the number of vessels absent at any one time.

With a view to overcoming the

the united states battleship massachusetts coaling at sea from a barge which she is towing abeam.
difficulty, the U. S. S. Massachusetts was recently fitted out at the New York navy yard with a coal transporter, which will enable her to take coal either when at anchorage off a blockaded port or when steaming at slow speed in moderately calm water.
The Temperly Transporter is the name by which this new form of hoisting and conveying device is known. The large engraving represents the battleship Massachusetts taking coal from a barge which she is towing abeam, at a distance of twenty or thirty feet, and at the rate of six or seven knots an hour. It will be seen that the device consists of a traveler running on a suspended beam, which reaches out over the barge and is carried from one of the boat cranes of the battleship. This beam, which is 60 feet in length, and weighs about 3,000 pounds, is suspended from a strap. attached to the crane by four steel guys, and it is prevented from swinging fore and aft by means of other guys which lead inboard and are made fast to the deck of the vessel. A novel form of self-locking carriage is employed, which travels upon the lower flanges of the beam, and is capable of traversing its entire length. The beam is pitched at an angle sufficient to cause the carriage to run out by gravity, and a single hoisting rope coiled about the barrel of the steam winch serves at once to operate the carriage and hoist the load. The rope after leaving the drum is led to a sheave which is secured at the point of suspension of the beam, from thence to a pulley at the higher end of the beam inboard, and from there it passes around a sheave in the carriage and terminates in a hook to which the bags of coal are attached.
In operation we will suppose that the carriage is at the lower end of the beam over the barge, where it is locked automatically to one of the stops on the under side of the beam, the locking gear of the carriage being then in the position shown in the first figure. After the hook is secured to the coal bag, the hoisting rope is drawn in by the winch, the load rises rapidly to the carriage, where a catch on the hoisting chain, striking a lever, automatically locks the load to the carriage and releases the car from the stop above mentioned on the under side of the beam. This position is shown clearly in the second figure. The further inhauling of the hoisting rope causes the carriage to travel rapidly up the beam. The stops on the under side of the beam are spaced five feet apart, and the carriage is drawn up until it passes that one which is located over the point where it is desired that the bag shall be delivered. The winch is now stopped and reversed, and the carriage moves back until it is arrested by the engagement of the latch, which is shown at the top of the carriage with this particular stop. The dropping of the latch into the stop automatically releases the load from the carriage, and it is forthwith lowered to the deck. The bag is then unhooked, an empty bag is put on in its place, and the operation is reversed, the empty bag being run down the full length of the beam and delivered to the barge. The whole operation is performed in less than a minute, and it requires no skill upon the part of the operator. The long reach of the beam permits coal to be taken from a vessel of any description, which may stand off from the battleship a distance of from twenty to twenty-five feet, and the operation may be carried out in any sea in which it would be safe for two boat to lie at anchor at that distance apart. As the transporter is supported entirely from the battleship, no part of it can be iniured by the rolling from the two vessels.
To appreciate the full advantages of such a machine we have only to suppose that the White Squadron is blockading the harbor of an enemy and that every vessel is required for the purpose. Under such condi tions the coal boats could be brought directly to the scene of the blockade, and the coaling carried out upon the ground. Of course the coal barges or ships would have to be escorted by a convoy, but this ship would be necessary in any case for the transport of supplies and dispatches.
It will be evident that the coaling ship may be towed at a moderate speed parallel with the warship, and that the operation may be carried out with equal success under such conditions. The French navy, which uses this system of coaling extensively, made a successful trial of coaling the Richelieu while she was steaming under the headway of six and a half knots an hour, and they were able on this occasion to transfer one hundred tons of coal in three hours. The British Admiralty during a series of tests, has handled forty tons an hour in bags by this same device, and it was so wel satisfied with the performance that one hundred and fifty of the transporters have already been furnished to the British navy. We are informed by Mr. Spencer Miller, C.E., to whom we are indebted for the data and clrawings from which our engravings and description have been prepared, that in addition to the two powerful navies above mentioned, this device has been adopted in the navies of Germany, Austria and Italy

IT is proposed to raise $10,000,000$ francs to restore the Palace of the Popes, at Avignon. It is proposed to create a museum which will illustrate the whole history of Languedoc.

Stientifir 冬mmerian.

ESTABLISHED 1845.
MUNN \& CO., - - - EDITORS AND PROPRIETORS.
Published weekly at
No. 361 BROADWAY, = NEW YORK.

NEW YORK, SATURDAY, APRIL 24, 1897.

table of contents of

Scientific American Supplement

No. 1112.

For the Week Ending April 24, 1897.

Price 10 cents. For sale by all newsdealers.
. ACoUSTICS.-The Perception of Sound.-A popular article........ PAGE
 searches on deliib
bualdings.
Roman .ineaters

Vi. Forestry.-a Fireproof Tree.-By g. Clark nuttall.......

iustrations..

xi. miscellaneous. -The Celebration in Honor of william the

Registering the Outgoing and Incoming of car
хиц-т

RESPONSIBILITIES OF THE NEW COMMISSIONER.
Among all the appointments which are made by ar. incoming President, it would be difficult to find one which calls for the exercise of more careful judgment than the appointment of the Commissioner of Patents. The responsibilities of the office are of a particularly trying character, and the relations of the commissioner to the government, the inventor, and the patent attorney invest him with a degree of discretionary judicial power which finds no parallel in the various courts of law. Inasmuch as he has the final word, so far as the Patent Office is concerned, in the settlement of all difficult cases, it is necessary that he should have, in the highest sense of the term, a judicial mind; and in highest sense of the term, a judicial mind; and in
addition to a general knowledge of the law he should addition to a general knowledge of the law he should
also have a very intimate knowledge of the theory and also have a very intimate knowledge of the theory and
practice of patent law. His tenure of office and its emoluments should be such as to place him entirely beyond the reach of all external influence, whether commercial, political, or otherwise, and there is no question that the permanent tenure of the position by a commissioner who has proved himself in every way acceptable would be greatly to the advantage of the Patent Office, the patent bar and the great body of inventors throughout the country.
We have spoken of the extraordinary judicial authority invested in the office. It is safe to say that there is no power possessed by the commissioner which brings with it more serious responsibility than that which enables him to disbar any patent attorney who may be guilty of unprofessional practices before the Patent Office. We say "disbar" for the want of a better term As a matter of fact, there is unfortunately no such thing as a recognized patent bar in this country. Any at torney who conforms to the procedure of the office may file an application for a patent and argue the case before the commissioner or his representative.
It will thus be seen that the door of entrance into patent practice is about as broad as it is possible to make it. The only supervision to which the practitioner is subject is that of the commissioner, who may suspend an offender for notoriously dishonest practices. Just what degree of offense calls for disbar ment seems to be left to the discretion of the commis sioner. In nine cases out of ten the reason given for disbarment is embezzlement of money; that is to say, the withholding of government fees. In 1871 Com missioner Leggett issued an order that an examiner who borrowed money from an attorney would be in danger of dismissal and the attorney of disbarment This order was approved by Commissioner Mitchell in 1889 ; but it does not seem that any attorney has been disbarred for this cause
In looking over the record of disbarments for the past thirty years, it is noticed that the average num ber per year has remained practically stationary, in spite of the fact that practice before the Patent Office has enormously increased in the interim. The obvious inference is either that questionable practices in connec tion with patent soliciting are less frequent than they were thirty years ago or else that commissioners have grown lenient or have no power to act in regard to these matters. We fear that the first alternative is as un likely as that the others are probable; and to the last among other causes, is to be attributed the rise and growth of a certain notorious class of practitioners whose methods are at once a snare to the inventor a disgrace to the profession, and are liable, if not checked with a strong arm, to cast a shadow upon the Patent Office itself.
In this connection we call attention to an article in Lords' Power and Machinery Magazine which we republish on the adjoining page, in which some of th worst irregularities that have crept into the paten practice are enumerated. How far the powers of the Patent Commissioner enable him to take cognizance
of these practices we do not know. If such practices of these practices we do not know. If such practices
do not constitute cause for disbarment, upon the predo not constitute cause for disbarment, upon the pre
sentation of charges of irregularity to the commis sioner, it is difficult to find any way in which the in ventor or the public can be protected.
This is the only method, so far as we can see, by which the practice of the Patent Office can be purged of this glaring and rapidly growing evil. Such a course would be more effective than any action that could be taken by the Patent Bar Association, should one ever be formed.

THE SIX MONTHS RULE IN COURT.

The United States Supreme Court has recently made a decision through Chief Justice Fuller which has the effect of sustaining the six months rule which was es tablished and enforced in the Patent Office by the late Commissioner, Mr. Seymour. The decision was ren dered in the case of Hyne against the Court of Appeal of the District of Columbia. Hyne applia and decide an mandamus to compel the couty days from the decision appeal taken more than forty of the Commissioner of Patents, the forty days rule
being one of the rules of the Court of Appeals. Hyne being one of the rules of the Court of Appeals. Hyne
claimed that, under the patent laws, he wasallowed two claimed that, under the patent laws, he wasallowed two
years in which to take this appeal as provided for in years in which to take this appeal as provided for in
the revised statutes. Heclaimed the conflict between the
court rule and the statutes and that the former was consequently invalid and asked for the writ of mandamus to set the decision of the court aside. The Supreme Court decided that the court rule was valid. This has the effect of practically establishing the Patent Office rules limiting the appeals which can be taken from one tribunal in the office to the other to six months. It should be borne in mind in this connection that on January 1, 1898, the new statutes recently enacted by Congress will be in force, and one year will be allowed under this new law in whirh to file amendments and take appeals. The six months rule was a Patent Office rule which was established by the ex-Commissioner of Patents, Mr. Seymour, and was in violation, apparently, of the statutes which allowed two years within which to take such action.

AMERICAN INDUSTRIAL SUPREMACY.

A recent issue of the Iron and Coal Trades Review (England) discusses editorially the relative condition of the wire industry in England and America. The facts which are given afford a striking proof of the rapidity with which a new industry is developed in the United States when once it has gained a firm footing, and they indicate also the rapid decrease in the cost of manufacture wh
According to our contemporary the English manufacAccording to our contemporary the English manufac
turers of wire rods, wire, and wire nails are threatened turers of wire rods, wire, and wire nails are threatened
with the loss of their business in consequence of the sucwith the loss of their business in consequence of the succountries and of the United States. The rivalry of Ger many is of long standing and has become an accepted fact; whereas that of the United States is a more recent and has grown to be a much more formidable feature.
Thirty years ago there was no such thing as a wire industry in this country. During the progress of the Paris Exposition of 1867 Mr. Abram S. Hewitt stated, in a report on "the production of iron and steel in its economic and social relations," that the manufacture of puddled wire rods was a very extensive business in Great Britain, but that no one had succeeded in naturalizing it upon American soil. With the best grades of charcoal iron it was, indeed, possible to make good puddled wire rods in the United States, but at a cost too high to compete with the foreign article, in the production of which no charcoal was employed.
In the thirty years which have passed since Mr Hewitt made his report, Bessemer steel has revolutionized the industry, and the United States now holds a commanding lead over all competitors. We finc that a single Garrett rod mill in the United States is producing 7,808 gross tons of wire rods in a single month, which would mean an output of 100,000 tons of finished product in a single year

The total output in Great Britain is only 200,000 tons per year, so that two such American mills would, to-day, equal the annual production of the very country upon which, thirty years ago, we were dependent for this article.
The statistics of the wire nail industry are equally striking. A single establishment, the Joliet Steel Works, produced 300,000 kegs of wire nails in 1895 and it is capable of exceeding that amount if necessary The wages which are paid in the mills per keg of material appear to our contemporary to be "incredibly
low," but it is noted very justly that the figure quoted, about 83 cents per keg, refers to a mill which is capable of producing a larger output of rods than any in Eng land. It is the improved machinery, the careful at tention to detail in the matter of saving time, and the intelligent resourcefulness of the American workman that enable our manufacturers to turn out a cheaper article, although the operatives take home a larger weekly wage than they do in England. The wonderful progress in economical production is shown by the following figures: In 1870 the average output of the mills was 14 tons of rods per double shift; in ten years this had doubled to 28 tons; during the next five years, or in 1885, as the result of the introduction of the Garrett mill, it had grown to 100 tons; and in 1895 the average output was 280 tons per double shift. Extraordinary as these figures appear to English manufacturers, our contemporary draws attention to the fact that there is no reason to doubt them, "since the prices quoted for sales speak for themsel ves, and it is well known that our American rivals are now offering wire rods and wire nails in most outside markets at such low price that our home manufacturers admit their inability to understand how it is done.
That we should be able to undersell the English man uf acturers in outside markets is the more remarkable when it is remembered that most of their mills are situated on or near the seaboard, whereas many of ou large mills are situated inland, and a haul, sometimes of hundreds of miles, is necessary before the commodity in question can be loaded for foreign ports; moreover, when it has been carried to the seaboard, we are at a further disadvantage on account of the cheap sea freights and the vast carrying facilities of our competitor.
Our easy supremacy in the manufacture of wire is on
typical of our progress in a score of other leading industries. The fact that we are able to undersell our com petitors in outside markets at a time when we are pro ducing, or are capable of producing, a large surplu above the needs of the home markets, suggests that our
future commercial growth must take place chiefly in future commercial growth must take place chiefly in
outside fields. There is no reason to doubt that our foreign trade could be greatly and rapidly extended if a systematic, thoroughly well organized effort were made to open up new markets and enlarge those that exist. If our consular service were strengthened, and if its efforts were supplemented by the establishment of local bureaus for the display of our products and for gathering and disseminating information likely to fos ter our trade with foreign countries, it is likely that we could soon open a market for our surplus product and bring back something of the industrial activity of the early years of the present decade.

A CIRCULATING PICTURE GALLERY

It is strange that the thought of an enterprise should have slept through all the ages to become a reality in these last days of our century. To whom the concep tion is due we know not, but its materialization we owe to the Hull House settlement, Chicago, says the Critic. The gallery at Hull House consists of about fifty framed reproductions. Some of them are the publications of the Arundel Society, but in addition to these there are colored prints of Fra Angelico's angels, and many photographs of paintings by the old mas ters Modern art is not entirely neglected either, Mil let, Bastien Lepage, and Abbott Thayer being the most important of the latter painters represented.
A few water colors are also included, though the gal lery is mainly photographic. Each of these picture may be taken out for two weeks at a time, a privilege which may be once renewed ; but this limitation is not too rigidly adhered to. No charge is made, and no security required, except a certain knowledge of the subscriber and his address. Men and women of the work ing classes take a lively interest in the gallery, but it most enthusiastic patrons are children.
The pictures are all framed, and they are well cared for by the temporary owners. The most popular of them are Fra Angelico's Paradise, the Sistine Madonna, and several other Raphaels, the Presentation in the Temple of Carpaccio, and, curiously enough, Bastien Lepage's Jeanne d'Arc. Imagine that beautiful, serene, exalted face in a bare, ugly room on West Halstead Street. It could not remain there two weeks without having some subtile, uplifting influence. And for this reason the new enterprise seems one of the most beneficent that Hull House has undertaken, outranking even the library, for the reason that everything the gallery contains is of fine quality, is true art.
That is what we need-to have art brought close to the people, to make them see it and feel it and live with it. It should be a part of themselves, as necessary
and inevitable as food and shelter. To rich and poor alike in this country it is still alien, still a thing apart too much of a luxury to be taken into our daily lives too exalted to become a part of our daily thoughts. We talk about it, we criticise and patronize it; we even when much aroused, admire it ; but we do not love it It is like a foreign language to us, and we have yet t learn to think in it.

DANUBE-MOLDAU-ELBE CANAL.

The agitation in favor of a canal which, starting from Vienna and proceeding in a northwesterly direction to Budweis, on the Upper Moldau, then utilizing the Moldau and the Elbe, would connect the Black Sea with the North Sea, now finds support in the Mon atschrift für den Offentlichen Baudienst, the officia organ of the Austrian ministry of the interior. The dea, of course, goes back to remote times. Charles IV the stepfather of the German empire and father of his own country, Bohemia, made a cutting through th Rosenberge as a starting point for the canal in 1366 Two hundred years later a full project providing lock was drawn up. The Austrian government has as ye dreaded the expense, and not taken any steps. But a committee has long been appointed, and of three pro jects submitted, that of Lanna-Vering has been approved of. The survey and the preliminary work have been done. It is now a question of funds. It is estimated that $2 \cdot 1$ meters of water (nearly 7 feet) could be secured all the way from Vienna to Ausrig on the Elbe near the frontier of Saxony), with the expenditure of 100 million florins (about $\$ 50,000,000$) : and it is pointed out that Germany might help, since the distance Ham burg-Sulina would be diminished by 55 per cent and Hamburg-Constantinople by 41 per cent. That may not be a strong argument, but Germany contri buted nearly $\$ 5,000,000$ to the St . Gothard railway funds-a somewhat similar case of indirect interests.

The electrical works and laboratory of Mr. Harry Barringer Cox, at St. Albans, Eng., which were totally lection of records of Mr. Cox's ten years' research into the prob-
lem of the cheap direct conversion of heat into electri-
city. Every one of his experiments had been photo graphed, and all these photographs were lost. We understand that Mr. Cox has been attempting to make a thermopile which would be commercially practicable as a generator of electric current.

W WARNING TO INVENTORS

In this nineteenth century the profession of patent solicitors is degenerating from the professional to the commercial. Inventors and patentees have their at tention arrested by flaming announcements, with the object of catching unwary inventors and patentees. One class of these agents offers medals as certificates of value of inventions, and large lottery prizes, amounting to thousands of dollars, to inventors who place their applications for patents in their hands. However before a medal or prize is awarded these inventors, in order to become acceptable competitors, they are com pelled to pay into the hands of these agents certain fees.
These competing inventors are induced to believe that a scientific and mechanical corps of experts in the employ of these agents makes crucial examinations o their inventions, in the light of the prior state of the art, and the inventions of allothers who are competing for a medal or the prizes, and in due time they respectively receive a communication from their agents, ac companied by a medal, certifying that they have been awarded the medal by a corps of experts, on the ground that the invention is determined to be the best of all others presented to them for patents. At some subse quent period it is announced that the money prize has been awarded to A, B or C
It would seem that intelligent men would not fall into such traps in this enlightened age; but alas they, like innocent lambs, are led to enter and made to uffer, or are dealt with in the same manner as are un sophisticated rural citizens who fall into the hands of "green goods" merchants.
For many years the story of the gold [gilded] meda awarded by a French scientific society to United States patentees has been well known, and yet victims ar constantly being made. When the announcement is eceived from Paris that the gold [gilded] medal has been a warded to a United States patentee for his in ention, after an examination by its savants, and that it has been found to be the best of the kind patented, there is a demand for a considerable sum of money to pay the expenses of the transmission of the medal to this country.
The expectation of receiving this sum of money is the secret of all the interest that this French associa tion manifests in regard to United States patentees A bald attempt to get money for a gilded medal, issued by a set of questionable persons, ought to be under tood by intelligent patentees when they read the word "gilded" in small letters, inclosed in brackets following the word gold. Such medals, whether Amer ican or foreign issues, should not be accepted by inventors, or in vestors in inventions of others, as proo of merit. They are nothing more than sawdust sold by "green goods" men.
Recently an inventor applied to one of the United States medal awarding patent agents and received a medal, but no patent ; and after he had expended about 175 as fees to this agent and to the Patent Office, he made a visit to Washington, D. C., and called on the chief of police in respect to his patent business, and finding that his money was wasted and beyond re covery, requested him to refer him to an honest, relia-
ble and capable patent counselor and solicitor, and ble and capable patent counselor and solicitor, and being given the name of a respectable house in Wash ington, he visited the same, and on entering the doo he said: "I am referred by the chief of police to you, as the kind of patent solicitor I am seeking. I do not want a medal awarded me, for my medal has cost me $\$ 175$, and no patent has been granted me. I want such an honest, reliable attorney, that, when he takes my case, and I pay him my money, I can go home and feel satisfied that all will be done squarely, and I shall get a patent for iny invention from the United States Paten Uffice, instead of a mere medal from my agent." The experience of this inventor ought to be a warning to others, and the course that he pursued should be followed by them.
Another trap set for patentees is the one that the In ventive Age, of W ashington,D. C., has for many months been warning patentees against. This trap is set by the patent right selling agent, who sends to every patentee a letter, which letter says: "Your patent has been examined by our scientific board or corps of mechanical experts, and it has been pronounced to be worth $\$ 25,000$, or $\$ 50,000$, or $\$ 100,000$, a nd we would like to have the agency for selling your patent." Furthermore, offers are made to take out foreign patents on already issued United States patents for one-half the usual fees, etc. It is only necessary to say that patents in many foreign countries for United States patented inventions, which have been published in the United States Patent Office Gazette fully enough to be understood by practical mechanics, are invalid, even if granted by such foreign government.-Lords' Power and Machinery Magazine.

THE MOST POWERFUL LOCOMOTIVES IN THE WORLD. 4,000 gallons of water and $71 / 2$ tons of coal. The tota The accompanying illustrations give a correct im- length of the engine and tender over all is 62 feet. pression of the great size of a set of mountain locomotives which have recently been built for the motives which have recently boe the Northern Pacific Railroad by the well-known Schenec-
tady Locomotive Works. In respect of boiler and tady Locomotive Works. In respect of boiler and ful locomotives ever constructed in this or any other country. It is true there is a freight engine on the New York, Lake Erie and Western Railroad which weighs 192,000 pounds and has 170,000 pounds on the drivers, but it has only 2,443 square feet of heating surface, against nearly 3,000 square feet in the Northern Pacific compounds
Four engines of this type are already at work and twelve have been ordered. They are to be used as "helpers" in hauling trains across the summit of the Rocky Mountains between Helena and Missoula, Montana. The grade is excessive 116 feet to the mile, and 17 miles in length, and, as the overland freight and passenger trains on the Northern Pacific road are very heavy, there is every economy to be realized in the use of extremely powerful engines.
As we look at this giant end on, it really appears as though the limit of possible dimensions had been reached-at least with the present gage of track. The boiler is 72 inches in diameter and the low-pressure cylinder is 34 inches in diameter, the latter dimension being not far short of the boiler diameter of some locomotives of forty years ago. 'The compounding is carried out on the Schenectady two-cylinder system, and it is ar ranged with the intercepting valve which is in common use on all the later compounds turned out from this works.
The boiler is of the extended wagon top type. There are 332 tubes, $21 / 4$ inches in diameter and 14 feet long, their total heating surface being 2,721 square feet. The firebox is 10 feet long, 42 inches wide and 77 inches deep at the front and $731 / 2$ wide and 77 inches deep at the front and $731 / 2$
inches at the back. It is built of carbon steel, with $1 / 2$ inch tube sheet, $3 / 8$ inch crown and $\frac{5}{16}$ inch back and sides. The plate for the first ring of the boiler is $\frac{11}{16}$ inch thick and measures $711 / 4$ inches by 224 inches. The heating. surface in the firebox is 206.5 square feet, and the grate surface is 35 square feet, the rocking grate being used.
The high-pressure cylinder is 23 inches in diameter and the low-pressure, as stated, 34 inches, the latter being by far the largest cylinderever used on a locomotive. The stroke is thirty inches. The highpressure cylinder is bushed to 22 inches, so that it may be possible to investigate the question of the best relative proportions for high and low pressure pistons. Both pistons have their rods carried through the cylinder heads. The steam ports of the high-pressure cylinder measure $20 \times 21 / 8$ inches, and of the lowpressure cylinder, $23 \times 21 / 8$ inches. The exhaust ports are respectively 20×3 inches and 23×3 inches. Allen-Richardson slide valves are used; the greatest travel is $61 / 2$ inches, and the outside lap $11 / 8$ inches The boiler pressure is 200 pounds to the square inch.

There are eight coupled driving wheels, 55 inche diameter, and the main driving wheel journals are 9

It can readily be believed that these giant machine have enormous hauling power. They are credited witl a drawbar pull of from 35,000 to 40,000 pounds. We are informed that a builders' trial of their hauling power was made on the New York Central and Hudson River Railroad, at Schenectady, where one of these en gines hauled 58 loaded cars up a grade of 60 feet to the

TWELVE-WHEELED COMPOUND LOCOMOTIVE, NORTHERN

 PACIFIC RAILROAD.Front view showing great size of boiler and cylinders.
mile for a distance of three miles. The united efforts of a switch engine and a mogul freight engine had previously failed to pull the same load.
Our thanks are due to Mr. A. J. Pitkin, superintend ent of the Schenectady Works, for the photographs and particulars of these remarkable engines.

The World's Costliest Book.

The most expensive book ever published in the world is the official history of the war of the rebellion, which is now being issued by the government of the United States at a cost up to date of $\$ 2,334,328$, say the Chicago Record. Of this amount $\$ 1,184,291$ has
march, plans of forts and photographs of interesting scenes, places and persons. Most of these pictures are taken from photographs made by the late M. B. Brady of Washington. Several years ago the government purchased his stock of negatives for a large sum of money. Each volume will, therefore, cost an average of about $\$ 26,785$, which probably exceeds that of any book that was ever issued. Copies are sent free to ublic libraries, and $1,347,999$ have been so distributed

The atlas costs $\$ 22$ and the remainder of the edi tion is sold at prices ranging from 50 cents to 90 cents a volume.
There does not seem to be a large popular demand, for only 51,194 copies have been sold for a total of $\$ 30,154$. Thus it will be seen that the entire proceeds received from sales thus far but slightly exceed the average cost of each of the 112 volumes. The books can be obtained by addressing the Secretary of War
The material used in the preparation of these histories is taken from both the Federal and Con federate archives, and is purely official. The re ports of commanders of armies, corps, brigades regiments, etc., are carefully edited and arranged so as to give a consecutive account of all engagements, with as little duplication and unnecessary material as possible, and as the writers represent both sides of the struggle, it may be regarded as impartial.

Disturbing Nature's Balance

The great and growing cost of the attempts in Massachusetts to exterminate the gypsy moth shows how serious may be the consequences to "the balance of nature" by the introduction of foreign insects or animals. A few of these moths were imported some years ago by an entomologist residing near Boston, says the New York Times Several of the captives escaped from custody and the State has spent $\$ 450,000$ in the last four years in a vain attempt to exterminate their de cendants. It is now estimated that at least $\$ 1,575,000$ will be required, and that the appro priation for five years to come should be $\$ 200,00$ per annum. On the other hand, a perpetual ap propriation of $\$ 100,000$ per annum would serve to confine the moths to the district in which they are now found.
The prcblem resembles that which has taxed the esources of the Australian colonies since the progeny of half a dozen rabbits, imported from Eng and, became so numerous that the maintenance of agricultural industries was menaced by their depreda tions. Australia has expended millions in rabbitproo fences and in devices for killing off the rabbits. But although bacteriologists have endeavored to remove them by disseminating the germs of fatal disease, the colonists have thus far been able to do no more than hold the animals in check.
In Florida several rivers have recently become choked by the rapid growth of a kind of hyacinth imported a ew years ago, and considerable expenditures will be required to keep the streams open for navigation. An mported insect called the black scale menaced the fruit industry in California until the State procured

TWELVE-WHEELED COMPOUND LOCOMOTIVE, NORTHERN PACIFIC RAILROAD.
Weight of engine alone, 186,000 pounds ; 23 inches and 34 inches diameter by 30 inches stroke ; heating surface, 2,943 square feet ; steam pressure, 200 pounds.
by 10 inches, and the intermediate front and back driving journals are $8 \frac{1}{2}$ by 10 inches. The main crank pin journals for side rod are 7 inches diameter by $51 / 4$ inches long, and for main rod $61 / 2$ inches diameter by 6 inches long.
The total weight of the engine in working order is 186,000 pounds, and the weight on the drivers 150,000 pounds. The fuel used is bituminous coal. The tender weighs 36,300 pounds, empty. It has a capacity of
was expended for salaries, rent, stationery and other contingent and miscellaneous expenses, and for the purchase of records from private individuals. It will require at least three years longer and an appropriation of perhaps $\$ 600,000$ to complete the work, so that the total cost will undoubtedly reach nearly $\$ 3,000,000$. It will consist of 112 volumes, including an index, and an atlas which contains 178 plates and maps illustrating the important battles of the war, campaigns, routes of
beetle which ate the obnoxious insects and thus brought relief. These and other instances which might be cited show that the utmost caution should be observed with respect to the introduction into any country of insects or plants for which nature has made no prepa ration there, and the growth of which may not be re trained by natural enemies and checks with which hey must contend in the countries from which they are brought.

AN IMPROVED SPEED INDICATOR.

The illustration represents a speed indicator especially adapted to show the speed in miles of a railway train, or the speed by number of revolutions or feet for any piece of machinery. The invention has been patented by Henry Herden, chief engineer of the Buffalo and Sus quehanna Railroad, Wellsboro, Tioga County, Pa., and is for an improvement on a formerly patented invention of the same inventor, designed to improve the construction and render the indicator more accurate. Upon a skeleton horizontal partition within a suitable casing are bearings supporting a shaft having a central rectangular opening in which two levers are pivoted at

HERDEN'S SPEED INDICATOR.

their centers. The levers are perfectly balanced upon the pivot pin, each arm carrying a weight at its outer end, and the inner ends of the levers are pivotally connected by links with a sliding crossbar, from which a rod extends centrally through the shaft and bearing to a swivel connection with a crosshead, which may be shaped to form an oil receptacle. The crosshead slides on horizontal guide bars and is pivotally connected by a link with a balance lever from whose lower end a connecting rod extends to an upper arm upon a spindle carrying a segmental gear, an opposite arm upon the spindle being attached to one end of a spring whose opposite end is secured to a hanger, the spring being designed to equalize the centrifugal force of the levers. A wheel having only a portion of its per iphery toothed is employed instead of a segment, as affording a more perfect balance, and the gear is in mesh with a pinion whose spindle carries a pointer moving on a dial on the outer side of the case. To limit the movement of the levers when the index hand is at zero on the dial, a set screw is placed on the moving shaft in position to engage the outermost weight of one of the levers, the shaft being connected by belt and pulley with the machinery whose speed is to be indicated. This indicator is designed to be is to be indicated. This indicator is designed to be
all affected by the jolting of a moving train or othe forces, the indicator hand moving or remaining sta tionary as the speed of the machinery changes or re mains even.

A NEW BLIND SLATTING MACHINE

A thoroughly tested machine, in which it is stated one man has slatted, clamped and doweled from two and a half to three and a half as many blinds in a day as would be done by hand according to the present system, is shown in the accompanying illustration. The tests were made by men unused to working the machine and it is claimed that two men, after becoming profici ent in its use, will be able to clamp, slat, and dowe not less than six hundred blinds per day, ready for the rabbeting machine. The new machine has been pat ented by George I. Parks and William D. Nelson, of No. 427 Walker Street, Augusta, Ga., Fig. 1 showing the machine in perspective and Fig. 2 being an enlarged sectional view. Arranged at each side of the frame of the machine are frame-clamping dogs mounted on bars which may be moved toward and from each other by operating a foot lever, and between the dogs are two slat-supporting plates pivotally connected by links and a central bar, the plates being adjustable toward and from each other according to the length of the and from each other according to the length of the
slats to be connected with the blind frame. Detachslats to be connected with the blind frame. Detach-
ably connected to the upper portion of each slat-support ably connected to the upper portion of each slat-support-
ing plate are slat-holding teeth, those at one end supporting rolling slats and those at the other end stationary slats, as shown in our view, although the machine may be arranged to slat all rolling slats or all stationary slats. In operation the side rails of a blind are placed in the blind clamp and the dogs and clamp closed to bring the rails toward the slat-supporting plates, as many slats as desired being placed in the holding teeth. The side rails being blocked up so that the holes will come opposite the tenons of the blind slats, the frame-clamping dog re moved toward each other, when the side rails en gage with the slats, after which the entire blind may be wedged and doweled, or pinned at once. The machine is designed to do the work with greater accuracy, as well as with much greater rapidity, than it can be done by hand, and is adjustable to any size of blinds

TEST OF A THREE HUNDRED HORSE POWER STEAM TURBINE.
In the common form of steam engine there is a serious loss arising from the fact that the cylinder is connected alternately with the steam supply and with the exhaust. The lowering of the temperature of the cylinder during the latter condition causes the condensation of a certain amount of the next supply of steam that is taken in, and this represents an actual loss of energy. The amount of loss will vary according to the range of temperature to which the cylinder is subjected This difficulty is inseparable from all engines which atilize the expansive power of the steam in a closed cylinder. In the endeavor to reduce the variations of emperature, the steam has been expanded in two or more cylinders, and the quadruple expansion engine of
the multiplication of parts and increased first cost of its construction.
The closed cylinder engine is finding a formidable rival in these later days in the steam turbine, or rotary impact engine. In these machines the energy of the steam is utilized by discharging it at an enormous velocity against the buckets of a wheel. The steam act merely by its velocity and not, as in the expansion ngine, by pressure. In order to secure the greates possible velocity, the steam is expanded during the last few inches of its travel through the nozzle, the expan sion being secured by making this part of the nozzle divergent. The theoretical speed of the steam as it inally strikes the buckets is enormous, and in the cas of a jet with an initial pressure of 75 pounds, discharg ing into a condenser in which the pressure is $11 / 2$

PARKS AND NELSOY'S BLIND SLATTING MACHINE.
ounds, the speed would reach the theoretical speed of 600 feet per second
There were great possibilities in store if engineers could only construct a rotary engine which would stand the enormous speed of rotation that was necessary in a steam turbine.
De Laval, in France, and Parsons, in England, each working on his own lines, have produced turbine which have shown their ability in actual test to give an electrical horse power on less than 20 pounds of steam per hour. De Laval did not hesitate to develop the total energy of the steam at a given pressure upon a single wheel, and he has built turbines that ran at he rate of 30,000 revolutions per minute. Parsons made use of several wheels and reduced the pressure of the steam in several stages. The steam was led through one set of turbines into a receiver. From this receive it passed through a second set into another receiver and so on until the steam finally reached the condenser The accompanying illustration shows a three hundred horse power De Laval steam turbine which is running very successfully at the Twelfth Street station of the Edison Electric Illuminating Company, New York City The steam is led into a circular steam tight casing in which is located the turbine wheel. This wheel has a which is located the turbine wheel. This wheel has a
diameter of $291 / 2$ inches, and runs at 9,000 revolutions

LAVAL THREE HUNDRED HORSE POWER STEAM TURBINE.
per minute, the speed of the buckets being 1,160 feet per second. The blades are arranged around the per iphery and are milled out of the solid steel spokes with which the wheel is built up. They are made very thin at the edges and are of a curved cross section. A stee band is left on around the periphery, in order to prevent the steam from passing out over the ends of the blades; and it also serves to oppose the tendency of the turbine to act as a fan. The steam enters the turbine chamber at a pressure of about 147 pounds, and it is directed upon the wheel by means of eight nozzles of the kind which we have already described. These nozzles are inclined to the sides of the wheel at an acute angle, and the face of the nozzle which lies opposite the line of the buckets is beveled to match the angle so formed. The wheel runs, as we have said, at the enormous speed of 9,000 revolutions per minute This, of course, is not so high as that of some othe turbines of this type, which have been run at the speed of thirty thousand revolutions per minute; but in the latter case the wheels have been very much smaller De Laval found it a very difficult matter to perfectly balance a wheel at this high speed. The center of gravity of the wheel and the axis of the shaft upon which it turns are never exactly the same. To over come the difficulty the wheel is mounted upon a long flexible shaft, so that when the turbine is running at high speed the wheel revolves on its true center of gravity, the axis of the shaft springing sufficiently to allow this adjustment to take place. The turbine shaft extends into a cast iron gearing box, where it car ries a pinion whose teeth are helicoidal and are in clined at an angle of 45° in opposite directions. This pinion operates two toothed wheels, whose gearing is also helicoidal, which are placed symmetrically on each side of the pinion. The shafts of these two gears extend through the gearing box and operate two Desrozier 100 kw . dynamos which are connected on the three-wire system. The proportion of the gearing is such that the speed of the dynamo is reduced to 750 revolutions per minute.
The regulation of the turbine is effected by means of a centrifugal governor which is driven from the shaft of the larger gear wheel. The segment weights or wings of the governor are movable on knife edges with very little friction. When the governor revolves the weights diverge, their inner ends push a pin forward, this pin in turn causing the cut-off of the steam through the movement, of the balanced valve in the steam supply pipe at the top of the turbine. A spiral spring inclosed in the governor keeps the weight in a state of equilibrium at a speed of 750 revolutions. After the steam leaves the bucket it passes into an exhaust chamber which will be noticed on the left end of the machine This connects by the large pipe with a Wheeler sur face condenser conveniently placed in any part of the station.

It will be noticed that in consequence of the great velocity of the steam turbine as here described the system as a whole presents proportions the reverse of those
to which we are generally accustomed. Unlike the to which we are generally accustomed. Unlike the pressure engine, here it is the prime mover which has
by far the smallest dimensions; then come the gearing by far the smallest dimensions; then come the gearing with their inclosing jacket or case, and finally the rela The advantages of this form of motor are its great simplicity, its compactness, the absence of heavy founda tions, the great regularity and evenness of the running the great ease with which a condenser may be adapted, and lastly, and for certain classes of work most impor tant of all, its efficiency.
In the following table is given a series of one hour tests of the Twelfth Street station turbine when it was running respectively with $2,4,6$ and 7 jets in use, from which it will be seen that, with 7 jets in use, it gave an electrical horse power on 19.95 pounds of steam :

One hour duration each test.)

$\begin{gathered} \text { No. of jete } \\ \text { used. } \end{gathered}$	Average load.		$\underset{\substack{\text { Average } \\ \text { watta }}}{ }$			$\begin{aligned} & \text { 部 } \\ & \stackrel{\text { d }}{0} \end{aligned}$	
	${ }_{\text {Amps }}^{+}$	Amps.	+	-			
$\begin{aligned} & \tilde{4} \\ & 6 \end{aligned}$		$\begin{aligned} & 147 \cdot 15 \\ & 458.80 \\ & 788 \cdot 65 \\ & 78 \cdot 35 \end{aligned}$			$\begin{aligned} & 18 \cdot 50 \\ & 56.02 \\ & 58.51 \\ & 99.14 \\ & 99 \end{aligned}$		27.35

A six-hour test gave the following results : The dyna mo outputs showed on the + dynamo $127 \cdot 25$ volts, $692 \cdot 48 \mathrm{amps}$.; and on the - dynamo $128 \cdot 26$ volts, $709 \cdot 18$ amps. The average amount of water consumed per electrical horse power hour was 19.275 pounds. The temperature readings, after the six-hour run, were as follows:

	+ Dynamo.		- Dynamo
Armature	$120^{\circ} \mathrm{F}$.	-	$129{ }^{\circ} \mathrm{F}$.
Average of fields.	98°	-	107°
Commutator.	. 144°	-	$132{ }^{\circ}$
Temperature of room...	. -	82°	
Temperature above room :			
Armature.... $38{ }^{\circ}$	-	47°
Field.	16°	-	25°

In this connection it is interesting to note the tests of Parsons compound steam turbine, which were recent ly carried out by the Newcastle (England) and Dis trict Electric Lighting Company. The turbine made 9,400 revolutions per minute, the speed of the alternator and exciter being 4,700 revolutions per minute. The steam pressure was 70 pounds. The total water used per electrical horse power per hour was $17 \cdot 28,20$ and 22.01 pounds respectively.
We are indebted to Mr. J. W. Lieb, Jr., general manager, and Mr. J. Van Vleck, constructing engineer of the Edison Electric Illuminating Company, for courte sies extended.

Archæological News.

The Palais de Justice, at Brussels, one of the noblest of the modern buildings, has now a pair of bronze doors. About fifteen tons of bronze were used, and in size and weight the doors stand second to the Pantheon alone. In spite of this great weight the doors are easily moved, for steel ball bearings are provided to avoid friction.
The library of the late Prof. Curtius, who was one of the most distinguished among the German classica scholars of the last fifty years, has been recently purchased by Yale University. The library was purchased intact. It was one of the finest libraries of the country on works on Greek art and archæology. It contains about 3,500 bound volumes and as many pamphlets.
M. Dalou's group, the "Triumph of the Repub c," which was commissioned several years ago for the Place de la Nation, Paris, is not yet entirely completed A little of the work was set up in 1889 to celebrate the
centenary of the fall of the Bastille. The models were centenary of the fall of the Bastille. The models were became much deteriorated, and M. Dalou was com pelled to remodel the whole group. The founding is till to be undertaken; so it is possible this magnificent group will not be erected until 1900.
Professor W. Weiler thinks the ancient Etruscans were acquainted with the lightning rod. The poet Lucan has the following reference to Aruns, an Etruscan of considerable learning. "Aruns, dispersos ulminis ignes colliget, et terra maesto cum murmure condit." "Aruns collects the scattered fires of light ning, and with sad rumble hides them in the earth." Lucan, Pharsalia, I, 606.) This quotation seems to indicate a knowledge of some way of conducting light ning harmless to the earth.-Elektrotechnische Rund schau.
A society was formed at the Congress of Art Critics. at Nuremberg, 1893. Its object was to give good pho tographic reproductions of masterpieces which are little known, being preserved in galleries which are seldom visited. In the private and often in the public gal leries of England, France, and Germany there ar many splendid works of art which have never been photographed and are therefore not readily accessibl to students, who are almost always largely dependen
upon nearly complete collections of photographs Th upon nearly complete collections of photographs The frst series of reproductions of the society has appeared. At last the famous Borgia apartments of the Vatican Pinturicchio, which have hitherto formed a part of the Vatican library, and have been piled with books to a great height, have now been cleared out, and the beautiful mural decorative paintings can now be seen There are few places in the world where the student can receive more instructive lessons in pure decoration. Many of the paintings include contemporaries of Pinturicchio, including Lucretia Borgia pictured as a sain Saint Catherine! For many years access to the Borgia apartments was only obtained through the greatest difficulty. Permissions were only possible
through the aid of powerful introductions. When the apartments were opened a throne had been pre pared for the Pope in each room, and here he sat and listened with deepest interest to the history of the various frescoes by one of the most learned cardinais of the Sacred College, and afterward by the chief curator of the Pontifical Museum. The frescoes have been restored in a conservative manner.

The Bicycle and Tuberculosis in women.
At the last quarterly meeting of the American Statis tical Association, Dr. S. W. Abbott, secretary of the Massachusetts Board of Health, presented some interesting figures regarding the proportion of pulmonary tuberculosis in females to that in males in Massachu setts. The rate in 1851 was 1,451 females to 1,000 males in $1890,1,055$ females to 1,000 males ; and last year only 974 females to 1,000 males. Last year was the first in the history of the State in which the number of deaths from phthisis in females was smaller than that in males. The fact that a uniform reduction in the rate of female deaths began some five years ago, about the time when women were beginning to ride the bicycle extensively, Dr. Abbott considers significant, and he is inclined to attribute the decrease in the death rate to the great increase in open air exercise among women which has been inaugurated by the use of the bicycle.-British

Norway's Storthing has voted a lump sum of 4,000 kroner, $\$ 1,080$, each to Nansen's twelve companions and , 000 kroner a year for five years to Captain Svendrup who is to command the next expedition in the Fram planned for 1898.
The final selection of the plans for the statue of Von Helmholtz has not as yet been made, but the plans submitted by the sculptors Lessing, Hertert, and Janenseh ave been selected from those submitted and these de igns have been exhibited in Berlin. The statue will be placed in the court of the university.
The firm of Frederich Bayer \& Company, of Elberfeld, Germany, has purchased the entire library of the late Professor Kukulé consisting of 18,000 volumes and said to be the most complete collection of chemical works in existence. It is to such things as this that Germany owes her wonderful position in the industrial arts.
Prof. Elmer Gates, of Washington, claims to have produced an absolutely perfect vacuum by filling a very infusible test tube with a glass melting at a much lower temperature. Then by inverting the test tube and partially withdrawing the molten glass by suction a space was left which, when the glass had solidified was claimed to be perfectly vacuous.
The Italian electrical journal L'Elettricista contains an article by Prof. Mosso and Mr. Ottolenghi, in which they describe their researches made to test the poisonous action of acetylene on various animals, such as dogs, birds, frogs, and rats, etc. They found it to be a trong poison. A small quantity in the air or inoculated in the blood is followed by death, and even when he animals are resuscitated with fresh air before death, they die afterward. A mixture of 20 per cent of cetylene in the air is followed by death in one hour.
The shelless limpet pulls 1,984 times its own weight when in the air, and about double when measured in the water. Fleas pull 1,493 times their own dead weignt. The Mediterranean cockle, Venus verrucosa. can exert a pulling power equal to 2,071 times the weight of its own body. So great is the power possessed by the oyster, that to open it a force equal to $1319 \cdot 5$ times the weight of its shelless body is required If the human being possessed strength as great in pro portion as that of these shell fish, the average man would be able to lift the enormous weight of $2,976,000$ pounds, pulling in the same degree as the limpet. And if the man pulled in the same proportionate degree as the cockle, he would sustain $3,106,500$ pounds.
Some six years ago M. Vallot erected on Mont Blanc, 1,400 feet from the summit, or 14,381 feet above sea level, the highest meteorologicalobservatory in Europe. Having made twenty-one or more ascents of the mountain, and obtained observations during three successive summers, he now generously offers the use not only of laboratory and instruments, but of kitchen and salon to meteorologists of any nation who care to pursue their investigations amid such exalted surroundings. Intending visitors are advised to provide themselves with a somewhat substantial smelling bottle in the form of a steel tube filled with compressed oxygen, the most approved remedy or specific for mountain sickness being the inhalation of a few quarts of this enlivening element.
The mayor of Ripon, England, recently announced that anyone giving evidence in the county court might, if he wished, be sworn in the Scotch form. A new copy of the Gospels was also presented to the court, and it was suggested, says the Lancet. that a bacteriological examination should be made of the cover of the old one, which had been in use for sixty years. The examination was accordingly undertaken by Mr. F. W. Richardson, consulting chemist to the Bradford Corporation. The result showed that, besides various moulds, there were present the micrococcus pyogenes albus and aureus, but it is comforting to know that not one of the specific germs of the communicable diseases was fo and. Kissing the book is a filthy and useless custom, and the Scotch form of oath taking is, as has been over and over again insisted upon, infinitely preferable from every point of view.
Charles Burckhalter, the astronomer of the Chabot Observatory, will travel half way around the world so that for two minutes in far-off India he may endeavor to photograph the sun during the solar eclipse of next January. As the eclipse during totality will be observable only in India, many scientists will travel thither to make observations. Charles Burckhalter has obtained considerable prominence by his discovery of a new method of photographing the sun during an eclipse, which gives results that are of the greatest scientific interest. To give him an opportunity to apply his discovery, a number of wealthy San Franciscans, who wanted to add something to the cause of science, sent the astronomer to Japan during the eclipse observable there some time since. The day on which the eclipse occurred was cloudy and no photograph could be secured. The same friends of science have offered to pay the expenses of a trip for Mr. Burckhalter to India. Mr. Burckhalter has determined that if he goes to India his party shall be known as the Chabot Observatory expedition, so that the little Oakland observatory will be prominent in the scientific world.

Recent Patent and Trade Mark Decisions. Clune v. Madden (U. S. C. C., Ind.), 77 Fed., 205.
Folding Bed Lounges.-'The Clune patent, No. 294 957, has been held invalid as to claim 1 for lack of invention
Invention.-There is no invention in the use of a pin or hook on the back of a folding bed lounge to auto matically engage the eye on the head rest when the two sections are folded together, thus holding the back firmly in place.
Schenck v. Diamond Match Company (U. S. C. C. A.,
3d Cir.), 77 Fed., 208.
Friction Match Device. - The Pusey patent, No. 483,166 , for a friction match device to be carried in the pocket, has been held valid and infringed, it, seeming to show invention, and, while so simple, it was new in the art, cheap and convenient and supplied a distinctly felt want.
Williams v. Breitling Manufacturing Company (U.S.
C. C. A., 7th Cir.), 77 Fed., 285.

Preliminary Injunction.-A preliminary injunction should be denied, though substantial similarity between the two devices is conceded, where the patent is attacked for want of novelty and invention, when there has been no adjudication sustaining it and where there is no showing of defendant's inability to respond in damages.
Westinghouse Air Brake Company v. Burton Stock Car Company (U. S. C. C. A., 1st Cir.), 77 Fed., 301. Preliminary Injunction.-It is within the discretion of the court to refuse a preliminary injunction, although the patent has been sustained, and infringe ment declared by another court, where there is possibility of grave and indefinite injury to the defendant who was a mere user, in case the final decisions were in his favor, but in such case the defendant must give an ample bond for damages.
Lublin v. Stewart, Howe \& May Company (U.S.C.

$$
\text { C. A., 3d Cir.), } 77 \text { Fed., } 303 .
$$

Dress Stays. -The Bray patent, No. 440,246, has been held valid and the decision of the lower court reversed on the ground that it was not anticipated by the Curtis patent, No. 243,519, as the two devices consist of radically different combinations and accomplish palpably diverse ends.
McKay \& Copeland Lasting Machine Company v Copeland Rapid Laster Manufacturing Company (U. S. C. C. of Maine), 77 Fed., 306.

Patent on Unused Device.-The mere fact that the patented device has never been put to any continued successful commercial use is not sufficient to overcome the prima facie case made by the patent. There must
be a patentable difference between claims in the same be a patentable difference between claims in the same
patent, and where a third claim in the patent differs patent, and where a third claim in the patent differs
from the first claim only in adding an element which contributes no more to the novelty of the combination than would the floor or block on which the machine rests, such third claim is void as mere surplusage.

Machine for Flanging Counters of Boots and has been held void as to the first and third claims.
Smertz v. Appert (Commissioner's Decision), 77 O. G 1784.

Affidavit to Overcome Foreign Patent.-A hoiding that the applicant has not presented an affidavit suff cient to overcome a foreign patent is not pleadable to the commissioner, becanse it does not relate to the merits of the case. Such affidavit should contain not only the deponent's conclusion that he was the first inventor, but should state the facts, and the facts only that support such conclusion. Such affidavit may be aided by the preliminary statement in the interference. Where an application becomes involved and motion is made to
dissolve the same on the ground that one of the applicants had not under the rules overcome a French patent, the party is entitled to invoke the doctrine of priority of mere conception, and even though he can show nothing but mentalacts prior to the reference sought to be overcome, the office must consider whether his conception was sufficiently clear and distinct and whether under the circumstances his progress was marked by due diligence, and this can only be done upon full record of the case and not upon preliminary motion.

Sixty Years of Progress

The forward march of science during the past sixty years has been nothing less than astonishing. Justly did Professor Huxley call the Victorian period "a revolution of modern minds." Out of the love of or at its commencement, by Herschel and Laplace, Young, Fresnel, Cavendish, Lamarck, Davy, Jussieu, Cuvier, Decandolle, Faraday, Tyndall, Darwin, and their like, there sprang up under this reign the fruit of countless rich practical applications. Three achievements in physical philosophy alone have been sufficient to immortalize the reign-the scientific doctrines, first, of the molecular constitution of matter; secondly, of the conservation of energy; thirdly, of evolution as divined by Darwin.
That last illustrious name shines of itself like a lonel
star of glory, sufficient to make resplendent the Vic torian constellation of talent. But consider how, prac tically, all our electrical developments also lie inside this period; with well-nigh all the marvelous utilization of steam on sea and land; almost all the amazing improvements in mechanical, industrial machinery almost all the discoveries in hygienic matters; togethe with vast advances in chemistry, metallurgy, astrono my, physiology, and, we may add, geography, geology, and biology. Only to mention the spectroscope, the camera, the microphone, the phonograph, the telephone, and the kinetoscope-alluded to above-is to use words never heard sixty years ago, though now so familiar. One discovery, as is the wont of Nature, helps to lead to another. The exquisite experiments of Tyndall illuminating floating motes aided Lister to introduce antiseptic surgery and to abolish hospital gangrene. There are those, it is true, like the late Professor Huxley, who resent the idea of utilitarian science. He has said:
"That which stirs the pulses of the votaries of science is the love of knowledge, and the joy of the discovery of the 'causes of things,' the supreme delight of extending the realin of law and order ever farther and farther In the course of this work, the physical philosopher, sometimes intentionally, but more often unintention ally, lights upon scmething which proves to be of practical value. Great is the rejoicing of all who are benefited thereby, and for the moment Science is the Diana of all these Ephesian craftsmen. But even while this flotsam and jetsam of investigation is being turned into wages of workmen and .wealth of capitalists the crest of the wave of scientific inquiry is far away on its course over the illimitable ocean of the unknown."
The cynicism latent in this may be forgiven for the sake of its fine intellectual pride and noble passion for Truth, but I am of those who think Truth herself fairest when she is most beneficent, helpful and generous. With this view I hail, as specially and loriously commemorative of the Queen's sixty years the benign extensions of the arts of remedial surgery
and medicine during its progress, and particularly the and medicine during its progress, and particularly the wo arch events of the introduction of anæsthetics and of female nursing as a study and profession. From the anguinary fields of the Crimean war arose, like an angel of compassion and redemption, Florence Nightingale, with ail that train of skilled and gentle women afterward following her excellent example, who have altered the history of the sick room and regenerated our hospitals. Lister's antiseptic treatment of wounds already spoken of, founded on the information obtained by Tyndall's electric beam and the microscope, and such experiments as Pasteur's about infinitesimal life, have stripped surgical operations of their previous deadly peril by reason of septic organisms, while-as if Science designed to bestow a specially appropriate boon on the youthful and compassionate QueenSimpson in Edinburgh, simultaneously with Wells and Morton in the United States, early in her Victorian age performed those mercuiful experiments with chloroform which terminated the epoch of unavoidable anguish for sick and wounded patients, robbed even war of its worst features, and commenced the present blessed era of anæsthetics. Read what a renowned
surgeon, Mr. Brudenell Carter, writes about that happy surgeon, M
discovery :

The use of anæsthetics has changed the whole aspect of surgery. Prior to 1847, operations were few in number, and were almost limited to the amputation
 the resection of a few of the larger joints, cutting for The pain suffered by the patients was so horrible as to tax severely the endurance of the bravest and strongest, and to depress seriously and often beyond recall the powers of life. Death from shock was by no means uncommon, the patient sinking in a few hours from the effects of the suffering which he had undergone. The writer well remembers, as a medical student, turning sick and faint at the agonies which he was called upon to witness; and it was a point of honor with operators in those days to abbreviate such agonies as much as possible, and to cultivate speed in operating as the highest and the most valuable form of dexterity. Nothing was attempted which could not be done quickly, and an amputation in the hands of a practiced surgeon had almost the appearance of a feat of legerdemain. For the separation of the lower limb ahove the knee-of course, not including dressingwenty seconds has been known to suffice, and forty seconds was regarded as a period of time which no one was justified in exceeding. When anæsthetics were employed, it came to surgeons as a kind of revelation that they need no longer be in haste, and they have utilized that knowledge in making leisurely examination and safe procedure.
I am almost
I am almost more grateful for the tardy arrival of this anæsthetic revolution in the train of her gracious majesty than for railways, steamships, and electric telegraphs, for the great armies and navies, for vast expansions of imperial territory, and even education, photography constitutional liberties, or anything,
lse. It was so strange, so tantalizing to a lover of his kind, that what Humphry Davy had so long before noted and imparted about nitrous oxide should pass unnoticed and unapplied. The key was already there, but not until many years afterward did an almost casual hand (that of an American dentist) fit it into the golden door behind which sat waiting an angel of pity, kinder and more powerful than any Arabian fairy suddenly revealed in her divine beauty and bountifulness to any prince or magician of the "Thousand and One Nights." Before now I have asked whether there is anything anywhere in human history which more sternly teaches that man must win every boon of Nature by his own ceaseless striving than the fact that this simple chemical and physiological secret of chloroform should have lurked so long in its easy formula, undeciphered through all those waiting generations when Pain was an omnipresent tyrant whom Science could not control, and the operating room a torture chamber, dreaded almost as much by the surgeon as by the sufferer. Think of those gallant sailors of Nelson at Trafalgar, whose bleeding stumps, in the gloom of the orlop deck, were plunged into hot pitch to stay the hemorrhage!
One would almost expect that, out of pity toward such brave men, and for the sake of the countless tender women and children who, age after age, so hopelessly endured their anguish, Nature herself would have burst her iron law of impassive silence, and, as Helen did in the Odyssey for the sorely tried Greeks, have poured this pitying nepenthe into the bitter cup of mortal life. Not until 1847, however-although Davy had been so very near the revelation in 1839did the anæsthetic age commence, giving to surgical art a sure control of agony, to its boldest practices confidence, quiet, and leisure, and to those who are constrained to come under that knife a sweet and complete oblivion. I have myself known what it is to pass, fearless of the kind steel, into that world of black, velvetlike tranquillity, of which these magic drugs now keep the gate, and to awake as good as healed, grateful beyond words for the soft spell of enchanted peace and the sure and faithful skill. This unspeakably good gift to mankind was of the American dentist's and of Sir James Simpson's giving, a participated glory of the reign, like that of the new school of nursing, which has wrought so much benefit and created a fresh ocation for many a young woman's gentle energies. In 1837 there was no proper nursing. There were Mrs. Gamp and Mrs. Betsy Prig, or else heavy-handed and heavy-footed male attendants, rudely different in mind, manner, and influence from the lightly moving and soft-speaking females whose trained intelligence and care now smooth every sick pillow, and faithfully discharge the ordinances of the doctor. There is no doubt the change was primarily due to the example of Miss Florence Nightingale-one of the glories of the reign-who went, at the head of a band of nursesmany among them of high birth-to the Crimean hospitals, and by demonstrating there, and afterward, the boundless advantages of skilled and first-class nursing, gave to the Victorian age the advantages of this modern system, and to a large number of her sex new, suitable, and most honorable vocation.-Daily Telegraph.

Formation of Crystals in Cadaver

Some work on the sewers done in Bearn Street, Paris, last August, brought to light two leaden coffins, which were found upon the site of an ancient church connected with the Convent of the Minimes. They date back to 1630. These coffins having been carried to the Carnavalet Museum, it was discovered that the bones that they contained were covered with white crystalline spangles. In one of them especially the cavity of the skull was converted into a magnificent geode, strewed with white needle-shaped crystals arranged in clusters and having a length of over a quarter of an inch. Mr. Lacroix, in a communication to the French Academy of Sciences, showed that these crystals were formed by a hydrated phosphate of lime allied to the metabrushite of mineralogists. The perfect tightness of the coffins showed that these crystals were formed at the expense of the cadavers exclusively and that we have here a case of automineralization. It was the bones that furnished the lime and doubtless also a portion of the phosphoric acid. The decomposition of the brain must likewise have furnished phosphoric acid, as the majority of the crystals were found upon the internal surface of the skull, and those of the exterior were almost all situated along the fissures of the latter.
Let us remark, by the way, that brushite and metabrushite, which the crystals under consideration resemble, are two substances found in deposits of guano, and must be of organic origin. In the grotto of Minerva (Aude), Mr. Armand has observed a curious layer of brushite associated with an aluminous phosphate. As this layer was strewed with bones, Mr. Armand suspects that it was due to the decomposition of soft organs that belonged to the animals whose skeletons were found above. The preceding interpretation is thus perfectly confirmed.-Revue Larousse.

NEW STEEL ARCH BRIDGE OVER THE NIAGARA. by orrin e. duncap.
On Sunday, March 28, the last panel of the great new steel arch bridge across the Niagara gorge was put in place and the arch proper finished. This new arch is being built to replace the old railway suspension bridge, which for so many years has been used by the Grand Trunk Railway. When completed it will compare most favorably with the bridges of its class in this country and Europe. Work was commenced late last fall, and has proceeded throughout the winter without loss of life or serious accident. Preparatory to the erection of the steel, the abutments of masonry were constructed on either side of the river. These abutments are four in number, two on each side of the gorge. At first it was proposed to locate them on the stratum of Clinton limestone, but this was found impossible on the Canadian side, where a foundation of concrete was built. On the New York State side, however, the abutments rest on the limestone. On both sides of the river they are located about midway between the water's edge and the top of the cliff. The stone for the Canadian abutments was obtained in the Queenston, Ont., quarries, and that for the New York State abutments at Chaumont, Jefferson County, N. Y. The abutments are magnificent samples of masonry.
It will be seen from the illustration that the arch as it spans the gorge is most graceful in proportions. It is the first bridge of its kind to be sprung across the Niagara chasm, and its erection has attracted much attention. The length of the main span of the arch is 550 feet between the centers of the end pins. This span is connected to the cliff on either side by a trussed span 115 feet in length. One end of each shore span is hinged to the arch by a pin at the intersection of the end post and top chord of the arch, while the shore end rests on expansion rollers, which in turn rest on the masonry abutments above referred to.
The new arch will have two floors or decks. The upper floor will carry the steam railroad tracks, and the lower one the carriageway, sidewalks and trolley track. The present suspension bridgehas but a single track on its upper deck for railway purposes, whereas the arch will be double tracked on its upper deck, thus giving greatly increased facilities to the railroads using it. Resting on the upper chords of the arch, above each post, there will be transverse steel beams, and between these beams will be four lines of longitudinal steel stringers placed 7 feet apart and directly under the railroad tracks. The lower deck will be formed by four lines of longitudinal steel stringers, placed about 11 feet apart, and transverse beams. The

I beams which will be placed across the stringers will \mid International Bridge Company and the Niagara Falls extend beyond the trusses to carry the sidewalks. It Suspension Bridge Company, owners of the bridge, is on this floor that the trolley track is to be laid, and it will be the first trolley track to cross the chasm. It is altogether likely that the first trolley car to pass from the United States into the Dominion of Canada on its own wheels and by its own power will cross this structure. The carriageway and trolley track will be planked with oak plank, and the sidewalks will be a few inches above the carriageway.
All told, there will be in the arch when completed over $6,000,000$ pounds of stesl. Of this amount it is estimated that there will be about $5,560,000$ pounds of steel plates and angles, 218,000 pounds of steel castings, 182,143 pounds of eye bars and pins, and about 30,000 pounds of wrought iron rods, etc. As the great incentive to the construction of the arch was to secure in creased facilities for crossing the gorge, it may be imagined that the bridge is designed to carry a very heavy load both on the upper and the lower decks. It is expected that the arch will carry on each railroad and this is not the first time his rare abilities as an gorge aud its bridges. The old railway suspension bridge was completed in 1855, having been commenced in 1848. As first erected it was of wood, the towers being of stone. In 1880 the suspended structure was renewed in steel, and in 1886 the stone towers gave way to new ones of steel. All this difficuit work of renew al was done under Mr. Buck's supervision, without the east interruption to the regular traffic on the bridge As the new arch is designed to take the place of the railway suspension bridge, the latter structure will soon be taken down and removed. When this is done one of the oldest and best known landmarks on the Niagara frontier will disappear. It was owing to the ocation of the suspension bridge in 1848 that the town of Bellevue changed its name to Suspension Bridge, this village having been merged into the city of Ni-
agara Falls in 1892, but the old name, "Suspension

VIEW SHOWING OLD SUSPENSION BRIDGE AND NEW BRIDGE UNCOMPLETED.

NEW STEEL ARCH BRIDGE OVER NIAGARA RIVER

Bridge," still sticks to the place, and the railroads continue to carry it on all their printed matter. The railway suspension bridge was the first great bridge of its kind to be erected in the United States, and its passing is of more than local interest. The dimensions of the new arch will be best understood by compari son with other great arches of the world, the dimensions of which are as follows :

Garabit, France.

Teds St. Louriage, New Yor
Eads St. Louis Briag
Rochester Park

. 566
.. 543
..525
. 510
. 520
. 492

The contract for the erection of the arch is held by the Pennsylvania Steel Company, of Steelton, Pa. and they expect to have the bridge completed and the old bridge removed some time in June.

Deepest $\begin{gathered}\text { Bore Hole in the } \\ \text { World. }\end{gathered}$

The deepest bore hole in the world, says Mr. C. Zundel, in a late commınication to the Industrial Society of Mulhouse, is one of 6,571 feet be low the surface of the soil made at Parnschowitz, near Rybrick, Upper Silesia. The previous record tor depth was the 5,733 foot hole drilled some years ago at Schladebach, near Leipzig. The later bor hole was made in a search for coal measures, and 83 sepa rate seams, some of consid rate seams, some of consid erable thickness, were pene trated. The hole was 12 inche in diameter at the beginning and this was lined with a tube about 0.4 inch thick; at a depth of 230 feet the bore was reduced to $81 / 4$ inches diameter, and thus continued for 351 feet. At this poin the blue marl encountered became so compact that the diamond drill had to be used, and under the action of the and ur the marl swelled the water the marl swelled to such a degree that the diame ter of the pipe had to be again reduced. The greatest diffi culty encountered was the great weight of the boring rods, as the depth increased. Though steel was used, at a depth of 6,560 feet the total weight of the tools reached 30,155 pounds. Under this 30,155 pounds. Under thi weight ruptures of the rods were frequent, and an acci dent of this nature finally stopped the work; about 4,500 feet of rods fell to the bottom, and, being jammed under a part of the tubing, it was im possible to withdraw it. The diameter of the well at the bottom was $23 / 4$ inches. Tew perature observations made showed 12 C., or 53.6° Fah., at the surface, and at the depth of 6.571 feet the temperature reached $69.3^{\circ} \mathrm{C}$., or perature reached 69.3° C., or
157° Fah. This is equivalent to an average augmentation of heat of $1^{\circ} \mathrm{C}$. for every 34.14 m . of depth, or 1° Fah.
or every 63 feet. These figures differ slightly from those obtained in other deep borings. The increase of heat a chladebach corresponded to $1^{\circ} \mathrm{C}$. in $35 \cdot 45 \mathrm{~m}$. ; that at Sperenberg, near Berlin, to $1^{\circ} \mathrm{C}$. in 32.51 m . : and at the artesian well of Grenelle, at Paris, which is only 1,797 feet deep and furnishes water at a temperature of $27 \cdot 70^{\circ}$ C., it is estimated that the increase of heat is equivalent o $1^{\circ} \mathrm{C}$. in 31.83 m . The boring at Parnschowitz was commenced on March 26, 1892, and it reached its maxi mum depth on May 17, 1893, or in 399 working days The total cost was $\$ 18,800$, or about $\$ 2.86$ per lineal foot

The recent observations of Perrotin at Nice (France), and of Lowell at Flagstaff, Arizona, says Prometheus, have confirmed the theory that Venus and Mercury revolve on their axes like the moon; that is, the periods of rotation and revolution are identical. Herr Brenner's alleged discovery of a short time of rotation or Venus (about twenty-four hours) therefore proves a fallacy. According to Lowell, Venus is not veiled by clouds, but by a dense atmosphere.

CROSSING THE CATARACT OF TEQUENDAMA ON A ROPE.
The plain of Bogota is sixty miles long from north to south and thirty miles wide from east to west. It is intersected by verdant prairies and dense woods, affording some ornamental and many useful species of timber. The river Funga, formed by numerous mountain streams which take their rise one hundred miles north of the city, traverses the plain in a southwesterly direction to Tequendama, where, through a gap not over 36 feet in width, it leaps over a rocky ledge upward of 600 feet high, forming one of the most magnificent cataracts on the globe, and thence rushes down to join the Magdalena. The height of this precipice is so great that the inhabitants of Bogota were terrified by the daring and audacious act of the Canadian equilibrist, Mr. Warner, who, in November, crossed the abyss of the Tequendama in imitation of the act of Blondin at Niagara. This feat is shown in the accompanying engravings, which are reproductions of photographs taken on the spot by A. Esperm, of the city of Bogota, which have been sent to us by Mr. Harry Warner.
From the remotest antiquity there have always been equilibrists, many of whom were extraordinarily daring and skillful, and have astounded the spectators by their deeds of prowess. History tells us that; in 1385, upon the entrance of Isabel of Bavaria into Paris, a Genoese allowed himself to slide, singing, from the tops of the towers of Notre Dame to the Pont de Change, over which the queen passed and entered through an opening in the blue taffeta sown with golden fleur de lis with which the bridge was covered. After having placed a crown on young Isabel's head, the equilibrist continued his aerial journey. When it was nearly night, the Genoese ascended to the towers carrying a lighted torch in each hand, which must have caused a singular appearance from a distance and doubtless gave rise to more than one story of fantastic apparitions. If history has preserved for us through five centuries the tradition of this descent from the towers of Notre Dame to the Pont de Change as a marvelous feat, what can we say of Blondin and his imitators, especially of Warner, who has dared not only on a wire to cross the cataract of Niagara, but has just performed the wonderful feat of crossing the terrible abyss of Tequendama on a rope. The crossing of Niagara gave Blondin a universal reputation, he being the first to try this daring act; but if considered conscientiously, that is nothing compared with the crossing of Tequendama, for the conditions of the two cataracts are quite different. At Niagara an acrobat who became dizzy
and lost his equilibrium would fall into waters that are perfectly tranquil and very deep-circumstances which, taken in connection with the fact that the fall would not be more than about one hundred feet, would give the equilibrist the assurance of salvation, for he would not encounter rocks, and, if he knew something of

A TRICK OPERA GLASS
swimming, he would rise to the surface and swim to one of the banks or to a boat which would pick him up and land him safely. At Tequendama all the conditions of the abyss are against the equilibrist, who in case he experiences the slightest dizziness and falls, would be very certain of breaking his neck, for he would fall into a raging torrent from the terrible height of 479 feet! What would be the size of the largest fragment of the acrobat that could be picked up at the bottom of such an abyss?

Prof. O. C. Marsh, in a short paper in the American Journal of Science, calls attention to the fact that some sixteen years ago he pronounced the remains of a large swimming bird found in Kansas ten years before to be those of essentially a carnivorous swimming ostrich. those of essentially a carnivorous swimming ostrich.
His conclusions were combated by scientific critics, and
in the same region of a remarkably perfect specimen of the bird, with feathers in place, and those feathers the ypical plumage of the ostrich.

A TRICK OPERA GLASS

We present an engraving of a trick opera glass which may be new to some of our readers, although the prin ciple involved is very old. One tube of the opera glass is constructed in the ordinary manner, being provided with lenses, while the other tube is arranged to give a view of any object at right angles to the line of vision of the normal tube, or considerably to the rear of it. The trick tube has no eyepiece and the objective is done away with, a piece of japanned wood taking its place. A portion of the tube and its leather cover is cut away and a mirror is inserted at an angle in the tube. When the observer wishes to use the trick glas at short range, he covers up a portion of the opening in the tube with his fingers, but at longer range thts pre caution wonld not be necessary. The practical uses of the glass are apparent Our engraving shows a plan the glass are apparit. Our engraving shows a plan vien in the box and the one the righ of gentlemen in the box and the one on the right of the center aisle both appear to be observing the actor on the stage, but in reality they are observing the lady on the left of the center aisle. (Of course each of the gen tlemen has his glasses turned a different way around.

Changes in the Blood after Thyroidectomy.
Dr. Postoeff, of Kharkoff, has made a number of observations on the blood of dogs before and after the removal of the thyroid gland, with the object of eluci dating the changes which the extirpation of the gland produces in the blood. He divides the theories which have been propounded on this subject into two groupsthe one supposing that the thyroid gland in its normal condition secretes some substance which is necessary to the proper working of the nervous system, and the other ascribing to the gland the secretion of some substance which directly destroys certain metabolic products, the accumulation of which in the blood would be fatal. His observations show that the extirpation of the thyroid gland is followed by a diminution in the red corpuscles, the hemoglobin, and the specific gravity of the blood; an increase in the white corpuscles; a great increase in the fibrin obtained by whipping the blood; a diminution of nitrogen both in the blood and in the serum; and a marked diminu tion of nitrogen in the fibrin, not only relative, but absolute.-Lancet.

CROSSING THE TEQUENDAMA CATARACT, VENEZUELA, ON A TIGHT ROPE.

DEATH OF PROF. COPE

Prof. Edward Drinker Cope, Ph.D., died at his Philadelphia home April 12. He was professor of zoology and comparative anatomy in the school of biology at the University of Pennsylvania. In the death of Prof. Cope America has lost one of her greatest men of science ; a man of world-wide reputation. He was born in Philadelphia in 1840 and studied medicine in the University of Pennsylvania and comparative anatomy at the Philadelphia Academy of Sciences. In 1859 he joined the group of young naturalists who were associated together in the Smithsonian Institution under Prof. Baird. In 1863 he went abroad to study in the universities of Europe. He returned in 1864 to accept the chair of natural science in Haverford College. He resigned this place three years later, becoming palæontologist to the government Geological Survey. His work in this connection has resulted in the discovery of more than one thousand new species of extinct and as many recent vertebrata. Prof. Cope's range, like that of Cuvier, extended from the lowest vertebrates to man and from the dawn of the vertebrate life in the remote palæozoic fishes to evolution in the contemporary races of man. For a while his studies were parallel with those of Leidy and Marsh, but, fortunately for science, they all soon took up different branches of the field. The monumental researches of Prof. Cope were published by the government. Only Part I of the very bulky Tertiary Vertebrata has been published. The plates and preliminary manuscript for Part II are ready. It was Prof. Cope's intention to devote the coming year to their completion. His palæontological studies were thus practically cut in two by his untimely death.
In zoology his investigations were no less important, and include equally striking proofs of his genius as a comparative anatomist.
Prof. Cope is widely known as the leader of the Neo-Lamarckian school in this country, and it is noteworthy that in this sphere he has shown many of the brilliant qualities which characterize the great French predecessor of Darwin. In the preface of his first collected essays "The Origin of the Fittest," Prof. Cope says that the important point is not only the survival, but the origin of the fitness, and this he traces to the inherit ance of the individual reaction to environ ment. The essays by Weismann in 1882 upon such inheritance do not discredit Prof. Cope's statements, he simply resting upon facts of palæontology as demonstrat ing the actuality of such transmission, and has proposed a purely hypothetica heredity theory of his own, entitled "Di plogenesis."
Prof. Cope was the chief editor of the American Naturalist, which occupies an enviable position among the periodicals o the world which are devoted to pure sci ence and natural history.

In his Philadelphia home he had a won derful collection of specimens of all kinds The titles of his papers number upward of three hundred and fifty, and form a systematic record of the development of palæontology in the United States. In the Scientific American of August 22 1896, a partial list of Prof. Cope's princi pal papers will be found. The Bigsby gold medal was conferred on him by the Geological Survey of Great Britain in 1879, and his name is on the rolls of many of the scientific societie in this country and abroad, including our own National Academy of Sciences, to which he was admitted in 1872

He joined the American Associatioñ in 1868, and in 1875 was advanced to the grade of fellow. The section on biology made him its presiding officer in 1884, and in the following year he addressed the society on "Cata genesis." In 1895 he was elected president.

The Annual Exhibition of the New York Microscopical Society.
The eighteenth annual exhibition of the New York Microscopical Society was held in the American Museum of Natural History, Tuesday evening, April 13

Three of the large exhibition halls of the museum were devoted to the society's use for the evening, and the great crowd of people present testified to the general interest prevailing in this form of scientific study. The society is an incorporated organization and is now in the twentieth year of its existence. It has for its objects the cultivation and advancement of microscopica science and consists of men and women devoted to o interested in microscopy, this being the only qualifica tion for membership. The idea of diffusing a popular knowledge of the revelations of the microscope devel oped early in the history of the society, and in February 1880, was begun the series of annual public exhibition which has been continued to the present time.

THE LATE EDWARD DRINKER COPE.
minerals. One feature of it is that, besides the usual revolving stage, it has a contrivance for rotating the whole polarized light apparatus independently of the tage and the thin section upon it.
In a dark room at one side of the main exhibition halls, the J. B. Colt Company had a continuous stere opticon exhibition, which was very instructive, as showing something of what could be done with the microscope in connection with an arc light projec tion apparatus. Living fresh water organisms wer shown by means of small aquaria four inches square and an inch and a half thick. These were placed in tie stereopticon so that the images of their con tents were thrown onto the screen, and the move ments of the animals studied by the whole audience a ments of
All grades of organisms, from the lowest plant to the highest animal, were shown in section, and a glimps was to be had of the microscopic beauties of the mineral kingdom also. George F. Kunz exhibited star ruby, showing that the characteristic effect in these gems is produced by some peculiarities in their crystallization, and under another microscope he had an assay button of gold showing over its surface the most delicate fernlike crystal markings. Next to thi exhibit was one by W. G. Levison, consisting of twenty five mounts of minute crystals of various minerals. These mounts are arranged so as to be viewed by reflected light and form most beautiful objects, thes
minute crystals being sharper and more brilliant than arge crystals of the same minerals.
Mention should be made of a series of botanical preparations and microdrawings exhibited by member of the post-graduate, senior and junior classes of the College of Pharmacy of the City of New York. The preparations and drawings were made from studie undertaken during the year, and illustrated, among other things, adulterated opium, true and false cas cara, cinchona bark, showing the isolated bast fibers and mould from a medicinal solution. Another educa tional exhibit was that made by J. D. Hyatt, assisted by members of the cooking class in Grammar Schoo No. 85. It consisted of sections of wheat, rye, barley oats and corn, showing the relative amounts of starch and gluten cells in each. The head of a centipede, the musical apparatus of some forms of insects, the head of a moth, with its antennæ, the leg and foot of the honey bee, the wing of a butterfly and the ear of a cricket were objects that attracted much attention and were objects that attracted much attention and aquatic plants (Vallisneria spiralis and Nitella) were shown, in the cells of which one could see the circula tion of the protoplasmic contents, and another micro scope near by revealed for comparison the circulating blood in the vessels of the tail of a common tadpole.
Arguments for purifying and maintaining the purit of our city water supply were forcefully presented by our city water supply were for and vegetable origin obtained of both anima and vegetable origin, obtained from Cro
ton water by K. M. Vogel and Dr. S. E Jelliffe. A more enjoyable exhibit, how ver, was that on the same table consist ing of several kinds of mould prepared and mounted by Dr. Jelliffe. These were delicate green, brown and white forms o plant life raised from spores which were obtained by exposing plates of proper nutrient material to the atmosphere. The investigations made last summer by the Board of Health into the effects of sun stroke were brought to mind by an ex hibit by W. Wettengel, which consisted of a section showing the condition of a normal ganglion nerve cell and anothe showing degenerate ganglion cells result ing from sunstroke. One of the most popular exhibits was that by R. L. Dit mars, consisting of four living snakes and a preparation under the microscope illustrating the change produced in normal blood by the infusion of snake venom. The snakes exhibited were a water moccasin five feet long, a very black rattlesnake, a coral snake and a corn snake. The last is a light, copper colored creature very handsomely marked.
During the evening, Dr. A. A. Julien gave a brief lecture, illustrated by the stereopticon, on the subject "The Travel and Experience of a Sand Grain," in which he gave, in an interesting, popula manner, illustrated by lantern slides, the history of a fragment of rock torn off from some mountain peak by frost o some other agency, until, broken up and disintegrated by abrasion and the solvent action of water, the enduring portion ha been deposited in sand banks along rivers, lakes and ocean, while the altered portion has formed beds of clay or mud or been carried in solution out into th ocean. In arid regions wind plays an im portant part in the formation and trans portation of sand
In addition to water worn and wind blown sands, those derived from explosive eruptions of volcanoes are of importance, and those made up of the skeletons of organisms (diatoms and radiolarians) are worthy of note. Dr. Julien also presented, but did not elaborate his scheme for classifying sands according to the size of grain, nature of components and origin.
The officers of the Microscopical Society for 1897 are president, Frank D. Steel; vice president, F. W. Leg gett; secretaries, J. E. Ashby and J. L. Zabriskie; trea urer James Walker The committee on the annual exhibition, to whom, together with the museum au thorities, is due the success of the event, was J. W Kosmak, Thomas S. Nedham and Stephen Helm.
M. Salomon Reinach has just published a pocket edition of Clarac's " Répertoire de le Statuaire grecque et romaine." There are 890 plates which are of great est possible use to the student. A complete and well arranged index has been provided, as well as a biblio graphy. Clarac's text is of course disregarded. In spite of the small sized reductions, the details ar clearly defined. Both the editor and the publisher Leroux, of Paris, are to be congratulated for having thus placed a most useful work within the reach of all students of ancient art. The book is sold at the mod students of ancient art.
erate price of five francs.

MOUNTAIN SHADOWS

The curious natural phenomenon which the accom panying pictures illustrate is one which is rarely seen, although it is of common occurrence, since it is pro duced only by very high peaks.
A high, prominent mountain peak, which towers above all its neighbors, will, when the sun is near the horizon, cast a distinct shadow upon the clouds behind it; and at times this shadow is very marked indeed. The larger photograph which we reproduce shows the shadow of Mount Hood cast in this way by the rays of the setting sun. The outline of the mountain extends across the center of the picture, while in the distance other ridges are dimly visible through the smoke clouds, upon which the shadow of the peak is projected. The height of Mount Hood is 11,225 feet. That the clouds are by no means necessary, however, in order to obtain a shadow, is demonstrated by the other photograph, which shows the shadow of Pike's Peak cast upon, a perfectly clear sky. This famous peak is 14,147 feet high. The air in the high, upper region about the peak is so very clear that it seems well nigh impossible a shadow should be cast upon it: but, however clear it may appear to the eye, it contains enough dust particles or motes to receive the shadow of the peak, and thus a startlingly distinct silhouette of the mountain is produced.
If one happens to be near the top of a high peak toward sundown, and on the side away from the sun, a good idea of this interesting phenomenon may be readily obtained; but as most people seldom have the fortune to be so placed, we feel sure our readers will be interested in seeing how it appears in the eye of the ever-present camera.

Facts About Blotting Paper.
In England they use a thin blotting paper; here we use mainly a thick blotter, says the New York Sun. Such thin blotting paper as is used here is chiefly for blotting leaves in books. Here we use on a desk a sheet of blotting paper 19×24 inches, the standard size, which may be turned over when one side is pretty well filled with ink. In England the thin blotting paper is folded a number of sheets together, making a sort of pad, something larger than legal cap paper, and when a leaf g saturated with ink it is torn off.
Blotting paper is not new, but it was first made in this country only about forty years ago. Before that time we used some of the thin English blotting paper, imported; but, more commonly, to prevent ink from blotting, we used sand, which was poured upon the written sheet out of a sand box. The sand box was a common article of desk furniture, as the wafer box was at one time, and almost as commonly seen as the inkstand. It was made sometimes of tin, sometimes of wood. It was, perhaps, three inches in height, and may be two and a half inches across the top, where its diameter was greatest. It was something like a pepper box in the manner of its use; but as to shape, instead of having a con vex top, it had a concave top, like a little saucer. The bottom of this saucer was perforated. The box was filled with sand through these perforations. When the box was used sand was poured from it upon the writing. A little of the sand adhered to the fresh ink and kept it from blotting. Very much the greater part of the sand poured out lay scattered upon the paper. Lifting the book or paper, the surplus sand was poured back into the box.

Many of the wooden sand boxes were handsomely turned aticles. The sand used was a peculiar fine, black sand of uniform grain, brought from Lake George, in this State

At the time of the civil war in this country blotting paper had come into comparatively common use. It is only within fif teen or twenty years, however that it has come into the wide and very nearly general use of the present time. Now the sales of it increase with the population or more rapidly. There are American paper mills devoted wholly to the manufacture of blotting paper, and their products amount to thousands of tons annually, and American blotting paper is now an article of export. We still import a little English blotting paper, but only a very iittle; not enough to cut any figure in the market
The very best blotting paper is made wholly of cotton rags. Some poorer grades are made partly of wood pulp

SHADOW CAST BY MOUNT HOOD OREGON.
ashioned desk.

Preservation of Bread by the Use of Waxed
 So much has been written within the past few year regarding the communication of diseases through ba cilli microbes found in dust, etc., that practical methods are being introduced to counteract their extension or growth. One of the latest ideas is the protection of growth. One of the latest ideas is the protection of

sand box ; it was to finish out the equipment of an old-
and with it may be some clay. Such papers, as they dry out, become still less absorbent. The addition of dyes to blotting paper makes it less absorbent. English blotting paper is made usually of from twenty to forty pounds to the ream. American blotting paper is made irom forty to a hundred and fifty pounds to the ream. Blotting paper colors are white, blue, granite (a very light gray), yellow, and pink. It is made in various shades of these colors. 'There is sold of white fblotting paper ten times as much as of any other color.
Some of the calenders used in calendering cloths are

SHADOW OF PIKE'S PEAK AGAINST A CLEAR SKY.
made of blotting paper together to form a roll.
There still comes now and then, to the wholesale stationery dealer in New York, a call for Lake George sand, showing that there are yet some users of the old time sand box ; but these calls are now so rare that:the are no longer supplied, and the sand boxes have long ince ceased to be a part of the wholesale stationer's tock. There, however, may still be found at some retai dealer's a few left over from years ago; and occasionally one of these is sold. A city stationer sold one only the other day, but it was not to be actually used as
cities a large proportion of the bread consumed is sup plied by bakeries. Bread from such places must, of necessity. be handled several times by different employes, and it sometimes happens that bacilli germs become attached to the bread during the handling. either from contamination from the hands or perha $1 ;$; from the clothes of the person making the delivery. si; to protect the bread from such possible contingencies, the custom is being introduced in many places among bakeries of wrapping each loaf, as soon as it is baked, in a sheet of waxed paper, sealing the knot of the string holding the paper surrounding the loaf. The bread is not only in this way well guarded from bacilli germs, but is also kept moist and fresh, as the waxed paper prevents evaporation of moisture, while the consumer is certain to receive an article that can be depended upon as healthful and good, without regard to the number of hand lings it has undergone
The idea of wrapping bread, cake, confectionery, tobacco, soap, meat, etc., in waxed paper to preserve their freshness is quite old, but the use of the paper as a guard against the communication of disease germs is comparatively new, yet it is so practical that it is surprising it has never been thought of or advocated before.

Nature Study in the Chicago Schools.

A plan for systematic outdoor or field work in connection with nature study, to be carried on by the pupils of the public schools of Chicago, has been reported by a committee of sixty teachers which was appointed in May. 1896, by the Chicago Institute of Education. The features of the plan may perhaps be best understood by indicating the duties of the subcommittees which the general committee has instituted to care for its various special features, says the Popular Science Monthly First is the executive committee, the purpose o which is to devise ways and means for carrying the whole into effect and to second the efforts and work of the other, subcommittees. A committee on maps will prepare maps of the environs of Chi cago to assist the pupils and teachers in a system atic study of the country at a convenient distance around the city : these maps to comprise large maps. each including only one of the most con spicuous geographo-geologic features, and smaller maps showing details-the location of the specific feature of interest. The maps already made by Prof. T. C Chamberlin, and kindly offered by him, will be used as the basis of this work.
A committee on syllabi is to prepare printed outlines and suggestions which will intelligently and economi cally direct pupils and teachers in their consideration of the different areas and subjects chosen for study The syllabus should not be compiled information, but should simply suggest the problems that are furnished for study by each area and indicate lines and method of investigation. Λ fourth con mittee will look in the libraries after the books that may be use ful to the pupils engaged in na ture study and available for thei use. A committee on instruction and school exhibits will make themselves acquainted with the work of nature study in the schools and with the teacher engaged in it, and make monthly reports to the committee of sixty of what is actually being accom plished, and will establish at some suitable place a permanen exhibit illustrating the character of the work. A committee of public information will see that all these things are made known and kept in mind. A committee on transportation will try to interest the railroads, etc., in the scheme, and to secure conve nient facilities and privileges for the transportation of pupils and parties going out to fields of nature study. Arrangements will be made for frequent trips of small numbers, rather than for larger excursions at longer intervals, which might give the affair too much the air of a pienic. Hence it is suggested that only the pupils of one or two rooms be sent out at a time, under the immediate supervision of their teachers. A committee on finance and a conference committee are also instituted for the purpose indicated by their titles. It is anticipated by the committee of sixty that, when once under way, this plan will be expanded to include every department of school work.

A sTICK of timber 119 feet long and 22 inches square, without a knot or blemish, was cut in a mill at Hoquiam, Wash., recently.

RECENTLY PATENTED INVENTIONS.

 Railway Appliances.Switch Lever.-Gustave J. M. Van Neste, Brassels, Belgium. The invention covered by this patent is an mprovement on a former invention of the
same inventor, and provides for pivoting a weigbted arm on the switch lever itself as its axis, the parts being so adjusted that the arc through which the switch lever moves to operate the switch shall be wholly on one side of a vertical plane if the return motion is to be automat-
ic, or about equally divided by the vertical plane if the action is to be non-automatic, or indifferent in either direction, the change of relation with regard to the vertical plane being effected by varying the length of the
cition switch-operating rod. The apparatus is thus readily ren-
dered automatic or non-automatic as regards the return dered automatic or non-automatic
Railroad Tie.-Benjamin Bradley, Sr., Bellefonte, Pa. This tie is formed of plates of angle iron or steel having near their ends offsets forming cham-
bers in which are held bearing blocks. The ties are bers in which are held bearing blocks. The ties are
twelve to thirty inches wide, the wide ties for use where twelve to thirty inches wide, the wide ties for use where
the road is straight, and each tie constitutes a metallic frame, between the ends of the side plates of which are frame, between the ends of the bearing blocks. The rail locks fit the outer and inner sides of the rails, and are bolted to the side
plates, spikes being dispensed with. The frame, when plates, spikes being dispensed with. The frame, when
in position and properly ballasted, is designed to be

Railway Crossing Gate.-Morris So ber, Oklahoma, Oklahoma Ter. Accordng to this in-
vention a sprng controlled shaft has attached trip rails vention a sprng controlled shaft has attached trip rails
arranged to engage the flanges of the wheels of a passarranged to engage the flanges of the wheels of a pass-
ing train, and these trip rails actuate guard bars to force
the gate down to a horizontal position while the train is passing, the springs restoring the gate to its upper position after the train has passed. The arrangement is such
the that the pilot of the engine will operate to press the gate downward should the trip rails fail to operate.

Mechanical.

Reversing Mechanism. - Frank E. Gowen, Norrie, Pa. To impart a turning motion in
either direction to a shaft, wheel, etc., this inventor has devised a mechanism comprising an arm mounted to swing loosely on the shaft of a ratchet wheel, while a lever fulcrumed on the arm carries a double pawl adapted
to engage the ratchet to turn it in either direction, the patent shows the improvement applied on a sawmill carriage and head block, where the operator, by simply
taking hold of the handle of a lever, can give the desired motion to the setting shaft, either forward or backward
Combination Tool.--Robert Campbell, Elizabeth, N. J. This is a tool which may be used
as a square, marking gage, miter, trammel, caliper, etc., as a square, marking gage, miter, trammel, caliper, etc.. ings standing at right angles taped to engand indifferent planes and a blade ada
adjustably in either bearing.
Nut Lock.-Frank L. Shunk, Grantsdale, Montana. According to this invention the bolt has
an angular extension beyond its threaded portion, and an angular extension beyond its threaded portion, and
the nut has a recessed lug projecting from its outer face, a washer with an angular opening fitting on the angular a washer with an angular opening fiting on the angular the washer to enter the recess of the lug and lock the
washer in contact with the nut and the nut on the bolt. washer in contact with the nut and the nut on the bolt. The device may be quickly adjusted and operates effl-
cieutly to prevent the accidental displacement of nuts
Gang Saw for Marble Slabs.-John
Dimond, New York City. In this machine a recipJ. Dimond, New York City. In this machine a recip-
ocating frame has in its end pieces adjustable bars with rocating frame has in its end pieces adjustable bars with
hooks attached to saw blades, permitting the latter to swing or turn laterally, there being on each side of the saw frame pattern guides and keepers to control its ver-
tical movement, while a guide for the saw blades has tical movement, while a guide for the saw blades has
transverse slots corresponding to the shape of the pattern guides, whereby the blades accommodate themselves to the shape of the cut to be made. The machine is de-
signed to faciltate the sawing of slabs of marble of vasigned to faciltate the sawing of slabs of marble of va-
rious forms by gang saws, employing the ordinary gang saws now in use. Saw Sharpening Machine. - Frank
Parsons, Montgomery, Miss. This machine comprises a Parsons, Montgomery, Miss. This machine comprises a
table on which is a chuck and a drive shaft carrying an eccentric driving a second .and smaller eccentric, while a slide connected with the driven eccentric controls the
movement of the table. After the saw has once been placed in proper position the operation of sharpening and feeding is automatically accomplished, and provision is made for the keeping of a record by which the same
saw may be quickly and conveniently placed in position ny time
Bedstead Making Mechanism.--Augustus D. Newberry and William J. Melvin, Fayetteville,
N. C. These inventors have devised a machine by which N. C. These inventors have devised a machine by which
the locking plates and pins of a bedstead may be guickly secured to the bed rails and posts, and the work be to do it by hand. The machine comprises a combination of suitable holding devices, chutes for delivering the securing pins, punches and means for reciprocating them,
guides, and a locking device for holding the punches inguides, and a locking device for holding the punches in-
termediate of their stroke. The oprator can be certain with this machine, to have the locking pins accurately the bedstead.

Agricultural.

Milking Machine.-Carl B. Stroy berg, Roskilde, Denmark. The pressure exerted by air
cushions, according to this invention, is designed to cushions, according to this invention, is designed to prise inflatable sections, a casing receiving a supply of
compressed air, and connections permitting the adjustcompressed air, and connections permitting the adjust-
ment of the receivers relatively to the casing that supplies ment of the receivers relatively to the casing that supplies
the air. The compressed air is supplied by means of an the air. The compressed air is supplied by means of an
air pump, and the initial pressure is exerted on the teate

being r neath.

Water Trough for Stock.-James F. Elliott, Manson, Iowa. An improved self-regulating trough for watering hogs and other stock is provided by
this invention, the trough beiug adapted to sucply a num ber of distantly located drinking cups. A tank is connected with a water supply by a pipe baving a selfregulating valve, and one or more pipes lead from the tank, each of the latter pipes being connected with a post
on which one or more drinking cups are held, the tank thus supplying the several drinking cups constanily with water. The water removed by the stock is instantly supished by the action of the self-regulating valve in the primary supply pipe.

Miscellaneous.

Sprocket Wheel and Chain.-John Cottie, New York City, and Charles J. Marks, Brook-
n, N. Y. An improvement especially adapted for bilyn, N. Y. An improvement especially adapted for bi-
cycle use has been devised by these inventors, the wheel having rolling surfaces, or ball bearings, for engagement with the chain, the bails being held in cleats on the perusual teeth of a sprocket wheel. The roller surfaces are between web flanges, making the wheel self-cleaning and the chain not liable to catch in a garment. In the chain each alternate link is double, the connecting link being single, and the teeth are placed at one side of the trans verse center of the links, forming segmental pockets of different sizes, giving a maximum clearance without
detracting from the pulling or pushing power of the chain.
Pneumatic Tire - William L. Stewart, Wilmerding, Pa. According to this improvement the outer tabe or cover of the tire is made of a flat band of rubber coated fabric in whose opposite edges are eye
or hollow beads through which extend wires connected by hook latches when the cover is placed in position, an
overlapping flap then covering the inner surface of the overlapping flap then covering the inner surface of the
joint, and its outer edges lying in a grove in the rim. There are turnbuckles at each side of the valve tube by while the tire is deflated. A trre of this construction may be easily removed from or placed in position on a wheel,
as it does not depend upon the compressibility of the rubber of the outer tube or cover to hold the tire in place The wire and fastener may be used with any form of hose pipe or double tubed tires, doing away with the use
Bottle And Stopper. - Wilbur F. Hyer, Meridian, Miss. A bottle which cannot be a
second time presented as an original package has been seccond time presented as an original package has been
devised by this inventor. Its neck has an exteriorly threaded collar, below which is a flange, and the corked edge a flange resting on the collar. A nut screwing on the collar engages the flange of the thimble, and is held in such position by a locking pin which canno Cement Materiai, from Blast Furnace Slag.-Alexander D. Elbers, Hoboken, N. J.
To adapt slag for use with hydraulic cement as an ingredient for mortar, this inventor has devised a process for treating the ground slag with a weak solution of
nitric acid, thus superficially desulphurizing it and im pregnating it with nitrosyl. It is supposed that the still sulphurous interior of the slag particles will not be affected by the chemical reactions likely to take place in
applied cement, either submerged or exposed to the atr applied cement, either submerged or exposed to the atr,
while the absorption of nitrosyl prevents the ferruginous while the absorption of nitrosyl prevents the ferruginous
slag from changing superficially to ferric hydrate.
Nail or Tack Driver.-Thoinas J. Langston, Johnston, S. C. This is an implement readily carried in the hand, in which nails or tacks may be put and automatically arranged and fed to the driving
mechanism, one a a time. A plunger is arranged in a hoclow handle having an exterior chute or slideway for the nails or tacks, there being on the handle a driving head having guide wings forming a slideway and con-
tinuation of the chute, while a pivoted, spring- pressed and grooved tongue is arranged parallel to and forms part of the nail pathway. The driving end is held low-
eat in filling the implement with nails est in filling the implement w.
Pump.-James P. Wintz, Sour Lake, Texas. To readily pump oil or quicksand from wells, the suction pipe which extends into the well casing, ac-
cording to this invention, is provided at its lower enJ with a funnel, the base of which engages the wall of the casing to divide its upper from its lower end. A valve forms a flexible connection between the base of the funnel and the inner surface of the casing, for the uppe
compartment of which there is a water supply pipe and an indicator marking the height of water in the compartment, and the flesible connection permits a down-
flow of water to cause the oil to rise to the lifting range
the
Fifth Wheel. - William H. Brad shaw, Orange, N. J. This device consists of a clrcula track at each edge of which is a recess to reveive the
vertical members of an inverted U shaped cover, be tween which and the track is held a series of rollers ex-
tending entirely around the track, the spindles of the tending entirely around the track, the spindles of the
rollers being journaled in a band on each side forming side sections, permitting the rollers to revolve freely a spaced distances apart, no matter what
brought on the upper or cover member.

MANIFOLDING ATtACHMENT FOR Books, PADs, ETC - Edward D. McKenna, Brooklyn,
N Y. Two patents have been granted this inventor, one N. Y. Two patents have been granted this inventor, one
of which is more especially for an attachment for books used by salesmen and others, to give a bill and retain a used by salesmen ach onts, being gimple and compact, and
duplicate, the attachment providing for the moving of the copy sheet to receive a
new entry at each time that the book is opened. Ac cording to the other invention the carbon paper may be attached to a removable cover or to a roll, and the roll
and a support therefor detachably attached to the book and a support therefor detachably attached to the book
in which manifold copies are to be made, any desired length of carbon or transfer paper being drawn from the
roll and carried between leaves. The roller may ve platn or spring-controlled, and the carbon paper after use may
be returned to the roll and be entirely out of the way,
thus obviating the inconvenience of a loose sheet, liable thus obviating the inconve
Skate Attachment.-Luke W. Kenney, New York City. To facilitate the attachment of an has devised for the support an attaching plate which ma be applied to a club skate. without interfering with the ac tion of any of its parts, the invention also constituting an improvement upon heel plate attachments forming the
subject of two other patents previously issued to the same subject of two other patents previously issued to the same
inventor. The ankle support comprises a yoke to the inventor. The anke support comprises a yoke to the upper portion of which are pivoted bowed arms from
which straps extend around the leg above the ankle, and to ice skates.
Safety Belt.-Ella I. Cooley, Coldwater, Mich. To secure a child in a high chair or in a carriage, according to this invention, a waist belt around
the child is connected to a retaining strap around the back of the chair, or other fastening, by an elastic loo band, and, to restrict the movement of the elastic band, a second strap, with buckle, is also used to connect the
Bosom Pad. - Dora Harrison, Lansing, Mich. To fill the breast pockets in corsets and oner garments, and insure a proper fitting of the dress, in a cylindrical shell made of silk or similar fabric, with draw strings at its ends. The inflatable pad is made of very thin rubber, rendered non-odorous by special treat-
ment, and the two breast shaped compartments are conment, and the two breast shaped compartments are con-
nected by a contracted tubular part from which extends a small flling tube, by which the wearer may inflate the

Dress Shield.-This is a further inhient is composed of an inflatable central or saddle portion and inflatable side portions arranged side by side, being means for attaching the shield to a garment. The compartments are inflated by a filling tube, and the shield yields readily in every direction, affording
Folding Bed.-Oscar D. Reichard, Philadelphia, Pa. A bed for use as a crib, or in connection with a couch, is provided by this invention, one
folding up conveniently to be stored under an ordinary folding up conveniently to be stored under an ordinary
bedstead. The invention consists principally of a holder or platform adapted to receive the mattress and bed clothes, the holder being hung at its ends on links conthe frame. The bedding is held horizontally whether raised or lowered, there being no springs or weights required, and the bed not being liable to get out of order or
Ironing Table. - Howard Rupert, Thiladelphia, Pa. The ironing board of this table has a tapering end resting on a treste, the other end resting on
a hinged leg, whose inclination may be varied to raise or a hinged leg, whose inclination may be varied to raise or
lower the board. A wire frame, covered by canvas, is removably held inside the table legs to form a held a curved sleeve board, which may be reversed to bring either edge on top to facilitate the proper ironing of
sleeves or other garments. The table may be conve niently folded for storage in small space.
Hydraulic Air Compressor.-Frederick A. Erbe, North Beach, N. Y. To compress air to
force beer to faucets, as a substitute for the ordinary beer pump, and for other purposes, this inventor has combination of floats and weights within a tank with which water connection has been made. The floats and weights automatically open and close the water inlet and exit valves and the air inlet valve, so that the tank is alternately filled and emptied of water and air, the air
being compressed in the tank before it is discharged.
Extracting Loop Seals from Bot Les.-Charles F. Schield, Cambridge, Ohio. The ex ractor for seals and stoppers which forms the subject
f this patent bas a cam rounted on a spindle, a lever fulcrumed on and having an offset for angagement with the cam, while a foot at the opposite end engages the offset end of the lever acts to normally hold its foot out of position for engaging the stopper. The device facili-
tates the quick removal of seals, no matter how tightly they may be seated in the necks of the bottles.
Hernial Truss.-William B. Starbuck, Nantucket, Mass. 'This truss has a pear shaped pad cased in leather, there being a staple in the back of he casing with which the body belt is connected, whil he leg strap is secured to the small en.
Stove Polish.-Edwin G. Rust, Prim ghar, Iowa. A brilliant black polish, according to this seed mucilage, gelatin, alcohol and water, combined as described in specifled proportions. The polishing as described in specined proporions. metal surface
liquid quickly dries when spread on the mel
and the surface may then be polished with but little labor by a dry brush or a soft cloth.

Designs.

Dish Drainer.-William O. Camp bell, New York City. This is a convenient receptacle in which to place dishes after washing and to facilitat bottom and a tapering spout, in front of w
resting in sockets in the sides of the body.
Incandescent Lamp Bulb. - Law ence H. Dolan, Alexandria, Ind. This bulb has an an nular hood whose top surface tapers outward from the
shank, and below the hood it has something of a cup shank, and below the hood it has something of a cup
formation, ornamented by intersecting lines forming facets, the central bottom part of the cup portion ter minating in a point.
Note.-Copies of any of the above patents will be send name of the patentee, title of invention, and date
of this paper.

Pussiness and Personal.

Charge for insertion under this head is One Dollar a
line for each insertion ; about eioht words to a line Advertisements must be received at publication office
an earry as Thursday morning to appear in the follow-

Marine Iron Works. Chicago. Catalogue free.
For logging engines. J. S. Mundy, Newark, N. J. "U. S." Metal Polish. Indianapolis. Samples free. Handle Notions. Waterbury Button Co., Waterb'y, Ct, Well Drill Prospecting Mer Lathe Co., Chagro., Tiffin, 0 Bicycle patent for sale. 3410 Smedley St., Philadelphia Folding Canvas Boat patent for sale. F. Heather, Improved Bicycle Machynery of every description. Concrete Houses - cheaper than brick, superior to
tone. "Ransome," 757 Monadnock Block, Chicago. Order brass letters for sweating on metal patterns of
H. W. Knight \& Son, Seneca Falls, N. Y. Drawer 1115. Machinery manufacturers, attention! Concrete and mortar mixing mills. Exclusive rights for sale. "Ran
ome," 577 Monadnock Block, Chicago.
The celebrated "Hornsby-Akroyd" Patent Safety oil The celebrated "Hornsby-Akroyd" Patent Safety Oil
Engine is built by the De La Vergne Refrigerating MaThe best book for electricians and beginners in elec-
tricity is " Experimental Science," by Geo. . . Hopking. By mail, \&4. Munn \& Co., publishers, 361 Broadway, N. Y ST Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broadway,

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters
or no attention will be paid thereto. This is for our ornormation aud not for publication.
inferer our

Bu

 houses columns will be furnished with addresses of Special Whirfturn In or carrying the same.personal rathen
expected wither than general ion
interest cant cannot be expected without remuneration.
cientifice American Supplements referred
to may be had at the ofife. Price 10 cents each.

Books referred to promptly supplied on receipt of | price. |
| :--- |
| $\begin{array}{c}\text { Minerals sent for examination should be distinctly } \\ \text { marked or labeled. }\end{array}$ |

(7149) B. \& M. write : We have a bicycle gear to $70 ; 20$ tooth front sprocket and 8 rear. If w
change the sprockets to 40 and 16 respectively, we still keep the s? me gear 70. Have we reduced the breaking keep the s?me gear 70. Have we reduced the breaking
strain on the chain? If so, about how much? A. You (7150) C. W. K. says: Can you put me in the way of obtaining a transparent waterproof cement
hat will unite two flat surfaces of mica 9 A. A color less cement for joining sheets of mica is prepared a follows: Clear gelatine is softeed by soaking it in a little cold water, and the excess of water is pressed ou
by gently squeezing it in a cloth. It is then heated ove a water bath until it begins to melt, and just enough ho proof spirit (not in excess) stirred in to make it fluid. T each pint of this solution is gradually added, while stirring, $1 / 4$ ounce of gum ammoniac and $11 / 3$ ounce of gum
mastic previously dissolved in 4 ounces of rectifled mastic previously dissolved in 4 ounces of rectifled
spirit. It must be warmed to liquefy it for nse and kept in stoppered bottles when not required. This cement
(7151) C. E. B. asks: 1. What is the per cubic foot. It varies with the temperature and baro
metric pressure. 2 . Is it possible to remove tatto metric pressure. 2. Is it possible to remove tattoos? A
Our Supplement, Nos. 695 and 1078, has articles on thi Our su .
subject
(715
(7152) E. S. B. asks : How many cubic inches of water can be changed into its two gases by a
dynamo run by a two hundred horse power engine pe dynamo run by a two hundred horse power engine per
second? A. A fair allowance for voltage required to decompose water is 2 volts. This provides an ample es cess. The engine may be taken as developing by the
dynamo 100,000 to 130,000 watts at 2 volts, or 50.000 to 65,000 amperes. This would give from $0: 28$ to $0: 36$ cubi inch of water per second. Of course the current could
be greatly reduced by passing it through successive de be greatly reduced by passing it through successive de
composition vessels in series, and using a higher voltage composition vessels in series, and using a higher voltage,
but this would be at the expense of a great deal of energy. (7153) L. A. McK. asks: In simple elec tric motor described by George M. Hopkins in the Sci-
Entific American Supplem ent, No. 641, should the Russia iron strips in the field magnet be cut lengthwis with the sheet, that is, with the grain, and would it de with the grain? A. It is quite immaterial how the sheets (7154) I. E. P. asks: Is the specific gravity of an object aitered when enveloped in com-
pressed air. If so, to what extent? A. As the specifl gravity of bodies is measured under atmospheric pre sure, any increase of density in the air will slightly de crease the speciflc gravity. As air at mean temperature
is nearly 800 times lighter than water, at 15 pounds ex cess of air pressure its density would be doubled, and in the compressed air.
(7155) H. J. asks : 1. What is the resist ance of a standard 16 candle power 110 volt lamp? A
244 ohms. 2 . Of a 16 candle power 52 volt lamp? A 37 ohms by the Edison rating. 3. Is the resistance the same when cold as when burning? A. No; the above are hot resistances; the resistances cold are less.

0MOSSBERG ROLLER BEARINGS Saving 40 to 80% of Friction in all Bearings
with heavy strain. Total absence of heating. MOSSBERG \& GRANVILLE MFG. CO., Providence, R.I., U. S. A. ROLLING, STAMPING, PUNCHING, AND WIRE DRAWING MACHINERY

9SRCEW EYES Roll Thread. Gimlet Point Blake \& JOhnson

SPECIAL WIRE MACHINERY DESIGNED AND BULLT.
(Mr. J. N. Dennis in charge of this department.)
Patterns designed for difficult Castings of Steel and Malleable Iron a Specialty
AMERICAN WIRE GOODS CO., - LOWELL, MASS The Van Norman • • Universal Bench Lathe.

ELEC'TROMOTOR. SIMPLE. HOW TO

(2)

Transits and Levelua Instruments.
CRTED
ELECTRIC
LEVEL

Che Minwauker ZUater Ekvator (OR HYDRAULIC MOTOR).
For Raising Cistern Water and
Increasing City Water Pressure
for High Buildings.
NO TAN KS REQUURED.
THE ERWIN Send for COTrcular.
58 Loan \& Trust BIdg., Milwaukee, Wis. HOUTS AUTOMATIC TELEPHONE SWITCHES

 UY TELEPHONES The difference in cost is little. We guarantee our appa-
ratus and guarantee our customers against loss by patent WESTERN Itsantee and instruments are Both G 250-254 South Clinton Street, Chic Larpest Man futatureryof foekhones

-
 ,

D2. 4 Foot ZUbeel
Useful to the Bicycle Repairer. W. W. OLIVER.

CAUSE OF LUMINOSITY IN THE

DS
Sad
Sc
Sc
Sc
Sc
Sc
Se
Se

Revolution in Engraving.

סhywand IMcuine

MONITOR MMOGUL

ALCO VAPOR LAUNCH

Stamp for cutting out blanks, G.
Stand. See Display stand.
Starching machine, L. E. Lane..
Steam boiler, A. Stirling.......

Boats, Skiffs, Canees, Launches

Thill coudashion, Waiker e Bio.....

(Continued on page 271)

.

 A.W. PABER

LEAD PENCLLS, COLORHD PENCLLS, SLATE
 78 Reade Street, - - New York, N. DIXON'S $\begin{gathered}\text { Write the Smothest and } \\ \text { Last the Longest. }\end{gathered}$
 Jos. DIXON CRUCIBLE CO., JERSEY CITY, N. J.
 Subseribers to the SCIENTIFIC AmRRICAN and SCIEN-
TITIC AMERICAN SUPPLEMENT, who wish to preserve
 Fille at the office of this paper. Heavy board sides, in-
scription "Scentific American" and "scientife Ameriscription "scientifcc American" and "Scientifcc Ameri-
can Supplement" in gilt. Price 81.50, by mall, or $\$ 1.25$ MUNN \& CO., 361 Broadway, New York
Headquarters for
DUMPING MORSE GARTS.
 HOBSON \& CO.
No. 4 Stone St.,

 SO SIMPLE A CHILD CAN USE THEM
 MAGAZINE CAMEEA.
Folding Cameras.
 niss send C cent stamp for SUNART PHOTO CO. HALF A CENTURY OF CYCLES.-AN

 The TVIDRWitap EXCHANGE,
1t Barclay St., New York. 156 Adams St., Chicago. eet, Kansas City, Mo.
 ROTARY ENGINES.

The varions efforts that have been made by invent-
ors durng several penerations to overcome the defects of this form of motor wore discussed in a
for Scientific Fmerican Supplement,

 pared from works on the subject of Rotary En-
gines and fror patent dra tions, many of them shonowing devicices of the the inveatest
tinenuity and interest. Conites MUNN \& CO., Publishers 36I Broadway, New York City SUPPLEMRNT, 85.00 y year
Combined rates, with

KRAFTUBERTRAGUNGSWERKE RHEINFELDEN. Society for the Utilization of the Water

Che ParkeSpring : Saddle

IMPERIAL BALL BEARING AXLE

 BALL BEARING AXLES AND RUB-

(1)

Experimental Science
17th Edition Revised and Enlarged.

840 pages. 782 fine cuts, substantially and beautifully bound. Price in cloth, by mail, $\$ 4$. Half morocco, $\$ 5$.
This splendid work is up to the times It gives young and old something worthy of thought. It has inffuenced thousands of men in the choice of. \boldsymbol{c} career. It will give anyone, young or old. irformation that will enable him to comprehend the great im provements of the day. It furnishes sug gestions for hours of instructive recreation Send for illustrated circular and
complete table of contents.
MUNN \& CO., Publishers, Office of the
SCIENTIFIC AMERICAN, 36I BROADWAY, - NEW YORK

TRADE MARKS.

PEGAMOID

Rsing
and
GAS
ENGINE CASTINGS
 MIaNUS ELEC. Co., Mianus, con THE TIN PLATE INDUSTRY IN THE

Lillell Nine Cents Per Pound.

X Ray Apparatus
. V. BAILLARD, 106 Liberty Street, N. Y. Patent for Sale

8MALL ELECTRIC MOTORS

THE BICYCLE: ITS INFLUENCE IN

 To be had at this oflce and from ail newsdealer3.

ACETYLENE APPARATUS.-ACETY-

The Finest Hand Made Stogie Cigars.
Made of fine fragrant Natural Leaf Tobacco, skill.
 100 for $\$ 2.00$. Prepaid, anywher inthe United states.

 CONTRACTS WANTEDTo manufacture Hardmare Specialities. Pat'd Noveltios.
and Sheet Metal stamping.
Lang M Mg Co.,Racine, Wis. DEARNESS \& HEAD NOISE CURED,

 WILLSON OARBIDE WORKS Calcelmomar car-

BAND FASTENERS THE BEST A. P. Dickey Mfg. Co., Racine, Wis.

BICYCLE BARGAINS.

TO INVENTORS! We are open to manufacture
 1 WOODEN TANKS.

Che Scientific 7 merican

PUBLICATIONS FOR 1897.

The prices of the diferent publications tit the United

$$
\begin{aligned}
& \text { RATES BY MAIL. }
\end{aligned}
$$

Scientific Americicn ((Seekly) 1 , one year,
Scientifi - $\$ 3.00$
 Building Edition of the scientifc American
(monthy)
2.50 COMBINED RATES Scientifc American and Supplement,
Scientific American and Building Edition Scientific American, the Supplement, and Building -5.00
Edition, terms to foreign Countries. The early subseription prices of scientifict American
pubications to ioretgi countries are as follows:

 Combined Rates to Fcreign Countries.

 Proportionate Rates for Six Months.

drdvertisements.

Inside Paze, ench insertion-- 75 cents a line Bnck Pa qe. each insertion-...- $\mathbf{8 1 . 0 0}$ a line
NF For some clases of Advertisements Specal and

Ride $:$ Che $=$ Olive !

Strictly high grade. Features-attractive, pra tical and substantial
for unoccupied territory.
Crump = Qyclometer
10,000 Mile Recorder. Made Entirely of Brass Absolutely Accurate No Steel Springs to Break. Cannot Jump the Figures. Parts are Interlocked. Registers Miles and Tenths of Mile. Correct in size to look well on wheel. * ※ ※ ※ ※ ※ ※

The only Adjustable Clip made. Can be adjusted to any angle of spoke. The Wor our New Art Catalogue-free for the askin
Thaterbury Watch Co. WATERBURY, CONN.
ThHentite GASOLINE ENGINE is used for almost every
purpose power is applied to under the sun, and is nequaled.
Full particiars by addressin Box 148, Sterling, II

The

American
Bell Telephone
Company,
I25 Milk Street,
Boston, Mass.

This Company owns Letters-Patent No. 463.569, granted to Emile Berliner November 17, 189I, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.

COLUMBIA BICYCLES

1897 Models, 5\% Nickel Steel Tubing, Standard of the World, have no equal, $\mathbf{\$ 1 0 0}$

1896 COLUMBIAS

Models 40, 41 and 44, known everywhere and have no superior except the 1897 Columbias, - - - - $\$ 75$ Model 42, 26-inch wheels, $\$ 65$

Hartford Bicycles

Patterns 7 and 8 reduced from $\$ 75$ to $\$ 60$ Patterns 9

Equal to any bicycles made except Columbias,
Other Hartfords, \$50, \$45, \$40.
some second-hand bicycles at bargains.
Columbla catalogue free from any Columbla
dealer; by mail rom us for one 2 ceent stamp. POPE MFG. CO., Hartford, Conn.

SUPERIOR WAXED PAPER Y Yeotul for con-
 BRISTOL'S Recording Instruments.

Che duorden Fickory

- Frame ZUbeel

A perfect cushion frame which destroys all vibration
can be taken apart and reassembled, and in case of can be taken apart and reassembled, and in case o fracture can be replaced by anyone.
A simple, strong, and rigid connection. No brazing The strongest and easiest riding wheel made. A High Grade Bicycle in all its parts.
Che Worden Fickory Frame Zycle Works, Syracuse, I. Y., U. S. স.

Established Reputation.
The buying of a bicycle is a matter of serious importance. All your pleasure in cycling depends on your wise choice. In choosing the Cres-
cent you run no risk. The cent you run no risk. The unanimous testimony of Crescent purchas-ers-7ince you hem in isent suality convince you that Crescent quality strat that high-grade bicycles can strated hat higherade bicycles ca be made and sold at

atye
Brycles
Sometimes You XUonder whether it is profitable to handle a machine that lists below \$100. Look at the '97 "Patee," highest grade only, at $\$ 60$; made of the finest material throughout, with standard lines, narrow tread, large balls; in fact, all up-to-date improvements, and the handsomest finish on any machine. Absolutely and liberally guaranteed.

Wrive for Catalogue and Terms to Agents.
PEORIA RUBBER \& MFG. CO., PEORIA, IL.

The Real
 Value

of a watch depends upon the accuracy of the movement and not upon the price of the case. The "RIVERSIDE" and "ROYAL" Waltham Watch movements are most accurate time-keepers.
For sale by all retail jewelers.
MR BONKKEEPER,

Cribune e Bicycle

Tested and True.

The Easieat Running Wheel intie World.
ETO Sond for Caloove.
THE BLACK MFG. CO., ERIE, PA.

We Reiker Reform Saddle

Shaped to aford the rider a natural support and over ladies. Indorsed by eminent physiclans. A Piactical saddle for all riders. Write for ontalaogue and b be convinced. Wheeler Saddle Co., 191 Larned St. (E), Detroit, Mich.

PRINTING INKS

