
a Weekly journal 0f practical information, art, science, mechanics, chemistry, and manufactures.

Fig. 4.-THE HIGH POTENTIAL SWITCHBOARDS AND LIGHTNING ARRESTERS.

Fig. 5.-RECEIVER AND WATER WHEELS AT POWER HOUSE.

Fig. 6.-ONE OF THE $350 \mathrm{~K} . \mathrm{W}$. GENERAL ELECTRIC COMPANY GENERATORS.
THE LONG DISTANCE ELECTRIC POWER TRANSMISSION PLANT AT FRESNO CALIFORNIA.-[See page 200.]

ESTABLISHED 1845.

MUNN \& Co.
 Editors and Proprietors,
 pUblashed weekly at
 No. 36I BROADWAY,
 NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN Establistied 1845.)

Export Edition of the Scientiflc American

$\& \mathrm{cos}^{\text {co }}$ Readers are specially reauested to notify the pu
any failure, delay, or irregularity in receipt of papers.

TABLE OF CONTENTS OF
Scientific American Supplement No. 1108.

For the Week Ending March 27, 1897.

The dignity of labor is to-day universally conceded. The enlarged opportunities which have come with the growth of machinery and manufacture have opened up the avenues to wealth and power, and labor has not been slow to seize the opportunities, grasp the wealth, and wield the power. The laborer of to-day is often the magnate of to-morrow. Many of the master minds that control the industrial and public affairs of this country were once enrolled in the "ranks of the sphere of their toil being merely enlarged.
In this country, at least, it is no empty boast that the highest position the nation can offer is open to the laboring man, and one such at least, by virtue of the grand opportunities of modern social con ditions, not less than by his personal character and gifts, was able to qualify himself for the high dis tinction.
As regards the future, the advancement of the artisan 723 will be best promoted by the closer union of labor and
capital. Every blow that has struck off the chains of the employed has clinched another rivet in the bonds which unite his interests to those of the employer. The positive identity of the interests of labor and capital is a fundamental fact which is slowly but surely receiving recognition, and the day is not far distant when labor itself will boldly give the lie to the social agitators and irresponsible demagogues who would have it believe that labor and capital are in the nature of things unalterably opposed.
It should never be forgotten that enlarged opportunities impose serious responsibility. There is a danger lest labor, exulting in its ever growing strength, should be tempted to use it for unlawful and selfish ends. To this temptation it will never yield if it remembers that the interests of society at large and labor and capital in particular can best be subserved by a conserva in particular can best be subserved ay minded use of those social and political tive and fair minded use of those social and political
powers which are the sign of its own complete emancipowers
pation.

new possibilities of electricity

No one has the temerity in this day and age to say what may or may not be done through the agency of electricity. Some of the foremost physicists and electricians in this country have made great strides in unfolding the character and capabilities of this subtile force, and have dared to expect to do things not even dreamed of a few yearsago. They are now working in full expectation of accomplishing results of great importance. Nothing has been uttered by these men in portance. Nothing has been uttered by these men in
the nature of a prophecy, but they seem to have had the nature of a prophecy, but they seem to have had
some evidences of the possibility of carrying investigasome evidences of the possibility of carrying investiga-
tions far beyond the expectations of the most visionary.
The same feeling pervades Europe, and much of the best work in this direction has been done in that por tion of the globe. For some time past Mr. W. H Preece, chief of the electrical department of the British postal system, has been making experiments in tele graphing through the air without wires, and with con siderable success; but recently Mr. Preece has yielded the palm to a young Italian inventor, Guglielmo Mar coni, whose experiments have demonstrated the su coni, whose experiments have demonstrated the su
periority of his system of telegraphy without wires. He periority of his system of telegraphy without wires. He
has carried on these experiments with the sanction has carried on these experiments with the sanction
and support of the postal department and with the coand support of the postal department and with the co coni, in making use of the Hertzian waves, discovered that impulses set up in his apparatus were able to affect a receiver placed on the further side of a hill. Morse signals could be sent with ease through the larger part of a mile of earth and rock. He found he had discovered a new form of energy that did not exist in the ered a new form of eiergy that did not exist in the
Hertzian waves. The new wave could penetrate everything and could not be refracted or bent aside from a thing and coul
straight path.
No description of Marconi's apparatus has been made public, but it is said to be very compact and capable of being used for military, marine and other purposes. It is believed that this system of telegraphy and signaling has capabilities within it that will astonish the world. Certainly, the limit of knowledge in this direction has not been reached. The question is, What may we expect? Will this form of energy assist in accomplishing the much discussed transference of thought, or telethe much discussed transference of thought, or tele-
pathy? Will it enable a person at one point on the pathy? will it enable a person at one point on the
globe to communicate with another on the opposite globe to communicate with another on the opposite
side? Can this energy be utilized in communicating with other worlds?
Dr. Jagadis Chunder Bose, a professor of physics in the Presidency College, Calcutta, has done much exper imental work of a similar character. He also is now in England. These two men are trying to reach the same goal, but, we judge, independently and by somewhat different paths. We have little else than rumors in regard to these investigations, and await with great in erest the revelation of what is at present known and the developments of the future.

english railway history in the chicago

 museum.Visitors to the Chicago World's Fair will remembe the magnificent historical display of locomotives and railway records which was exhibited by the Baltimore and Ohio Railroad. While the exhibition of locomo tives was the most complete thing of its kind ever shown, the collection of historic records, which consist ed very largely of the original drawings from which earlier locomotives had been constructed, was in it way of equal merit. We are informed by Mr. C. E Stretton, the well-known writer of English locomotive history, that the efforts which were made by the Balti more and Ohio Railroad in gathering up historical matter in England were so successful that "if we in England want the true history of early Great Western engines, we have to go to Chicago for it." Mr. Stretton also informs us that "there is more English railway history in Chicago than there is in England.'
Mr. Stretton, it will be remembered, is the chief mover in the effort which is being made to estab lish a national railway museum in England, and it is safe to say that he is the best authority on railway
history on the other side of the water. Our regret that English locomotive engineers should be deprived of these valuable records for use in their projected museum does not prevent us from expressing our satisfaction that the Field Museum, in Chicago, is proportionately enriched. The moral of the incident is that no time should be lost on either side of the water in athering together the scattered remnants of drawgathering together the scattered remnants of drawings, records, etc., which are liable to be lost or de-
stroyed or sold, through failure of the parties who own them to appreciate their intrinsic historical value.

THE JUDGMENT IN THE CORDITE CASE.

 The celebrated cordite case, in which Mr. Hiram Maxim is suing the English government for infringement of his patent for the manufacture of smokeless powder, has been one of the sensations of the naval and military world, and calls to mind the celebrated Nobel case of a few years previous. Mr. Maxim, who is one of the most successful inventors and manufacturers in the field of guns and explosives, is the inventor of a smokeless powder which bears his name and is perhaps the most successful powder of its kind on the market to-day.The English government is making and using a smokeless powder to which it has given the name of cordite. It closely resembles the Maxim powder, and so directly infringed some of the most important claims of his patent that the patentee carried the matter to the courts. The case has attracted unusual interest, both because of the great celebrity of the plaintiff and the many millions of dollars which were involved in the decision.
Nitro-glycerine, as every one knows, is much too vio lent to be employed in firearms. If a gun should be loaded with a charge of dynamite and be set off with a fulminating cap in the ordinary way, instead of propelling the shot at a high velocity, it would blow both the gun and the shot into atoms.
Guncotton, that is, tri-nitro-cellulose, is also a very violent explosive, but if it is dissolved in acetone and the residue dried, it may be employed in a gun when nearly in a dry state; that is, if it has about 2 per cent of acetone in the compound it holds its shape and may be used as a propellant in firearms, but iti is apt to get too dry. When the last vestige of solvent escapes, it is very apt to crack, exfoliate, and become porous and scaly. In this condition it is too violent to use in a firearm. However, if a small portion of castor oil is mixed with the solvent, the solvent dries out and leaves the castor oil, and the guncotton may thus be advantageously employed in almost its pure state. Camphor acts in the same manner as castor oil, but camphor evaporates after a time, leaving the cellulose in its pure state, when it becomes dangerous.
Suppose now that a small quantity of nitro-glycerine, say 3 per cent or 4 per cent, is combined with the guncotton, it prevents it from getting too dry, and makes it burn very much slower ; in fact, nitro-glycerine may be said to "slow the mixture" until about 10 per cent is added.
In 1888 Hiram S. Maxim combined high grade guncotton, that is, the insoluble variety of tri-nitro-cellulose, with nitro-glycerine to form an explosive, but as the tri-nitro-cellulose was not soluble in nitro-glycerine, it was dissolved in acetone. The acetone was then evaporated out, leaving the compound nitro-glycerine and true guncotton, and, to insure a greater degree of stability and uniformity in burning, various oils were experimented with. However, in the end castor oil was found, everything considered, to be preferable; so the next year another patent was taken out for a powder consisting of tri-nitro-cellulose, nitro-glycerine and a suitable oil.
The second claim of Mr. Maxim's patent is as follows : "The manufacture of an explosive compound by first dissolving guncotton by means of acetone or other solvent and then incorporating with the dissolved guncotton, nitro-glycerine or similar material and castor oil or other suitable oil substantially as hereinbefore described."
The English government had been using cylinder oil in place of castor oil, and to avoid the Maxim patent they called it " mineral jelly." Cylinder oil is the product of the same filtering process as is used in producing vaseline, and the government experts were obliged to admit in the trial that its utility for powder making is the same. One witness claimed that the cylinder oil was used, not to moderate the explosion, but to lubricate the bore of the gun. The same witness for the government had previously testified that the oil was used to prevent detonation - this testimony having been given in the Nobel trial.

The judge gave judgment against the plaintiff. The burden of the judgment was to the effect that the cylinder oil which the government used was not an oil but a hydrocarbon, or at any rate that it could not be considered under the head of a "suitable oil." It was also decided that the proportions used by the government were different from those of Mr. Maxim, conse quently they did not infringe in that respect; and yet it was admitted that according to the first claim of the
patent all proportions were included. It will be under-
stood, of course, that the judgment was not against the validity of Mr. Maxim's patent. It decides that the patent

the heavens for april.

The sun's right ascension on the first of the month is 0 h .45 m .0 s. ; and its declination north of the celes tial equator 4 deg .50 m .16 s .
On the last day of the month the sun's right ascen sion is 2 h .32 m .37 s . ; and its declination north 15 deg. 0 m .18 s .
Although we are now at the minimum period of the sun spot cycle, an occasional fine group may be seen. The great naked eye spot of January last, which was nearly 90,000 miles in length, appeared by rotation of the sun in February and March, in accordance with the prediction, and will probably be again seen well advanced on the sun's disk on the first of April. At each reappearance in February and March, the group had changed considerably in shape and was reduced in size, although visible to the naked eye through smoked glass.

MERCURY.
Mercury on the first day of April, at 10 hours, is in superior conjunction with the sun, or exactly in a line with the earth and sun beyond the sun. Mercury then changes from morning to evening star. This little world, about 3,000 miles in diameter, moves so swiftly in its journey around the sun that, by April 28, it will reach its greatest elongation east of the sun, 20 deg .43 m . This will be the best time to look for Mercury in the western evening sky, its northern declination being very favorable indeed. Another interesting fact, and one of great value in identifying this shy little planet, is that, at the time of its greatest elongation from the sun, it will be just eastward of the well known Pleiades.
On April 17, at 4 hours, Mercury and Venus will be in conjunction, when Mercury will be 5 deg .13 m . south of Venus.
The right ascension of Mercury on April 1 is 0 h . 45 m .0 s ., and its declination north is 3 deg .40 m .40 s . On the last day of the month its right ascension is 3 h . $52 \mathrm{~m} .59 \mathrm{~s} .$, and its declination north 22 deg. 59 m .40 s venus.
Venus is still our lovely evening star, and will continue as such through nearly the entire month. On April 28, at one o'clock, it comes into inferior conjunction with the sun and then changes to morning star Its northern declination will keep it a conspicuous object in the western evening sky during the early por tion of the month. All should attempt to secure a
telescopic view of Venus during the first week or two telescopic view of Venus during the first week or two
of April, for, seen in the telescope, it presents a most of April, for, seen in the telescope, it presents a mos
beautiful crescent phase, resembling the new moon two or three days old. The apparent diameter of the cusps will increase, while the crescent will become more slender until inferior conjunction.
The conjunction of Venus with Mercury on April 17 has been referred to in the section on Mercury.
On April 4, at 6 h .52 m ., Venus will be in conjunc tion with the moon, when Venus will be 1 deg. 35 m . north of the moon. Venus is stationary on April 6, which means that its motion is in the line of sight, and in this case, to ward the earth.

On the 1st of the month Venus crosses the meridian at 2 h .6 m . in the afternoon, and sets at half past nine in the evening.
On the last of the month, being near to inferior conjunction, Venus crosses the meridian and sets almost simultaneously with the sun.
The right ascension of Venus on April 15 is 2 h .43 m . 47 s ., and its declination north 22 deg. 53 m .28 s .

MARS

Mars is evening star, being somewhat west of over head at early evening and in the constellation Gemini the Twins.
On April 8, at nine o'clock in the morning, there will be a very interesting conjunction of Mars and the third magnitude star Epsilon Geminorum, when Mars will be only two minutes of are south of the star
The nearest approach, occurring as it does in full daylight, will only be observable in the telescope. But on the evening of April 7, before the conjunction, and on the evening of the 8 th, after the conjunction, the star and planet will be seen very close together. Their change of position will also afford an interesting illus tration of the planet's orbital motion.

On April 9 at 3 h 52 m Mars is in conjunction with the moon, when the planet will be 50 m . of arc south of the moon.
On April 16, at 8 h ., Mars reaches its greatest helio On thic latitude north.
On the first of the month Mars crosses the meridian at 5 h .41 m . in the afternoon, and sets 1 h .20 m . after midnight. On the last of the month Mars crosses the meridian at 4 h .47 m . and sets 20 m . after midnight.

JUPITER.
Jupiter is well up in the eastern evening sky as soon
Jupiter is well up in the eastern evening sky as soon
as it is dusk. It is in Leo, a few degrees east of the
bright star Regulus, where it will remain apparently almost stationary among the stars during the latter part of the month. Jupiter is splendidly placed now for telescopic observation during a large part of the night. The structure of its wonderful belt system is exceedingly interesting, showing much complicated detail. The phenomena of its satellites will also prove of great interest. Some instances here follow.
On the evening of April 4, at 8 h .38 m ., satellite I will enter upon the disk of Jupiter in transit. At 9 h .31 m . enter upon the disk of Jupiter in transit. At 9 h .31 m .
the shadow of satellite I will enter in transit. At 10 h . 57 m . the egress of satellite I will occur ; and at 11 h 50 m . the shadow of satellite I will pass off the disk. On April 6, at 8 h .5 m ., satellite III will enter upon the disk of the planet in transit. At 11 h .39 m . the satellite will leave the disk; and at 11 h .48 m . the shadow will egress. On April16, at 7 h .55 m ., the shadow of satellite II will enter upon the disk. At 8 h .40 m . satellite II will pass off the disk. At 9 h .22 m . satellite IV will reappear from an occultation. At 10 h .46 n . the shadow of satellite II will pass off the disk. On April 13 at 5 h .56 m . Jupiter is in conjunction with the moon, when the planet will be 3 deg .8 m . north of the moon. On April 1 Jupiter crosses the meridian at 9 h . 32 m. P. M. and sets at 4 h .20 m. A. M. On the last of the month it crosses the meridian at $7 \mathrm{~h} .34 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. and sets at $2 \mathrm{~h} .15 \mathrm{~m} . \mathrm{A}$. M.
The right ascension of Jupiter at the middle of the month is 10 h .11 m .39 s .; and its declination north 12 deg. 32 m .38 s .

SATURN.

Saturn is morning star, rising, however, at 10 h .20 m P. M. at the opening of the month; very good obser vations may be had with the telescope after midnight. On the first of the month it is on the meridian at 3 h 11 m. A. M. The right ascension of Saturn on the fif teenth of the month is 15 h .51 m .51 s .; declination south 17 deg. 52 m .26 s .

URANUS AND NEP'TUNE
Uranus is in Scorpio near its northwestern border Its right ascension for the middle of the month is 15 h . $44 \mathrm{~m} .15 \mathrm{~s} . ;$ and its declination south 19 deg .33 m .17 s Neptune is between the horns of Taurus. Its position for the middle of the month being, right ascension, 5 h 8 m .54 s. ; declination north, 21 deg .34 m .25 s .
Smith Observatory, Geneva, N. Y., March 18, 1897.

MAGNETIC METAL EXTRACTION

Magnetic extraction of metals from ores is success fully practiced at the Franklin Furnace, New Jersey in the Edison plant operating there. The method is described thus: There are three sets of the magnets, 74 in the first set, 320 in the second, and 320 in the third set. The magnets are about four feet long, and the ore on its journeyings has to pass a mile of faces of magnets. Right here is presented what to the faces of magnets. Right here is presented what to the
layman is a most remarkable feature of the process. layman is a most remarkable feature of the process.
The magnets are arranged in tiers of five in a tier. The top one is weak, but they increase in strength as they go down, until the bottom one is very powerful. The ground rock passes through the screen and starts down ward in front of the magnets. The magnets jerk the particles of iron oxide from the mass as they descend but the iron does not adhere to the magnets. And right here is a most surprising sight. The ore, in passing the first magnet, inclines toward it. As it rushes down, the ore swings in more toward the magnets, undown, the ore swings in more toward the magnets, un-
til as it reaches the last one it curves inward and under it in a half circle, without any particle of ore adhering to the magnet. In the first passage past the magnets small quantities of stone stick to the ore. The ore is carried upward and started down before the second lot of magnets after passing through a mill which grinds off the particles of stone. The first set of magnets extract 62 per cent of oxide of iron. When the mass has passed the second set of magnets, there is in it 75 per cent of oxide of iron. Then it is ground again and passes the third and most powerful set of magnets, which takes the phosphates out and makes Besseme of it. The percentage of iron oxide is then from 85 to 87
[McCaul's Factory, from which the above is taken,fails to state how much coal and how many horse power is required to crush a ton of the ore and operate all the magnets used in the separation. The Scientific American readers would like to know.-Ed.]

RAPID BRIDGE ERECTION.

We have recently had occasion to make note of instances of rapid bridge erection, and we are now in re ceipt of a letter from Mr. W. F. Chapman, of Montreal, Canada, giving us the latest and in some respects the most remarkable case of this kind on record. We are informed that at Vandreuil, Quebec, a place about twenty-five miles from Montreal, the Grand Trunk Railway Company recently took out a 98 foot iron span in the brief period of eight minutes, and erected a new one in its place in forty-seven minutes. The whole operation, including preliminary preparations, occupying only three hours. The weight of the bridge is not given, but the performance was, in any case, very re markable, and we agree with the writer that it was
probably unprecedented.

AN IMPROVED ROTARY PUMP.

A pump designed to work with but little friction, and which is not liable to be impeded in its operation by sand and silt in the water, is shown in the accompanying illustration, and has been patented by John S. Attenhofer, of No. 4936 Laurel Street, New Orleans, La. Upon the outer ends of curved spokes are curved buckets, whose passages are substantially equal in cross section, as shown in the small view, and an annular plate covers the sides of the buckets and the annular space within which they lie. The annular plates have on their outer sides recessed annular spaces, designed to retain a thin layer of air to reduce the friction between the wheel and the casing. The center of the wheel is entirely open within the annular spaces occupied by the buckets, and surrounding its periphery is a discharge casing from which rise one or more discharge pipes. In the periphery of the wheel are grooves in which are packing rings bearing against smooth surfaces upon the inner face of the discharge casing, preventing leakage by the edge of the wheel. The wheel is designed to be suspended in the water and not to rest upon the bottom unless it is to be used for pumping sand, and the

ATTENHOFER'S ROTARY PUMP.

casing of the annular bucket portion above and below prevents the friction due to the contact of the revolving portions of the wheel with the surrounding water.

The Height of Trees in Summer and Winter. It has, perhaps, occurred to few of us that the boughs of trees occupy a very different position in summer and winter respectively, but Miss Agnes Fry, says Public Opinion, has made careful measurements of the height from the ground of branches of both walnut and mulberry trees in August and December, and she finds that in some cases there is a difference of as much as thirty-one inches in the height of the same branch from the ground in these two months. One particular figure was obtained with a branch of a mulberry tree, and it was found that in December a weight of thirtyfive pounds was not sufficient to lower it to its summer position. In other cases there were differences of from thirteen inches to nineteen inches in the distance in summer and winter respectively of branches from the ground. No wonder, then, that the diagnosis of a tree in winter from its general outline is so difficult a task.

A CORK TIRE FOR BICYCLES.
The illustration represents a bicycle tire made of three separable segmental sections of cylindrical pieces

BURTON'S BICYCLE TIRE.

of cork, each having a central opening, and the pieces forming the sections being cemented together with these openings in alignment, forming a central tubular passage though the sections entirely around the tire The improvement has been patented by John A. Bur ton, of Skaneateles, N. Y., and, as will be seen by the
sectional view, an endless coil spring is inserted in the continuous passage formed by the three sections placed together. 'The tire may thus be readily placed in position on the rim, the spring holding the sections together, or the sections may be readily drawn apart sufficiently to allow of the removal of the tire, as may be desired.

THE WORDEN HICKORY FRAME BICYCLE.

Among the greatest improvements which have been effected in modern bicycles is the abolishment of vibration. The original bone shaker with its iron tired wheels was exceedingly hard upon the rider. The improvement which played the greatest part in the creation of the modern bicycle was the introduction of the solid India rubber tires. Even with these the vibra tion was so troublesome that many people more or less tion was so troublesome that many people more or less
delicate in constitution could not ride. Then the pneumatic tire made its appearance, and in the face of much opposition became universal, attempts to supplant it by the less resilient cushion tire being failures The tendency is now to dispose of the residual vibrations of the bicycle. In this direction could be named the use of the wooden rims for the wheels which have now almost universally taken the place of the metal ones and the wooden handle bars which at the present day are so much in favor with the riding public. The introduction of wood into the construction of the bicycle may be termed one of the great movements of the day, and one of the most recent efforts in this direction day, and one of the most recent efforts in this direction
is shown in our cut ; it is the substitution of hickory for is shown in our cut; it is the substitution of hickory for
steel tubes in the frame and is manufactured at the Worden Hickory Frame Cycle Works, Syracuse, N. Y. The cut is self-explanatory. The wooden bars are drilled out at the ends to a depth of about six inches. To the metal junction pieces of the frame short metal tubes are cast in which enter the holes in the wooden bars. The ends of the wooden bars then enter a socket with a thread cut on its outside, which sockets are part of the junction pieces. A wire ring is sprung into a groove between two and three inches from the end of the wooden bars. A thimble whose end is spun in so as to fit tightly the diameter of the bar, and thus cannot pass over the steel ring, is.screwed over the outside of the socket, drawing the wooden bar down into the socket, making a species of union joint. In this way the most rigid construction is secured, and, instead of the easily bent steel tubes, we have unbendable and well nigh unbreakable bars. This is not all; by un screwing the thimbles, the frame can be taken apart and reassembled by anybody. In case of damage it can be repaired for a nominal sum, as there is no question of re-enameling or brazing. It is believed, how ever, that such repairs will very rarely be required The logical sequence of the wooden handle bars which have become popular is the doing away with the vibrations by the adoption of the wooden frames, which is a further step in the same direction.

Montreal Bridge.

The Montreal Bridge scheme, says the Montreal Gazette, has received considerable impetus as the result of a conference between Premier Flynn, of the Province of Quebec, and a deputation of interested citizens from the south shore of the St. Lawrence. Resolutions were adopted and presented by the deputation advocating the speedy erection of a bridge across the St. Lawrence River at Montreal. In answer to questions from Mr. Flynn, Mr. C. N. Armstrong, managing direc tor of the Montreal Bridge Company stated that the estimated cost of the bridge proposed by his company was $\$ 6,000,000$, and the company asked 15

THE WORDEN HICKORY FRAME BICYCLE.
Suptr. N. per cent from the Dominion govern ment, 15 per cent from the city of Montreal, and a like \mid straps, adapted for application as shown in the full and amount from the Quebec government. He added, however, that the company would be disposed to go on with the work even with a grant from the province slightly reduced from this figure. The capital of the company was said to be $\$ 3,000,000$, with $\$ 700,000$ sub scribed, and 10 per cent of the latter sum paid up He said a New York syndicate was ready to build the bridge on the terms named and spend an additional $\$ 2,000,000$ on terminal facilities. It was under stood that the grants asked from the Dominion and the city governments were to extend over twenty years, with the first payment due only upon the completion of the bridge. Premier Flynn said that without giving a definite promise, he was disposed to aid the enterprise as far as the resources of the Province of Quebec would justify. He approved of a railway along the south shore of the St. Lawrence and a bridge at Mont real; but the province had paid out $\$ 24,000,000$ for railway construction since confederation, and, while it was rich in resources, the province must realize on these resources and act in a prudent and economica manner.
dotted lines of Fig. 1, so that when the rider presse down upon the pedals, and raises his body, he will exert an upward pull on the crank with which the saddle standard is connected. The improvement is also designed for application to tricycles and all forms of foot propelled vehicles.

Starch Luster.
Heat together 90 parts of spermaceti, 50 parts of gum arabic, 50 parts of borax, 120 parts of glycerine and 750 parts of rain or distilled water, with constan stirring until complete solution is achieved. Let cool, and fill into suitable bottles, which must be thoroughly stoppered. Directions: Take 1 ounce of rood starch, and add just enough cold water to make a paste, carefully rubbing with a spoon until all lumps are broken down. To 1 pint of boiling water add 5 tablespoonfuls of this liquid, pour the whole over the tarch paste, and boil for not less than half an hour. These proportions are intended for collars, cuffs, and fine shirt bosoms. For other articles less of the liquid is required.-National Druggist.

THE CHARLTON STREET SWEEPER

The Charlton improved street sweeping machine shown in the illustration, is of strong and simple construction, and has been proved to be of high efficiency considering both the thoroughness with which it does its work and the quantity of work it is capable of. It weighs about 2,500 pounds, and is a light draught for two horses. The diagonally hung broom is operated in the usual manner, but the dirt, instead of being left in a windrow on the street, is swept into the open side of the drum represented in the figures. To facilitate this a flaring rubber flange is attached to the edge of the drum, which flange flattens where it touches the pavement, and thus forms an inclined plane, up which the dirt is swept into the drum. This is done with the utmost neatness, though the surface of the pavement may be quite uneven.
Buckets extend across the inner concave face of the drum, and serve to lift the sweepings up to the discharge chute. The latter is kept in position by a spring, which yields in case a large stone or other substance is taken up by the sweeper. So practical is this arrangement of the parts that Belgian block paving stones have been picked up by the machine without injury to it, and, on the other hand, in sweeping a wet asphalt pavement, the cart body of the machine has been half filled with water taken up. The outer edge of the rubber flange was at first protected by thin steel clips, to save it from wear; but this has been found unnecessary, as the flange has good endurance for the service, and it can be replaced at but small expense. The discharge chute empties into a box body, similar to that of an ordinary dumping cart, and which is readily dumped and again brought to upright position by the movement of a lever at the right of the driver. The free end of the broom works up to the curbstone, thus effectually cleaning the gutters.
With the street sweepers at present in general use, as is well understood, the dirt is swept to one side of the street, where it is left in a long, thin line to be swept into little hills by gangs of men following, it requiring a great many of these small accumulations to fill one of the carts which subsequently come along to

STREET SWEEPER-SIDE VIEW, BROOM REMOVED
gather up what has not already been scattered again by the wind or by the wheels of passing vehicles.
Through the courtesy of the street cleaning department, the Charlton street cleaner last year underwent a thorough test in New York City on Fifth Avenue and Upper Broadway, sweeping some seven hundred miles of streets in conjunction with the department sweepers. The method employed was to pick up the dirt, which had previously been swept into or adjacent to the gutters, on each side of the avenue, by ordinary sweepers moving en echelon. During a part of the time the operation of the machine was observed by competent engineers who were engaged to witness and calculate the amount of work done. A portion of their report shows that during their observations, amount ing in all to fifty seven hours, a distance of 128 miles ,was swept by the method above described; 129.34 cubic yards of dirt were picked up and deposited a convenient corners, in piles of 0.61 cubic yard each, at an average distance of 866 yards between each two piles. Since this test the sweeper has been greatly im proved by carrying the sweepings directly into the drum instead of upon a belt as formerly, materially re ducing the weight of the sweeper and increasing the efficiency, making the light and compact machine shown in the illustrations.
The machine shown in our illustration is being in troduced by Marshall McLean, of No. 59 William Street New York, the machines being built at the factory
of the Shadbolt Manufacturing Company, Brooklyn, N. Y., under the direction of G. W. Brady. In its improved form it was in active operation in Newark, N. J., for several weeks under the auspices of the Public Works Department of that city. It was there used to clean the entire street and swept from $21 / 2$ to 3 miles of streets in a day of eight hours, seven strokes cleaning the entire street from curb to curb.

A CULTIVATOR FOR USE IN ORCHARDS.

A cultivator which is more especially designed for working the ground around trees, particularly orange,

SMITH'S CULTIVATOR.

emon, and olive trees, cultivating the ground close to the trunks of the trees without interfering with their roots, is shown in the accompanying illustration, and has been patented by Louis H. Smith, of El Cajon, San Diego County, Cal. The pole or tongue of the cultivator is attached to a U -shaped frame which extends forward from the main axle, and in side bars extending rearward from the axle is held the cultivator shaft, carrying curved teeth. A rearwardly extending cleaner frame is pivotally connected with the rear ends of the side bars, and this frame has small wheels adapted to
be brought in contact with the ground, raising the teeth of the cultivator, when the latter is taken to or moved from the field, or raised therefrom, as shown in the illustration, when the cultivator is in working position. Coupled at one side to the main cultivator shaft is an extension shaft, also carrying cultivator teeth, the teeth being shorter near the outer end of the shaft, and this exterior shaft is supported by a yoke frame extending out laterally from the main frame. The main cultivator shaft and its extension are rotated by sprocket wheels and chains from the main axle, the cultivator teeth passing between the teeth of the cleaner frame at each revolution. The rear wheels are raised or lowered, taking the cultivator teeth into or out of working position, by a lever in easy reach of the driver, this lever being connected by a link with a forwardly extending side member of the cleaner frame, whereby the latter may be carried to a substantially vertical posilion. With this cultivator the ground beneath the lower limbs and up to the trunks of the trees may be conveniently cultivated.
Distribution of white Corpuscles in the vessels.
It has been held by some observers-Rieder and Schultz among others-that the leucocytes are very unequally distributed through the vascular system. The subject has been worked over again lately by Sémak ine, who points out various reasons for considering these experiments to be unsatisfactory, especially be cause they took the blood for the purposes of examination from the dead animal, when it is not inconceivable that the blood in the central parts might contain more leucocytes than those in the peripheral regions of the vascular system. Sémakine's experiments were made on dogs and on rabbits in which leucocytosis and hypo-leucocytosis were artificially induced-the former by the injection of two or three cubic centime ters of a mixture of one part of turpentine to five o olive oil into the veins, the latter by the injection of five cubic centimeters of a solution containing one part of peptone in ten of water. In some of the rab bits leucocytosis was also induced by the subcutaneous injection of one part of papayotin in two hundred of water. Enumerations of the white corpuscles wer also made in rabbits killed by a blow on the back of th neck, and in dogs killed with chloroform. The con clusions at which Sémakine arrived were that, so far as regards macroscopical vessels, the leucocytes ar equally distributed, so that from an examination o the blood in the peripheric blood vessels the numbe of the white corpuscles in the central vessels may be determined. The same general statement holds good both for leucocytosis and for hypo-leucocytosis, the number of white corpuscles being increased in leucocy tosis and diminished in hypo-leucocytosis equally in both central and peripheric vessels. In rabbits the mere fixation on the table as well as a blow on the back of the neck induces some kind of vaso-motor excitement which causes an alteration in the number of the leucocytes to occur with extraordinary rapidity. These animals, therefore, are not well adapted for enumera tive experiments of this nature. The unequal distribu tion of thr leucocytes observed in rabbits when living is dependent upon the opening of the abdominal cavi ty, and the differences observed by Schultz were pro bably due to post-mortem changes.-Lancet.

THE CHARLTON STREET SWEEPER-FRONT VIEW.

Science Notes.
The Prince of Wales, President of the Society of Arts, recently presented to Prof. D. E. Hughes, F.R.S., at Marlborough House, the Albert Medal, a warded him by the Council of the Society "in recognition of the services he had rendered to arts, manufactures, and commerce, by his numerous inventions in electricity and magnetism, especially the printing telegraph and microphone."
A bill has been introduced into the Legislature of the State of New York which authorizes the city of New York to spend $\$ 2,500,000$ in the erection of a library building on the site of the old reservoir in Bryant Park, or rather adjoining it. The income of the Astor, Lenox and Tilden foundation is about $\$ 160,000$ annually; so that, if the building were provided, this would ally; so that, if the building were provided, this would
be sufficient to maintain a great reference and circulatbe sufficient to maintain a great refe
ing library in the city of New York.
Vertical earth-air electric currents were first revealed by Dr. Adolf Schmidt, of Gotha, says Nature. In his mathematical analysis of the earth's magnetic field-the most carefully executed analysis up to date-he reached the following conclusion : The earth's total magnetic force consists of three parts, viz.: (1) The greatest part: this is to be referred to causes within the earth's crust, and possesses a potential. (2) The smallest part, about one-fortieth of the entire force; this is due to causes outside of the earth's crust, and likewise possesses a potential. (3) A somewhat larger part than the preceding ; this does not possess a potential, and, in consequence, points to the existence of vertical electric currents. These currents amount, on the average, for the earth's entire surface to one-sixth of an ampere per square kilometer. The existence of such currents is indicated by the non vanishing of the line integral of the earth's horizontal magnetic force resolved along a closed curve of the earth's surface. Gauss carried out this test in a special case, and finding the integral practically zero, he assumed that the entire force is due to a potential. More recently, Prof. Rücker applied the same test. He found "no evidence in favor of the existence of vertical currents" over a region of the earth-the British Isles-which had been very minutely surveyed. The results of some preliminary investigations being confirmatory of Schmidt's conclusion, Dr. L. A. Bauer determined to carry out the test in a thoroughly systematic manner, viz., to take as the closed curves parallels of latitude, on which he read a paper recently before the Philosophical Society of Washington. The results obtained confirm those of Dr. Schmidt's more elaborate investigation. Summing Dr. Schmidt's more elaborate investigation. Summing
up, Dr. Bauer finds that: " There are vertical electric up, Dr. Bauer finds that: "There are vertical electric
currents which pass from the air into the earth, and currents which pass from the air into the earth, and
back again into the air. Between 60 deg. N. and 60 deg. S. the average current intensity per square kilometer is about one-tenth of an ampere."

Sound Waves as Revealed by the Phonograph.

In a recent lecture on the above subject, says the Practical Engineer, delivered by Professor McKendrick at the third ordinary meeting of the Philosophical Society of Glasgow, the author, after describing the general nature of sound waves both simple and compound, gave a short description of the phono-autograph, an instrument which might be regarded as the precursor of the phonograph. By means of this instrument the vibrations of membranes could be recorded on a moving surface. He then described the general mechanism of the phonograph, and showed the various methods by which he had attempted to explain the peculiar marks made on the wax cylinder by the vibrations of sound. Photographs of outlines of the surface showed in a general way the number of vibrations, but they did not give the form of the vibrations. This led to the invention of a special apparatus-which was exhibited in operation-by which Professor McKendrick took advantage of the siphon recorder of Lord Kelvin, as used for ocean telegraphy. This instrument was adapted by special modifications to the phonograph, and the latter was caused to move with extreme slowness. In this way each vibration was recorded upon a long slip of paper rolled out by the machine, and the number and form of the vibrations as produced by musical sounds and by words were recorded. The lecturer then proceeded to analyze a word, and showed that it consisted of a succession of musical tones varying in pitch and in quality according to the voice of the speaker. The number of vibrations in many words was much greater than might have been anticipated. He took as an example the word "Constantinople," which, spoken by a rapid speaker, had as many as 700 or 800 vibrations. This could not be regarded as a system of shorthand, but it showed how nature constructed the sounds of words. Professor McKendrick also illustrated by experiment how the tones of the phonograph may be intensified, and how they may be caused to appeal to deaf people said that the deaf heard by this method. That was said that the deaf heard by this method. That was
impossible. But they could catch much of the time and rhythm of music. Possibly the method could be developed into a means of communicating with the
brain of the deaf and dumb by the nerves of the skin.

a simple and efficient fire hose coupling.

The coupling shown in the illustration is designed to facilitate the quick connection of two sections of hose and prevent leakage at the joint. It has been patented by John Kerns, of No. 601 West Fifty-second Street, New York City. On opposite sides of a short metal tube forming the end of one section are short pins on which are pivoted clamp jaws or hook members of general semicircular form, encircling the outer end of the tube, there being between the main bodies of the jaws and the tube a spring, and the jaws having an interior flange forming a stop for the hooks of the mating section. The springs act normally to draw the outer hooks toward each other, and an elongated aper ture is formed partly in each jaw for the insertion of a tool to pry the jaws apart. The other coupling section has a ring or neck on which is an annular hook adapted
to be engaged by the hooks of the jaws when the two parts of the coupling are pushed together, the meeting faces being rounded to insure automatic opening of the jaws and engagement of the opposing hooks. Within the second section of the cou-
pling there is also ther end of which held a packing nipple or ring, the the parts are coupled, enters the opposite section when the pressure of the water only makes the tighter. At the outer end of each section is an externally ridged neck to receive the hose and collars serve as stops and guards for the ends of the hose.

Orders from Switzerland.

There is an inviting field for American fire apparatus in Switzerland, according to recent advices from the United States consul at Zurich. A fireman's smoke protector of American manufacture has been ordered and if it nd in stands the test of practicability, all of the f Chief Schiess has also asked Consul Germain to put him in communication with American manufacturers of firemen's portable electric lamps and other firemen's electrical appliances. The consul has transmitted the request to the State Department at Washington, with the suggestion that official notice be given to American manufacturers of firemen's life protecting inventions. The consul promises to report the results of such
"All the fire departments of Switzerland belong to
the Union of Swiss Fire Departments," writes Col. Germain, " and whatever new fire appliances one department should conclude to supply themselves with will be followed, if proved satisfactory, with orders from the other Swiss fire departments. I may add that no steam or chemical engines are in use in Switzer-
land, and that the old hand engines are still being used. With proper efforts, perhaps this also opens new ground to prospect."

SIMPLE HANDLE FOR FLOWER POTS, DISHES, ETC.
To facilitate the handling of flower pots in green houses and other places, and also to serve as a handle

KRICK'S HANDLE FOR FLOWER POTS ETC.

for plates, saucers, etc., the simple and inexpensive device shown in the illustration has been invented and patented by William C. Krick, of No. 1287 Broadway Brooklyn, N. Y. The device is made of wire, and conists of two parts, one of which forms a staple adapted to be inserted inside the pot, while it is bent over the upper edge of the pot and formed with eyes to receive the shanks of a lifting staple or handle, the wire of the latter being bent in various forms, of which two modifications are shown in the small figures.

Through the rapid growth of Russian power in Europe and in the far East we have presented a great collision of moral forces embodied in the civilizations respectively of the empire of the Czar and of Great Britain, says the Independent. This spectacle imparts a special interest to everything by which the tendencies of Russian influence may be gaged. Is it a power making for darkness or for light? The educational test is not an unfair one, and certainly in the two departments of technical and of diplomatic training Russia may give lessons to the world. But what does her supremacy promise for popular enlightenment? The answer is suggested by her illiterate population, seventy per cent of the total. More impressive yet is the dark cloud that settles down upon provinces that have been or are in the process of being Russianized.

A few decades since the Baltic provinces had excellent schools, and in Courland especially instruction was general. Now many of the peasants, the children and grandchildren of literate parents, are unable to read and write, because they are forced to learn the Russian language, which they do not comprehend. In the interior of Russia it is estimated that there are 5,000 villages .without a schoolhouse, in hundreds there are houses but no teachers. Besides, the snows and storms in winter are so severe that pupils often cannot reach the school, if one exists, for several days. Even in the spring, when the snows are melting, the roads are frequently impassable. These causes, with the innumerable holidays (i. e., church and fete days), reduce schooling to a ridiculously short period. In St. Petersburg itself, where the conditions are vastly better, it is admitted that the schools are generally overcrowded and inconveniently placed, and that from six thousand to ten thousand children of school age are kept from instruction by the want of accommodation. The mayor of the city has recently urged the necessity of a compulsory school law, while admitting, however, that there is no prospect of securing such a measure.

The Development of Russian Industry.
The British consul at Moscow, in a report on the Nijni Novgorod exhibition, describes the industrial progress of Russia since the Moscow exhibition of 1882 as very great. The progress made in textiles is marvel ous, and many of the silk and print exhibits equaled anything that Lyons or Manchester could produce. The machinery section was full of good work, but agricul tural machinery left much to be desired. In the mines section there were some wonderful pieces of iron work which would attract attention in any country; but although the constant remark was that every object was purely Russian, British and German foremen are largely employed in the iron works, Frenchmen in the silk and many of the print works; while British sub jects have still very much to do with the cotton mills The development of the natural wealth of the country is even greater than that of the manufactures. The production of coal has trebled in the last fifteen years Cotton planting prospers in Tashkent and Erivan, and the results in the new plantations of the Southern Caucasus are excellent. Costly experiments near Baku have produced a Russian tea, which is shown with much pride, and General Annenkoff is planting Ameri can vines in Turkestan; tobacco is also being grown from American seed near Samarkand. Generally speak ing, every branch of industry has improved, except agri culture, which grows worse year by year. Mr. Med hurst thinks that Great Britain should still be able to supply Russia with portable engines, high pressure steam boilers, steam thrashing machinery, heavy iron plows, bicycles, and machine tools.
Calico and kindred stuffs appear to be made suffi ciently well at prices which are so low that they must affect British trade; but he thinks some years must affect British trade; but he thinks some years must
elapse before Russia can construct satisfactory spinning machinery in sufficient quantities to affect British makers. He saw nothing in the hardware section to alarm our manufacturers of high class goods, and, gen erally, he came to the conclusion that the trade in cheap goods is slipping away from us, but where high class articles of the best materials are required, it is admitted that the British stand first, except in Manches ter goods. The consul says that when England first permitted the export of spinning and weaving ma permitted in export of spinning and weaving ma
chinery, in 1843 , there were 350,000 spindles in all Russia chinery, in 1843, there were 350,000 spindles
which produced yearly 5,600 tons of yarns.

In 1895 there were $5,000,000$ spindles and 200,000 looms at work, producing 161,300 tons of yarns and giving em ployment to 400,000 hands. British and German fore men are being gradually replaced by Russians, and at tempts have been made-with very indifferent result so far-to supplant British machinery by that made in Russia. Efforts to provide her own raw material have been more fortunate. In 1883 the total value of cotton goods produced in Russia was $£ 27,790,000$ and in 1892 it mounted to $£ 38,470,000$. The Russian silk trade has prospered since 1875 . The woolen industry is not so prosperous. The best Russian cloth is made by an English firm, settled near St. Petersburg since 1841 which employs 2,160 hands

The Peril of the wire

The overhead electric wire is responsible for many disasters to life and limb. A long list of tragedies can be credited to this cause. Fatalities are frequent, says the Age of Steel. An electric wire in its right place is a potent factor in modern business, but when, by the stress of service, time, or weather, it breaks from its holdings, and hangs like a fiery snake over the heads and at the feet of pedestrians, it is as deadly as a cobra in the tropics. It is a serpent or science, when out of its place, as it is one of its best servants when in midair. The Railway Gazette, in a recent issue, has given some startling figures of mortalities due to falling wires. In a compilation of accidents, obtained from press reports for the five months from May to September of last year, the following was obtained. As the sources of information were fragmentary and incomplete, the figures given are but an approximation of the total. From falling trolley wires there were 122 accidents; in 11 of these 12 persons were killed, and in 28 cases 31 persons were injured, and in 18 instances 24 horses were killed. Forty accidents occurred from falling electric and telephone wires, in which 9 persons were killed, 27 injured, and 7 horses made into calcined meat. Human fatalities for the period named numbered 21. At the same ratio for a period of twelve months, the death roll would include 50 persons. In contrasting this total of fatalities with those occurring on steam railroads, the Railway Gazette says, that for the year 1895 the railway mortuary list included but 38 passengers killed. Thus the deadly wire clearly outclasses the split rail, the misplaced switch, or the broken tie, or bridge. It is evident from these facts that some plan for the better protection of human life from falling wires is needed. How best to bring it about may be more or less a problem, but of its urgent necessity there can be no division of opinion. The overhead system, however carefully constructed and secured, cannot, from the very nature of things, be otherwise than a menace to public safety. In many of our cities, the lines of wires are thick and numerous as the threads in a spider's web. They outclass the complicated ravel of a full-rigged ship, and in sheer weight alone, at contiguous and intersecting points, are many tons in weight. In heavy winds, or local conflagrations, and under masses of debris or snow, the danger of these overhanging masses of copper and cable is increased. It is, moreover, a fact that, however rigid and close
inspection may be, the detection of weakness and the prevention of sudden dislocation is not always possible. Wires will continue to fall, and citizens to be electrocuted, in spite of all precautions, and the death roll will still employ its copper pen until legislation supervises the deadly scribe. It has thrown its protecting shield over the railway and the mine, and sooner or later it will have a word to say on the perils of the wire.

our Medicinal Herbs and Plants.
 by george ethelbert walse

Forty years ago a New England kitchen garden was not considered complete without a collection of medicinal herbs for home use, such as sage, saffron, chamomile, wormwood and burdock, and all the early almanacs contained information about gathering, drying, and preparing these plants for internal and external application. It is so rare to find a garden to-day containing any of these useful plants that the question is often asked if people no longer employ them for medicinal purposes, and if the substitution of chemicals and minerals has not entirely killed the trade in herbs.
No statistics are published by the wholesale druggists to show just how many tons of common medicinal plants are consumed in this country every year ; but the best informed dealers agree that twice as many are used to-day as in earlier times. The only difference is that the good housewife now goes to the drug store for her supply of herbs instead of raising them herself, and great numbers of herb gatherers and professional growers make a business of supplying the wholesale botanical druggists with the various plants. The trade in these medicinal herbs is enormous, and every wholesale botanical druggist must carry between one thousand and one thousand five hundred different plants in stock. The minerals used by the druggists are few compared with the herbs and plants, such as potash, arsenic, alum, sulphur, salt, iron, and lime, in their various forms. These are compounded in variou ways with the medicinal plants, and consti
bulk of the medicines dispensed to the public.
The manufacturers of patent medicines use great quantities of plants, but, as they generally confine themselves to the cheap ones, their supplies are made up chiefly of twenty or thirty of the common roots and barks. Some of the large concerns use twenty to thirty tons of these roots and barks a year, and many smaller ones use half that quantity.

Germany, France, and Italy send considerable quantities of medicinal plants to this country, but the American growths are considered best, and the leading druggists prefer to handle them alone. The imported horehound, centaury, coltsfoot, daisy flowers, and the roots of burdock and angelica sell at from three to ten
cents a pound cheaper than the American products, and patent medicine manufacturers who have to go into the market to purchase their supplies generally take the imported because of the difference in price. The American growths are generally stronger, and cured under better conditions, and are well worth the extra price demanded. The European countries also send us aconite, belladonna, conium, feverfew, fox glove, henbane, marigold flowers, stramonium, sage, wormwood, and the balms, but, owing to duties on these, the prices are more equalized.
On the other hand, we export considerable quantities of certain medicinal plants to London and other European ports, such as lobelia and hemlock bark, and the extracted medicinal principles of many others. By exporting the alkaloids the bulk is reduced and transportation rates cut in two. The most prominent of portation rates cut in two. The most prominent of
these shipped to Europe are podophyllin, leptandrin, sanguinaria, sinecin and euonymin
Most of the medicinal herbs grow wild in this country, and they are gathered from the woods and fields by professional herb pickers; but a few are regularly cultivated on tarms and gardens. Most of the peppermint for distilling oil is grown in New York and Michigan. Sage is raised extensively on farms in Massachusetts, New York and Michigan. Nevertheless, we import over 100 tons of sage every year, and after paying three cents a pound duty it is sold at $\$ 80$ and $\$ 85$ per ton. The American sage brings as high as $\$ 140$ per ton, and yet not more than twenty tons are raised here. Owing to the demand for it here and the inadequacy of the home supply, French and German growers have in late years been sending us a pure and superior article that brings even more than the Amerifrom Italy.

The mountains of North Carolina and Tennessee yield great quantities of medicinal herbs for the trade. Most of them grow wild there, and the pickers make a living in gathering the plants for the market at the proper season. Probably twenty tons of boneset, pennyroyal and thorn apple leaves come from these Southern mountain districts every year, and forty to fifty tons of mandrake, Culver's root, golden seal, garget root, blood root and black cohosh.
Most of the medicinal herbs that grow wild in New England are considered superior to those raised anywhere else. Almost without exception the herbs raised in New England bring $\$ 20$ to $\$ 40$ per ton more than those gathered in the Southern or Western States.
Until quite recently the chief supply of saffron came from Vermont, but a severe drought there killed so many of the plants that the price advanced from fifty cents a pound to $\$ 6$ and $\$ 8$ per pound. This induced the growers in the West and in Mexico to enter into the cultivation of saffron, and the price dropped at times as low as twenty and fourteen cents a pound. But three times since 1846 the price has run up to $\$ 5$ per pound.

The common garden wormwood thrives in many old, neglected gardens, and the trade demands considerable quantities of it, but very few make a business of growing it. A good deal of this is distilled for the oil, and is often sold in bar rooms under the name of absinthe. Sixty years ago farmers raised most of it in New York and Vermont, but other farm crops crowded out the plant, and the supply comes chiefly from the wild growths in various parts of the country. France and Germany both send wormwood here, which sells about the same as the best American, although some
of the imported wormwood is cheaper. Probably five times as much wormwood is imported as our farmers at home raise.
The Pacific coast sends a great many medicinal herbs to the large markets, and patent medicine men who buy their barks and roots generally go direct to the mountains of Tennessee or to the Pacific coast and make annual contracts for the delivery of a certain number of tons. California produces ten or twelve tons of horehound annually, and this, with the amount raised at Cape Cod, enters into competition with the horehound imported from Mexico and Germany.
The medicinal herbs that are in great demand to-day and which are used twenty times as much as they were in earlier days, make a pretty formidable list. Chief among the roots that have increased in popularity are Culver's root, mandrake, blood root, yellow dock, dandelion, burdock, angelica, bayberry, bitter root or dogsbane, blue flag, elecampane, golden seal, garget or pigeon berry, lady's slipper, pleurisy root, senega
or snake root, spikenard. sarsaparilla, unicorn root or snake root, spikenard. sarsaparilla, unicorn root shrubs and plants have also become of great value to the medical world, and they have steadily increased in popular favor with druggists and physicians: Prickly ash, barberry, black haws, buckthorn, cascarilla cherry, cohosh or blacksnake root, cotton root, cramp bark and slippery elm. Of the herbs, the chief ones are : Arnica, belladonna, boneset, catmint, clover blos soms, elder blossoms, fireweed, gold thread, grave plant, or trailing arbutus or Mayflower, henbane or night shade, horehound, sage, liverwort, squaw vine
or partridge berry, pennyroyal, skull cap, balmony
thorn apple leaves, thyme, water pepper or smart weed and wintergreen.
Most of these plants grow wild, and there is little systematic effort to cultivate them, but here and there gardeners attempt to cultivate them in gardens and fields with fair success. Besides these mentioned, there are others that always sell well whether gathered from their wild state or cultivated in the garden. Among these, mention should be made of wormwood, motherwort, lemon and sweet balm, burdock root, comfrey root, yellow dock, hyssop, garden lettuce, marshmallow root, and the leaves of parsley, poppy, stramonium or thorn apple, Jamestown weed and stink weed, valerian, peppermint, spearmint, summer savory and rue.
There are many other herbs and plants which every large wholesale dealer must keep in stock, but which have not increased much in demand. They are only occasionally called for, and the demand is so limited that the wild plants supply the market easily. These are agrimony, angustura, sweet balsam, betony, bor age, buck bean, bugle herb, bitter clover, cocash, dit tany, haircap moss, lungwort, masterwort, milkweed, mugwort, yellow parilla, sometimes called Texas sarsaparilla, resin weed, scabish, vervain and yarrow
Of late years ginseng has grown into favor in this country, and the herb gatherers of Tennessee, North Carolina and West Virginia make considerable in gathering it. Ginseng is shipped to China in large quantities, where it is generally accepted as possessing marvelous curative virtues. The trade in it is steady and will continue as long as the Chinese believe in its medicinal virtues. All through the Appalachian re gion ginseng abounds, and some is found in New Jersey, but the roots are being gathered so freely that the supply will in time run short. Attempts to cultivate ginseng in the South have so far failed, but with the right conditions there is no reason why it should not flourish in gardens or fields. There are probably a quarter of a million pounds of this root exported, and it is sold all the way from fifty cents to several dollars per pound, according to its quality. In China, the best ginseng comes from Manchuria, known as the "imperial," and is sold only to the wealthy, who frequently pay fabulous prices for it. The second grade is collected in Corea, while the ginseng used by the common and poorer classes is gathered in the United States. In China this latter sells from $\$ 2$ to $\$ 5$ a pound, while the "imperial" may bring $\$ 40, \$ 50$ and $\$ 100$ a pound. The Chinese call ginseng " jen shan,' and believe that only the most perfect grows in the Garden of the Gods, and that all else is merely an imi tation. This superstition costs the Chinese many thousands of dollars, for, while the root.has some me dicinal value, it possesses no specially marvelous virtue.

Wonderful Things that are Near

The Philadelphia Press foreshadows the coming of he millennium as follows :
Flying is solved. The principle is known. A mechanical expedient is all that is now needed to make it successful. Practical flight is to-day not more than five or ten years off.

A glow worm makes light with about one threehundredth part of the force used in ordinary artificial light. When men know how to make light as cheap) streets and homes will be as light as day for a mer fraction of what light now costs. This is near. Vacu um illumination without incandescence is already in full operation, and in a year or two should cut down the price of light to a sixth of its current cost, and in five or ten years light may be, like water, turned on in every house at will.
Compressed air has long been known to be the best way, theoretically, to store force for use in transporta tion. There is no waste and no deterioration. The need is a cheap and efficient motor to apply compressed air to city transportation. If this can be done, first the trolley poles and wires will come down, next the horseless, compressed air motor carriage will do all the work of city delivery.
When these come the only use for gas will be for cooking-if this is not done by electricity. Factories also, before many years, will be run by transmitted electric power. This has begun to be done and in five or ten years will be completed, and the factory fire and boiler will be a thing of the past.
The city of the future, and no very distant future, will have no trolley poles or wires and no horses. All movements will be on rail by silent air motors or by horseless carriages equally silent. All pavements will be asphalt. Unlimited light will be as cheap as unlimited water is to-day. No coal will be delivered at private houses and no ashes taken from them. With no horses, no coal and no ashes, street dust and dirt will be reduced to a minimum. With no factory fire and no kitchen or furnace fires, the air will be a pure in the city as in the country. Trees will have chance; houses be warmed and lighted as easily and cheaply as they are now supplied with water.

A city will be a pretty nice place to live in when the first twenty years of the twentieth century are the firs

the long distance transmission plant at

 FRESNO, CAL.One of the latest and, in many respects, one of the most remarkable long distance transmission plants is that which has been built by the San Joaquin Electric Company to supply the town of Fresno with light and Company to supply the town of Fresno with light and power. Nature nishing electric power along
the valleys of the Pacific coast, the many streams which flow down the Sierra and the Cascade Mountains providing an abundant and never failing supply of water for this purpose.
Fresno is a thriving agricultural town of about 15,00 inhabitants, which lies in the midst of the far famed San Joaquin Valley, in Southern California. Founded about twen-ty-five years ago, its growth and present prosperity are due almost entirely to its ag ricultural in. terests. Manu-

Fig. 8.-JUNCTION OF THE TWO DIVERSION FLUMES AT THE NORTH FORK-DITCH OF THE SOUTH BRANCH SEEN TO THE RIGHT,
Fig. 8.-JUNCTION OF THE TWO DIVERSION FLUMES AT THE NORTH FORK-DITCH OF THE SOUTH BRANCH SEEN TO THE RIGHT.
ultimately into a reservoir whose area is about eight [due to the alteration in length, resulting from the acres. The site chosen for this work is a natural table change of temperature. Before sunrise the opening The plateau on the summit of Reservoir Mountain. was 7 feet 8 inches, but in the afternoon this gap would The plateau is surrounded on three sides by rising round, and on the fourth side it was merely necessary to throw up a ten foot embankment for a distance of throw up a ten foot embankment for a lose to 7 feet, the change being due, of course, to ex pansion under the heat of the sun's rays. This difficulty was met by fitting a length of 20 inch lapwelded pipe to the adjoining ends of the pipe line before sunrise. The joint was leaded and calked, and the pipe filled with water before the heat could produce any expansion.
Some portions of the pipe line are laid from 5 to 8 feet underground; elsewhere it is carried on bridgework but for the greater part of its length it is bolted to the solid rock. It is held in place by means of bolts, fastened in the manner abovemention ed into the bed rock, the bolts having a screwed at tachment to flat iron bands, $5 / 8$ of an inch thick by $21 / 2$ inches wide large scale has been hardicapped by the prohibitive \mid run the transmission plant for five and a half days. \mid which pass over the top of the pipe. The pipe line cost of transportation and particularly by the high The pipe line, Fig. 1, leads from the reservoir down the terminates in a receiver, 30 inches in diameter and 57
price of coal, which costs delivered in Fresno about side of the mountain to the power house, a distance of $\$ 9$ per ton.

Like many another town in the Sacramento and San Joaquin Valleys, Fresno has for many years looked with longing eyes to the magnificent water supply of the neighboring mountains, and the present transmission plant is the outcome of a very determined and equally successful effort on the part of the citizens which first took practical shape in the formation of the present company on April 2,1895 . The headwaters of the streams which supply the power are situated well up above the winter snow line, and the points of diversion from the north fork of the San Joaquin River and from a tributary known as the South Branch are about forty miles distant from Fresno. The water is taken from these rivers by wooden flumes of the usual construction, which are solidly bolted to the bed rock of the river to prevent their being washed away by the winter freshthe
They are fastened down by means of anchor bolts which are split open at the end and have a steel wedge inserted which, as the bolt is driven home in the rock, spreads out the spetal and wedes metal and wedges it securely in place. Additional security is given ky running melted lead into the holes. Two of our illustrations, Figs. 8 and 10 , show

Fig. 9.-DIVERSION FLUME FOR BRINGING WATER TO THE RESERVOIR feet long, which is secured over the wheel pit at the side of the power house, as shown in Figs. 3 and 5. The end thrust which comes upon the receiver is, of course enormous, the pressure per square inch being 609 pounds, and the total thrust of the column of water no less than 93 tons. It is resisted by a heavy stone abutment, to which the receiver is attached by four heavy steel bolts, 21% inches in diameter.
It is not surprising that in handling water under the enormous head of 1,411 feet some new and unexpected difficulties should have presented themselves. The greatest head with which engineers had hitherto been familiar was between 500 and 600 feet, but in the pres ent case the head was between two and three times as great and as great and the column of water was about 4,000 feet long and weighed about 31 tons. It might be said that in a cer tain sense the wa ter lost its fluidity and that when it issued from the $11 / 8$ inch nozzle a a speed of over 9,000 feet per min ute it had some of the characteristics of a solid bar of metal. It was pre sumed that in the absence of any experience with a head of 1,400 feet it would be best to use large gates and relief valves of the same type as were used for head of 500 and 600 feet. As a matter of fact however, such was the great pressure upon them, and the re the junction of the two flumes, at the north fork of the inches in diameter and lock jointed. The third sec- sulting surface friction of the metal, that they proved San Joaquin River.

The total length of the ditch is about seven miles, and of this some 3,000 feet is wooden flume. At every 4,000 feet of the distance there is a waste gate, one of which will be noticed in the illustration showing the junction of the diversion flumes. The ditch lead
ion, 1,800 feet long consists of 20 inch lap-welded ion, 1,80 fee at the lower end being $5 / 8$ inch in thickness.
The construction of the pipe line was commenced at both ends, and considerable difficulty was experienced in closing the gap at the center of the line. This was
sulting surface friction
With the gates at first installed, it was found that great difficulty and some measure of risk arose from he momentum of the column of water whenever the gates were opened or closed. The "water hammer was sufficient to cause a fluctuation in the pressure of

90 pounds from the normal. Upon opening the gate \mid petticoat" type. They are of helmet shape, with a bubbles it expands with an explosive force. So loud
the pressure would fall 90 pounds below the normal then rise to 80 pounds above normal, dropping again to 75 pounds below normal, the fluctuation continuing for about half a minute, or until the normal pressure was reached. An attempt was then made to control the gates by hydraulic rams, the power to control the gates by hydraulic rams, the power being take from the pipe line. The rams opened and closed the gates so expeditiously that a fluctuation in pressure of 170 pressure of 170 way from the normal was re corded. To check the speed the exhaust outlets of the rams were reduced in size to $\frac{3}{32}$ of an inch - an arrangement which increased the time of open ing or closing to half a minute, and reduced the variation of pressure to 30 pounds. The hydraulic gates were eventually discarded in favor of a set of gates which are operated by means of a

Fig. 10.-WOODEN ARCH FLUME ACROSS THE NORTH FORK OF THE SAN JOAQUIN RIVER.
hand wheel.
These have proved very successful, and there has been no further trouble from water shock.

By reference to Figs. 3 and 5 it will be seen that the receiver is carried upon I beams which extend across the wheel pit. There are three single jet Pelton wheels for driving the generators, two for driving the exciters, and two smaller wheels which operate the governor mechanism. The main Pelton wheels are 57 inches in outside diameter and each wheel has 27 buckets. On the same shaft with the wheel is a three ton fly wheel, 5 feet in diameter, and as the speed of revolution is 600 per minute, the disruption of the fly wheel by centrifugal force is provided against by shrinking on a 2 inch steel band around its periphery. The enormous force of the water is shown by its behavior in the wheel pit. When the water was first turned on, instead of falling from the buckets into the tail race, it followed the wheels to the plank covering of the pit, along which it rushed, finally leaping out horizontally a distance of 60 feet Where it struck the bottom of the pit, it tore up the concrete and attacked the underlying rock. A cushion pipe 14 inches diameter and 14 feet long was placed in line with the jet, but it merely reversed the direction of the water, which was spurted out upon the roof of the power house. The floor was then covered with $3 / 8$ inch steel plates, but the sand and fine gravel in the water cut through the plate. Finally, a $11 / 2$ inch cast iron plate was placed at the point of impact, the idea being to replace it as soon as the water had worn it away.

The power house, which is a handsome structure of granite 36 feet in width by 70 feet long, contains three 340 K. W. multipolar General Electric 3-phase genera tors, which deliver current at 700 volts to a low poten tial switchboard, from which it is carried to six 125 K . W. transformers, which deliver 3-phase current at 11,000 volts through a high potential switchboard to the line. There are also two $121 / 2 \mathrm{~K}$. W. multipolar exciters, each of which can take care of the whole plant. The transformers are of what is known as the air blast type. They are placed upon an inclosed platform, through which air is forced, issuing through holes in the floo and thence to ventilating ducts in the cores of the transformers themselves. The power house and the substation at Fresno are protected by lightning arrest ers and choke coils.
The pole line from the power house to the city is built of square sawed redwood poles 12 by 12 inches at the butt and 6 by 6 inches at the top, the length vary ing from 35 to 40 feet. The 11,000 volt circuit is made up of two 3 -phase 3 wire sets of No. $3 \mathrm{~B} . \& \mathrm{~S}$. soft drawn copper. The insulators are arranged on two arms, ther being four on the top arm, two on each side of the pol and two on the bottom arm, each of which is placed cen trally beneath the two on the upper pole. It will be seen that the insulators thus form a triangle on each side of the pole, each triangle carrying one complete circuit. The insulators are of the well known "triple groove at the top and wings on each side, and the transmission wire is carried by the groove, which is tied to the wings by soft copper wire. The course of the line for ten wings by soft copper whe. The cour whe for ten俍 foothills length of the ditch, as before stated, is seven miles, foothills the line runs through the wheat fields and and its capacity sixty cubic feet per second. The reservoir above the pipe line has a capacity of four million cubic feet, and covers an a ea of eight acres. Altogether there is a con stant supply of water in sight sufficient t provide full fifty thousand horse power to the city.
'The plant has been in ac tive operation since June 12 1896, and is giv ing the very best of satis faction. It i now supplying current for 165 are lights, over 5,000 incandes cent lamp: and 460 horse power in mo tors.

The original conception and the plans of this very suc cessful work are due to Mr
vineyards which are characteristic of this part of the valley.

At the substation at Fresno the line enters through choking coils, lightning arresters, and the high tension switchboard, which stands some eight feet above the floor. The choke coils are made up of 150 feet oî in sulated wire which is coiled into a ring arid thoroughly taped. The self-induction of these rings obliges the lightning to take the required path. The curren after leaving the switchboard is carried to step-down transformers, whose construction is similar to the step up transformers at the power house. There are nine of these arranged in three sets. Three 125 K . W. transformers deliver current at 115 volts to the commercial incandescent circuits. Another set of three 75 K. W. transformers delivers current at 1,000 volts for operating the power circuits, and the third set of three $40 \mathrm{~K} . \mathrm{W}$ transformers delivers a 3,000 volt current for the suburban and outlying districts. A five hors

WATER MOCCASIN

power induction motor drives a blower which furn shes the air blast for cooling the transformers.
The San Joaquin Electric Company has established price of $\$ 64$ per horse power per year for its elec tric power. The current for lighting purposes is urnished at fifteen cents per K.W. hour, measured by meter, with discounts of from five to twenty-five per cent, or it is furnished at a fixed rate of from thirty cents per sixteen candle power lamp per month to ten ents per lamp for bedrooms, bathrooms, etc.
A visitor to the power house will be startled by the oud detonations which accompany the starting of the water wheels. The noise is described as being simila to a heavy bombardment by artillery, and to an inex perienced ear it would sound as though the whole plant were in danger of violent disruption. The explanation of these concussions is that the air which is collected in the receiver and the pipes is subject to the and on its escaping from the nozzle in the form of
photographs and data used in the preparation of the present article.

COLLECTORS OF SNAKES

by l. p. gratacap.

Human curiosity is excited by few subjects in the animal world more keenly than by snakes. The an cient associations of these singular creatures, the pecu liar innate instinct of dread and repulsion aroused by them, and the deadly power possessed by a few genera among them contribute to make them perennial object of interest. The popular feelings of alarm and fascina tion in their presence were vividly shown at the winter reception of the Microscopical Society at the American Museum of Natural History, where Mr. R. L. Dittmars, of this city, exhibited microscopical preparations of the fangs of rattlesnakes, and by way of ad captandum two glass covered boxes containing respectively a wate moccasin and young and a copperhead and young The breathless interest of the spectators, their incessan storm of inquiry, and the congested crowd that poured in and around the basilisk eyed reptiles were eloquen testimony to the peculiar attraction exerted by them upon the average visitor. The exhibition made by Mr. Dittmars was a very faint suggestion of the re markable display which the favored guest of his hospitality may enjoy at his own home. In a room of moderate dimensions this collector has arranged his moderate dimensions this collector has arranged his around the walls. A remarkable and rather startling around the walls. A remarkable and rather startling
effect is produced, one not altogether reassuring when the expectant visitor enters this singular domestic den of reptiles, and observes the excitement of the rattle snakes, unpleasantly accentuated by the keen sibilant hum of their tail buttons.
Here a Florida diamond back rattler, a Goliath in strength and of monstrous size, rolls himself in ominous coils, and with depressed nostrils and erect rattle seems the impersonation of stifled fury, his sinister expression giving a frightful ferocity from the glittering eyes and the singularly expressive sculpture and markings of his broad head. The delicate and featherlike scales ove his body impart to it a softness and velvet beauty which accentuates the fiendlike bitterness of his aspect There a number of Texan rattlers are twisted into a graceful group, bristling with alert heads and sonorou with the peculiar sharp whirr of their vibrating tails Another case shows a torpid mass of water moccasins. Their careless attention, as the visitor approaches, seems more reassuring, but though less nervously irrita ble, their bite is almost as venomous as that of the rat tler, and their rage and gloating rapacity, when they eize their prey, more terrifying.
The banded rattlesnake (Crotalus horridus) of this latitude is represented by a number of smaller speci mens, gathered, almost picturesquely, about their wa ter tub or stretched indolently over a few stones, while
heir diminutive rattles seem scarcely responsive to the provocation of a gesture or a blow. A large copper head snake (Agkistrodon contortrix), curiously observant, but motionless, is extended in another case, his faintly rubescent tint and impassive attitude increas ing his resemblance to a metallic cast.
Less threatening are the numerous groups and indi viduals of the non-poisonous species, whose long famili arity with handling have rendered them tame and gentle. They are taken out by Mr. Dittmars and, en wreathed around him, form living festoons of slowly undulating bands marked by party-colored stains blotches, squares or lines, emitting with lightninglike rapidity their delicate forked tongues.
The beautiful red corn snake of more southern lati udes, the long black chicken snake, the pest of hen roosts in the South, the agile and belligerent blark snake of our swamps and woods, the exquisitely colored green snake found more to the north, the highly col ored hog-nose snake with its inflated neck and mimicry of menace and attack, the many species of garter snake, from those of the Mojave Desert to the lithe and varie gated ribbon snakes of our fields and hillsides; the sin gular milk snake, over whose variations in markings Dr. Cope has exhausted his searching analyses; the vivid pine snake, the fox and water snakes, com pose a garland of novelty and interest.

Mr. Boulenger, who has recently completed the catalogue of snakes in the British Museum, a work of ex traordinary pains, recognizes 1,639 species, which he divides among nine families. First in this systematic ar rangement come the wormlike Ty phlopidae living in burrows under the earth, and numerous in the tropics Allied in habits are the Glanconiidae and then the huge pythons and boas, with an intermediate section of the llysiidae with only five species, two East Indian genera and one South American. The Uropeltidae follow, the whole of whose forty-two specie are confined to Ceylon and India where they are found in the tea and coffee fields. Mr. Boulenger limits the sixth family to one genus and species Xenopeltis unicolor, of India and Malay. The seventh family is the Colubridae, the most extensive of all, comprising the more common of our snakes. This enormous family has been separated into three paralle series, the first with solid teeth, the second with the hinder teeth on the jaw (maxillary) grooved, and the third with the forward maxillarie grooved. The first comprise (Ag lypha) harmless snakes, the second (Opisthoglypha) suspicious, more or less poisonous species, the last (Proteroglypha) venomous groups. The typical poisonous snakes are placed in the Viperidae, the ninth family. Here rest the copperhead, rattlesnake, co bra, fer de lance, etc. The eighth fami y, Amblycephalidae, have non-exten sile jaws and feed on insects. The erec tile teeth belong to the true vipers, and it is interesting to observe the fang or tooth of the rattlesnake, disclosed from its membranous sheath, and forced by pressure upon some solid object, exude the deadly liquid so mysteriously fatal.

Mr. Dittmars has been engaged with Dr. Langman, of this city, in procuring, from a vigorous and large collection of snakes, belonging to the latter, samples of the venom of water moccasins, rattlesnakes and copperheads. This is furnished to the laboratory at Heidelberg for analysis in continuation or confirmation of the studies of Weir Mitchell and Calmette.
However strong the sense of abhorrence may be awakened in some in the presence of these reptiles, it would, upon familiarity, rapidly disappear, and it would in most cases be succeeded by a real affection for the many graceful and harmless species
Mr . Dittmars is not alone in his attachment to this neglected section of the zoological series. Prof. G. R. O'Reilly, Mr. Charles H. Higby, Mr. Gustav Von Moser, and Dr. G. Langman, all of this city, also keep collections, and become deeply attached to their ophidian pets, or, in the case of the vipers, find them full of interest.

The habit of dressing too warmly within doors in the winter season is earnestly deprecated by physicians. The temperature of modern houses and offices is usually about 70 deg., which is summer heat. Yet both sexes select thick flannels and heavy dresses and coats for house wear and then go out into an atmosphere many degrees colder, with little additional protection, especially for the feet. This is a fruitful source of colds.

QUEEN WILHELMINA OF HOLLAND.

THE QUEEN OF HOLLAND

Of the two child monarchs who have been ruling in Europe of late years-the King of Spain and the Queen of Holland-it is of the young queen that the world at large has heard the most. And indeed it is with her that the world has the more sympathy, for she is the last of the House of Orange, a house made famous three hundred years ago through the bold and determined military achievements of its greatest member, William the Silent-the "Father William" of the Dutch people
It is a rather striking coincidence that now, after three centuries have elapsed, the thrones of Holland and Spain should both be held by children, and that these children should be, too, the lineal descendants of those most bitter enemies, Philip II and William the Silent ; the former the would be destroyer of Dutch civil and religious liberty, the latter the founder and maintainer of it. Though he died a martyr to the cause-for the assassin's knife directed by Philip ended his splendid career-William's life and example so inspired the Hollanders that they were able to keep up the fight until, over twenty years later (in 1609), Spain gave up the contest and the United Provinces of the Netherlands were freed from the yoke of ecclesias tical and civil despotism, against which they had fough for thirty-seven years. This struggle was one of the most heroic and hard fought struggles for liberty the world has ever seen. A nation with less persistency than the Dutch could never have won it.
During the centuries since the separation of the United Provinces from Spain, that particular part of the Low Countries known as Holland has passed through many vicissitudes of government. In the first half of the present century the Republic of the Netherlands went to pieces, and the separate kingdoms of Holland and Belgium were formed out of it; so that at the present time Holland is a limited monarchy having two law making houses much like those of the English Parliament.
Wilkelmina Helena Pauline Maria, the young Queen, was born on the 31st of August, 1880; consequently, she will attain her majority and be pronounced ruling sovereign a year from the last day of August next.
King William III, the father of the Queen, spent the best part of his life in wild dissipation, and developed a character altogether unsavory. In 1839 he married Princess Sophia, of Saxony. He was then Prince of Orange, but after a half score of years had passed he became King, and the fortune left him turned his head. He plunged into all sorts of dissipation, and finally alienated himself from his queen, whom he falsely accused of plotting with the Emperor Napoleon to depose him, and set her up as Queen Regent. So bitter became his hatred of his first Queen that, even when she was on her death bed, he refused to see her. Of the two sons whom he had by this marriage, the elder, the Prince of Orange, ruined his health and died after a few years of reckless life in Paris; the second son, Prince Alexander, who was of a gloomy and un-
and shows not Greek health, but deficient vitality. The first thing is to get so you can hold the chest up. Walk across the floor three times, holding up your chest (just as you do when you try to fasten a tight skirtband), at the same time breathing deeply from the abdomen. After the three times you are exhausted; rest and try it again; to-morrow you can perhaps do it four ; don't tire yourself, but keep at it till you have strengthened the muscles that hold you chest up just as you would strengthen the muscles of your arms, with use. Always practice out-of-doors or with your windows up ; there are many good breathing exercises and but few can very well be conveyed in
print, but the main thing is very simple; breathe with your chest up, and keep on doing so till you do it naturally, all the time that you are not relaxed in rest.
One good exercise that can be taught is to simply stand and take as long a breath as you can, chest well up, and then hold it as long as you can. This exercise used for a few minutes every day is most beneficial, and physicians recommend it for strengthening and expanding the lungs.
Professor Tyndall said that, as a broad general rule any air out of doors was better than anyair indoors. Breathing exercises are most effective outside the house and generally they are not conspicuous even on a city sidewalk.
sound mind, soon followed his brother to the grave and left now without an heir, the fast aging King began to look about for another wife, that he might not die childless. He finally determined on the Duchess of Albany, a daughter of the Prince of Waldeck-Pyrmont, for his second queen, but she, unfortunately, did not fancy the decrepit old King for a husband. She was a young woman of twenty-two, and could hardly be blamed. It is said that when Queen Emma heard her sister refuse the King's offer of marriage she said to her, "Helen. I should never refuse to become a queen." The King happened to overhear the remark and was so pleased with the younger sister Emma-a girl of but nineteen-that he addressed his offer of marriage to her, and she, true to her word, did not refuse So it came about that this lively young maid returned with King William to The Hague and became his be loved queen, nursing him tenderly through the long, painful years that remained to him of life. He lived to see his little daughter reach the age of ten years; and a few years before his death, at a council of the States General, he obtained the setting aside of the Salic law, which forbade a female heir to succeed to the throne So, upon her father's death, Wilhelmina became Queen, and her mother, whom she resembles in many respects, was appointed Queen Regent
The little Queen was of a most delicate constitution during her early years, and grave doubts were at one
time entertained as to whether she would reach womanhood; but, under the careful tutelage of her wise mother, she has developed into a healthy, lovable girl ; and that she has completely won the hearts of her people, you have only to question the average Dutchpeople, you have only to que
As she is approaching the marriageableage, the question naturally arises whom she will select to be Prince Consort. Rumors are abroad to the effect that Wilhelmina is already betrothed to Prince Bernard Henry, a grandson of the Grand Duke of Saxe-Weimar-Eisenbach, who wedded a sister of William III. Should such an alliance take place, it is questionable whether it would be liked by the Dutch people, for they have no very friendly feelings toward the Germans, who, it would seem, are only waiting for a favorable chance to
absorb Holland in the German confederation. Gerabsorb Holland in the German confederation. Germany, however, being the Queen Regent Emma's natal land, she may very naturally wish her daughter
to go there for a husband. Still, she undoubtedly has to go there for a husband. Still, she undoubtedly has
the Dutch people's interest at heart, and can be relied upon to make or sanction no alliance which would be distasteful to them. As for the Queen herself-and surely she, more than anyone else, is concerned in the matter-she says she will have no marriage for diploand be loved in return, or she will have none of him. Herein she shows a spirit that an American girl will appreciate. She is said, among other things, to have a preciate. She is said, among other things, to have a
will of her own, and an incident illustrative of this, will of her own, and an incident illustrative of this,
which has been widely told, is as follows: When, some which has been widely told, is as follows: When, some
few years ago, the German Emperor was making a few years ago, the German Emperor was making a
formal visit to The Hague, Queen Wilhelmina expressed her intention to attend the state banquet. After considerable argument with her mother on the subject, the latter was forced to conduct the young lady to her bedroom, where, as the Queen Regent was about to leave, she rose upon her dignity and said: "I will go on the balcony and tell the Dutch people how you abuse their Queen." Of course, she did not carry out her threat, and the next morning she was sorry for her rash words; but the incident illustrates her strength of will and a determination not to be abused. Wilhelmina has a gentle though firm disposition, and when she ascends the throne as actual ruler it is to be hoped that she will have as great an influence in the purification of the court after the dissolute reign of her father as did Victoria of England upon the court of that country when she succeeded to the throne.
For the excellent portrait of the young Queen, which we present herewith, we have to thank the photogra-
pher to the Queen, Kameke, whose finely equipped studio at The Hague is visited often by Americans, and exquisite aquarelles he produces.

Errors of Instinct.

That instinct is not infallible we are assured by M . A. Acloque, who gives in La Nature (Paris, November 14) some interesting instances of the truth of his assertion. The Literary Digest translates part of his article below :
"It may be stated that instinctive impulses are in some degree determined in advance for each species, vidual is called upon to accomplish by reason of its own mode of life. Accordingly it is a legitimate conclusion that animals may sometimes be deceived, when the problem that they are called on to solve does not present itself under normal conditions, or when the circumstances in which they are placed are only apparently true. This is in fact what actually happens, and we believe that it will be interesting to cite several examples where instinct, thus confronted-accidentally or experimentally-with unaccustomed or artificial conditions, finds itself at fault.
"The Spegians are a tribe of wasps that make their nests in the earth and provision these nests, where they deposit their eggs, with the larvæ of other insects, particularly caterpillars, . . . or even with spiders. These wasps do not kill their victims; they are satisfied with paralyzing them. For the young larva that will issue from each of the eggs has delicate tastes, and would not be willing to feed on partially decayed flesh. Thus each victim is pierced with the sting, which finds its way to a nerve ganglion . . . and inoculates the prey-to use the technical term-with a drop of poison endowed with anæsthetic properties. This poison condemns the victim to the most absolute immobility,
"One southern species, the yellow winged Sphex, provisions its nests with a large cricket, which it knows provisions its nests with a large cricket, which it knows
how to wound in the exact spot necessary to prevent all resistance, and which it drags, not without difficulty, to its nest. This Sphex is an interesting study.
When it has rot its cricket to the When it has got its cricket to the edge of its nest, it never fails to go into the gallery, doubtless for fear lest
some intruder might profit by its work, and never some intruder might profit by its work, and never
brings in its prey without going through this prudent domiciliary visitation. If the cricket be removed and placed some distance away, the Sphex. after finding it, brings it anew to the opening, and repeats its inspec-
tion of its lodgings. This happens as often as the observer pleases to repeat the experiment. If now the cricket be taken away altogether, the Sphex at first shows great anxiety, turns around, and rushes here and there, not understanding the trick that has been played it. Finally, recognizing that its efforts are futile, it returns to its burrow and sets to work confutile, it returns to its burrow and sets to work con-
scientiously to seal up the opening, as if the cricket were within. In doing thus it performs all the acts imposed on it by its instinct to assure, under normal conditions, the nourishment of its larva. Only instinct, since it did not foresee the case of an accidental intervention that should cause the prey to disappear, did not indicate any solution of the problem thus propounded by chance. And the insect, being confused, does a foolish thing."

Natural and Acquired Immunity.

The natural immunity of many animals to certain diseases, even when the actual virus is injected, has long been known, and various explanations have been given. Quite recently careful investigations have been carried out by MM. Calmette and Delarde in the Pasteur Institute at Lille. In their experiments they made use of the following poisons, viz., an animal virus, serpent's venom, and a vegetable poison, abrine, prepared by macerating jequirity seeds (Abrus precatorius) in water. They found that the immunity of pigs and hedgehogs to venom and of fowls and tortoises to abrine could not be due to the presence of antitoxins in the blood previously to inoculation, for the serum of the normal animals had no protective effect on susceptible animals, nor had it any neutralizing effect on the poison when mixed with it outside the body before inoculation, in both these respects differing from serum containing antitoxins. They were also unable to discover any antitoxic substance in the brain, liver, spleen, or other organs of the normal animals. They hold, therefore, that the antitoxic serum is independent of immunity, since that may exist when no antitoxic properties are possessed by the serum. They ttribute both kinds of immunity to special character of the cells of the body.-Lancet.
Illuminating values of mantlesmade from the following oxides per cubic foot of gas: Thoria, commercial, 6.0 ; thoria, pure, 1.0 ; zirconia, commercial 3.10 ; pure, 1.5 ; ceria, 0.9 ; yttria, 5.2 ; lanthania, 6.0 ; erbia, commercial, $1 \cdot 70$; pure, $0 \cdot 6$; alumina, $0 \cdot 6$. Ceria gives a red-dish-yellow light; erbia, zirconia and barium a yellow light; alumina a whitish yellow.

RECENTLY PATENTED INVENTIONS

 Engineering.Smoke Consuming Furnace. Charles Groll, Roubaix, France. This furnace has a roposed inclined partitions, terminating at different points
of the grate, a tube or channel supplying fresh air of the grate, a tube or channel supplying fresh air
through nozzles into the combustion chamber. The opethrough nozzles into the combustion chamber. The operation is methodized to get the fresh coal always on coal
which is incandescent, to increase the length of the which is incandescent, to increase the length of the
course followed by the gases in the combustion chamber, and conduct them successively from the coolest to the
hottest portion of the fuel. The automatic coal feeder hottest portion of the fuel. The automatic coal feeder
consists of a conveying worm and cylinder with apertures which distribute the coal into chutes leading to partitions one above the othe
spect to the grate.
Metallurgical Furnace. - William J. Thomas, deceased (Hannah Thomas, administratrix), Canal Dover, Ohio. This is a form of furnace adapted
for glass melting steel making etc. for glass melting, steel making, etc. It has two hearths,
at the outer sides of wnich are gas flues and air flues, at the outer sides of which are gas flues and air flues,
while there are chills or air spaces helow and alongside the hearths, and between them is a main or central gas flue. It is designed in operation that the air and gas in the outer flues shall be reversed about every twenty or thirty minutes, and the gas in the central flue also re-
versed, along with the draught of the furnace to the versed, along with the draught of the furnace to the
stack, the perfect combustion at the top of the central stack, the perfect combustion at the top of the central
flue carrying the heat through the hearth on either side as

Valve Gear.-Franklin Pilkington, Anniston, Ala. This gear comprises a rocker arm con-
trolled from the governor eccentric, a yoke on the arm trolled from the governor eccentric, a yoke on the arm
being controlled from the shaft eccentric, while a lever fulcrumed in the yoke controls the slide valve and a link connects the lever with the yoke. The improved gear is not liable to get out of order, affords a variable antomatic cutoff, according to the speed of the engine, and a constant closing and opening of the exhaust at the proper
time to produce highly economical results with but a time to produ
single valve.
Lubricator.-John C. Bauer, Remsen, Iowa. This is an automatic device for feeding
oil to the cylinder or other parts of a oil to the cylinder or other parts of a locomotive or
traction engine, preventing the oil from getting cold and sticky and feeding it in a uniform and reliable manner. The oil receiver is surrounded by a steam jacket, and the feeding of the oil is effected by steam pressure, its passage being regulated in drops by a needle valve oil regulator.

Railway Appliances.

Air Brake Hose Coupling.-Ernest W. Shortridge, Kenova, West Va. This coupling comprises two sections, each having a longitudinal duct com-
municating with a flexible tubing, and the conpling is so arranged that, should a train become accidentally sep-
tions would rotate a valve to prevent the escape of air from the forward section of the train, which would thus
be left under the control of the engineer, while be left under the control of the engineer, while the air
escaping from the rear section would operate the brakes of the detached section of the train.
Railway Spike.-Jens K. Knudsen, Engadine, Mich. The body of this spike has an indentation in one side near the point, and a pliable prong is
formed integral with the body and lies normally at its side, the free end of the prong being pointed and curved to lie withnn the indentation. As the spike is driven the prong diverges from the body portion of the spike and projects through the side of the tie against which it is clinched, rendering it impossible for it to work loose,
although it may be readily withdrawn on bending back although it may be

Electrical.

Dynamo and Motor. - Charles P. Turner, New York City. As the magnetic permeability
of iron in the field magnet cores of dynamos and motors is affected by the presence of carbon, phospborus, and other impurities, and the alloying of iron with other combination wits losses, this invention provides for the wrought iron field magnet of a facing of pure iron on the surface adjacent to the armature. The polar extremities are formed with an opening enough larger than the armature to allow for the electrolytic deposit on the concave surfaces adjoining the armature of a coating of
pure iron, thus increasing the efficiency of the dynamo or motor.
Annealing Apparatus.-The above inventor has also devised an apparatus for electrically
annealing wire, etc., instead of employing an annealing nnealing wire, etc., instead of employing an annealing
furnace, as heretofore. The invention provides devices for feeding the wire over contact plates connected with an electric current generator, and means for subjecting
the wire successively to the action of water, dilute acid, the wire successively to the action of water, dilute acid,
and water, after pass ny over the contact plates, whereby and water, after pase $n \boldsymbol{n}$ over the contact plates, whereby
the wire is cooled $\boldsymbol{n} \mid$ sealed, pickled, and the acid washed from its surface. The contact plates are adjustable to give the desiren resistance to the electricity
and insure a proper heating of the part of the wire between the plates, according to the strength of the current and the thickness and nature of the wire, which
may thus be annealed to a perfectly uniform quality may thus be
throughout.
Electrolytical Apparatus.-A further patent of Mr. Turner provides for the electrolytical separation of precious metals from the ore without mixing the gangue with the electrolyte, the apparatus being simple and durable in construction. It comprises a tank adapted to contain the electrolyte and provided with an
electrode, a transversely partitioned receptacle containing the ore being set in the tank, the receptacle having perforated walls and beng made of a non-conducting fabric coated with a conducting substance which is connected with a source of electrical supply to form the other elec-
trode. trode.

Combination Battery Cell.-Henry A. C. Anderson, New York City. The zinc cup constituting the positive electrode of the cell is made with a
number of apertures, according to this invention number of apertures, according to this invention,
whereby the cell, after its effective term of service as a dry cell has expired, may be revivified and used as a wet cell, it being simply necessary to place the cell in a cup or other receptacle containing a solution of sal ammoniac or other exciting liquid, such doubs
due solely to the aperturing of the zinc cup.
Electric Switch.-William W. Doty. New York, and James A. MacKnight, Mount Vernon, N. Y. This invention provides a simple, durable and
wholly automatic switch for street car and surface roads wholly automatic switch for street car and surface roads,
which may be readily controlled by the operator in charge of an approaching car to set the switch according to the intended direction of the car. A pair of solenoids is connected with the switch point and adapted to be
alternately energized by a current under the control of the operator on the car. The devices are not liable to get out of order, and moisture is not apt to interfere with the proper working of the parts.
Train Controlling Device. Christopher A. Shea, Milton, Mass. To automatically set the brakes on a train, should there be danger on a
portion of the track section ahead of the train, this inportion of the track section ahead of the train, this inventor has devised a novel arrangement of a crrcuit to be automatically controlled to release certain brake operat.
ing devices. The track circuit consists of the two rails ing devices. The track circuit consists of the two rails conuected by resistance coils and a short auxiliary con-
tact rail, while a contact lever is carried by the train, and electric mechanism connected with the air brake valve lever, whereby the brakes are operated by the opening or short circuiting of the train or track circuit.

Mechanical.

Ruling Machine.-Charles Stoll, Chicago, Ill. This invention provides novel means by which a double ruling attachment may be readily connected with or disconnected from the ordinary mechan-
ism of a single ruling machine, enabling it to do single or double ruling at will. The invention comprises an auxiliary frame with rollers and cords co-operating to secure the reversal of the paper, a ruling device being carried on the frame, and there being pivoted arms by which the auxiliary frame may be raised clear of the main frame, and means by which the roller carrying the back strings may
auxiliary frames.
Sawing Machine.-Albert C. Calkins, Santa Barbara, Cal. This machine comprises a vertically adjustable frame supported on upright guides, a
yoke forming the lower part of the frame and a block yoke forming the lower part of the frame and a block
sliding in guides being supported in its upper part, while a pendulum rod is pivoted at its upper end to the block and at its lower end to the saw frame. The saw the saw has a straight line motion, the saw being opthe saw has a straight line motion, the saw being op
erated by a wheel, crank or other power device.

Leather Washing Machine.-James McKenzie and Charles O. Shaw, Cheboygan, Mich. In this machine revoluble brushes are located one above the other, the shafts of the brush cylinders being revolved by intermeshing gear wheels, and the leather to
be washed is fed between the brushes by feed rolls, the arrangement being such that the leather may be passed in and drawn back from between the brushes, without much strain on the working parts of the machine or muchexertion on the part of the operator.

Agricultural.

Stock Watering.-Reuben G. Fay, Harlan, Iowa. To facilitate the watering of stock, this inventor has devised a novel connection between the
permanent tank or reservoir and the trough, whercby the water in the trough will always be automatically kept at the required level. The invention comprises a valve casing supporting an arm through which the stem of the
valve passes, there being a pulley adjacent to the arm valve passes, there being a pulley adjacent to the arm
and a float connected with the valve stem. The device is simple and inexpensive and may be readily applied to any form of trough or water reservoir, no matter how far they may be separated from each other.

Miscellaneous.

Bicycle Saddle.-In a design patent granted to Charles H. Young, M.D., 160 West Fortyeighth Street, New York City, for a bicycle saddle, spe-
cial features of form are shown. The saddle is anaclal features of form are shown. The saddle is ana-
tomical in all its parts, presenting concave surfaces that accurately fit the convesities of the buttocks and perineum, thereby preventing injurious pressure on these parts in both sexes. Whether made of leather or other material, the saddle is sustained in the shape best suited to the curves, upon a spring frame adapted to conform thereto. It should be made in different grades to easily
fit persons of all ages, so that the curves are proporfit persons of all ages, so that the curves are propor-
tionate to the size, rendering the saddle always perfect, easy and comfortable to the rider. Manufacturers and others interested may obtain further particulars by adressing Dr. Young as above.
Bicycle Support.-Thomas Jefferson, Spearisish, South Dakota. This is a device adapted to be carried on the frame of the bicycle and readily swung when the rider dismounts. It comprises a cross bar which centrally engages the frame, and having at its ends casings in which are pivoted arms adapted to be raised and lowered and locked in either position. The most convenient attachment to a wheel.
Bicycle Brake.--Frank J. Coombs, ment, there is a pedal sleeve on the pedal shaft and cams are carried by the shaft and sleeve, on which a ring-shaped sprocket wheel is loosely mounted, brake shoes being movable into engagement with the wneel by means of cams, while spring impelled dogs carried by the shoes
are adapted to engage with shoulders in the wheel. The device is wholly hidden from view and protected from
dirt and dust, and the brake may be applied by the dirt and dust, and the brake may be appl
Bicycle Canopy.-Adolph Mass, Car ondale, Pa. This invention provides a light and simp hine and which may be folded up when not require and compactly strapped to the frame. The upright adjustable in a standard attached to the frame, and ha a swivel connection with the forward portion of th canopy, the latter being adjustable vertically or laterally, nd so shaped and supported that it will automaticall hift its position to face the wind ed

Sail Attachment for Bicycles. Thomas Lotherington, Ardmore, Indian Territory. According to this invention a spring roller mounted in
slotted casing carries a sail which is secured to a gaff inged to the casing, and adapted to close the slot whe the sail is wound on the roller. The sall casings are readily attachable to the frame of the machine, withou
njuring its appearance, and the sails may be readil spread to take advantage of the wind to assist propul-
sion, or automatically withdrawn and furled in the

Typewriter and Adding Machine Jacob C. Wolfe, New York City. This invention or an attachment applicable to any typewriter, to be vice caprring an adding mechanism whereby, the de ures in a column or line are printed by the machine, the sum total appears upon the adding mechanism, havin been added simultaneously with the printing of the fig res. The attachment, when not in use, may remain as a fixture on the machine and not interfere with its ordinary working,
Ruler and Time Computer. - Mose saacs, New York City. This is a device more especiall essignen for bank and whiless ande show the due dates of time paper, while also adapted for use as a
ruler. Extending in longitudinal grooves around the uler is a tape on which are printed the months and ays, and the surface of the ruler is provided with a set ing mark and marks indicating different times for whic due papers may be drawn. The date band is wholly ex posed on the sides of the ruler, and is easily moved along

Elevator Platform-Alphonzo E elham, New York City. This inventor has devised plattorm of simple and durable construction, more espe cially designed for elevators carrying hods and a wheel top, with clutches adapted to grip the guide posts top, with of the cable friction rollers buide posts on m castings have integral lides engaging the guide posts and bearings for the shafts of the clutches and the friction rollers, the cast
or the
Mixing and Heating Apparatus. Augustus S. Cooper, Santa Barbara, Cal. This apparaing and connected cones, the drum being mounted on a inclined axis and there being a spiral blade in the longe cone. When the drum is turned in one direction the
blade forces the material toward one end of the drum, nd when turned in the opposite direction the materia is forced toward the other end. The drum is suspended a a furnace on hollow trunnions, one trunnion consid rably higher than the other, the material being fed in through the upper trunnion and discharged through the ower one. The material is thoroughly agitated during
the whole progress of the operation.
Gas Regulator for Welsbach Burners.-Oren R. Cline, El Dorado, Kansas. To in-
sure an even gas pressure, so that the variations in the fow may not injuriously effect the fragile mantle, this
nventor has devised an automatic regulating valve in combination with the burner tube and the encompassing ir chamber. The valve is placed in the burner between the initial pressure and the air chamber, and consists of a liquid seal chamber with central opening, an inverted cap with perforated top, while a valve stem attached to the cap descends through the seal and is attached at its lower end to the valve. If a portion of the lights be niform light being away ater

Fireplace.-Franklin E. Humphreys, Mason City, Iowa. According to this improvement, ho roms of the house, and the flue descending alongside the chimney, there being hot
air spaces in close proximity to the grate, while the ir spaces in close proximity to the grate, while the
combustion is promoted by what is termed an oxygen burner, which consists principally of an adjustable perforated tabe, connected with the grate and the air inlet,
and by means of which the flow and distribution of the and by means of which the flow and
air may be most effectively regulated.
Stovepipe Coupling.-Thomas Holland, Spokane, Washington. To positively lock together the ends of stovepipe sections, and also for conveniently of the sections, according to this invention, are apertured and connected together by a simple form of coupling plate or bar, the coupling plate being attached by ping
entering the registering apertures and a screw. The up entering the registering apertures and a screw. The up-
permost or outer ptpe section is locked in place by a pin permost or outer plpe sectio
entering a recess in the flue.
Vapor Bath and Inhaling Appara us - -Charles W. Draper, Herington, Kansas. This invention provides means for giving vapor baths in which the patient is placed within a cabinet for vapor treatment, the head of the patient being exterior to the cabinet, subjected to hot air or vapor treatment. The bonerator is placed at the side of the cabinet, and controlled by the doctor.
Venetian Blind.-Charles L. Miller, New York City. According to this improvement a drum s pinion in mesh with internal gear teeth on a revoluble
eccentric, also formed with external gear teeth rolling off on a fixed internal gear wheel. The device is very sim
le and easily operated to raise or lower or turn the slot any desired angle.
Child's Carriage.-Arabella J. M. Hurdle, Southampton, England. The especial object of
this invention is to enable the handles of the carrige chis invention is to enable the handes one carriage height of the person propelling it, the body of the car riage being kept approximately horizontal. The joint is made by a shoe having cheek pieces with angular open
ing in which fit the angular ends of an apertured cylin der, there being also a second ehoe through the cheel pieces of which and the cylinder a bolt passes, while a inder and a pivoted lever engages the froe end of the inder
strap.
G.
Guitar, etc.-Czar Prince, New York city. This invention provides, for guitars and similar ing the pits, an improved capo tasto attachment or rab hy the pitch of all the strings. The capo tasto is com ng seats for the spring, the spring engaging the seats his the carrier in ther of the postions. Wis this improvement
easily changed.
Mitten or Like Fabric.-Isaac W. Lamb, Perry, Mich. In producing knitted fabrics in blanks may be cheaply and readily made and united to form the hand and receive the thumb. The invention consists principally in extending the selvedge yarns of one
ribbed fabric between the front and thack sived fabric between the front and back loops of the ne piec
Window Cleaning Device.-John! Girtler, Brooklyn, N. Y. To guard against one. falling vised a safety device comprising a belt with which shoulder straps are permaneutly connected at one end and removably connected at their other ends, cords having hooked members on their forked ends and some of
he hooks connecting with the shoulder straps wh the hooks connecting with the shoulder straps, while
keepers to be fixed to the window casing are engaged he hooks. The device is simple and inexpensive, readily attached to the person, and may be conveniently con with the keepers on the window casing
Sounding Board.-James C. Living Son, Little Fails, N. Y. This is an improvement signed to insure a fine quality of tone in pianos and
other instruuents, both in the treble and bass, by a now arrangement of hard and soft grained wood in the board t the same time making it possible to utilize short piece of valuable hard grain board lumber heretofore wasted. The improvement consists principally in making the oard in its treble portion of hard grained strips of wooc while its base is made of soft and wider grained strips nore distiocty and prer.
Cooking Stove. - James H. Fizer Lexington, Ky. In this stove there is an inclined back plate for the fire chamber at a little distance in advance back plate leaning against the upper edge of the oven back plate leaning against the epper eage of he oven of the upright partition, and a damper controlling an opening at the front of a horizontal flue below the oven.
The hot air chamber thus provided between the ove The hot air chamber thus provided between the oven
and fire pot, with the arrangement of the draughts, is lesigned to insure an even heating of the oven with bu mall consumption of fuel.
Pipe Cleaning Apparatus.-Jacob Fierz, New York City. To clean viscid and ropy de-
posits from pipes used to dispense beer and other malt liquors, this inventor provides a cask in which is held a ehemical or cleansing liquid, and with which connec he proper valve, air under pressure will force the cleans ing liquid through the pipes, after which, by opening
other valves, clean water will be likewise passed under pressure through the pipes, removing all traces of the emical wash.
Filter. - Edward Wolford, Ellwood it, Pa. This filter it made with a conical shell and
nner similar-shaped filtering medium, the bottom of the hell being closed by a cap, and a brush-carrying shaft tacting widing and rotary movement in the casing, conterial. This shaft is revolved by a crank at the top of the casing to clean the shell and filtering material, the impurities then flowing out through a faucet specially provided for their exit, but which is closed when water
to be withdrawn through the filtered water faucet.
Sorting Table. - Edmond F. B. Sourne, Vancouver, Canada. To facilitate the assorting mail matter, this inventor has devised a table which akes up but little space and yet will accommodate considerable number of sorters, the sorting divisions be-
ing quickly and easily changed. The table has a ring. shaped top having inward and outward upwardly e walls, flanges, a number of radially disposed supportin of the walls together
Diaper Fastener and Supporter. Lizzie G. Scully, Rome, N. Y. This device comprises an lastic band with button on one end to engage a loop on ady's garment. there being also other elastic band by the diaper will be held as adjusted without the use of safety pins
Corset Fastener.-Carlton H. Mer rill, Troy, N. Y. This is a simple, strong, cheaply man
ufactured device, not liable to get out of order, and en afactured device, not liable to get out of order, and en
ables the wearer to simultaneously manipulate the seve ables the wearer to simulaneously manipulate the seve-
ral fastening devicess to open and close the edges of the corset. The invention consists of three and the third provided with a rigid jaw pivotally connected with
movale jaw fulcrumed on the movable busk, the jaws eing adapted to engage the studs.
$\underset{\text { Hartland, Oregon. This invention is for a Fompond }}{\text { Hand }}$
se applied to the scalp and rubbed in where the hair is dients include iron oxide, rum and bear's grease com.

Cigar or Cigarette Holder.-Arhur C. Morrison, Uniontown, Ky. This is a holder the smoker to readily clasp with it the cigar or cigarette, and hold the same with the finger of one hand, enabling the holder to otherwiee have the use of both hands. The device is very light and inexpensive
Cigarette Box. - Howard Watkins, South Orange, N.J. This box is made in two sections, one received within the other, the inner section having a
tongue with a notch in one side and the outer section aving a slot receiving the tongue, with other novel de tails. The invention affords a cheap and superior box hat may be prod
or celluloid, etc.
Pessary.-Newton E. Charlton, Trindad, Col. This is a cup-shaped device having a thin valve in the casing controling a port leading from the chamber to the cup.
animal Trap. - James M. Kellogg, Sozeman, Montana. This inventor has devised a trap in large numbers, without requiring attention. It has spring-pressed lifting whel to automatically close the inet doors, a releasing device for the wheel to permit evice to cause the wheel to open the doors. The animal in passing from the entrance clamber
Liquid Measure Drain.-Samuel J. Wisdom, Montgomers, Ala. This is a recectacle adapted sel, to support the measures used so that they will drain into the barrel or vessel, also preventing insects from getting into the measures. The receptacle has a con
tracted base, above which is a partition having slots, a wall of each slot being carried down below the partitio o form a lip. The measures are at all times readily ac and cleaned.

Designs.

Pocket Knife Handle. - William Schmachtenberg, New York City. This design is for
metallic hande with dull finished faces and ends, the handle slightly tapering from the butt to the blade end, while the blade opening indentations are ber eled and polished.
Bottle Holder. - Eugene L. Jacques, Waterbury, Conn. For holding ginger ale and similar the this ine tor has devised a block simulating iow the op surface of
shape oon bunder.
SPoon Hande.-August Miller, Taunton, Mass. This handle is ornamented on its face with a border broken into inturned serolls, and its back has
concave central panel with corresponding ornaments.
Ash Pan.-Mary V. Conner, Tuske gee, Ala. This pan is higher at the back than at the front a skeleton handle whose side members continue oppositely across the bottom of the pan to its rear corners.
Nork.-Copies of any of the above patents will be
nornished by Munn \& Co. for 10 cents each. Plese end name of the patentee, title of invention, and date of this paper.

NEW BOOKS and pUBLICATIONS
inorganic Chemical Preparations.
By Frank Hall Thorpe. Boston,

This work, very well selected as regards its subject, touches on the preparation of the most generally used
chemicals, from convenient sources. The idea is that a deficiency exists in the usual curriculum, wherein the student on entering the laboratory uses the chemicals
supplied to him, takes his course in chemistry and supplied to him, takes his course in chemistry and graduates without knowing how a single one of the re-
agents is made. This deficiency in our present courses of instruction Dr. Thorpe aims to supply, and the work makee an admirable supplement to a chemical course
It is written by the instructor in industrial chemistry in the Massachusetts 1 Institute of Technology. The book the Massachusetts Institute of Technology. The book
suggeets a system which, if followed, would add to the value of any course in chemistry as given on the usual
lines, for the work certainl covers ground which has The Camera and the Pen By T C Camera and the Pen. By T. C
Hepworth. London: Percy Ludd Humphries \& Company, Limited. The
Country Press, Bradford; and Amen
Corner, Paternoster Row, London.
Porner, ${ }^{\text {Cat }}$. With illustrations.
This capital little work reviews photography from the aspect of the reporter, and gives sargely a newspaper man's
view of it. It is simply designed to eluctatet the appli. cation of process and photographic work to the produc tion of illustrations in newspapers, especially of such as are to be esecuted with the pen for reproduction. The
work is not only practical but anecolotal as well, and forms quite good reading. It is well illustrated and tho The X Rays. By Arthur
$\xrightarrow{\text { Thornton. }}$
Bradford: Percy Lund \& Company.
London: Memorial Hall, Ludgate
From these publishers we have a very prety treatise on the \mathbf{X} rays, constituting No. 10 of what the pub-
lishers term "The Popular Photorraphic Series" isshers term "The Popular Photographic Series." I
is simiar in style to Mr. Hepworth's book and contain numerous practical suggestions of value to the experi

Dusintess and Personal.

The charge for insertion wnder this head is one Dolar a a
line for each insertion; about eioht words to a line.
 as early as is Thur
ing veek's issue.

Marine Iron Works. Chicapo. Catalogue free.
or hoisting engine . s. Mundy, Newark, N.
" U. S." Metal Polish. Indianapolis. Samples free. Yane Notions. Waterbury Butcon co, Waerby, C. Well D. order pattern letters \& figures from the largest vare
 Garcin Bacycle Machinery of every descriptio. Conerete Houses - cheaper than brick, superior to
tone. "Ransome," 757 Monadnock Block, Chicago. Machinery manufacturers, attention! Concrete and ortar mixing mills. Exclusive right.
ome," 557 Monadnock Block, Chicago.
The celebrated "Hornsby-Akroyd" Patent Safety oil Engine is built by the De La Vergne Refrigerating Ma.
Chine Company. Foot of East $138 t h$ Street, New York. The best book for electricians and beginners in elec. tricity is " "Experimental Science," "y Gee.. M. Hopkins.
By mail, 44 . Munn $\&$ Co., publishers, 361 Brod way偪 Send for new and complete catalogue of Scientific New York. Free on application.

HINTS To CORRESPONDENTS.
 information and not for pablication.
give date of of toper
giter
 beope answers require not a little revearch, and,
somoghe
though eendeavor to reply to all either by leter
or in this department. each must take his turn.

 Mincer mise sent for examination should be distinctly
marked or labeled.
(7127) F. C. W. asks: 1. How many (12) sixteenth horse power, wound for battery circuit ? A.
It depends on the winding of the motor. As it needs abont 40 watts and a primary battery, current should be kept low, probably 20 volts would be a fair guess at the
fagre figure asked. 2. How many gravity cells would be re quired to rung A. se this or misclass of cell entirely unnuited for this work, unless you are willing
to use a very large number. The use of such a number entails a great deal of labor in the care of them. 3. How many Leclanche cells would run it ? A. The Leclanche cells are still worse. They cannot be used on closed circuit work except for exceedingly small currents
Would this motor run an ordinary sewing machine? Would this motor run an ordinary sewing machine? A.
Yes. 5 . Is the number of volts produced by a Leclanche carbon cylinder battery as great as that made on the prinany power be obtained if above motor was converted into a dynamo? A. Probably very little., Small motors are not generally constructed so as to be available for gen. erators. 7. Can you tell me if a small powder cannon
can be fired by electricity, by means of a platinum wire? A. Yes; without difificulty. For other queries address
(7128) H. K. C. says: I am ansious to secure the formula for etching on steel plate or iron, and
do not know where I can learn it, unless you will give it do not know where I can iearn it, unless you will give it
to me. If you will do this, I will be very much indebted you. A. 1 . Two ounces copper sulphate, alum $1 / 2$ ounce
alt $1 / 2$ ounce, mixed with $1 / 2 /$ pint vinegar and 40 drope nitric acid can be used for frosting the steel. 2. Glacial acetic acid, 4 parts; absolute alcohol, 1 part; nitric acid (s. . . . 1288$), 1$ part; allow the acetic acid and alcobol to re-
main for half hour, then add nitric acid carefully. Etch main for half hour, then add nitric acid carefully. Etch
from one to fifteen minutes.
. Alcohol, 3 parts; water from one to fifteen minutes. 3. A. Alcohol, 3 parts, water
(distilled), 5 parts; nitric acii,8 parts; silver nitrate,8 parts.
 the solution for three minutes, and wask with 6 per cent solution of alcohol. Repeat if necessary. 4. (Deleschamp's for vertical bite.) Silver actate, 2 parts; rec-
tified spirits, 125 parts ; distilled water, 125 parts ; nitric id, bove), 16 parts; oxalic acid, 1 part. 5. Iodine, 4 parts potassium iodide, 10 parts; water, 80 parts. This is
(7129) F. C. G. asks: 1. Will the zincs and coppers in a gravity battery waste away if kept in the solution when the baterery is on an open circuit. A.
Yes, a small current will operate to prevent the deposi tion of copper on the zince. 2. How is Faure's accumulaor or secondary battery made? A. See our Supheement Nos. 322,593 and 838 . 3 . How many quart gravity bai-
eries should it take to run a telegraph line about 24 mile long with 3 instruments of 20 ohms resistance each? Line
with ground circuit. A. Allow ten cells for this work.
(7130) H. G. J. asks : 1. Can you talk over any line with an electric telephone that you can apparatus you can do this. The telephone should have nequal orgreater range of action. 2. Has it ever been it be possible? A. This has of ofen been donen successfuly 3. Is there any cheap liquid insulator that can be put on the post that will harden? Am thinking of putting in : the post that wilt harden? Am thinking of putting in
line from here to my ranch (ten miles); have a barb wiri
fence all the way. Have no snow here and the atmo-
sphere is very dry. A. We cannot recommend any in-
sulator. Undoubtedly her sulator. Undoubtedly hot paraffine wax would be useful, insulator would be requisite.
(7131) M. J. S. asks: 1. What is the difference between high and lov voltage lamps (incandes in the resistance of the filament, and therefore in its cross section. They are designed to pass about 3 watts pe current. 2. What would be a simple process for extracting gelatine from bones? Would it consist in pul verizing and boiling and then evaporating the solutio as in making soup, or could not a chemical solvent, as
HCl , be used to disintegrate the lime and so liberate the gelatine, or would this process render it unfit for cooking purposes? A. The hydrochloric acid treatment could be applied, but would involve difficulty in disposing of the excess of acid and salts and would involve expense. 3 What is meant by polarization of batteries? A. It hydrogen, about the negative plate, so as to prevent gen
eration of E M. F. Exhaustion of the delar eration of E M. F. Exhaustion of the depolarizer is the
cause, and really is a good expression fordepolarization.
(7132) T. P. W. asks : Will you be so kind as to explain, if possible, for the benefit of one o be split so as to preserve both sides, For example: A page of a magazine has cuts on each side which it is desired to preserve so both can be mounted. A. The paper to be split is pasted between two sheets of compact
strong paper. The best flour paste should be used. Mucilage is unreliable. When nearly dry, if the two oute pieces of paper are pulled apart, the central one will
split, and one-half of the central piece will adhere to each. By soaking in water they can be removed. Some
kinds of paper work better than others. If the oute paper is of a loose texture, it may split instead of the desired one. But the best plan is to paste a piece of cloth to each side of the sheet to be split. When dry, asunder, when part of the sheet will be found to paste in water, and the pieces can be easily remove from the cloth. The process is generally demonstrated as a matter of curiosity, yet it can be utilized in various ways. If we want to paste in a scrap book a newspaper article printed on both sides of the paper, and pos sess only one copy, it is very conve know how to detach the one side from the other. The paper, when was before being su jected to the operation, and the printing ink is somewhat duller; otherwise the two pieces present the appearance of the original if again brought together.
(7133) L. A. McC. writes : 1. In the de scription you say that No. 18 (A. W. G.) soft iron wire 18 cotton covered the core of the armature and that No the coils of the armature and that No. 16 magnet wire should be used in the coils of the field magnet, and then in the dimensions of motor tabulated below you give No. give me correct numbers of all. A. Use No. 18 copper article. 2. Is black adhesive tape, such as is used by line en, the proper tape for insulating the cores? A. Such Should the specify is excellent for the purpose. ? Which is cost? wire be single or double co Is there any soft iron wire used expressly for the purpose making armature cores? If so, give name proper r would such wire as is used for bracing stovepipes up which is an annealed wire and very soft and tough) be ood, and is there anything particular about it not being sive or two larger. A. stovepipe whe wil answe rial ; in general the cores. The size is not very ma Russia iron in the core of field magnet be wound in con inuous layers withends abutted or should it be in sepa rate layers? A. It is quite immaterial. Wind it as mes, simply aiming at a neat shape
(7134) L. D. asks: What size motor run ing to its full capacity will a storage battery run tha has a capacity of ten volts and two and two-fif ths amperes . Approximately, one-thirtieth horse power.

TO INVENTORS.

An experience of nearly fifty years, and the prepara-
tion of more than one hundred thousand applications
for patents at homend anrond he laws and practice on both continents, and to posses nequaled facilities for procuring patents everywhere all foreign countrieses may be ara on application, and der-
sons contemplating the securing of patents, elther at home or abroad, are invited to write to this, office for for
prices, which are low, in accordance with the times and our extensive facilities for conducting the business.
Address
3UN Broadway, New York.

INDEX OF INVENTIONS

For which Letters Patent of the

 United States were GrantedMARCH 9, 1897 ,
AND EACH BEARING THAT DATE.
[See note at end of list about coples of these patents.]

 Acid, apparatus for making sulfuAdvertising and vending mach1n
Air exhaust device, E. Lord.....
 mmonia, soduum hydroxide and and ciilorine, pro
cess of and apparatus for simultaneously pro-

.5

Bearing, antifriction, H. Briggs.	angè:
	Harrest tool D , Pierce........:
$\text { ng p } \frac{10}{7}$	Hareveser, corn R
Bicycle, c. L. Trav	Hat
deate	Hay loader, ${ }^{\text {Hep }}$
Bieceiele lock, गT. Wead	Heating sys
Bieccee	
Bicscele eedal atatachment. W.A.	elay matarh
Bi	Hoe
Biccele stop motion brake	G. D. Foster. Well
e support, A. A.A. Aa	Ho
de supprot, D. Kn	Hoe
Venetian, C. L.	
ther boiler.	
S, shoes, etc	
tue, W. W. Mangum, Ji tle, safety, W. H. S . Je	
	Knitting mac
	Knob attachment, E. S. Winchester Ladder, extension, J. C. Ferris...
See fence rrace	
Bridges, instrument for measuring temporary and permanent stresses in iron, 0 . Leuner... 578,40	Lea
ye, ships, c. La	
${ }_{\text {pulle }}$	
apin, baas, T. C. Pi Ph	Loc
brake shoe, rallwa	Locomotive or othe
ar brake, street rai	Marine safe floa
reouping, J. S. Smith Sila	
${ }_{\text {s Preners. }}$	Measire Arain,
$\xrightarrow{\text { fender }}$ fer,	Metal
lifeguard, street safety guard, str	
wheel, etc., W wheel grindi	
s, device for uniting, ${ }^{\text {a }}$,	${ }_{\text {See }}$
${ }_{\text {clothe }}$	Mouthiee
amp, hearse, W. Weonher	
Chain, sprocket, Stahl \& Coryeii	Nasimanufat
	N
	Pad
Barb	
	Paper or
malt, porrtabe	Paper ree
ate	Pencil shar
Cooking utensil, c. E. Chall	
	$\xrightarrow{\text { Pitather, }}$
ton chopper, B. F. Hopkin	Por
ing mac	Po
	Poter means for tranimititing,
Ivator, l W. G . scosti	
tivator, wheel, w.	Pres. See
	Prill
ter proeelinire meech	Pulp straner, ${ }^{\text {Patic }}$
rick, P . E .	
Desk implement, R. R. Vernon......................... 578,589 Desk top, adjustable, A. Fleming.................. 578,325	Punct or Puriffer,
Sors searo	
	(eater
and tapping attaciment	Reeicarr
Drililing and tapping machinery, con	
, substantive cotton.	
(tric controller contact finger,	
	(eatet pin,
Na, K. Rupolph	
gate step Wagon,	Seering machine pin
exhast and dr	Sharpener.
ne stop device, T. D. D. Millea	Shears, Di. H. Holl
lot	shirt
enemon uice ex	
mine	,
	splinning,
Eew.	(eninning
H.	Stamp, han
$\begin{aligned} & \text { th wheel, H. E. Morri } \\ & \text { elasp, paper, V. Mur } \end{aligned}$	
machine for	Staves
back adjustable	Steam engine, J. $\mathrm{F}_{\text {Ge }}^{\text {Ser }}$
extinguisher, Fisher \& Mckercher. extinguisher, Parker \& Coulson. . . .	Steam trap
xtinguishing app	Ster
hook book, G. Knierieme ng reel, ball bearing, A. staf or	
ne joint, tubular, \mathbf{T}. B. Jeffery el A , Bubuar,	
ace. See Glass furnace. Metaliurgical fur ace.	Ste
rnace door frame, Ross $\&$ Johnson.......... $\dddot{\text { for }}$ for burning bagasse, sawdust, et.	$\begin{aligned} & \text { Sucke } \\ & \text { Sunglt } \\ & \text { Swwitc } \end{aligned}$
P. Abell naces, hoisting and charging apparatus	Switches
	Table Koh Tablet, sale
e apparatus, J. B. generating machi	
lighter, electric, \mathbf{F}.	Tapping
Governor, steam engine, A. Chandier. Grain reducing machinery, J. B. Allfree...	

 T

TRADE MARKS

 3i, | 29,654 |
| :---: |
| 29,682 |

laundry articles, C. Simpson.................
Me:cure for pain and for groneral purposes of a a lin29,657
2,66829,683
29,61
$29,6,64$
29,640
29,604
29,662

29,692
29,660
29,659
29,680
29,655
29,650
 29.699
29673
29,62

LABELS

AMERTCAN PATENTS.-AN INTER-
 (2umenisw
T Y You Fre a manufacturcer of Shect metal
 No. 1. ROLLING MILL MACHINERY FOR SHEET
No. 2. TUBE AND WIRE MILLIMACHINERY
NO. SILVERWARE AND COINING MACHIN No. 3. SILVERWARE AND COINING MACHINERY
No. No. 4. HARDWARE AND
No. 5ICYCLE MACHINERY
the waterbury farrel foundry \& machine co

THE THERMOPHONE
Measuring Temperatures Will take temperature of any
thing at any rangeor distance. E. S. RITCHIE \& SONS

WORRK SHOPS SH BARNES'FO
allow lower bids on jobs, and give
greater protit on the work. Machinne
sent on trial if desired. Catalog Free 1999. F. \&uby St., ROCKFORD.
 POWER a PRESSES for the manufacture of
HARDWARE SPECIALTIES, Spoons, Buttons, Locks, Shovels, etc.
for all operations in the manuacture
of Metal Goods. Improved Clutch
Reliet no Clicking. Presses changed Relief no Clicking. Presses chatgeh
to order to suit any sesial reagre-
ments. Send uis full particculars, stating
what ments. Send us full particulars, stating
what you wish tomake. Machines
ted with Automatic Feed and Ejector
F. S. \& G. L. BRO WN, 27-29 Fort Ave., Baltimore, M BICYCLE SPOKE HEADIN Designed for upsetting and head-
ing bicycle spokes and similar
work. Capacity as fast as operator can handle the spokes.
BLAKE \& JOHNSON, Waterbury, Coxn

nicketansits and leveling instruments.
Pated POCET LEVELS

Prices, 40 and
For Book on the Level.

\%Niviant steel belt \& Pulley

 See Scientific Ambrican, Feb. 6 , 1397, page 84 The Van Norman Lathe.

\square UY TELEPHONES That Are Good--Not "Cheap Things" ratus and guarantee our customeres gaanainst loss our by paten
suits. Our guarantee and instruments are Both Good suits. OuTERN TELEPHONE CONSTRUCTION CO.
WESTER Larqest Manufacturers of Telephones
exclusively in the United States.

Hawkins' New Catechism of Electricity

WWELL DRILLING MACHINERY. WILLIAMS BROTHERS. ITHACA, N.Y. MOUNTED OR ON SILLS, FOR DEEP OR SHALLOW WELLS, WITH
STEAM OR HORSE POWER STEAM OR HORSE POWER
SENO FOR CATALOGUE

THE J. F. W. DORMAN CO. WATER FOR COUNTRY USE.

THE DOMESTIC PUMP.

THE ERWIN HYDRAULIC MACHINERY CO
THE ERWIN HYDRAULIC MACHINERY CO.
$58 \& 59$ Loan \& Trust Bldg., Milwaukee, Wis.

D2. 4 Foot dubeel Useful to the Bicycle Repairer. W. W. OLIVER,

Experimental \& Model Work

The Queen Acme No. 5 Microscope
NEW MODEL AS PER CUT.

 QUEEN \& CO., INc.

Electricity ${ }^{\text {cen }}$	To ElectricalWorkers,
	neers, Draughtsmen,
Architecture, Mining, ${ }_{\text {a }}$ Civil Enginering in	Carpenters, Steam En-
all Branches; steam	
Engineering (Stat' y ., ${ }^{\text {ana }}$	
Loco. and Marine). HiNoroug	cular, Stating Sub ject you voish to Study.
Correspondence Sehools mactica	

This beats wind siteam or Horse GAS ENS \mathbf{W}, actual horse pow

 WEBSTER M'F'G CO.,

THE IMPROVED GAS ENGINE.

POWER? POWER? POWER!

BOAT \& MAFINEE

SCREW - CUTTING DIE HEADS

 17 wire gause to binches diameter incusive.
CEOMETRIC DRIL

Japanese Patents

Fnd ..

 Crade Marks.PRESIDENT McKINLEY, on March 9, issued a proclamation promulgating the treaty recently ratified between the governments of Japan and the United States providing for the reciprocal protection of Patents, Trade Marks and Designs in those countries.

Citizens of the United States may now obtain
patents in Japan. Japan has been very active in
adopting American and European inventions;
and as patents heretofore have been granted
only for inventions only for inventions made by native Japanese,
the foreign inventor could not obtain protection, the foreign inventor could not obtain protection, foreign inventions becoming public property as
soon as publication had taken place. Foreigners may now obtain Japanese patents, provided the
application is flled before the invention becomes application is flled before the invention becomes
publicly known or used in Japan. The populapublicly known or used in Japan. The popula-
tion of Japan is estimated at about forty-five millions. For further particulars, cost, etc., apply to Messrs. MUNN \& COMPANY,

ACETYLENE APPARARATUS.-ACETY

HOUTS AUTOMATIC TELEPHONE SWITCHES

GERMANY.

A firm dealing in imported technical goods and well known among German industrial
establishments, which is located in the Center of the Industrial District, desires the sole agency for the introduction of suitable Ma= chines and other Technical Articles in Ger many; only first class articles will be consider ed. First class references will be exchanged RUDOLF MOSSE, COLOGNE, GERMANY

FOR VENTILATING.
Exbaust Fans.
All sizes Low Priced but Guaranteed
First-Class.
Send for Catalogue E. FANS AND WATER MOTORS

 ACTINIC-PLATINO CO., P. O. Box No.68, Detroit, Mich

Are You An Tnuentor?

Or are you interested in Inventions? In eithe
case you tike to know what is going on in th Way or New Discoveries, the Improvements in of Science, the latest Inventions in Mechanism,
Chemistry. Electricity, Photography, etc. The Chemistry. Electricity, Photography, etc. Th
tandard authority on all matters of Science and

Scientific American

a sixteen-page illustrated weekly, that costs
$\$ 3.00$ a year, or \$1 150 for six months. Everything
of interest to Scientists and Scientific Students, Inventors Patentees, Engineers, Chemists, Man-
ufacturers, etc. is gathered from all parts of the

Specimen Zopy Sent Free.
MUNN \& CO., Publishers,
361 Broadway, New York City.
 MOSSBERG ROLLER BEARINGS Saving 40 to 80% of Friction in all Bearings absence of heating. MOSSBERG \& GRANVILLE MFG. CO., Providence, R.I., U. S. A. ROLLING, STAMPING, PUNCHING, AND WIRE DRAWING MACHINERY Fre You Fond of Rowing? The pleaaure of boating can be wonderfully increased
by fiting your boat with
BALL-BEARINC ROWLOCKS

 Boats, Skiffs, Canoes, Launches

A.W.ABER

 78 Reade Street, New York, N. TRY IT ON YOUR SPOKES! Aluminume Lacquer
 $\$ 90$ A 3 H. P. MOTOR or Plating Dynamo
 ACETYLENE GAS AND CARBIDE OF

ONLY PRACTICAL MAGAZINE CAMERA
SUNART'S
"VENI, VIDI VICI,"
SUNART MAGAZINE, SUNART FOLDINGS Send for Illustrated CataTHE POCKET KINETISCOPE.

Horse Carts
mint rates of freight fros Lowr
works, Tatamg, Pr to ail AXELES.
F. N.ROEHRICH \& CO., 10sFulton St., New York

 MONITOR IMCUBATOA

KRAFTUBERTRAGUNGSWERKE RHEINFELDEN

Study Law at Home

 EXPERIMENTAL MACHINE \& MODEL
WOrk. First-class equipment. Secrecy paaranted.
H. ROBINSON \& Co., 516 Southern Boulevard, N.Y.City X Ray Apparatus CONTRACTS WANTED.

WILLSON CARBIDE WORKS

SPRAYERSEW

PORTABLE SINGLE RAIL SURFACE

 ELECTRICAL SUPPLIES***
 CLYMER \& HELLMAN, ${ }^{\text {Pastpaid }}$ Reading, Pa.

Experimental Science
17th Edition Revised and Enlarged.

840 pages. 782 fine cuts, substantially and beautifully bound. Price in cloth, by mail,
$\mathbf{\$ 4}$. Half morocco, $\mathbf{\$ 5}$. \$4. Half morocco, $\$ 5$.
This splendid work is up to the times. It gives young and old something worthy of thought. It has influenced thousands of
men in the choice of a career. It will give anyone, young or old. information that will enable him to comprehend the great improvements of the duy. It furnishes sug.
gestions for hours of instructive recreation. Send for illustrated circular and
MUNN \& CO., Publishers, Office of the
36I BROADWAY, - NEW YORK.

Pfovertisements.

nside Page, ordinary rates.

Back Page, each insertion--7.5 cents a line Wio For some classes of Advertisements, Special and The above are charges per agate line-about eight
words per iline. This onotice sonows the wradt of the thene.
and is set in
and and is set in agate type. Engravings may head adver
tisements at the same rate per agate line, hy measure ment. as the leterer press. Advertisements must be
reecived at Publication Office as early as ar hursda
morning to appear in the following weeks issue

Cribune $\& \overline{\text { īcycle }}$

Tested and True.

The Easiest Ruming Wheel in the World.
the black mfg. CO., erie, pa. Nickel Silver

Watches

We are casing all sizes of movements in this new metal. It takes a better finish and is more enduring than sterling.
It supersedes the old nickel plate, and enables one to have a perfect timepiece at small cost.
Our Solid Gold and Filled Cases, as well as Sterling Silver and Enameled patterns, are in greater variety this season than ever.
New specialties have been added.
Our '97 Model
Trump Cyclometer,
the 10,000 mile wheel recorder, are all shown in our new catalogues, which will be sent to all.
The Waterbury Watch Co. waterbury, conn.

 the thater GASOLINE ENGINE
 is used for almost every
purpose power is applied unequaled.
Full particulars by addressin CHARTER GAS ENGINE CO.
x 148, Sterling,

$1 *$	
	\star ¢ , never forget the information derived from answering
*	
others, can best be answered	
Small Inonthly $\begin{aligned} & \text { already possess } \\ & \text { limited net number of ciubs are no now being forme }\end{aligned}$	
	ing for it in small monthly payments. A frist payment of $\$ 5$ will bring y
* The 150 questions are div	
*	
\pm	
${ }_{4}{ }^{\text {. }}$ y	
* see how instructive and usetul they are, or for	
	THE CENTURY CO. (Dept. Fo.), New York.

100,000 Miles of

 Practical TestingNot a single 1897 Columbia bicycle was offered for sale until practical road tests
were made with 30 of the new models. were made with 30 of the new models.
Each was ridden from 1500 to 10,000 Each was ridden from 1500 to 10,000
miles, 100 miles a day, mind you-ove miles, 100 miles a day, mind you-ove
the roughest roads in Connecticut. No the roughest roads in Connecticu. No
a single break in any part of the thirty a single break in any part of the thir
1897 construction thoroughly proves

At $\frac{1}{4}$ Price $==2=5$

FIRE PROOF-Proof against sparks, cinders, burning brands, etc. STRONG-A heavy canvas foundation.
LIGHT-Weighs but 85 lbs , per 100 sq. ft. when laid complete
FLEXIBLE-Contains no coal tar, and retains indefinitely its leather-like pliability
EASIL and toughess
EASILY APPLIED.
-Requires no kettl laid by any intelligent workman.
H. W. JOHNS illed descriptive lists and samples free by mailiork
$\underset{\text { hicago }}{\text { H. W. JOHNS }} \underset{\text { philadelphia }}{\text { MFG }}$
"Riverside" and "Royal" watch movements, made by the American Waltham Watch Company, can be bought of all retail jewelers, in cases of any price desired and in various sizes for both ladies and gentlemen.
Imperial ball bearing axle
 adong shy in use.
Indorser by the leading
carrian Red carriage builders.
One horse can do the work of two friction 75
per per nie Write wor our Hhich we send frestrated Catatogue and Testimo
Bearing Axle Dent., $184-190$ Lake Str. manmer

True Bearings

Perfect bearings are of vital Importance in your bicycle. and and remain true. A new and
simple principle. Dust proof,

Twe
 $* * *$
Built to
Sit on,
not to
Stradale
$*$

 saddo for air rid ers. Write for catalogue and de convinced
If your dealer cannot supply you, write the Wheeler Saddie Co., 191 Larned St. (E), Detroit, Mich.
"It = Cells a Fboute Cools"

 may be reauired. Mailed free to
anyone mentioning this paper and
sending us 3 cents. Discount sheet
隹 orwarded with every copy of the MONTGOMERY \&CO FINE TOOLS, 05 Fulton Street, New York City. THE BICYCLE: ITS INFLUENCE IN

 Bristol's Patent Steel Belt Lacing.

 The Bristol Co Waterbory Conn,
PRINTING INKS

