

SECTIONAL VIEW SHOWING THE STAGE AND THE TWO AUDITORIUMS.

A THEATER IN NEW YORK CITY WITH TWO AUDITORIUMS.-[See page 55.]

Srientifir sumrican.

ESTABLISHED 1845.
munn \& Co., - - - Editors and Proprietors.
Uublished weekly at
No. 36I BROADWAY, - - NEW YORK.
TERMS FOR THE SCIENTIFIC

NEW YORK, SATURDAY, JANUARY $23,1897$.

TABLE OF CONTENTS OF
Scientific American Supplement No. 109e.
For the Week Ending January 23, 1897.
 \qquad 17599

ANTARCTIC EXPLORATION.

There is good reason to believe that the exploration of the Southern Polar regions will in the future be entered upon with something of the zeal which has marked the persistent quest of the North Pole. Unless the present plans miscarry, it is likely that three well found expeditions will shape their course this year for the unknown land and sea that lie within the line of the Antarctic Circle. Of these, one will start from the Old and two from the New World, and all three from the Northern Hemisphere.
Belgium will dispatch an expedition from Antwerp another is projected in New York by Dr. Frederick N. Cook, of Brooklyn, an Arctic explorer of considerable experience; and the third will probably make ready in Philadelphia, under the auspices of the American Society of Naturalists. All of these are being organized strictly in the interests of geography and general sci ence; and it is safe to say that before many summers and winters have passed the spell of mystery which now broods over the vast regions that are shut in be hind the majestic wall of the "Antarctic Barrier" will be broken.
How comes it that through all the long centuries of Arctic exploration, with its lavish expenditure of life and treasure, men have been content to let the secret of the Southern Polar regions lie so long undisturbed? Perhaps the broadest explanation is to be found in the fact that the activity and intelligence of the world, its wealth and resources, and indeed the bulk of its population, have always been found in the Northern Hemisphere, and interest has naturally centered in the Pole which was nearest and most readily accessible The particular causes in the earlier explorations were to be found in the effort to discover a northwest passage from the Atlantic to the Pacific, and in later times in a certain spirit of emulation and romance which has led successive Polar explorers to select that field which was already rendered famous by the successes and failures of their predecessors.
But whatever may be the explanation, the fact re mains that while we probably know, either by observa tion or well founded inference, the main facts regard ing the North Polar regions, those to the south are rela tively as much "terra incognita" as they were a cen tury ago ; for whether the interminable wall of tower ing ice-cliffs hides a sea or a continent remains to be proved, and is one of the most interesting problem which the projected expeditions will endeavor to solve Our present knowledge of Antarctica is extremel limited, and the sum of it is soon told. What we do know seems to indicate that the South Polar region consist either of a vast ice-covered continent or of a col capped with ice. From the earliest records of discovery down to the accounts given by Borchgrevink of the late voyage of the Antarctic, navigators have reported the existence either of high land or lofty walls of ice A glance at any map of Antarctica will show where thi continent of land or ice or both has been touched and named by various voyagers. The line which indicates their actual exploration of the coast line is so fragment ary as to give as much reason to believe that these re gions are filled with scattered islands as that they con tain an unbroken continent
Victoria Land, with which are associated the names of Ross, Wilkes and D'Urville, is the most extensive tract. It lies between 110° and 170° east longitude; and it was here that Captain Ross, the most distinguished and successful of all Antarctic explorers, made the longes continuous exploration of the coast or ice line that ha ever been attempted. He found it to present a perpen dicular wall of ice, two hundred feet high, through which at times the land promontories protruded, and he kep in touch with it for four hundred and fifty miles with out noticing a break. The same expedition in 1842 penetrated to the most southerly point ever reached by man, latitude $78^{\circ} 11^{\prime}$ south, where they found themselves among icebergs of colossal size. If we follow along the Antarctic circle, the next stretch of supposed continent is found between 45° and 65° east longitude and is known as Kemp Land and Enderby Land. Fol lowing the circle to 50° west longitude, it intersect Graham Land, which lies between 50° and 60° wes longitude, or to the south of Cape Horn and the Falk land Islands.
Compared with the North Polar regions, those at the South Pole present a much smaller proportion of land to water. The Arctic circle, 8,640 miles long, passes ove less than 900 miles of water; whereas present indica tions show that on the Antarctic circle, the propor tions of sea to land are about as five to one.
Beyond the facts which we have broadly stated above, practically nothing is known of the vast Antare tic tract. As one contemplates its unknown solitudes hundred questions arise in the mind. Is it inhabited, and by what manner of people? of what nature are its flora and fauna, what wonders or wealth of minera ogy can it disclose, and what is the geography of its interior? To all of which there is no answer, nor eve
"hope that minerals of economic value may be found in these regions." He also observed certain remarkable scars upon many of the seals in these waters, which he thinks might indicate the existence of an enemy ar swering to the white polar bear of the north.
Capt. Ross discovered lofty volcanic mountains beween latitude 76° and 77° south, though Borchgrevink states that the land in the neighborhood of Cape Adare showed freedom from volcanic action. Observations show the temperature to be uniformly higher than at the opposite pole, and the ice formation is less broken and more massive. Add to these facts the records of soundings taken by various navigators, and we have substantially the sum of our knowledge o Antarctica, a knowledge which is so limited as to ren der this pre-eminently the "unknown land" among the unexplored regions of the earth.

Leaky Camera--To Test and Remedy.

Every now and again we meet with some one who is quite nonplussed in trying to account for streaks and fog marks "which only occur now and then." The plates and chemicals are often blamed, but frequently it is the camera which is at fault. Some tiny hole or chink lets in light. Sometimes the evil effect is only appreciable when direct sunlight happens to fall in a certain direction. To test for light leakage, cap the lens, remove ground glass, cover the head with focus ing cloth, and turn the camera about in every conceivable direction in strong sunlight. Try the bellows when full out, half out, and so on, and when the rising front is in various positions. Look out for light finding its way in the diaphragm slot or between the front and lens flanges, or through the screw holes of the rising front. Make a second similar investigation, but rising front. Make a second similar investigation, but
this time remove the lens and look through the lens this time remove the lens and look through the lens
hole. Insert a dark slide in its proper place and draw the shutter. You will very probably find that a slight glimmer does find its way along the edge nearest to the draw slide, and this will fully account for the foggy streak along various negatives.
The remedy depends upon the place where the light leaks into the camera. If in the bellows, a tiny patch of black court plaster (inside and out) will probably meet the case, or a bit of black kid glove and a touch o liquid glue. If in the woodwork, a bit of black sealing wax may answer. If between the lens flange and camera front, try plugging with stiff yellow soap, or putty may do. If the diaphragm slot of the lens is a fault, a broad rubber band or one made of black elastic or velvet ribbon will meet that case. If light gets in between the camera back and dark slide, this should be trapped by gluing (not on the top of, but in place of the old) a new piece of soft close pile velvet ribbon. Liquid glue, diluted with vinegar, is a convenient adhesive. Have a care that this is confined to the back of the velvet, otherwise its use is obviously destroyed -The Amateur Photographer.

The St. Lonis Breake Her Own and the

It is gratifying to learn that the American line steam ship St. Louis on her arrival at Southampton on he ast trip completed the fastest trip to the eastward eve nade by the ships of this line. The east ward record is held by the Fuerst Bismarck, which at the present writing is in trouble on the other side, being fast aground near her home port. The latter ship has crossed in six days, ten hours and fifty-five minutes, which is one hou and twenty-five minutes faster than the recent trip of the St. Louis, which was made in six days, twelve hours and tiwenty minutes
When it is remembered that this was done in the un settled winter weather, it is an excellent performance and gives reason to hope that before the year is out both the eastward and westward records will be held by the American line. The westward record for this route was captured last summer by the St. Paul, and now stands at six days and thirty-one minutes.

To Limit the Height of rall Buildings.

At the recent annual meeting of the Board of Trade and Transportation in New York, the report of the special committee on the subject of the limitation of the height of buildings recommended that a law be drafted and presented to the Legislature providing that, on the wide streets and avenues of this city, no building hereafter erected shall exceed 200 feet in height, and that no building used as a hotel or apartment house shall exceed 165 feet. These measurements shall be from the curb level to the highest point of the cornice or roof beams of a building. Justly propor ionate lesser heights should be provided for the erec tion of structures on the narrower streets and avenues of the city. This law should also provide that in every building erected to a height of 137 feet and over there shall be two separate stairways leading from the ground floor to the roof, one of which shall be remote from the elevator. It was further recommended that the law shall require that all buildings over 137 feet in height shall have a complete fire fighting plant, this obligation to apply to all such buildings that are already in existence. It was also recommended that the present building laws be revised.

The Davy-Faraday Research Laboratory.
In Albemarle Street, London, adjoining the imposing facade of the Royal Institution, is an old fashioned mansion, which was once the residence of Lord Cowley. Like most of these West End residences that antedate Nash and the age of stucco, its lofty rooms and handsome staircase recall the spacious hospitality of bygone days when Albemarle Street was very "West" indeed and fashionable society groped its way home by aid of the linkboy's fitful torch. But it will henceforth subserve the genial purposes of hospitality no more. Peering through the deep Queen Anne windows to-day, you will see without difficulty that in some way or other science has set her seal on it. The walls have lost their somber paneling and gleam with the cleanest of white tiles. You get a glimpse of long, severe teak tables, fitted up with curious metal taps, glass vessels with crooked necks, rows of Bunsen burners, and a miscellaneous population of professional looking stoppered bottles. No. 20 Albemarle Street, in fact, looks like a branch of the Royal Institution next door, only more so. The explanation is that what was Lord Cowley's town house is now an important national institution-the Davy-Faraday Research Laboratory, to wit-founded and endowed by that generous and enthusiastic man of science Dr. Ludwig Mond, F.R.S. It will be practically the first great public laboratory ever established in England purely for the purposes of chemical and physical research. Dr. Mond has lavished money on the alterations, fittings, apparatus and appliances required to convert this roomy old building pliances required to convert this roomy old building into a place where the patient and delicate work of
scientific exploration may be fitly carried on, and he scientific exploration may be fitly carried on, and he
has crowned all with a splendid endowment to meet its heavy working expenses. The Royal Institution next door is to act as a sort of godfather and guardian to the Davy-Faraday Laboratory, but otherwise it is to remain an entirely independent institution. The keynote of Dr. Mond's public spirited scheme for the advancement of science is simple. The laboratory, with its splendid equipment, is open as a free workshop to every man of science who wishes to enter the field of pure research and can show the trustees that he is the right man for the work.
Externally there are only trivial signs of the splendid accommodation that Dr. Mond has provided inside No. 20 Albemarle Street for the men of research. A London Daily Graphic representative who recently went over the laboratory found that the numerous spacious rooms extending from the basement to the fourth floor had all been admirably utilized. No fewer than sixteen separate laboratories for research work, each capable of accommodating one or more investi gators with their assistants, have been provided, besides
a large museum of apparatus and various rooms for a large museum of apparatus and various rooms for
special experiments. It is interesting to note how the special experiments. It is interesting to note how the
specialisms into which all scientific research tends to divide itself appear to have been provided for. On the ground floor, for instance, is a fine room specially fitted for the delicate work of organic chemistry-that progressive branch which has given us the myriad useful products of coal tar and has the loftiest aims, fittings and apparatus the experience which Dr. Mond has borrowed from the great German laboratories.
has the rear of this is an equally fine room At the rear of this is an equally fine room for
"inorganic" research, and between the two a balance "inorganic" research, and between the two a balance the chemists are weighed down to the tiniest fraction of a grain. Solidly bedded on masses of stone projecting from the walls, nothing short of an earth wave would give them a tremor. When you are weighing to the 5,000 th part of a grain, you require precautions of this sort.

On this same ground floor is a useful little ironclad den. This is the explosion room, and the post of observation is at a small hole in the iron door. Down in the basement are rooms for thermo and pyro-chemistry. The latter means research with the ain-conquering electric furnace. Great batteries of electrical accumulators are to be found here, and deep down below the level of Albemarle Street we find Lord Cowley's wine cave converted to the nobler uses of a "constant temperature" vault. A beautiful room is the museum of apparatus on the second floor, where everything will awe and bewilder the layman. For here are will awe and bewilder the layman. For here are
stored all the fearful and wonderful tools with which stored all the fearful and wonderful tools with which
the researchers will work. It is a blaze of glass and the researchers will work. It is a blaze of glass and
brass. By the time the visitor has got up to the third floor he gets bewildered with the apparently endless succession of handsome workrooms, ail splendidly fitted with teak operating tables, glazed fume chambers, slate reagent racks, gas furnaces, blowpipe stands, stoneware sinks, and what not. On the fourth floor it is still the same. varied by a dark room for electric discharge observations, and another absomes in
black for photographic work. Even the roof comes black for photographic work. Even the roof comes in
the eternal red gas and blue water pipes which craw the eternal red gas and blue water pipes which crawl
about everywhere are found writhing up here. In a about everywhere are found writhing up here. In a
word, this is a place where the chemist can be happy It is kept at the even standard chemical temperature (62 deg. Fahrenheit) throughout by steam radiators, and there is a lift reaching every floor. Dr. Alexander

Scott will be the superintendent of the laboratory, and Lord Rayleigh and Prof. Dewar its directors.
The laboratory was opened by the Prince of Wales on Tuesday, December 22, 1896. Dr. Mond made an appropriate speech in which he gave an idea of the motives which prompted him to make the munificen gift which cost him some $\$ 500,000$. He then gave a his tory of the enterprise from the time when he first brought it to the attention of the scientific world. He
said that he "named it the Davy-Faraday Research Laid that he "named it the Davy-Faraday Research of science who carried out their world famed and epoch making researches almost on that spot, and whose example he hoped would stimulate and inspire every one who came under that roof. . . . As soon as his royal highness had declared the building open, persons of either sex or any nationality would be welcome within its walls, if they could satisfy the laboratory committee that they were fully qualified to undertake original research in pure and physical chemistry ; the preference would naturally be given to those who had ready published original work.'
The Prince of Wales, in reply, said : "Prof. Mond, it affords me much satisfaction to assist at the opening of the series of beautifully arranged and well equipped research laboratories which this country owes to your generosity, and I congratulate the members of the Royal Institution of Great Britain upon this most important at the command of the institution for the advancement of chemical and physical science. The Royal Institution has long enjoyed a world wide reputation, thanks to the marvelous work of the succession of illus trious men whose researches, carried on within these walls, have very largely contributed to secure and main tain for this country a foremost position as a source of great discoveries and important advances in science and its applications. The identification of the laboratories which you have founded with the names of two of the most eminent of former professors of the Royal Institu tion and of English men of science-Humphry Davy and Michael Faraday-is a graceful act on your part.
The fact that the present distinguished professors of physics and chemistry, Lord Rayleigh and Prof. Dewar have undertaken the important duties of directors of
the new research laboratories without any remuneration must afford most gratifying evidence to you of the great faith entertained by them in the benefit to the promotion of science which your wisely applied munifi cence is destined to realize." His royal highness then declared the laboratory open.

Favorable Condition of Export Trade.

An excess of exports of $\$ 102,882,264$ was the gratifying exhibit made by the records of the fiscal year 1895-96, says the New York Times. A recent tabulation for the calendar year, in part official and estimated for the months of November and December, made it plain that the excess of exports would be much greater for the fiscal year 1896-97, if the tendencies shown during the calendar year were not changed. The detailed report of exports and imports for the eleven months of 1896 will soon be published, and they will support the statements published recently in the same paper
The figures referred to indicated that the imports for the calendar year would be about $\$ 687,000,000$, whil the exports would be $\$ 907,000,000$. But the detailed statements for the eleven months since made up show
that the export trade ran above the average for the that the export trade ran above the average for the
preceding months, and that at the close of November the exports were $\$ 870,000,000$. During November the exports of domestic merchandise were $\$ 107,830,878$. Unless the exports dropped suddenly in December, and there is no indication in the advance figures of the Treasury that ${ }_{i}$ they did fall, it is evident that the tota exports for
$\$ 970,000,000$.

There may have been an increase beyond the aver age of previous months in the imports, but the figures hardly will go much beyond $\$ 700,000,000$, if, indeed they reach that total. So that the prospect is that it will appear that this country has exported, exclusive of gold and silver, $\$ 270,000,000$ more than it imported. If this ratio continues during the next six months, the result will be the largest balance of trade in the history of the country. According to the Treasury report, our argest balance was i

ports $\$ 264,661,666$.

 by Canadian and other British interests that they need not expect to receive any concession in the way of low tariffs, or much by way of reciprocity, from the Ways and Means Committee, it is interesting to note the im portance of the trade that is to be thus discouraged while the attractiveness of reciprocity is to be tried upon Central American and West Indian buyers, who have not yet developed wants as many or as imper tive as those of the people of the United Kingdom. Take agricultural implements, for instance. The United Kingdom, Germany, France, and all the rest of Europe took less of these things from this country in did in the corresponding months of 1895 . BritishNorth America, taking $\$ 296,159$ in eleven months of 1895, took $\$ 370,128$ in 1896 ; Cuba fell from $\$ 50,954$ to $\$ 1,306$; Argentina dropped about $\$ 240,000$; other South American countries took less than they did in $\$ 357,336$ in 1895 , bought $\$ 412,007$ in 1896 , an increase of $\$ 54,671$, or twice as much as the value of all the agri cultural implements sent to Brazil.
British North America was one of the few countries that took in 1896 more books, maps, engravings and other printed matter than it took in 1895. In the eleven months of 1895 there was sent to British North America $\$ 470,240$ of these goods; in the eleven months ending November, 1896, $\$ 545,035$, an increase of $\$ 74,798$, more than the total export of such goods to Colombia, or Mexico, or Brazil and Argentina combined, all of which countries took less than they did a year ago, while British Australasia added $\$ 18,959$ to her demand of the previous year.
A table will show at a glance the gains of the year in exports of carriages, freight and passenger cars :

The trade increase with Africa in carriages and cars was more than the net increase in that of manufac ured goods.
The cotton raisers and manufacturers will be inter ested to see who were our best customers for manufac tured cotton and for cotton cloths. The showing is as follows :

		ths ending mber.
		1896. $\$ 102,051,748$
United Kingdom..	\$80,942,499	\$102,051,748
Germany.	33,212,325	38,049,596
France.	17,027,138	19,089,884
Other Europe ..	23,106,988	28,386,284
British North America.	2,787,998	2,814,529
Mexico.	1,288,364	1,3'3,986
South America.	4,650	1,764
Asia and Oceanica.	771,327	1,380,677
Other countries.	823	61

There was a gain in exports of cotton cloths in the leven months, as compared with 1895 , of $\$ 5,764,971$, the gains being made almost everywhere except South America. The greatest gain was in China, which bought $\$ 5,534,482$ of cotton cloths, or $\$ 3,758,653$ more than in the like period last year. British North America exceeded its take of 1895 by $\$ 547,661$
The United Kingdom, British North America and British Australasia were the purchasers of a large part of the total export of $\$ 3,408,612$ of bicycles and parts of bicycles. They took more than two-thirds of the whole export. Of builders' hardware, the United Kingdom, Germany, France, Central America, Argentina an Brazil were improving customers, British North Ameri ca, British Australasia, and Mexico showing the most mproved demand
Almost every country with which this country trades took a great deal more of American machinery in the eleven months than they did in 1895-an increase of $\$ 7,302,970$. The United Kingdom took $\$ 2,000,000$ of this increase. All through the rest of the list the recurrence of the United Kingdom, British North America, and British Australasia as customers that persist in buying more of the United States is striking, particularly as the evidence is side by side with that showing that the countries with which the United States was at great trouble to make reciprocity arrangements appear to be falling away from this country.

Large Shipment of Mining Machinery.

We publish in another column an account of the vas increase in our export trade during the past year, and especially the increase in our exportation of manufac tured goods and machinery.
On the 6th inst., the two steamers Lady Furness and Kurdistan sailed from New York direct for South African ports-Cape Town, East London, Natal, tc. These steamers belong to the Union Clan, and American and African lines, both English companies, and the lines have been established with regular monthly and semi-monthly sailings for the past three years.
On the steamers above named the Gates Iron Works, of Chicago, shipped thirteen carloads of mining machinery consigned to Johannesburg. The total shipment weighed over half a million pounds.

The Academy of Natural Sciences, of Philadelphia, has decided to confer the Hayden Memorial Award for 1896 on Prof. Giovanni Capellini, of Bologna, the 1896 on
geologist.

A NEW ELECTRIC CURRENT REGULATOR
To regulate the intensity of an electric current, more particularly as used with incandescent electric lamps, he improvement represented in the accompanying illustration has been patented by William Hawker, of Wind sor Mills, Quebec, Canada. The regulator is designed to be of especial value in a sick room or hospital, or in other places where it is desired to turn down the light as may be done with a gas jet, without entirely ex

HAWKER'S ELECTRIC CURRENT REGULATOR.

inguishing it, and it may also be used with many devices, the principle being designed by the inventor for application with either alternating or direct currents. On a suitable base plate is a pair of resistance coils and four pairs of contact plates, as shown in Fig. 1, and shunts extend from the first pair of contact plates to connections with the lower ends of the coils. From onnectiond wir for into the coils at a point perhaps a quarter or a third of the distance up, and from the third pair of contact plates the shunts are connected with the coils at a still higher point, while the last pair are connected with the lead wires, from one of which a shunt leads into the upper end of one resistance coil and from the other a shunt leads to the upper end of the other coil. On the base are two main contact plates with which the lamp wires are connected; and to close the circuit between them and the plates connecting with the resistance coils, a block of in sulating material is employed as shown in Fig. 2, the block being moved by a screw shaft having at its outer end a crank handle, and the block having at its ends metal plate electrically connected by a strip of metal. As will be readily understood, a varying resistance, increasing or diminishing the intensity of the light, is obtained by connecting the several plates to the resistance coils at different points. The improvement is here shown adapted for use in connection with one incan descent lamp, but the regu lator may be made of any suitable size for use in connection with a series of lamps or other devices, although the inventor has patented another form of regulator designed to use with a number of lights.

Celebration of Niagara, Electric Power.

The successful transmission of electric power from Niagara Falls to Buff alo was celebrated January 12 by a banquet at the Ellicott Club, of Buffalo, which was attended by about 400 invited guests. The menu cards were elaborately gotten up, the covers being made of aluminum manufactured at Niagara Falls with the electricity developed there, and with the name of each guest engraved thereon. Among those present were Nikola Tesla of New ent were Nim Tha, of New York; , of Lynn, Mass.; E. J. Houston, of Philadelphia; Charles F. Brush, of Cleveland; Elisha Gray, of Chicago; Charles A.

IRRIGATION WORK, NAVAHO RESERVATION.

A CONVENIENT HOUSEHOLD REFRIGERATOR.

The illustration represents a refrigerator arranged to turn on a track, in order to afford ready access to its interior, for which purpose it is provided with three doors, on alternate sections of its hexagonal sides. The improvement has been patented by Joseph Bell, of No. 2087 Washington Avenue, New York City. In Fig. 1 the refrigerator is represented with one of its doors open, and a portion of the casing broken away to show

BELL'S HOUSEHOLD REFRIGERATOR.
the interior, Fig. 2 representing the ice box and Fig. 3 the drip pan, forming a support in which the ice box rests when in position in the refrigerator, the pipe in its bottom leading to the discharge faucet at one side The body of the refrigerator has an interior lining of metal, at a slight distance away from the inner face of the body, to form an air space. The ice box has slotted openings in its sides to facilitate the free circulation of air, and has handles by which it may be readily reair, and has handles by which it may be readily rethe top, and the drip pan, in which the ice box is held being supported by brackets. Adjacent to the closed sides of the refrigerator body are vertical supporting rods, on which are fitted to slide the projecting arms of shelves, which are secured in place as desired by mean of thumbscrews. As will be seen, the interior of the body is readily accessible through either of its doors, the shelves may be conveniently adjusted up and lown, and the various part are readily removable to fa ilitate the thorough cleaning of the interior.

RECENT IRRIGATION WORK ON THE NAVAHO RESER VATION.

by cosmos mindeleff.
In its efforts to better the condition of our Indian tribes, the Indian Office has been de voting much attention to thei industrial development, and the effects of this policy are already marked and in the highest degree satisfactory It is now apparent that many of the tribes need only prope instruction and encourage ment to develop into prosper ous farming communities The irrigation works and Nitches on the Navaho Rese itch on the vation aff of what can be done. In March, 1893, Congress mad an appropriation for irriga tion ditches and artesian well and for the increase and pre servation of the water supply on that reservation. A sup erintendent of irrigation and engineer in charge was appointed about a year laterMr. E. C. Vincent-and activ work commenced in July 1894. At that time there wa an available balance of a littl more than $\$ 50,000$.
The Navahos have alway been classed as a " wild tribe, and, while they have given us comparatively little trouble since we acquired their coun try through its conquest from Mexico, in 1846, by Gen. Kear ney and the "Army of the West," they are wild by na ture. In fact, they have al
ways been thieves and robbers, and preyed upon their weaker neighbors. Their wealth, for they are a very wealthy tribe, consists of countless thousands of sheep and goats and innumerable horses ; all descended from flocks and herds originally stolen from the Mexican settlements and the Pueblo villages along what is now the eastern border of the reservation and in the valley of the Rio Grande in New Mexico. When the Atlan tic and Pacific Railroad was built, some fifteen years ago, many new trad ing posts were established in and on the borders of the reservation, but the in dustrial condition of the Navahos was very little changed, except that an outside market was created for their wool and pelt and the pastoral form of l:fe became more fixed Gradually, however, the white man's luxuries-su gar, coffee, flour, and cali co-became more and mor necessities.
The men looked after their herds of horses and took very good care of the few cattle which strayed into the reservation or were picked up about its borders; the women at tended to their domestic duties, wove blankets for sale to the traders, and raised families of children by whose aid they cared for their great flocks of sheep, for by long estabsheep, for by long estabbelong exclusively to the women, and are their especial care. Under such so cial conditions large com
munities were impossible
Each man built his little hut within some certain sec tion, which had belonged from time immemorial to his family or clan, and he located it where the pasture wa good. But he always had at least two such huts, and moved his family and flocks from one to the other, as the season or special circumstances dictated. Under such conditions agriculture could not thrive, and, in fact, it was practically unknown. A few patches of corn here and there in the sandy beds of intermittent streams and a few melon vines in favorable places measured its extent, while the methods pursued were crude in the extreme.
With the removal of the duty on wool by Congress, a new era opened for the Navahos, and at first much hardship resulted. The wool furnished by their sheep is about the lowest grade which comes to market, and can be used only in carpets and such manufactures, but it meets competitors in the low grade Australian and Russian wools and recently in those from the Argentine Republic. When the duty was removed the value of the wool in the traders' stores fell at once to about one. half the former figure, and a flock of sheep no longer furnished the means of obtaining the articles which had grown to be necessities. As a result the whole tribe, numberin tribe, numbering souls, are changing from a tribe of robbers, preying upon their neighbors and afterward subsisting on their spoils, into peaceable farmers living by their own labor

The Navaho Re servation is practi cally waste land, and, except in a few places, principally along the northern border, there will
small ditches have been put in by the Indian Office with a part of the appropriation and the work is stil in progress on a small scale. The work already done has been a potent factor in the industrial revolution alluded to, and as time progresses its influence will be more and more widespread ; for although the Navaho have never done work of any kind, except such as incidental to war and for ays, they are anxions to learn and now need only a little fostering and encouragement.
The northernmost of the ditches is in the Car riso Mountains, as the northern end of the range is called, near the locality of the recent excitement over gold diggings which did not materialize. A number of Indians are now cultivating small patches of land here. The Tse-a lee ditch, in a beautifu valley of that name on the western slope of the moun tains, is about two and half miles long. The water is taken out of a little stream by the aid of a crib dam about 100 fee long, and practically the whole stream is diverted into the ditch. The cos of the work was about $\$ 2,000$, and there are 1,000 acres under the ditch; bu the supply of water is no sufficient to cover all o this land, although with rigid economy of water which characterizes the Indian, either for persona use or for irrigation, it will go far toward it. Thi ditch was one of the firs built, and when the Indian
cally without water during most of the year. They Office failed to clean it out in the spring of 1896 th
are characterized by an almost entire absence of trees wich are replaced by an abundance of sage brush and greasewood. On the higher mesas and on the foothill there is a. prowth of scrub cedar and juniper still higher these give way to dwarf pinyons, and then to giant pines, which are found up to the very summits. In the region of the giant pines there is excellent pas urage and a perennial, although scanty, supply of water, and to these regions the flocks are driven in the summer. Here also there are many little valleys with wonderfully rich soil, and the season is long enough although the elevation is over 8,000 feet above the sea o mature a crop of corn.
On the western slope of the Tunicha Mountains

IRRIGATION NAVAHO RESERVATION -THE AQUEDUCT, WHEATFIELD DITCH.

Navahos took the matter into their own hands, and not only did this work, but also repaired a break about 200 feet long, caused by the spring floods. Such action indicates a pronounced and permanent interest in work.
About six miles south of the last mentioned place there is another valley, known as the Wheatfields, because of a tradition that, long ago, wild wheat grew ther in great abundance. It is a beautiful valley, sheltered by the forests of giant pines which border it, and with a rich black soil, needing only irrigation to be wonder fully productive. In this valley the most important ditch of the group is located; it is three and a hal miles long and cost $\$ 3,500$. Here also the whole stream is diverted by the aid of a dam which delivers it upon one side of the valley. About a mil below the dam ther is a peculiar aque duct by which the ditch is carried ove an arroya or little gulch. At the time the ditch was built it was impossible to procure lumber for the making of a flume, and as a heavy additional expens would be incurred by carrying the ditc around the gulch on grade, the difficulty was met and over come by the build ing of a bridge or causeway of heavy pine logs, 100 feet long and 26 feet wid The water runs in an earth bed on top of hisstructure; in other words, the ditch construction was carried right over the log bridge. Although this ap peared to be a clum sy, and was regard ed as a temporary expedient, two sea sons have passed sons have passed
since the structure was built, and dur-
ing both the ditch ran full of water without developing a leak.
About twenty miles south of the Wheatfields a wagon road comes up from the south and crosses the mountain through the only practicable pass in the range. This is known as Cottonwood Pass, and near it, occupying a small valley, there is another ditch. This is one and a quarter miles long and its total cost was about $\$ 650$. It is noteworthy that since the ditch was built every foot of land under it on thatside of the valley has been fenced in by the Indians and nearly all of it is now under cultivation ; whereas, before its construction, none of the land was used. There are also several other small ditches and a large storage reservoir, the work on which is not yet completed.
The ditches are simple earth structures of from four to eight feet bottom width, with an average earth cut of two feet, and capable of carrying if necessary a stream of water nearly four feet deep. But they usually carry from one foot to eighteen inches only, and not all of this water is utilized at present. The average cost of putting water on land throughout the arid region has been about $\$ 8$ per acre, and of works in the vicinity of the reservation about $\$ 12$ per acre. Here it has been less than $\$ 5$ per acre. The reason of this is that the work was done in the most favorable localities that could be found and almost entirely by Indian labor, at $\$ 1$ per day, without board. The problem of a market for products, which enters so largely into irrigation schemes, ducts, which enters so largely in
was not considered in this work was not considered in this work.
At the time the work com-
At the time the work com menced few of the Navahos knew anything about manua labor. The commonly accepted idea of the Indian as essentially a loafer depending on the work of his women and considering al labor beneath his dignity, does not apply to these Indians. They had never done any work, merely because there was no work to do. There was always great rivalry among them to secure places on the work, and nine-tenths of the adult males in the tribe could have been put to work had it been practicable As it was, as many as 300 were employed at one time

They seemed to want the work because they liked it, and no because they needed it. To them it was a huge picnic. Th old idea has come down to u from the far distant past that work is more or less of a hard ship, but these people seemed to have some different point of view from ours and regarded it as a pleasure. If this menta attitude could be acquired in some school, such school would be a valuable adjunct to mod ern civilization. Out on the line where there were from 60 to 200 Indians at work under white and Indian foremen, the great est good humor always pre vailed. Pithy, sententious state ments and epigrammatic phrase were the order of the day, and everyone took 'part in a strean of chaff and badinage which flowed without intermission during the eight hours which constituted the working day
With it all the amount of work accomplished in a day was wonderful. It was not unusual to measure off sections of the work and race through them for the mere fun of the thing, and the amount of earth moved in a day under such circumstances was a revelation. At times dirt was taken out and spread on the banks for five cents a cubic yard; to move the dirt with horses and scrapers would have cost in this locality from twenty-five to thirty cents a cubic yard. This comparative low cost of hand work could be attained only under conditions exceptionally favorable to that form of labor. On a larger ditch the advantage would have been with the horse scrapers.

The native interest in the work is very great and ap plications to the engineer in charge for the building of small ditches here and there throughout the reserva tion were made almost weekly. Many little ditches have been built by the Indians themselves since this work was commenced, necessarily without instruments, and with crude implements; and it seems probable that the effect of this work will be to change a bloodthirsty, warlike people into a peaceable farming population, living by their own labor and not on that of their neighbors.

Torio has adopted the arch system for the two miles of elevated railroad which it has been decided to build there at a cost of $\$ 2,000,000$.

a heavy cut on the tri-a-hi ditch.
that early spring should find the party and the bulk of its supplies located at the northern terminus of the North Greenland Archipelago, probably not far from the eighty-fifth parallel, with caches behind it at each rominent headland.
"From this point, when the proper time came, with picked dogs, the lightest possible equipment and tw of the best of the Eskimos, the dash for the pole would be attempted, with strong probabilities of a successfu termination.
"Should the first season be unfavorable as regards ce conditions, it could be devoted to a detailed survey of the archipelago itself and a reconnaissance of the east coast as far south as possible, and the northern journey reserved for the following season or the next

Each succeeding summer the ship would attemp to establish communication with the party's base, suc ceeding probably every other year at first, then with increasing experience every year, and keep up its sup ply of food, dogs and Eskimos until the objects of the expedition were accomplished.
"Should the ship be unsuccessful in the passage of Robeson Channel the first year, the party should land at Hayes's Sound and devote the first year to explora tions of that unknown region. Retreat from th colony at Sherard Osborne Fjord would always b practicable across the inland ice to Whale Sound.
"Here let me call your attention to a few points on which you must accept my dictum, as I have no tim to enlarge. Arctic exploration may be regarded as safe. Thi is shown by the experience of the last ten years. Nothing is to be gained by numbers; in fact numbers are a distinct danger and the frightful catastrophes of previous work are, in my opinion, directly traceable to that cause. The entire aninius of the Arctic regions is against large parties. Where three men wil get along in safety and comfort six would merely exist on half rations and twelve die of starva tion. The two-men party is the ideal one. Both Nansen and myself have proved this.
'The leader of the expedition must be at the head of the advance party; no successful Arc tic party can be led from the rear
"The latitude of Lockwood and Brainard's furthest north is $83^{\circ} 24^{\prime}$. The distance from thi point, up to which we know there is land, to the pole and return is less than the distanc from Whale Sound to Independ ence Bay and return, which I have twice covered, once with a single companion and again under the heaviest handicap.
"Quite likely the questio comes up, 'If this method is so practicable, why has not the es tablishment of a base in this lo cality been attempted before and why have I not attempted it myself ?' It has been attempted before, but there being no means for a continued effort, failure in the first attempt has resulted in its abandonment. As for myself
circumpolar island groups, and the elimination from our maps of the unknown area between the eighty fourth parallel and the pole, are important geographica desiderata. This work can be accomplished without isk of life or health. It,can be done at comparatively small cost.
"My plan is to raise a fund sufficient to insure the continuation of the work of exploration for ten years, if necessary, say $\$ 150,000$, and deposit it in a trust com pany, purchase a ship, give her a minimum crew, load with concentrated provisions, proceed to Whale Sound take on board several picked families of my faithfu Eskimos, with their tents, canoes, dogs, etc., force a way through Robeson Channel to Sherard Osborne Fjord or further, and land people and stores, then send the ship back.
As soon as the freezing of the ice in the great fjord of the northwest coast would permit sledge travel, the work of advancing supplies northeastward along the coast would be commenced, taking comparatively short tages and light loads, so that the trips could be quickly made. As soon as the supplies had been advanced the first stage, the party itself would move forward, leaving a cache behind, and as they would be following Eskimo customs and living in snow houses, this could easily be done
"Then the second stage of advance would be taken up and the work carried on until the departure of the sun. Each of the brilliant winter moons of the polar night would afford opportunities for continuing it, so
it has been entirely a question of money. The fund at my disposal have not permitted the charter of a ship beyond Whale Sound.
"The points in favor of this project are.
" 1 . The utilization of the Eskimo, the people best fitted in the world for that particular kind of workmen who, under the leadership of one whom they know to be their friend and in whom they have the utmost confidence, would follow to the end, faithful and loyal as their own magnificent dogs.
" 2 . Land for a base. The party launched into the cy waste from the Northern Archipelago would have some definite, fixed point to which to return, rathe than a ship drifting with the drifting ice, to vanish lik a will o' the wisp, as did the Fram from Nansen. Then hould the party be swept westerly in its retreat, it would still strike land, and finding depots at each prominent headland, could easily reach headquarters.
"3. A practicable and already utilized route for a re treat independent of the ship or outside assistance.
"In a nutshell, my project means : First, the raising of a sum sufficient to insure persistent, continued effort so that if the attempt fails the first year it can be re peated the next, and the next and the next until it is done.
"Second, the establishment of a party of picked Es kimo families, a surgeon, and an experienced leader at the highest practicable point on the northwest coast of Greenland; with ample supplies, means of commun cation, which would enable the colony to sustain itself
until its work is accomplished, and with a practicable line of retreat entirely independent of the ship.
"This project, in more detail and accompanied by maps, will be placed before your council, in the belief that it will meet the approval and indorsement of the society. With that indorsement, I believe the time is opportune for raising the money for the work."

a theater with two additoriums.

The people of New York City have the reputation of being the most industrious theater-goers in all America; a statement which is verified by the ever-increasing number of large and well filled places of amusement. Of late years the growth of the popularity of the style of entertainments which are classed under the name of vaudeville hás called into existence a special type of theater, which, in addition to the regulation stage and auditorium, includes special halls of entertainment, with lounging rooms, cafes, etc., and, for use in the hot summer months, the inevitable roof garden. To judge from the nightly programme of a first class house of this type, the excellence of the performance is measured, after its quality, by its length and variety. The more rapidly the various artists can make "their exits and their entrances," the more concentrated amusement can be packed into any given hour of a "continuous performance."
It was with a view to enlarging the stage capacity that the proprietor of Proctor's Pleasure Palace, in New York City, resorted to the bold expedient which is shown in the accompanying illustration, from which it will be seen that a single stage is made to do duty for two
separate auditoriums. The way in which this was separate auditoriums. The way in which this was
accomplished will be seen by reference to the sectional diagram, which is taken longitudinally through the auditorium proper, the stage, and the new auditorium, which is known as the Palm Garden, being so named after the palms and tropical plants and vines with which it is decorated. That part of the diagram which includes the auditorium and the stage shows the construction of a typical theater of to-day-the roo
garden and the cafe in the basement being special features in a house of this kind that introduce no new structural features of much consequence beyond a strengthening of the roof supports. Stripped of its galleries and scenery, a theater consists of two fourwalled structures, the auditorium being about square in plan, and the stage floor about the same width as stage are carried considerably higher than the roof of the auditorium, in order to accommodate the "drop curtains," which are hung by ropes that pass ove pulleys attached to what is known as the "gridiron," a stout framework located near the roof of the "scene
loft." When the "drop curtains" are not in use they loft." When the "drop curtains" are not in use they
are raised clear of the "proscenium," as the opening from the stage to the audience is called, and hang in parallel rows as shown in the diagran. Below the stage floor are shown the "traps," which are used for the disappearance of Mephisto and people of similar subterranean proclivity. Here, in the older theaters, were frequently located the dressing rooms of the performers, though the more modern arrangement
to build them at the sides or to the rear of the stage.
In carrying out the idea of a double stage a hall wa In carrying out the idea of a double stage a hall was
built immediately behind the theater proper, and a proscenium arch was cut through the rear wall of the stage, the floor of which was carried out into the hall and provided with the regulation footlights. The new proscenium was provided with its own curtain, and all that was then necessary was to paint the backs of the
existing wings and drop curtains with scenery, and the doubling of the stage was complete.
The original intention was to have three or four performances of such a character that they would not interfere with each other going on upon the stage at the same time, and during the summer months this was frequently done. Ordinarily, however, the curtain opening to the palm garden is kept lowered, and it is raised only during the intermissions, or when special acrobatic, gymnastic or animal acts are in progress. A passageway leads from the auditorium to the palm all times.
This is the first time that such an experiment as this has been tried, and its results will be watched with considerable interest. The effect as one looks through the stage may be judged from the larger of our engravings.

Ov March 31, 1896, eighty-three men-of-war were building at English ship yards, having an aggregate tonnage of 312,375 tons. Sixty-four of these were for the British navy. Fifteen ships were under construction in the government yards, and at the private yards forty-nine vessels were building for the British navy, including thirty torpedo boat destroyers of a speed of 30 knots. The navy budget of the current year provides for the construction of sixty torpedo boat destroyers of a spend of from 30 to 33 knots , at a cost of
$\$ 300,000$ each. $\$ 300,000$ each. There are to be built besides four battleships, four first-class cruisers, six third-class cruisers,

Hecent Patent and Trademark Decisions. Plaiting Machine.-The Crosby \& Kellogg patent No. 37,033 , for a machine for crimping textile material has been held valid and construed.
Accounting for Profits in Infringement.-Where an infringer makes no addition to the patented machine, but merely uses mechanical equivalents which may produce better work than the corresponding devices or the proffts he has reaped, and they will be measured by the difference in the expense of doing the work by the device and by the method used prior to the patent But if an infringer takes the whole of the vital and ffective parts of an invention and superadds an im provement which contributes to the saving over the old methods, then the infringer is liable for the differ ence in expense of doing the work by the device and by the method used prior to the patent, after deducting the portion of the profits that accrued from the im provement added by the infringer; the amount of the profits accruing from the improvement must be established by the infringer. Where the infringer used the essential parts of the patented machine without which his infringing machine was worthless it is not necessary to demand an accounting of profit that the equivalents substituted by the infringer improved the work of the corresponding elements o the infringing machine.
Marking the Article " Patented."-Where the plead ings are silent on the question of whether the complainant marked its article as patented or notified de never actuall infringment and the questow the point cannot be raised upon appeal from the final de cree.
Ascertainment of Profits by the Court of Appeals. Where a suit for infringement had been pending for eighteen years and had been before three masters fo an accounting and finally resulted in a decree for nom-
inal damagesonly, the Court of Appeals, upon deciding inal damagesonly, the Court of Appeals, upon deciding
that the complainants were entitled to recover a subthat the complainants were entitled to recover a substantial sum, did not remand the case to the court below
for further proceedings, but did itself determine the proper amount and render a decree therefor.
Ex parte Fratsch (Comr.'s Dec.), 77 O. G., 1427.
Use of Copper Matte to Purify Oil.-The use of pulverized matte to remove the "skunk" from oils is a improvement upon the use of a mixture of pulverized copper oxide and pulverized iron oxide such as would not be expected from those versed in the art, and there ore amounted to invention.
Couch v. Finnigan (Comr.'s Dec.), 77 O. G., 1595
Acquiescence by Conduct.-In this case one of the parties, after learning of the other's patent, continued o make the patented article and did not object to the ther marking his article patented, and even did no clain the article as his own invention until after his employers became involved in trouble with the other parties. It was held that this conduct was not that o person who had actually made the invention.
Failure to Claim the Invention in a Prior Patent.Where a party obtained a patent which disclosed al the improvements embraced in an interference contest before ho filed his interference application, but his prior patent contained no claim for the matter in con est, this would indicate that he would not conside himself the inventor of such matter
Bryant v. Seymour (U. S. C. C. A., D. C.), 77 O. G.,
1599.

Delay in Appealing.-The rules of the Circuit Court of the District of Columbia provide that an appeal shall be taken within forty days of the Commissioner's decision and not afterward. In this case the appeal was taken nearly a year afterward, without any excuse or the delay being given. The court decided to adhere to the rules, and the efore dismissed the appeal
Hien v. Pungs (U. S. C. C. A., D. C.), 77 O. G., 1600.
Time for Appeal to the Court of Appeals of the District of Columbia.-There is no justification for the theory that a party has two years in which to take an appeal from the Commissioner of Patents to the Court of Appeals of the District of Columbia on the ground that the statute gives an applicant a possible two years within which to prosecute his application. The right of appeal is not a vested right that may be altered by statute or by rules of court. If there was no rule in force at the time the Commissioner's decision was made,
it applied to the case as soon as the rule was promulgated.
Pelton v. Evered (U. S. C. C. A., D. C.), 77 O. G., 1600. Failure to Print Record.-An appeal from the Comnissioner of Patents to the Court of Appeals of the District of Columbia will be dismissed, if the parties ailed to print the transcript of record as provided for by the rules of the court
Mackintosh Battery and Optical Company v. Bertman
(U. S. C. C. A.. 7 th Cir.). 76 Fed., 368.

Electrical Machines.-The Atkinson patents, No. 275,347 and No. 331,754, for improvements in machines vention.

Notes on Acetylene

The following notes on acetylene are extracted from cent technical journals
Mr. P. C. Frewin, F.C.S., U. S. A., says : "I filled an iron ball with acetylene to a pressure of five pounds to the square inch, and then subjected it to a series of blows from a large sledge hammer. Although the ball was bent all shapes, there was no explosion, neither has there ever been to my knowledge through this cause. Acetylene has a chemical action on pure copper, but none of a dangerous kind on brass. A series of experiments have been conducted by me before the
Chemical Society of New York, and they all go to Chemical Society of New York, and they al go to
prove this. Several insurance companies in England prove this. Several insurance companies in England
are at present willing to insure houses, etc., lighted by are at present willing to insure houses, etc., lighted by
acetylene, and, no doubt, in a short time, all will do so. I may add there were last year 730 people using acetylene as a general illuminant in New York, and that only three accidents occurred-two through escapes and one through a generator being charged with a candle close by-conditions under which coal gas would have acted just the same."
M. Brevans says that if ordinary acetylene from carbide be passed through a series of three washing flasks containing a solution of sulphate of copper, there is no effect perceptible within three hours; but after twelve hours the first flask contains a black-brown, brilliant precipitate, the quantity of which goes on increasing for as much as eight days, says the Gas World. This precipitate explodes on shock, friction, or heating, and it appears to be a mixture of phosphide and silicide of copper, of sulphate of cupro-acetyle, and a variable quantity of acetylide of copper. Its production appears to depend largely on the presence of ammonia in the crude acetylene gas; and it shows that the crude acetylene contains phosphureted hydrogen and siliciureted hydrogen. The second flask contains a precipitate which is similar in appearance, but less explosive; and the precipitate in the third flask is not explosive. The explosive precipitate in the first flask will explode even under water, as, for example, when we try to rub it off the glass with a glass rod. As to the explosibility of acetylene there are two opinions: one that there may be metallic acetylides formed, which act as detonators to the acetylene itself, so that acetylene cannot be used with reservoirs which are capable of being attacked by it ; the other that it can only be exploded when mixed with air, and that the influence of the outside explosions which can set it off cannot travel far through air. In any case, acetylene at a pressure not much exceeding that of the atmosphere is not explosive, though it is explosive at pressures above two atmospheres; so that there is no reason to fear an explosion through flame running back to a reservoir under a very small excess of pressure. Shock alone does not appear to cause explosion of the gas, only of the acetylides. The alleged poisonousness of acetylene-which has not, as yet, given rise to any accident-would appear to be due to the occasional oresence of cyanogen compounds, and is not a eature of pure acetylene. The presence of sulphureted hy-
drogen in acetylene seems to depend on that of sulphide of aluminum in the carbide of calcium; sulphide of calcium may exist in it without forming this impurity. The blocking of gas jets by acetylene flames seems to be due to the formation of phosphoric acid. If oxygen be not present, acetylene does not attack copper ; the oxide must be formed before the acetylide can be produced.
M. N. Grehant's experiments at the General Physiological Laboratory of the Paris Natural History Museum have shown that one volume of acetylene consumes during combustion two and a half volumes of
oxygen, and yields two volumes of carbonic acid, thus favoring the belief that the combustion of this gas is complete, no combustible mixture containing carbon being generated. In order, however, to ascertain whether the products of combustion contain a trace of combustible gas, he tested them in a continuous grisoumeter, with platinum spiral kept incandescent by galvanic accumulators, and only obtained, during two hours, from 79 cubic inches in a baryta tube, a ring, scarcely visible, of baryta carbonate, showing so slight a trace of carbonic acid that it could not be determined. In another experiment an India rubber bag filled with acetylene gas, subjected to a pressure of $11 / 2$ inches of water, supplied a Manchester burner placed underneath a metal cone, connected by a refrigerator with two metal valves, and a muzzled dog breathed the products of combustion for half an hour. In the grisoumeter, $21 / 2$ inches of normal arterial blood showed a reduction equal to 3.7 divisions, while the same quantity taken at the end of the experiment showed a reduction of 3.8 divisions. M. Grehant concludes that the products of combustion given off by acetylene, when a Manchester burner is used, are free from the slightest trace of combustible gas containing carbon.
The Duryea Motor Wagon Company, of Springfield, Mass., have received from the Motor Car Club, of London, a gold medal in recognition of their splendid performance in the London-Brighton run on November 14, 1896.

SOME PACIFIC CAVES

by c. \mathbf{F}. \mathbf{H}

The Pacific coast lacks the grandeur which the plu onic rocks of the New England shores give to the Atlantic, yet there are many picturesque sections where the waves have cut the rocks into strange and picturesque shapes. At Santa Monica there is a fine natural bridge, which, if better known, would attract wide attention. It is a lofty arch, forming part of an adjacent mountain, and at low tide can be entered. constituting the shore passage at this point of the coast.
The islands off the coast of Los Angeles and Santa Barbara Counties, Southern California, abound in some remarkable caves. An interesting one is situated on the island of Santa Catalina, which is a trip of about three hours and a half from Los Angeles. The cave lies on the eastern side near what is known as the isthmus, and from the sea presents the appearance of a large, shallow room, the entrance being, at low tide, thirty or forty feet in height. The writer's attention was attracted to it by the strange play of light on the front walls and roof, giving the impression that it was covered with the webs of spiders, moving in a tremulous manner. At the entrance the water is so deep that the largest ship could thrust the tip of her bowsprit into the cavern, and of a rich blue, elling of great depth This blue tint elling of gin dint directly the name Blue Carem has given the name Blue Cavern to the great opening in the rock
Pushing a boat in, one is surprised to find a small tunnel branching off to the right-the real cave. The writer entered this in a small boat one day when the tide and sea were low, and penetrated it without difficulty. The water was about six feet deep, over a perfectly level floor covered with pebbles and seaweeds, while here and there could be seen the sparkle of the pearl of the abalone. The sides were too narrow to use oars, and the wall so low that every wave that came rolling in through the tunnel lifted the boat unpleasantly near the roof, show ing that at very high tide, when the wind was fresh, the attempt to enter the Blue Cavern might be accom panied with some danger By stand ing up and pushing the boat by hand using using the sides and roof, the passage was easily made for about one hun dred and fifty feet, the boat suddenly coming out around a point some distance from the main entrance. For unknown centuries the waves have been working at this cave, gradually eating it out, with the result given. At night, when the waves roll in, the spectacle here is a grand one. The seas passing through the long tunnel burst into the larger cave, sweeping up against the sides and bathing them in a rich phosphorescent light that falls in gleaming rivulets down the black walls, producing a weird and spectral effect. Not far from here are several smaller caves below the water, which emit strange noises as the waves are forced in, while one sends out, apparently from the very rock itself, a mass of spray, appearing like a geyser.

The most imposing cave of all in this region is found upon the island of Santa Cruz, off Santa Barbara, about twenty-five miles from the shore. The entrance of the cave is about forty or fifty feet at an estimate, no measurement hav ing been made, and from it one can look directly into a series of chambers for an estimated depth of an eighth of a mile, nearly all of which can be traversed in a small boat.
The first chamber excites the wonder of the visitor as to how it could have been formed, the roof being far above the reach of waves, except in the fiercest storms. It has been suggested that originally the cave was at a lower level or partly submerged ; that it was worn away beneath the water, and that the island has since risen, thus elevating the roof high above the sea. Be this as it may, the vast cave stands one of the won ders of the Pacific coast. It is to be regretted that it is so isolated and beyond the reach of the traveling jublic, no regular passenger boat running to the island, as in the case of Santa Catalina.

In entering the great cave of Santa Cruz the splash of the oars reverberates from wall to wall, and one rea lizes what was meant by the line
Dark unfathomed caves."

The water is as clear as crystal and of a delicate green In the opinion of many, the effect of coloring is more beautiful than at Capri. One feels that he is entering
a vast temple dedicated, perhaps, to Neptune. The first hall or chamber rises at the entrance perhaps fifty feet, but as the boat passes slowly on, the second hall and coming wonder is seen to be of loftier dimensions, and carrying out the idea of some old cathedral.
Owing to the large entrance, and that the cave opens in a straight line for some distance through a series of arches, it is well lighted, which brings out one of the remarkable features of the rooms. They might have been ornamented by design, so beautiful is the coloring and soft blending of green, red, yellow and brown, all the rich possibilities which come with the presence in rock of sulphur and copper. The walls are strangely infolded, as though the cave had been an enormous low hole for a volcano. The splendors of this wal floor, which is covered with delicate seaweed that seems to flash with iridescent tints.
As the boat enters the third and fourth chambers the everberations increase, and the breaking of the waves on a little beach far in the interior is heard; then suddenly comes a terrific barking that, thrown back from wall to wall, has been sufficient in times gone by to

CAVE OFF SANTA BARBARA SANTA CRUZ ISLAND, CAL

appal the stranger. But the Californian recognizes in the rumble and roar the voice of the sea lion that ha pre-empted some of the rocks in the inner cave and resents the intrusion
The full length of this cave has never been reached and careful investigation would probably show that this remarkable cavern pierces the bluff of the island to a much greater depth than is generally supposed Twelve miles north of San Diego, at La Jolla, the coast is cut and worn into numerous caves, many of which are of remarkable size, ranging from fifty to two hundred feet in height, some being four hundred feet in width and extending from four to six hundred eet into the cliffs, which present a singularly pictur esque appearance. The stratification is plainly out ined, and at various points has been broken; in this way affording an opening wodge to the water, which has gradually worn the sandstone rock away
This is especially noticeable in the western cave bout whose entrance are strange, fantastic shapes of rock, worn by the sea. This cave is a miniature cathe dral dome, its walls ornamented in a marvelous man ner. The sea breaking into this vast chamber rever berates like the booming of cannon, and finally make way out through another passage
There are eight or ten large caves in the high cliff,
which can be entered, and scores of smaller ones which are being slowly enlarged by the sea.

Telegraphy without Wiren.

An invention which promises to be of the greatest practical value in the world of telegraphy has received its first public announcement at the hands of Mr. W. H. Preece, the telegraphic expert of the London post office. During the course of a lecture on "Telegraphy Without Wires," recently delivered in London, Mr. Preece introduced to the audience a young Italian, a Mr. Marconi, who, he said, had recently come to him with a system of telegraphy without wires " which depended, not on electro-magnetic, but on electro-static effects, that is to say, on electric waves of a much higher rate of vibration, not less than $250,000,000$ a second; that is, Hertzian waves." These vibrations were projected through space in straight lines and, like light, were capable of reflection and refraction, and, indeed, they exhibited all the phenomena which characterized light.

Telegraphing without wires was, of course, no new idea. Mr. Preece stated that in 1884 operators in the telephone exchange, London, were able from sounds heard to read messages that were in transit from London to Bradford by the telegraph wires. The post office wires were underground and the telephone wires above ground, and careful experiment showed that this fact accounted for the telegraphic messages to Bradford being read by the telephone company. In 1893 teiegrams were transmitted a distance of three miles across the Bristol Channel by induc tion, and during a break in the cable connecting the island of Mull with the mainland communication was established by means of parallel wires a follows: On the mainland an insulated wire was laid along the ground, earthed in a running stream at one end, the other end being in the sea. Skirting the coast of the island was an overhead wire suited to the purpose. In the course of four days one hundred and fifty-six messages were dispatched.
The invention of young Marcon solved the problem on entirely differ ent principles. The post office officials had used it successfully on the roof of the general post office, and then made a successful test on Salisbury Plain at a distance of three-quarters of a mile. The great difference between the Marconi and the inductive methods of wireless telegraphy was that the former did away entirely with the wires at each end. Vibrations were set up by one apparatus and received by the other.
The apparatus shown at the lecture consisted of two plain boxes which were placed at opposite ends of the hall. The current was set in motion in one box, and immediately a bell wa ung in the other. Mr. Preece said that the British post office authorities had decided to spare no expense in ex perimenting with the apparatus and one of the first trials would be from Penarth to an island in the English Channel.
If the experiments were successful, it would be of inestimable value to shipping, for it would provide anothe easy way of communicating with light ships and lighthouses. To take an instance : Since las year they had had a cable with the Fastnet Light (the first light seen by Atlantic voyagers), but in the early part of this year it broke down, and they had neve been able yet to land on the rock in order to repair it But there was a possibility beyond this of enablin ships as they came near dangerous rocks and shallow to receive an intimation of the fact by means of these electric waves. Neither day nor night made any differ ence, fog or rain or snow would not interfere with them, and if the invention was what he believed it to be our mariners would have been given a new sense and a new friend which would make navigation infinitely easier and safer than it now was.

The brigand Tiburzi's brain was given after his death to Professor Lombroso for examination. The professor is obliged to admit that it is perfectly normal, as are all the criminal's other organs, but he saves his theory by caliing him a criminaloid. By that he means a man whose natural qualities are not bad but who becomes an outlaw only technically. Under more favoring circumstances, he thinks, Tiburzi migh have become a leader of mercenaries like Sforza, or founder of a state. He dodges the point that the man was a murderer and a thief.

THE WALHALLA OF RATISBON

The ancient city of Ratisbon, the old capital of the misspent. The building proper is a pure Doric temple Upper Palatinate, is situated on the Danube, in the 246 feet long, 115 feet wide and 69 feet high. Th heart of Bavaria. It is a pleasant old town and in building rises from massive substructions which some many ways it is as interesting as the better known what dwarf the building itself. It is built of unpolished many ways it is as interesting as the better known what dwarf the builing itself. It is built of unpolished Nuremberg. Ratisbon belongs to an earlier period
than Nuremberg. Most of the streets are narrow and marble and is surrounded by fifty-two fluted col- $\begin{aligned} & \text { grays. The pediments, both in front and in the rear, } \\ & \text { umns }\end{aligned}$ than Nuremberg. Most of
many of the older houses have strong towers provided with loopholes which bring back to mind the days when civic broils were of frequent occurrence. The interesting "Street of the Ambassadors" contains the former dors contains the former resid to Die Ratissadors to the Diet. Ratisbon possesses a small but pure Gothic cathedral. The Rathhaus is a gloomy building; here the visitor is conducted to the sukterranean chambers and dungeons, and here is the rack in situ. The instruments of torture are vastly more forture are vastly more horrible when seen in these seen behind the plate glass of musem cases. Crossing the old stone bridge of the twelfth century, the small town or suburb of Stadt-am-Hof (which is really a suburb of Ratisbon) is reached. Here the train is taken for Donaustauf, is taken for Donaustauf,
where the famous Walwhere the famous Wal-
halla is located. The litthe nariow gage train runs for six miles through a beautiful country.
The Walhalla derives its name from the "Hall of the Chosen," the paradise of the ancient Germanic tribes It is a costly reproduction of the Parthenon at Athens. It is built on a densely wooded hill 323 feet in height From the village of Donaustauf the ascent is made by a carriage road or a foot path which ascends to the grand flight of 250 steps, by which the edifice is approached. This "German Temple of Fame" is an architectural folly begun by King Lewis, of Bavaria in 1830, after designs furnished by the architect Kleuze. It was finished in 1842, at a cost of about $\$ 6,000,000$. This temple is devoted entirely to the dispiay of the busts of distinguished Germans and has no utilitarian

THE WALHALLA AT RATISBON. liberty after the battle of Leipsic; " north, the "Hernannschlacht," or battle of Arminius. The roof is constructed of iron and is covered with copper. The interior is of the Ionic order, and consists of a superb hall 180 feet long; 50 feet broad and 56 feet high. The ceiling is richly gilded; it is deeply coffered and the rosettes are particularly rich. The lateral walls are divided into six sections by four projecting buttresses flanked by pilasters. As will be seen by the engraving, the walls are divided into two parts by a rich frieze by Wagner, representing, in eight séctions, the history and life of the German people down to the
time of the introduction of Christianity. The ceiling
contain groups in marble by Schwanthaler; the one immense felt slippers. The views of the dark slopes of toward the south represents "Germania regaining her the Bavarian forest and the Danube are very fine.

At Kelheim, 18 miles from Ratisbon, is another building erected by King Lewis, the so-called "Befreiungshalle." or Hall of Liberation. It is a classical edifice built by Gärtner and Kleuze. A rotunda, 191 feet in height, is borne by a substruction 23 feet high, reached by a flight of 84 steps. It abounds with fine sculpture and detail. The sanity of building constructions of this kind miles from though the building mania did not die out in Lewis' family with his death, it is satisfactory to note that, while money has been squandered as freely, its expenditure has at least resulted in the erection of habitable ture has at least resulted in
palaces and hunting lodges.

THE INTERIOR OF THE WALHALLA.

Recent Archmological News.

Chæroneia's famous lion is to be restored and set up on the battle field by the Archæological Society of Greece.
The monument to Donatello, the great Florentine culptor, was reeently unveiled in the Church of San Lorenzo in the presence of the royal family.
Mr. Flinders Petrie has been appointed executor in chief of the Egypt Exploration Fund, and the work will doubtless be prosecuted with vigor under his administration
In St. Sepulcher's Church, in London, there was recently found in an old chest the bell which, in Stuart times, used to be rung by the crier outside the cell of a condemned criminal on the night before his execution. The bell will be hung up in a conspicuous place in the church.
The French School of Athens has made a complete archæological survey of the ancient Byzantine city of Mistrà, on the slopes of Mount Taygetus, and has discovered many inscriptions and architectural remains, which will be exhibited at Sparta. The Greek department of public instruction has now ordered the restoration of some of the most important monuments of the place.
On St. Kilda's Island, which lies in the Atlantic, 82 miles west of the main island of the Hebrides, a house belonging to the stone age has been discovered, with a number of stone weapons, hammers and axes. There are only 71 inhabitants on the island, which is 4,000 acres in extent. The minister is at the same time the doctor and the school teacher. He sails to the mainland once a year to shop for the whole island.
Ulysses' isle of Cyclops, lying close to the Sicilian coast, near Acicasello, has been presented to the University of Catania by the Marchese Gravina, its owner. It is a basalt rock which rises 300 feet above the sea. It will now be used as a biological station, and the University of Catania will establish extensive laboratories on it.
Important restorations have been going on for more than a year at the Louvre, Paris. Alterations have been made in the old Salle des Etats, the object being to form a large gallery in which the numerous canvase of Rubens can be exhibited, and a series of fourteen
small rooms in which can be placed many of the cabinet pictures which are now entirely lost with the larger works. The cost will amount to some 450,000 francs.
Dr. Orsi has recently been carrying out some excava tions at Camarina and Noto Vecchio, the ancient Netuin, in eastern Sicily. They have resulted in the iiscovery of many necropolises, both Greek and Siculan, but for the most part plundered in ancient times. Fine and intact tombs of the third and second centuries B. C. have, however, come to light at Camarina, while at Netum, besides three prehistoric burial places, Dr Or:i has found one Jewish and several small Christian catacombs.
A number of drawings by the old masters belonging to the late Earl of Warwick were sold for $\$ 4,300$ in Lon don recently. A "Descent from the Cross," by Michae Angelo, in black chalk, brought $\$ 7,000$; a head by Leonardo da Vinci, in black and white chalk, $\$ 2,400$; a sheet of studies in sepia by Raphael, $\$ 1,775$; two portraits by Albrecht Dürer, $\$ 2,100$ each : a "Presentation of the Virgin," in red chalk, by Giovanni Bellini, $\$ 1,375$; a pen and ink sketch washed with bister, by Andrea Mantegna, $\$ 825$; and a pen and ink portrait o a man by Rembrandt, $\$ 750$.

Evidence of the existence of a shorthand system among the Romans is to be found in the writings of clas sical authors. It was taught in the schools, and the Em peror Titus himself is said to have been an expert in its use. Suetonius ascribes the first introduction of shorthand signs, or notæ, to Ennius, who, he says, invented as many as eleven hundred; but more gen
erally the credit of the invention has been given to Cicero's freedman, M. Tullius Tiro, whose name is commonly attached to them : Notæ Tironianæ. Seneca B. C. $61-$ A. D. 32 , is said to have collected the various signs or notæ known at his time to the number of five
thousand. The Tironian notes were not, however, a thousand. The Tironian notes were not, however, a
stenographic system in the modern sense. They were symbols of words formed on certain methods, and largely at first by manipulating the initial letter. They were used for the construction of a syllabic system about the seventh century. There appears to have been some connection between Greek and Latin short hand, certain signs being the same in both systems. It in interesting to find that the use of the Tironian note lasted into the middle ages. Under the Frankish em pire they were employed in signatures or subscriptions of charters; and they were also used by the revisers and annotators of the texts of manuscripts in the ninth and tenth centuries. Of this period also have survived volumes containing collections of the notes, indicating an impulse given to their employment: and there also exist copies of the Psalter written in these characters, as if for practice. However, they had practically gone out of use by the beginning of the eleventh century although a few of them still survived some centurie ater as symbols for certain common words.-Publi Opinion.

The Final Entombment of Pasteur

The remains of Pasteur, which for fifteen months have been lying in the cathedral in Notre Dame at Paris, were on Saturday, December 26, borne in solemn procession to their last resting place at the Pasteur Institute, where a magnificently decorated crypt had been prepared to receive them. There was a service in Notre Dame attended by the family, the staff of the Pasteur Institute and the deputations of foreign scientific men who came to Paris for the occasion. The casket was transported to the institute in a hearse and was then carried up the steps, through the grand vesti bule and down to the crypt, which was decorated with wreaths sent by English, Russian and French societies. Speeches were made by M. J. B. Pasteur, M. Bertrand, President of the Council, M. Rambaud, Minister of Education, M. Cornu, M. Bergeron, M. Perrot, M. Passy, M. Tissier, and M. Duclaux. The English speakers were Sir Joseph Lister, Sir Dyce Duckworth, and Sir W. Priestley. A feeling of restrained emotion prevailed during the ceremonies, at the conclusion of which the spectators passed respectfully before the tomb and greeted the widow and family of the illustrious investigator. The crypt is a magnificent affair somewhat suggestive of the crypt which contains the remains of Napoleon.

A NOVEL METHOD OF PROPELLING VESSELS.

According to the improvement represented in the accompanying illustration, lengthwise channels ar formed, by means of housings, at each side of the keel
of a vessel, and in each of these channels is located a of a vessel, and in each of these channels is located a
shaft carrying a number of screws, the shafts being geared with vertical shafts operated by one or more motors of any preferred description within the vessel. The improvement has been patented in the United

ODINET'S PLAN FOR PROPELLING VESSELS

States and several foreign countries by Conrad Odinet of No. 257 West 116th Street, New York City. It is designed that, with this construction, a materia increase of speed may be obtained without em ploying much more power than at present, and that the vessel will be able to turn as upon a pivot, the propellers acting substantially as a rudder. Th propellers, placed so low down, will be constantly in the water, and never liable to "race," while they will also thoroughly ballast the vessel and add stability to the hull, being themselves protected from shot or shell in case of hostile attack. Hinged to fold close to the keel, at the forward ends of the channels, are gates by which the channels may be closed, to check or stop the for ward movement of the vessel, the gates being moved by conveniently arranged levers within the vessel. In addition to the bottom propellers the ordinary stern propeller may be employed if desired. This improve ment is designed for use with but slight changes in the present method of hull construction, as may be neces sary in providing for the longitudinal housing on th bottom of the hull.

A UNIQUE cemetery is that in which Mr. Benjamin F. Poole, of Rockland, Mass., buries his horses and marks their graves with suitable monuments. The designs for these monuments Mr. Poole procured by submitting the matter to competition through a news paper advertisement. One design represents a hors in an attitude of slumber in his stall, carefully blank eted, while along one side of the blanket in letters of marble are the words "Requiescat in pace." One clever artist has piaced a giant horseshoe on a pedestal. Upon the pedestal's side he has drawn the cap of a jockey encircled by the variety of whip that all horsemen know so well. Another idea is an ordinary slab of marble on which is cut a horse collar, broken, with the name and age of the horse underneath.

Globus states that the waters of Lake Titicaca continue to subside with great rapidity. A large area of land has been exposed on the northern shore.
The report that Nobel, the inventor of dynamite, equeathed his enormous property for educational uses is contradicted by Nature, though, unfortunately, the authority is not given.

A herbarium of the Russian empire is to be published by the St. Petersburg Natural History Society. The flora of European Russia will appear first, then that of Asiatic Russia, and finally that of the Caucasus.
According to the Botanical Gazette, a notable cactus garden has been established at the University of Ari zona. It is the intention to bring together eventually all the Cactaceæ which are indigenous to the United States, and already more then one hundred species are represented.
A remarkable landslide occurred a short time ago about twenty miles to the east of Killarney. As a result of the almost incessant rains of the last few weeks, a large portion of bog land slipped from its position, and, taking a southerly direction, swept away everything in its course for a mile or two.
Dr. Andrée now proposes to repeat his attempt of last year to reach the pole by balloon. In place of Dr . Ekholm, Dr. Frankel will accompany him as meteorologist. It is said that two French aeronauts propose making a similar attempt in 1898, according to Science Their names are Godard and Surcouf.
While investigating the properties of ozone, M. Otto was led to the conclusion that the luminosity produced when ozone and water are in contact is due produced when ozone and water are in contact is due
to the presence in the water of organic matters of animal or vegetable origin. He is also of the opinion that most organic matters are capable of giving rise to the phenomena of phosphorescence, in the presence of ozone.-Comp. Rend.
Swallow wort, or the greater celandine (Chelidonium majus), which Dr. Denisenko asserts is a cure for cancer, has long been used by country people to remove warts. The doctor uses the juice of the plant diluted, both externally and internally, in external cases inject ing the fluid hypodermically around the cancerous growth. According to the Lancet, however, experiments with his specific by other observers have not confirmed his results.
The College of Civil Engineering of Cornell Univer sity shows how thoroughly alive it is by the announce ment of a new hydraulic laboratory of immense size, having a rock-cut canal 500 feet long, 20 feet wide, and 10 feet deep, and a steel standpipe-in which the force exerted by great masses of water is to be studiedwhich is 6 feet in diameter and 70 feet high. No other hydraulic laboratory of half the magnitude of this one has ever been constructed.
A noteworthy event in the annals of technical educa tion in the United States will be the forthcoming cele bration of the twenty-fifth anniversary of the Stevens Institute of Technology, on February 18 and 19. The festivities will consist of a banquet at the Hotel Wal dorf, to which representative engineers and technical educators will be invited. On the following day the institute will be thrown open for inspection, and a col lection will be shown which illustrates the work of the alumni for the twenty-five years. There will also be a reception tendered to the faculty, graduates and undergraduates, by Mrs. E. A. Stevens, widow of the founder of the institute, at Castle Point, Hoboken. A promenade concert and dance in the evening will con clude the celebration. The institute was founded by the late Edward A. Stevens, of Hoboken, and in 1870 the erection of the building was begur by the trustees. Stevens Institute has always taken a high rank among the institutions for technical education in the United States, and its twenty-five years of successful effort is amply exemplified in the work accomplished by its graduates in all departments of mechanical engineer ing.
The word anthropo-geography has been coined, says Science, to meet the need oî a designation for that branch of geography which treats of the earth in its relation to man. The present rapid advance of climat ology has in the same way rendered necessary the coin ing of a similar word which can be used to designate that aspect of this study which deals with the relations of climate and man. It is natural that the word anthropo-climatology should be chosen for this subdivision of our subject. The length of the term makes it rather clumsy, yet its advantages more than outweigh its disadvantages, and it is to be hoped that
it may come into general use. Under anthropo-climatology we should include all the various relations that exist between climate taken in its broadest sense and man. The climatic control of habitability, of occupation, of colonization ; the influence of climate in stimulating or controlling migrations, invasions and the like; the immediate and permanent physiological effects of different degrees of temperature, humidity and pressure, etc.; the relation of climates to the distribution and prevalence of diseases; acclimatization, and other related matters may all find shelter in this subject of anthropo-climatology.

a FOLDING MALAY KITE

The kite has long ceased to be the plaything of the boy, and experiments on kite construction and flying are now conducted under the patronage of governments and learned societies. The United States Weather Bureau has considered the subject of kites and auxiliary apparatus for the meteoroogical exploration of the upper air to be important enough to call for the research of specialists, and the results have been embodied in an interesting monograph. Articles upon the subject have been published in many scientific journals and in the proceedings of learned societies. The number of amateur kite fliers grows larger year by year, and some of their achievements in this direction have been notable. Cameras have been sent up and photographs obtained Seteorological instruments have been ele Meteorological ittudes, and haven been eleated to high altitudes, and even telephone wires have been carried by kites and mes sages have been transmitted by their aid
Doubtless many of our readers would like to make the modern kite, either for making observations or simply for pleasure. Dr. Claison S. Wardwell, of 35 West Thirtyeighth Street, New York, has placed at our disposal one of the kites which he has made for his own use. It possesses many ingenious expedients, which might perhaps not occur to the amateur kite maker. It is a tailless "Malay"kite of the Eddy type, constructed so that it folds in small compass and is what is known as the five foot size.
Fig. 1 shows the completed kite with the principal dimensions noted on it. Fig. 2 shows the metal cap which is secured to the end of the stick and also the bent wire terminal which secures the cover. Fig. 3 shows the construction of the joint in the cross stick and the attachments for the bridle. Fig. 4 shows the two sticks joined together with waxed braded fish line, and Fig. 5 shows the kite folded.
The best material for the sticks is straigh grain spruce, as this wood has been found to be less liable to bend under strain or to break at the cross stick. Of course, considerable care should be exercised in cutting out pieces which are free from imperfections. The sticks are $\frac{7}{16}$ inch wide and $3 / 8$ inch thick and 5 feet long. The sticks can be rounded at the edges and scraped smooth. Blocks are glued on to each stick as shown in Fig. 4. On no account should the wood of the stick be scored or cut away at the joint, as this would impair the strength of the joint. The blocks may be secured to the sticks with good carpenter's glue. They should be accurately fitted, so that the joint is a firm one. After gluing, the joint is tightly wrapped with waxed thread and varnished with shellac. The ends of the sticks are provided with No. 32 or No. 38 blank cartridge shells to which a piece of large sized wire is soldered Thi wire is afterward wire is afterward the split ring which holds on the bent wir terminal. The stick is shaped at the end to receiv the shell, which is secured to it with hot shellac. The sticks are tied to gether at their juncture with waxed braided fish line, which may be readily untied.

The bridle eyelet, made of hard rubber, is supported by annealed brass wire (No. 13) hammered thin at the ends and bent into shape, as shown in Fig. 3. This is attached to middle of cross stick with waxed thread and varnished. The cross stick is bent to

LOGGING LOCOMOTIVE FOR WOODEN TRACK
other terminals while in position on the frame, then reinforce all of the corners. Cut $1 / 2$ inch hole for the bridle eyelet and its holder, opposite the center of the cross stick, and reinforce the opening with a circle of cloth about 3 inches in diameter. Attach the upper string of the bridle, which is 30 inches in length, to the hard rubber eyelet as shown Fig. 3. The lower string, which is 54 or 56 inches in length, is attached to the split ring or bent wire terminal as shown in Fig. 1, allowing 8 or 10 inches extra to each string or adjustment.
In placing the cover on the frame, first place the two side terminals on the ends of the cross stick, then place the upper terminal in position. Lastly stretch on the lower terminal by bowing the midrib slightly forward, then fasten all the corners with the split rings. The bridle should be provided at the point where the flying string is attached with a hard rubber eyelet similar to the one shown in Fig. 3. In using a cloth cover, it is not necessary to make as much provision for slack.
The weight of a 5 foot kite with sticks $\times 3 / 8$ inch material constructed in this way s as follows:
Frame... 8 ounces.
Percaline cover with wire edges...............434
Chinese silk cover with wire edges..........21/8 "،
Manila paper cover with wire edges............38/8

A 6 foot kite with sticks $1 / 2 \times 3 / 8$ inch will weigh as follows
Frame.............772 ounces.
Tissue paper cover with cord edges............134 "
The manner of flying a kite of this description was shown in the Scientific AMERICAN for September 15, 1894. It is possible to send up a number of the kites tandem, as shown in the engraving in that issue.
An American flag is excellent to attach to the kite line in light airs and should be in possession of every kite flier. A flag 5 $\times 8$ feet of tissue paper will weigh 4 ounces. A 6 foot pine spar $3 / 8$ inch in diameter will weigh $11 / 2$ ounces. A tissue paper flag 10×15 feet weighs $131 / 2$ ounces. An 11 foot jointed pine spar $1 / 2$ inch in diameter and tapered weighs 6 ounces. The flag is maintained in position so that its lower edge is horizontal, the spar being perpendicular to the ground by means of three cords which secure the top middle and bottom of the staff. These cords are secured to the bin by hard rubbe the the main line by hard rubber eyelets, the main line passing around them, a piece of thin leather preventing chaf ing. The guy line passes through the eyelet. The upper guy rope is, therefore, short. The middle one, which may be dispensed with in light winds, is longer and the bottom guy rope is longest of all. At the star end of the flag a hem is made by gluing thin mus lin to it. The light spar is run through this hem and tied at inter vals with cord The flag can, of course, be pasted to the spar, bu arranging it so that the spar can be withdrawn is preferable.

LOGGING LOCOMO TIVE FOR WOOD

 EN TRACK.Our publication on August 1 of cut and descrip tion of a logging locomotive, which the designer term ed a steam mis sionary, has brought to our office a photo graph of a ma chine which th builders think is "an improvemen on Mr. Stephens locomotive." I will be seen from the illustration that the locomotive in ques tion is an eigh wheeled geared (1 of its length) and secured with No. 22 spring|frame evenly, so that it will lie smooth. Allow about tram engine built especially for logging use. The (10 of its length) and secured brass wire, loops having been formed at each end to
pass over the ends of the sticks, as shown in Fig. 2. Bend No. 13 spring brass wire into the shape shown corners. String the wire to position again through of four on flexible trucks, so as to allow easy running in Fig. 2 for the terminals and secure them in place the hem of the cover and attach permanently to the on very rough roads. All the wheels are used as
drivers. The engines have cylinders 7 inches in diameter by 10 inches stroke, and by means of cut gearing run a countershaft. From this countershaft the front axle of the rear truck is driven by a heavy steel chain; the back axle of the front truck being driven by chains from the back trucks. The sprocket wheels are double flanged, so as to prevent the chain from running off. All the gearing is made of cast steel. Both the front and rear axles of the locomotive. as will be seen from the engraving, are run by means of side connecting rods. The 40 horse power boiler, which is of a special locomotive type, is fed by a small duplex pump. The locomotive is also provided with a steam siphon for drawing water into the tanks. It has been
in use for some months on a rough wooden track, haulin use for some months on a rough wooden track, hauling from 30,000 to 40,000 feet of logs per day.
The total cost of building the wooden track is from $\$ 300$ to $\$ 400$ per mile, according to the class of country on which it runs. Where the ground is rather swampy, on which it runs. Where the ground is rather swampy, it requires several small bridges, but on ordinary level
ground the cost does not exceed $\$ 300$. This machine is so geared as to take ordinary loads at from four to six miles per hour, and if first-class track is furnished, the speed will be considerably greater.
The Curtis Manufacturing Company, of St. Louis, who are the builders, state that this engine, which is run by two men, is doing work which formerly required thirty yoke of oxen and five men.

Mosquitoes and Malaria.

Recent researches show that it is very probable that malaria may be propagated by mosquitoes. Dr. Amigo Bignani brings forward some proofs in support of this theory. His article is translated into English and published in the Lancet, from which we take the following:
"If one admits the inoculation hypothesis, many facts which are difficult to explain by the theory of air conduction would find a simple and satisfactory explanation, and it is easy to demonstrate this. First of all, the fact, which we have already discussed at length, that malaria is not carried by the winds, would be easily understood, knowing as we do how closely these easily understood, knowing as we do how closely these
diptera are bound to the soil on which they are hatched, diptera are bound to the soil on which they are hatched,
and how adverse they are to allow themselves to be and how adverse they are to allow themselves to be ground, among the grass, or under the trees. Also when a sea breeze blows in the afternoon the mosquitoes of the Roman Campagna do not show themselves, and only when the wind has gone down at the setting
of the sun do they rise in clouds everywhere and attack
animals and men. That the evening and night hours animals and men. That the evening and night hours
are the most dangerous, on account of the facility with which fever is then taken, would be easily understood by any one who knows the habits of this nocturnal dipter. That malaria only rises to a moderate height would also be equally intelligible, because the inoculating insect always flies near the ground. A satisfactory explanation would also be furnished of the grea danger of sleeping in malarial districts, a fact of which the supporters of the air conduction theory have never been able to give more than an artificial explanation. Any one who has experience of malarious districts well knows a number of cases in which the patient attributes the fever that torments him solely to having slept a few hours in a place where several times he had perhaps remained while awake without harm. Three years ago I made with my colleague, Dionisi, various excursions into malarious localities for the purpose of study, and more especially with the object of collect-
ing from the inhabitants the results of their experience ing from the inhabitants the results of their experience -an experience which one finds with difficulty in
books. Many precautions which they take against the fever are taken, one would say, to defend them from the sting of insects. They avoid going out at night; they are very careful not to sleep in the open air; they hermetically close the windows-windows with badly fitting shutters, which might impede the ingress of insects, but certainly not of air and of the germs which it might contain. They take great care of their mos quito curtain, making it of very close net, under which
they sleep, thoroughly shut in, notwithstanding the reat heat
It is interesting to remember that Emin Pasha never omitted to take a mosquito net with him on his African journeys, and he attributed to this precaution his not having had fever, the malarial agent in his idea being a corpuscular substance of which he supposed the close net did not permit the passage. Nicolas, in his book on the 'Hygiene of Camps in Marshy Places. thus expresses himself on this question: 'And the mosquito net, well shut, is indispensable at night. Without attributing to the puncture of mosquitoes any relation whatever with the microbes of the fever, one
may be certain that irritation by them produces sleeplessness and predisposes to the fever.' On the estates and farms visited by us in the Campagna, the over-
seers, who are less frequently attacked by the fever seers, who are less frequently attacked by the fever
than the workmen, protect themselves with great care
from the bites of insects, especially during sleep. On the estate of Porto, near Fiumicino, where a bad type of malaria prevails, and which I visited several times in company with my colleague Dionisi in the height of summer, we obtained the greatest amount of information about the habits of mosquitoes, and the results of the experience of the inhabitants on the way in which the experience of the inhabitants on the way in which
the fever is caught. The greater number think that the fever is taken almost always during sleep. A very brief stay sometimes suffices-even one night. But ordinarily, even in districts very subject to malaria, a longer stay is necessary, so that the workmen who go
on to the property at the beginning of July for the on to the property at the beginning of July for the thrashing commence to get ill as a rule eight or ten days after their arrival. On the other hand, those who go in September for the working of the ground often get ill more quickly-after only two or three days stay. Many have observed that in autumn, after the rains, the mosquitoes increase and likewise the fevers, and as the season advances they disappear together little by little. Thus, collecting from the inhabitants (who are really much better informed about malaria than some medical men) the results of their experience, the conviction grows upon one that if malaria were which I have put in a preceding paragraph would receive an adequate answer. Malaria behaves itself with regard to man as if the malarial germs were inoculated by mosquitoes."

Exportation of American Machinery.
The machinery export movement in the United States seems to be attaining some prominence. There is no doubt that the American manufacturers of labor saving machinery and implements are devoting more attention to the possibility of building up and extending an export business with foreign countries than they have done for many years. The time appears to them to be very propitious. The past year or so has seen a large augmentation in the demand from abroad for large auginentation in the demand from abroad for manufactured products which have been for some time an American specialty. But the fact must not be left out of mind that the export of such specialties creates a demand in the place of their sale which, in that event is gradually satisfied on the spot. With a protective bar-
rier hampering her industries, America can never comrier hampering her industries, America can never com-
pete on a large scale with the exports of a free trade country.-Industries and Iron

recently patented inventions.

Engineering.

Gas or Oil Engine.-Eugene Fes sard, Poissy, France. In this engine the cylinder has a spring.controlled valve periodically actuated by a rod
driven from the engine, a click or pawlholding the valve open independently of the movement of the rod, and a governor controlling the position of the pawl according to the speed of the engine. The engine may be worke by petroleum or by gas, in the latter case the breech of the cylinders being provided with chimney and incan-
descent tubes or an electric arc. The engine is of simple construction, and may be worked in either vertical horizontal or oblique position, being light and its part readily accessible, adapting it for a wide variety of uses.

Railway Appliances.

Car Fender.-Joseph R. and Joseph A. Jaccues, St. Paul, Minn. This fender is made in the covered with stretched netting, the side bars of the frame having wheels adapeded to travel on the track rails. The
curved side bars of the frame have each at the back a curved side bars of the frame have each at the back a hook, adapted to be hooked and secured by set screws in
arms adjustably held on a transerse shaft journaled in arms adjutably held on a transverse shaft journaled in
bearings at the front of the car platform. To this shaft bearings at the front of the car platform. To this shaf
is also secured a rearwardly extending rod bearing is also secured a rearwardly extending rod bearing a
weight to almost counterbalance the weight of the weight to almost counterbalance the weight of the
fender, and insure an easy running of its wheels on the track rails. Extending upward from this rod is a bar car
rying a foot piece, by pressing on which the motorma may swing up the front end of the fender to a limited
extent, to move its wheels from the track rails, as may extent, to move its wheell
be desired at crosings, etc.

Car Coupling.-David M. Lipps, Harrodsburg, Ky. A couping of the hook and catch type is provided hy this inventor, adapted to couple automati
cally with an approaching car equipped with a like coup cally with an approaching car equipped with a like coup.
ling and of such constructoon that cars thus coupled ma ling, and of such constructon that cars thus coupled may
be readily uncoupled by a traininan from the roof or the be readily uncoupled by a traininan from the roof or the
side of the car. The drawhead has a chamber in whose lower wall is an apertured incline, in which rocks a shaf tent spring adapted to contact with a block on the shaf and hold it to elevate a hook bar pivoted in the drawhea until a hook bar on another coupling enters the draw
head. The device may also be coupled by the ordinary head. The d
pin and link.
Switch.-Edward Q. Norton, Daphne, Ala. An easily operated apparatus is provided by this
invention whereby a train on the main line may posii invention whereby a train on the main line may posi-
tively operate the swicch points to insure an open main tively operate the switch points to insure an open main
line, whether the train be moving in one direction or the other. An operating rod or bar extending alongside the switch point, and movable toward and from it, has
portion to engage the switch and a portion for engage ment by the flange of a locomotive drive wheel or a pro jecting tripping rod, the operating rod having a spiral
surface whereby it is turned gradually and easily, avoid ing jars or shocks.

Electrical.

Trolley.-Wilbur L. Pepper, Phila delphia, Pa. A twin or dual pole is provided by this
avention, to more efflciently support a trolley wheel invention, to more efflciently support a trolley wheel,
which may be made longer than those in common use The two parts of the pole are made in pivoted sections, the upper sections being pivoted to the trolley wheel by
means of yokes and trunnions, and the lower sections pivotally attached to nected by a link with a spring-controlled lever, adapte to hold up the sections and press the wheel against the trolley wire. A cord extends from near the upper end of one of the lower se
of the motorman.

Mechanical.
Paper Pulp Strainer. - John W Smith, Sandy Hill, N. Y. To strain or screen the pulp, according to this improvement, two independent screen ing gections are provided, one of which may be placed
out of action without affecting the operation of the other.
The Two screen boxes are provided, withe screen plates and
Tiaphragms, and arranged end to end, each being com laphragms, and arranged end to end, each being com heir lowers sections formed by removable cross bars, each
box having means for closing the end of its upper section box having means for closing the end of its upper section
adjacent to the other box, whereby when one box is jacent to the other box, wher
open the other may be in operation
Lath Feeder for Paper Driers. William H. Waldron, New Brunswick, N. J. This is a
 itive delivery of a single lath at a time from the fee chute to the carrier chains. Combined with the deliver chute is an oscillating carrier chain adapted to receive the lath, a segmental carrier being mounted to oscillate and formed with a radial slot or notch, to hold the lath nor-
mally in place in the delivery chute. The carrier has mally in place in the delivery chute. "he carrier has
lath-receiving slots equal in size to the chute outlet, and movable to and from the latter as the carrier is moved movable to
Crushing Apparatus.-Ignacio M. de Oca y Melian, New York City. Ț, crush ores and pound carrying shaft is mounted in a frame, the cams engaging levers fulcrumed on the frame and connected with two vertically movable stamps, each of which carries a mor-
tar. A cord connected with each lever is adapted ar. A cord connected with each lever is adapted to
hold it out of engagement with the cam, to suspend the holatit out of engagement with the cam, to
operation of either stamp as may be desired.

Agricultural.
Reaper and Mower Cutter bak.Moses Jarris, Leota, Miss. According to this improvenent, the knives may be conveniently and quickly taken rom or replaced in the cutter bar without removing the
latter from the machine, and each knife is provided with inter from the machine, and each knife is provided wnife seats with undercut end walls, beyond which extend buttons pivoted on the cutter bar, the knives having shanks shaped to enter the seate, and the shanks having
recesses to receive the ende of the buttons exvending

within the seats, the buttons thus forming latches to lock the knives upon the bar.

Miscellaneous.

Photographic Shutter.-Daniel P 'I eary and Samuel B. Kull, New York City. Tw arranged to secure the lens, and have apertures nor mally out of coincidence, one of the plates being adapte for movement independent of the other to bring the
apertures in line for the passage of light through the lens. A catch holds the other plate or slide with ith
line for the aperture in line with the lens,'and there are means to dis plate, so that the plate held is released.
Music Leaf Turner. - Thomas A. Farrell, Chicago, Ill. This is a simple and inexpensiv device, the body of which comprises a rack adapted to pianos and similar instruments, there being journaled in the rack a turning shaft to which is pivoted an angular turning arm and there beng also a spring-controlled holding arm having rocking movement on the rack and counected with the turning shaft. With this improve
ment the leaves may be turned with great facility an withoutdanger of tearing.
Lock. - Patrick J. Leonard and Wil liam Head, New York City. A lock especially adapted for use on milk cans has been devised by these inven inserted in the other and provided with eadapted to be inselted in the other and provided with tongues. lock and expands the tongues against the inside of the outer part of the lock to hold the parts against separaion. The can has an outwardly extended lip on the neck of the body portion, a tubular lock section being tion attac!ed to the cover being adapted to enter the ubular section. The lock may also be advantageously
SKIRT SUPPORTER -
New Y George Kierski, New York City. To support a comparatively heav. or has designed aching it to the waist band, this invenof resilient metal bent to form two clasp and side mem bers, one of the members having an opening at its free end, while the other member may be pressed apart by the thumb and finger and made to readily engage a por tion of the dress material, the body of the device being adapted to readily slide along a belt, by which the de-
vice and skirt are held up.
Curtain Support.-De Kalb Turbeville, Roanoke, Ala. A one piece bracket, which may be readily put up and taken down, according to this invencurtain pole the cornice hoving catches enging on the curtain pole, the cornice having catches engaging on the
arms. The construction permits the convenient re moval and ready replacing of the curtain and pole, and
bracket may be conveniently put up to project beyond the casing.

Artificial Limb. - John Neyquist Coburn, Pa. This invention relates particularly to arti-
ficial limbs for amputations below the knee, and provide ficial limbs for amputations below the knee, and provides
for connecting the leg irons with the foot by a peculiar for connecting the leg irons with the foot a a peccilar
joint, the ankle portions being formed of a metal cylinjoint, the ankle portions being formed of a metal cill
der riveted to the leg irons, a wooden filling being secured in the cylinder, and elastic blocks socketed in the alling and the foot on front and rear sides of the joint. Thermocalter. - Friedrich Drumm, New York City. According to this improvement, gas rom the generator is utilized for externally heating the
cauterizing tool when starting the apparatus and for supplying the internal burner of the tool with the gas necessary to keep it at the desired temperature during the operation. An attenuated tube forms the terminal of the supply pipe an 1 extends into the hollow of the
point, a return pipe provided with perforations and connected with the hollow of the point surrounding the supply pipe, while a casing secured to the burner has a rear open end. An auxiliary burner for heating the
point is arranged to be swung into and out of operative position.
Dental Tool.-Flavel A. Rudolph, Carmi, Ill. This is a tool more especially designed for use in a dental lathe, to dress down rubber or metal
plates, the invention covering a particular construction of expansible rubber head and details of the expanding nechanism. On a shaft is held a clamp of two sections
which may be moved relatively to each other, there being held between the sections a head of rubber or other expansible material, and the head having a concave periphery which becomes cylindrical when the head is
expanded. During the expansion of the rubber head its expanded. During the expansion of the rubber head its marginal portio
clamp sections.
Spectacle Case.-James H. Caruss, Stamford, Conn. In this case keepers or guards are
made to project inward from opposite sides, to extend over the spectacle frame and to hold the spectacles in position in the body of the case, permitting of opening and closing the hinged cover without interfering with any part of the spectacle frame. The keepers hold the spectacles without injuring or bending the frame, and there
is no danger of their dropping out accidentally when the is no danger of
case is opened.
Clarifying Saccharine Solutions. -Leon F. Haubtman, New Orleans, La. This inventor has heretorfore obtained several patents on evaporating tion, the invention affording meane by which saccharinc solutions may be rapidly clarified without contact with employed through which the solution to be clarified is forced in one direction while the ieating medium, as steam, is forced into the vessels in the opposite temperature of the hot solutions is reducad by a cold solution flowing thr
clarifying vessels,
Note.-Copies of any of the above pate.ts will be furnished by Munn \& Co. for 10 cents each. Please
send name of the patentee, title of invention, and date of this paper.

Business and Personal.

The charge for insertion under this head is one Dollar line for each insertion: about eiahli wordst toon line
Advertisements $\begin{aligned} & \text { must } \\ & \text { be received at publication oftice }\end{aligned}$ as early as Thursaay morning to appear in the following week's issue.
Marine Iron Works. Chicago. Catalogue free. "U. S." Metal Polish. Indianapolis. Samples free. Yankee Notions. Waterbury Button Co., Waterb'y, C Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O Screw machines, milling machines, and drill presses,
The Garvin Mach. Co., Spring \& Varick Sts., New York. Concrete Houses - cheaper than brick, superior t Ther "
The celebrated "Hornsby-Akroyd" Patent Safety Oi
Enginc is built by the De La Vergne Refrigerating MaEnginc is built by the De La Vergne Refrigerating Ma
chine Company. Foot of East 138th Street, New York. The best book for electricians and beginners in elec
tricity is "Experimental Science," by Geo. M. Hopkin By mail, \$4. Munn \& Co., publishers, 361 Broadway, N. Y Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broadway, New York. Free on application

HINTS TO CORRESPONDENTS.
Names and Addrens must accompany all letters
or no attention will be paid thereto. This is for our
informan information and not for publication.
ercrencees to former articles or ansers should
 some answers require not a lilttlear research, and
though we endeavor to reply to all either by lette though we endeavor to reply to all either by le
or in this department. each must take his turn.
Buy ers wishing to purchase any article not advert or in this department. each must take his turn.
in ers wisting oto purchase any article not advert
in ours olumns will be furnished with addresse

Specian iv ritten In In crinhing the on matters o
personal rather than general interest cannot be
 to may be had at the office. Price 10 cents each.
Boolss referred to promptly supplied on receipt price
(7089) C. A. M. asks : 1. Is there a SUP PLement that gives information on cassava, its cultiva tion, uses, preparing of the starch, etc. ? A. In Supple ment, No. 915, you will find an article.on some products paring an ink that writes blue at first, formula for pre permanent black? A. We refer you to articles on the manufacture of inks in Supplement, Nos. 157 and 1073 3. How can the coloring matter of annatto be taken
from the seeds without the use of oils? A. Annatto is obtained from thereddish pulp surrounding the seeds in the fruit of Bixa orellana. The pulp is separated by braisa sieve and allowing the liquid to stand till the undis solved portion subsides. The water is then poured and the mass which remains, having been sufficiently dried, is formed into fiat cakes or rolls and sent to market. 4. Please give an easy method for preparing the essentia oil of orange and lemon peels. A. Supplement, No. 887 has an article giving information on the manufacture of 5. Is banana fiber of much value? How ought it to be prepared for the market? A. Brief mention of banana fiber is made in SUPPlement, No. 1043. We think you would find the articles in Supplement, Nos. 1040 to 1046, on "Commercial Fibers" valuable. 6. When not
otherwise stated, must I take for granted that ounces otherwise stated, must I take for granted that ounces
and pounds, etc., in formulas of the "Scientific American Encyclopedia " apply to avoirdupois weight, and should liquids be weighed as well as solids? A. Avoirdupois measured. Where parts are mentioned, the formula should be made up, using parts by weight, whether of solid or liquid.
(7090) W. A. M. asks (1) if malleable cast iron will serve to good advantage as field cores and pole pieces in a dynamo electric machine. Can you tell me how the permeability compares with soft steel, good cast inon and wrought iron? What I am desirous of
learning is as to which is best and most essily excited in learning is as to which is best and most easily excited in
the case of an electromagnet? A. The general rule is that soft iron has the highest permeability, but no exact figures can be given, as each quality will vary from others even of the same kind. In dynamos which are self-exciting it is important to have some residual magnetism on which to build up the charge. The use of a soft iron field magnet core, and still more of a laminated core, militates mended for dynamo field cores. 2. Is a small size magnet wire used in the field of an incandescent machine, of ay 100 lights, to get pressure andlarger wire for amperes n other worde, will a small wire of a large number of turns give me pressure, where a larger wire of few turns ould give quantity? A. Your conception is right, volts ime; this number is increased by using fine wire of th rmature, and the higher preseure has to be wire of te by smaller wire; i. e., higher resistance on the field.
(7091) E. H. S. asks: Will you please give me receipt for tanning buck skin or preparing it like
chamois leather or leather in gloves? A. Take a skin, either green or well soaked, and fiesh it with a dull knife: spread the skin on a smooth \log and grain it by scraping with a sharp instrument; rub nearly dry over the oval end of a board held upright. Take the brains of a deer or a calf, dry by the fire gently, put them into a cloth with water sufficient to soak the skin in blood warm, wisite soft and pliable, and then wring out as dry as posilble; wash in strong soapsuds and rub dry and smoke well with wood smoke. Instead of brains, oil or lard is called Indian tan.

NEW BOOKS AND PUBLICATIONS. The Op'rician's Manual. By C. H Keystone. Pp. 376. Price $\$ 3$.
A treatise on the science and practice of optics is here put forth by a professor of optics and refraction, and forme
physician in the Philadelphia Hospital. It is republication of essays heretofore published serially, and which have commanded wide attention. It treats of the eye anatom cally and optically, of the simpler laws of optics, and o enses, as adapted to the different needs of the eye unde Il conditions. It is a practical, up to date book, fo opticians
the eye.
The Columbia Calendar, of the Pop Manufacturing Company, reaches its twelfth annual issue in the edition for 1897, and, besides being a desk conin its small texts and illustrations the joys of outdoo life and the blessings and economy of good roads.
The Victor Calendar, of the Overman Theel Company, is also a desk memorandum pad, and wide range of authors, as well as jokes and scraps of useful information.
The Walworth Manufacturing Comany of Boston, manufacturers of brass and iron good nd tools, and steam, water, and gas work, also publish

TO INVENTORS.
An experience of nearly fifty years, and the prepara-
ion of more than one hundred thousand app ications
or patentsat homeand abroad enable us to

INDEX OF INVENTIONS

For which Letters Patent of the

 United States were GrantedJANUARY 5, 1897,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]

Alar. See Burglar alarm.
Alarm. deviee, eletrie. G.
Arm rest, V . Trott. Gilman.

sphalt pavements, apparatus for repairing,

Bell, C. A. Tredwell............
Beli, bicycle. E. D. Rockweii::
Beil, door, G. Tyson

Boiler gluee cleaner, H. L. Hildreth..
Boiler furnace, W. W. Davin.......

Buig
Burg
Burn
Burn
Buto
Butto
Butt

54,58
$54 ;, 38$

 $\xrightarrow{2}$

$\frac{R}{T}$

$\stackrel{+}{0}$

$\frac{54413}{57,37}$

$57,+677$
57,7729

57,58
54,58
$5 ; 8,83$

 74,07

${ }^{7} 4,4,556$$5,4,49$
74,455
44,552

Treas attur mimement	ent		[is
		UPRIGHT DRILLS	
		W. F. L JOHN BARNES CO.	
			AUTOMOBLLE CARRIAGES: THE
		Stoves and Furnaces	
	WWLCEStar \pm footower	or Hot Water and Hot Air	
	(7 Lathes Autiomatic		UMSTRUMENTS OF PRECIISON."
		OCK DRILIS	
		ICIENT and DURABLE.	
		RAND DRILL CO.	
SHind			(1)
		VT ${ }^{\text {atate }}$	
	Essurs		he Most Popular Scientific Paper in the World Only S3.00 a Year, Including Postage.
Tinteom			
	AMP		
cicke		Experimental \& Model Work	
为			
	and General Line of Machine Shop	S	
Svenon...... ${ }^{\text {57 }}$		AISGORDON	
	сhicas		Ticke
			MUNN © CO., 361 Brondwas, New Yorls.
	Sp9P9P9P199		
Ns.			
cepa May			and
			try, Electricity, Light, Heat, Mec Steam and Railway Engineering,
			cin
trade marks.			
			expee
			Stuldixy gilliom.
			come
Iron, wrought, Phillips, Nimick \& Company 29,423 to	Ball Bearings		
			erate cost as well as the more expensive. perspective and in coior are given, togeth
and			ceime
	IMPERIAL BALL BEARING AXLE		
			Exfort Exditron
	Redicem mid		
			atememen
			len
PRI		INE O	
		burn Trolley Track Mfg. Co.	
		DE mach	
\%			

only practical magazine camera
 SUNART'S "VENI, VIDI VICI," UNART MAGAZINE, SUNART FOLDINGS end for Illustrated Cata
lokue- 2 cent stamp. SUNAIRT PHOTO CO., ROCHESTELR, N. Y THE NEW BRISTOL COUNTERE

Registers an accurate account of work done on print
ing presses, rrain allites, weighing, measuring an
other automitic machines. Counts up to 1 non
 CROOKES TUBES AND ROENTGEN'S Photography.-The new photography as performed b
the useof crookes tubes as asource of ex exitition.
about

Horse Caris NARROW \&
WIDE Tires WIDE Tires. Wheols rater of fraight from Low
worrs. Tratamy Pa, toall
points. HOBSON CO. ATEELES. points. HOBSONNO.

B
UY TELEPHONES That Are Good--Not "Cheap Things" ratus and guarantee our customers against loss by paten WESTERN TELEPHONE CONSTRUCTION CO. 250-254 South Clinton Street, Chic Largest Manufacturers of Telephones
exclusively in the United States.
Experimental Science By GEO. M. HOPKINS.
17th Edition Revised and Enlarged.

540 pages. 782 fine cuts, substantially and beautifully bound. Price in cloth, by mai $\$ 4$. Half morocco, $\$ 5$.
This splendid work is up to the times It gives young and old something worthyo thought. It has influenced thousands of men in the choice of a career. It will give anyone, young or old. information that will enable him to comprehend the great im provements of the day. It furnishes sug gestions for hours of instructive recreation Send for illustrated circular and
MUNN \& CO., Publishers, Office of the
SCIENTIFIC AMERICAN 36I BROADWAY, - NEW YORK.
(Jatebmaking a Crade for Young Men and Zuomen Parsons' Tnstitute for WJatchmakers, Engravers and Opticians in Dew Quarters

Periect Dewspaper File.
Subscribers to the SCIENTIIIC AMERICAN and SCIIEN-
THiC AMERICAN SUPLEMENT. Who wish to preserve THFC AMERICAN SUPRLEMENT, Who wish to preserve
their paper for binding.may obtain the Koch Patent
FIIe at the office of this paper. Heavy board sides, in-

MUNN \& CO., 361 Broadway, New York
AN INVIGORATING BATH

Guaranteed satisfactory or money refunded. Hard Rub
Der Holder, 14k. Gold Pen.
QHM Malled For onlr
W1. Write tor Gataloune and A Aents Terms. Address
LAUGHLIN MANFACTURING CO., Detroit, Mich.
 best DRYINE MACHINES

VOLNEY W. MASON \& CO.
Friction Pulleys, Olutches \& Elevators PROVIDENCE R. I.

111 Bradley Ave., PEORIA, illinois

DYDYNAMO AND MOTOR CASTINGS nd ELECTRICAL SUPPLIES TELEPHONES ENCINE CASTINCS PaLmer bros., Manus, conn ELECTROMOTOR SIMPLE HOV TO

 Shorthand by Mail Thorouxhyly taygh bhy ree WANTED-Rellabio man-each bown-to anande

EXPERIMENTAL MACHINE \& MODEL
 WELL DRILLING AND PROSPECTING

Bock ,

CEMCLOYER.

BRASS SPECIALTIES

WOODEN TANKS.

AARBORUNDUM E

Twelfth Edition Now Ready.
THE SCIENTIFIC AMERICAN CYCLOPEDIA OF
Receipts, Notes and Queries $\mathbf{1 2 , 5 0 0}$ RECEIPTS. 708 PAGES. Price, $\mathbf{\$ 5 . 0 0}$ in Cloth ; $\mathbf{\$ 6 . 0 0}$ in Sheep; $\mathbf{\$ 6 . 5 0}$ in Half THE ORNAMENTAL IRON INDUS

OU USE GRINDSTONES? It ao,we can suppig you. All size
 The cilieveliand stone co. the modern ice pacht - by

BRASS BAND

 SOClil.heroan rook

