

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

the signaling system of the broadmayand seventi avente railioad.
It goes without saying that a railway that must handle a half million passengers daily on one of the most crowded thoroughfares of one of the largest cities in the world must have some system of communication by which delays may be avoided, assistance rendered in case of accident, and by which provision can be made, in case of fire or other hindrance in the street, to resume and maintain traffic. There is no busier railroad than the Broadway and Seventh A venue cable railroad, and while there is an occasional block, we venture to say that, although few roads do an equal amount of business, none of them operate with fewer delays. This, we think, is in a great measure due to the signaling system employed for communicating with headquarters.
The most frequent cause of delay is the breaking down on the tracks of heavy trucks and other vehicles, which cannot be readily removed and which require the assistance of the emergency wagon and its crew. Fire also frequently causes delays, but the railway company is often able by means of supports to run the hose at an elevation so that the cars may pass uninterruptedly. Occasionally the breaking down of a car or the failure of a cable causes a delay.
One of the more fruitful causes of accident and delay in the early history of the cable road was the fraying of the cable, and the stripping of a strand so as to form a large knot on the cable which the grips could not pass. In an accident of this kind the car was carried along was carried along fith resistless force, carrying everything before it, with no chance of being stopped untilasignal could be sent by some roundabout way to the power house to stop the cable. Pedestrians and all vehicles ocupyingthe cles occupying the midale of the stree ${ }^{2}$ were at the
mercy of the runaway car. Noth ing could be done but to give it a free course until the cable was disconnected or the engines stopped.
Now this and every other imaginableemergen cy is provided against so as to reduce the interruption to a minimum.
The electric signaling system of the Broadway and Seventh Avenue Railroad is illustrated in the annexed engravings, two of which show the indicators, alarms and regis-

REGISTERING INSTRUMENT AND EMERGENCY WAGON.

INDICATORS AND ALARMS IN ENGINE ROOM OF POWER HOUSE,
tering apparatus at the power sta tion, one showing the street signaling box, and another a diagram on which the circuits can be readily traced. Every section of the road traced. Every section of the road has at least two signaling wires.
An additional wire extends from Houston Street to Fiftieth Street, on Broadway, and three wires extend the length of Twenty-third Street and Lexington Avenue branch.

In the engine rooms at the power station are placed indicators and alarms, and in the president's office is placed a recorder and time stamp, which makes a record of every call. The call boxes are placed in openings in the pavements, covered by heavy iron plates. They are inserted in the circuits and used in the same manner as in fire and district telegraphs, and they are each provided with a revolving lever and contact points corresponding with the words on the indicator at the power station. The call box has the same words arranged in the same order, so that when the lever is turned the circuit is opened and closed, causing a movement of the index in the indicator corresponding with the movement of the lever in the signaling box. At the same time the alarm gongs are rung, a record is made in the president's office, and the time is stamped on the record ribbon. An alarm is also sounded within the hearing of the men having charge of the emergency wagon, so that the wagon may proceed immediately to the location of the trouble. The wagon carries extras and tools, with a sufficient number of men to remove any ordinary obstruction or to make such repairs as are usually needed on the road There are four such wagons, each carrying a force of men sufficient to cope with almost any trouble. One of the wagons is located at the Houston Street power house, another at Lexington A a Lexington Avenue and Twentythird Street, the third at Ninetyninth Street and Lexington Avenue, andthe fourth at Fiftieth Street and Broadway.
Cards are furnished to the conductors, gripmen, and inspectors, giving the location of the boxes and other impor tant items. Each box has an individual number. In case of an accident the conductor, gripman, or inspector uncovers the signal box in the street and sends an ap. (Continued on
page 6.)

Frientific smmerican.

ESTABLISHED 1845.
MUNN \& CO.,
Editors and Proprietors.
published weekit at
No. 36I BROADWAY, - - NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN

 Established 1845.)One copy, one year, for the U. S. Canada or Mexico....
One copp, six month, for the
One copy, one year,

MUNN \& CO., 361 Broadway, corner Franklin Street, New York
The Scientiff American Supplement
(Established 1896)

Building Edition of Scieutific American. Established 1885.)

Export Edition of the Scientifle American
Established 18\%8)

The safest way to remit is by pastal order, exprese. money order
it or bank check. Make all remittances payabe
to order or MUNN Fineaders are gpocially requeted on notify the

NEW YORK, SATURDAY, JANUARY $2,1897$.

TABLE OF CONTENTS OF
Scientific American Supplement No. 1096.

For the Week Ending January 2, 1897.

Price 10 cents. For sale by all news

 Hi MISCELLANEOS. An Ivory Sale at.Antmerp.-A descrip-

the water tube boller on its trial
There has recently been brought to a close a series of trials of the water tube boiler, which has attracted more attention than any event that has happened in the engineering world for many months past. We refer to the trials of the 25,000 horse power installation of Belleville boilers on the cruiser Powerful.
These trials were remarkable, not because this was by any means the first use of water tube boilers at sea, but because it was the first attempt to use them on such an enormous scale. The public has long been familiar with this type as used on torpedo boats, and of late it has been winning its way into fuller recogni tion on shore, where it is doing good work in the gene ral industries, It was natural that it should meet with favor for marine, and especially naval work. where its light weight, compact form and capacity for sudden generation of power render it specially useful. In the earlier days of torpedo boat building it had the loco motive type of boiler for its competitor: but as the demand for combined lightness and power has grown, the locomotive boiler has practically disappeared from the contest and left the water tube type in possession of the field. The excellent results obtained by the French navy in fitting some of their smaller cruisers with this type have led the British Admiralty to equip their two largest cruisers, the Powerful and Ter rible, entirely with the Belleville boiler. The decision was based upon the French experiences, and also upon a series of exhaustive trials in one of their own gun boats. The decision evoked a storm of criticism from experts, naval and otherwise, and it was freely pre-
dicted that the attempt would be a costly failure. The dicted that the attempt would be a costly failure. The results of the recent trials, however, are reported to power, 25,000 , being largely exceeded, and steam being maintained with ease and regularity.
The Belleville boilers, forty-eight in all, are divided up into eight groups-four groups of eight boilers each and four others of four boilers each, each group in its own compartment. The four latter groups are ar ranged side by side and fired athwartship. The other four groups are arranged for fore and aft firing. There are twelve stoking spaces, arranged with four boilers
and six stokers to each space. It is found that if the men replenish the fires every four minutes by the clock, perfect uniformity of pressure can be maintained.
It has frequently been urged that the results of official trials of foreign battleships are worth very little because they are of too short duration to really test the qualities of the machinery and boilers. It must be admitted that no such charge can be made in this case the trial tests, indeed, being of an extraordinarily severe nature, such as have never been attempted in any other navy. They included two runs at 5,000 and 18,000 horse power respectively, each of thirty hours' dura tion, and a final run of eight hours, the first four hours at 25,000 horse power and the remaining two at 22,000 horse power.
In the first trial the average indicated horse power was 5,008 and the coal consumption 2.07 pounds per horse power per hour. Sixteen out of the forty-eight boilers were used. In the second thirty hour trial the indicated horse power was 18,433 and the coal con sumption 1.83 pounds. The four hours' full power trial
was carried out on November 27 . The boiler pressure was 257 pounds; the mean indicated horse power was 25,886 , the maximum being 26,497 ; and the speed of the vessel against a head sea and wind was $21 \cdot 8$ knots the distance being measured by landmarks. The hat insumpth water the speed would have been about $22 \cdot 75$ knots.
During both thirty hour runs the two furnaces of each boiler were fired alternately at intervals of fou minutes. At the commencement of the full power run this was reduced to three minutes. The fires wer kept at a thickness of six inches, coal being put on only in sufficient quantities to fill up the holes and hollows. The draught plates were kept three-quar-
ters open, the air supply being controlled by varying ters open, the air supply being controlled by varying
the speed of the fans. The Belleville system is run the speed of the fans. The Belleville system is ru forced draught, and the fans are used primarily for ventilation. The work of the ordinary closed stoke hold fau is done in a Belleville boiler plant by air com pressing engines, one of which is placed in each stoke hold.
It will thas be seen that the introduction of the water tupe boiler has removed at a stroke all the dis comforts attendant upon the old forced draught. The maximum temperature in the stokehold never exceeded 90 degrees : in the engine rooms it was 75 degrees. It temperature will be of inestimable value when the en sine and boiler room staff is called upon to endure th long continued strain of a war cruise.
Some idea of the saving of weight which is made by the use of this type of builer as against the ordinary Scotch boiler may be gathered from the fact that the Powerful can carry a coal supply of over 3,000 tons. O the other hand it must be borne in mind that the con
water tube than for the common type of boiler. It is common occurrence for a Scotch boiler to show a con umption of less than 1.5 pounds per horse power hour and it was only the other day that, chancing to step aboard a tramp steamer and inquire as to her coal conumption, the engineer promptly responded by handing us the cards of the voyage just ended, which showed consumption of 1.4 pounds. So that in considering he merits of the Belleville boiler as regards saving of weight, we must remember that if the weight of boile per horse power is less, the weight of coal per horse power is greater
Warships, however, are not run for economy. The value of this type of boiler lies in its power to generate high pressure steam rapidly and in great volume for a considerable length of time in response to an emergency all, such as will continually be made in active service The trials just concluded prove that all these condiions can be fulfilled with an installation of the unpre cedented capacity (for water tube boilers) of 25,000 horse power.

a retrospect of the fear 1896

It will be pardonable to take a rapid glance at the international affairs of the past year, before entering into a detailed recapitulation of the scientific achieve ments which have marked its progress; and, as a jour nal devoted to the arts of peace, we note with deep satisfaction that whereas the opening of the year was marked by a widespread international distrust and jealousy, and the gathering of ominous war clouds, it close finds the political sky growing clear, a more rea sonable temper of tolerance and forbearance manifest ing itself, and, with the exception of three widely sep arated corners of the earth, a prevailing and apparent y long to ke continued peace established. With the Venezuelan scare replaced by the prospect of a perma nent peace tribunal; with England, France and Russia united in the effort to bring about reforms in the East with the Boer government promising concessions to the oreign element in the Transvaal: with a sutisfactory treaty concluded between Italy and Abyssinia and the ostages returned-the prospects of peace are certainly brighter now than they were in the opening days on the year which has just drawn to a close. The three xisting wars are attendant on the struggle of Spain to hold what she has in Cuba and the Philippines, and of England to reconquer the Soudan.
It is encouraging to note that in the industrial world here is evidence of a marked revival of trade, which has been felt in every quarter of the globe, and in thi respect is as widespread as the gradual depression which commenced in 1891 . We were the last nation to eel the decline, and we have been among the last to how signs of recovery. With the opening of the year however, we may congratulate ourselves that trade i thoroughly convalescent, and there is every reason to look for a prosperity which will be permanent, because it is more gradual in its return, and comes in a natural course. One of the most notable events of the year has been the astonishing development of Japan, whose victory over her traditional enemy seems to have awoke in her a spirit of aggressive ambition, which is showing tself in her evident determination to take her place as one of the leading nations of the world.
It was hoped when the Chinese statesman and ambassador, Li Hung Chang, made his tour through the western world at the time of the coronation of the Czar of Russia, that his return to China would be marked by a similar activity in the ancient empire. There is little doubt but what Li Hung Chang himself was earnestly in favor of introducing modern improvements and industries. The tidings, however, that soon after his arrival he had been again degraded shows that the con ervative party is yet all powerful. The awakening of China seems to be indefinitely postponed
The most notable event in the field of engineering was the opening of the river Danube to navigation. Thi event formed part of the millennial festivities in Hun gary, and as such took rank with the great exposition a Buda-Pesth. The undertaking was intrusted to Hun gary by the treaty of Berlin, 1878, and work was com menced in 1890 and completed on the last day of 1895 . The blasting operations covered a distance of sixty miles, and involved the removal of $1,635,000$ cubic yards of material, 915,600 of which were excavated under water. Nine thousand workmen were continuously employed and the total cost was $\$ 10,000,000$. Previous to the opening of the Iron Gates five feet was the limit of draught for river steamers for a large part of the year. The canal now affords an unobstructed outlet rom Vienna to the sea for boats drawing ten feet of water. The Nicaraguan Canal Company states in its annual report to the Secretary of the Interior that no work has been done since August, 1893. Its rival, the Panama Canal, is almost equally inert, a small force being employed merely to fulfill charter obligations. It is with pleasure we turn to the Chicago Drainage Canal, which is being pushed with commendable energy. Apart from its magnitude, this work is remarkable for the magnificent excavating machinery which it has called into existence and the novel methods
liminary operations connected with the great Simplon Tunnel through the Alps are under way, and the fact that this monumental work is being undertaken conjointly by the Italian and Swiss governments is a pledge of its vigorous prosecution. In this country we have seen the completion of the great dry dock at Port Orchard, 675 feet long, and a similar structure at the Brooklyn Navy Yard, with a length of 670 feet, is within measurable distance of completion. Work has been carried on without interruption on the Croton River Dam, and this massive structure is, therefore, nearer completion by one more out of the total thirteen years that will have been consumed in its erection. Work has been commenced during the year on the new East River Suspension Bridge, New York. This structure will rank as the second longest railroad span in the world, the clear length between towers being 1,600 feet. It will carry six lines of railroad track, two roadways, and two footwalks, and will in every way, except that of beauty, eclipse the existing New York and Brooklyn Bridge. Mention should be made of the completion of the great Cascade Locks on the Columbia River, Oregon, whereby a vast area of the interior of the State is opened up to river navigation, of the progress of the great lock at the new Imperial Harbor of Bremerhaven, and of the extensive works at Barry Docks, England.
In the wide field of transportation, the most notable undertaking is of course the great Siberian Railway. Work has been pushed so vigorously that the line will soon reach Irkutsk, an event which will mark the completion of the entire western, and a large part of the transcontinental, line. At the present rate of con struction, the line can be completed in 1898. Considerable activity is being shown in railroad building in Southeastern Africa, and the Congo Railroad is about half completed. In the United States, 1,803 miles only were built last year, a small figure in comparison with those of previous years; but it must be borne in mind that a vast amount of work has been done in the improvement of roadbed and rolling stock. The past year has not been marked by any such spectacular railroad runs as distinguished its predecessor; but there has been a tendency to accelerate the running speed of the average train. This has been rendered possible by the improved condition of the track and the ever increasing weight and power of the engines. The favorite type of locomotive for fast passenger traffic, if we may judge from the recent examples, has cylinders 19 to 20 inches diameter by 24 to 26 inches stroke; 180 to 200 pounds of steam; drivers, $61 / 2$ to 7 feet in diameter, and about 2,000 square feet of heating surface.

Electric traction has continued to make steady progress during the year. Its ultimate application to the trunk railroads has been brought a step nearer by the excellent results obtained during the year on the Nantasket branch of the New Haven road, which have been so good that the company has determined to lay a third rail on other branches of its system. Of the attempt to apply electric traction to the main lines by the builders of the Heilmann locomotive, it can only be said that if it proves to be successful, it will be in flat contradiction to the commonly accepted principles of the conversion of energy. The company claims to have been so encouraged by results that they are building larger and much more powerful machines. The successful operation of the Lenox Avenue underground trolley lines in New York City during the snows of last winter, and the determination of the company to put in the same system on forty miles of their horse car lines brings the day a little nearer when overhead wires will be abolished from our streets. The year has seen the opening of the Buda-Pesth electric underground road in Europe, and in this country the Boston Electrical Subway has progressed favorably. The deep underground electric railways of London have proved so successful that several new schemes are in progress and proposed. The Snaefell Mountain Railway in the Isle of Man has scored a brilliant succes for electric traction, in sharp contrast to its unfortu nate contemporary across the channel in North Wales, the Mount Snowdon steam rack railway. Much inter est attaches to the line opened this ycar at Lugano,
Switzerland, where the three-phase system receives its Switzerland, where the three-phase system receives its
first application to traction. The cars carry a double trolley and the rails are utilized as one conductor Limits of space prevent a detailed reference to the ever increasing applications of electric power, chie among which is the transmission from Niagara to Buffalo. Suffice it to say that the year has seen its further extension in the shape of electric locomotives for mining and general yard work, its extended application to elevators, motor carriages, the manipula tion of warship appliances, artillery, to various house hold uses and a multitude of other purposes.
Compressed air, notwithstanding the loss of power inseparable from its compression and expansion, has come to the front this year, especially in this country, where the Hardie and Hoadley patents for railway mo tors have been extensively tested on the streets of New York City. Both of these attempt to overcome th
loss by a system of heating the air previous to its ad
mission to the cylinders. The Hardie motor has given such satisfaction that it is shortly to be applied ex perimentally to the elevated railroads in this city Compressed air has also undergone a successful test on the United States monitor Terror, where it is applied to the manipulation of the turrets.
The motor car, or horseless carriage, has attracted more attention this year than any other device in the field of mechanical engineering, always of course ex cepting the bicycle. Our columns have kept the public well informed, both by cuts and descriptive matter, of the progress of the industry. The record of the year proves that the motor car has come to stay, and give cause to believe that it will enjoy a popularity second only to that of the bicycle itself, and a commercial utility far greater. The greatest performance of the year was that of the winning machine in the Paris Marseilles race, which covered 1073 miles at an average speed of over 15 miles per hour. In this country we have had the Cosmopolitan race on Decoration Day and the track race at the Providence State Fair. The way has been opened for the new industry in England by the repeal of the antiquated laws restricting the use o motors on common roads. In the inaugural parade (so called, it was really a race) the winning car made a speed of over 20 miles per hour for the whole journey from London to Brighton. At present the oil motors are in almost undisputed possession of the field; but there is every reason to expect that when the steam engineers have had time to develop a suitable form of engine and boiler, this supremacy will be disputed.
The bicycle still continues to enjoy an enormous popularity. It has undergone little or no organic change this year in its construction; the diamond frame, chain-driven machine continuing to be the prac tically universal type. There is a tendency to raise the gear from $661 / 2$ to .74 or even 80 . The tendency to study the comfort of the rider is seen in the great attention which has been paid to the production of a comfortable saddle, built on so-called "hygienic" prin ciples. The single tube tire appears to be displacing the double tube; and the weight of the average ma chine remains at about 23 pounds.
The close of the year 1896 sees no abatement in the craze for naval shipbuilding which has taken posses sion of the nations. England, France and Russia con tinue to make enormous expenditures on their fleets and Germany, on a smaller scale, is maintaining he activity of the last few years. Speaking generally of the designs, there is a tendency to sacrifice armor to armament and speed. This is very noticeable in the latest battleships of the English navy, known as the new Renown class, which, with a displacement of nearly 13,000 tons, will have only eight inches of armor on the sides, six inches on the bulkheads and ten inches on the turrets. On the other hand, they will carry nearly 2,000 tons of coal and steam about nineteen knots It will thus be seen that the dividing line between battleship and armored cruiser is gradually disappearing. One of the most sensational events of the ear was the speed attained by the torpedo boat de troyers Desperate, of the British navy, and Forban, of the French navy, both of which exceeded thirty-on knots an hour. The naval progress of the United States during the past year has been altogether unpre cedented. The most nutable fact is the completion of that powerful trio of battleships, the Indiana, Massa chusetts and Oregon, which are universally conceded to be the most powerful fighting machines afloat. Each of them considerably exceeded the contract speed at its trial, the Oregon touching seventeen knots an hour The Brooklyn was nearly two knots ahead of its tria speed of twenty knots, and this vessel also enjoys the distinction of being the most effective ship of her class afloat. The monitors Monadnock and Terror, the ran Katahdin, and the torpedo boat Ericsson have also been accepted. In- naval strength, the United State have now moved up to sixth place, and they will even ually be ahead of Germany on the list, if the present activity continues.
We have so recently illustrated the recent developments of shot and armor that it is sufficient to say that the year closes with the Harveyized reforged nickel stee plate and the compressed fluid steel solid shot of Ameri an manufacture still in the lead
In the merchant marine it is gratifying to record that the American liner St. Paul has captured the recor rom Southampton to New York, her time on two suc cessive trips being 6 days 2 hours and 24 minutes, and 6 days and 31 minutes, her speed on the latter trip being 21.08 knots per hour. This result from a ship which was designed for only 20 knots is a distinct tribute to the skill of the shipbuilders. Mention must be made in this connection of the placing of orders by the Japa mesnment with Cramps and with the Union Iron Works for two fast cruisers. It is the firs event of its kind, and full of promise for the future Speaking generally, there has been a tendency the pas year to build cargo steamers of unprecedented size huge carrying capacity and moderate speed, the Penn sylvania, the next langest ship to the Great Eastern and rivaling her in size, being a case in point. Th German yards have two vessels in hand for the Atlan
ic mail service which are to surpass the Lucania, the Frederick the Great being 20 Ieet longer on the water-
line and several hundred tons greater displacement. The world is watching curiously for the trial trip of the Bazin roller ship.
The geographical world has welcomed home this yea rom Arctic exploration Dr. Nansen, who failed to drift across the North Pole, but penetrated to latitude 86 degrees 14 minutes, which is 2 degrees and 50 minutes urther north than ever before attained. The JacksonHarmsworth expedition has mapped out an extensive area of Franz Josef Land, and Lieutenant Peary has eturned safely from his annual Arctic trip. The voy age of Mr. Borchgrevink to Antarctic regions and his earnest representations are likely to result in one or wore well equipped expeditions.
Archæology has reaped a rich harvest as the result of the year's explorations. M. De Morgan's discoveries at Dashur in Egypt, the excavations of Dr. Richardson in Corinth and Herr Dorpfeld at Athens, the finding of Trajan's Ship of State in Lake Nemi, and lastly the splendid results of American investigation in Babylonia are only some of the operations of a particularly suc cessful year
The field of aeronautics is poorer by the loss of Lilienthal, who died a martyr's death, victim of his de votion to science. The most remarkable performance of the year have been those of Prof. Langley's aero rome, which, carrying its own fuel and water, has oared and returned to earth, and also flown 1,500 yards in a horizontal direction, without losing its equilibrium or receiving any damage. The feat of human flight has been successfully accomplished for varying distances by inventors who have followed in the steps of Lilienthal, who was the first to accomplish it successfully. Experiments in kite flying have been industriously prosecuted at the Blue Hills Observatory Boston, and this quondam pastime is likely to be turned good meteorological account.
By far the most dramatic event in the world of science occurred when the year was yet but a few days old. On January 4, at the celebration of the semi-cen tennial of the founding of the Berlin Physical Society Prof. Roentgen announced his discovery of what are now universally known as the X rays. A certain form of vacuum tube was shown to be capable of giving out rays which could penetrate opaque substances, and he publie incredulity was quickly dissipated when X ray photographs began to fill the columns of the lustrated press. Following close upon the announce ment came the fluoroscope, which enabled the effect o the rays to be seen directly by the eye. If no othe vent than this one had to be chronicled, the year just closed would stand out as one of the most famous in the history of Science.

The Pyro-metol Developer.
 by Jex bardwel

Some weeks ago I had a call to do a little street pho ography. The day was very far from beng suitable or snap shot work, but it had to be done then or no at all. It 'had been raining, so that the atmosphere was clear, but there was very little light. The lens I used will work at $f / 4$, but in order to get better dis ance I used the stop $f / 8$. It was with some fear that entered my dark room to develop the plates, but had the satisfaction of having them turn out all right attribute my success to a modified pyro or pyro-meto eveloper which I have employed for some time pas with general satisfaction. Those who have a little time to spare, and who are fond of trying a new thing once in awhile, will possibly find these few notes of interest. In the following formula No. 1 is for use when it is desired to produce a strong negative; No. 2 is a milder form of the same; No. 3 is the usual alkal solution :

For use, take one part of No. 1 (or No. 2 according the kind of negative desired) to one part of No. 3, and add one part of water.
I find that the above quantity of sulphite gives a slight tint which produces an excellent printing negaive, but if you desire a gray negative you can get it by ncreasing the quantity of sulphite. I think those who try it will like it. I have had better results with this formula, both under skylight and landscape, than with any developer I have ever used. You can modify the printing qualities of your negative to almost any extent by increasing or decreasing the quantity of sulphite. -Wilson's'Photographic Magazine:

EVENTH AVENUE RAILROAD.

(Continued from first page)
quartz, which is deposited in a crystalline state on the backed by capital and intelligence to make it the rich cooling of the solution. This process is still in opera- est gold producing territory in the world. The lode tion in the State, and there is nothing improbable in has produced in the past hundreds of millions of dollars propriate signal which will stop the cable or send this theory when the unnumbered centuries occupied and the future is bright for it. In every portion of the out the wagon, as the case may be. If the cable is to in these geological changes are considered. But how lode can be found groups of prospectors searching dili be stopped, the index points to stop on the dial; the did the gold get there? This is a question that has gently for indications, and results are sure to follow. gong sounds the alarm, and there is for the moment puzzled scientists exceedingly and has been the subject Railroads are being projected to pierce the region of great activity in the engine room, where the men rush of much profound investigation. A large proportion the Mother Lode and to make it accessible without for the throttle valves and shut the steam from the ponderous engines, or disconnect the cable drums by operating the clutches. If there is an obstruction on the struction on the track, like a bro-
ken down truck, for example, the wagon is signaled for and the men jack up the truck, attach a false wheel (which they carry and which is like a sleigh runner) and rerunner and remove the truck from the track. When the track is again clear a signal is sent which indicates that the
 laborious effort. The owners of the Mariposa grant have announced their intention to develop that rich section and to re open the mines which heretofor have produced such quantities o rich ore. All is activity on the Mother Lode, and the people of Cali fornia view with mucn complacen cy efforts which they fondly expec will bring to them again the flourish ing days of old.

Tiny Little

Brains.
Dr. William A
ELECTRICAL CONNECTIONS OF SIGNALING SYSTEM, BROADWAY AND SEVENTH AVENUE RAILROAD.
Dr, h celebrated neuro
started. Te be conversatiephone connections are provided, so that station and any point on the road.

The Mother Lode

by enos brown.
The term "Mother Lode" is a designation of the early miners of a vast mineral deposit of gold bearing quartz veins of a definite character occupying a cen tral position in the great auriferous slate belt iden tified by Prof. Whitney, and extends in a northwest and southeast direction through the foot hills paralleling the Sierra Nevada Mountains which form the eastern boundary of the State of California. It begins in Mariposa County and runs northerly through Tuolumne Calaveras Amador Eldorado and Placer Coun lumne, Cala of Plar County it becomes less well de fined, but appears in portions of Nevada, Butte, Sierra and Plumas Counties. In these ten counties most of the gold produced in California has been extracted. The Mother Lode proper, however, includes a region about one hundred miles in length from north to south, with a width ranging from five to fifty miles, with an average altitude of 2,000 feet, and constitutes the largest, richest and most remarkable metalliferous deposit of precious metals known in the world.

In this district is found a large number of gold bearing quartz veins irregularly distributed and interrupted by sterile and unproductive areas which usually occur in a belt of black slate with either slate, diabase, serpentine and occasionally granite as wall rock. In these veins is generally found a peculiar green vein mat ter which has been considered as characteristic of this auriferous belt and has received the name of mariposite, from the fact of its being found so abundantly in Mariposa County.
The veins of this region are also considered more reliable from the fact that they have proved, in some cases, to be rich at a depth of 2,000 feet, and consequently permanent producers.
The largest and most important gold mines in California tant gold mines in California Church, Plymouth, Eureka, Keystone, Morgan, Utica, Rawhide, Josephine, Saulsby, Idaho, Empire, Kennedy, Princeton, Sheepranch, Providence and others with their record of milions. From observations of geologists it would appear that the origin of this vast reservoir of mineral wealth in all probability was that, at the time of the upheaval of the Sierra Nevadas, and the consequent disruption and tilting of the adjacent rocks, a series of fissures were formed which were subsequently filled with quartz and other mineral matter by alkaline water at a high temperature. Alkaline solutions at a high temperature and under great pressure will dissolve large amounts of

ogist, says the ganglia, which run like little threads o silk throughout the body, are tiny little brains, largely made up of the same kind of gray matter that compose the thinking part of the brain. While the sensitive ganglia send their little tendrils into every portion of the body, there is an especially large amount of them about the heart, and, really, according to Dr. Ham mond, the human heart actually thinks on account of it. When we are frightened, the heart almost stop beating.
How could it do it, unless it really thought? It would be impossible.
The heart brains are the little gray ganglia, and they recognize the emotions of joy or pain or fright by sending quick throbs and thrills through the heart, which Dr. Hammond calls a secondary brain. It is well known that the ancients believed different organs of the body to be possessed of mental attributes, and this idea has been handed down to us in such expressions as a " brave heart," a " noble heart," a "splenetic nature," and the tike.
Crossgrained people are said to have their spleens out of order, and the ancients located anger, resentment and impatience in the spleen.
An immense amount of gray matter or tissue runs back of the stomach, and a heavy blow there will kill as quickly as if the brain itself had been struck.
Wherever the ganglia congregate is a vital spot, and instead of thinking solely with the gray matter that is within our skulls, we think in every important organ and throughout every prominent function within our bodies. So says Dr. Hammond, and science, adds the New York Tribune, seems to agree with him.

The St. Elmo's Fire.
In the June number of the Annalen des Hydrographie there is an interesting discussion by H . Haltermann, of the occurrence of St. Elmo's fire at sea, based upon observations in the log books received at the Deutsche Seewarte. The tables contain full details as to position, conditions of weather, etc. During more than 77,000 days of observation the phenomenon was observed 164 times, 87 times in north and 77 times in south latitude. Its occurrence differs very considerably in different parts of the ocean-e.g., in the ten degree square lying bedeposition of gold in the veins of quartz. Tellurium is tween the equator and 10 deg. N. lat. and between a volatile element which sublimes at a low temperature and carries the gold with it. In all probability it has had much to do with the depositing of gold in these mines. The hope of California as a gold producing section ies in the development of the Mother Lode. From only a few mines within a limited territorial range it is producing $\$ 10,000,000$ annually. Its area is mostly maiden ground which only waits the effort of labor

20 deg. and 30 deg. W. long., St. Elmo's fire was observed about three times per 1,000 days, while in the two squares lying between 50 deg . and 60 deg . S lat and 60 der 80 W long it 10 deg. . lat. and $1,00 \mathrm{deg}$. and 80 deg. W. long. it occurred six mes per 1,0 das. The more frequent occurrence at sea than on land is attributed to the fact that the accu-
mulating electricity is more easily conducted by the numerous objects projecting into the air over the land.

ELECTRIC ELEVATOR FOR FIREPROOF BUILDINGS

TFE LATEST IMPROVEMENTS IN ELECTRIC ELEVATORS.
The adaptation of electricity to the working of elevators in buildings has been watched with great interest, and the fact that electric elevators are now achieving a marked degree of success, and coming largely into use, is looked upon with great favor by the public. The large illustra-

THE AUTOMATIC SAFETY CAR STOP

grade electric passenger elevator for fireproof build- any cause, the centrifugal governor operates a clutch ings, the only combustible material used in it being which stops the movement of the rope. As the car conthe floor of the car. The motor is anchored to a tinues to descend, the safety drum is caused to revolve, brick foundation in the basement, and takes up but applying a gradually increasing vise grip to the steel little space. This class of machine is built by the guide rails on either side and bringing the car to a gradual Elektron Manufacturing Company in sizes ranging stop. The machine also has a compiete line of safety from 5 horse power to 20 horse power, for speeds devices, as shown in the illustration of the switch and ranging from 40 feet per minute to 200 feet per minute brake mechanism, where may be seen the attachment and for capacities from 2,000 pounds to 5,000 pounds. of the two switch knives directly to the operating sheave. In the small illustration is shown a machine for speeds This sheave is loose on the drum shaft and is rotated ranging from 10 feet per minute to 100 feet per minute by the wire rope from the car at the will of the operator. and capacities from 10 pounds to 500 pounds, while still smaller and larger machines are made.
These elevator machines are of the "worm gear" class, by perfecting the design and workmanship of which high efficiency and smooth running have been secured, the efficiency of the passenger gears being proved to be over 75 per cent. The drum, gearing, motor and switch are all mounted on one heavy cast iron bed plate. The gear is of gun metal, with teeth accurately hobbed from the solid, and the worm and worm shaft are made from one steel forging accurately turned in the lathe. Both gear and worm run in an oiltight case or housing, which also contains the bearings. The electric motor is coupled direct to the worm shaft by a heavy insulated coupling, which also serves as a brake wheel. The motors are constructed especially for elevator work, having great starting power, high efficiency and durability. They are heavily insulated from all other parts of the machine, thus obviating all danger of a shock to the operator in the car.
The plant illustrated is what is known as a "six cable job," there being two wire cables from the winding machine to the car; two from the car to the car counterweight and two from the machine to the machine counterweight. By this means it is possible to "overbalance the car," and it is found that the best practice is to overbalance equal to the average load The sheaves over which the cables run at the head of hoistway are of cast iron. with steel shafts running in babbitted self-oiling bearings. These bearings are supported by heavy steel beams, which are in turn supported on the walls of the building. The guides for the car and counterweight are of planed tee iron, with fish plates at the joints, making a perfectly smooth and straight track for the car. The frame of the car is composed wholly of steel channel beams. The cables and safety devices are all attached to this frame, relieving the car of all strain. The car itself sets upon the two bottom beams of the frame and is strongly braced to the side beams. The car, as will be seen, is of highly ornamental iron work, and is usually provided with electric light chandelier and with electric annunciator connected to call buttons at each landing
As shown in the illustration, the control of the car is by hand wheel, but where preferred on moderate speed elevators the straight hand rope is used. The starting, stopping and reversing is accomplished with the greatest ease and sinoothness. The switch, which is shown nounted on the operating sheave at one end of the drum, is very substantial, and, being mounted on a large radius, moves very rapidly as compared with the movement of the operator's hand; it also breaks contact with a pronounced snap. Troubles with the burning of switch contacts have in this apparatus been
entirely avoided. The automatic rheostat is shown atentirely avoided. The automatic rheostat is shown at tached to the wall back of the machine and insures a suddenly the operator may throw in the switch
In the construction of the passenger elevator, the question of safety has justly received the first consideration. What may be styled the "car safeties" are shown in the large illustration, and also in detail at the bottom of car. An endless rope passes over the governor wheel, which is located on the overhead beams, around an idler wheel at the bottom of the hoistway and several times around the safety drum on the car. This rope is, by a spring pressure, caused to move normally with the car. In case of the breakage of the lifting ropes, or in case of excessive speed due to

THE BRAKE SWITCH AND AUTOMATIC STOPS ON THE MACHINE.

Science Notes.

Mr. Igi, of the College of Science, says the Japan Weekly Mail, of Yokohama, is assured from data that he collected during a recent tour of investigation in the Sanriku district, that the seismic wave of June was due to a submarine volcanic explosion. He places the center of the disturbance about 200 leagues east off the coast of Yoshihama, Kisen district, corresponding to 39° lat. N., 149° long. E. He thinks that the phenomenon was similar to the Krakatoa disaster, save that instead of the volcano being on land, as in the East Indian catastrophe, in this instance it was far beneath the surface of the sea. He says that the temperature of the sea in the neighborhood has been raised 3° above that prevailing in ordinary years.
The number of students in German universities last summer is reported, says Science, to have been 29,802 ; summer is reported, says Science, to have been 29,802 ; the present year is 993 , or 3.5 per cent. The distribution of the students among the various universities was as follows : 4,649 in Berlin, 3,777 in Munich, 2,876 in Leipzig, 1,863 in Bonn, 1,425 in Breslau, 1,415 in Halle, 1,379 in Freiburg, 1,339 in Wurzburg, 1,172 in Tübingen, 1,164 in Heidelberg, 1,138 in Erlangen, 1,007 in Göttingen, 965 in Marburg, 948 in Greifswald, 938 in Strassburg, 761 in Jena, 708 in Kiel, 700 in Königsberg, 630 in Giessen, 500 in Rostock, and 420 in Münster. The number of students at Vienna was 2,228 , but only 1,370 of these were regular students.
M. Moissan has recently carried on certain new experiments relating to the preparation of the diamond. He says: "A new combustion was made of diamonds prepared in part by means of small cylinders filled with charcoal of sugar, and partly by means of metallic blocks of iron and copper. These two procedures furnished the purest diamonds. They sank in methylene iodide, scratched rubies with ease, and contained no black diamonds. The weight of the diamonds was $5 \cdot \gamma$ mgrm. ; when burnt, they left a trace of ash, the weight of which could not be appreciated with the bal weight of which could not be appreciated with the bal-
ance. We collected 20.5 mm . of carbonic acid. Theory ance. We collected 20.5 mm . of carbonic acid. Theory
requires for 5.7 mgrm .20 .9 mm . This substance responds to the fundamental property of carbon, yielding for 1 grm . of substance 3.666 grm . of carbonic acid.' Lieut. De Gerlache, the leader of the projected Bel gian Antarctic expedition, says that it will start from Antwerp about July 15 next. The steamer Belgica will carry a three years' supply of provisions, and will probably be absent about two years. During the first year the expedition will go to the east of Graham Land in George IV Sea, and then winter in Australia. The second year they will probably go in the direction of Victoria Land. "We intend," the lieutenant says, "more especially to devote ourselves to geological and zoological research, taking for this purpose specimens from the various sea depths and the submarine deposits. We shall also estimate the sea temperature at different depths, and, in short, make researches similar to those by the Challenger and other Antarctic expeditions."
The ordinary pictures and diagrams of icebergseven those that occur in standard text books-are im possible and absurd, according to Mr. Goode. He says, in a letter to Science: "When we stop to think that an iceberg is merely a floating piece of ice, free to move in the mobile liquid water, we shall see at a glance that, to be in stable equilibrium, the shortest dimension must be vertical. A berg as large as shown in some of these amusing cuts could not be kept in position by a whole fleet of great ships with grappling hooks and cables It is true that in some cases the artist has fitted blocks of stone into the ice near the bottom. But this has been done, very probably, to show the ice as an agen in transportation, and not in any case has he put bal last enough there to hold the berg down." The write gives a list of some standard works that contain these false and misleading pictures.

The republic of Venezuela has granted a concessio to the National Association of American Manufactur ers, whereby the latter, on behalf of the manufacturer of this country, are authorized to erect in the cities of Caracas, Valencia, Maracaibo, and Ciudad Bolivar buildings or museums for the permanent exposition of all goods from American manufacturers. The purpose of these expositions is to give the Venezuelans an opportunity of formally inspecting and comparing our goods with those of the old world. Consul Plumacher United States consul at Maracaibo, says that England France, and Germany overrun South America with commercial traveling agents, mostly energetic young men, well versed in the Spanish language and customs of South American people, but that a commercia traveler for an American house is seldom seen in the country. The American association very properly argued that permanent expositions are far cheaper than employing traveling agents, and it is expected that the arrangement which has just been consummated will be of great benefit to manufacturers of this country. In order to facilitate these expositions, the Vene zuelan government has agreed that all goods from thi country for either of said expositions shall be admitted free through the custom houses, the regular duties upon importations to be paid only upon the sale of the goods imported.

an improved pipe wrenci

The simple, strong, self-adjustable tool shown in the ilustration forms the subject of a design patent re cently issued to W. T. Johnston, and manufactured by W. T. Johnston \& Company, of No. 32 Cortlandt Street New York City. It is a strictly
high-grade tool, made of the best drop forged steel. There are only three pieces or parts in the tool, all strong and well proportioned, and the facility with which, from the special forma tion of the jaws, it may be made to engage and firmly grasp any size of pipe within its capacity is apparent at a glance. There are two sizes of teeth in the fixed jaw, the coarser outer and the finer inner teeth of which also aid in enlarging the usefulness of the tool. The wrench is made in various sizes, and size No. 16 takes from one-quarter inch pipe to one and a quarter inch pipe, a wide range of duty for a tool so readily applied.

Neglected Drugs.
On the analysis of 27,000 pre scriptions recently made by Prof Patch, President of the Ameri can Pharmaceutical Association it was shown that the pharma copœia was sadly neglected by physicians. Only seventeen vegetable drugs were prescribed and more than 100 drugs of veg etable origin neglected. Ten metals were honored, but more than ten were left out in the cold. In the study of 217,000 prescriptions from nineteen drug stores distributed in Chicago Philadelphia, Bayonne, New

IE JOHNSTON PIPE ington, Baltimore, Denver, San York, Boston, Washing, Cincinnati, and St. Louis Francisco, New Ore proprietary articles, not including many elixirs, pills, tablets, fluid extracts, etc. which were of specified manufacture.

A NOVEL NAUTICAL REGISTERING APPARATUS.
For registering the course of a vessel on a globe o map, and also indicating its course, the apparatus shown herewith has been devised and patented by Pedro Samohod, of Lima, Peru (Nazarenus 145) Tubes with outwardly projecting branches extend

SAMOHOD'S NAUTICAL REGISTERING APPARATUS.
toward the bow and stern, at the bottom of the vessel and in the main rear tube slides a rod carrying a mall piston, which does not engage the walls of the ube. The two tubes are connected with a central cas ing from which a pipe runs upward in the vessel, and a cord attached to the inner end of the rod carrying the piston extends over pulleys and up through thi pipe to a connection with the hand of a speed indicator
on a dial. The cord passes through and is connected
with a spring-held disk in a semicircular sleeve, the spring drawing the piston forward against the action of the water flowing through the apparatus, and the piston and the indicator hand, accordingly, assuming different positions according to the speed of the vessel. Where the main forward or inlet tube enters the casing is journaled a small turbine whee which, by means of bevel gears, drives a shaft which extends up through the pipe and operates a transmission gear connected to a ball adapted to rotate about a horizontal axis, and which supports a globe, other balls in sockets at the sides holding the globe steady.
By this means the globe is rotated as the vessel ad ances, and the course is indicated by a pencil or marke attached to the under side of the speed dial, but for other than a straight course the globe must be corre spondingly rotated about a vertical axis, which is ef fected by balls engaging its sides and secured to ver tical shafts adapted to be turned through a cord and pulley connection with a hand wheel, a portion of this mechanism being also connected with an adjustable pointer adjacent to the ship's compass. As an attendant turns the hand wheel, so that the pointer will re main in registry with the needle of the compass, the globe is also turned about its vertical axis, and a cor rect record is thus made of the voyage. To clean the casing and tubes at the bottom of the vessel, end valve in the tubes are closed and the casing is connected to a pump by which its contents are discharged. The position of the globe in relation to the marker is adjusted the beginning of each voyage, and the record on the globe is always in view.

Speeding a Locomotive.

At sixty miles an hour the resistance of a train is four times as great as it is at thirty miles-that is, the fuel must be four times as great in the one case as it is in he other. But at sixty miles an hour this fuel must be xerted for a given distance in half the time that it is t thirty miles, so that the amount of power exerted and steam generated in a given period of time must be ight times as great at the faster speed. This means, ays a contemporary, that the capacity of the boiler, cylinders, and the other parts must be greater with a corresponding addition to the weight of the machine. Obviously, therefore, if the weight per wheel, on ac count of the limit of weight that the rails will carry is limited, we soon reach a point when the driving wheels and other parts cannot be further enlarged, and then we reach the maximum of speed. The nic adjustment necessary of the various parts of these mmense engines may be indicated by some figures a to the work performed by these parts when the loco motive is working at high speed. Take a passenge engine on any of the big railroads. At sixty miles an hour a driving wheel five and one-half feet in diameter revolves five times every second; now, the reciprocating parts of each cylinder, including one piston rod, crosshead and connecting rod, weighin about 650 pounds, must move back and forth a dis tance equal to the stroke, usually two feet, every time the wheel revolves, or in a fifth of a second. It starts from a state of rest at the end of each stroke of the piston, and must acquire a velocity of thirty-two fee per second in one-twentieth of a second, and must be brought to a state of rest in the same period of time. A piston eighteen inches in diameter has an area of $541 / 2$ square inches. Steam of 150 pounds pressure per square inch would, therefore, exert a force on the piston equal to 38,175 pounds. This force is applied alternately on each side of the piston ten times in a second.-Boston Journal of Commerce.

Recent Archæological News.

Recent excavations made by the trustees of the British Museum in Cyprus give an acquaintance with what, was the site of Curium, which was built on the summit of a rocky elevation "some 300 feet above the sea, and was almost inaccessible on three sides." The special feature has been the discovery of a necropolis dating from what is called the Mycenean period. In the Mycenean tombs were found primitive races of the pre-Phenician time. But other and more valuable objects have been discovered, as a sard scarab bearing the name of Khonsu-which would make its date somewhere between the years 660 and 527 B. C. ; also, there was a Phenician cylinder, the date of which cannot be earlier than 600 B. C. The choicest object was a steatite scaraboid of masterly execution. Finger rings, ear rings, bronze bracelets, plated with gold, a necklace of delicate workmanship, have also come to light. Some of the vases are believed to be of Grecian make.
An explorer recently found in Egypt a bronze bowl and a series of iron tools of forms quite unlike any known in Egypt, and they are thought to belong to an Assyrian armorer about 670 B . C. These tools, comprising three saws made for pulling, not pushing, one rasp, one file, several chisels and ferrules, a scoop-edged drill, two center bits, and others, are of the greatest value in the history of tools, as showing several forms of an earlier date than was thought possible. They are.probably of Assyrian origin.

Recent Patent and Trade Mark Decisions. Richardson v. Lidgen (Commissioner's Decision), 77 O. G., 153.

Abandonment.-Where a part of an application was separated from the remainder and an application was made for such part and applied for more than two years after the separation of the two, but while the first application was still pending, it is held that there was no abandonment
Ex parte Flomerfelt (Commissioner's Decision), 76 O. G., 2,007 .
Effect of Extensive Sales on Patentability.-Where the patentability of a device is not clear, extensive sales may resolve the doubt of patentability in favor of an application, but it is an unsafe criterion and must be carefully applied.
Cook v. Stover (Commissioner's Decision), 76 O. G., 2,007.
Disclaimer in Interference Proceedings.-Where a party to an interference proceeding desires to disclaim, he must enter the disclaimer in his specification.
Ex parte Bryant (Commissioner's Decision), 77 O. G. 451.

Reissue to Broaden Claims.-Where an applicant acquiesces in the limited construction put on his invention and at no time during the prosecution of his original application intimated that the invention resided in the broad device sought to be claimed in the reissue application, it is clear that the failure to make the claim in the original patent did not arise through inadvert ence, accident or mistake, and the reissue must be re fused.
Phelps v. Hardy v. Gotman \& Stern (Commissioner's Decision), 77 O. G., 531.
Amending a Divisional Application.-In a divisional application the addition of mere details, such as braces for frame, is not objectionable, especially when such details were shown in figures of the original that were not shown in the divisional application.
Who Shall First Take Testimony in an Interference Case.-Where a party divided an application and filed a divisional application on a part thereof later, and in the meantime an interfering application was filed, the party who filed the divisional application is entitled to carry his date back to the time when he filed his original application, thus making the other party take his testimony first.
Constructive Reduction to Practice.-The filing of a complete allowable application was regarded as a con structive reduction to practice, but neither an executed application merely nor a complete application is so con sidered.
Loewer v. Ross (Commissioner's Decision), 76 O. G., 1,711.
Actual Reduction to Practice. - A device which showed every feature of an invention in controversy and was adapted to perform the work for which it was intended and actually did such work, although it was not commercially perfected and did not work as efficiently as later devices, is held to have been a reduction to practice.
Reissue After Intervening Rights Arise.-If it ap peared that other parties were using the subject mat ter not claimed in a patent, a reissue to recover such matter cannot thereafter be obtained.
Sievert v. Shuman (Commissioner's Decision), 76 O. G., 1,715.
Binding Effect of a Preliminary Statement.-A preliminary statement made in an interference proceeding binds the party only in proceedings in which the same parties are involved.

Motion to Dissolve an Interference.-A motion to dis solve an interference can only be made after the de claration of interference and not while such declara tion is being considered.
Ex parte Weaver (Commissioner's Decision), 76 O. G., 1,715.
Reissue to Cure a Mistake of the Patent Office.Where an application is filed for a reissue to cure a mistake of the Patent Office, a full re-examination of the case may be made, as it would not be proper to reissue a patent when it is known that a statutory bar exists. Jenkins v. Burke (Commissioner's Decision), 77 O. G., 972.

Impertinent Testimony in Interference Case.-Testimony relating to the character of the parties is not evidence regarding the priority of invention and it should therefore be stricken from the record.
Recalling Witness.-There is no rule against recalling a witness in a case, although it is a circumstance that may touch his credibility.
J.'G. Brill Company v. Wilson (U. S. C. C., Pa.), 75 Fed., 1,002.
Street Railway Summer Cars.-The Brill patent No. 315,898 , consisting mainly in the use of metal instead of wooden panels for the ends or sides in car seats has been declared void for lack of invention.
Union Switch and Signal Company v. Pennsylvania
Railway Company (U. S. C. C., Pa.), 75 Fed.,
1,004.
Preliminary Injunction.-Preliminary injunction
should not be granted where the patents in suit have not been judicially considered and involve complicated apparatus about which experts differ radically both in matters of opinion and matters of fact, and where the question of infringement depends largely upon the construction to be given to the claims in view of the prior struc
art.
Thomson-Houston Electric Company v. Kelsey Elec tric Railway Specialty Company (U. S. C. C. A. 2d), 75 Fed., 1,005.
Contributory Infringement.-An injunction against one who, by his advertisements and course of business, shows a willingness to co-operate with an infringer who may present himself, by making and selling to him a device or element of a patented combination to be used in connection with other parts obtained from a differ ent source.
Electric Railway Trolleys.-The Vandepoele patent No. 495,443, for an improvement in traveling contacts for electric railways, to furnish to the user of the inven tion a trolley stand, which is one of the elements of the combination to replace the original stand which has become broken or otherwise useless, does not consti tute an infringement of the patent.
Infringement.-One who purchases the apparatus covered by the Vandepoele patent, No. 495,443, has a right, immediately thereafter, to discard the element known as the trolley stand, and purchase from another a different stand which he thinks is better suited to his purpose.
Cassidy v. Hunt (U. S. C. C., Cal.), 75 Fed., 1,012.
Fruit Drying Apparatus.-The Cassidy patent, No 172,608, has been held valid.
Damages for Infringement in Actions at Law.-In actions at law the plaintiff can recover only for the actions at law the plaintiff can recover only for the If the royalty is shown to have been established, it is usually taken as the measure of damages, but in the absence of an established royalty what would be a reasonable royalty must be determined, and in determining this it is proper to consider the utility and advantage of the invention over the prior art, and the profits made by the defendants may be considered in arriving at a just conclusion.
Clarke v. Pellengill v. Crancer (Commissioner's Deci-
sion), 77 O. G., 1,271.
Petition for Rehearing.-A petition presented to the commissioner asking that the examiner of interference be directed to reconsider his decision relating to priority because such decision is a travesty on equity practice, a gross injustice, in direct contradiction of the evidence, and in excess of the powers of the examiner, is wholly unjustifiable, specially when the record discloses that the exam
fairness.

The Heavens for January.
 THE SUN.

On January 1 the sun's right ascension is 18 h .50 m 32 s .; and its declination south of the celestial equato is 22 deg .56 m .45 s .
On the last day of the month-its right ascension is 20 h .58 m .28 s .; and its declination south 17 deg 9 m .43 s . So, as will be seen, the sun is well started on its northward journey, being six degrees farther north than on December 21.

MERCURY.

Mercury is evening star during the early portion of the month, but its extreme southern declination rend ers it a somewhat difficult object to pick up with the naked eye. The most favorable time to see this shy little world, always so closely embraced by the great central orb, is on January 6. It will be on that date at its greatest elongation eastward from the sun, viz., 19 deg. 9 m . From thence Mercury sweeps rapidly toward the sun, with which it is in inferior conjunction on the morning of January 22, at 10 o'clock, when it changes to morning star.
Mercury is in conjunction with the moon on the fourth of the month at 34 minutes past noon, when the planet is only 8 minutes of arc south of the moon. It is again in conjunction with the moon on the last day of the month at 3 A . M., when Mercury will be 5 deg. 11 m . north of the moon.
On the first of the month Mercury crosses the meridian at 1 h .23 m . in the afternon. On the last of the month at 10:58 A. M.

venus

Venus is evening star, and a most glorious object it is in the southwestern heavens, soon after sunset. It is still increasing its apparent distance from the sun, as seen from the earth, and its splendor increases also throughout the month.
Venus is in conjunction with the moon on the sixth of the month at 2 h .14 m . in the afternoon, when the planet will be 3 deg. 7 m . south of the moon.
On January 1 Venus crosses the meridian at 3 h . 0 m . in the afternoon, and on the last day of the month at $3 \mathrm{~h} .8 \mathrm{~m} . \mathrm{P}$. M. The right ascension of Venus on
the first of the month lis 21 h .47 m .23 s .; declination the first of the month lis 21 h .47 m .23 s. ; declination the
south 15 deg. 10 m .87 s.

On January 31 its right ascension is 23 h .53 m .27 s . and its declination south 0 deg. 34 m . 58 s. On the succeeding day Venus crosses the celestial equator. It sets on the first at 8 h .5 m. P. M. and on the last day of the month at 9 h. $6 \mathrm{~m} . \mathrm{P}$. M.
mars.
Mars is evening star and is at a good elevation in the eastern sky as soon as it is dark. By eight or nine o'clock good telescopic work may be done upon this interesting celestial neighbor. Although Mar passed opposition in December, when it was at its nearest approach to the earth, practically as good views may be obtained of this planet during the next few weeks as at opposition. Much remarkable detail has been detected upon Mars by the writer during the past ten days, with the 10 inch telescope of this observatory.
Mars is in conjunction with the moon on the fourteenth at $10 \mathrm{~h} .21 \mathrm{~m} . \mathrm{P}$. M., when the planet will be 1 deg. 42 m . south of the moon. The apparent motion of Mars has been retrograde for some time, but on January 16 the planet is stationary to the west of the horns of Taurus.
On the first of the month Mars crosses the meridian at $9 \mathrm{~h} .56 \mathrm{~m} . \mathrm{P} . \mathrm{M}$., and sets at 5 h .35 m . the follow ing morning. On the last of the month it sets at hal past three A. M. The right ascension of Mars on January 15 is 4 h .38 m .19 s . and its declination north 25 deg. 9 m .51 s

JUPITER.

Jupiter is morning star, but it rises so early that it may be well observed by midnight. It is improving in position for telescopic study, and will be an attractive object during the early months of the year.
The following are some of the interesting phenomena of the satellites. All are observable in small telescopes. On January 1, at 11 h .33 m .42 s. P. Mr. the I satellite will disappear in eclipse. At 12 h .1 m .56 s . the II satelite will also disappear in eclipse. At. 2 h .54 m. morning following, the I satellite will reappear from an occultation; and at 5 h .1 m . the II satellite will reappear from an occultation. On the morning of January 9 at 1 h .26 m .44 s . the I satellite will disappear in eclipse. At 1 h .26 m .44 s . the I satellite will disappear in ecilipse. At
2 h .38 m .6 s . the II satellite will disappear in eclipse. At 2 h .38 m .6 s . the II satellite will disappear in eclipse. At
4 h .41 m . the I satellite will reappear from an occultation. On January 14 at 9 h .6 m . P. M. the III satellite will reappear from an occultation. At 10 h .33 m . the shadow of the IV satellite will enter upon the disk of the planet, and at 3 h .15 m . the next morn ing the shadow of satellite IV will pass off the disk. On January 18 at $9 \mathrm{~h} .22 \mathrm{~m} . \mathrm{P}$. M. the shadow of the satellite will egress ; and at 10 h .9 m . the satellite I will pass off the disk. On January 25 , at 8 h .56 m. P. M., pass of the disk. On J shatow of the I satelite will ingress ; at 9 h . 36 m . the satellite I will enter in transit. At 11 h .16 m . the shadow will egress ; and at 11 h .54 m . the satellite the shadow will egress; and at 11 h .
On January 31, at 9 h .10 m . the shadow of satellite IV will leave the disk. At 9 h .42 m . the satellite IV will enter on the disk. At 1 h .34 m .44 s . morning following the I satellite will disappear in eclipse. At 1 h .55 m . the egress of the IV satellite will occur. At 4 h .23 m . the I satellite will reappear from an occultation. At 4 h .48 m . the shadow of satellite II will ingress and at 5 h .53 m . the II satellite itself will enter on the disk in transit.
Jupiter rises on the first of the month at 9 h .30 m. P. M. and is on the meridian at 4 h .3 m . the following morning. On the last day of the month it rises at 7 h .15 m . P. M. and crosses the meridian at 1 h .54 m . past midnight.
The right ascension of Jupiter on January 15 is 10 h . 45 m .57 s . and its declination north 9 deg .9 m .28 s .
SATURN, URANUS AND NEPTUNE.

Saturn is morning star, but is not well placed for observation, especially at the beginning of the month, when it rises at 4 A . M. On the last of the month it ises at $2 \mathrm{~h} .10 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.
Uranus is not in good position for observation. Neptune is in the eastern evening sky, its right ascension on January 15 being 5 h .8 m .9 s ., declination north 21 deg. 28 m .57 s .
Smith Observatory, Geneva, N. Y., December 21, 1896.

The First Daily Weather Map.

One of the important dates in meteorology, about which there has been a good deal of dispute lately, is that which marks the issue of the first daily weather map, says R. De C. Ward in Science. The credit of having been the first to publish such a map has been generally given to Le Verrier, who, on September 16, 1863, began the issue of a daily weather map in Paris. It is a fact, however, that twelve years before that, in 1851, a weather map based on observations made on the day of its publication was issued and sold in the great exhibition in England. The data for the map were collected by telegraph, and its publication was continued from August 8 to October 11, 1851, Sundays excepted. This was without doubt the first daily weather map The September number of Symons' Meteorological Magazine contains a reproduction, about one-quarter the size of 1851.

The Production of British Pig Iron. Many estimable people surveying the statistical evidence of national progress and retrogression appeared to have made up their minds that the industrial prestige of Great Britain was slowly but surely waning, because we seemed to have lost our supremacy as an iron making nation and to have yielded up our priority of position to the United States and to some extent also position to the United States and to some extent also
to Germany. To such persons it may come as an agreeable surprise to learn that the output of pig iron in Great Britain for the first half of 1896, as ascertained by the British Iron Trade Association, places us once more in the front rank as an iron producing country. Our total make of pig iron for the first half of the past year was $4,328,444$ tons, which is a larger output than we have ever before attained in six months. This output, however, is not equal to that reached by the United States in the same period. With the commencement of 1896 the output of pig iron in the United States was at the rate of about $11,000,000$ tons a year, but since then the output has fallen month by month, until it is estimated that it does not now exceed a rate of $6,500,000$ tons a year, while the output for the twelve months, assuming the continuance of the present rate of production, has been estimated at less than $8,500,000$ tons, which would, of course, be less than the British output for the same period, assuming the maintenance of the rate of output during the first six months of the year. As for Germany, which is the next largest iron producing country after Great Britain and the United States, the production up to the present time justifies the belief that the total output of pig for the year will be about $6,000,000$ tons, or approximately about $2,500,000$ tons under the output of the United Kingdom, from all of which it seems reasonable to expect that at the end of 1836 our own country will have fully reasserted its old supremacy.
The most striking feature: 3 of the progress that has been achieved in the pig iron industry of the United Kingdom during recent years has been the increased productivity of the plant employed owing to improvements of design and methods of working that almost amount to a revolution. A quarter of a century ago there were 915 blast furnaces erected in this country, of which in this country, of which
688 were in operation. 688 were in oper ation.
These 688 furnaces produced in 1871 an average output of 8,665 tons per furnace and consumed an average of nearly $23 / 4$ tons of coal per ton of pig iron produced. In 1895 the average production of the :344 furnaces in operation in the United Kingdom was 22,700 tons, and the was 22,700 tons, and the
average consumption of average consumption of
coal per ton of iron produced was 1.97 tons, so that in the interval the average output per furnace had increased by about 165 per cent, and the average consumption of coal per ton of pig iron produced had been relluced by about threequarters of a ton. Even these figures, however, do not represent the full measure of the advance that has been accomplished during this period. In some districts the progress has been much greater than in others, and the maximum of progress achieved in a few individual cases points to what might have been to what might have been
done in the way of still done in the way of ster progress and indicates what may be expect-ed.-London Times.

In a recent number of the Scientific American a new element lucium was described. It now appears that this element and its apthat this element and its ap plication to incandescent gas lighting have been patent ed. The patentee claims that lucium exists in monazit sand to the extent of 1.80 per cent. Evidently Berzelius, Davy and others, who gave their discoveries to the world, were not alive to their opportunities.

PAVILION CONSTRUCTED OF BLOWN GLASS BRICKS.
winding stout wire around the joint grooves in such a way that it will pass under one brick and over the next, the course of the next wire being reversed. A similar set of wires is wound in the cross direction, so that the bricks are really set in a wire network into which they are securely cemented.
When large walls or arched roofs are made of these bricks it is necessary to make allowance for expansion, especially if the work has been done in cold weather. For this purpose the edges of the bricks are covered with a thin layer of glue, which is subsequently destroyed by the cement between the bricks and leaves sufficient space for their expansion in hot weather.
It is claimed that they are permanently translucent, and that they have the advantage over double glass windows that they do not admit damp or dusty particles, and never tarnish. The surfaces, exterior and interior, are so ribbed and curved that while abundance of light is admitted, it is impossible to see through them. On this account they may be used where an ordinary window would be objectionable, as in the case of a window that looks into those of a neighboring house. Perhaps the most valuable feature of these bricks is that the air which they contain is an excellent non-conductor of heat, and tends to keep a house cool in summer and warm in winter, and, of course, damp will find it difficult to pass through a wall built this material is admirably adapted to the construction of greenhouses, and it lends itself to some remarkably picturesque effects in this class of construction, the picturesque effects in this class of construction, the also used to advantage in the construction of pavilions, such as the one shown in our engraving, or of city restaurants and places of public resort, where light shall be adnitted, but a view of the interior shall be impossible.

Mensages by Kite Wires. William A. Eddy, Dr. William H. Mitchell and Henry L. Allen sent the Henry L. Allen sent the
first kite telephone and telegraph message in the world over a midair wire, sustained by three large kites, on the evening of December 6, 1896, in Bayonne. Morse sounder telegraph signals were also sent by means of a battery.
The wire was carried alof t by the kites beyond three lines of trees, two roadways, one line of fire alarm telegraph wires, one line of regular telegraphwires and a house. A red lantern was attached to an end of wire passing through a pulley, held at a height of about five hundred feet, and paid out upward and beyond the intervening obstacles. When the lantern had been carried over the line of Lexington Avenue it was slowly lowered, carrying the wire with it to the earth, where Dr. Mitchell soon established ground connections at each end of the wire, when the first telephone message was received by Mr. Eddy. Dr. Mitchell's voice was heard with perfect clearness A telegraph signal by the usual Morse sounder was also successfully transmit ted. The telephone messages and telegraph signals were continued about an hour and a half. Those using the telephone were Wilnam A. Eddy, Mrs. Eddy, Henry L. Allen, George S. Bogert and F. M. Wilson. Bogert and F. M. Wilson.
all of Bayonne. The kites all of Bayonne. The kites
were sent up at 4:30 p. m., were sent up at $4: 30 \mathrm{p} . \mathrm{m} .$,
the telephone wire at 8 p . m ., and both kites and wire were drawn in by 11:30 \mathbf{p} m. Delay was caused by two of the lowering lan terns falling about five hundred feet, the lower-
quiet load, the bricks are laid as shown in our view of an ornamental pavilion, and cement is used in the joints, which are hollow. But when the b̈ricks are used in roof work, or where the finished work will be
subjected to bending strains subjected to bending strains, the cement is assisted by
ing wire having broken owing to a jam in the pulley, nd by the wind, which was to a jam in the pulley west that for a time the lifting force was insufficient Mr. Eddy says the wire can be carried across the Kill von Kull readily, especially with northerly winds.

THE PHILOSOPHY OF PLANTS

It is well known that most animal organisms need the direct influence of sunlight for their proper development, and in the same way plant and in fact, all life on earth, depend and, infact, al on the action of this wonderfu agent. The beautiful structure of stitutes the most interesting part of plant biology, has never been properly understood until now ; but men like Liebig and others have determined the peculiar use of the cells in the life of plants and have also included in their investigations, as of equal importance, the pro cesses of nutrition. Present knowl edge shows that plants take from the atmosphere what is needed for the formation of the cells, and also throw off useless material through the leaves. Thus carbon is taken up by the leaves, which transform, under the influence of sunlight, the carbonic acid taken from the air and through the roots into carbon and oxygen. Water and salts are also taken up by the roots of the plants.

The various ways in which the sunlight affects the leaves and blossoms, and consequently the whole development of a plant, must be study of plant physiology.
It is well known that sunlight has a decided influence on the coloring of the leaves, which look sickly and pale when the plant has only a little sunlight, whereas strong sunlight increases the amount of chlorophyl, thereby giving the leaves a richer color. Referring to the influence of sunlight, we of the rays that work of the rays that work
chemically, others which chemically, others which
act simply as dispensers of act simply as dispensers of
heat, while still others are heat, while still others are
simply light rays, even simply light rays, even
though there is not actually such a division in nature. The chemical action of the sun's rays can be best understood by the wonders of photography, and we certainly graphy, and we certainly suming that certain rays of the sun's spectrum also have a special influence on the plant cells, which will, doubtless, affect the plants of the different species differently, for the conditions of light and heat impress themselves clearly on the character of the plants.

Former observations have already proved that certain rays of the sun's spectrum have a harmful effect on plant organisms, while, on the other hand, others accelerate the circulation of the sap and the assimilation of nourishment, thus promoting the growth of the plant. A recent experiment made by the well known French physicist, Camillo Flam narion, at the Agricultura and Climatological Experi ment Station, at Juvisy, indicates plainly the effect of different colored light upon plants, and the re sult is of special value practically and theoretic ally, to plant physiologist and climatologists. I has been clearly shown by the various experiment that ordinary "colorless" light is represented by natural sunlight, because when exposed only to it health and natural growth reign. Colored light, ac cording to the particula color used, causes eithe one sided acceleration o retardation of the develop ment of the plant. In his most interesting experi

EFFECT OF DIFFERENT COLORED LIGHT RAYS UPON PLANT LIFE.
planted in pots, in pairs, and placed in a hothouse, where each pot re ceived the same quantity of ligh and an even temperature prevailed so that the plants were subjected to the same conditions. But the experimenter placed over some of the plants bells of green, red or blue glass, whilc others received the sunlight through the plain glass of the hothouse window. The effect of the colored light was soon perceptible in the development of the plants, and the more they devel oped the plainer this difference became, until, at the end of two months, the plants under the red glass were 16 inches high, those under the green glass measured only 5 inches, and those under the blue glass were only 1 inch high while the plants that had been lef in the "colorless" light were 4 inches high. The accompanying engrav ing is a reproduction of a photo graph of these plants.

The red light forced the plants most, for those subjected to it blos somed five weeks after the seeds were planted, and the stems were much longer than the stems of the other plants. The difference be other plants. The difference be
tween them and those exposed to ment, Flammarion adopted the plan of exposing |the blue light was most marked. The leaves of the sensitive plants (Mimosa sensitiva), which he raised latter were, indeed, dark green, while the leaves of from seed, to different colored light. These plants are those subjected to the red light were pale, poor specially sensitive to the effect of light and to touch, in chlorophyl, but the plants themselves seemed and were, therefore, well adapted for Flammarion's periment.
He planted a number of seeds, and the seedings in height since they were placed under the blue He planted a number of seeds, and the seedlings, glass. Therefore, it was proved that the blue light glass. Therefore, it was proved that the blue light

MORTAR IN THE LOADING POSITION.

MORTAR ELEVATED FOR FIRING
to vegration. The iffect to vegetation. The effec of the red light was notice growth of the plants, but also in their sensitiveness for even the slightest touch a breath, was sufficient to cause the leaves to clos and the little stems to droop. The plants exposed only to white light were not. so easily affected, and those raised under blue glass were not at al sensitive. Those raised under white light must be considered normal. They were more stocky and showed a greater tendency to bud, but the buds did not open.

Flammarion extended his experiments to other kinds of plants, such as geraniums, strawberries, etc., but in all cases blue light proved injurious to vegetation, and plants that were exposed to its influence formonths showed no development. All the functions of the plant organism seemed to be suspended. The fruit of strawberry plants developed under bells of different colors, but varied considerably in size and quality, as in some cases the leaves were developed at the expense of the fruit, and in other cases, as when the plants were ex posed to blue light, growth was impeded in every way.
By making these investigations Flammarion has given an impulse to the study of the subject, and new results will be obtained which will be of practical use in gardening and the propagation of plants.Der Stein der Weisen.

COMPRESSED AIR RECOIL
CYLINDERS FOR HEAVY MORTARS.
Despite the theoretical drawbacks attendant upon the use of compressed air, it has features which
render its use desirable for certain special classes of work. We present in this issue cuts of a heavy mortar, whose recoil cylinders are designed to be operated by compressed air. The design was worked out by
Mr. H. A. Spiller, of Boston, Mass., to whom we are Mr . H. A. Spiller, of Boston,
indebted for the particulars.
The carriage consists of a lower and upper racer bed, the upper circular bed supporting the two cheeks of the carriage, which are secured in position by a cross key 3 inch by 1 inch and eighteen 1.5 inch bolts in each cheek. These cheeks are provided with trunnion bearings with caps 30 inches in diameter and 6.5 inch face, for the reception of the trunnions formed on plates connecting in pairs the recoil cylinders.
The four recoil cylinders, 8.5 inches in diameter, are arranged in pairs on each side. They are connected by plates 2.5 inches thick and are provided with horizontal ways 7 inches wide on the sliding face between the cylinders and frames, having crossheads in which the outer ends of the hollow piston rods are secured, and they also carry trunnion bearings for the reception of the trunnions of the mortar. At each end reception of the trunnions of the mortar. At each end
of the lower recoil cylinders is a $1 \cdot 5$ inch pipe conof the lower recoil cylinders is a 1.5 inch pipe con-
nected to same for equalizing the pressure. The holnected to same for equalizing the pressure. The hol-
low piston rods, four in number, 4.5 inches in diameter, extend rearward from lugs on the sliding frame through especially prepared packed glands in the heads of the recoil cylinders, and they are provided with conical valve rods, 2 inches in diameter at the large end,
whereby a portion of the air below the piston is admitted to the space above the chambered heads. When
the gun is fired, the recoil is taken up by means of gun is fired, the recoil is taken up by means
cushion of compressed air, and the arrangement allows a sufficient amount to pass to the forward ends of the cylinders to nearly form an equilibrium of pressure on both sides of the pistons, thereby taking up the counter recoil and forming a positive elastic cushion by which the dead weight of the gun is supported. On these recoil cylinders cast in pairs, and on the opposite side of the $2 \cdot 5$ inch plate from the recoil cylinders, is cast a trunnion 30 inches in diameter which supports the plates and the two cylinders. This trunnion fit into the side cheeks mentioned above, which the nortar and recoil mechanism swings on. At the right hand side, and in the center of this trunnion, there is a gage connection and a charging pipe which may con nect with a portable or fixed receiver, charged with a suitable pressure to give 750 pounds initial pressure in the recoil cylinders; as the area of the four hollow pis ton rods must be depended upon to lift the mortar into battery at its highest elevation, this said pressure must ot be lower than 650 pounds.
During its recent test by the government the carriage howed itself to be certain and regular in its action, and its service was attended by no accident or draw back of any description. A knowledge of its merits for practical use in our sea coast fortifications can, how
ever, only be obtained by comparing it with simila
carriages which have been tested by the government These are the carriages already adopted for service, a large number of which are now mounted in their bat teries, and the Gordon mortar carriage. Either of the latter, so far as its practical manipulation for loading elevating and traversing is concerned, differs in no es ential particular from the pneumatic carriage which is the subject of this report; the comparison is therefore reduced to a consideration of the relative merits of oil and compressed air in controlling the recoil. An ex ended experience during many years in firing hun reds of rounds in all possible conditions of tempera ure and weather has shown that the former method involves the simplest possible appliances, which are easily kept in order and ready for action without strain on any part of the system except at the instant of firing The care of the carriage and its manipulation in service require no skilled labor and involve operations easily understood by the average artillery soldier. At a tes of the rapidity of fire it may be mentioned that ten ounds were fired in 22 minutes 20 seconds.

An explosion occurred on Saturday afternoon, Decem er 12, in the Moabit quarter of Berlin, in the house of he scientist George Isaac, who was experimenting with the manufacture of acetylene gas. Isaac and three as sistants were killed. It is stated that Emperor William had intended to visit Herr Isaac's laboratory, as his experiments had attracted ths emperor's attention.

RECENTLY PATENTED INVENTIONS. Engineering.

Boiler.-Lewis M. Barlow, Donaldsonville, La. To prevent the formation of scale in the shell,
and to facilitate the discharge of impurities accumalating and to facilitate the discharge of impurities accumulating
in the mud arum, this inventor has devised a boiler in in the mud arum, this inventor has devised a boiler in hell to the mud drum, near one end of the shell, while a eed pipe discharges into the other end of the shell, rear rum ore, inples leading from near its and pipe. In the erse pipe extending through one end of the drum to the outside, by means of which, on the opening of a valve the impurities in the drum are discharged.

Rallway Appliances.
Car Fender.-Mariano Sparmo and Lonis Russo, New York City. This is a fender which may be readily moved from one end of the car to the may
other, and is light, strong and durable. It is made in
eections, and may be folded npon itself when not needed, sections, and may be folded npon itself when not needed,
but when brought in contact with a person or object while in folded position, the sections are released, and forward spring-controlled sections move automatically into ng car, transferring such obstacles from a point cloee to the ground to the fender, which is of basket form. The forward part of the fender on receiving a weight, has rolling connection with the ground, and, in striking a slight pro
jection, riese suffciently to pase over it without injury.

Street Car Govas. - Thomas Kelly New Orleans, La. This invention ls for an improva device for automatically actuating car gongs while the car is in motion, the motorman sounding the gong as de-
sired when the car is at a standstill. A lever is vibrated by a projection on the car axle, the lever being connected oot piece under the control of the motorman, while spring yieldingly connects the several parts.

Electrical.

Electric Railway. - Andrew C. 'Connor, Lynn, Mass. According to this improvement positive and negative condnctors are carried overhead on
insuated supports, whereby the current is conveyed from the power station to and from the car motor without employing the ground as a conductor. Poles on opposite sides of the track support cross bars carrying the conductors, and insulated swinging arms having rollers at their lower ends are connected at their npper ends with the conductors. Supports on the top of the car carry two condncting bars adapted to engage the rollers carried by the hanging arms, the bars being insulated from the car moves along the bars make contact with the roged at the rear

Mechanical

Countershaft and Belt Tightener. -Eagene C. Weston, Gallatin, Mo. According to this earings has rigidly connected hanger arms which support a countershaft on which are two fixed pullegs, the Arst shaft also carrying a rigidly connected arm on which is a segmental gear engaged by a worm on a vertical
shaft supported by one of the prime hangers, there being shaft supported by one of the prime hangers, there being Belt guides are arranged in connection with the pulleys on the countershaft, and the countersbaft and its parts are carried upward or downward, to ughten the belts or
throw the countershaft out of action, by turning the hand wheel on the vertical shaft carrying the worm.
The improvement dispenses with loose pulleys and is The improvement dispenses with loose pulleys and is designea to effect great saving in the wear and tear

Miscellaneous.
Cleaning Ships' Bottoms.-Charles P. Turner, New York City. A scouring brafh designed to facilitate doing this work rapidly and effectively has
been devised by this inventor. It comprises a casing made in sections, designed to adapt itself to the shape of the hall, and containing a flexible shaft carrying at its
casing being connected with a rope passed around the
hnll on the opposite side, by means of which the can be drawn down sleng by meaus of which the brush held in contact with it. The shaft is revolved by a crank or other power transmitting device provided
with casters adapted to travel on the deck of the

Producing Ornamental Surfaces \neg Rafael J. Chavez and Charles C. Herman, Pana, or ornamenting in a selected color glass, wood, paper, metal, etc., these ine above which is a wire netting supporting a pigment bydrocarbon supply pipe discharging into the furnace above the netting. Pipes connect the furnaces with mixing chamber above, and a receptacle connected with a mixing chamber is provided with means for supporting
the material to be ornamented. When the apparatus is in operation a colored heated gas is produced in each farand turpentine supplied from a tank, the gase and turpentine sapplied from a tank, the gases passing by stencll or pattern.
Level.-Thomas F. Deck. Swanton, Ohio. This level indicates horizontal and vertical posidons, and the angle of deviation when placed out of horizontal position. It comprises a stock having a
transverse bore and opposite concentric recesees, bearing plates seated in the bore, one of which has an annular im engaging with the other plate, and dial plates so cured in the recesses. Rollers have journal bearings in the dials and plates, and a weighted shaft having pointers
ou its ends is journaled on the rollers. There are tranaparent covers for the dials.
Kiln for Burning Brices, etc.Andrew Thaison, Laredo, Texas: This is an improved ziln designed to enable the operator to control the heat o insure a uniform and equal heating of the articles set in the kiln, and at the same time requiring ony a small amount or fnel. It comprises an arched chamber to receive the articles to be barned, opposite fornaces in the sides of the chamber with draught flues above their
inner ends, each having branch flues opening at an angle into the arched roof, whereby the products of combustion pass upwardly and sidewise through the material to be burned, there being dampers in each branch flue and a draught flue from the arched roof of the chamber at each end, as well as a draught flue for each corner of the chamber. All dranght is upward, and the water
readily escapes withont injuring the green brick.
Shutter Operating Device.-Robert H. Ireland, New York City. To facilitate opening and losing doors, shanters, graings, ew., particularly fire tended across the bar, and links different lengths are each connected at one end to one of the sleeves, both links being conpled at their other ends to the same shutter, there being
means for holding the sleeves against movement on the means for holding the sleeves against movement on the
bar. The device also acts as a lock to hold the shatters ar. coeed and open positions.
Sleigh Knee.-Herman and Henry Weile, Medford, Wis. In order that.the body of the sleigh may bave lateral play on the knee to a limited extent construction, applicable to any alete sive construction, applicable to any sletgh ranner. The flanges, with a lng at each side of the center and a clamp adapted for attachment to the body of the sleigh and located on the upper central portion of the knee to have lateral movement between the lags. The clamp has side flanges to engage the side flanges of the knee,
and guide devices connected with the flanges of the clamp are
the knee.
Pencil Sharpener. - Constant E. Consy, New York City. This is a hiche designed to dull, is fed toward the knife of the sharpener to renew its point, the knife being so located ${ }^{\text {on }}$ the sharpener
that the knife and its support form a rest for the fingers that the knife and its support form a rest for the fingers
of the hand grasping the pencil. It consists of a coniof the hand grasping the pencil. It consists of a con
cally tipped tabe around which is a spiral slot, a sleeve in the sleeve e tabe. whe a tube is also designed to protect any portion of the lead that is expoeed and not actually used, thus preventing

Auxiliary Broom Handle.-Loy B. Young, Newport, Ark. To facilitate the advantageons ventor has devised a ready means of attaching an aurilis ary handle to the ordinary handle to lengthen the latter. It consibts of a clamp having semicircular bearings adapted to engage the broom handle and opposite bearthumb screw tightening the parts to firmly draw the

Ash Sifter.-John W. Fee, Chicago ill. This sifter has a suitable casing, in the bottom o which is a receptacle to receive the ashes, and the top being closed by a ccver, while near the top is a removable cylindrical receptacle, which may be taken to the
stove to receive the ashes, and which also constitutes a sifter when in place in the casing, being revolved by a crank handle extending ont at one side. The cinders remain iu the cylinder after the ashes are sifted out, which effected without any escape of dust.
Attaching Harness to Vehicle Shafts.-Frederick Dickerboom, Windom, Minn. A device designed by this inventor is particularly for at-
taching lightracing harness to the vehicle ehafts, whereby taching lightracing barness to the vehicle shafte, whereby the harnees need comprise only the bridle and driving
reins and the saddle, the attachment being connected reins and the saddle, the attachment being connecte with the saddle straps, and a portion of the device being fixtare on the shafts. Attached to the thill is a body with a slot intersected by a bore, while a slotted slide in inwardly spring pressed, a spring pressed bolt stud being
movable in the slot of the slide, and a bnckle with movable in the slot of the slide, and a bnckle with a
stud movable in the slot is engaged by the bolt to pre stud movable in the slot is engaged by the bolt to
vent the disengagement of the stad with the body.

Evaporating Pan.-Leon F. Haubt nan, New Orleans, La. This patent is for one of a number of aimilar inventions by the same inventor, for prises a casing within which is an inclined evaporating plate, on the underside of which is secured a plate formbeiug arranged over the evaporting plate ever phich blower forces heated air, while a liquor tank has comblower
municat
plate.

Vehicle Brake.-Vardiman T. Sweeney, Suringfield, Ky. This is an improvement on two formerly patented inventions of the same inventor, to simplify brakes adapted to be applied by the team in backing, and providing means for their application by hand as readily as by the team. The mechanism is snc that when the vehicle is on an incline and the tongue is
free to act, the brakes will be automatically.applied, owing to the inclination of the tongue, due to the team in holding back. The invention also provides improved means of suspending the brake beam to take up lost mo-
tion, and for the taking up of lost motion in the chains tion, and fo
or cables.
Vehicle Wherl.-Paris Richardson, Deshler, Neb. This wheel has a divisible hub, and the spokes and sectional fellies are made to press outwardly on the tire and hold it tightly bonnd on the felly sections. The hub is compoeed of two sections, one slidable on the other, the sections having parallel flanges receiving be tween them the inner ends of the spokes, there being a
divided ring in the hab whereon the inner ends of the spokes are seated, radial bolts engaging the ring and projecting between the spokes, while clamping plates

Christmas Tree Stand.-Henry W. Kurta, New York Clty. This is a stand in which the Kody, of the tree will be received and held in position on the base of the stand by hraces gronped aronnd the tree while the attachment of the stand to the tree may be readily and quickly effected. The stand consists of base members. detachably secured together in cruciform
shape; and braces pivotally attached to opposite sides of shape; and braces pivotally attached to opposite sides of to the trunk of a tree by means of nails or screws. When the stand is not need
and packed in a small space.
Notr.-Copies of any of the above patents will be furnished by Munn \& Co. for 10 cents each. Please
send name of the patentee, tille of invention, and date of thio paper.

Wusiness and 2ersonal.
The charge for insertlon under this head is One Dollar a line for each insertion; about eifoht words to a line.
Advertisements must be received at publication office as early as Thur
ing week's issue.

Marine Iron Works. Chicago. Catalogue free.
High grade well drills. Loomis Co., Tiffin, Ohio. For logging engines. J. S. Mundy, Newark, N. J.
U. S." Metal Polish. Indianapolis. Samples fre Presses \& Dies. Ferracate Mach. Co., Brageton, N. J. Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O . hines, milling machines, and drill presses he Gorvin Mach. Co Spring \& V, an Sts, New York. Concrete Houses - cheaper than brick, superior to
stone. "Ransome," 757 Monadnock Block, Chicago. Machinery manufacturers, attention! Concrete and mortar mixing mills. Exclusive rights

The celebrated "Hornsby-Akroyd" Patent Safety ols
Engine is built by the De La Vergne Refrigerating Machine Company. Foot of East 138th Street, New York. The best book for electricians and beginners in elec-
ricity is "Experimental Science," by Geo. M. Hopkins tricity is "Experimental Science," by Geo. M. Hopkins
By mail, 84. Munn \& Co., publishers, 361 Broadway, N. \mathbf{Y} are Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broadway, New York. Free on application
舞

(7070) H. S. P. asks : What is the smallat in weight and size and economy of a plange battery or batteries that will develop two actual horse power for 10 or 12 hours, and also the solation and metals and pro-
portion, etc.9 A. This cannot be done except by using portion, etc. A. This cannot be done except by using runs down very rapidly, the chromic acid attacking the zinc. A battery just sufficient to give 1,500 watte when fresh would at the end-of 10 hours run down to perhaps 150 watts. A practical rule is to allow 12 square inche of zinc to 4 watts. The number of cells the battery should contain depends on the voltage. Then in use the
battery may consume one-half of the power. The rule battery may consume one-half of the power. The rale
given will do for one or two hours probably. If for a long run, make the battery five or ten times as large. A powerful plunge battery is described and illustrated in our Surflement. No. 782.
(7071) M. W. C. says : Salts are of two nds, acid and nentral. The acid salts are those in which only part of the bydrogen in an acid has been replaced by quality? Is it called on and. Why then is NaHCOs ${ }^{2}$ first definition is correct and full. The fact that a salt affects test paper does not always show that it is not neutral. The general statement about snch a salt as sodium reaction that its effect on litmus solution or test pape can only be masked by a strong acid. In other words, the nentrality of a salt is a question of constitation, no of reaction on testpaper. NaECOs is an acld salt.

NEW BOOKS AND PUBLICATIONS.

 A Text book on Shades and Shadows and Perspective. Prepared for the use of students in technicalschools. By John E. Hill. Second schools. By John E. Hill. Second edition, revised and enlarged, first \& Sons. London : Cbapman \& Hall, Ltd. 1896. Pp. 101. Plates xii. Price $\$ 2$.
Perspective is always an attractive subject, and in the above work will be found shades and shadows and perpective treated a good deal from the draughteman's and artist's standpoint, as well as from that of the mathematician. The work is clearly stated and includes numerparently an index is not considered necossary. It has all that is requisite in its table of contents.
A History of Elementari MatheMATICS, WITH Hints on Methods of Neaching. By Florian Cajori, Ph.D. London: Macmillan \& Company Ltd. 1896. Pp. 304, viii. Price $\$ 1.50$. This excellent and most interesting work, with its very elaborate index and beautiful make up, indicates a
subdivision of the subject which of late years has come into prominence; we refer to the history of education. It is an exhaustive monograph on the world's work in mathematics from the most ancient times to the present all nations, and is an important contribution to that anence. One especially interesting portion is the examination of the status of elementary geometry and its Har

Heating. for the Use of EngineErs, Architects, Contractors,
AND STEAM FITTERS. BY J. H.
Kinealy, D.E. New York: Spon \& Spon. 1896. Pp. 4. Price $\$ 1$. These charts are for the purpose of giving rapid deerminations of the factors of steam heating. They will but in presenting results to possible castomers on short notice.

TO INVENTORS.
An experience of nearly fifty years, and the prepara-
tion of more than one hundred thousand appliantons
for patentsat home and abroad enable us to or patentsat home and abroad, enabie us to understand
he patws and practice on both continents and to posess
hnequaled fachities for procurint patents everywhere.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

DECEMBER 15, 1896,
AND EACH BEARING THAT DATE.

Bung and fushing key for same, faucet, D. Beebe 573,254
Bung hole protetor and funnel combined. A.
Krimmel.. C

Cash
Caske
Centr

aurn, R. J. Forece.
Clamp, C. D. Prttis.
Clamp textite
cleaner. see Boiler cleaner. Tube or pipe
cock, self

Furnace, Preck \& Patterson,

Glove, boot, or apparel fastener, Freund \& \nless sap. 57

> 6 6

TRADE MARKS.

Ale, T. McMullen \& Company
Bicycles, M. ${ }^{\text {E. Johnison }}$................................... 29,325
Brushes tooth, Hamburger \& Company. 29,301 to ${ }^{\text {ana }}$, 304
densed milk,
Clinical and office ins.
company
Gloves and hosie
Gum, chew ${ }^{\text {d }}$
ather, Kulman
encina wine,
Mineral water, natural, Exsculap Bitter Water
medy for th
Soap, C. Davis
ap,
tening, M. H. Mer
torped oes and
rs, C. A. Reeve \& Company............... 29,324
DESIGNS

A prlinfod ony of the thecilication and draming of

Phdoertisements.
ordinary rates.

cents a liner some classes of Advertisements

The above are charges per agate line-about elph
Word per line. This notice showsthe width of the line
nd is set in agate type. Ent sent ents at the same rate per agaie line, by measure ment, as the letter press. Adertisements must be
feeetive at Publication offe as early as thursday
morning to appear in the following weeks issue.
WOOD of metal morkers
 Footand Hand Power machinery A-Wood-working Machinery.
 695 Water St_{n} Seneca Falls, N. Y.
AMERIUAN PATENTS.-AN INTER-

CLAROOBMAD PROFITABLE The immense saving effected by the use of our
PERFECTED for crushing ores has in many
 STAMP

H U B

 Ball Bearings
 THE BALL BEARING CO.O.
12 Watson St., Boston Mass. Bicycle Chain Side-Link Punching \& Piercing Press
 The Waterbury Farrel Foundry and Sank St., Machine Company,
Stark Anti-Friction Ball Bearing END THRUST
stark anti-miction
DRAWING SPINDLE JOHN STARK, Waltham, Mass.

EXTEND YOUR TRADE

Cne Scientific Hmerican
PUBLICATIONS FOR 1897.
The prices of the diferent pubications in the United
States, Canada, and Mexico are as follows: RATES BY MAIL.
$\begin{array}{lll}\text { Scientifc American (weekly), one year, } & - & - \\ \text { Scientifc American Supplement (weekly), one year. } & 83.00 \\ 5.00\end{array}$ Export Edition of the Sclentific American (monthBuilding Edition of the Scientift
(monthly), American COMBINED RATES
in the United States, Canada, and Mexico. Sclentife American and Supplement, Scientiffc American and Building Edition, $\quad-\quad$ - 5.00
Sclentife American, the Supplement, and Building

Terms to Foreign Countries. The yearly subscription prices of Scientife American
publications to forelgn countries are as follows:

Sclentific American (weekly)

Scientifl American (weekly), --
Scientifc American Supplement (weekly)
Building Edition of the Scientiff Amer-
ican (monthly).
Export Edition of the Scientific Amer-
ican (monthy) Sin Spanish and EnR-
lish,
Combined Rates to Foreign Countries. Scientific American end Supplement Countries. Sclentifc American and Building Edi-
 (T) Proportionate Rates for Six Month

The above rates include postage, which we pay. Re-
mit by postal or express money order, or draft to order of

WUatchmaking a Crade for Young men and duomen
Parsons' Tnstitute for UJatchmakers, Engravers and Opticians in new Quarters. Send for 1897 Catalogue.

111 Bradley Opticians PEORIA, ILLINOIS
$\frac{1}{3}$ and $\frac{1}{2}$ H. P. Gas or Gasoline Engines. (3)

WNIER MOTORS

GAS ENGINES \& VENTILATING FANS
The best Motor in the world for driving ali kinds of
inght machinery, noiseless, neat, compact invaluabis

New Friction Disk Drill.

步soin Leary Moak

 999 Ruby St., - Rockford, Ill، VELOCITY OF 1CE BOATS. A COL-

FREE SAMPLE COPY of ...An Elementary Journal for Students of Mechanics, Electricity, Architecture, Mining,
Plumbing, Heating and Ventilation, Steam Engineering, Civil Engineering, and Mechanical and Architectural Drawing. H0ME STUDY, Scranton, Pa, Pa,

DORMAN'S VULGANIZERS
 THE J. F. Wayette St., Baltimoren
 NOW IS THE TIME TO SUBSCRIBE

 -FOR THE—

ESTABLISHED 1846

The most popular Scientific Paper in the World The Scientific American has been issued every week by the present publishers for a period of over fifty years. It is the only Journal published in this country which is devoted to a general treatment of the development of the sciences, arts and manufactures. Each issue is embellished with numerous illustrations showing great engineering works, the most recent inventions in bicycles and motor carriages, new form of machinery, photography, the latest addi tions to the navy, new guns, locomotives,
etc., sixteen pages each week. Many of our patrons have been on our subscription books for a period of thirty or forty years, and we often receive letters from old readers stat ing that owing to a careful reading of the paper since boyhood, they owe their success in life more to having had the Scientific American as their constant friend and companion than to any other one cause.
The Scientific American should have a place in every dwelling, shop, office, school or library. Workmen, foremen, engineers superintendents, directors, presidents, offi cials, merchants, farmers, teachers, lawyers, physicians, clergymen-people in every walk and profession in life, will derive satisfaction and benefit from a regular reading of the Scientific American.
As an instructor for the young it is of peculiar advantage. Try it.-Subscribe for yourself-it will bring you valuable ideas; subscribe for your sons-it will make them manly and self-reliant ; subscribe for your workmen-it will please and assist their labor; subscribe for your friends-it will be likely to give them a practical lift in life. A yearly subscription to the Scientific American is a most acceptable holiday gift to a son or a friend.

Subscription Price,
$\$ 3.00$ a year, or $\$ 1.50$ for six months
Q Send your address for a free specimen
MUNN \& CO., Publishers,
361 Broadway. New York

Fe is tWell Posted
CUno Knows it HII
but such people are few. They know the most who
study in the best way-by the method which retains in the mind the most of the matter read and studied. A systematic arrangement of ideas as
prevents after confusion in the brain.
WHEREWITHAL is a $\$ 1$ Book that eduanes accuratery, immediately, progressively and permanently. It presents facts in a new
and attractive light that insidiously sinks into the
brain brain. It is the greatest aid to rapid and clear under-
standing that the world has ever seen. It opens up new standing tant the world has ever seen. It opens up new
wonders and fresh felds of thought even to the educated

WHEREWITHAL BOOK CO., Bourse Building, PHILADELPHIA, PA. ONLY PRACTICAL MAGAZINE CAMERA.

SUNART'S
"VENI, VIDI VICI," SUNART MAGAZINE SUNART FOLDINGS Send for Illustrated Cata-
logue-2 cent stamp. SUNAIRT PHOTO CO.. ROCHESTELR, N. Y. LOCK UP YOUR WHEEL!

 Nil their own are the tivis
 BELLS orefrio

PEPPER IN SEASON
 PEPPER GRINDING BOX
 higndsome table ornament 3 inches
hinches
high. Special ratesto
Union Lock and Hardware Co., Boxess
AN EXCELLENT HOLIDAY GIFT FOR OLD OR YOUNG.
Experimental Science
By geo. m. hopkins.
17th Edition Revised and Enlarged.

840 pages, 782 fine cuts, substantially and beautifully bound. Price in cloth, by mail, $\$ 4$. Half morocco, $\$ \mathbf{5}$.
This splendid work is up to the times. It gives young and old something worthy of thought. It has influenced thousands of men in the choice of a career. It will give anyone, young or old. information that will enable him to comprehend the great improvements of the day. It furnisbes sug. gestions for hours of instructive recreation.

Send for illustrated circular and
MUNN \& CO., Publishers, Office of the SCIENTIFIC AMERICAN, 36I BROADWAY, - NEW YORK.

The HARTFORD, No. 2

 Has an Automatic Platen Lift An Automatic Lever Locks Alignment that is positively permanen Alignment that is positively permanent We solicit warth the hartord, no other machine is up-to-date $\mathbf{5 0 \%}$ over what is offered by competing houses in our line THE HARTFORD TYPEWRITER CO.; 1 LAUREL ST., HARTFORD, CONN. U. S. A. Wilism DENSMORE Model Locomotives Everybody knowshow much easier it is how much easier it is
to raise a weight on
an inclined plane than to lift lit verti-
cally. That's where cally. That's where
the light stroke of
the Densmore comes
 phlet telis the rest.

DEPARTMENT OF THE INTERIOR,
 have no complaint from the senser of them; hence we
conclude theyare giving entire satisfaction. Respect'y (SIEDDed) HRAM BUCKINGHAM, Custodian.
DENSMORE TYPEWRITER CO., 316 Broadway. N. Y.
 Mie Hypumilier EXCHANGE, $1 \frac{1}{1}$ Barclay St., New York 156 Adams St., Chicago. 38 Court Sq., Boston
818 Wyandotte Street, Kansas City, Mo. We will save you from 10 to 50 per cent. on Typowriter
of all makes.
Seni for Catalosue.

DIXON'S Write the Smootliest and American Graphite Mentiont the Longest. JOS. DIXON CRUCIBLE CO., JERSEY CITY, N. J.

MONITOR NMOGUL

LAUNCHES.

How to Build a Home

Those intending to build will tind the very best practical sug-
gestions and examples of Modern Architecture iu the handsomest
Architectural Magazine ever published .
"The Scientific American Building Edition.' Each number is illustrated with a Colored plate and numerous
handome enkravings made direct from photographs of buildings, together with interior views, thoor plans, description, cost, location,
owners' and architects' names and addresses. The illustrations owners and architects names and add esses. Teside insestrations
include seashore, southern, colonial and city residences, schools, public buildings, stables. carriage houses, etc.
All who contemplate building, or improving homes of any who contemplate building, or improving homes or structures of any kind, have in this handsome work an almo
make selections, thus saving time and money.
Published Monthly. Subscriptions $\$ 2.50$ a Year. Single Copies 25 Cents. For sale at all news sta.-ds, . MUNN \& CO., Publishers, 361 Broadway, New York

Manufactory Entablished 1才61.
LEAD PENCLS, COLORHD PENCLS, SLATE
PENCILS, WRITING SLATES. STEEL PENS, GOLD LEAD PENCIS, CLORRUD PENCLLS, SLATE
PENCILS, WRITING SLATES. STEEL PENS, GOLD
PENS. INKS, PENCL, CASESIN SILVRANDIN
GOLD, STATIONERS' RUBBERGOOS, HULERS, 78 Reade Street, - - New York, N. Y. Manufactory Established 1961.
 FRED'K W. HAHN, 358 Grand Street. New York city.

E.O.HAUSBURG, 41 MAIDEN LANE,NY.

We manufacture the "Pathlight" and "Scorcher
bicycle lamps and other bicycle sundries. We have bicycle lamps and other bicycle sundries. We have
snug little plant and every facility for stamping. nickel
plating, and finishing small metal bicccle novelties platinn, and finishing small metal bicyccle noveltities
first-class style. For estimates, address The Place \&
 just how your house would look if painted any
one of 20,000 artistic combinations of colors. Designed and made only for the manufacturers
of PATTON'S Pure Liquid PAINTS. May be had free of our agents, or sent postpand upon
receipt of so cts. "How to Increase the Size of Your House With Paint" mailed free.
JAS. E. PATTON CO., Mllwaukee, Wis., ס. S. A.

Chain BELTING of Various Styles, ELEVATORS, CONVEYORS,

कGTHE IS DEADH

 DEAFNESS \& HEAMNISES CURED:

WANTED Patent IIkhts to manuragure
 TORNADO TOP ${ }^{\text {AND WHisTL }}$
 X Ray Apparatus

Twelfth Edition Now Ready.
THE SCIENTIFIC AMERICAN CYCLOPEDIA OF
Receipts, Notes and Queries

2,500 RECEIPTS. 708 PAGES.

Price, $\mathbf{S 5 . 0 0}$ in Cloth; $\mathbf{5 6 . 0 0}$ In Sheep; $\mathbf{5 6 . 5 0}$ in Halt
Twisgreat

world; the information given being of the highest
value, arranged and condensed in oncise for convenarrant for and condy usensed Almost evercise form inquiry in the various manufacturing industries. will here be found answered.
Those who are engaged in almost any branch
of industry will find in this book much that is of practical value in their respective call
ings. Thos ings. Those who are in search of independent
business or employment, relating to the home manufacture of salabil, ratticles, will the home in it
hundreds of most excellent suggestions. Send for descriptive circular.
MUNN \& CO., Publishers, 36ı Broadway, New York.

