

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, DECEMBER 26, 1896.	

GENERAL VIEW OF THE SIMPLE CONDENSING BEAM ENGINE OF THE STEAMER ADIRONDACK.
Diameter of cylinder, 81 inches; stroke, 12 feet; boiler pressure, 55 pounds; horse power, 4,000.-[See page 456.]

Srientifir : merian.

ESTABLISHED 1845
MUNN \& CO. Editors and Proprictors. published weekly at

No. 361 BROADWAY, NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN

 (Established 1845.)One copy, one year. for toe U. S., Canada or Mexico...
One copy, six months, for the U.S., Canada or Mexico
 Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, corner of Franklin Street, Ne Y York. The scientific American Supplement
(Established 1876
is a distinct paper from the ScIENTIFIC AMERICAN. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size
with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, 85.00 a year. for the U. S. Canada or Mexico. $\$ 6.00$ a year, or $£ 14 \mathrm{~s}$. 8d. to forelyn countries belonging to the Postal Union. Single copies 10 cents. Sold by all newsdealers throughout the country. See prospectus, last page.
Combined lates. -The Scientipic American and Scpplemevt Combined Rates.-The Scientific American and Supplement
will be sent fur one year, to one address in U. S. Canada or Mexico, on receipt of seven dollars. To foreikn countries, eight dollars and ffty cents a year, or $£ 1$ 14s. 11d., postage prepaid.

Building Edition of Scientific American.
(Established 1 S85.)
The buliding edition of the Scientific american is a large and splendidiy inustrated periodical, issued monthly. containing Hoor plans and perspective views pertan peates, showng desirable dwellings, pubiric
is illustrated with beatiful
buildings and architectural work in great variety. To architects, builders build ings and architectural work in great variety. To arch
and all who contemplate building this wors is invaluable. or Mexico. 82.50 a year. To foreign countries, $\& 3.00$ a year or $£ 0$ Canade Combinedrate for BuIDDING FDITION Witr ScIENTIFIC AMERICAN, to one address, $\$ 5.00$ a year. To foreiga countries, 86.50 a year, or $£ 1$. 6 ss . 9 d .
Combined rate for BuILDING EDITION ScIENTIFIC AMEICAN and Combined rate for Building edition Scientific american and SUP-
plement, 89.00 a year. To foreign countries, 811.00 a year, or $£ 2 \mathrm{~s}$. 2 d ., Plement, 89.00 a
postage prepaid.

Export Edition of the Scientific
(Established $\mathbf{1 8 7 8}$)
with which is incorporated "La america cientifica e industrial," or Spanish edition of the ScIENTIFIC AMERICAN, puolished montbly, uniform in size and typooraphy with the SCIENTIFIC, AMERICAN. Every, num-
ber contains about 100 pages, profusely illustrated. It is the finest scientific industrial export paper pubished. It circulates throurbout Cuba, the West Indies, Mexico. Central and South America, Spa in and Spanish pos-sessions-wherever the Spanish language is sposen. TiEe SCIENTIFIC
American Export Edition bas a lare guaranteed circulation in all American Export Edition tas a large guaranteed circulation in all
commercial places throughout the world. $\$ 3.00$ a year, or $£ 012 \mathrm{~s}$. 4d., post paid to any part of the world. Single cooies. 25 cents.
MUNN $\&$ CO., Publishe:s, 3 B B MUNN \& CO., Publishe:s, 38 B Broadway. New York. LIF The safest way to remit is by postal order. express money order.
draft or bank check. Make all remittances payabie to order of MUNN draft
$\&$ co. \& $\mathbf{C O}$. Readers are specially requested to nctify the publishers in case of
any failure. delay. or irregularity in receipt of papers. NEW YORK, SATURDAY, DECEMBER 26, 1896.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 1095.

For the week Ending December 26, 1896. 1. ARCH EOLOGY.-The Partbenon.-The article describes th
 liberty for c
essentialis...
 duced on it. 1 illustration

 Natser Cunture in Rex
tion of disease by bition
taste or of the bivalves... 1. METALLURGY. - Notes on the Hydrometallurgy of Gold and
Siver. -By W.GEOREW ARING. An interesting paper on the
new developments of the metallurgy of low grade gold and silver
ores. ores..
in MINERALOGY
mineralogy.
sian mines..

 lion of Large Guns. - A valuable article on modern ordnance an
the overcoming of accidents in the shrinkage process....... PHYYICS.-Electrical Science and the Mystery of Pbosphores.
cence.-A popular review of the present aspert of this mysherieus
phenomenon, with notes on the substances producing it. x1. SANITARY, ENG GINEERING.-Merryweatber's Pneumatic. Cesss
pool Emptying Apparatus.
offensively.

\qquad

SECRETARY HERBERT'S REPORT ON THE TEXAS.
The official statement of the Secretary of the Navy on the recent sinking of the Texas at the Brooklyn navy yard will go far to re-establish the confidence of the American public in this vessel. Mr. Herbert states that ingiving out the action of the department on the finding of the recent court of inquiry he has concluded to depart from his usual custom and make a general state ment about this ship. We are informed that the acci dent was due to the fact that a part of an injection pipe had been taken out for repairs, and that the accident "could not have happened at sea." He reviews the past history of the ship and states that as the result of a competition of naval architects a board of eminent naval officers awarded the prize to a prominent English designer, Mr. John. This was done in accordance with the policy by which " we were availing ourselves of the experience of foreign nations." Since her launch various defects have developed themselves, and among other changes she was sent to the navy yard at Norfolk to have her bottom stiffened. It is now be lieved that all defects have been remedied except those relating to her turrets and the system of water-tight compartments, which latter were developed by the recent flooding of the vessel, as shown by the finding of the court of inquiry. Mr. Herbert points out that while it would be desirable that all our ships should be turned out in perfect condition, this has never been accomplished in our own or any other navy. It is believed we have made fewer and less costly mistakes than most other nations in the building of a modern navy, and yet the Castine and Machias had to be cut in two and lengthened; and three other ships, the Detroit, the Montgomery, and the Marblehead, required "far more fundamental changes than have ever been found necessary in the Texas." Nevertheless, the latter for some reason or other, has been the subject of an unusual amount of harsh criticism.
We are glad to learn that such officers as Capt. Glass, her commander, and Capt. R. D. Evans, com manding the Indiana, unite in declaring that the Texas is "the stiffest, most easily managed, and entirely seaworthy ship in the service." Capt. Evans states that in the hurricane of October 12 she showed herself to be the most seaworthy ship'in the flest, rolling considerably less than the Indiana and the Maine, which were just ahead and just astern of her. The captain also states that she was a perfect gun platform, and in this respect, and in respect of her seaworthy qualities, was superior to such fine ships as the New York, the Columbia, and the Raleigh.
The Secretary then goes on to quote from a letter from Charles H. Cramp, in which the writer says: "I have always defended her (the Texas) to an extent that has made me obnoxious to many officers in the navy, who were bitterly opposed to the adoption of
Mr. John's scheme." After examining the plans and Mr. John's scheme." After examining the plans and
specification, Mr. Cramp stated that they were "good, symmetrical and practicable;" that they were by odds the best submitted in that competition; and that while the scantlings were light, "as a whole her hull construction involved the best meche.nical distribution of minimum weight" that he had ever seen. At that time the era of steel was new and there was a tendency to over-estimate the strength of the new material This led to the placing of very heavy armor and arma tical instance of this tendency. The latter part of Mr. Cramp's letter is devoted to strenuously deprecating public criticism and discussion of the defects of nava construction by the press, which he considers unwise, for the reason that such criticisms are used abroad to the prejudice of our industries when they enter into competition for foreign work.
The Secretary calls especial attention to Mr. Cramp, remarks about the effect of criticism by the press of American ships and armor plate. He says, "I submit Mr. Cramp's letter for the purpose of pointing out to some of our newspaper friends the unintentional in juries to American interests that are liable to resul from enlarging upon minor mistakes that may have be given for the great and substantial successes that have been attained.'
We do not agree with Mr. Cramp in his opinion of the value and effect of newspaper comments upon haval work. Such criticisms are not confined to the nical journals can testify. There is never a new design for British warships published but what it calls forth a storm of hostile criticism, and the same thing obtain in France. It is the privilege of the public which pays for the ships to have its say about them, and while there is a great deal of matter written which is arrant nonsense, there is much other criticism which is intelli gent and to the point and healthy in its general effect. If, as Mr. Cramp says, such criticism has occasionally robbed this country of contracts for building foreign warships, it is to be regretted; but we think that such an occasional loss is not a sufficient reason for asking the public to suspend its right to pass judgment upon

to the necessity of a navy at all, and there has been no
agentso active in this awakening as the daily and weekly press.

On the whole, the statement of Secretary Herbert is reassuring, at least to that part of the general public which has been disturbed by the exaggerated state ments regarding this ship which have been put fort from time to time by the ultra sensational element of the daily press. We regret, however, that more e plicit information has not been given regarding the flooding of the Texas and the causes which led up to it, and more particularly, as it concerns the failure of the so-called watertight bulkheads. In our remarks on this accident in a previous issue, we took it for granted that the watertight doors must have been open. It appears, however, that they were closed, and, therefore, for the purpose of fulfilling their function they seem to have been utterly worthless. This, we consider, is by far the most serious aspect of the case, and we fail to find any reassuring statement or suggestion in the present official utterance. We are told that the acci dent could not have happened at sea. Why not? Is there any peculiar and unknown quality in the metal of a valve yoke which causes it to hold together when a ship is in thirty fathoms of water and only break when she is in thirty feet? If it is safe to remove a part of an injection pipe for repairs when a ship is afloat, it is just as safe to do it in sixty feet as in thirty feet of water ; and it is due to the lucky fact that the Texas lay where she did at the time of the accident that an appalling accident did not take place and she is not to-day at the bottom of the river.

Even if it is allowed that the removal of a section of the injection pipe is a proper thing to do outside of a dry dock, and that valve yokes are not likely to break at sea or when the ship is in deep water, how came it that the engine room bulkhead did not keep the ship afloat? It is suggested that possibly valves were open in the bulkhead; but surely such a court of inquiry was capable of ascertaining to a certainty whether they were or not. If they were, the failure is ex plained ; if they were not, the compartment system of the Texas is a miserable failure
We must confess to considerable disappointment that explicit information is not given upon this very important point, and that the direct responsibility for the disaster is not distinctly placed. It is evident to the veriest novice in naval matters that by taking the most elementary precautions this accident would have been avoided. All the elaborate and costly appliances of a modern warship are worth about their weight as old junk if they fall into the hands of individuals who fail to exercise proper forethought and discretion in handling them.
We cannot but feel that in its report, as outlined by the Secretary of the Navy, the court of inquiry has passed very lightly over an occurrence which alls for a detailed explanation, and that in deciding that no one was responsible for the mishap, it has shown a leniency that does more credit to its heart than to its judgment.
That in time of peace a battleship should founder at her wharf, with watch on board and fire in her boilers, is, in our judgment, absolutely inexcusable.

THE PREVENTION OF RUST IN IRON AND STEEL TRUCTURES.

The advent of the age of iron and steel in the arts of building and manufacture brought in an element o decay which scarcely existed in the age of stone. Fo while we are able to build on a grander scale, and com bine the new material in daring forms which the primi tive ages merely dreamed of and never attempted, we cannot look upon our finished works with the same assurance of their permanence that filled the builders of the Egyptian pyramids or the temples of Greece and Rome. Often when the stone was hewn from the quarry and exposed in a building to the wear of the elements it hardened under the exposure. Nature was thus the friend of the architect, and dealt kindly with his work The very winds and weather which colored it with the mellow tints and peculiar beauties of age gave it strength as lasting as that of the hills themselves.
But the iron and steel of modern construction are as perishable as they are strong. The action of the elements, which sometimes prolonged the endurance of an ancient structure, commences to destroy our modern works in iron and steel from the very first moment of contact. Unless some thorough system of protection be adopted, it is certain that the life of the skeleton steel buildings, for instance, which are multiplying so fast in our cities, will never be measured by centuries. The dangers of decay are serious indeed, even in the case of such ironwork as is open to inspection; for in certain climates the oxidation is so rapid that it takes a comparatively brief time to reduce the section of the metal, so that it is brought perilously near to the break. ing point and far below the proper margin of safety. Notable instances of rapid decay may be found in some of the more neglected parts of the viaducts and bridges of this city, where, for the want of thorough and frequent painting the ironwork is being eaten away under
the combined attack of the moisture and salt air of our climate.
But although structural ironwork is open to the at tack of an alert and ever present enemy, it is well understood that so long as its parts are open to inspection and may be reached by the paint brush its life may be indefinitely prolonged. If they are carefully cleaned, and coated with good paint at the time of erection, subsequent inspection and repainting systematically carried out will render our iron and steel structures practically imperishable.
The introduction of the skeleton system of building, however, has brought with it new and comparatively untried problems. The methods of construction which are used to insure the integrity of the steel work are radically different; for whereas the bridge builder is careful to leave all the parts of his structure exposed, the builder of the "skyscraper" is just as careful to cover them up. This concealment is rendered necessary in the case of the columns that carry the outside walls by the demands of construction, and the interior columns and floor girders are inclosed in the endeavor to secure a fireproof construction. The nature of this covering varies but little. It usually consists of stone or common brick or some form of fire brick, and when the steel members are once sealed up from sight, the question of their actual condition as the years pass by is a matter for speculation, but never a matter of certainty.
It is true the columns and girders are treated to a coat of paint at the shops, and no doubt in many cases there is an attempt to do this work thoroughly and with a good quality of paint; but there are thousands of tons of material that go into the buildings with the work carelessly or cheaply done. And even where the steel has been honestly painted at the shops, the subsequent handling in transportation and in erection at the building does more or less damage to the paint, rubbing it off and exposing the metal. Nevertheless, there is no effort made to repair the damage, and the girder or column, as the case may be, is shut up within a porous and not always an airtight casing, in which the rusting of these exposed surfaces is free to go on unseen and unchecked.
It is unfortunate that we have very few facts to go upon in estimating the behavior of inclosed steel or there has not been sufficient lapse of time for any reliable data to be gathered; and such cases as have been quoted for or against the permanence of walled-in iron work are few in number and stand good only for the particular circumstances that surround them. If a column which had been built into an interior wall wa found free from rust at the end of a certain number of years, it would be no proof that another column built into an outside wall and on the weather side of the building would be equally secure. And we must not argue that, because there was no oxidation of a structure in the dry air of the city of Denver, five or six thousands of feet above the sea, a similar structure in the moist atmosphere of a sea coast city would escape injury.

The painting which the steel work receives at the shops should, at least, be repeated when it has been erected in place, so that any spots where the paint has been chipped or rubbed off, exposing the metal, may be protected from the action of the air.
In its way, this question of the rusting of covered iron work is as important as that of fireproofing; but it is not likely that it will receive the same careful attention for the reason that, while the latter question is one of ever present, vital importance, the former is slow in its action and affects a more or less remote posterity. And yet, if there are duties which we owe to posterity, surely this is one. If by a little reasonable care, and an expense only slightly greater than that which is at present in curred, the costly buildings of to-day may be saved from a possible ultimate collapse, the care should cer tainly be taken, and the expense incurred.

bockade of the Underground Trolley Line on

During the snow storn: of Wednesday, December 16, the underground electric trolley line on Lenox Avenue was disabled for several hours. This is the first time that this line has succumbed to the weather, and as the underground trolley system may be said to be yet on its trial, the facts concerning this breakdown will be of in terest. It seems that when the storm came on, only about one-half of the usual amount of power was availa ble, for the reason that half of the generators at the power station are at present being rebuilt. According to the chief engineer's statement, this would have been sufficient to keep the cars running under ordinary circumstances; but the mechanical resistance of the snow and the slippery condition of the rails, preventing ad hesion, proved too much for the motors. After the snow plows and sweepers had opened up the line, a sudden drop in the temperature caused a coating of ice to form on the conductors, and thus prevent full contact. The conductors consist of two wrought iron pipes, one on each side of the slot, which are carried on insulators attached to the ceiling of the conduit. The difficulty of ice forming on the wires is not unusual with the
overhead trolley, but one would have thought that the protection of the closed conduit would have prevented such an accident. The difficulty was overcome by equipping the car with knifelike scrapers which cleared the conductors of ice just ahead of the contact shoes. By the time the cars were ready to run again after the scrapers had been attached, the conduit had filled up with snow and slush, and the tracks were so covered that it took several hours to get started. It is the in tention of the company to equip every car with removable plows specially designed for keeping the conductors clear of ice. In some of the northern cities and in Canada, it has been a common thing during a storm of sleet to put a man on the top of the cars of an over head trolley line, who carries a forked spear with which to scrape the ice off the wires. We are informed that this blockade will have no effect upon the determina tion of the company to equip the Fourth and Sixth Avenue lines with the underground trolley system.

Traps for Inventors.

In this nineteenth century the profession of patent solicitors is degenerating from the professional to the commercial. Inventors and patentees have their atten tion arrested by flaming announcements, with the ob ject of catching unwary inventors and patentees. One class of these agents offer medals as certificates of value of inventions, and large lottery prizes, amounting to thousands of dollars, to inventors who place thei applications for patents in their hands. However, be fore a medal or prize is awarded these inventors select ed, in order to become acceptable competitors, they are compelled to pay into the hands of these agent certain fees. These competing inventors are told, or induced to believe, that a scientific and mechanical corps of experts in the employ of these agents make crucial examinations of their inventions, in the light of the prior state of the art, and the inventions of al others who are competing for a medal or the prizes, nd in due time they respectively receive a communica tion from their agents, accompanied by a medal, certi fying that they have been awarded the medal by corps of experts, on the ground that the invention i determined to be the best of all others presented to them for patents. At some subsequent period it is announced that the money prize has been awarded to A, B, or C .
It would seem that intelligent men would not fall into such traps in this enlightened age ; but, alas ! they like innocent lambs, are led to enter and made to suf fer ; or are dealt with in the same manner as are unso phisticated rural citizens who fall into the hands of green goods" merchants
For many years the story of the gold [gilded] meda warded by a French scientific society to United State patentees has been well known, and yet victims are
constantly being made. When the announcement is constantly being made. When the announcement is received from Paris that the gold [gilded] medal ha been awarded to a United States patentee for his in vention, after an examination by its savants, and it has been found to be the best of the kind patented there is a demand for a considerable sum of money to pay the expenses of the transmission of the medal to
this country. The expectation of receiving this sum of money is the secret of all the interest that this French association manifests in regard to United States paten tees. A bald attempt to get money for a gilded medal, issued by a set of questionable persons, ought to b understood by intelligent patentees when they read the word "gilded" in small letters, inclosed in brackets, following the word "gold." Such medals, whether American or foreign issues, should not be accepted by inventors, or investors in inventions of others, as proo f merit. They are nothing more than sawdust sold y "green goods" men
Recently an inventor applied to one of the United States medal awarding patent agents and received a medal, but no patent; and after he had expended about $\$ 175$ as fees to this agent and to the Patent Office he made a visit to Washington, D. C., and called on the chief of police in respect to his patent business, and finding that his money was wasted and beyond recov ery, requested him to refer him to an honest, reliable and capable patent counselor and solicitor, and being given the name of a respectable house in Washington he visited the same, and on entering the door he said, I am referred by the chief of police to you, as the kind of patent solicitor I am seeking. I do not want medal awarded me, for my medal has cost me $\$ 175$, and no patent has been granted me. I want an honest, re iable attorney, who, when he takes my case, and I pay him my money, I can go home and feel satisfied tha all will be done squarely, and I shall get a patent for my invention from the United States Patent Office, in tead of a mere medal from my agent." The experience of this inventor ought to be a warning to others, and he course that he pursued should be fol'owed by hem
Some years ago an advertisement appeared in the papers as follows :
"Wanted-An invention for sawing stone to a tape
orm ; $\$ 5,000$ reward offered for the best invention of
the kind for this purpose."

In response to this announcement, made, no doubt by some designing, hungry patent agent, in conspiracy with an outside accomplice, for the purpose of increas ing his income, several hundred inventors sent models of stone sawing machines to the Patent Office for patents. Nearly every one of these models represented two saw to form an acute angle, and as the saws descended cut the stone to a taper form. One agent filed so many applications in the United States Patent Office, all lik one another, that the principal examiner of the Patent Office in charge of this class finally became disgusted with such proceedings on the part of this agent, and wrote a letter to each of the later applicants substan tially in these words: "Your application for a patent on a machine for sawing stone to a taper form has been examined and rejected on application of A. B., C. D and E. F., filed through the same agency that has you case in charge." This was a sockdolager to the agent and an eyeopener to his clients.
Sequel to the stone saw prize: At the termination of the period set for awarding the $\$ 5,000$ prize offered or the best stone sawing machine, these expectant in ventors carried their models of stone sawing machines to a place designated in Vermont, and, alas ! on expos ing them to the supposed generous citizen who had advertised for the inventions, were told that none of the plans were as good as one which he had invented himself, and therefore the prize would not be forth coming. Sad hearted and disappointed, they returned home with an experience which ought to last a lifetime By this trap inventors were led to expend thousand of dollars for models, traveling expenses, and agency and government fees, with no profit to themselves simply benefiting an unscrupulous patent agent and his accomplices. Inventors ought to look carefully be fore they bite at such bait.
Another trap set for patentees is the one that the Inventive Age, of Washington, D. C., has for many months been warning patentees against. This trap is he patent right selling agent, who sends to every paten ee a letter, which letter says: "Your patent has been examined by our scientific hoard or corps of mechanical experts. and it has been pronounced to be worth $\$ 25$, 000 , or $\$ 50,000$, or $\$ 100,000$, and we would like to have the agency for selling your patent." Furthermore offers are made to take out foreign patents on already issued United States patents for one-half the usual fees, etc. It is only necessary to say that patents in many foreign countries for United States patented in ventions, which have been published in the United States Patent Office Gazette fully enough to be under stood by practical mechanics, are invalid, even if grant ed by such foreign government.-New Ideas, Phila.

Do Not Lose or Throw Away Your Papers
By taking only a little trouble, when a paper firs comes to hand, it may be kept in a way to form a pe manent and most valuable addition to the reading mat er with which all families and individuals should be upplied. We furnish for such purpose a neat and at ractive binder, which will be sent by mail, prepaid, fo $\$ 1.50$, or $\$ 1.25$ if sold over our counter. It has good strong covers, on which the name Scientific Ameri can (or Supplement) is stamped in gold, and fastener by means of which the successive numbers may be placed and securely held in order as in a bound book One binder may thus be made serviceable for several years, and when the successive volumes, as they ar completed, are bound in permanent form, the sub criber ultimately finds himself, for a moderate cost, in possession of a most valuable addition to any library embracing a wide variety of scientific and general in formation, and timely and original illustrations. Save your papers!

The Value of Good Roads.

Cultivating ten acres, eight miles from the station, I buy two tons of fertilizer for $\$ 70$, says a corresponden of the Leesburg (Fla.) Commercial. This quantity makes eight loads for one horse, and six hours are re quired for a trip. The time of myself and horse is worth 60 cents per load. I make 500 crates of vege tables, which require seventy-one trips to get them to the station, at a cost of $\$ 42.60$. On hard roads I could haul my $\$ 70$ worth of fertilizer in four trips of fou hours each, at a cost of $\$ 1.60$. I could haul my 500 rates of vegetables in thirty-five trips of four hour each, at a cost of $\$ 14$. On the sand roads one horse i required seventy-one days to ship my crop, which is onger time than the shipping season; hence I am com pelled to keep two horses during the year, or hire from my neighbors at a busy time. The cost of keeping the second horse may be safely estimated at $\$ 25$. So much of my time is used in my trips to town that during hree months of the year I am compelled to hire an extra hand, which costs me about $\$ 45$. The foregoing tems will suffice to show that bad roads cost on my ten acre crop $\$ 101.80$, being a tax of over $\$ 10$ per acre.

What better Christmas present can a father give his son than one year's subscription to Scientific American ?

THE HUDSON RIVER STEAMER ADIRONDACK, OF THE PEOPLE'S LINE.
We present in this impression a series of views of the Adirondack, the latest addition to the famous fleet of Hudson River steamers that plies between this city and Albany. It was as far back as the year 1834 that the People's Line, which owns this handsome vessel, the People's Line, which owns this hmade a modest start in river transport-
ation by launching the Westchester ; ation by launching the Westchester; years the company has carried a very large share of the travelers that go during the summer months to Saratoga, Lake George, the Adirondacks, and the St. Lawrence regions. The rapidly increasing travel by this line during the last few years called for a further addition to the fleet, and it was resolved to build a boat which, in size, speed, and accommodation, should rival anything afloat on the river.
The keel of the Adirondack was laid at Greenpoint. New York, on June 8, 1895 , and within five months the vessel was launched, the fitting out being completed in time for the summer season of 1896. The hull is built almost entirely of wood, and the beam engine, which is of the vertical pattern so common in river service, is of the simple surface condensing type. At first sight it may appear surprising that in this age of steel shipbuilding and quadruple expansion engines, so fine a vessel as this should be built of wood and provided with a single expansion low pressure engine. The Adirondack, however, was built to meet the special requirements of the Hudson River navigation, and her design is based upon the experience of inches deep. There are three watertight bulkheads, steamboat men who have grown gray in this particular service. Wood was chosen for the hull because it gives a more flexible and stronger boat, stronger, that is to say, for the strains to which it is subject in pushing its way over the shoals of the upper river when the water is at a low stage. A wooden hull that is stiffened by a truss such as is seen in the general view of the boat will spring and give if it should touch in passing the river bars, whereas the plates of a steel hull would be broken or bent permanently out of shape.
It may be mentioned here that the engine was built as a simple, in preference to a compound or triple expansion engine. because the company estimated that it would prove in the long run, for the particular class of work this boat has to do, a more economical design. While they were aware that, for continuous sea service, a multiple expansion engine is more economical, and will more than recover the extra first cost of its numerous and complicated parts, it was felt that the felt that the conditions of service for this boat were so en-
tirely different that the same saving could not be realized. The Adirondack is only in service for a part of the year, and makes but one trip a day, of about ten hours, duration. It was estimated that the total value of the fuel saved during the comparatively brief hours of service would not equal the interest on the extra cost of building and running a compound or triple expansion engine.

The dimensions of the Adirondack are': Length over all, 412 feet; beam, 50 feet; width over guards, 90 feet; depth of hull, 13 feet; and draught, 8 feet. She is of 4,500 tons gross measurement and has a freight capacity The walking beam consists of a strongly ribbed cas of 1,000 tons. The oak keel is 12 inches wide by 16 iron web, belted with a heavy wrought iron strap; the inches deep. The frames, which are of oak, chestnut whole being firmly strapped and keyed together. The and red cedar, are 12 inches thick and are spaced 24 cylinder is 81 inches in diameter by 12 feet stroke. The inches center to center. They vary in depth from 20 two large vertical pipes seen in front of the cylinder are inches on the floor to 10 inches at the sides. There known as the side pipes; the one on the starboard side
are 11 keelsons of yellow pine, measuring 12 inches by 20 inches, and they are bolted to the frames at each intersection by four bolts. The entire hull is strengthened by diagonal straps of $1 / 2$ inch by 4 inch iron. which are riveted to the frames at each intersection. The hull is also stiffened by two deep suspension trusses or "hog frames," the top chord of which is 14 inches wide by 30

THE GALLERY OF THE ADIRONDACK

which reach to the main deck
In order to give our readers a clear conception of a typical river steamboat beam engine, we have prepared the detailed and very handsome engraving shown on our front page. The reader is supposed to be looking at the boat from a position a little off from the port bow, the side of the hull and superstructure and the housing of the paddle wheel being broken away so as to show the full height of the engine, which extends through four decis. The engine foundation consists of deep steel keelsons, which are securely bolted to the wood keelsons above mentioned. The A-shaped gallows frames are built up of steel plates, the legs, which are of box section, being strongly braced together with

THE HUDSON RIVER STEAMER ADIRONDACK OF THE PEOPLE'S LINE.
being the steam pipe and the other the exhaust. Each of these pipes carries a separate rocking shaft which is operated by its own eccentric. The motion of each rocking shaft is communicated to the two vertical lifting rods which operat the valves by means fical cams called "wipers." The eccentric rods are formed their outer ends, which engage a pin in the arms of the rocking shafts. They are thrown out of gear by means of the slotted vertical rods through which the eccentric rods work, one of which will be seen in the engraving. These vertical rods are known as strip pers, and they are operated by the levers which will be noticed attached to the rocking shaft on the steam pipe. When it is desired to start or reverse the engine, the eccentrics are thrown out of gear, and the valves are worked by a steam starting and reversing engine, which is controlled by the vertical lever seen near the steam pipe. If it is desired, the valves can be operated by the starting bar shown in the engraving.
The handwheel on the small vertical standard in front of the exhaust pipe opens the steam valve for the starting engine, and the wheels which are seen on the other two standards are for ope rating the injection valve and for turn ing the surface condenser into a jet condenser, if at any time it should be desired to do so. The surface condenser is located in front of the steam cylinder and below the main deck. Behind the steam cylinder and also below the main deck is the air pump, which is operated by connecting rods from the walking beam. The gear shown attached to the front face of the gallows frame, above the cylinder, is a hand winch, for lifting the cylinder head

The paddie wheels are of what is known as the vortical or feathering type, in which the buckets are made to enter and leave the water in a nearly perpendicular position. The old type, with fixed radial buckets, is extravagant and uncomfortable; extravagant because it wastes power in forcing water downward when the buckets strike, and lifting it when they leave the water, and uncomfortable because they set up a violent. vibration throughout the whole vessel. The feathering pad dle wheel is smoother and more efficient in its action. Its construction is as follows. Bolted to heavy timbers just above the gurds is a large pin carrying a loos flanged ring, to which are pivotally attached a set of connecting rods At their outer ends these rods are pivotally connected to rocking arms fastened to the back of the buckets, the buckets. them selves being pivotally attached to the rigid spokes of the paddle wheel. The whee itself is carried, as usual, on an exten sion of the crank shaft ; but there is no outboard bearing on the guards, the whole weight being carried on a massive pillow block, which is securely bolted to the framing of the hull. The above mentioned pin and loose ring are placed eccentrically to the crankshaft, and the ring is rotated in it proper relation to the paddle wheel by attaching one of the connecting rods rigidly to it. The eccentricity of the ring is so adjusted that the bucket shall always enter and leave the wate in a perpendicular position, thus secur ing a true feathering action. 'The wheel 30 feet diameter and carry 12 curved steel buckets, each 45 inches wide by 12 feet 8 inches long. The dip is about $51 / 2$ feet. The average speed of revolution is bout 26 per minute.
There are a donkey boiler and two "Worthington Duplex" fire and wrecking pumps, and a large "Wor-
thington Admiralty" bilge pump between decks, their on the outside of the vessel. The dining room on combined capacity being 1,000 gallons per minute. The the after part of the main deck is surrounded by electric light plant, consisting of three Armington \& large windows, which give an uninterrupted view Simms engines, has a capacity of 2,400 lights. Two of the river on both sides. Two private dining rooms of these engines are shown below the main deck. at the extreme after part of the vessel open into the of these engines are shown below the main deck. They are of the direct connected type. The pilot
main dining room. All these rooms are finished in
house carries a search light which will enable objects house carries a search light which will
to be distinguished at a distance of two miles.
Steam is supplied by four steel boilers of the lobster return flue type, each 11 feet wide. 9 feet 3 inch diameter of shell and 33 feet long, with steam chimneys 87 inch diameter and 10 feet 6 inches high. Forced draught is supplied by two large "Dimpfel" blowers, driven by independent engines. The steam pressure is 55 pounds to the square inch, and the total horse powe 4,000 . The engines, boiler and machinery were constructed by the W. \&. A. Fletcher Company, of Hoboken, N. J.
The Adirondack was modeled and designed by Mr. John Englis, vicepresident of the company, and embodies the results of long years of experience as to the requirements of river navigation. Externally, as the excellent photograph takèn specially for the Scientific American will show, she is an extremely handsome vessel, with all the characteristic marks of a Hud son River boat, and more than the ordinary beanty in her lines. By care ful saving of weight in the design, it has been possible to give her an extra deck over the number carried by other ships of her size and horse power on the river. There are five in all: the main, saloon, and at each intersection of the panels is an electric gallery, upper gallery and dome decks, and all light drop covered by a round cut glass globe. There this on a draught of 8 feet of water. There are are 200 such lights in the dining room alone
this on a draught of 8 feet of water. There are
350 are 200 such lights in the dining room alone.
staterooms, including 24 parlor rooms and 4
From the quarter deck, which is finished in white suites of parlors. There are also 286 berths in the mahogany, a grand staircase leads to the main saloon, cabins and 120 berths for the crew. Each stateroom which is unusually handsome in its appointments and has an iron or brass bedstead, and has a window decoration, the predominating style of the latter being

Empire, white, green and gold. A rich effect is secured by the beautiful design and workmanship of the wrought iron and mahogany hand rails around the galleries; and it is noticeable that the dome ceiling is ree from any break by lighting appliances, the lights being concealed at the base of the cove.
On the upper tier, in the extreme after part of the upper gallery, is situated the café and smoking room, which is arranged with windows on three sides, so as to provide a clear view of the beauties of the Hudson River.
In addition to the ample water supply in case of fire, the thermostat is used in every stateroom and in all exposed parts of the ship, so that any outbreak of fire would be quickly located.
The Adirondack has never as yet been run at her maximum power; but she has run with a full load of freight and passengers from alongside her dock at New York to Albany, a distance of about 144 miles, in 7 hours and 55 minutes. The fastest speed, $201 / 2$ miles an hour, was made between New York and Hudson, the speed being considerably reduced in the upper river by shoal water.

ARMOR FOR FORTIFICATIONS.
Between projectiles and armor there has been a constant struggle for superiority, for while, on the one hand, every effort has been made to bring the projectile to such a state of perfection that it will destroy even the strongest fortification, the resisting power of armor has, on the other hand, been just as steadily increased. It has been extremely difficult to find armor suitable for naval purposes, because, although the thickness of the armor was an important consideration, it had to be limited on account of the danger of overload ing the vessel to which the armor was applied. At first and until 1875, rolled iron was used for armor and then

Fig. 1. -CHILLED IRON ARMOR TURRET FOR TWO 24 CM. GUNS-EXTERIOR VIEW.

Fig. 2.-CHILLED IRON ARMOR TURRET FOR TWO 24 CM. GUNS IN COURSE OF CONSTRUCTION

Fig. 3.-exterior view of a chilled iron armor battery

Fig. 4.-INTERIOR of a chilled iron armor battery.
steel was adopted; but, as this showed too great a ten dency to be racked by fire, a compound armor was con structed by welding a plate of steel on one of iron. More recently nickel-steel armor (first made by Krupp) and the Harvey armor have been much used. The latter consists of soft steel, the surface of which has been carbonized and hardened so as to give it great power of resistance.
Finally, it became necessary to use armor on coast fortifications, as it was impossible to build walls thick enough to resist the terrible force of the new guns, and even if the masonry could have withstood the high explosives in the projectiles the embrasures in such thick walls would have limited the range of the guns behind them. Plates of armor like those used for vessels were employed on land fortifications, but later chilled iron armor, which was first made by Gruson in 1860, was substituted for rolled iron armor. The great weight of the former rendered it impracticable for use on vessels, but made it especially effective in annihilating the live force of the striking projectile. It is used for stationary parapets, for batteries and for revolving turrets. Our engravings Nos. 3 and 4 show interior and exterior views of a battery made of chilled iron, for 24 centimeter guns, in course of construction. The porthole plates are curved so as to cause the attacking projectiles to slide off, and these plates are supported by pillar plates. Below the porthole plates are the pivot plates that carry the pivots on which the carriages swing, and in front of them, reaching to the lower edge of the portholes, is the glacis of beton or stone blocks. The battery is in a casemate which is protected at both ends from the shells of the enemy by heavy walls and earthworks.
Where a wide range is to be covered, armored turrets are used which are made to revolve so that the guns can be fired in all directions. Chilled iron armor of the type used for vessels is employed for these turrets, and the form and arrangement of the first ones were the same as in the turrets of monitors. Gruson was the first to undertake the construction of a turret to which chilled iron is adapted, and thus a new model for armored turrets was obtained. The cylindrical form with a flat or arched top has generally been abandoned and the preference given to a cupola-like arrangement of the whole turret, which presents no vertical surface, whereby the action of the striking projectile is very much weakened. Our illustrations Nos. 1 and 2 show a revolving cupola or turret for two 24 centimeter guns, in course of construction. No. 2 shows the cupola resting on a wrought iron base which, in turn, is revoluble on a circle of rollers. The tongues and grooves that form the connection between the separate plates are plainly shown. The gun carriages have no sidewise move $\cdots n t$, as this is obtained by the revolution of the cupola. Theguns are raised and lowered by hydraulic power, and when fired the recoil is taken by two hydraulic brake cylinders for each gun, limiting the recoil to 2 to 3 calibers. The guns return automatically to the firing position. Aim is not taken through the portholes, but through a little sight opening in the roof of the turret. The revolving mechanism and the pumping mechanism for the hydraulic power are usually operated by hand, but in France, where the turrets were intended to turn in carrousel fashion during a battle, motors were used A brake device is provided to prevent accidental turn ing of the turret when only one gun is to be fired. A suitable stationary glacis is arranged on the masonry foundation and surrounds the revolving portion of the turret. This is illustrated in cut No. 1. This glacis i embedded to its upper edge in beton or granite. Forty or forty-five men are required to operate such a turret only six of whom are needed to man the guns. Under favorable circumstances each gun can be fired about once in three minutes.
As only long cannon for direct; fire can be employed in such revolving turrets and oatteries-generally ar ranged in pairs in the former-cupolas for howitzers and mortars have to be differently arranged. These weapons are always fired at the same angle, and there fore the cupola which turns in the circular glacis can be quite flat and, on account of its light weight, be rigidly connected with the carriage, which revolves on a central pivot. Carriages of this class are especially adapted for inland fortifications and are called "armor ed carriages." For the shorter mortars the cupola is contracted to a sphere inclosing the mortar, only a small portion of the cupola about the opening extend ing from the glacis.
By the introduction of the disappearing turrets an attempt was made to obtain greater safety than could be expected with turrets which simply revolved so that only their portholes are turned from the enemy. The first of these were constructed by the Schumann-Gru son works and were arranged for small and medium sized guns, but later a disappearing turret for heavie guns was built in France by Galopin. In such turret the moving part, which is made cylindrical and cover ed with a slightly arched hood, has a sinking move ment as well as a turning motion, and can be lowered until its top is on a level with the glacis, so that when in loading position there is no opening exposed to the enemy and the turret itself is scarcely visible. The
disadvantages of this arrangement are that the wall carrying the portholes is so straight as to have very ittle resisting power, and that the motors required for arge plants are very expensive. The Frenchman Mougin tried to solve the question of obtaining greater safety while retaining the approved armored cupola, by mounting a comparatively flat dome on a turntable by means of a cradle, so that when tipped forward the portholes are brought under the glacis, and when the cupola is swung back the portholes return to the firing position. This pendulum turret also has its disadvan tages, the chief of which is that the circular opening between the cupola and the glacis cannot be covered and if the portions of the enemy's shells should find an entrance there, they might easily disable the turret.
We have, as yet, mentioned only fortifications which to a certain extent may be considered proof against the fire of an enemy; that is, those in which an effort is nade to supply protection against indirect as well as direct fire. In many cases, especially in coast fortifica tions, such overhead covering is not deemed necessary and as a substitute for the closed revolving turrets, either the barbette turret-in which the guns fire over a stationary ring of armor-have been borrowed from armored vessels, or the disappearing carriage, designed by Moncreiff and completed by Armstrong and others, has been adopted. In the former the gunners are protected by a shield connected with the carriage mounted on a turntable. A longitudinal opening is arranged in this shield to provide for aiming the gun high, and

HAND FEED ARC LAMP.

is closed by the barrel of the gun, which is thu left uncovered. In the disappearing carriage the gun also stands on a turntable in a basin of ma onry or armor that is provided with a perfectly fla top, also of armor, which cannot be seen from a dis tance. If such an invisible turret is to be brought int action, the barrel of the gun is raised by means of a neumatic device, and appears at an aperture in the oof, which is opened at the proper time, and then after being fired the gun is returned automatically, by ecoil, to the protected loading position. Disappearing carriages of the front pintle form are used in batteries in which the guns are fired over an armored parapet. Armored fortresses are found on the coasts of all civilized countries. In Germany and Italy-in the latter much has been done for the defense of its long stretch of coast-the above described Gruson chilled ron turrets are preferred, but elsewhere, as in England and the United States, disappearing carriages are more used. There are immense inland fortifications of un usual strength in Roumania, on the Russian frontier
which consist of three lines of defense about half a nile apart, the first consisting of portable armor shield for small rapid firing guns, the second of disappearing shields for medium sized guns, and the third of disap pearing armored turrets. There must be from thre hundred to four hundred such armored structures there, the greater number of which have been made by the Gruson works from designs of the late of Mr. Schumann. The fortifications at Bucharest must include two hundred and three armored turrets and these, as wel - the fortifications on the Meuse, at Liege and Namur -with a total of one hundred and ninety-two armore
fineer Brialmont. Of course, there are many armored turrets of this kind in other places, notable on the eastern frontier of France, in regard to which we have no detailed information.

As shown by the above, armor has become more and more indispensable on account of the development of projectiles, and the old competition between guns and armor is no longer restricted to naval warfare, but has been extended to warfare on land.-Der Stein der Wei-

HAND FEED ELECTRIC LAMP FOR LANTERNS

by george m. hophins.

Whire a good automatic lamp is undoubtedly preferable to a hand lamp for uses necessitating the absence of the operator from the vicinity of the lamp, it is certain that an ordinary hand lamp is not to be despised, and when the hand feed is supplemented with a magnetic device for striking the arc, the difference between the two types of lamps referred to is not to the disadvantage of the hand lamp when the latter is used in a lantern or for some other purpose which permits the operator to remain near the lamp, so that he may ad just it at intervals of about four or five minutes.
The lamp shown in the illustration has been used or an entire evening without a flicker. The upper, or positive carbon, is cored, and the lower, or negative, is solid, hard Carré carbon.
On the threaded rod extending upward from the base plate is placed the sleeve, a, which is connected with the slide holder so as to have a slight inclination, as is usual in lamps for lanterns, in order to expose more of the face of the crater of the upper carbon. The slide holder contains two slotted slides; the one holding the upper carbon being $71 / 2$ inches long, the one holding the lower carbon being $\overline{5} 1 / 8$ inches long, each being $11 / 4$ inches wide. To the lower end of the lower slide at b is pivoted an arm extending outwardly and supporting the lower carbon-holding socket. To the arm near the joint thereof is secured an upwardly extending stud carrying an armature. An electromagnet having an elongated yoke is supported in front of the armature by brass studs attached to a brass cross arm fixed to the lower slide. A curved brass spring fastened to the armature bears on the poles of the magnet and serves the double purpose of throwing the armature back and the carbon upwardly when the armature is released, and of preventing the armature from sticking to the magnet.
The upper carbon-holding slide is provided with a fixed arm extending outwardly and supporting an in sulated carbon-holding socket. These sockets are connected with their respective arms by bolts, which are surrounded with soapstone insulators provided with flanges which separate the sockets and the arms. The heads of the bolts are insulated by means of mic heads of the bolts are insulated by means of mica
washers. The holes through which the bolts extend washers. The holes through which the bolts extend
are made oblong to permit of adjusting the carbons in a way to secure the best results, that is, by arranging the point of the lower carbon so that it will be slightly in front of the axial line of the upper carbon when the lamp is in operation.
In the slots of the carbon-holding slides are secured racks, which engage pinions on the spindle journaled in the slide holder (Fig. 2). The pinion for the lowe carbon slide has half as many teeth as there are in the pinion for the upper slide, so that when the spindle is turned by the rubber hand wheel the carbons are moved in proportion to their relative consumption.
To an insulating strip attached to the back of the slide holder are secured two binding posts for receiving the wires connecting the lamp with the current sup ply. One binding post is connected with one termina of the magnet, and the other terminal of the magnet is connected with the lower carbon socket. The other binding post is connected with the upper carbon socket.
The magnet is wound with coarse wire (No. 16 or No. 14), and the armature is adjusted to pull down the lower carbon about one-eighth of an inch. The carbonholding sockets are formed of square brass tubing with a screw at one angle which forces the carbon toward the opposite angle, and thus centers and aligns the carbons.
The Edison direct current is suited to this lamp when bout fifteen ohms resistance is introduced in serie with the lamp. A suitable range of current is eight to twelve amperes.
The great advantage of the arc striking device is that, after the carbons touch, the arc is instantly formed of the right length, thus saving the trouble of any fine adjustment by hand, and avoiding the possibilit of any long continuance of a heavy current on the cir cuit. A very slight turn of the adjusting spindle, once in about four minutes, insures perfect steadiness. It is well to form a habit of thus regulating the are afte each change of slides. The illustrations are approximately one-third size.

What more useful book for the shop, counting room fireside can be had than the "Scientific American Cyclopedia," with its 708 pages and 12,500 receipts, notes and queries?

Prof. S. Prof. Langley's Aerodrome Prof. S. P. Langley's invention, the aerodrome its ability to fly, on December 12, says the New York Herald.
The latest experiment was made on November 28, when the machine, launched from a specially constructed stage, flew 1,500 yards in a horizontal direc tion, and when its power was exhausted gracefully dropped, until it finaliy rested on the water. The experiment took place on an island in the Potomac River, about thirty miles below Washington. This has been the scene of all Prof. Langley's experiments. His first successful trial of the machine was made last May, when it flew about nine hundred yards.
On account of the danger of injury to the machine by falling in the trees lining the river bank, Prof. Langley only put enough water in the engine to permit its making a flight for about one and a half minutes The engine is large enough to carry water for about five minutes. Its flight during the experiment lasted exactly one minute and forty-five seconds-a wonderful result, when it is known that no other invention has ever flown for more than a few seconds at one trial.
The machine is almost entirely made of steel, and conThe machine is almost entirely made of steel, and contains a peculiar steam engine of rather more than one horse power. During the last trial the engine generated sufficient power to turn the propellers something more than a thousand revolutions per minute. The weight of the machine itself is thirty pounds, and the boiler carries two quarts or about four pounds of water The movable parts of the machinery weigh twenty-six ounces. The fuel employed is gasolene, converted into gas before use.
The aerodrome is about fifteen feet long and measures fourteen feet from the tip of one wing to the tip of the other. Its wings are of silk and are stationary. The machine is driven through the air by means of two screw propellers, one on each side, about four feet in diameter.

In order to start the machine, an initial velocity had to be obtained, and this was secured by means of a movable table so arranged as to turn in any direction, and thus guide the flight of the aerodrome at the outset. Mr. Langley had constructed the launch engine apparatus, and on November 28 placed it on top of a houseboat. The table is on wheels, and the machine was launched from it in a perfectly horizontal line.
The only description of the work done by Prof. Langley which has recently been published from his own pen is the paper presented by him at the May meeting of the Academy of Sciences, Institute of France. We publish herewith an extract from this report, which we believe has never before been published in English. The report also contains a letter of Mr. Alexander Graham Bell, who witnessed the experiments.

DESCRIPTION OF MECHANICAL FLIGHT

by m. langley.*
"In a communication that I addressed to the academy in July, 1891, I said that the result of experimental researches had shown that it was possible to construct machines that would impart such horizontal speed to bodies having the form of inclined planes, and several thousand times heavier than air, that they would be able to support themselves in that element.
"I have said elsewhere in regard to this matter that other than plane surfaces might give better results, while on the other hand flight in an absolutely horizontal line, which is so desirable in theory, cannot be real ized in practice.
"As far as I know, no heavy aerodrome or flying ma chine, so called, has yet been constructed that can maintain itself in the air by its own power for more than a few seconds, the difficulties encountered in free flight being, for many reasons, very much greater than those experienced in the flight of a body bearing in its ascension on a horizontal track, pressing upward against the under part thereof.
' Everyone knows that many experimenters have devoted themselves to the study of mechanical flight, and although the demonstration that I have furnished \dagger of the theoretical possibility of obtaining mechanical flight with the means now at our disposal appeared to be conclusive, so much time has passed without bringing any practical result that there is reason to doubt that these theoretical conditions can ever be realized.

I therefore thought it proper to devote myself to the construction of an aerodrome or flying machine, making use of the conclusions that I had drawn.
'Perhaps the academy will find some interest in glancing over the account that I present herewith, given by an eye witness who is well known to them, of the recent work of that machine. I am led to proceed in this manner, not only by the request of the witness himseif, but also by the thought that my studies may be interrupted by the performance of my duties, so that it seems preferable to announce the degree of succomplete.

* Extract of report of the meeting of the Academy of Sc
of France, t. cxxii, presented at the meeting of May 26, 1896 .
+ Experiments in Aerodynamics, Smithsonian Institution, 1891.
"The experiment was made on a bay of the Potomac some distance below Washington. The aerodrome enour the most part, of steel, but, neverction to reduce the density of the whole to a little above 1 , taken as a unit, so that the total weight was slightly less than a thousand times that of the volume of air less than a thousand times that of the volume of air
displaced. No gas was used to lighten the machine, displaced. No gas was used to lighten the machine, the fuel and the water, was about 11 kilogrammes; the extent of the supporting surface was a little more than 4 meters. The motive power was furnished by a very light machine having about one horse power. There was no helmsman, and the apparatus for steering the machine automatically in a straight horizontal line was imperfect.
"Another important point: The small dimensions of the machine did not permit of providing an apparatus for condensing the steam, and it could carry only sufficient water for a very limited course, inconveniences that would be overcome by a larger machine. It was
supported only by the action of its screws, operated by steam, and the reaction of the air on its slightly curved surfaces.

It will thus be seen that the speed estimated by Mr. Bell was that which resulted from a continuous ascending movement, and was much less than that which would be produced by flight in a horizonta line."

mechanical flight.

letter from mr. graham bell to mr. langley.
"Washington, May 6, 1896.
' I know that you do not wish publicity before hav ing attained more complete success in steering your apparatus automatically in a horizontal line, but I think that what I heve been lermitted to see to-day marks great progress beyond what has been done heretofore in this line and that the news of it should be spread, and I am pleased to be able to give my testimony as to the results of the two trials that I witnessed to-day, by your invitation, trusting that you will consent to its publication.
'In the first trial, the apparatus, constructed mostly of steel and operated by a steam engine, was launched from a boat at a height of about 20 feet above the water. When propelled only by its steam engine it moved against the wind, rising slowly. While moving laterally and rising constantly, it described-with a remarkably aniform and gentle move.nent-curves of about 100 meters in diameter, until, having turned back on its course toward its point of departure, and at a height that I estimated to be about 25 meters, the revolutions of the screws had ceased (for lack of steam, as I understood) and the apparatus descended gently and without shock toward thee water, which it reached one minute and thirty seconds after it left the boat. There was no shock and so little damage was done that it was immediately ready for a second trial.
"In the second trial, which immediately followed the first, the same apparatus was launched again and took nearly the same course under similar conditions, and with very little difference in the result. It rose uni formly and without shock, describing large curves and approaching a neighboring wooded promontory, which it, however, cleared, passing the highest trees withou difficulty, at a height of 8 to 10 meters above their tops, and descended slowly, on the other side of the promontory, to the bay, at a distance of 276 meters from the starting point. You already have instantaneous photography of the flight that I took just after the apparatus was launched.
' From the extent of the curves described, which I, with other persons present, estimated from measurements that I took personally, and from the indications given of the number of revolutions of the screw by the automatic register, which I examined, I estimate that the length of the course was more than half an English mile, or more accurately a little more than 900 meters.

The time occupied by the flight in the second tria was one minute and thirty-one seconds and the speed an average of between twenty and twenty-five miles an hour (that is, ten meters per second), on a constantly ascending course.
"I was much struck by the ease and regularity of the flight of the machine in both trials, and by the fact that when the apparatus was deprived of the motive power of the steam at the highest point of its course and thus abandoned to itself, it descended each time at a uniform speed which rendered any shock or danger an impossibility.
"It seems to me that no one could witness that interesting spectacle without being convinced that the possibility of flight in the air by the aid of mechanica means would be demonstrated."

What better New Year's gift can an appreciativ employer make to his faithful foreman than a copy o "Experimental Science," with its 840 pages and 782 fine engravings of subjects that will both interest and aid him in his work?

Electric Arc in the Laboratory.
M. S. Walker expatiates upon the practical use in the chemical laboratory of the electric arc obtained from a low potential alternating current. He says it can be employed with advantage to show the effect of high temperatures upon difficultly fusible and non-volatile substances, for reduction of metallic oxides, as a partial substitute for the blowpipe in qualitative analysis and for the synthesis of certain compounds of carbon rom their elements. The apparatus is arranged by astening a cored carbon, about 10 by 1 cm ., in a verti cal position, so that the lower end is about 10 cm . from the top of the table. Connect by wrapping with insulated copper wire, stripped where contact is made with the carbon, then bore a conical shaped cavity 4 or 5 mm . deep in one end of another piece of cored carbon 4 by 1 cm ., fix this in a wooden clamp and connect it with insulated wire as before. Connect all the wires so that the circuit will be completed if the carbons touch. The lower carbon is, of course, stationary, but the movements of the shorter piece can be controlled like a test tube in a holder. The rheostat is adjusted so that an arc $\frac{1}{16}$ to $1 / 8$ inch long can pass between the lower end of the longer carbon and the edge of the conical cavity in the smaller one, and most minerals and common metals fuse easily when a small piece is placed in the cavity. It is stated that there is practical freedom from danger when working with a 50 volt alternating current, if the apparatus is properly fixed, and that the inconvenience caused by occasional shocks is found to be less than that due to burns, etc., accidentally caused during or dinary laboratory practice.-American Chemical Jour nal.

Water Beneficial in Typhoid Fever.

The Bacteriological Review commends the practic of water drinking in typhoid fever, the importance of subjecting the tissues to an internal bath having, it appears, been brought prominently to the notice of the profession by M. Debove, of Paris, believed by some to have been the first to systematize such a mode of treat ment. The practice of that eminent physician consists in fact, almost exclusively of water drinking, his re quirement being that the patient take from five to six quarts of water daily, this amounting to some eight ounces every hour. If the patient subsists chiefly upon a diet of thin gruel, fruit juices or skimmed milk, the amount of liquid thus taken is to be subtracted from the quantity of water. The important thing is to get into the system, and out of it, a sufficient amount of water to prevent the accumulation of ptomaines and toxins within the body. Copious water drinking does not weaken the heart, but encourages its action by maintaining the volume of blood; it also adds to the action of the liver, the kidneys and the skin, and, by promoting evaporation from the skin, it lowers the tem perature.

A Word to Mail Subscribers

At the end of every year a great many subscriptions to the various Scientific American publications expire, and the present issue closes the year 1896.
The bills for 1897 for the Scientific American, the Scientific American Supplement, and the Building Edition of the Scientific American have been mailed to those whose subscriptions come to a end with the year. Responding promptly to the invi tation to renew saves removing the name from our subscription books, and secures without interruption the reception of the paper by the subscriber.
The prices of the different publications in the United States, Canada and Mexico are as follows :

RATES BY MAIL.

Scientific American (weekly), one year..
Scientific American Supplement (weekly), one year............................. $\$ 3.00$
5.00
Export Edition of the Scientific American (monthly, in Spanish and
English).
COMbINED RATES
in the United States, Canada and Mexico.
scientific American and Supplement.......
Scientific American and Building Edition.
Scientific American, the Supplement, and Building Edition
terms to foreign countries.
The yearly subscription prices of Scientific American publications to
 Scientific American Supplement (weekly)00 616 Building Edition of the Scientific American (monthly)...... 3.00 . 3.0012 Export Edition of the Scientific American (monthly) in

COMbINED RATES TO FOREIGN COUNTRIES.

Scientific American aid Supplement...

Scientific American and Buiiding Edition
Building Edition............................... Suplement, and

The above rates inelude postage, which we pay Remit by check, postal or express money order, or draf to order of Munn \& Co., 361 Broadway, New York.

THE ANCIENT CITY OF COPAN.

by c. c. willoughby, peabody museum, harvard university.
In a fertile river valley, shut in by the high forestcovered mourtains of northern Honduras, are the ruined pyramids, terraces, temples and other editices of the ancient city of Copan. Until recently little was known regarding the extent of the ruins which lay beneath the accumulated mould of centuries. Monolithic monuments of sculptured stone were scattered here and there in the almost impenetrable forest of ceiba and cedar trees. These, together with a few of the more important pyramids, were known to the na tives and were pointed out to occasional travelers. The extent and real nature of the ruins, however, remained unknown until 1885, when A. P. Maudslay, an English archæologist, visited Copan, made some excavations and prepared a plan. In 1891, Prof. F. W. Putnam, of the Peabody Museum of Archæology and Et'mology of Harvard University, organized an expedition for the careful exploration of the ancient city. For four sea careful exploration of the ancient city. For four sea
sons the work of excavating has progressed successsons the work of excavating has progressed success-
fully. The forests have been cleared away and the accumulation of earth and vegetable mould has been removed from the temples, terraces, pyramids and court of the main structure and the ruins immediately sur rounding it.
The Copan River flows by the side of the principal group of ruins, and the eastern slope of the main structure has been undermined and carried away by the river floods, exposing a section which forms a cliff of rubble interspersed with walls of faced stone. This cliff is over 600 feet in length and at one point attains a height of nearly 135 feet.
The main structure covers seven acres of ground and consists of a vast irregular pile of terraces, flights of steps and pyramids crowned with the remains of temples built of squared stone. Some of the stairways and portions of both the exterior and interior of the temples were elaborately sculptured, and the building were originally painted in brilliant colors.
This structure contains two great courts or amphi theaters, whose cement floors are sixty-five fee above the river. Tiers of steps or seats are upon three sides of the eastern court, and the Jaguar stairway so called from the finely sculptured jaguars which guard the lower steps, leads from the western side o the court to the terrace above.
One ascends the main structure by a flight of well-
figures covered with elaborate breastplates and othe ornaments.
The sides of the doorway and the cornice which had arvings in stone. Other portions of the building

"SINGING GIRL," FROM ONE OF THE TEMPLES.

which was in an advanced stage of ruin, were elabor ately ornamented with sculptures, and the wall sur faces showed traces of plaster which had been painted From this temple a broad flight of steps descends to an elevated court. Within this court are sculptured monuments and a broad platform with terraced sides. Rising from the eastern side of this court is a pyramidal mound supporting a ruined temple. The sides of the pyramid are built of squared stone regularly aid in terraces. The temple is reached by a stairway divided for a part of its length by a raised structure in the form of steps, having in front rows of sculptured death's heads. The cornice of the temple was orna mented by small sculptured heads, both human and grotesque.
From the summit of the pyramid, which is 100 feet in height, one obtains a view of the extensive ruins to the south and west. Near the northern base of the pyramid is the eastern court, before referred to, nearly in losed by ranges of steps. The northern range of steps
end of the step is a human figure sculptured in stone seated upon an immense skull and holding in its hand the head of a dragon, whose body, together with othe figures, forms the ornamentation of the cornice over the door. The upper part of the outer wall of this temple had been ornamented by artistically sculptured half length figures in full relief, representing girls in the act of clapping hands.
Two stone incense burners in the form of grotesque heads were found within the inner chamber of this temple.
Adjoining the mound upon which this temple stands is another pyramid with three sides sloping to the level of the plane upon which the main structure is built. Upon the western side of this pyramid is the hieroglyphic stairway, one of the grandest pieces of architecture of ancient America. This stairway is about 40 feet in width, and it leads to the temple upon the pyramid, a distance of more than 100 feet. At the foot of the stairway, and occupying a central position, is an of the stairway, and occupying a central position, is an
elaborately carved pedestal. The face of each step of the stairway is covered with finely sculptured glyph composed of grotesque faces, masks, scrolls, and numerals, records of the ancient builders. Scattered throughout the debris are fragments of life sized human figures, carved in full relief, which once formed por tions of the structure.
From the summit of the mound of the hieroglyphic stairway one obtains an extensive view of the Great Plaza of Copan, with its surrounding steps, terraces and mounds. The Great Plaza and its extensions oc cupy over seven acres, and portions of it are paved with squared stones neatly fitted together.
Within the plaza are thirteen great sculptured mono lithic monuments, and before each stands a carved block of stone called an altar. The average height of these monuments is about twelve feet and the largest of them are about three feet in width and a little less in thickness. One side of the monument is usually sculp tured to represent a colossal human figure wearing an elaborate headdress composed of the upper portion of be fa quadruped from which rise great plume the of Masive ornaments gion the ad of the figure, bead ne laborate garments of textile fabric, with tasseled ringe, cover the shoulders, and sashes, garters, brace lets and a profusion of ornamənts decorate the lower portion of the sculpture.

RUINED CITY OF COPAN, HONDURAS, CENTRAL AMERICA, SHOWING AMPHITHEATER AND TEMPLES IN THE BACKGROUND.
preserved stone steps two hundred and fifty feet in width. From the first landing rises a pyramid, upon whose summit are the remains of a temple one hundred feet in length. A step in front of an inner door of this temple is ornamented with seated human
of this court leads to a platform in front of three ruined temples, the largest of these being probably the most elaborate building of the ancient city.
In front of the principal inner doorway is a step carved upon its face with hieroglyphs and skulls, and at either

Elaborate symbolical decorations derived from the great plumed serpent form a conspicuous part of the ornamentation, and the sides and back of chese monoliths are usually covered by glyphs, which, when deciphered, will probably tell us much regarding the
personages whose sculptured representations appea upon the stones
The altars standing before the monuments are of various sizes, and are also elaborately sculptured-some in the form of a grotesque animal or head, others having a row of human figures encircling them. The tops of the altars are frequently covered with glyphs.
Excavations were made beneath several of the monuments, and cross shaped vaults were found containing numerous jars of earthenware, some of which were decorated with well executed drawings of human figures and glyphs. The jars contained bones of small quadrupeds, sacred shells, and pigments of different colors. A few of the shells inclosed sacred objects, such as black oxide of mercury, cinnabar, worked jadeite, and a few pearls.
During the excavations a number of underground tombs were encountered, built of squared stone. These tombs were miniature reproductions of the rooms of the temples, and within them lay the crumbling skeletons of priests, surrounded with jars, food bowls, and personal ornaments, together with the paraphernalia of their priestly office.
The upper front teeth of several skeletons were ornamented with circular disks of green jadeite, highly polished, and having convex surfaces. The disks were inserted in holes drilled in the front of the teeth, and were securely fastened by red cement. The cutting edges of the incisors and canines were either ground smooth or notched.
The burial place of the common people of the ancient city has not yet been discovered. It is probable that the remains found in the tombs are of priests or important personages, and that the elaborately decorated human figures upon the monuments, stairways and buildings are effigies of gods whom the priests and rulers personified.
In studying the photographs, drawings, sculptures and other objects gathered by the Copan expedition and exhibited in the Peabody Museum at Cambridge one becomes impressed with the grandeur of the ancient city.
As to the age of these ruins, there are not sufficient data upon which to base a reliable conclusion. They are unquestionably prehistoric, and the builders of this city belonged to the same civilization as the constructors of the temples and pyramids of Yucatan. Judging from the ruined condition of the edifices of Copan, this city must be older than most of the cities of Yucatan, and more magnificent also.

THE APPEARING LADY

by william b. caulk.
Of the many new illusions now being presented in Europe, an ingenious one is that of the appearing lady, the invention of that clever Hungarian magician Buatier de Kolta.
On the stage is seen a plain round top four leg table, which the magician has been using as a resting place for part of the apparatus used in his magic performance. Eventually, the performer removes all articles from the table and covers it with a cloth that doe's not reach the floor. Cut No. 1 represents the table in this condition. On command, the cloth gradually rises from the center of the table as though something were pushing it up. In a few moments it becomes very evident that some one, or something, is on the table covered by the cloth. The magician now removes the cloth and a lady is seen standing on the table, as in illustration No. 2.
The secret of this, as in all good illusions, is very simple, as the third illustration will show. In the stage there is a trap door, over which is placed a fancy rug that has a piece removed from it exactly the same size as the trap, to which the piece is fastened. When the trap is closed the rug appears to be an ordinary one. The table is placed directly over the trap. Below the stage is a box, open at the top, with cloth sides and wood bottom. To this box are attached four very fine wires, that lead up through the stage by means of small holes where the trap and floor join, over small pulleys in frame of table and down through table legs, which are hollow, through the stage to a windlass. In the table top is a trap that divides in the center and opens outward. The top of the table is inlaid in such a manner as to conceal the edges of the trap. The lady takes her place in the box in a kneeling position, the assistant stands at the windlass, and all is ready. Fig. 1 shows the arrangement beneath the stage, and Fig. 2 the under side of the table top.
The magician takes a large table cover, and, standing at the rear of table, proceeds to cover it by throwing cloth over table, so that it reaches the floor in front of the tabie, then slowly draws

THE APPEARING LADY-STAGE ILLUSION means of three strong elastic cords placed inside of the cloth covering. These elastics are for the purpose of keeping the bottom and top frame of box together except when distended by the weight of the lady Thanks to this arrangement of the box, it folds up as the lady leaves it for her position on the table top, and is concealed inside of the frame of table after her weight is removed from it.

Ruins of Ancient Troy.
it up over the table top. The moment that the cloth touches the floor in front of the table, the trap is opened and the box containing the lady is drawn up under the table by means of the windlass, and the trap closed. This is done very quickly, during the moment's time in which the magician is

TABLE READY FOR THE APPEARANCE.
straightening out the cloth to draw it back over the to open the trap on top of the table, and close the trap.
The top and bottom of the box by means of which the lady is placed under the table are connected by

Dr. Wilhelm Dörpfeld, the first secretary of the Imperial German Archæological Institute of Athens, came to this country to attend the commemorative exercises at Princeton University and incidentally delivered a number of lectures of great interest at Columbia University, the Brooklyn Institute, etc. Dr. Dörpfeld is an industrious explorer of the remains of classical anti quity on the site of Troy, at Olympia and elsewhere, and his researches have given him an enviable reputa tion as one of the leading archæologists of the world. His lecture on "Troy and the Homeric Citadel" was very interesting.
The question of the site of Homer's Troy was briefly reviewed by the lecturer, as it has been discussed in ancient and in modern times. The views of Strabo, of Demetrius, and of modern scholars were briefly set forth, and the results of Schliemann's excavations and the careful and successful work of Dr. Dörpfeld himself were dwelt upon at some length. On the site now proved to be the place where Homer's Troy stood, the excavations have revealed nine strata of earth and ruins, representing recognizably distinct periods in the history of the three cities that have there been builtfirst the prehistoric, before Homer's time; then the Greek, the city of Priam; lastly, the Roman city. In the uppermost, or ninth, stratum were found a temple, theater, and other buildings of unmistakably Roman construction, with many inscriptions which show that the name Ilios is historic. Below this, in the eighth and seventh strata, are the remains of small houses of the Greek city, with evidences of fortifications of no great magnitude. In the sixth stratum is an acropolis, with many buildings and storehouses, strong fortifications, marked by towers and gates. Myce næan vases, the painted archaic terra cottas that are not later than 700 B . C., found in this stratum determine it date to be that of the Trojan war, as told by Homer-that is, between 1500 and 1000 B. C. In the fifth, fourth and third layers, period unknown, pre historic objects occur. Still deeper, in the second stratum, are the foundations of the acropolis hill, with sumptuous houses built of unburned brick. The wall of the acropolis is massive, with towers and gates, and shows signs of having been several times rebuilt. Here is the " treasure house of Priam," about which Schliemann had so much to say. In the first stratum, the lowest of all, the town walls rest upon the rock. Other articles discovered are of an unknown antiquity
Summing up the testimony of these resources, which he explained in detail showing their significance by means of pictures upon the stereopticon screen, Dr. Dörpfeld declared that the upper stratum, the ninth, was clearly made up of the ruins of the Roman city of Ilion. The Greek settlements of various periods visited by Demet rius, Alexander, and Xerxes have left their traces in the eighth and seventh strata In the sixth stratum have been found the remains of the Homeric Troy, the city of which the siege and capture, with the varying fortunes of the war for the punishment of Helen's ravisher, formed the subject of the Iliad. The excava tions below this base revealed only prehistoric-that is pre-Homeric-objects and remains.
So, in conclusion, the lecturer declared that the ques tion of Troy was solved. ("Die trojanische Frage ist gelöst "). The site, the very existence, of the city had furnished the subject of learned research for 2,000 years. The most recent excavations had settled all doubt as to the existence, the site, and the character of the city. The citadel of Troy he held to be the most interesting group of ruins now accessible to the investigator of classical antıquity and of ruins still more remote.

The Roentgen Hays in Pharmacy

Dr. Ferdinand Ranwez has made use of the X rays to detect mineral substances added to saffron as adulterants, says the Pharmaceutical Journal. Out of four specimens so examined, only one was found to be pure ; another contained $62 \cdot 13$ per cent of barium sulphate, and a third $11 \% 5$ per cent of that compound, together with a certain proportion of potassium nitrate. The fourth specimen contained 50 per cent of pure saffron, and the rest consisted of some substitute for that drug, faced with barium sulphate to the extent of 28.6 per cent. The plan adopted was to wrap a gelatino-bromide plate in black paper, place the saffron uponthis on the same side as the sensitive film, then allow the rays to act for four minutes, afterward developing and fixing in the usual manner. The foreign matter is very sharply indicated in the print illustrating the paper, in the Annales de Pharmacie for May.

RECENTLY PATENTED INVENTIONS.

 Engineering.Smoke Consuming Furnace.-Joseph W. Hogan. Atlanta, Ga. This improvement is designed especially for application to locomotive boilers, there be-
ing in the smoke box a receiver or superheater connected with the exhaust pipe, while an offtake, provid.d with an automatic governor valve, discharges a blast upwardly into the stack, and a second offtake leads from the re-
ceiver to the head of the boiler, where it has a check valve and a branch pipe discharging into the fire box. A live steam pipe leads from the top of the boiler to the branch pipe, an automatic regulating valve opening
when back pressure in the branch pipe decreases sufficiently.
Gas Generator.-Jesse E. Hathaway, Santa Fe Springs, Cal. For the generating of gas from crude oil, kerosene, gasolene, etc., for use as a
motive agent in gas engines, this generator has been especially designed, being of strong and simple construction and very effective in operation. It comprises a vertical exhaust pipe through which pass the hot products the exhaust is connected at one end with the oil supply and discharges the generated gas at the other end into a gas reservoir surrounding the exhaust pipe, there being a
safety valve at the upper end of the coil, and a removable safety valve at the upper end of the coil, and a removable
cap at the lower end of the vertical portion of the excap at the lower end of the vertical portion of the ex-
haust pipe. to introduce fuel to heat the coil when the haust pipe. to int
engine is started.
Carbureter.-Edward I. P. Staede, Mankato, Minn. This invention affords a simple device to carburet air by forcing it through gasolene or other
volatile fluids, using the heavier portionsof the fluid first, and leaving the lighter portions till the last, thus producing a uniform quality of gas. 'The carbureter tank has an air supply pıpe and a gas offtake pipe, and near the
bottom of the tank is an air chamber connected with the air supply pipe, coils within the chamber having their ends arried, one upwardly and the other downwardly, and each coil having an inlet opening within the chamber at
the junction of its downwardly extending member with the body. The air will be forced a considerable distance through the gasolene with but little pressure.

Uailway Appliances.

Fluid Pressure Brake.-Alexander Dallas and Oscar P. Amick, Herington, Kansas. This improvement is designed to facilitate the equal charging of the auxiliary reservoir and a prompt relearing of the
brakes at the same time and consists of a feed valve conbrakes at the same time, and consists of a feed valve con-
nected with a train pipe, an auxiliary reservoir, and a triple valve for recharging the ausiliary reservoir while triple valve for recnarging the ausiliary reservoir while
the brakes are releasing. The invention covers some
novel parts and detais, in which there are no springs novel parts and detaiis, in which there are no springs
to get out of order, and but a single valve is emto get
ployed.

Electrical.

Lamp.-- Louis A. Jackson, New York City. This is a lamp more especially adapted for use on bitycles an 1 wheeled vehicles, and is of such simple con
struction that it may be manufactured at small cost. It comprises a lamp and battery arranged in corapact form, lamp lamp not liable to be extinguished by jar. Therted on a suitable metal casing in which is a series of cells, the shell of each forming a battery element, a rheostat being supported by the cover and
having electrical connection through the casing with the having, electrical connection through the casing with the
lampp filament, there being a contact between the lamp filament and one of the cell shells, and means for closing filament and one of the cell shells, and means
the circuit tetween the rheostat and battery.

Mining, Etc

Miners' and Blasters' Tool.-Marticle knives for splitting the fuse or cutting it int lengths, a device for fastening the caps on the fuse, a cut ter for any kind of wire and a knfe and punch, the tool be ingas compact as an ordinary phe of phens whic may be readily carried in the pocket. The knives are held in place by set screws, and may be readily remove
Well Point. - Henry K. Brearley, West Duluth, Minn. This is a tool designed to pass
through ore, clay and rock much easier than the point ordinarily used, and comprises a tapering tubular body with closed lower end and spiral exterior flanges formin opposite cutting edges, the body having openings a intervals in spiral order from top to bottom. The point
is designed to receive water and particles of earth and rock, the latter following the pipe on the outside to the urface, and indicating the nature of the strata throug which the point is passing.

Mechanical

Horse Shoe Machine. - John W. row, New York City. To bend the metal bar or blank from which a shoe is formed into the proper curved
shape at one operation, this inventor has devised a ma chine which comprises a blank supporting table over
which reciprocates a plunger carrying a die adapted to which reciprocates a plunger carrying a die adapted to by the plunger, and the levers engaging the end portions plunger. The machine is of strong and inexpensive con-

Screw Driver.-Hiram F. Henry, Cleveland, Ohio. This is a tool with which one ma
work the handle rapidly forward and backward, to drive or withdraw the screw, without disengaging the shank rom the screw slot and without adjusting the parts. On the lower end of the handle is a tooth-faced portion adapted to engage a similar portion on the upper end of
the bit shank, the teeth of the two portions being held out of mesh by a coil spring around the parts, which are ail surrounded by a cap. The handle is pressed inward the handle disengaging the teeth of the handle part from those of the bit part.

Machine to Form Organ Pipes. Herbert Richardson, London, England. In a suitable
frame are mounted two rollers, one end of each roller being extended beyond the adjacent end of the other roller and there being a hand wheel fixed to each extended end, whereby the rollers may be manually
turned in opposite directions, a deflecting roller bein movable toward and from the space between the first rollers. The machine affords a simple construction by
which sheet metal may be readily rolled to form differ which sheet metal may be readily rolled to form differ-
ent sized pipes of uniform diameter, the two sides of the ent sized pipes of uniform diameter, the two sides of the
pipe, when removed from the machine, springing to gether to form a complete pipe.

Agricultural.

Potato Digger.-Edmund B. Frink, Oxford, Mich. This is a machine of light draught, designed to work as well on hilly as on stony ground, and shovel adapted to enter the ground and loosen the pot a oes, drawing them up to the surface, the work of which is completed by a rake whose teeth raise and free the potatoes from dirt, at the same time removing
the tops and depositing the potatoes at one side in windrows. The bowed or arched axle of the machine is carry the frame to or from the ground.
Cultivator or Plow. - Ferdinand Reimers, Davenport, Iowa. This invention provides the plow may be readily accomplished while riding on the machine. The plow beams are pivoted to swing
horizontally, there being a shifting lever on each side of horizontally, there being a shifting lever on each side of
the cultivator pivoted to swing vertically, and there be ing connections between the levers whereby their move ments will alternate, there being also bevel gears on th
levers and on the plow beams. With this the shovels of a riding plow or cultivator may be quickly and easily operated by the feet of the user.
Cultivatgr Beam Coupling.-Gidcon D. Mitchell, Newton, Kansas. This invention prorides a coupling capable of receiving round axles of va-
rous diameters and which will have a free rolling bear ing on the axle of the cultivator, enabling the operator, upon moving the plows to or from the vegetation, carry the coupling proportionately and in the same direction along the axie, thus bringing the plows an ald
times square to the work and obviating the prolonged and tiresome holding of one or the other, or both of the plows, up to their work against a tendency to draw
way. The coupling has friction rollers between which the axle is received, and some of the rollers are adjustabe and provided with locking devices.
Irrigating Plant.-Allan W. Towne, omona, Cal. For irrigating lands, and especially or chards, this invention provides for the employment of an inclined trunk pipe in which are gates and a number of hydrants arising from the trunk pipe between each
gate, the discharge orifices of the hydrants being in the same plane. The trunk pipes are run from head to foot of an orchard transversely of the furrows, and water is irst supplied by the hydrants of the upper
hen the following lower sections in order.

Miscellaneous.

Stove Pipe Shelf.-Abram H. Smith justable shelf for attachment to the draught pipe of tove pipe or range, for drying or warming dishes having a novel clasping device ty which the band may be readily secured on stove pipes of different diameter the band having a row of spaced perforations in which may be secured the wires of a shelf produced from single wire strand, the shelf comprising a^{\star} series of
diating braced arms held projected from the band.
Game Apparatus. - Helen M. Van Kuran, Chicago, Ill. This invention relates to a gam or children and young people, designed to teach the ze the players with the names and forms of bodies of of animasstem, geolife Therms aoard is divided a central line, at each side of which are corresponding belts bearing standard colors of the spectrum, each belt having objects thereon duplicated at each side of the enter line, while there are also checkers bearing the belts to which they belong. The players cover the objects with the checkers, to compete in covering all the figures, and first build a central column of a cube, cylinder and a sphere.
Making Nitrites.-Lewis G. Paul, of making nitrites of by the use of sulphur and caustic soda or potash, the
method consisting in heating the nitrates with the caustic alkali and adding sulphur gradually to the melted mass The temperature is kept at such a degree that the sulphur does not deflagrate when added to the melt, and raised until the melt becomes thinner and eventually ost clear.
Musical Instrument. - Bruno E. Wollenhaupt, New York City. This invention is for a
improvement on a formerly patented invention of same inventor, for a sympathetic vibrating device for violins, guitars, mandolins, etc., preatly increasing th volume and duration of tone without rendering ty more
difficult to play the instrument. Within the body is ar ranged a sounding support or bar on which are secure one or more combs, each having a number of teeth or
prongs corresponding with the different tones that can be prongs corresponding with the different ones that can the rranged above the bottom of the body, whlch resonates ished by the vibrating device, but is increased by the soft and sweet tones emanating from the combs, soun
ing in sympathy with the tones played on the strings.
Musical Instrument Valve.-Hiram
. Henry, Cleveland, o. A distension valve for cornets
and similar instruments is provided by this inventor, the
construction being simple and designed to prevent sidewise motion of the valve by the buckling of the compression springs now used. The valve is fitted in a
casing, with a coil spring encircling its stem and connected at its lower end with the valve, while at its upper end is a circular bearing concentric with the valve. As the valve is depressed, the spring is distended and over e casing.
Rib Tip Holder for Umbrellas, eTc.-Heyward Scudder, Boston, Mass. To hold um-
brella ribs against the stick or handle, preventing their needless play about the stick and giving the umbrella a neat appearance, this inventor provides a simple and inposite sides of the stick. the parts of the pin constituting spring sections, and the heads of the pins engaging eye portions of wire clamping sections adapted to engage
and hold the ribs securely against the stick or allow hem to be readily removed therefrom in opening an umStop Box.-Isaac Sorsoleil, Owato na, Minn. This is an improvement relating to munic pal water and gas supply, and readily adjustable accord ing to the depth of the water or gas supply pipe. It
comprises a pipe adapted to surround the valve stem and having at its upper end a head formed with a cam having an elongated tangential aperture, the cover of the bolt extends loosely and having also an aperture, while he covens through the apertures of the cam and of shank. The head and pipe are turned, to screw the latter up or down in the casing, by means of a fork
tool.
Sheet Metal Can. - Frank H. Palmer, Brooklyn, N. Y. A can having a tight cover
joint, but of which the cover may be readily removed by prying with a screw driver or similar tool is arvided by this inventor. In the top of the can is a large centra opening, around which is a depressed ring to receive a packing which is formed on the under side of and near the edge of the cover, while inside of this ring the cover has a central depressed portion adapted to fit into and
impinge upon the edges of the central opening in top of the can body. The cover is simply pressed down into position to close the can, the packing ring being simultaneously forced to place to make a tight joint.
Bread Box and Slicer. - Charles and oth. Joseph, Mo. For hotels, boarding hous used, this inventor has devised a box for holding th oaves and provided with means for slicing them. The avention comprises a loaf feeding device, a rotary cut er, a frame on which the parts are mounted, and a compartment box within which they may be removabl. ered slices fall into a lower compartment, but the slice may be operated separately from the box.
Note.-Copies of any of the above patents will be send name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS.

Everybody's Medical Guide Ahand book of reliable medical information
and advice. By M. D. (Lond.) London : Saxon \& Company. Price 50 ents.
This little book, by an author whosename is not state rom its size and make up and treatment appears to be good work, and its shape makes it particularly adapte
for traveler's use. It seems not at all in the order work designed to supply the care of a physician, for it does not pretend to do so, which adds to one's opinion of it. It is written from an English standpoint.
Westinghouse Electric Street Car EquIpments. By Fraderick L.
Hutchinson and Leo A.
Ehillips.
East Pittsburg, Pa. 1896. Pp. 91, xvii. Price $\$ 1$.

The National Electrical Code. An analysis and explanation of the underwriters' electrical code intelligi-
ble to non-experts. By Pierce and bie to non-experts. By Pierce and Chicago. Phicago, Price $\$ 2$.
The title page explains the scope of this work. It is of the electric light question to avoid interference of wiring and connections with the insurance policy
Friction, Lubrication. and the Lut
bricants in Horology. By W.
bewis. Chicagorologr. By w. T
\& Company. 1896. Pp. 95. Price $\$ 1$. This excellent monograph is one that should be in the the finer class of machinery. It seems to us that th author has almost done himself an injustice in confining his topics to watches and clocks, for people have now at
last waked to the idea that a lubricating oil should be good. The superlative of lubricating oil as well as the
methods of employing it are to be found in the watch

The Watch and Clock Maker's Hand Book, Dictionary and Guide. By
F. J. Britten. Ninth edition. Lon don: E. \& F. N. Spon. New York:
Spon \& Chamberlain. 1896. Pp.
459. Price $\$ 2$ 459. Price $\$ 2$.

In this work we have another and quite elaborate contribution to the watch and clock maker's industry. The scriptive of the methods, applications and operations of the art. It is very thoroughly illustrated. It is alpha-
betic ally arranged, the only break in the alphabetical order being due to divisious of the subjects. There is no index, but cross references are supplied, wiich to a great extent will take the place of the index, and make it unnecessary

凹usiness and 〇ersonal.

charge for insertion under this head is One Dollar a
line for each insertion about eight line for each insertion; about eight words to a line.
Advertisements must be received at publication office as early as Thursday morning to appear in the follow

Marine Iron Works. Chicago. Catalogue free
"U. S." Metal Polish. Indianapolis. Samples free

Yankee Notions. Waterbury Button Co., Waterb'y, Ct. Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O. Screw machines, milling machines, and drill presses. Concrete Houses - cheaper than brick, superior
stone. "Ransome," 57 Monadnock Block, Chicago. The celebrated "Hornshy-Akroyd" Patent Safety Oil chine Company. Foot of East 138th Street, New York. The best book for electricians and beginners in electricity is " Experimental Science," by Geo. M. Hopkins.
By mail, \$4. Munn \& Co., publishers, 361 Broadway, N. Y. Send for new and complete catalogue of Scientifl
and other Books for sale by Munn \& Co., 361 Broadway, New York. Free on application.

2HAlst thuris

HINTS TO CORRESPONDENTS. vames and Addreess must accompany all letters
or no attention will be paid thereto. This is for our
inforination and not for publication or no attention will be paid thereto.
infornation and not for pubication is for our
efrernates to former articles or answers should Ifercruces to former articles or answers should
give date of paper and page or number of question.
In iniries not answered in reasonable time should
be repeated: correspondents will bear in mind that be repeated: correspondents will bear in mind that
some answers require not a little research, and,
though we endeavor to reply to tll eiter by lett
or in this department. each must take his turn lett Buyers wishng to purchase any article not adverti
in our columns will be furnished with addresses
 scientitic Ancrican sunplements referred
to may be had at the office Price Pcents each.
Booli- referred to promptiy supplied on receipt of NHiner
marl
preser price.
inrer sent for examination should be distinctly
marked or labeled.
(7054) R. L. asks how to run a cyanide copper bath so that the metal deposited will not peel off
during deposition or during the final buffing process. A.

Acetate of copper....

Aqua ammonia...........
2. Warm Bath.

3. Hot or Cold Bath for Tin, Cast Iron, or Large Zinc

Acetate of copper....
Pieces.
Bisulphite of soda....
Cyanide of potassium.
Aqua ammonia.
The metal must be chemically clean in either case.
(70b5) A. P. S. asks: 1. What is the ammonia of equal commercial'strength? A. Supple. MENT, No. 1080, gives formula for making household
ammonia. 2. What will remove mildew from fine white oods? Is not chloride of lime sometimes used for bleachTo muslins, and if so, kindly state in what manner? A. To remove mildew stains, mix together a spoonful of
table salt, 2 of soft soap, 2 of powdered starch, and the juice of a lemon. Lay this mixture on both sides of the stain with a painter's brush, and then lay the article on the grass, day and night, until the stain disappears; or get a piece of flannel, dip it in whisky,
and well rub the place marked; then iron on the wrong side, taking care to put a piece of damp cotton cloth bewhich will prevent the silk assuming a shiny, glazed appearance; or wash clean and take every particle of full of clean cold water, procure a little chloride of lime, and tie it up in a muslin bag or piece of muslin, dissolve pour the water among the clothes. Stir and leave them or twenty-four hours, but do not put too much lime in or you will rot the clothes; then well rinse in clean cold
water; or hypochlorite of alumina is said to be one of the best remedies. Moisten with water, rub well into the cloth, moisten again with dilute sulphuric acid (1 to 20), and, after half an hour, rinse thoroughly in soft water
and then in water containing about an ounce to the gallon of sulphite or hyposulphite of soda. A stiff brush may be advantageously employed in applying the hypo-
chlorite. Chloride of lime will rot the muslin
(7056) H. B. asks: 1. How can I com pute the amperage of a primary battery? A. There is
no satisfactory way of doing this; the amperage changes no satisfactory way of doing this, the amperage changes Is it not well to have amperage of battery a little higher han necessary for a certain work and regulate the mount of current passing throngh the wire by number perage available. Reduction to have an excess of am-
pesistance or by cells is perage available. Reduction by resistance or by cells is
not economical, but the excess of amperage is pretty apt
to be seriously diminished in practice. 3. Does plaster
of Paris make good porous cups? A. No. It may be used as an expedient only. 4. When porous cup is used is it still necessary to take zinc out when current is not
passing? A. Yes; as the porous cell only retards diffupassing? A. Yes; as the porous cell only retards diffu meant by watt? A. A watt is the product of one wolt by one ampere-the volt-ampere. It is the unit of power one ampere-che rate of expenditure of energy
(7057) H. H. asks: 1. What is the rea son for winding large wireon fields and small wire on ar mature of small motor, the armature of three pole type A. The armature winding is in paralle.. Therefore, it with, and but one-sixth the resistance. Hence fin wire can be used for it. The general rule for dynamos is that for series winding the field should have $2 / 3$ the re sistance of the armature; for shunt winding the produc of the field and armature resistances should be equal to
the square of the external resistance. The sizes and lengths of wires are based on these and similar considera tions. The effect of too few turns of wire on a moto armature is to give high speed, with danger of burning our. 2. Can I use the number of amperes that my arma number of vorry to run my motor, irrespective of the ares. 3 . I have a current of one wound with, also what resistance should I wind arma to secure the best results? The motor to the size of No. 1 Porter motor made by the Leavitt Company. A. Use No. 23 wire on field and No. 26 on ar mature. The resistance cannot be stated from data given. Wind the armature full. 4. Would I be able to use the same winding for 6 volts and
Use wire two or three numbers larger.
(7058) S. C. McK. asks: 1. Is there any glue, paste, or cement that is a good conductor of elec tricity, as good as carbon, when dry? A. No; unles there a nonvolatile liquid that is a good conductor of elec tricity? A. Mercury 3 Can you approximate the pres Two Edison-Lalande zincs (type Q) suspended in a regular caustic potash solution (charge for type Q) covered with parafine oil, the whole contained in a carbon cell (plumbago crucible)? I cannot get at the area of car bon in contact with the liquid, but you may be able to approximate $i t$. Yave two of these cells and they are
very satisfactory. Have not worked them much on closed circuit, but have not been able to notice any falling off of current due to polarization. There are some piece of copper oxide in the bottom of cells. A. 0.667 vol carbon renders it so indisprent. 4. What property of telephone transmitters? A. Its granular nature, causin surface contact or internal resistance, either as regard
(7059) J. O. H. writes: In looking over some back numbers of your paper, in query column, you
state that cast iron can be brazed or soldered. Will you please inform me where I can find directions in regard to brazing of cast iron requires care to have the surface per fectly clean by scratching with a file and then rubbing the surface with a piece of zinc and sal ammoniac dissolve copper, or brazed with borax and flux wing a soldering nother plan is to scratch the surface with a bundle of bass wire made up like a brush, thus coating the surface with brass, and so adapting it for soldering
(7060) G. Gr. writes: 1. I have several feet high. Will a coating of paraftine wax applied hot to the inside prevent leakage of water? Will it be perma nent? If not successful, can the tank be afterward coated with cement? A. We cannot recommend the building of the paraftine is heated on the face of porous, and unless e driven in sufficiently to make a permanent and water tight tank. The tanks should be built with the best ortland cement and plastered with the same an proofing, paraffine the surface of the plaster by heat. Th
\& E. ask whether platinum rom the water used in them, and in places where boiler cale, will the scales fasten themselves to the platinum ikely become covered with scale
062) J. F rur for figur stores, etc., by electric lights. How many cubic feet of be given, as the light required is affected by so many can ditions. The color and nature of the wall or wall poper, angings. furniture, and carpets, are all concern d , well as the use to be made of the room, taste of the oc apants, etc. Again, if frosted bulbs are used half or three ares lobes may cut down the light to one-iifth of its norma ower incandescent lamps to each two gas bum d normally required.
(7063) W. C. G. asks if a one horse pown the dynamo in No. 600. A. It will if minute wil wheels are used to increase the speed. Two hundred volutions per minute are not sufficient for the dynamo.
(7064) E H. asks: What is the coeffi cient of friction in a bicycle chain? A. It cannot be acbrication make a very great difference. If the chain too tight, the friction will increase enormously. The chan should be very loose. The whole subject of friction is treated in a series of papers by Prof. Hele Shaw our Supplement, Nos. 572, 573, 574, 575, and 576, to excellent article on mechanics of the cycle. Chain fric tion is not directly treated in any of these Supplements.
(7065) M. O. asks: 1 . What is the presexploded, as in the cylinder of a gas engine ? Also about
explosion? A. We have no records of this pressure. The fact that acetylene gas may itself be exploded under certain conditions goes to still further complicate the problem. Two volumes of gas should have twenty-five volumes of air for perfect combustion or explosion.
100 to 150 lb . per square inch would be a fair allowance. 2. About what would be the difference in regard to powe between acetylene and gasoline? A tasoline would be much more powerful. 3. Is there any book or papers on the subject? A. We recommend, and can supply, "A Textbook on Gas, Oil and Air Engines, or Internal Com bustion Motors Without Boilers," by Bryan Donkin, new edition, price $\$ 7.50$ mailed; also "The Gas and Oil
(7066) M. C. asks : 1. I have a small in action coil wound with 8 ounces double silk No. 36 on the secondary and I have one with 4 pounds double cot primary of No. 14 double cotton covered, and the smal coil with 2 cells battery gives more shock than the large one; is that natural on account of the size, as the largeone ives more of shock, as more battery power is applied A. If of generally similar construction and proportions, he large coil should be more powerful than the smal ne. It may be a question of insulation or of insufficient primary. A short circuit wlll make an immense differ ace. 2. How many volts will 1 need to get a 4 inch turns in secondary by turns in primary; divide 400,00 by the quotient to get the voltage required in primary This rule is only approximately correct. 3. Have you any work on how to make an ampere meter? A. See on Supplement, Nos. 618, 628.
(7067) O. P. W. says: Will you please give me in Notes and Queries column a receipt for durable lacquer for brass, colorless preferred, such as is sed by instrument makers? A. 1. For colorless lacquer Seed white shellac varnish watt has been filtered 2. Seed lac, dragon's blood, annatto, and gamboge, each
4ounces; saffron, 1 ounce; alcohoi, 10 pirts. 3. Turneric, pound; annatto, 2 ounces; shellac and gum juniper ach 12 ounces; alcohol. 12 ounces. 4. Seed lac. 6 ounces; ragon's blood, 40 grains; amber and copal, triturat in a mortar, 2 ounces; extract of red sanders, $1 /$ drachm; Oriental saffron, 36 grains; coarsely powdered
glass, 4 ounces ; absolute alcohol, 40 ounces. Very fine. (7068) C. L. M. asks if there is anythin which will loosen up blue vitriol when it has caked in e bottom of a jar of gravity battery-frozen I think called. Ihave charge of the fre alarm here, and ha copper is frozen in. A. Try filling a tub with water, and mmersing completely in it the jars, turn them upsid own, keeping them absolutely full of water, allowing no air to enter. This may loosen it so that it will come awa Solution of the copper in nitric acid is rather expensiv ou can, however, dissolve it in a mixture of sulphur and sodium nitrate. This is cheaper than nitr acid.
(7069) L. H. G. asks: 1. What is the bout 2,000 candle power, really about 800 candle power Does adding salt to coal in consuming injure the grat and used under a boiler, injure the boiler steel? Itwil not be apt to injure the grate. It might tend and cold after its use.

TO INVENTORS

INDEX OF INVENTIONS For which Letters Patent of the United States were Granted

DECEIBER 8, 1896
AND EACH BEARING. THAT DATE.
[See note at end of list about copies of these patents]

	Steam engine, G. S. Strong.ina.................... 5
	ets seeerer,
	Tate seb table. Paper hanger's work table
	Trapping pipes or mains, apparatus for, w. Dow. ${ }^{\text {Tenemen }}$
	egraph, print
	Teiephonicapparatus, C.J. Sconwarze
	Tire, elastict tubular
	Triley way, Mi Dililentiry,
	(Type distribut
	ewritin
	Umbrella or parasol rib tip hödeer, H . Scu $\mathbf{~ r u d a ̈ r . ~}$ Upholstery, J. A. . Staples
	cin cie prapere
	coil
	Water eevator Claypooid Dooiey
	Weather board gage and support, W. Stevenson.:
	Window, reversible, E . BradshawWre. et.............. from copper, apparatus for manufac:turine
	terne
	DESIGNS.
	Badge, F. M. Oehley.
	ceet,
	me board, W. W. .ampie
	Hinke, strab, if i. Chi
	Saddle seat support, B. S. Seaman

[^0]

Radial Drills
Pohlé Air Lift Pump The Ingersoll-Sergeant Drill Co.

ACETYLENE APPARATUS.-ACETY-

BUY TELEPHONES
 speak highty for the " Western" put in place of it.
Hundreds of similar cases may be cited affecting the
 250 South Clinton Street, Chicago

VELOCITY OF ICE BOATS. A COL-

AN EXCELLENT HOLIDAY GIFT For OLD or Young.

Experimental Science

17th Edition Revised and Enlarged.

840 pages, 782 fine cuts, substantially and beautifully bound. Price in cloth, by mail, \$4. Half morocco, \$5.
This splendid work is up to the times. It gives young and old something worthy of thought. It has influenced thousands of men in the choice of a career. It will give anyone, young or old, information that will enable him to comprehend the great improvements of ithe day. It furnishes sug gestions for hours of instructive recreation.

Send for illustrated cirsular and
MUNN \& CO., Publishers, Office of the
SCIENTIFIC AMERICAN,
36I BROADWAY, - NEW YORK.

耳rientific Americau.
[December 26, 1896.

"Facts
 Worth Knowing"

 Scientific American,Household, Workshop, and Farm.

allings of life, as a helping cempanion; for the youne for instuction and amusement. Contains 887 large oc favo, double columned pages, , rinted from new elect

Agriciulural Enitomis

 - EPITOMIST PUB. CO., Indianapolis, Ind TOCDMOTIVE GNGINEERING ATRACCULCN RALWAY MOTITE POWER 56 Broadway, New York

 "INSTRUMENTS OF PRECISION.

 ONLY PRACTICAL MAGAZINE CAMERA

SUNART'S "VENI, VIDI VICI," sunart magazine. SUNART FOLDINGS | Send for Illustrated Cata |
| :---: |
| logue -2 cent stamp |

Automatic wire forming machine depa charge of R. C. Manville. the waterbury tachine co. P. O. Box
waterbry,
CONN.,
IN
 THE NE W ${ }^{\text {are the stand }}$ DEPARTURE BELLS oove

SUPERIOR TO COTTON WASTE

\rightarrow ALCO YAPOR LAUNCH

 NO FIRE, SMOKE OR HEAT. ABSOLUTELY SAFE

 Make Your Work Light! HAMMOND NO. 2
 THE HAMMOND TYPEWRITER CO., 40I East 62d Street, NEW YORK CITY ZUatchmaking a Crade for Young men and ZUomen Parsons' Tnstitute for ZJatchmakers, Engravers and Opticians in Dew Quarters.

"The Scientific American Building Edition."
Each number is illustrated with a Colored plate and numerou together with interior views, tloor plans, description, cost, location
owners' and architects' names and addresses. The illustrations include seashore, southern, colonial and city residences, ciourches,
schools, public buildings, stables. carriage bouses etc. of any kind, have in this handsome work an alm
make selections, thus saving time and money

Perfect \hewspaper File.

tific American Suplement; who wish to preserv their papers for binding, may obtain the Koch Patent
File at the office of this paper. Heavy board sides, inscription "Scientific American" and "Scientific Amer
can Supplement" in gilt. Price $\$ 1.50$, by mail, MUNN \& CO., 361 Broadway, New York 35 Cents

ELECTRICAL SUPPLIES

BRASS BAND

STUDY A HOME ELECTRICITY, MECHANICAL DRAWING, MECHANICS, OR 72 pape STEAM ENGINEERING. Citating

46-47 Blackstone Building, CLEVELAND, OHIO

 Shorthand by Mail Morouphy tayubt by ree

 $\mathbf{\$ 5 0 0 0}$ Wo ofore asat for simple ideas, patented
 WELL DRILLING AND PROSPECTING CONTRACTS WANTED.
 NOVELTY SIGNS Agents gantad to sell raagy

YOLNEY W. MASON \& CO Friction Pulleys, Clutches \& Elevators PROVIDENCE R. WOODEN TANKS.
 217 E. Main Street, Louisviile. Ky. DIXON'S 691 $\begin{aligned} & \text { saves wear of chain, pre- } \\ & \text { vents }\end{aligned}$ CYCLE CHAIN ease, speed and comfort. GRAPHITE sen io weill pay you to BEST DRYING MACHINES

 METALLIC CARTRIDGES! Mfrs. of can

ARRBORUNDUY ATE

Twelfth Edition Now Ready.
THE SCIENTIFIC AMERICAN
CYCLOPED!A OF
Receipts, Notes and Queries
12,500 RECEIPTS. 708 PAGES

worlarts of the ther
value arration given heing of the highest and condensed in concise form
val
 be found answered.
of those tho are engage in almost ans branch
or ind
 business or emporyment, relating to the home
manuracture of samable articles, will find in it
hundreds of most excellent Send for descrintive cirulur
MUNN \& CO., Publishers,
361 Broadway, New York.

Tested and True.

The Easient Running Wheel in the World.
THE BLACK MFG
ERIE, PA.
 PHOTOGRAPHIC SIMPLICITY EASTMAN KODAK CO. Booklat free at agencies

AMERICAN SCREW CO

Water fôf goùntitiv úue THE DOMESTIC PUMP. A wonderful invention for Raising water.

THE ERWIN HYDRAULIC MACHINERY CO

The

American

Bell Telephone Company,

125 Milk Street,
Boston, Mass.

This Company owns Letters-Patent No. 463,569, granted to Emile Berliner November 17, 1891, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.

Recording Instruments Pressure Gauges, Vacuum Gauges, Volt lars and Specimen chart. Waterbury, Conn.

AN INVIGORATING BATH

To Bicycle Riders

WE MAKE OUR TUBE
of FIFTY CARBON STEEL
Because a Tube like this of our

While Weight for Weight in a Bicycle our FIFTY CARBON Steel will last so long and TWENTY-FIVE CARBON Steel will last only so long NOTE THE FULL IMPORT OF THE PARALLEL LiNES. tions of the most practical experts of the world.
That the tests in our own taboratory corroborate these results is merely so much to its credit:
that the same tis true of actual trial on the road equally proves the trial to have been made in
bicycte same is that the same is true of actual trial on the road equally proves the trial to have been made in
bicycles of correct design and construction. THE FAUT REMAINS. should u se it; every dealer should insist on having it; every rider should de mand it. should use it, every dealer should insist on
Send for Catalogue. \quad THE POPE TUBE CO., HARTFORD, Conn.

CHAS. A. STRELINGER \& $\mathbf{C O}$.

NICKEL Electro.Plating Apparatus and Material

DO YOU GRIND ANYTHING?

Cheap, Durable. Never Dressed

PRIESTMAN SAFETY OIL ENGINE

This beats Wind, steam. or Horse
WEBSOERER Whe GAS $\mathbf{E N G} \mathbf{G} \mathbf{I N E}$

 WEBSTER MF'G ${ }^{\text {Con }}$
POWER? POWER?? POWER!!!

The Chicago Gas \& Gasoline Engine
 $=$

NOW IS THE TIME TO SUBSCRIBE

established 1845.
The most popular Scientific Paper in the World The Scientific American has been issued every week by the present puonsuers ror a period of over fifty years. It is the only Journal published in this country which is devoted to a general treatment of the development of the sciences, arts and manufactures. Each issue is embellished with numerous illustrations showing great engineering works, the most recent inventions in bicycles and motor carriages, new forms of machinery, photography, the latest additions to the navy, new guns, locomotives, etc., sixteen pages each week. Many of our patrons have been on our subscription books for a period of thirty or forty years. and we often receive letters from old readers stating that owing to a careful reading. of the paper since boyhood, they owe their success in life more to having had the Scientific American as their constant friend and companion than to any other one cause.
The Scientific American should have a place in every dwelling, shop, office, school or library. Workmen, foremen, engineers, superintendents, directors, presidents, officials, merchants, farmers, teachers, lawyers, physicians, clergymen-people in every walk and profession in life, will derive satisfaction and benefit from a regular reading of the Scientific American.
As an instructor for the young it is of peculiar advantage. Try it.-Subscribe for yourself-it will bring you valuable ideas; subscribe for your sons-1t will make them manly and self-reliant ; subscribe for your workmen-it will please and assist their labor; subscribe for your friends-it will be likely to give them a practical lift in life. A yearly subscription to the Scientific American is a most acceptable holiday gift to a son or a friend.
NEW VOLUME COMMENCES JANUARY 1ST
Subscription Price,
3.00 a year, or $\$ 1.50$ for six months.

喓 Send your address for a free specimen
MUNN \& CO., Publishers,
361 Broadway, New York.
PRINTING INKS

[^0]: TRADE MARKS

