
a Weekly dournal 0f practical information, art, science, mechanics, Chemistry, and manufactures.

| |
| :---: | THE COAST DE-

FENSE MONITOR FENSE MONITOR
AMPHITRITE. The formidable ittle warship which forms the subject of the accompanying illustrations is one rations is one of group of five simi lar vessels whose
keels were laid as keels were laid as
far back as the year 1874. In the official lists of the navy they are described as iron low freeboard coast defense monitors With the exception of a few smal tion of a few smal gunboats, they represent the only new construction attempted in th navy during that long twenty years of silence which fell upon the busy navy yards of the country from the close of the civil war to the date of the construction of our modern navy. The build-

THE COAST DEFENSE MONITOR AMPHITRITE.

g of even these e ships was cared on slowly, d it was stopd before they re completed, d the shells of e ships, with ships, with ir engines on ard, but with armor or arma nt, were laid , and it was not til March 3, 35, that an ap opriation of $\$ 3$, 8,046 was made r their comple n. Of the five monrs, three, the iantonomoh onadnock, and rror, are sister ips to the Am itrite, which is 3,990 tons disacement, the uritan being insiderably larg 6,060 tons, and rrying 12 inch ainst the 10 inch ns of the small (Continued on page 381.)

COAST DEFENSE MONITOR AMPHITRITE-THE FORWARD PAIR OF TEN INCH GUNS.

§rientifir Ammerican.

ESTABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 BROADWAI, NEW YORK.

TERMS FOI THE SCIENTIFIC AMERICAN.
 One copy, one year. for the U. S. Canada or Mesico.................. $\mathbf{\$ 3 . 0 0}$ One copy; six meanth, for the One cony, Remit by postal or express money order, or by bank draft or check. MUNN $\&$ CO., 361 Broad way, corner of Franklin Street, New York. The Scientific American Supplement (Established 1876)

 Building wage prepaid.
 Established 1585 .

Export Edition of the Scientific American

NEW YORK, SATURDAY, NOVEMBER 21, 1896.

TABLE OF CONTENTS OH
SCIENTIFIC AMERICAN SUPPLEMENT
No. 1090.
For the Week Ending November 21, 1896.

ANTHROPOLOQ Y.-Types of Bolivian Indians,- Reproduction

11. CIVIL ENGINEERING.-The Proposed New York Under
V. CYCLING.-The First Bicycles.- A bigbly Interesting article on
the old tume draisienne, or pedalless bicycle. -4 illustrations......
v. ELECTRICAL ENGINEERING.- The Fair Haven and Westivile
 connected to rotary steam motor used for tbe decomposition of
sait into chorine and caustic soda. 1 illustration..............
I. ENTMOLOGY-Tbe More Important Insect Injurios to
Stored Mrain. The sawtoothed grain beetle. Continuacion of

 Selected Formulee.
Enineerin Notes.
Elecrical
Miscellaneous Noies
 skin of the hands, prestmably due to X rays..

the sinking of the battleship texas

That most unlucky of all the ships of our navy, the Texas, has added one more accident to the long list which lies to her credit by going to the bottom as she lay at her moorings at the Brooklyn Navy Yard last eek.
As far as can be learned at this early stage of the inquiry, it looks as though the accident was due to an attempt to make repairs upon the ship's starboard injection valve while she was afloat. The injection valve controls the admission of sea water to the condensers, and is situated near the entrance of a pipe, which pierces the ship's bottom, and conducts water directly from the sea to the condensers. It appear that this apparatus was being overhauled, and that a temporary valve had been put in with a view to enabling the repairs to be made without placing the Texas in dry dock. Why this work was done afloat can only be surmised ; but we can well understand that there is a reluctance to put the Texas in dry dock oftener than is necessary, on account of the serious straining of her structure which took place on the last occasion of her docking at this navy yard.
The valve by which the main injection pipe is closed is operated by a screw which works in a stout yoke. It appears to have been this yoke which parted and allowed the sea water to flow in through the 13 inch pipe, with the result that the engine room and stokehold were flooded, the water gaining so rapidly that the Texas sank until she rested upon the mud at the bottom of the East River. That she did not disappear altogether is due to the fact that there was not sufficient depth of water at this point to cover her; had the accident happened in deeper water, this battleship would now be out of sight, possibly for good. As it was, the divers were able to plug up the valve, and, with the assistance of a few wrecking tugs, the water was pumped from her hold and the ship floated.
The accident has created quite a sensation, and it is being freely asked what is the value of watertight compartments and the powerful pumping machinery of our warships if a paltry 13 inch hole can send them to the bottom in a sheltered navy yard. The accident happened in the early morning, and it will probably trans pire that the watertight doors were open and that the water rose to the furnaces and put them out before any effective pumping could be attempted. It is customary to keep these doors open in harbor, and especially in dock, when repairs are under way, as a matter of convenience; but we think that in view of the very critical nature of the repairs which were under way, prudence would have suggested the closing of all doors leading into the starboard engine room, into which the disabled injection valves opened.
This accident teaches the same lesson as the melan choly loss of the British battleship Victoria. In the subsequent inquiry it was shown that when she was rammed by the Camperdown her watertight doors were open, and it is now generally agreed that had they been closed this noble ship might be afloat to-day. The evidence showed that during peace maneuvers t was customary for convenience to leave them open.
These modern battleships are as intricate and as delicate as they are ponderous and costly. All the elaborate precautions of minute subdivision, bulkheads, and powerful pumping machinery is after all dependent upon the "human element" for its efficiency. It may surely be laid down as a general rule that, no matter where a battleship may be, whether in storm or calm, at sea or in dock, watertight doors are fulfilling their function only when they are closed that this should be their normal position-the rule and not the exception.
Looked at in any light the mishap is a most deplor able occurrence, and coming as the crowning trouble in a long list of casualties it is liable to shake the conin a long list of casualties it is inable people at large in the Navy Department fidence of the people at large in the Navy Department a piece of the sheerest good luck that one of the most costly ships in the navy is not now lying at the bottom of the sea, lost beyond recovery. Had the Texas sunk a few feetout in the river, or off Staten Island, or in any locality where the water was deep enough to have covered her protective deck, she would, in all probability have proved a total loss. Had the accident oc bility, at and at night it is more than likely that curred at sea, and night, is mould have sone that with the ship. That the Texas is still afloat is due to with the ship. That the Texas is still afloat is due to
the fact that the water in which she sank was not deep the fact that the water in which she sank was not deep
enough to cover the top of the watertight bulkheads, and consequently it was possible to pump her out.
What with the mishap to the Columbia at the Southampton dry dock, when she came near having her back broken, the recent collapse of the Brooklyn dry dock, and now the sinking of the Texas, the recent record of the Navy Department has not been such as to bring to it much credit or strengthen the confidence of the public in its efficiency. The wretched mishap which is now the subject of inquiry might easily have involved the loss of a whole ship's company and done irreparable damage to the prestige of the navy, and it is earnestly to be hoped that the whole matter will be thoroughly ven-

THE CLOSE OF THE VENEZUELAN DIFFICULTY

The cause of civilization has won a bloodless victory the agreement which has recently been reached by the governments of the United States and Great Britain on the Venezuelan question. That the result was an ticipated robs it of none of its value or significance. It is but a few months since the two greatest nations upon earth, who claim to be the exponents of all that is best in modern civilization, were confronting each other almost with hand upon the sword-hilt. There was discernible an ill-suppressed exultation among those nations which are as yet under the thralldom of despotic power at the bare suggestion of a struggle to the death between the two great branches of the Anglo-Saxon race, which, under systems of government that differ chiefly in name, have proved that the freedom of the individual and the sovereignty of the people are the true secret of national wealth, power, and contentment. The mere thought of war made two things apparent, namely, that it would have been the most awful conflict in the history of mankind, both for its intrinsic horrors and for its irreparable loss; and that the cause of civilization would have been thrown back half a century.
But it was not to be. The spread of education, the broadening of international sympathies, enlightened views of the true relations of peoples and nationalities to one another, and above all the increasing control of passion by reason in the individual, are responsible for the present amicable settlement of the diff culty. "Peace hath her victories as well as war," and no triumph of arms, however brilliant, could have shed the glory upon either nation which is cast upon them collectively in the hour of their mutual forbearance.
The first definite announcement of the event came rom Lord Salisbury at the banquet attending the installation of the Lord Mayor of London ; an occasion on which the Prime Minister is always expected to make important announcements of a political nature. He said: "You are aware that in the discussion had with the United States on behalf of their friends in Venezuela, our question has not been whether there should be arbitration, but whether arbitration should have unrestricted application, and we have always claimed that those who, apart from historic right, had the right which attaches to established settlements should be excluded from arbitration. Our ciifficulty for months has been to define the settled districts, and the solution has, I think, come from the government of the United States, that we should treat our colonial empire as we treat individuals; that the same lapse of time which protects the latter in civic life from hav ing their title questioned should similarly protect an English colony, but beyond that, when a lapse could not be claimed, there should be an examination of title and all the equity demanded in regard thereto should be granted
'I do not believe I am using unduly sanguine words when I declare my belief that this has brought the controversy to an end."
It will thus be seen that the compromise secures a broad recognition of the vital principles contended for by each nation. The jealous care with which Great Britain guards the person and property of the meanest of her subjects is abundantly vindicated and is allowed to extend itself to every subject who can justly lay claim to it in the present case; while the rights of the United States under the Monroe doctrine as defined by the present administration in the case of Venezuela are acknowledged by Great Britain. The Venezuelan incident is practically closed, and closed in a common sense and harmonious way. The abiding effect will be beneficial to both parties, and will lead, it is hoped, to "arbitration" as the only civilized method of settling the household quarrels of the two great branches of the one great race.

Indiana as an oll Field.

More than 2,700 oil wells were bored in Indiana in 1895, and hopeful, well informed men expect that enormous total will be surpassed in 1896. The oil industry of Indiana is coming to be one of the greatest in the State, and it is confidently predicted in some quarters that the State will soon rank with Pennsylvania and Ohio in the quantity of oil annually taken out of the ground. Last year was the first in the history of Indiana's oil industry that no serious accidents or explosions occurred

The main oil field of Indiana borders on the north west extension of the gas belt. It has the form of a huge L, extending east from Van Buren Township, Grant County, to Geneva, Adams County, and south from Geneva to Winchester, Randolph County. The first venture made for oil in the State was on the J. J. Clark farm, in Cràwford County, in 1862-63. Oil and water were encountered in this well at the depth of 648 feet. In the Mifflin well, drilled in 1865, some oil was found at the depth of 135 feet.
A writer in the Indianapolis Journal holds that the Indiana field is only an infant. He looks for a remarkable development within the next few years. While 2,711 wells were completed, only 754 went dry in the year just passed.

rapid transit in new york city

 The amended plans and a digest of the report for a submitted by Mr. W B in New York City, which were the last sitting of the board, will be found in the current issue of the Supplement. They are worthy of the careful study of the citizens of the metropolis and incidentally of every one who is interested in the problems of city transportation.It is safe to say that there is no municipal questionnot even that of water supply-which is likely to be come so perplexing in the twentieth century as that of how to handle the ever increasing multitude which day by day rolls like the flow and ebb of a tidal wave to and from the business centers of the great cities of the world. Questions of rapid transit are of the kind that cannot be taken in hand too early, for the perplexities which they have to solve grow by delay. The growth of urban population and the increase in the per capita travel is so rapid that provision for rapid transit should by rights be made well in advance of the demand for it : otherwise a city's traffic is certain to overtake and swamp its accommodation. This is the condition of rapid transit in New York to-day, where hundreds of thousands of its citizens are carried to and from the city amid miseries of overcrowding that are a positive disgrace to a metropolitan city.
The Board of Rapid Transit !Railroad Commissioners was appointed about three years ago to deal with the whole question and provide a new railroad system Its first plans called for a four-track underground road, beneath Broadway, from the Battery to the upper city, and above-ground tracks from the upper city to the suburbs. It was to cost something over $\$ 50$, 000,000 . This scheme was vetoed by the Appellate Jus tices, who closed the Broadway route for underground roads, and declared the cost to be prohibitive. The plans embodied in the recent report of the engineer have been drawn to nonform to the rulings of the court, which they do br avoiding Broadway altogether in the lower city and by bringing the cost below $\$ 30,000,000-$ on the face of it, a very reasonable figure for a work of this magnitude.
The present plan places the terminus at the Post Office, around which a loop would be constructed, so that there would be no switching or crossing of loca and express trains. From this point there would be a four-track underground road beneath Center Street, Elm Street, and Fourth Avenue to Forty-second Street Here the system would divide; one branch consisting for the present of two tracks, would extend beneath Park Avenue, alongside of the existing Harlem Railroad, to One Hundred and Tenth Street, where it would swing over to the left and proceed northerly as a three-track road to the Harlem River, the third track being used for express trains. Such a line would serve the extensive district lying beneath the Ninth Avenue Elevated and the present Harlem Railroad. The district north of the Harlem River and east of the Harlem Railroad, Mr. Parsons thinks, can be wiseiy left to be served for the present by the improved facilities which can be af forded by the Manhattan Elevated Railroad Company and should this company refuse to extend and improve its facilities, it will be possible at any time to lay out and construct a new line
The annexed district of New York lying to the west of the Harlem Railroad is to be served by acquiring private property, and building a railroad, elevated or depressed, as far as Tremont Avenue, where it would terminate for the present. Any further extension that might be required could be met by building an elevated road through Jerome Avenue.
Mr. Parsons is of the opinion that, before building this last extension, it would be well to open the under ground road from the City Hall Park to the Battery We fully agree with this suggestion, and indeed it is a question whether the Battery should not be made the starting point of the present amended scheme, and whether it would not be good policy to incur at once
the outlay involved in the construction of this part of the outlay involved in the construction of this part of
the line, even if the northern extensions of the road the line, even if the no
were curtailed thereby.
From Forty-second Street and Fourth Avenue a two track road would be built through that street and up Broadway to Fifty-eighth Street, and a three-track road from there to Ninety-eighth Street. From Ninety eighth Street to One Hundred and Thirty-fifth Street it would be continued as a two-track road, being car ried across the viaduct at that point if so desired. Be yond this point the proposed cable or electric road of the Third Avenue line would give a through connec tion with Kingsbridge and Yonkers. It is further stated in the report that all the proposed roads on Manhattan Island are capable of being enlarged to four tracks.
The amended plans are a decided improvement over those rejected by the Appellate Court. The cost is only sixty per cent as great; and by taking the Elm Street route the difficulties of construction are greatly reduced and the objections from property holder a canded. Elm Street is to be widened, and the tunne can be constructed simultane
cut being made in the open.

The opening of another great north and south thoroughfare contiguous to Broadway will greatly re
lieve the present congestion, and its underground road will undoubtedly give it in time an importance second only to Broadway itself.
By a study of the plans it will be seen that the rails will not lie inore than about seventeen feet below street level ; and if the station platforms are built level with the platforms of the car, it will not be necessary for passenger

Horseless Carriages for Mail Service

The Railway Mail Service, which has charge of the wagon deliveries in New York City, is about to experi ment with horseless wagons with which to collect mail from the street boxes. The matter has been under the consideration of Second Assistant Postmaster-General Neilson for a long time, and discussing the question in his annual report, he says :

It is hoped that the experiments with the horseless wagons, which will be tried during this fall, will be suc cessful, and will enable the department to put these col ection wagons in service at a greatly reduced expense the theory being that the horseless wagon will be ver much less expensive to operate than the horse wagon This will be thoroughly tested, and the information that is needed gained in a very short time. The horse less wagon that is being constructed is built upon iden tically the same plan as the horse wagon, and will accomplish exactly the same result as far as the servic oes, the only difference being in the mode of locomo tion."
Data of this kind would be very valuable and render more real service to the industry than the offering of prizes for races in which the element of speed is too often considered in advance of the real practicability It is only a short time since the improved collection wagons were tried in New York City. The experiment has proved a complete success, for the new service ac complished all that was expected of it. Superintendent Bradley, of the Railway Mail Service, in an interview said :
"Our experience with the collecting wagons now in the service has demonstrated their usefulness beyond all doubt, and I consider them a pronounced success They are not intended so much to save time in the transmission of mail from points of collection to receiving stations as they are to expedite the handling of the mails. This they certainly do. As it is now, mail collected from street boxes by one of these wagons is stamped, assorted, separated, and made ready for immediate shipment to points of destination as soon as it reaches the station. All the time it is in transit is thus used to good advantage. When we have a suf ficient supply of these wagons, we can take mail col ected from the street boxes to postal cars direct, with out sending it to the general office or to stations at all This will improve the service in all parts of the city and ave much time.
The horseless wagon now building will be put in use in New York City in a week or so. A representative of Superintendent Morgan, of the City Delivery Ser vice, said that it was the general impression that the horseless wagon service, if a success, would be used en tirely in the upper and suburban parts of town, where the pavements were good, the streets less crowded, and the distances between the boxes and the branch post offices longer.

The Berliner Telephone Patents Case before the Supreme court.
The case of the United States against the American Bell Telephone Company was argued in the United States Supreme Court on November 11. In some re spects the case is regarded as among the most import ant before the court, as it involves the validity
Berliner patents, owned by the Bell Company.
Attorney-General Harmon, Solicitor-General Conrad and a number of attorneys representing special interests, appear in connection with the suit of the United States, while the Bell Company has a heavy array of counsel, including Messrs. James J. Storrow, James H. Choate, and Frederick P. Fish. The Stand ard Telephone Company is represented by Genera James McNaught and Myron Francis Hill, who have filed a brief on two points in behalf of the government. The Standard Company has no direct interest in the litigation, except as it affects the general use of telephones. It is said that a decision in favor of the govern
lic use.
Owing to the importance of the interests involved the court granted nine hours for argument, which will continue the case for about three days. Judge R. S. Taylor, of Indianapolis, opened the argument on No vember 11 in behalf of the United States.
history of the suit.
The suit began February 2, 1893, when the Attor-ney-General filed a bill in equity against the American Bell Telephone Company and Emile Berliner, asking for the annulment of its patent. An alternative prayer
was made ihat if the patent was not declared wholly
null and void, it should be repealed in part, as the court determined proper. The Berliner application for patent was filed June 14, 1877, but the patent was not issued until fourteen years thereafter.
The main points raised by the United States are :
First-That the patent is void for illegal delay in it First

Second-That it is also void on the ground that a prior patent was granted upon the same application to the same applicant for the same invention.
The patent covers what is known as the microphone The Attorney-General will set up that the Bell Tele phone Company "designedly and with intent to thereby prolong its monopoly, delayed and prolonged the pendency of the application for more than thirteen years after its control of the patent."
The Bell Telephone Company, in its answer, point out that the United States officials from the first have had entire control of the application for patent, and an express denial is made that'there was any fraud, acci dent, or mistake. The company maintained that it had not designedly delayed the issue of the patent with a view to extending its rights. It alleged that i there was any slowness, it was the act of the plaintiff tself, the United States.
The case was tried in the United States Circuit Court for the District of Massachusetts, where the contention of the United States were sustained. The Bell Company appealed to the Circuit Court of Appeals, where the preceding decision was reversed on the ground that there was no evidence of dereliction of duty in the Patent Office, and the bill in equity of the United States was dismissed
The case now comes before the Supreme Court on an appeal by the United States from the decision of the Court of Appeals. The same points first presented, as to delay, are still foremost, and the arguments of coun sel on November 11 were directed mainly on these points.-Washington Post.

The Cire Perdu Process.

The revival of the "lost art," or ancient wax process, in sculpture has lately been accomplished in this country by a well known Rhode Island artist, Hippolyte L Hubert, notably in a bust of the late Judge Carpenter f that State, says the New York Sun. The process is public, except in one particular, the hardening of the gelatine used. The clay or plaster bust is covered with clay coating of even thickness; this is again coated with plaster, the clay being used to give the thicknes of the gelatine; both clay and plaster are then remov d in two sections. The clay is taken from the plaste and the space between the work and the plaster filled with gelatine, prepared by the secret process to resist the action of heat. The gelatine is cast into two moulds, closely adhering to every feature of the work, and is now prepared to receive the wax, which is attach ed to the gelatine mould until a thick enough coating is obtained, when the gelatine mould is at once removed, and may be melted and used again. The whole secret of the process is in the preparation of the gelatine so as to resist the action of the hot wax. The wax model thus obtained is hollow and very light, is an exact reproduction of the original bust and may be given any finishing touches that the sculp tor desires. Being susceptible to the action of the atmosphere and of heat, these wax models are kept floating in water until the time they are conveyed to the foundry. The work of the sculptor is then finish ed, and the success of the casting depends, of course on the founder.

The Late Henry A. Mott

Dr. Henry A. Mott, the well known chemist, engineer and author, died on November 8, in New York neer and author, died on November 8, in New York
City. He was born at Clifton, Staten Island, in 1852 and was a grandson of Dr. Valentine Mott, the distin guished surgeon. He took the degrees of Engineer of Mines and Bachelor of Philosophy at the School of Mines, Columbia College, and in 1875 received the de gree of Doctor of Philosophy. After a study of chem istry he acted as an expert and conducted some remark able cases relative to the adulteration of baking pow ders with alum and also butter substitutes. In 1881 he ders with alum and also butter substitutes. In 1881 he cal College and Hospital for Women. He was a mem ber of many learned societies and wrote able scientific works, among which are "Was Man Created ?" "The Air We Breathe," "Matter, Force and Energy," "The Chemist's Manual and Chart on Food." He was the author of many minor works and papers.

Our Anniversary Number.

Our supply of copies of this great semi-centennia number, although the edition was so large, has now become so limited that we again remind subscribers and others interested who desire a copy for perusal or peservation that they should be prompt in sending in their orders. It has been found necessary, as pre viously announced, to advance the price to twenty-fiv
cents a copy, which should be sent with the order.

IMPROVED WHITE LEAD GRINDING MACHINES. The accompanying illustrations represent machines embodying the latest improvements for facilitating the grinding of white leadThey were recently built for the John T. Lewis White Lead Company, of Philadelphia, by the Robert Poole \& Son Company, of Baltimore, and form quite a departure from the usual machines for such purposes.
In the process of the manufacture of white lead, the lead, after coming from the corroding pots, where the pure or blue lead is treated with reducing acids, is ground in water to disintegrate all lumps of corroded lead before going to the settling tubs. The large machine illustrated herewith, which is known in the trade as a water mill, is designed to do this work. As the highest efficiency was one of the requisites, it was determined to depart from the usual light design and make a machine having heavy parts to be run at high speeds, and with all possible automatic details and labor-saving devices as well as the highest class of workmanship and best materials throughout.
The machine consists of a heavy bed plate of the box pattern, erected on solid concrete foundations, about 12 feet square. This plate carries four heavy square cast columns 5 feet long, on top of which rests a similar sized plate carrying the stones for grinding, which are 54 inches diameter of the best solid French buhr type. The under stone is the runner in every case. They are fitted in bronze baskets, and mounted on heavy spindles which drive by a universal joint device. There are four sets or pairs of these stones, making what is termed a double mill, although but one-half or two sets of stones only are in operation at a time; the other two sets are "spares." Under each set of upper stones there are placed two conveyors, driven by chain belt from the main shaft, to carry the material after the first grinding from the upper to the lower run of stones. Besides being positive this attachment economizes space, which would be necessary to obtain the same results by gravity. After passing it second grinding through the lower run of stones, the
material is spouted away, and conveyed to the settling tubs.

The main horizontal shaft of the machine connects directly with the engine, and the power is transmitted from this shaft to a central upright shaft by heavy machine cut beval mortise gearing. From thence it is transmitted to the stone spindles by wood and iron spur gears, machine cut. Each stone pinion on the spindles is fitted with a very positive and powerful friction clutch, admitting of any pair of stones being thrown out at will. The toes of the spindles run in specially designed bronze steps, adjustable from above. All the driving mechanism is placed between the two bed plates in a compact yet well designed manner, and all parts are easily accessible, either for cleaning, adjusting or repairs. The operation is all controlled from the grinding floor, by suitable levers and connections. The floor space occupied is 12 feet by 12 feet, while the total height from lower floor to top of buhr casing is 14 feet $91 / 2$ inches. Total weight of machine on foundations, 112,000 pounds. The capacity of the machine is about 50 tons per day of 10 hours, requiring 75 horse power to drive. After leaving the water mill, the product is allowed to settle by gravity in settling tubs, after which the water is evaporated by steam heat, and the lead is then ready to be mixed with oil. This is, in part, accomplished by a centrifugal mixer, shown at the top of one of the engravings. This machine consists of a cast iron base, with of a cast iron base, with
annular V slots, on which rests a cast iron pan 48 inches in diameter, 12 inches deep, with a circu-

very thoroughly in a short time. The mixing may be continued as long as necessary, when the central plug can be raised and the mixed material allowed to fall into the receiver-a cylindrical cast iron receptacle placed immediately under the mixing pan. The capacity of the mixer is about one ton per hour, requiring 15 horse power in driving, and weighs nearly 5,000 pounds. From the receiver the material is fed mechanically into the oil mil to more thoroughly mix it, which is the last operation of the process. This mill is fitted with two run of best imported French buhr stones 36 inches in diameter under runner, one pair mounted to the side and above the other in cast iron cases resting on strong columnar frames, with lateral bracing, all fitted on substantial base plate. The stones are driven by suitable gearing from a horizontal shaft in the base, which in turn is driven from the main line shaft. The operation is similar in every way to the water mill, only these machines are not required to be as. large and heavy. The material passes through the top stones and thence by gravity into the lower run of stones. From the lower stones it passes into the cool ing pan to remove the heat engendered in the grinding, and is then packed in kegs for marke as white lead. The machine requires about 20 horse power to drive and weighs about 10,000 pounds.
No attention seems to have been spared to make all of these machines of the very highest type of efficiency. With properly designed parts and best workmanship and materials, they form in their completeness one of the most thoroughly equipped plants in this line of manufacture to-day.

A Motor Car Club in London

The London correspondent of the New York Tribune, in a recent letter, states that the first meeting of the Motor Car Club, which will soon occur, will excite less interest than a lord mayor's show, but it may lead to more important results. It will be a trial trip of horse lar hole in the bottom, which is opened and closed less vehicles from the Hotel Métropole to Brighton by a cast iron plug. Around the outer flange of the through Brixton and Reigate. Fifty-four vehicles have pan is fitted a segmental rack engaging with a bevel been entered for the contest. These will include two pinion in the head. The frame or head of the machine Daimler cars, which finished first and second in the carries two shafts, one above the other, one for driving race from Paris to Marseilles and back; several German the pan and the other for driving the plows or stirrers which do the mixing and are fitted between the plug and the sides of the pan. The operation is very simple The corroded lead and oil are put in the pan, and, as it revolves, they are carried under the stirrers, and, as
these are also revolving, the two ingredients are mixed

POWERFUL WATER MILL FOR GRINDING WHITE LEAD.
plying what are, by an atrocious barbarism, called "autocars," which answer the requirements of the new act of Parliament, but there have been interesting experiments also in Colchester and other towns. One invention employs neither an electric battery nor a heating tube. It has no external flywheel and the oil lamp is not kept constantly burning. With electric omnibuses in common use the aspect of London streets will be changed, but the cabmen are not yet convinced that their occupation is threatened.

The Scientific American Reference Book, published by Munn \& Company, of New York, costs but twenty-five cents, but is worth, says the Spatula, of Boston, ten times that amount. It tells all about the patent and trade mark laws, and gives minute directions for securing the various kinds of protection for anything that's new and a fit subject for a patent, trade mark or copyright. The principal mechanical movements are illustrated by 150 diagrams, the steam engine is dissected and analyzed, the metric system is explained and hundreds of useful facts are gathered together and carefully indexed.

AN ELECTRICALLY OPERATED RAILWAY SWITCH.
The illustration represents an electrically operated switch mechanism designed to automatically switch the cars from one track to another without action on the part of the motorman. The improvement has
ticks. With this arrangement, airs in two parts may be played; and there may be two performers, one play ing on one side without interfering with the per former on the other side. In the hands of good musicians this apparatus is very pleasant to listen to -G. Tissandier.

Large Gifts to Libraries.

In a recent number the Critic gives detailed lists of the large gifts of money that have been made for libraries in this country. The splendid record it has to present it hopes may inspire other rich men to go and do likewise. Here are the facts collected :
New York Public Library.-Astor Foundation -John Jacob Astor, $\$ 400,000$; William B. Astor upward of $\$ 550,000$; John Jacob Astor, $\$ 700,000$ The value of the total endowment of the Astor Library on December 31, 1894, was $\$ 2,105,871.87$ Lenox Foundation-Mr. James Lenox's gifts to the Lenox Library from 1870 to 1880 (the year of his death) were, in $1870, \$ 300,000 ; 1871, \$ 100$, 000 ; 1872, $\$ 100,000$; 1874, $\$ 130,000$; 1875 , $\$ 85,-$ $000 ; 1876, \$ 20,000$; total, $\$ 735,000$, besides books, works of art, etc., and ten lots for the library's site. The value of all these gifts has considerably increased-especially that of the rea estate. Tilden Foundation-The amount already handed over by the Tilden estate to the New York Public Library is something over
BRUWNE'S ELECTRICALLY OPERATED RAILWAY SWITCH.
been patented by Walram S. Browne (Manufacturers' Paper Company), box 683, New York City. The main view illustrates the application of the improvement, and the small figures show further details of the contact devices. The improvement contemplates there being several switches on the line, and adjacent to each one are switch-operating magnets with pivotally mounted armature engaging a switch point in such way that when either of the magnets is excited the switch point when either of the magnets is excitespondingly moved. The trolley wire is will be correspondingly moved. The trolley wire is
held in place in the usual way, and on it, near each held in place in the usual way, and on it, near each
switch, is a stationary contact device comprising a frame or casing with angular upper portion, and having at one edge a clamp which engages the wire, the contact plates preferably moving in recesses or openings in the casing when engaged by the contacts car ried by the car. The car contacts are lugs bent outwardly from one side of a plate at the end of the trolley pole, and are in electrical communication with the trolley wheel, to utilize the trolley wire current to operate the switch mechanism. As shown in Fig. 2, the contact plates have springs to hold them normally in position to be engaged by the car contacts, and the springs are connected by circuit wires through the trolley wire supports with the switch-operating magnets. As shown in Figs. 3, 4, and 5, the casing of the stationary contacts is hollow, and the contacts are hinged at the edges of openings, with their outer faces inclined, and have stems on which are coiled contact springs. As the car approaches one of the switches, one of the car contacts engages the stationary contacts on the trolley wires to actuate the switch point and set the switch as desired, the car contacts being arranged to actuate only th particular switch or switches designed to be moved.

THE MUSICAL BOTTLES.

The accompanying figure represents a simple and easily constructed musical instrument. It consists of a number of ordinary glass bottles filled with a certain quantity of water, the height of which is varied according to the pitch of the note to be obtained. After a few tentatives, it will be possible to reproduce all the notes and their octaves, including the sharps and flats. The tuning of the apparatus, however, requires a good musical ear.
The bottles are suspended by the neck, by means of strings, from two broom handles resting upon the backs of two chairs. In order to produce the sound, the bot tles are struck with two rulers, or, better, two drum
$\$ 2,000,000$. The total amount the library is expected

realize from this source is set at $\$ 2,125,000$.

By the will of the late John Crerar, the John Crerar Library, of Chicago, was made his residuary legatee, but with a provision that the executors of the estate should use their discretion as to the time of the paymen ${ }^{\star}$ of this bequest. Under this will the directors of the John Crerar Library have received from the trustees and executors of the estate the sum of $\$ 1,851,131$, and they have been informed that the trustees still hold for he library property of an estimated value of $\$ 863,060$ This would make the total amount of Mr. Crerar's be quest $\$ 2,714,191$.
The bequest of Mr. Walter L. Newberry to the New berry Library, of Chicago, was one-half of his estate which, at the time the bequest became available and was set apart for the library, was valued in round numbers at $\$ 5,000,000$, there by making the endowment to the library $\$ 2,500,000$
The gifts made by Mr. Car negie to the library in Pitts burg, Pa., bearing his name are $\$ 800,000$ for the erection of the main building, $\$ 300,000$ or the erection of branch buildings, and an endowment of $\$ 1,000,000$ for the mainte nance of the art gallery and museum-a total of $\$ 2,100,000$. Altogether Mr. Carnegie has within the last few years given more than $\$ 4,000,000$ to the cause of public education in its wider sense-for the libraries erected by him almost invariably are devoted to music, art, and sc nce as well. The principal of these are at Allegheny $\$ 300,000$), Homestead ($\$ 400,000$), Braddock, and Johnstown, Pa..; Fairfield, Iowa; and Edinburgh, Ayr, and Dunfermline, Scotland.
Mr. Enoch Pratt offered the city of Baltimore, on Jan uary 21, 1882, a library building, costing about $\$ 250$, 000 and an endowment of $\$ 833,333.33$,on condition tha the city create a perpetual annuity of $\$ 50,000$, payable to a board of trustees, named in the first instance by Mr. Pratt and having the right to fill vacancies in their own number. This offer was accepted and the library ounded.
The property bequeathed by Dr. Rush for the estab lishment and support of the Library Company of Phila delphia amounted to about $\$ 1,060,000$.

TEE MUSICAL BOTTLES.

The endowment which Mr. Mortimer Fabricius Reynolds made for the Reynolds Library, of Rochester, consisted of real estate, which is valued at present as being worth certainly over $\$ 500,000$, and prob ably $\$ 600,000$.
Mr. Leonard Case gave during his life to the Case Library, of Cleveland, $\$ 20,000$ in government bonds, besides smaller sums from time to time, amounting in all to, say, $\$ 25,000$. In 1876 he gave real estate, then valued nominally at $\$ 300,000$, but now worth $\$ 500,000$. The total valu of the endowment of the Case Library is now estimated at $\$ 600,000$.
The Minneapolis Public Library was built, and is at present sustained, for the most part, from the product of taxes. Of the original cost of the building ($\$ 360$, 000), however, about $\$ 61,000$ came from private subscriptions, usually of $\$ 5,000$ each. Moreover, there is combined with
the library, for the term of ninety-nine
years, a proprietary institution, the Minneapolis. Atheneum, which has funds amounting to $\$ 200,000$. This property was the gift of a certain Dr. Kirby Spencer, a citizen who died about 1860 , bequeathing his estate in this way. At the time of his death, the property, which was in real estate, was far less valuable than now. It yields a varying income, sometimes above, sometime a little below, $\$ 8,000$ a year. This sum is used to supplement the funds derived from taxes, amounting during the present year to about $\$ 54,000$.
The executors received in 1881, under the will of Judge Forbes, of Northampton, Mass., $\$ 252,260$. The money was suffered to accumulate for ten years, in accordance with a provision of the will and a vote of the town. In 1894 the executors delivered to the trustees appointed by the city a building and lot which had cost $\$ 128,994, \$ 1,350$ of other non-productive pro perty, and funds amounting to $\$ 355,565$. This is the real endowment of the library, and not the amount originally received
Mr. George Peabody endowed the Peabody Institute of Baltimore, with $\$ 1,240,000$, but as the Peabody Insti tute, besides a library, includes a conservatory o music, an art gallery, and a course of lectures, and all of these are in part or wholly supported from the in ome of this endowment, it is almost impossible to stat just what the endowment really is.
To the above list must be added the recent bequest to Princeton University of a library which is to cost over $\$ 600,000$. The design of the building will be carried out upon the lines so common in the English universities. It is to be made the most complete and perfect univer sity library of its kind in this country.

AN IMPROVED WASHING MACHINE.

A machine designed to rapidly force the washing liquid many times through the clothes with the least possible expenditure of labor or power, and without danger of injury to the clothes, is shown in the accompanying illustration, and has been patented by William Acheson, of No. 2307 Penn Avenue, Pittsburg, Pa. The cylin drical clothes receptacle has in its periphery a remova ble cover, through which are introduced the washing liquid and the clothes to be washed, and its heads have hubs which turn in bearings on suitable standards. The water is forced through the clothes by reciprocating

ACHESON'S WASHING MACHINE.

perforated plungers or dashers whosesquared shafts slide in and turn with the hubs, there being on one of the hubs a pulley to be connected by belt with a source of power, or the machine may be operated by hand through a gear wheel on the hub, which meshes with another gear wheel actuated by a crank. The reciprocating motion is given to the plungers by double cams on the outer ends of the plunger shafts, the cams engaging friction rollers to give inward impulses, while the return motion is effected by springs coiled on the shafts. The cams being double, two full strokes are given to the plungers during each revolution of the receptacle, and therefore, with the machine running at a seed of twenty-five revolutions a minute for fifteen minutes, the washing liquid will be forced through the clothes and back again 750 times. The receptacle has outlet faucets for discharging the wash water when desired.

How Plling is Driven in Bavaria.

Henry A. Carpenter, United States commercial agent at Furth, Bavaria, writing of the opening in that country for American manufacturers, says
"The manner of driving piling here would indeed make an American contractor smile. The method is as follows: A simple block and fall arrangement is rigged over the pile and to the end of the rope running on the pulley, and fastened to the weight are about twenty-five smaller ropes with hand pieces. Twenty-five men grab these and at a signal from one of their number, all pull together. The weight goes up about eighteen inche's or two feet, when the men relax their hold and the weight drops. It is unnecessary to state how long it takes by such a method to drive a pile, or how much more effectively a small dumnay engine would do the work. In the erection of buildings the same tedious process is employed; for every stone to be raised requires the strength of a pair of horses and about fifteen men tugging away at the ropes. The machinery manufactured and used in America for such purposes would do away with this clumsy method."

The Spitting Habit and Spread of Consumption.
In England and Wales, according to Dr. W. Murrell, from 50,000 to 60,000 people die annually from consumption; and another 50,000 from other tuberculous dis eases. From 1848 to 1880, 1,702,002 deaths were registered due to phthisis, the majority being young adults. No other disease claims an equal number of victims. Its infectious nature being well recognized, every effort should be put forth to minimize its communicability Among the many means by which this dread disease may be disseminated, one of the most prevalent arises from the consumptive's expectorations. This sputa, as bacteriologists have shown us, carries the tubercle bacillus in varying quantities. When dried, these germs are taken up by the atmosphere, then inhaled by the well and sick
By this means there is no reason to doubt that phthisis is often conveyed directly to individuals. It has been proved beyond a reasonable doubt that these diseased germs are also given off by the consumptive's breath and that husbands have taken it from wive and wives from husbands. We have here a source of infection to which enough attention has not been given. Of all the filthy habits to which a considerable portion of our people are given, perhaps the very wors is the spitting habit.
No place is too sacred for them to pollute. On the street, on cars, boats, in stores, in our homes, we are con stantly reminded of the passage of the spitter. Ladies trail their gowns through this filth, bring it into their homes, when, having dried, the bacteria are given off with every movement of their garments. That the consumptive may cause a health resort to become a place to be shunned is exemplified in the case of the Riviera. Its climate is most salubrious, and when con sumptives first went there this disease was an unknown quantity; now it.has become as firmly established there as in any consumptive country. The air and soi have become so contaminated that the natives have fallen victims to this disease. The washerwomen in partic ular have been attacked. The Riviera is no longer health resort, but a place to be avoided by weak lunged persons. California's beautiful climate has brought thousands of consumptives there for their health. In the southern portion of the State in particular ther are evidences already that this disease is spreading to those who have heretofore felt that there was no dan ger in living among consumptives. In a word, may not foci for the spread of phthisis be already establish ed in various towns, due to the contamination of soi and air? If so, how long will it be before these town will cease to send out alluring advertisements welcom ing the consumptive to come and make these places their homes? Not very long we believe after the masses have learned the truth concerning a disease which car ries off more persons annually than any other single disease. The danger of dissemination can be greatly minimized by regulating the care of consumptives Indiscriminate expectoration must not be tolerated Hotels should have some disinfective fluid to be daily put into the cuspidors about the offices and halls. The same method should be carried out in all public build ings. The handkerchief should be used, as a rule, by every person when it becomes necessary to expectorate. Consumptives should have pieces of cloth or paper which can afterward be burned. What a travesty this is on our boasted civilization to see signs with thes words, "No spitting.on the floor," meeting us at every turn.-Pacific Medical Journal.

Animal Antipathies.

A correspondent of the London Spectator describes a curious scene witnessed at the Zoological Gardens. He had for companion a gentleman, now dead, who was a dwarf, and walked with crutches. "As soon as the tiger saw him he lashed his tail, and finally stood up on his hind legs against the bars and remained in a state of great excitement. We who saw it at the time were much struck by the sight, though whether its behavior was due to alarm or intense curiosity we could not tell." Probably the tiger's excitement wa due to neither, but to the latent antipathy which many animals feel for anything abnormal, either in their own species or even among others with which they are well acquainted. It is the feeling which prompts stork or rooks to destroy at once the young of other birds which are hatched from eggs placed in their nests, and dogs to bark at cripples or ragged beggars, or, as in this case, roused the dislike of an observant Zoo tige who saw men of normal size and proportions pass every day before its cage.
The belief in permanent antipathies among animals is very ancient. It appears in all the monkish terti aries. There the otter is always the enemy of the crocodile, and the unicorn of the elephant; while the dragon is hated by the hart, and in turn dislikes al beasts, including the panther, whose exquisite per fune, so agreeable to all other animals, disgusts the dragon, who runs away the moment he smells it Turning from legend to facts, we find that anima antipathies have a range as wide or wider than the instinctive dislikes of men. They are in part exactly
the same in kind as the latter, one animal exciting in
another exactly the same disgust that a baboon or a black beetle does in the minds of many human beings but the list of hereditary enemies-of one species which is the sworn foe of another, and has left in the weaker species an inbred and ancient sense of horror and fea -is far longer than the
Instances of purely instinctive, inexplicable antipa thy are naturally the least common, but they are very marked and definite examples. It is quite impossible for instance, to account for the intense disgust which the camel excites in horses. They have been associated in many countries for centuries in the common service of man, and early training makes the horse acquiesce in the proximity of the creature which disgusts him Otherwise it is far more difficult to accustom horses to work with camels than with elephants, precisely be cause the repugnance is a natural antipathy, and no a reasoned fear. They get used to the sight of an ele phant, but the smell of a camel disgusts and frightens them. English horses which have never seen a camel refuse to approach ground where they have stood. Recently a traveling menagerie was refused leave to encamp on a village green in Suffolk, not because i was not welcome, for a wild beast show is always vastly popular, but because the green was also the site of a market, and the farmers' gig horses invariably refused to be driven across it after camels had stood there. Yet recently two bears were being exhibited in Harley Street, and no horse showed any fear of them. One horse almost touched the larger bear, but neither it nor the team of a four-in-hand which passed showed ny nervousness.

A MUSICAL INSTRUMENT ATTACHMENT

The illustration represents an attachment for man dolins, guitars, etc., played by the use of a pick or
 plectrum in the er, whereby the pick may be conveniently upported and al wavs ${ }^{f}$. und with th instrument while not in use, while readily removable from. its holder for playing when required. Th mprovement ha been patented by Adam G. Mahler, of No. 107 East One Twenty-fifth Street New York City. The holder is formed of single piece of spring vire, bent as show in the engraving, an having its ends form d into segmental eye parts adapted to be engaged by a small screw and washer, by means of which the holder is attached to the neck of the instrument. The holder instrument, and is equally well adapted for holding other forms of picks.

Well Water.

The drainage into wells is of ten very bad, with the esult of typhoid fever and many other germ diseases. On account of this danger, Dr. Koch suggests that n iron tube two or three inches in diameter-with it ower end perforated-be placed in the center of the
well, and the surrounding space filled with fine gravel well, and the surrounding space filled with fine grave up to the highest point of water level. This is then covered with sand to the top of the well; and a pump attached to the end of the tube makes a very effective
tube well. All water in passing through the layers of tube well. All water in passing through the layers of ng organims A filter bed like this removes, too, from 80 to 90 per cent of the bacteria, and greatly, very greatly, lessen the danger to which all are subjected who drink shal ow well water.-Popular Science News.

Counting and Tying Postal Cards.

Two of the most interesting automata now working within the limits of the United States are those used by the government for counting and tying postal cards into small bundles. These machines were made in Connecticut, and the two are capable of counting 500 , 000 cards in ten hours and wrapping and tying the same in packages of twenty-five each. In this opera tion the paper is pulled off a drum by two long "finers" which come up from below, and another finger dips in a vat of mucilage and applies itself to the wrapping paper in exactly the right spot. Other parts of the machine twine the paper around the pack of cards and then a "thumb" presses over the spot where the muci age is, and the package is thrown upon a carry bel ready for delivery.-The Argosy.

At the recent B. A. meeting Prof. S. P. Thompson suggested, says the Electrical World, that X rays may be the ordinary means of optical communication among fire flies, and that, for that reason, Providence had not ound it necessary to furnish the insect's eyes with a lens.

Sir John Eric Erichsen, who died recently, was born at Copenhagen in 1818, but was brought upin England. He became professor of surgery and surgeon to Univer sity College Hospital in 1850, and was elected president of the College of Surgeons in 1880. It is not too much o say that the name of Erichsen is known to every surgeon throughout the civilized world
Prof. Lewis Swift, of the Mount Lowe Observatory California, discovered a bright comet just about sunse on Sunday, September 20. The comet was only one degree from the sun. The next evening he observed the comet again, and found that, in consequence of it recession from the sun, it had diminished in bright ness.
Nature records the death of Mr. W. C. Winlock, known for his contributions to astronomy. Mr. Winlock wa assistant in charge of the office of the Smithsonian In stitution. The death is also announced of Dr. J. P. E Liesegang, a voluminous writer on photographic mat ers, and the founder of the Photographische Archiv nd of Dr. J. A. Moloney, who took a prominent part in the Stairs expedition to Katanga.
Experiments show that a light of one candle powe is plainly visible at one mile, and one of three candle power at two miles. A ten candle power light was seen ith a oinocular at four miles, one of 29 at five miles though faintly, and one of 33 candles at the same dis ance without difficulty. On an exceptionally clear night a white light of 3.2 candle power can be distin guished at three miles, one of $5 \cdot 6$ at four, and one of $1 \cdot 2$ at five miles.
M. Peres has investigated the cause of the severe gas tric troubles which occasionally follow the eating of pate de foie gras, and finds that they arise from the presence of an excess of oxalate of potassium in the goose liver. It appears that the producers of these dis ased livers are wont to shorten their period of develop ment and to produce larger livers by administering to the bird salt of sorrel, otherwise called binoxalate of potash. This process has, hereto' re, been kept care fully secret, says the American Druggist.
M. Moissan has found that when acetylene is allowed o impinge upon pyrophoric iron, which has been re uced by hydrogen at the lowest possible temperature the gas is decomposed with incandescence into its con tituents. At the same time condensation takes place and a liquid hydrocarbon, rich in benzine, is produced The same result is obtained if pyrophoric nickel or cobalt is substituted for the iron. No gaseous com pound of either metal is obtained, and he conclude that the decomposition is due to physical causes.
There is a means of physical investigation known whereby we may ascertain how many atoms there ar in the molecule of a solid substance dissolved in a liquid says the Progressive Age. This is to find out how much a given quantity of the substance dissolved raise the boiling point of the solvent liquid. This alteration in the boiling point depends on the number of mole cules dissolved ; and the number of molecules depends of course, on the number of atoms in the molecule Orndorff and Terrasse, applying this method, have found that sulphur dissolved in boiling bisulphide of carbon, or benzol, or toluol, has nine atoms in its mole cule; while in boiling carbolic acid or naphthalene it has eight. In boiling monochloride of sulphur it has only wo.
In a letter to the editor of Nature, Prof. A. E. Munby says the cheap production of acetylene has come as a great boon, and is now in regular use for laboratory blowpipe work. The apparatus in use consists of an aspirator holding about fifteen liters, permanently connected with a water supply, and possessing a quarter nch aperture exit tap-the water flows in from below to minimize absorption; at the top a three hole rubber cork carries an upright pipe, passing through the table, which serves for filling the aspirator with gas or using the gas on the table, a second pipe goes to the blowpipe, and a third carries an open mercury manometer. For filling the jar the calcium carbide is placed in a four ounce bottle, closed by a cork carrying a small separating funnel from which the water drops; the gas passes to the aspirator through a wide glass tube, which acts as a reversed condenser, returning most of the water vapor to the bottle. With the large exit to the aspirator the gas can always be collected under a reduced pressure of several centimeters of mercury, which quite provides against any sudden rushes of gas; the operation takes some ten minutes, and requires practically no attention. In using the gas the water is turned on with all taps closed for a few seconds, to correct any reduced pressure caused by absorption, as shown by the gage-this is very slight indeed-and then the gas tap fully opened and the flame regulated entirely by the water entrance- To bring the gas into use takes hardly any longer than with an ordinary gas blowpipe.

Some Feral Types of Patagonia.

by george e. walse
The types of dogs represented in the Arctic belt assimilate the colors, habits, and general characteris tics of the wolf, fox, dhole, and other wild animals, so that it is sometimes difficult to distinguish the breeds from which they must have originally sprung; and the truth was never more forcibly illustrated that all of our dogs have a tendency to found new races of their own, and to return to the old primal stock, when freed from man's control and left to their mutual selection. The white "huskies" of the British Northwest, the "reindeer dogs" of Greenland and Lapland, and the Athabaskan dogs of Mackenzie River district, are types resembling each other in many respects, but it is easier to trace their relationship to the lynx, fox, timber wolf, coyote, dhole, and similar wild animals, than it is to discover points of resemblance to the various domesticated breeds. White is the dominant color of the cir cumpolar world, and the dogs have been influenced in the color of their shaggy hair by the climate just as much as the bear, fox, ermine, reindeer, owl and ptarmigan; and their color resemblance to the wild animals must not be attributed entirely to their wild habits and associations with degenerate com panions.

In the southern hemisphere, the semi-wild fera types partake of the same characteristics. The dogs of the Patagonian Indians, the semi-wild canines of the sheep raiser, and the hunting dogs of the few white settlers in that solitary region, are all of different origin, but through association and cross breeding they have come to resemble each other in many respects and to assume the colors and characteristics of the various wild animals. The chief fauna of Patagonia with which the dogs would associate are the wolf, fox, puma, and coyote, and it is not difficult to see the influence of these animals upon their habits and looks. The sheep raisers of Patagonia have introduced the Scotch collie, but in their new home they have undergone changes that make them very different from the do mesticated breed we are accustomed to. The white settlers who make a living in hunting brought the grey hound to their adopted land, and from this breed nearly all of the hunting dogs originally sprung. The Indians own flocks of dogs that are either mongrel greyhounds or a cross between the greyhound, Scotch collie, and the wild animals. They have degenerated to such an extent that the fine characteristics of the domesticated breed are nearly extinguished.
The dogs of Patagonia are so numerous that they wander over the country in a semi-wild condition in great packs, but, like their cousins in the Arctic belt they form a very important factor in the lives of the people. Without the dogs, half the industries of the country would prove profitless. As the inhabitants of the circumpolar regions depend upon their dogs to drag them across the snow and ice, to hunt for them in cold other animal could do so well, so the white settlers and the Indians of Patagonia place their main reliance upon their dogs in hunting the guanaco, the ostrich, and the skin animals and in watching their enormous flock of sheep.
Patagonia is a limitless field for the sheep raiser, and over the vast stretches of country flocks of sheep numbering many thousands roam at will, feeding upon the rich vegetation which nature provides with a lavish hand. The ranges are so wide that there is little dan ger of one man's flock encroaching upon the territory of his neighbor. But there is danger from wild animals and wilder dogs. The country is full of wild packs of dogs that have strayed from their masters and adopted the wild life of the wolf and fox. They are wilder and fiercer than most of the animals that we ordinarily place in the category of "wild beasts." The only wolf found in Patagonia is the aguara, a small, shy, and almost harmless creature, but the wild dogs are really a
species of wolf, fully as savage and bloodthirsty as the great northern timber wolf. They hunt in packs, and when they have been separated from any human companionship for several generations, they are as bold as the fiercest wolf of the circumpolar region.
The sheep raisers have consequently had to raise a shepherd dog capable of competing with these wild dogs, and the Scotch collie has been bred for this purpose in a cross with the greyhound. The sheep dogs o Patagonia are perfectly adapted to the country. They retain all the valuable characteristics of their Scotch ancestors, with the added strength and fierceness of the Patagonian greyhound. Five or six of thes shepherd dogs will watch a flock of a thousand sheep and do it so well that the shepherd has perfect confidence in the safety of his property. Many of the flocks number two and three thousand sheep, and one man will have this number under his care. With a pack of a dozen good dogs he can manage them with as much ease as another man could his thousand. His dogs un derstand their duties thoroughly, and the shepherd has trained them to work singly and together so well that there is never any confusion. In such a pack there is one dog that all the others recognize as their superior,
and he is the leader of the pack, and so intelligent is
this creature that it seems as if he interpreted to the others the wishes of his master.
If a pack of wild dogs should suddenly start a com motion among the sheep on one side, the shepherd dogs are called together in a hurry. If the shepherd happens to be away, the alarm is given by the collie nearest to the scene. Instantly the leader of the pack takes up the notes of alarm and calls his forces around him. Thus bunched together they pounce down upon the wild dogs or animals like a small hurricane. Ther are no wild dogs that can withstand the fury of these mongrel collies, for they have the blood of excellent an cestors in their veins, which impels them onward in the fight to their very death. But it is rarely that one is killed, for they work together so well that the wild ani mals have no chance to resist them successfully. They are like the well trained and disciplined soldiers of civilized nation fighting the wild savages of an unset led country, and the results are about the same
But protecting the sheep from the wild animals is not by any means the only or most important work re anired of the dogs. It is their duty to look after the heep during the quiet hours of the day when no dan ger threatens. While the shepherd is attending to other duties, or quietly resting by his camp fire, the dogs must keep a good lookout for the sheep, and should any of the frolicsome ones become too far separated from the flock, the dumb shepherds must corral them in. Occasionally two large herds owned by dif ferent shepherds get together and become appar ently hopelessly mixed. At such a time no human being could go among the sheep and separate them into their respective flocks. The shepherds, dangerous rivals probably in the business, and possessing antipathies or each other that sometimes lead them into deadly fights, confess their helplessness to each other, and trus verything to their intelligent collies. As if by in tinct, the dogs know each member of their respective flocks, and they begin the work of separating them in a way that calls for admiration. Out and in the mixed multitudes of bellowing sheep they run, singling individual sheep, and driving them into their proper ranks. The rival dogs never quarrel, but work rapidly until the flocks have been satisfactorily divided.
How they do this no one seems to understand. It appears almost incredible that they should know each sheep in a flock of one or two thousand, or that they can distinguish one from the other, and yet such is their intelligence one is forced to the conclusion that they are able to make some such distinction. Certain it is that they divide the flocks both to the satisfaction f their masters and their own canine leaders. Count he flocks beforehand and then again after the collie have finished their work, and the figures will be found to tally every time. To prove, furthermore, that the dogs get the right sheep in the separate flocks, exper ments have been made by which the members of each herd were distinguished by small marks of paint daubed on the backs of the animals. This marking heep canines could not have time to familiarize themselves with the marks.
The hunting dogs of Patagonia are developed almost as marvelously as the shepherd dogs, and the work they are called upon to do is quite as difficult. In hunting the ostrich, the Indians employ their dogs They are fleet of foot, but not quite equal to the wild ostrich. When the ostrich is scared up, the pack of hunting dogs make a wild race across the plains after the gigantic bird. There is no fleeter runner than the ostrich, and the hunters are mounted on the best horses they can secure. The great ungainly looking creature stretches out its wings, lowers its head and neck, and scurries across the country like a scare crow nd, if it kept straight on in its course, it would leav dogs and horses in the rear. But the noise of the pur suing hounds startles and frightens it and it resorts to a trick that always gives it the advantage of the dogs, if not of the hunters. When the pack of hounds are the east expecting a change in the course of the race, th ostrich suddenly springs many feet to one side, and starts off at a very different angle. The hounds are un able to check their headlong career for some time, and when they have finally stopped enough to wheel about the game has placed a hundred yards between them. Most of the hunting dogs are so demoralized by this proceeding that they slink away and refuse to renew chase
The hunters, however, have been waiting for this dodge, and just as soon as the big bird has swerved of to the right or left they raise their arms over their heads and swing their peculiar lasso through the air This lasso is nothing more than a rope with a fork a the end on which two little stones are fastened. . These stones are thrown with such dexterity through the air that they wind around the legs of the ostrich and entangle him so that he is thrown to the ground. The bird is never so puzzled as when brought to the earth in this way. It has not calculated upon the hunter' stratagem, and it is completely nonplussed by the sud den appearance of the strings around its legs. Some
old hunting dogs become so used to this sport that
they are not at all demoralized when the ostrich dodges them, for they know that their masters will accomplish in doing what they failed in. Like the pointer or setter, they realize that their work is limited to starting up the game and chasing it to the point where the hunter can capture it
The hunting dogs are trained also to round up the guanacos. They work in large packs, and completely surround the prey before the alarm can be given, and then they close in upon them and kill them with thei sharp teeth and powerful jaws. In this work they ar invaluable, and they are worth a dozen cow boys. In hunting birds and wild animals the Patagonian dogs ar famous for their persistence and intelligence, but when freed from their master's control they degenerate and become

oods.

The dogs have thus become in many parts of South America a veritable pest. Introduced to help the hunters and sheep raisers, t ey have become a men ce to the chief industries of the country. They wan der over the plains in packs large enough to make it dangerous to unarmed travelers. There is a great at raction for the dogs to desert their masters and seek a living by themselves on the plains. There are plenty of sheep and lambs and other animals that make juicy eating for them to capture, and their owners have to employ the strictest discipline to keep their canine friends from deserting them. Good dogs must be chained up except when on the hunt with their owners To neglect this for a few weeks would ruin the finest hunting dog in the country
The dogs became such a pest ten years ago that the arge sheep ranchmen had to offer bounties for thei scalps to protect their own interests. The wild dog killed the sheep by the hundreds and thousands, and the nuisance increased rather than diminished. By offering bounties for their scalps the numbers were re duced somewhat, and the shepherds could feel com paratively safe once more
There is likely to be another uprising of the wild anines in Patagonia which will greatly injure the wool industry of the country if something is not done to ex erminate the roving packs of wild creatures. They ar o productive in their wild condition that they multiply apidly, and in ten years they easily quadruple thei umbers. Roaming at will in a country that offers al he food they need, and with few dangers or extreme of climate, they naturally thrive, and the death rate among them is so limited that travelers rarely find the carcass of a dead dog on the plains, although the whit ened and bleaching bones of innocent sheep are as plentiful as trees.

The Einission of Perfume by Plants

A series of investigations made by M. Eugene Mes nard, in the laboratory of experimental biology of the High School of Science at Rouen, indicates that light, and not oxygen, is the chief cause of the transformation and destruction of perfumes, but that these two agent seem in many circumstances to unite their efforts. The ction of light makes itself felt in two different man hers : on one hand, it acts as a chemical force capable of furnishing energy to all the transformations through which odorous products pass, from their elaboration to heir total resinification; on the other hand, it exerts mechanical action that plays an important part in the general biology of the plants, and this property ex plains, in fact, the manner of emission of perfume by flowers. The author thinks that the intensity of the perfume of a flower depends on the equilibrium that is established at every hour in the day between the pres ure of the water in the cells, which tends to expel out ward the perfumes contained in the plant skin, and the action of light, which opposes this effort. He says the whole physiology of odoriferous plants depends on this principle. We may understand thus, according to M Mesnard, why flowers are less odorous in the countrie of the Orient than in our own regions: why trees, shrubs, fruits, and even pods are there sometimes iul of odorous products more or less resinified; why, finally the general vegetation there is thorny and skeletonic or in these countries there is too much light and not enough water.-Revue Scientifique.

Street Rallways in the United States.
The street railway mileage of the principal cities of the United States is

Philadelphi	400	miles.
New York (including 100 miles elevated)		
Boston (including suburban lines).		"
Brookyn (including 55 miles elevated).	405	"
Chicago (including 66 miles elevated).	. 659	"
St. Louis.	291	:
Baltimore..		"
Washington......		
San Francisco.		
Pittsburg.	242	
Cincinnat		"
Cleveland.		"
Detroit....		"
Louisville.		"
Buffalo..		

The whole street railway mileage of the United States is nearly fifteen thousand miles.-The Car.

THE OLDS HORSELESS CARRIAGE.

The horseless carriage herewith illustrated is a compact and well proportioned vehicle which has been giving good service during the past few weeks on the country roads of Michigan. It is driven by a five horse power gasoline motor which is placed underneath the box. In attaching the motor to the carriage, care has been taken to avoid any direct attachment to the box, so that when it is running the vibrations shall not be communicated to the passengers. The carriage is steered by the operator's left hand and is thoroughly under control, the front wheels turning with somewheels turning with some-
thing of the ease of a bithing of the ease of a bi-
cycle wheel. The starting, stopping and change of speed are controlled by a lever placed conveniently to the right hand of the driver.
To throw in the back gear the lever is thrown forward; and when turned in the opposite direction one-fourth of a turn, it throws in a four mile speed suited to rough roads or hill climbing. If a higher speed is required, another quarter of a turn gives eight miles an hour, and another quarter twelve miles. Beyond this speed the power is increased at the governor of the engine, until a maximum of eighteen miles an hour is reached. The machinery is simple in construction and is practically noiseless. The fuel supply is located below the engine, and has no connection with the box, special care being taken to prevent any possibility of explosion. The carriage is fitted with $11 / 2$ inch cushion tires, and has ball bearings throughout.
The carriage was invented by Mr. R. E. Olds, the general manager of the P. F. Olds \& Son Engine Works of Lansing, Michigan.

AN ENGLISH OIL MOTOR CARRIAGE
We present an engraving of an English oil motor caris known as Arnold's oil motor carriage. It is an of an all round road wagon at a moderate pricemoderate priceit costs $£ 130$. The carriage seats two people, but admits of a seat at the back so as to carry three people or even four people of moderate weight. The carriage is propelled by benzine, the
well known Benz motor being used. The entire weight of the motor is about 500 pounds. Owing to the concentrated nature of the propelling agent, the vehicle can be run 60 or 70 miles without remilles without refilling the reservoir. The carriage itself is very pleasing in design, the wheels having rubber tires and running on ball bearings ; the spokes are arranged as in bicycle wheels. The carriage is easily guided, and descends the steepest hill without using the brake,
riage made by Alfred Cornell, of Tonbridge, Kent. It the kingdom. That the construction of the railway to We present an engraving of an English oil motor car-
riage kingdom. That the construction of the railway to
Khorat should be persisted in is a matter of the high-

THE OLDS HORSELESS CARRIAGE.
England owing to antiquated laws, but thanks to sensible legislation, the industry will probably now develop
rapidly. England, with its superb roads, is a splendid field for the utilization of the horseless carriage.

Siam's New Railway.
With the exception of the short narrow gage line to Paknam, the railway now under construction from Bangkok to Khorat is the only railway in Siam. It is to be the first of a vast ramification of lines designed to to be the first of a vast ramification of listant portions of the kingdom. That the construction of the railway to
Khorat should be persisted in is a matter of the high
 a second extension may reasonably be expected. That the railway can be ready for traffic by December, 1897, there is no doubt, for the most difficult section of the whole line will, barring accidents, certainly be completed before the end of the current year. There have been many difficulties to contend witha spongy soil and the alluvial plain fever and sickness in the jungle; too much water at one season; a dearth of it at another; no roads; difficulty of transport; untrained laborers; a vacillating government, and many others. The director-general of the Siames railways is an able German engineer, Herr Bethge, who was formerly Krupp's agent in China. He was an line, the making of which he is now superintending Inevitable friction has resulted from this opposition of interests. Constant questions are arising as to whether, for ex ample, the sub sidence of an earthwork or the wabbling of a masonry embank ment is due to faults of construc tion or of design Siam is a country rejoicing in a multiplicity of ad visers, culled from half the nations of Europe. In the multitude of counsel, they say, there is much wis dom. - Corres pondence London Times.

[^0]THE COAST DEFENSE MONITOR AMPHITRITE. (Continued from first page.) er ships. There is another monitor, the Monterey, similar in design but more modern in construction, which was built by the Union Iron Works, at San Francisco, and is now stationed at that port.
These monitors are of special interest as forming a link between the early and later systems of turret battleship construction. They embody in their original design the lessons which had been learned in the naval operations of the civil war, and, as their name implies, they are modeled after the pattern of Ericsson's fam ous Monitor. The chief characteristics of this type of ship are moderate speed, low freeboard, making them a difficult object to hit, thick armor, and an armament of a few exceptionally heavy guns. Sitting low in the water they are not suited to heavy weather, and their sphere of operations lies within shelter ed waters, such as are found in our bays and harbors. This is their proper sphere of action, and to enable them to maneuver in shoal wat ers they are designed to have as little draught a possible. Strictly speak ing, they are floating batteries, and as such they are intended to co operate with the land batteries in defense o our coasts. But though the monitor is designed specially for harbor despecially for harbor de-
fense, it would be quite

SIGHTING A FOUR INCH RAPID FIRE GUN ON THE COAST DEFENSE MONITOR AMPHITRITE.
capable of taking part in a fleet action off the coast in ordinary weather.
The Amphitrite is 259 feet 6 inches long; 55 feet 10 inches beam : and 14 feet 6 inches draught, with a displacement of 3,990 tons. The hull is built of iron and consists of an inner and an outer shell, spaced 3 feet apart and tied together by the ribs or transverse frames, and by the longitudinal girders of the vessel. The in tersection of the frames and girders, whose top and bottom flanges are riveted to the inner and outer shells,
forms a series of separate, watertight compartments, or the continuous belt of solid steel are located the "cells," as they are called, which will serve to localize engines and boilers, the working mechanism of the turthe effect of the blow of a torpedo, and confine the rets, and the stores of powder and shell.
water to the damaged portion of the ship. The double The turrets are formed of $71 / 2$ inch Harvey steel, and bottom rounds up into the sides of the ship and ex- their bottom edge revolves just within and near the tends to within about 3 feet of the water line, where it \mid mounted by the tops, a small circular platform, upon forms a shelf upon which the side armor belt is carried. which are placed two Hotchkiss rapid fire guns, whose The steel belt is about 7 feet high, reaching to the main deadly hail of builets will sweep the decks of the deck, 4 feet above the water line, and it is 9 inches enemy. This will be the most perilous position on the thick amidships, tapering to 5 inches at the ends. The ship, as it nakes a conspicuous mark for the enemy. It main deck is flush throughout the ship, except where is reported that at the Yulu one of the tops of a Chinese it is broken by the superstructure and the barbettes war ship was struck by a single rapid fire shell, which and turrets of the big guns. It is formed of two layers killed every one of the seven men that it contained. of plate steel, giving a total thickness of $13 / 4$ inches. Be- The superstructure deck carries two 4 inch rapid fir top edge of the barbettes, which may be described as circular forts projecting 4 feet 9 inches above the main deck. The barbettes are built of Harvey steel, 111/2 inches thick, and within their shelter are placed the turntables upon which the turrets re volve and the turning gear. The protection afforded to the gun crew by the $71 / 2$ inch Harvey steel of the turret walls is further increased by a roof of $11 / 2$ inch stee which will keep out fragments of shell and the bullets from the rapid fire guns in the enemy's tops.

Just abaft the forward turret and beneath the chart house is the con ning tower, with walls of 9 inch Harvey steel. It has electric and tele phone communication with the handling rooms, where the ammunition is passed up to the big guns in the turrets, with the firing sta tions, and with the en gine room. Here the captain will take up his position during an en gagement, and contro every movement of the ship. Above the char house is seen the flying bridge, from which the navigation of the ship is usually carried out Behind this is the tall steel military mast surThe superstructure deck carries two 4 inch rapid fir guns, two 6 pounder, two 3 pounder, and two 1 pounder

FOUR INCH RAPID FIRE GUN WITH REVOLVING SHIELD. COAST DEFENSE MONITOR AMPHITRITE.
rapid fire guns. We give two illustrations of the 4 inch guns, which, although they are of comparatively small size, are among the most effective and handy weapons in the navy. They are mounted on steel carriages which rotate on a circle of rollers, carried by a cast steel pedestal which is itself firmly bolted to the deck. A semicircular shield, 2 inches thick, is attached by brackets to the top carriage and rotates with the gun. The shield reaches well down over the pedestal and affords full protection to the gun mount and the crew. The gun, carriage and shield are so evenly balanced that the piece can be raised or lowered with the greatest ease. The illustration taken from the rear shows the breech mechanism, the recoil cylinder beneath the gun, and the sights. The training is effected by the crank wheel at the side and the elevation by the worm and pinion, which can be seen in the side view of the gun. The 4 inch gun fires a 33 pound shell with a velocity of 2,000 feet a second and will penetrate 13 inches of iron at the muzzle. The destructive power of this gun lies in the great rapidity of fise, which runs up as high as 20 shots per minute with a good gun crew
The main fighting power of the Amphitrite lies in her four big 10 inch guns, which are mounted in pairs with in the main turrets. This gun weighs 25 tons and fires a 500 pound shell at a velocity of 2,000 feet per second. It can penetrate 18.75 inches of steel at the muzzle, 16.82 inches at 1,000 yards, and 15 inches at 2,000 yards. The ammunition is brought up to the guns from the magazines by means of hydraulic hoists. It is placed in a cage containing three pockets, the charge in two pack ages being placed in the lower and the shell in the upper pocket. When the cage has been run up opposite the breech, the charge is thrust into the gun by a hydraulic rammer.
The Amphitrite is driven by the original twin screw engines designed in 1870. They are of the direct acting, inclined, compound type, and the arrangement of the cylinders and cranks is very interesting, as showing how the designers contrived to stow away such large machinery below the level of the protective deck. The cylinders which drive the port propeller shaft are located above the starboard shaft, and vice versa, the engines thus crossing each other diagonally. They are of 1,426 indicated horse power, and will drive the Amphitrite at a speed of 12 knots per hour. She carries a complement of 176 all told, and her commander, Capt. W. C. Wise, by whose courtesy we were enabled to prepare our illustrations, has the greatest confidence in this class of ship, his conviction being based upon his practical experience of the monitors during the naval operations of the civil war.

Corn Pith Cellulose.

The annual meeting of the Society of Naval Architects and Engineers, begun November 10 at 12 West Thirty-first Street, New York City, brought together a distinguished gathering of marine architects and naval constructors, who listened with interest to the reading of a number of papers upon naval and maritime subjects by acknowledged authorities.
The first business transacted was the election of officers of the society for the year 1896-97. Clement A. Griscom, president of the International Navigation Company, succeeded himself as president. Naval Constructor Frank L. Fernald was elected a vice-p
to serve with nine others who were re-elected.
to serve with nine others who were re-elected.
The paper that created the widest interest
The paper that created the widest interest was that read in the afternoon by Henry W. Cramp, of the shipbuilding firm of William Cramp \& Sons, on "American Corn Pith Cellulose." Marine engineers understand by corn pith cellulose a substance similar in ap pearance to ground cork that is packed behind the armor of a vessel or at the edges of her protective decks. When a hole is shot in the armor or deck and
the water enters, the corn pith cellulose swells and the water enters, the corn pith cellulose swells and
closes up the hole so effectively as to stop the leak entirely. According to Mr. Cramp's paper, the corn pith is an American invention, and like most American ideas in naval construction, is superior to the cellulose made of cocoa fiber that has been used by the French naval constructors for a similar purpose.
Cellulose has been used in. the construction of the New York, the Columbia, and the Olympia, and Mr. Cramp recommends its use for all further vessels that may be built by this government. Of the naval tests of the American improvement in cellulose, Mr. Cramp said :
"The cellulose at first used by our Navy Departmen was manufactured in Philadelphia. It was made of the husks of cocoanut; the cellulose proper looking like bits of ground cork, being separated from the fiber by specially built machines, and after certain pro cesses intended to preserve it from decay and render it incombustible, it was packed in cofferdams mixed with a certain amount of fiber to hold it together. May
tests to which this cellulose was subjected in our navy tests to which this cellulose was subjected in our navy
were such as to produce an article superior to that were such as to
" In order to make a comparative test of this new corn pith cellulose, the Navy Department made two cofferdams of steel plates, stiffened by angles, 6 feet high, 6 feet wide and 3 feet thick. In one was
placed $8321 / 2$ pounds of cocoa cellulose and fiber mixed to the usual proportions, corresponding to a density of $7 \cdot 7$ pounds to the cubic foot. The other cofferdam was responding to a density of 6.5 pounds per cubic foot. These cofferdams were sent to the Indian Head proving grounds and were fired at on June 10, 1895. The first ghot was fired at the cocoa cofferdam. A 6 inch shot, shot was inred at the cocoa cofferdam. A 6 inch shot,
having a velocity of 1,000 feet per second, was fired inito having a velocity of 1,000 feet per second, was fired inito The hole made at the point of entry was the diameter of the shot and that at the point of exit at the rear of the cofferdan was an irregulàr jagged hole $71 / 2$ by $81 / 2$ inches. Water was applied to the front of the coffer dam, the level being five feet above the hole. In ten minutes the first drop of water appeared through the hole. The flow increased gradually, and in a few minutes had become comparatively steady, running about twelve gallons in one-half hour. The flow of one-half gallon a minute then became approximately constant.
" In the meantime the cofferdam containing the corn cellulose was fired at under similar conditions. Water was turned on as before and left for one and a half hours, during which time no water whatever appeared at the hole in the rear of the cofferdam, nor at the end of the time had the corn cellulose at the mouth of the hole in the rear become damp. The cofferdam containing cocoa cellulose was then fired at with a 250 pound 8 inch shell, at the same distance and with the same velocity as that of the 6 inch shell. The water was then turned on with a head of about five feet, as be fore. In twenty-five seconds a few drops appeared at the hole in the rear, and about twelve gallons had passed through in thirty minutes. Under similar con ditions an 8 inch projectile was fired at the corn cofferdam. The water was turned on, and after waiting forty-five minutes no water appeared at the hole in the rear of the cofferdam, nor was the corn at the rear damp. No water had appeared at the 8 inch hole which had previously been made, nor was it damp at the completion of the experiment."

To Experiment with Different Alloys for

In the short period that will elapse before Congres convenes again in December a series of interesting ex periments in coinage will be conducted at the mint in alloys heretofore untried for the purpose will be tested and stamped into token coins. Their availability as substitutes for the alloys of which the minor coinsnickels and cents-are now made will be ascertained and samples submitted to Congress.
Of all the countless possible alloys to be obtained from copper, tin, nickel and aluminum in different combinations, perhaps fifteen or twenty may be found fairly satisfactory. It is possible that one or two of these may advantageously be brought into use for general coinage. No fault has been found with the present one cent and five cent pieces. The experment to gain a knowledge of resources. The Philadelphia mint, while having no experimental department, i well equipped to make the tests.
Aluminum, which has never yet found a place in the currency of any nation, is to be worked up into tria coins. It is also to be given a chance in new alloys. Aluminum is a metal of which but little has been known until recently, and it has been found useful in so many ways that a sort of popular idea prevails that it would be good for coins. Chief among its advantages would be its very light weight. Cents made of it could readily be distinguished from coins of the same size by this re markable lightness alone.
Dr. D. K. Tuttle, the chief refiner at the mint, who knows all about the properties of metals, is somewhat skeptical, however, as to whether aluminum will come out of the proposed test with flying colors. It is ex-
tremely difficult to anneal, and when heated will suddenly run like butter instead of becoming plastic. There would be trouble in rolling it into the long strips from which disks are cut preparatory to stamping Of course, it can be worked, but not with sufficient ease and rapidity to make it practicable for coining on a large scale.
Pure nickel has recently been coined in Switzerland but it has been found just as difficult to handle as aluminum, though for a different reason. Such great heat is necessary to bring it into condition for coining that the operation is slow and expensive. While pure nickel coins might be satisfactorily made in the mints of Switzerland, it does not follow that the same would be true at the Philadelphia mint, which is called upon to turn out fifty times as many 5 cent pieces as the mints of that country, and could not spare the time to work over them.
The 5 cent coin now in use contains only 25 per cent of nickel, the remaining 75 per cent being of copper. Nickel, more than any other metal, has the property of giving its color to an alloy. Even an alloy of 90 per
cent of copper and 10 per cent of nickel will be nearly cent of copper and 10 per cent of nickel will be nearly
white. The advantage of using a greater proportion of
nickel in the 5 cent piece is therefore not apparent, especially as more than 25 per cent of it makes the alloy refractory.
The experiments at the mint will include different com binations of nickel, copper and zinc, forming the alloys known under the head of German silver ; copper and tin, which produce bronze; aluminum and copper which make aluminum bronze. German silver ha been used for coins by one of the small South American states, and proved fairly adapted for the purpose Bronze is commonly used for coins of small value. It is doubtful if aluminum bronze in any form will be found acceptable, as it is hard to work, and has a yellow, brassy appearance, resembling gold, which is to be avoided in all coins of small denomination.

Statistics of the Sea.

The statistical summary of vessels totally lost, con demned, etc., shows that during 1895 the gross reduc tion in the effective mercantile marine of the world amounted to 1,237 vessels of 806,278 tons, excluding al vessels of less than 100 tons. Of this total 310 vessels o 372,463 tons were steamers, and 927 of 433,815 tons wer sailing vessels. These figures exceed the average of the preceding four years by 62 steamers of 81,519 tons and by 55 sailing vessels of 42,940 tons.
As regards steamers owned in the United Kingdom, the return is also above the average, while as regarding sailing vessels it is somewhat below. The increase in the case of the former is due, not to actual wrecks, but to the large tonnage broken up, condemned, etc. Apart rom such cases, the United Kingdom steam tonnage ost during 1895 is only equal to the average of the last four years, notwithstanding since 1891 the tonnage owned was increased by $1,500,000$ tons.
The summary exhibits interesting data as to the rela tive frequency of the different kinds of casualty, etc. which conclude the existence of vessels. Strandings and kindred casualties, which are comprised under the term "wrecked," are much the most prolific cause of disaster. To such casualties are attributable about 40 per cent of the losses of both steamers and sailing vessels. The next most frequent termination of a ves sel's career is by condemnation, dismantling, etc.; 20 per cent of the vessels removed from the merchant fleet of the world are accounted for in this manner.
Of the remaining causes of loss, collision is the most general for steamers (16 per cent), and abandonment a sea for sailing vessels (15 per cent). Cases of aband oned, foundered, and missing vessels may, perhaps, be regarded as frequently more or less similar in the cir umstances of loss. If these be taken collectively, they comprehend 18 per cent of the losses of steamers and nearly 30 per cent of the losses of sailing vessels. The percentages here given are based on the present return lone, but the order of frequency of the several classe of casualty appears to be normal.
The return has been compiled in such a manner as to enable a comparison to be made between the per centages of loss suffered by each of the principal mer chant navies of the world. Great as the absolute annual loss of the vessels belonging to the United Kingdom appears to be, it is seen to form a very modrate percentage of the mercantile marine of the coun try and to compare favorably with the losses sustained by other leading maritime countries. The merchant havies which exceed a total of $1,000,000$ tons are those of the United Kingdom, the British colonies, the United States of America, France, Germany, and Nor way.
Of these countries, the United Kingdom shows the mallest percentage of loss, viz., 3 per cent of the ves cols and 4 per cent of the tonnage owned; the Britis olonies follow, with 3.4 per cent of vessels and 37 pe ent of tonnage, and Norway is the highest, with $7 \cdot 4$ pe cent of vessels and 6.5 per cent of tonnage. As regard teamers, the percentage of loss for the six countries is $\cdot 5$, while the percentage of the United Kingdom tands at $2 \cdot 33$. For sailing vessels the six countrie give a percentage of $6 \cdot 3$, as compared with 4.5 per cent for the United Kingdom.-London Times.

A Horse Cycle.

President L. S. Woodbury, of the Great Falls Iron Works, Montana, says a Western contemporary, has in contemplation the construction of what he chooses to term a horse cycle, whereby a horse can propel a fourwheeled vehicle on ordinary ground at the rate of one mile in fifty-nine seconds. The proposed machine can be made in two forms, either one of which Mr. Woodbury thinks will fill the bill.
The first is in the form of an ordinary buggy. Instead of being hitched ahead, the horse will occupy a position between the four wheels and operate a sort of tread mill. Should the velocity be so great as to attract too much air, then it is proposed to inclose the entire machine-horse, rider, and all-in a whaleback or torpedocut shell, the propelling operation to remain the same. The seat of the rider will be directly behind or above the horse. President Woodbury is so confident of success that he is willing to back his bonds against silver that a mile can be made in fifty-nine seconds or better.

the decapitated princess.

Among the few really successful illusions presented in France in the last, few years, the one called the decapitated princess succeeded in mystifying the public most admirably. On entering the room in which the illusion is exhibited, the spectators see a curtained recess, within which is a beautiful chair resting on a raised platform, with two swords lying across the arms of the chair and a lady's head resting on the swords, as shown in one of the views. The illusionist states that this is the head of an Egyptian princess who was accused of treason and beheaded. This gentleman relates a very interesting little story about the princess, how the liead retained all of the faculty of the living after being separated from the body, and was placed on the throne chair in which she would have soon tiken her seat as ruler of her people if it had not been for the accusation of treason, and how he secured possession of the head.
Regardless of this story the spectator knows he is looking on nothing but a clever illusion. The chair is upholstered in red plush and is placed close to the curtain at the back of the recess. At the back of the chair is an opening just below the level of the tops of the chair arms. This opening is not seen from the front, as it is concealed by a mirror that is placed between the arms of the chair at an angle of 45°. The ends of the mirror rest in folds of the fanshape upholstering on the inside of the chair arms. The lower edge of the mirror is resting on the bottom of the chair and the upper edge is concealed by laying one of the swords on it, as may be seen in the other illustration. At the proper angle the bottom of the chair is reflected in the mirror, leaving the impression that one is looking at the back. The folds in the upholstering of the inside of the arms effectually conceal the ends of the mirror. There is a hole in the rear curtain directly opposite the hole in the chair back, through which there passes a board supported at one end by resting on the seat of the chair and at the other end by a small box or any convenient article.
The lady who is to impersonate the princess takes her position on this board with her chin just above the edge of the mirror, the second sword is placed at the back of her head and a wide lace collar that she wears around her neck is adjusted so as to rest nicely on the two swords. The second illustration shows the board in position passed through the curtain, with the lady lying on it, her head on the swords and the lace collar in position. The curtain in the rear must be close to the chair, but the side curtains are removed about five feet. The board is padded so as to make the lady as comfortable as possible when on the board.

Animals, Change of color in Cold

 Countries.As winter approaches and the green of summer is replaced by snow and ice, a peculiar change occurs among certain animals. At the first hint of cold they begin to assume a different color ; tints of gray and lighter hues appear in the somber black or dark coat of summer, and soon the animal is mottled with dark and white patches, finally becoming a pure white, that is at once a protection, rendering it almost invisible on the snow. Before the change was understood it was supposed that the animals were distinct forms, one white and the other dark. But it is now well known that a number of animals change their color with the regularity of the seasons, says the Philadelphia Times.

One of the most interesting examples is the hare, several of which are known to assume a winter pelage, the most familiar being the varying hare and the Arctic hare. The latter in summer, when it would in a winter coat present a marked and striking contrast to its surroundings, is on its upper side black and a light brownish yellow, mixed; the upper portions of the tail and the tips of the ears black. This color is retained all through the summer, but at the approach of the cold season the pelage begins to fade and gradually becomes white, with the exception of the tips of the ears, which remain black.

This wonderful changeable hare is found in the Alps,
animal has a silky fur, bluish or brownish gray. This lasts until the snow comes, when the coat gradually changes. The hair becomes longer and thicker, especially on the tail and feet, which are densely furred, and by midwinter, or before, it is pure white, without a uspicion of its summer hue.
If the winter and summer pelage be contrasted, it
the decapitated princess-EXplanation of illusion.

Ireland and Scotland, and in the Arctic regions of Asia. In many of the Arctic explorations it has been of the greatest service to the men from its habit of frequenting camps. The voyagers of the Vega often relied upon the little animals in time of need and when food was scarce.
In America, in the far north, we have the same hare
will hardly seem possible that they represent the same animal. The fox is a very cunning and intelligent creature, as all Arctic travelers have discovered. It is an inveterate thief, stealing for the pleasure of stealing, taking from the Vega explorers not only food, but knives, forks, ammunition, sacks, shoes and stockings. When the men slept they would crawl under the robes and nose them, and if those awake held thei: breath, pretending to be dead, the foxes would begin to nib ble them, and when frightened off would carry away a hat, mittens, or anything that came in the way. If followed, one of the foxes would go on guard while the others buried the stolen goods.
The ermine, whose fur has be come fashionable again, is a familiar example of this remarkable change in color. It is common in all the northern countries and in our own country down to the Southern States, a most destructive little creature, killing chickens, birds and various animals, often simply for amusement. An ermine has been observed watching a bird, placing itself benesth an inviting roost ; when the bird alight ed it sprang at it, clinging to it although carried a long distanc into the air
Some curious experiments have been tried with this little animal Four or five were caught one sum mer in the north and found to have rich coats of a mahogany brown color. Two were sent to some one in the Southern States, while the remainder were kept where the cold winter prevailed. Those in the north began to change as the leaves disappeared, the strange

ILLUSION OF THE DECAPITATED PRINCESS.

but a larger and finer animal, known as the polar or glacier hare. The American form ranges from the north to the middle portions of the country, and in regions away from the extreme north changes only slightly or imperfectly. As the cold comes on, its dark coat fades to a lighter hue, becoming pronounced in ummer again.
The protection afforded these animals in the far north is almost perfect, as it is almost impossible to distinguish them from the snow. When they run they seem to be swallowed up in the field of white.
The principal four-footed enemy of the white hare is the Arctic fox, that is endowed with a similar protection. It is one of the smallest foxes known, and certainly one of the most beautiful. In summer, when the ground is bare or covered with verdure, the little

painting of nature gradually going on until the ani mals, with the exception of the tip of the tail, were pure white. Correspondence has been kept up with those having the other ermines in charge, but in vain they looked for the winter change. The animals retained their mahogany-colored coat during the warm winter showing conclusively that the change is produced by the cold, and is a wise provision of nature, rendering the anımals almost invisible to their enemies.
There is another reason given for the change-a wis provision of nature to protect the ermine from the cold Animals with black or dark colored fur radiate inter nal heat mo:e effectually than those of lighter colors o the ermine in its white coat absorbs the rays of the sun, radiating but little; thus the change becomes an important factor in the preservation of the heat supply In their movements these animals and thei allies resemble serpents, and the actions of an ermine stealing along with sinuous mo tion over the snow are very suggestive.

Temperature of the Polar Sea.
Some of the members of the Nansen ex pedition at Tromsoe have been relating to a Reuter's correspondent some of the scien tific facts gleaned during the expedition. During the course of the cruise the crew had on several occasions exciting encoun ters with bears. North of 84°, however no animal life was found to exist, and this would seem to cast some discredit on the hitherto prevalent theory that if a sufficiently high latitude could be attained one would come to dry land and open water, because birds are to be seen flying toward the extreme north. This northerly flight of the birds is now believed to be at tributed to their having lost their way or as being blown out of their course. The depth of the water in the extreme north also seems to indicate that there can be no land near Soundings taken at 84 latitude gave a depth of from 1,310 to 1,530 fathoms, and furthe north the lead reached even greater depths, as much as 3,186 fathoms, it is said. From observations made in 1894-96, the tempera ture of the sea in these regions was found to present several peculiarities. At a depth of 109 fathoms the water was cold. Then came a stratum of about 382 fathoms with some degree of heat, and under this stratum about 490 fathoms of cold water. The proportion of salt in the water varied a good deal. These conditions were pretty much the same verywhere. The further north they got the less current and tide there was, while the wind began to exer cise considerable influence on the course of the Fram.

THE passage has now been opened from end to end of the new Blackwall tunnel.

RECENTLY PATENTED INVENTIONS. Engineering.
Expansion Steam Trap.-Hubert F. Smurthwaite, Coatesville, Pa. This is a trap arranged at any desired pressure, the trap being readily cleaned of sediment whenever desired. Secured at one end in a suitable frame is an expansion tube connected with the steam supply, a discharge valve on the other free end o the tube having its stem fitted to slide in a stuffing box
attached to the valve body the latter sliding in the attached to the valve body, the latter sliding in the
frame, and on the frame is fulcrumed a lever holding on its free end a bolt engaged by a spring to give the de its free end a bolt engaged by a spring to give the de
sired t nsion to the bolt, lever and valve. If set to two hundred pounds pressure, the trap will work as well a at five pounds pressure, and it may also be readily use as a relief valve for steam engine cylinders.
Separator. - Alphonse F. Gaiennie, Lafourche, La. This invention is for an improvement in separators employed in connection with vacuum pans, to separate and collect the vapors and minute particles f liquid carried, being also adapted to separate oil an cular from exhaust steam. The separator has semicir drum, and having angular bends at their free edges form ing passages, whereby the vapors are caused to follow sinuous path, each plate serving to partly dry the vapor If desired, the passage through which the vapors How may be made narrower at
toward the discharge end.

Rallway Appliances.

Car Fender. - Rudolph C. Hoyer, Memphis, Tenn. This is an improvement on a former construction, and providing means whereby an under or receiving fender has a rearward movement upon striking a obstacle, and immediately sets in operation a rocking r upper member, the latter being held stationary be neath the car when its services are not required. The
upper member, or raking fender, when an object is upper member, or raking fender, when an object is
truck by the receiving fender, moves forward and downwardly until its cushioned edge strikes the ground hen it has a rearward and upward movement, carrying upon the receiving fender any object met with in the path of the car.

Electrical.

Telephone Switch. - Christian N. Sandbeck, Harmony, Minn. This invention provides means by which two telephones in a series may be placed series or on the line from being put in communication, while conversation between two telephones cannot be heard through other telephones in the same circuit. In tric connections, contact springs extendung transversely in the box and adapted for engagement with contact angers, while spring plates in the casing are adapted for engagement with other contact springs, and to force the respective fingers into contact with their contact springs. their respective plates.

Mining, Etc.
Miner's Safety Lamp.-Thomas H. Williams, Mount Carmel, Pa. This is a lamp designed to be very sensitive to mine gases, and is arranged to prevent relighting by the miner, who must go to an authorized person having the proper key to have the lamp
lighted. An inverted cup with an aperture in its bottom has at its lower end a flange screwing into the lamp body, while a flanged sleeve engages the bottom of the cup, the sleeve extending through the aperture and forming a passage for the wick
engaging the sleeve.

Dry Ore Concentrator and Sepa rator.-Robert E. and Eugene Waugh and Charles Older, Colorado Springs, Col. According to this im-
provement a box frame having au air chamber is supported in a main chamber, and over the air chamber is operated an apron adapted to permit the passage of air nd the box being given a circular movement, whereby the material, as it is agitated by mechanical movement will be lightened and opened up by the air pressure. The material to be treated is first dried in a kiln, then fed successively to a rock breaker, to Cornish rolls, and a
disintegrator, whereby it is pulverized, comminuted and triturated to the desired degree of fiveness, and the separation of the particles of value is effected through the
action of the air through the meshes of the moving apron and the gyratory movement of the suspended box.

Mechanical.

Self-Oiling Journal Bearing. David L. Altman, Eau Claire, Wis. This bearing comwell communicating with the box by a horizontal channel, and the upper portion of the well communicating with outwardly extending passages and filtering chambers. The box also has a bore conmunicating with the filtering chambers and two dust chambers, and fixed to
the shaft revolubly mounted in the bore is a feed wheel the shaft revolubly mounted in the bore is a feed wheel
revolving in the oil well. The lubricant may be used continuously for considerable time without refilling the well, and it is wholly immaterial in which direction the shaft is run.
Nut Lock.-Emile Fluehr, Sprague, Washington. According to this improvement, the nut is made with a groove across its thread and a shallow re
cess in its outer surface extending from the thread to one corner, a key or locking bar adapted to be removably fitted in the groove having a triangular cross section in its body and two angularly extending spring limbs at
its outer end. In the recess at the corner of the nut is a its outer end. In the recess at the corner of the nut is a spring limbs brought into engagement with the book, the edge of the body of the key is made to bear with
force upon the threads of the bolt.

Valve.-Sidney W. Sampson, Hudson Mass. This valve is made with an operating mechanian
or raising it from or lowering it to its seat gradually permitting it to be also readily adjusted or quickly re ersed in posich. The valve has a stencrerng move both the nut and the valve stem, the lever being cated and operated either above or below the val
Grinding Machine.-Frank Parsons ontgomery, Miss. This is a machine especially adapte or evenly and uniformly grinding and sharpening the atter heads of planing machines with economy of time ier to hold the machine has an adjustable sliding caf ctuating the carrier and an adjacent grind wheel adapt d to engage the cutter head, the latter being placed a arious angles to or parallel with the wheel according to

Mrans for Tr
Means for Transmitting Motion. William C. Douthette, Pittsburg, Pa. 'This is an im ion with steam pumps, the invention providing mean whereby the reciprocation of the piston rod causes the pulley or balance wheel to turn, including two pulleys o balance wheels, and devices between them and the pisto rod by which to turn the pulleys or wheels in opposite irections. Certain improvements are provided in the thmediate devices between the rod and the pulleys balancing each other.

Agricultural

Hay Loader.-Jobn T. Hare, Fresno, Cal. This inventor has devised a loading device to be
attached to a wagon to take hay or straw from the ground and deposit it in a basket or on the body of the wagon axle and the the loader being driven from the animals drawing the vehicle. The elevator or conveye is made to be folded up out of the way when not in use,
and a net is provided for the body of the vehicle, for the eception of the grain or straw, so that when the load is放 discharged it may be lifted bodily by simply raisin Baling Press.-Elias H. Butts, Ori Bal, N . This is an inexpensive press for baling h ower box receives the material, a platen in the lower bo aving downward side extensions and a series of ladder like connecting bars to form a follower, while detached band levers fulcrumed on a fulcrum bar operate alter
nately on the ladderlike bars of the follower. The press may be easily constructed in any ordinary work p, and has a capacity of ten bales per hour
Fruit Box.-Eben R. Morrill, Truc ee, Cal. This is a box in which fruit may be conve niently packed and the cover and botom secured in posiion without the employment of special fastenings, a ails, catches, etc. The sides rigidly connect the end ner faces undulating grooves, the straight tops and bottoms being adapted to be pushed in and drawn out of the grooves. The bottom of the box is placed some
distance above the floor or ground, and is sufficiently springy to counteract jars in transportation, and preven undue pressure upon and spoiling of the fruit.

Miscellaneous.

Velocipede. - August Miller, Lindsborg, Kansas. This inventor has devised a u nicycle designed for traveling on land or water. The wheel has a ing hub within which is the operator's seat, and the exterior of the hub is toothed, while in a frame having shafts with gears. To adapt the unicycle for marine use a pontoon is connected with it having a central channel to receive the traction wheel and a locking connection at each side, the pontoon being of dished structure and preferably of somewhat circular shape, and the tractio

Barrel Filling Machine. - Johnton E. J. Goodlett, Memphis, Tenn. This invention rehe flow quired limit. According to this improvement a valve is arranged in a chamber of the discharge tube, the valve having a transverse axis to one end of which is attached cover being adjustably connected with a and the valve and being also connected with a trip and float mechan-

Hose Nozzle.-Charles Hirsch, Buffalo, N. Y. This is a nozzle designed to readily control and regulate the discharge of water, throwing either a
plain stream or a spray, or cutting off the water entirely plain stream or a spray, or cutting off the water a closed
if desired. The nozzle bas lateral openings and a outer end from which projects a spherical lug or ball, a tip or nipple screwing on the end of the nozzle, and reg ulating the flow of water. The device is simple and

Ceiling Plate.-John Scrimgeour r., Pittston, Pa. This plate has a cylindrical body end, a spring arm secured to the body tending to engage the flange. The plate is formed in two interlocking sec tions, and is adapted to hold itself in place and effect ively protect the ceiling from a pipe passing through the

Dust Pan. - Albert Koehler. Baker City, Oregon. This is a device designed to retain the dust made by the broom and prevent its rising and set tling on the furniture. It is made in the form of a box having double walls of wire cloth to permit the passage
of air currents formed by the movements of the broom, the walls being separated by a space designed to form a trap to receive and retain the dust.
Note.-Copies of any of the above patents will be furnished by Munn \& Co. for 10 cents each. Please of this paper.

Dhusiness and 2ersonal.

 The charge for Insertion under this head is One Dolar a linefor each insertion : aioout eiont words to a iine. AdverThursiay mornıno to appear in the followino week's issue Marine Iron Works. Chicago. Catalogue free. High grade well drills. Loumis Co.. Tiffin, Ohio "U. S." metal polish. Indianapolis. Samples free Bridgeton. N Yankee Notions. Waterbury Button Co., Waterb'y, Ct Papier Maché Manuf'rs, Crane Bros., Westfeld, Mass, For bridge erecting engines. J. S. Mundy, Newark, N.J Handle \& Spoke Mcby. Ober Latbe Co.,Cbagrin Falls, Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Spring \& Varick Sts,, New York. Concrete Houses - cheaper than brick. superior

The celebrated "Hornsby-A kroyd " Patent Safety Enfine is built by the De La Vergne Refrigerating M The best book for electricians and beginners in elecricity is "Experimental Science," by Geo. M. Hopkin Free! An Illustrated History of Cripple Creek kold
camp (with correct map), together with our big family veekly, three months on trial for 25 c . Illustrate Weekly, Denver, Colorado.
ITT Send for new and complete catalogue of Scientifc and other Books for sale by Mun
New York. Free on application.

HINTS TO CORRESPONDENTS
Names and Address mast accompany all letters
or no attention will be paid thereto. This is for our
information information and not for publication.
References to former artices or ansers should References to former articles or answers should
give date of paper and page or number of question.
inginien not anwere
be repeated ; correspondents wionable time should some answers require not a little research, and,
though we endeavor to reply to all either by letter
or in this department. eacc must atake his turn or in this department. each must take his turn.
in our wisbing to purchase any article not adverised
will be furnished with addresses of houres manufacturing or carrying the same. .atters of
special rithen
personal rather than
general in in on merest cannot be
 to may be had at the office. Price 10 cents each.
onk referred to promptly supplied on receipt of
price.
inrals sent for examination should be distinctly
marked or labeled.
(7022) A. C. K. says : 1. Please give ne formula for making the best leather cement, such as
is used by shoemakers for putting patches on. Most ceis used by shoemakers for putting patches on. Most ce-
ments for this purposecontain the objectionable smelling ments for this purpose contain the obiectionable smelling
bisulphide of carbon and are dark colored. These are obbisulphide of carbon and are dark colored. These are ob-
jections. Can you give me recipe for a cement free from jections. Can you give me recipe for a cement free from
this nasty smell and which is white and transparent and equally good? A. Try bicycle tire cement; apply to equally good? A. Try bicycle letting it dry thoroughly between applications and after. Then put patch in
place. 2. Is there ans work published which thoroughly place. 2. Is there any work published which thoroughly
treats on the metal zinc, as used for galvanizing purtreats on the metal zinc, as used for galvanizing pur-
poses ? A. See our SuPPLEMENT, Nos. 967,176 , 994 , (7023) J cents eac
7023) J. S. W. asks for a formula for making a good quality of paste such as bookbinders use. a. 1. Water, 1 quart; alum, 34 ounce. Dissolve, and cream, then bring it to a boil, stirring it all the while. cloves. with a few drops of carbolic acid or oil of cloves. 2. (Hard.) To the above add a little powdered
resin and a clove or two before boiling. This will keep for twelve months. When dry it may be softened with (7024)
(7024) P. B. writes: We have had an X ray outit on exhibition here for the last month. We
wish you would please tell us if in your opinion the rays will affect one's fingers and eyes, for one of our operator's eyes has become inflamed, and one of our young operaif this is caused by looking at the rays. A. We are in clined to believe that the troubles you mention are caused by the X rays; similar cases ha
the hair being usually inj ured.
the bair being usually injured.
(7025) T. P. asks : What is the best non-conductor of heat (wood excepted), which is either a
solid like wood or can be made to cover a solid? A. Of ordinary stable substances, probably magnesia is as good as any. Silica, asbestos board and fiber are good. 2 What is best absorbent for liquid dropping a few drops
at a time say 10 or 15 in allp A. Any absorbent solid, at a time, say 10 or 15 in all? A. Any absorbent solid, such as dry clay. Quicklime will absorb water, combining
with it chemically, but evolving heat, and slaking by the with it chemically,
moisture of the air.
moisture of the air.
(7026) F. H.
(7026) F. H. asks : 1. How many bi chromate batteries will it take to light 10 one candle
power lamps? Also 15 one candle power lamps 9 A. It power lamps? Also 15 one candle power lamps ? A. It
depenus on the resistance of the battery. Taking this at 14 ohm and voltage at 1.75 , we have 13 cells for ten lamps
and 20 cells for fifteen lamps approximately. 2. Is biand 20 cells for fifteen lamps approximately. 2. Is bi chromate a good batterv to use for the above purpose
A. It is about the best of the primary batteries. All are expensive and troublesome in operation. 3. Also give a takpe rule for fignring out how many batteries it will the following a good general rule: Multiply together the current of the battery on short circuit by its voltage. Divide 16 by the product to get cells per candle power. I Sloane's "Arithmetic of Electricity," \$1 by mail, you will find several rules to cover different cases.
(7027) G. B. asks : I wish to know if there are any reliable statistics to be obtained. and
where, as to the actual saving in the use of 16 candle
power electric lamps over gas. What I mean is, Does
pay to put in a plant pay to put in a plant to make your own light, say
should want 1,000 sixteen candle power lamps, and yet am able to buy gas at $\$ 1.50$ per 1,000 feet? A. Allow ten en candle power incandescent lamps to the horse 20 candle power. This of gives the basis for calculation. 1,000 gas burners would represent $\$ 7.50$ per hour. Gen-
erally, incandescent lamps are supposed to cost more than erally, incandescent lamps are supposed to cost more than
(7028) E. M. asks if fine thin tea lead, such as package tea comes in, will do for making a con-
denser for a 3 inch spark coil, and how much surface he denser for a 3 inch spark coil, and how much surface be
will have to have. A. Yes; make the surface twice as reat as that described for the coil in our Supplement, . 160.

NEW BOOKS AND PUBLICATIONS

Roentaen Rays and Phenomena of THE ANODE AND CATHODE. By By
Edward P. Thompson, M.E., E.E. Concluding chapter by Prof. William
C. Anthony. New York: D. Van Nostrand Company Pp. 190, 105 illustrations. Price $\$ 1.50$.
This carefully written book enters into the experimental development of $\dot{\Sigma}$ zay phenomena. It begins with he early researches of Faraday and follows the subject tant experiments, and presenting the various It presents a few typical applications of \mathbf{X} rays in anatomy, surgery, diagnosis, etc., and is, in fact, a book of great interest to students of high vacua phenomena, especially such as relate to the discovery of Roentgen. Locomotive Mechanism and EngiNEERING. $\begin{aligned} & \text { By H. C. Reagan, Jr. } \\ & \text { New York : John Wiley \& Sons. Pp. } \\ & \text { 420. Price }\end{aligned}$ \$2. 420. Price $\$ 2$.

This is a second edition, revised and enlarged, of a work by a practical locomotive engineer, who has endeavored orescribe the manner in which the locomotive is
handled while in service. To do this best, the engineer hanould have something more than an elementary know. ledge of its construction, that he may, where breaks necessary and how best to do it. There is a chapter on compound locomotives and an appendix on the modern electric locomotive.
A book of tables of dimensions, recently published by the Walworth Manufacturing Com-
pany, of Boston, exhibits a great amount of careful calculation various sizes of valves and fittings made by the company. The company manufacture, as specialties, the and the Walworth extra heavy and standard weight fittings, and wrought iron pipe bends of all descriptions for high or low pressures. The use of these bends in place of sharp elbows or angles, wherever possible, is a matter not to be neglected by engineers or steam users.

TO INVENTORS.

INDEX OF INVENTIONS
Or which Letters Patent of the
November 3, 1896

and EACH BEARING THAT DATE.

 Cast metal articice, J. C. Reed
Caster ball. Mason \& Ell
Ceiling plate, J. scrimgour,

Elevator' door opening or ciosing apparatus,i.i. B
Eine. Rotary engine.
Engine atachachent steam, Freer.
Engine coupline J. Mackenzie....
Envelop, P. G. Muenchinger.......
Eraser, H. A. Mel Munchinge
Expansion bolt, lins. Churci.

Fence, wire, J. Haish.
Fence, wire. S:
Fence. wire, A . Nielson
Runyon
Fender. See Car fender. D. Mead..................
Firtilizer distrituter. E.
Fibros harness, utilizug partialiy worn. \mathbf{j}. Rob File rack, Aaul. d McQuilisin.:
File, roand, A. Weed.
Fire alarm, thermostat actuaite
Fire extinguishing system, E. W. Thomas...

Folding chair, W. Semier.

Gasoene or vapor enge.
Gate. See Farmart.
Gearn.
Gila ss articles, cuntis.

Golf tee and score card, combined, \mathbf{P}. Li. senat

 Hide working inindier,
Hook See Hish hook
Hook, Lewis \& Mixer.

Lubricator, W. F . Greqorír

	 safety switch, joki A Cbbristian. Sasb cord holder, C. U. Hannum. Sash fastener. C. Hortman. Sash lock, D. 0 . Livermore saw and saw tooth, circular diamond, separator. Soe centritur ratator. Ore separator. Separator, G. W. Crass. Sewing machine, Holton Maisch Sewing machine E. J. Toof Sewing machine. E.J. moof aitachönt. sheet metai can i. A ms. hifting apparatus. A. Chavanne Shiugle sa wing machine, F. Cballoner. Sienal holder, pyrotechnic, W. W. Coston skeer pointing machine, T. W. Hamin Sled. Sled. logo1ng, J L L. N lander Smoke consumer. J. M. Arm Strong. smoap booner, O . H. Huebel. Spectacles.or erepalasses, frameless. Eissic Speed pear, M. Steam, trap, expa nsion. H. F. F. S S urtionai Stock fnishing machine, M. E. Clark. Stocking, J. H. Jessen. Stone dress ing man Stone dress ing machine, O. T. Dutro.: Stop device for grinders, etc., safety,

TRADE MARKS.

Towing ap paratus, A. de Bovet Toy, J. J. Deal.
ap. Se
truck, car,
ck. car
ruck, drier, iv. A. Leary..........................
f
Typewr ting machnee, W. Fredrick
writing ma
writing
writing
rella, Plack
Undergarment, C. A. Brown
Valve, S. W. Sampson..........
Ive, $\mathrm{F} . \mathrm{H} . \mathrm{Sh}$
Valye for service pip
Valve handie, steam. E Mc
ive mectaanism, H. B. Ga
or raucet,
ive stopper
or burner, Lann
icle mashing
Venicle wheel, A. ${ }^{\text {V }}$
locipede'saddle, S.
Voting machine. .1. Y. McConne
Waron, F, Fischer
Walls, construction of supports for building,
Washer. See
Wasbing machine
Washing machine
ater coset, coie
Water elevatur, windiase, R. W
Water supply to closets, urinais, et c., apparatu
for regula
Cheer See
Wheel and axle connect
Wheels, attachment for increasing diameter of
Whip oper atine
dow frame,
dow guard, Pa
ow Oock,
㖪
plants, ${ }^{\text {c }}$
Wrapping and securing wrappers around box , machinery

 Guano, Rany. W. Kai. Rasin.
Guano. pospates, man
R. W. L. Rasin
Gum and breath perfumes, chewwing, Honey Dew
Hats, boys'anan men's fur, Beeitaire, Lürch \& Com
Gany

Provertisements
ORDINARY RATES. Inside Page, each insertion --75 sents a line Hifror teone casese of Avoertiementas, special and

piping. Price 82.25. Size 12 inch. For book on the level
C. F RICHARDSON \& SON,
O. Box 97\%, ATHOL, MASS., U.S. A.
 Faneuil Watch Tool Co.
With the new attachment. the Rivett Automatic Cbuck
Closer, from 100 to
and NEW TOOLS . . . NEW CATAICOGUE, 1896

ARMSTRONG'S * PIPE * THREADING
 Cutting-off MACHines

The Van Norman • •
Universal Bench Lathe.

$\xrightarrow{\text { ACETYLENE }}$

 BUY ThELEPHONES
 Hundreds of similar cases may be cited affecting then
apparatus of nearly all so-called competitors. western telephone construction co. 250 South Clinton Street, Chica

HALF A CENTURY OF CYCLES.-AN

 had at this office and from all newsdealers.

STEAM STAMP

R CRUSHING ORES $=$ Ew GATES IRON WORKS,

CATALOGUES FREE TO ANY ADDRESS

"My Well and what came out of it. "Your Well and what will come out of it.
Pohlé Air Lift Pump The Ingersoll-Sergeant Drill Co.

DORMAN'S VULGANIZERS

 THE Send Pr Cataonessinan co. The Bartley Direct Running Saw Mill

 THE SUBMERGED PIPE LINE ACROSS

GREAT SPECIAL OFFER

 What the ericyclopedic dictionary is what the ablest critics say

 Iecped an an andeetion

 tortyound ofadint ion
 and

E THIS GREAT BARGAIN B

NEW YORK NEWSPAPER SYNDICATE ${ }^{93}$ F FETMAGENUEE

HUB ball Bearings
 the ball bearing co.
apollo galvanized iron. If you think one makk as goo as another

Draughting Instruments

FROST \& ADAMS CO., 39 Cornhill, Boston, Mass. DIXON'S Write the smonthest and
 LOS. DIXON CRUCIBLE CO.I JRRSEY CITY, N. 1

A. W. FABER

 PENS, NES, PENCIL CASES IN SILVER AND IN
GOLD STATIONERS' RUBBER GOODS, HULERS,
COLORS AND ARTISTS MATERIALS. 78 Reade Street, - - New York, N.

Established in 1848.
And Supplies fo
Architects,
Engineers, and

The FAIRBANKS-MORSE GAS and GASOLINE ENGINES, STETION CLUTCH PULLEYS.

FREE SAMPLE COPY or stome An Elementary Journal for Students
 Ensineering, Clivil Engineerng, and Mechantical H0ME STUDY, $\begin{gathered}\text { Boranton, } 94, \\ \text { Pa }\end{gathered}$ The Kent Battery Motor or Dynamo

BINDERS ©

 rne

ETESTABLISHED 1845.
The Most Popular Scientific Paper in the World

This widely circulated and splendidly illustrated
paper is published weeklr. Every number contains sixpaper is published weekls. Every number contains six-
een pages of useful information and a large number of riginal engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions, Novelt res in Mechanics, Manufact ures, tecture, Agriculture, Horticulture, Natural History, tt. Complete list of Parents each week.
TIFIC AMERICAN will be sent for one year of the ScIENpostage prepaid, to any subscriber in the United States Canada, or Mexico, on receipt of Thiree 1101112 rs s by
the publishers; six months, 81.50 ; threemonths, 81.00 . Clubs.- Special rates for several names, and to Postmasters. Write for particulars.
The safest way to remit is by Express Money Order. Money carefully placed inside of envelopes, securely sealed, and cnrrectly addressed, seldom goes astray, but is at the sender's risk. Address

Fixntitic Gumerican ฐupplement This is a separate and distinct publication from Tre size. every number containing sixteen large pages full of engravings, many of wnich are taken from foreisn
papers anc accompanied with translated descriptions. The Scientific American SUPplement is published
weekly, and includes a very wide range of contents. It weekly, and includes a very wide range of contents. It
preserts the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography Archæology, Astronomy, Chemis-
try, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Eneineering, Mining, Ship Building, Marine Engineering, Photography, Technology. Manufacturing Industries, Sanitary Engineering, Agriculture,
Horticulture, Domestic Economy, Biography, Medicine etc. A vast amount of fresh and valuable information

The most important Engineering Works, Mecbanisms,
and Manufactures at home and abroad are illustrated and Manufactures at home and abroad are illustrated
and described in the SUPPLEM ENT. Price for the SUPPLEMENT. for the United States,
Canada, and Mexico. $\$ 5.00$ a year; or one copy of the SCIENTIFIC AMERICAN and one copy of the SOPPLEMENT, both mailed for one year to one address for $\$ 77.00$.
Single copies, 10 cents. Address and remit by postal order, express money order, or check,
y, New York.
Thulding Exdition.
The Scientific American Building Edition is
Isued monthly. 82.50 a year. Single copies, 25 cents. Thirty-two large quarto papes. forming a large and
splendid Maeazine of Architecture richly adorned with gplendid Maeazine of Architecture. richly adorned with
elegant plates and Jther fine engravings; Hllustrating the most interesting exampies of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number
of a variety or the latest and best plans for private resinf a variety of the latest and best plans for private resi-
dences. city and country, including those of very moddences. Clty and country, including tosese of very mod-
erate cost as well as the more expensive. Drawings in perspective and in coior are given, together with Floor
Plans. Descriptions, Locations, Estimated Cost, etc Plans. Descriptions, Locations, Estimated Cost, etc.
The elegance and cheapness of this magnifcent work bave won for it the Larrest Circulation of ans
Arcbitectural publication in the world. Sold by all nẹwdeaiers. 82.50 a year. Remit to
MUNN $\mathcal{C O}$ CO., 361 Broadway, New York.

Fixport Tidition
of the ScIENTIFIC American, with which is incor or Spanish edition of the Scientific american is pubhished monthly, and is uniform in size and typography
with the Scientific Amerionn. Every number contains about 50 pares, profusely illustrated. It is the finest
scientifc, industrial export paper published. It circuscientiflc, industrial export paper published. It circu-
lates throughout Cuba, the West Indies, Mexico, Cenlal and South America, Spain and Spanish possessions - wherever the Spanish language 18 spoken. THe scl ENTIFIC AMERICAN EXPORT EDITION has a large guaranteed circulation in all commercial places through-
out the world. $\$ 3.00$ a year, postpaid, to any part of the world. Single copies, 25 cents.
Manufacturers and others who desire to secur foreign trade may bave large and handscmely displayed
announcements published in this edition at a very announcemen ${ }^{\text {ss }}$ published in this edition at a ver
moderate cost. Rates upon application. MUNN \& CO. Publishers.

क्ञHIE IS DEAD

 Thid Fpumitior EXCHANGE， $\frac{1}{2}$ Barclay St．，New York． 156 Adams St．，Chicago． 38 Court Sq．，Boston．
818 Wyandotte Street，Kansas City，Mo． We will save you from 10 to 50 per eent，on TYpewriters
of all makes．
Send for Cataloove．
OnLY practical magazine camera．

SUNART＇S ＂VENI，VIDI VICI，＂ MAGAZINE，
SUNART
 SUNART PHOTO CO．，ROCHESTER，N．Y． ELECTRICITY PAPERS

 DEPARTURE BELLS over．

MECHANICAL ${ }^{\text {D }}$ SURVEYING

Minders Inveritors Pronntiers | Experimental Work |
| :--- |
| Ent | MandfactonR or your ores assayed， or other products analyzed．Expert advice in chemical，electro－chemical，or chemico－

legal matters．Correspondence confidential． MARINER \＆HOSKINS， Chemists and assavers．
81 clark Street（top floor）． CHICAGO．
 WANTED MEN AND BOY8 everywhere toput up Electric Bells，Burglar
Alarms, Telephones．ete．
Catataoope free． C．Me Mricinquist，
216 South Cliark street，Clicn En，mis．
SMALL MOTORS FOR ALL PURPOSES

 Motors haven drete，price siture．
$\mathbf{X R A X}$ OUTFIT，sie．

$\mathcal{C b e}_{\text {b }}$ Sisinfific American

PUBLICATIONS FOR 1897.
The prices of the different publications in the United
States，Canada，and Mexico are as follows： RATES BY MAIL．
Scientiffc American（weekly），one year，－－
Scientifc American Export Edition of the Scientific American（month
 COMBINED RATES Scientific American and Sclentifc American and Supplement，

Scientific American and Building Edition， | Scientifc American，the Supplement，and Building |
| :--- |
| Edition， | Terms to Foreign Countries． The yearly subscription prices of Sclentific A merit

publications to foreign countries are as follows I．S．

Scientific American（weekly），
Scientifc American
 Scientifc American Supplement（weekly Building Edition of the Scientiflc Amer－
ican（monthly），$--\quad$－
Export Exition of tide Amer－
ican（monthly）in Spanish and Eng－ ican（monthly）in Spanish and Eng－
lish，
－ Combined Rates to Foreign
Scientifl american and Supplement， Scientific American and Building Edi－ 8cientitc American，Scientific American
Supplement，and Building Edition， Proportionate Rates for Six Months
The above rates include postane，which we pay．Re－
mit by postal or express money order，or draft to order 0 of

MUNN \＆CO．， 361 Broadway，New York．

The Elison Phonographic News A PHONOGRAPH or A KINETOSCOPE the great money－earning wonders．Sample copy 10 c ．
THE OHIO PHONOGRAPH CO．，CINCINNATI， 0.
 THE FADING OF PIGMENTS．－A PA

Yost Writing Machine Co．
6r Chambers Street， 40 Holborn Viaduct
Margunaw wirizewe

soo times exposed to the same light，prints
GLOSSY Or MATT．No dull or rainy weatber to interfere with your work

 Nepera Chemical Co．，Sole Manufacturers，NEPERA PARK，N． \mathbf{N} ．

Pơ＇we h？

解
 WEBER GAS AND GASOLINE ENGINE CO．． 402 Southwest Boulevard， Kansas City，

CROOKES TUBES AND ROENTGEN＇S

PROPOSALS．

 SUPPLY of 150,000 tons of steel rails and other Permanent Way Materials to be Manufactured in the Colony of New South Wales．
Offers are hereby invited by the Government of New South Wales，Australia，and will be received by the Secretary for Public Works in sydney，and the Agent－ General for New South Wales in London，up to 11：30 o＇clock on the 30th day of December，1896，from persons willing to contract for the supply of 150,000 tons of steel rails and the necessary quantity of Elish－plates， Fish－bolts and Spikes．manufactured in the Colony of New South Wales，out of iron ore and other neces－ sary minerals the natural product of，and with coal， coke，or other fuel，smelted，gotten and raised within the said Colony，upon the Terms and Conditions which can be seen at the Offices of the Minister for Public Works，Sydney（or the Agent－General for New South Wales，London），

J．H．young，
Minister for Public Works．
E8t＇d．Glass；Brooke，Moulds，Wxpert Making New．

 WANTED tomanufacture by a mell equipped maa

1EAFNESS \＆HEAD NOISES CURED ．mapman procot FREE

 OT BANKRUPT STOCK BICYCLES
 THE SUCCESSFUL

SCIENTIFIC AMERICAN SUPPLE

An

Experimental Science

GEO．M．HOPKINS

Seventeenth Edition．
REVISED AND ENLARGED．

840 pages， 782 fine cuts，substantially and beautifully bound．Price in cloth，by mail， \＄4．Half morocco，$\$ \mathbf{5}$ ．
This splendid work is up to the times． It gives young and old something worthy of thought．It has influenced thousands of men in the choice of a career．It will give anyone，young or old，information that will enable him to comprehend the great im provements of the day．It furnishes sug． gestions for hours of instructive recreation．

Tplete table of contents，

The Easient Running wheel in the World. THE BLACK MFG. CO., ERIE, PA. Nickel Silver Watches

We are casing all sizes of movements in this new metal. It takes a better finish and is more enduring than sterling.
It supersedes the old nickel plate, and enables one to have a perfect timepiece at small cost.
Our Solid Gold and Filled Cases, as well as Sterling Silver and Enameled patterns, are in greater variety this season than ever.
New specialties have been added.
Our '97 Model
Trump Cyclometer, the 10,000 mile wheel reconder, are all shown in our new catalogues, which will be sent to all.
The Waterbury Watch Co WATERBURY, CONN.

THE CHARTER GASOLINE ENGINE
used for almost every purpose pow sun, and unequaled.
Full particulars by addressing
Charter gas engine co. Box 148, Sterling, III

The

American

Bell Telephone
Company,
125 Milk Street,
Boston, Mass.

This Company owns LettersPatent No. 463,569 , granted tc Emile Berliner November 17, 189r, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Tep?

Phvertisements.
 OIRDINARY RATES. Inside Paze, ench insertion --75. cents a line Bnck Page, each insertion…- $\mathbf{\$ 1 . 0 0}$ a line nit For some clasese of Advertisoments, Special and Higher ra
 Cribunce Bitycle
 Tested and True.
 HURRY UP!LIMITED TO December 31
 A Most Sensible Gift for Your Family or Friends
 For Use in Your Home or Office, or to as ist the Children in their Studies, no other Reference Book in the World compares with the New
 AMERICAN STANDARD ENCYCLOPEDIA.
 Yours for 3 Gents
 Edition of November 1, 1896. The finised mork of more than 100 of the world's greatest scholars ducators, scientist and speciaists, condensed for the use of buss people.

A SUPERB REFERENCE LIBRARY
 JUST OFF THE PRESS:
The new American Standard Encyclopedin is brourht. right down to the date of its issue and contains
hundreds of articles on subjects on which alit the older reference morks are necessarily silent. It is also a superior Pronou ncing Dictionary, siving allw wrds in general use, carefully deefned. Its contents embody a Biographwhole Globee, and a rich storenouse of general, practical. up-to-dote information-
social and civil-all arranged and classifed in convenient form for ready reference.
ตoctil 0 ON DOLLAR

OUR GREAT SPECIAL OFFER FOR INTRODUCTION

 month. When ordering be sure to state style of binding wanted (we recommend the Half-Russia) with full shiping dipections, All transpirtation charges to be paid by puschaser. Books guaranteed as represented or MPECIAL TO CASH BUYERS: If cash in full be sent with order, prices will be $\$ 5.00$ for cloth style,
sy.00 for Haif-Russia, until Dec,
 AMERICAN NEWSPAPER SYNDICATE, 8th \& Locust Sts., Philadelphia

Largi		
Has an Automatic Platen Lift An Automatic Switch for ribbon movement, feeding both ways Automatic Lever Locks Alignment that is positively permanent Compared with the Hartford, no other machine is up-to-date We solicit cash trade and can give such customers A GAIN OF 50% over what is offered by competing houses in our line THE HARTFORD TYPEWRITER CO., 1 LAUREL St., hartford, conn. u. s. a		

DAIMLER MOTOR COMPANY, highest grade single and twin screw launches
 Motors from I to ctual Horse Power
 -ader pressure.

PHOTOGRAPHIC SIMPLICITY

Is embodied in the Pocket Kodak. EASTMAN KODAR CO. Booklet free at aggencies
or by mail. \quad Rochester, N. Y.

"WOLVERINE" GAS AND GASOLINE

THE IMPROVED GAS ENGINE. Two cyllinders in one casting
occupies less space and welg
less for it
 Honary or marine. No torre.
conseat. No smoke. Nolicensed engineer required.
$\mathbb{E T}$ Send for catalogue. SINTZ GAS ENGINE CO., Grand Rapids,

OLDS SAFETY | VAPOR ENGINES |
| :---: |
| rab tron | and

EIECTROMOTOR, SIMPLE HOW TO

PRINTING INKS

[^1]
[^0]: Books bound in Books bound in ed friends are said by the London Figaro to be the fashion now in Paris. So are cigarette cases, tobacco pouches, pocketbooks, and prayer books made of the skin of notorious criminals.

[^1]:

