a WEEKLY JOURNAL 0F PRACTICAL INF0RMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEIV YORK, OCTOBER 24, 1896.	

Srientific smeriran.

ESTABLISHED 1845

MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 bROADWAY, NEW YORK.
terms for the scievifific american.
 Remit by postal or express money order, or by bank draft or check.
MUNN \& co., 3611 Broadwas, corner of Franklin Street, Nex York.

The scientific Americans supplement

Export Edition of the Scientific american

Tre safast way to remit is by postal order. express money order
it or bank cbeck. Mabe all remittances payabie to order or MUNN
Readers are speciall requested to notify the p.
failure. delay. or irregurarity in receipt of papers.
NEW YORK, SATURDAY, OCTOBER 24, 1896.

TABLE OF CONTENTS OF
SCIENIIFIC AMERICAN SUPPLEMENT No. 1086.
For the week Ending october 24, 1896.

AMERICAN AND ENGLISH RAILROAD TRACK

 The long standing controversy as to the respectiv merits of the American and English systems of railroad track has lately been revived with considerable vigor in the columns of the English Engineer, and the various stock arguments have been brought out of the pigeonhole and presented, in company with such new facts as have developed with the improvements of the past few years, by a large number of more or less qualified writers and correspondents. In an editorial review of the discassion our esteemed contemporary betrays a woeful ignorance of the actual behavior of American track, in the construction of which it believes " nothing like finality has been arrived at." It further concludes that we provide a road "very difficult to repair ;" and we are gravely assured that "a gang of platelayers " (section men) "could replace a couple of lengths of rai before an American gang would get the spikes out. Last, and most remarkable statement of all, we are assured that " very great difficulty is experienced with the joints," and that " one of the most serious objections to the flanged rail is that it is next to impossible to fish it satisfactorily" (!) After such an arraignment of the alternative system, we are quite prepared for the writer's comfortable conclusion that he cannot "concede for a moment" that the English engineers have "anything to learn from American practice."Among the many points of difference between American and English rallroad practice, whether in roadbed or rolling stock, there are none so radical as those pertaining to the rail, ties and fastenings. With few exceptions, all the railroads of the world use one or the other of the two systems, and while the American is the most common, there are so many thousands of miles of the other system to be found outside of Great Britain and her dependencies as to save it in some measure from the charge of being antiquated or "behind the times."
The radical difference between the two systems lies in the shape of the steel rail itself: for it is this that determines the details of joints, ties and fastenings The English roads use a double-headed or "bull-head" rail, which, instead of having the base flattened out to form a bearing surface on the ties, has its base formed into a rounded ball-shaped section similar to the head of the rail, but not so deep. Such a rail evidently has no power to stand up by itself, and it is necessary to provide cast iron bearers, known as "chairs," for the rail to rest in. These consist of a flat base, measuring generally about 7 inches by 10 inches, or 8 inches by 12 inches, which has two vertical jaws or braces, one of which is curved to fit snugly against the inside of the rail, the other being flat on its inside face and adapted to receive a hardwood key, which is driven in tightly between the jaw and the outside of the rail, and holds the rail in a vertical position. This form of rail was chosen in the days of iron rails from motives of economy, the idea being that, when the upper head had been worn down by the traffic, the rail could be taken out and reversed in the chairs. The theory was good; but the performance was bad. It was found that the chairs wore out a hollow in the base of the rail where it was seated upon them, and that when the rail was reversed the old base-now the head -presented a roughened surface, which made very noisy and uncomfortable riding. When the theory of the double-headed rail was proved to be wrong, it would have been natural to throw it aside and design a new
rail, whose section should be determined solely by the rail, whose section should be determined solely by the
work it had to perform. For some reason, however -probably an instinctive dislike to change-this wa never done. What the English engineer did was to reduce the amount of metal in the base, and maintain this type-founded upon a wrong theory though it wa -as the standard rail of English practice
From these considerations, which are simple facts of history, it is evident that a strong prima facie case is made out in favor of the standard tee rail, whose sec tion has been designed with a single view to carrying load, and is not modified, as is that of the double headed rail, by any exploded theories of economy in operation.
The raison d'être of the English bull-headed rail is simply that it is a paternal legacy from the early day of railroading. What excellence the English track may possess to-day is obtained in spite of the inherent de fects of the system, and is due to thorough, very care ful, and, it is needless to say, very costly maintenance If the chairs were thrown out altogether, and th weight of metal put into the rail itself; if their wid ties were split in half and more closely spaced beneath the rails, and if the miserably inadequate fishplates a the joints were replaced by heavy angle bars of the American type, the English engineers would find that for the same total cost of construction, they woul secure a quieter, stiffer and smoother riding track.
During a recent trip over some of the best English appeared to be that, while the level and algess and noisiness of riding, as compared with our best American track, which could not be accounted for merely y the stiff springs and disconnected axles of the roll ing stock. We are satisfied that this is largely due to
the wide spacing of the ties and the weakness of the joints. In regard to the first point, the ties are laid 3 feet apart, as against 2 feet and less in this country. Now the ideal track for smooth running is that which provides a continuous, longitudinal tie or "sleeper" beneath each rail. The great Brunel knew this, and built the Great Western Railway accordingly. If it were not for difficulties of maintenance, such as occur in drainage and level, we think this system would be more largely in use to-day. The old broad gage road had a smoothness of running that was very noticeable after riding upon a cross tie track. The cause of this was that the steel rail was evenly supported throughout its entire length, and hence (provided the tamping of the ballast had been evenly done), the elas ticity of the rail was constant at all points. In the cross tie system, on the other hand, the rail is elastic between the ties and comparatively inelastic above them, the result of which is that there is a certain measure of shock as the wheel passes each tie. If the ties are spaced closely, this effect will be diminished to a point at which it can be neglected, as in the close spacing which obtains on American roads, where the distance between centers is less than 2 feet; but when they are spaced as in England, fully a yard apart, the effect must be sufficient to have a marked effect on the running. It may be claimed that this is pushing theory a little too far; but, if our English friends will apply the theory to the case of the single driver of one of their Great Northern engines, with its concentration of over twenty tons, they will at least agree that the rail with the closer spaced ties is in a better condition to receive the load than one with its ties a yard apart.
But by all odds the weakest place in the English track is at the joints, where the fishplates, answering to our angle bars, are singularly inefficient. This weak ness is inherent in the bull-head system, and cannot be avoided. Owing to the space between head and base of rail being taken up by the jaws of the chairs above mentioned, it is impossible to extend the fishplate across the joint ties, as we do, and they are only a trifle longer than the distance between the inner edges of hese ties, a matter of some 18 or 20 inches.
The arrangement cannot claim to be even a sus pended or bridge joint, as the plates never reach the ties; and what stiffness the joint may have results from he cantilever action of the rail ends that project from he adjoining chairs. Moreover, the standard fishplate is without any lateral flanges, and. consequently, has very little lateral stiffness to keep the rails in alignment The result of this inefficient design is seen the moment the train is in motion, especially if one is seated ove a wheel in one of the six-wheeled " coaches." The joint give out a loud click as they feel the passing blow of he wheel, and the "hammering" is kept up with a painful monotony. It has been our custom to time the speed of a train by the click of the joints. When lighte rails were in use in this country, this was a ready mean of ascertaining the speed; but to-day, on our best track, it cannot be done, for the reason that our joints no onger "hammer." There is never a time when one annot sit in his seat and count the joints on an Eng ish road with the greatest ease
The track of the New Haven road, from New York o New Haven, consists of 100 pound rail, 6 inches in depth, laid with 18 oak ties to the rail (as compared with 10 to the rail in England), upon 18 to 20 inches of broken stone ballast
If it should ever be the privilege of the editor of our steemed contemporary to take the run over this 80 niles of track, we think he would hasten to revise his pinion that "English engineers have nothing to learn rom American practice.

OUR TRADE WITH THE SOUTH AMERICAN REPUBLICS

The commercial alliance of the United States with he many sister republics which are strung out along he eastern seaboard of the southern continent was favorite theme with the late James G. Blaine. Such n alliance would be natural ; it is suggested by ou geographical position; and there are historical an sentimental reasons why these people in the south hould prefer to trade with us rather than with the na tions of the old world. The Pan-American Congres was directed to this end; so was the great projected north and south railway through the isthmus to join our system to that of South America; and the remarka ble interest shown by visiting delegates from that coun try during the World's fair at Chicago, in 1893, proved that the field is open and may be occupied, if a syste matic effort be made to capture it
Diplomacy can accomplish much in the way of pre iminary work. It can remove artificial obstructions and rough out a roadway on which the wheels of com merce may travel; but it is to the joint efforts of com mercial associations and the individual manufacturer that we must look for the actual development of trade. Nor can this work be done at home. It is necessary to be on the spot. If our merchants have better goods to sell they must be prepared to prove it by exhibiting them in the various countries side by side with the manufac tured products of other competitors. Nor should the
display be left to make its mute appeal to a people whose interest in the matter is not even awakened, and who, even if they had the interest, in many cases have not the intelligence to discern the superior excellence of any line of goods we might exhibit. The display should be placed in charge of a competent manager, well acquainted with the language of the country and with more than ordinary ability as a salesman. In other words, if our wholesale trade in these countries is to be successful, it must be pushed with something of that tireless energy and scrupulous attention to detail which characterizes the retail trade at home.
It gives us much satisfaction to note that the National Association of Manufacturers is getting down to systematic work on these lines by establishing in the city of Caracas, Venezuela, an "Exhibition warehouse for the display and sale of American products of various kinds." The aim of the association is to stimulate trade between the United States and Venezuela by familiarizing the merchants of Venezuela with the American products which they can purchase to advantage.
To carry out this plan it is proposed to lease a large building in the city of Caracas, which is admirably adapted by location and otherwise for the purposes of this exhibition. Samples of American manufactured products salable in Venezuela will be placed in this building, and the exhibition will be placed under competent management, solely under the control and direction of the National Association of Manufacturers.
It will be the endeavor of the association to charge exhibitors at a rate which will about cover the cost of maintenance. It is estimated that an entranee fee of $\$ 100$ from each exhibitor and a charge of $\$ 1.50$ per annum per square foot of space used for exhibits will yield enough to cover, or nearly cover, the running expenses of the warehouse. The minimum charge for sace has been fixed at $\$ 25$ per annum. This, with the entrance fee, would make the minimum charge for any exhibit $\$ 125$ per annum, in addition to the costs of transportation from the United States to the warehouse in Caracas.
Exhibitors will be subject to no other charges, outside of the entrance fee and the charge for space above mentioned. The services of the manager and his assistants will be rendered without additional cost, and each exhibitor will have a trained salesman to look after his interests.
Commenting upon the opportunities for American trade in Venezuela, Mr. Theodore C. Search, president of the association, says : "From close investigations, it is believed that the American prices of hardware will compare favorably with the English. The German prices are low, but there is no comparison between the German and American goods, so far as quality is concerned, and Venezuelan merchants in hardware appreciate this.
"Furniture of a poor quality is mostly made in the country, but it is extremely expensive. There is undoubtedly a splendid opportunity for the introduction of American furniture.
' No leather is manufactured in the country, except a very poor quality, and as most of the shoes now selling in Venezuela are made in the country, there is a very satisfactory market for the sale of manufactured leather, uppers and shoe findings.
'If Venezuela should become better acquainted with the merits of American machinery and labor saving appliances, there would be no question that a good trade might be found there, but samples of this line of goods must be shown there before they can be sold, as the Spanish-American can seldom form any comprehensive idea of the merits of a piece of machinery from printed matter.
"The machinery used on the coffee and cocoa plantations comes mostly from England and Holland. It is believed, however, that this class of machinery is very heavy and cumbersome as compared with that of the United States.
"In brief, it is the opinion of the merchants of Venezuela that the following articles might be imported from the United States with profit, in addition to those that are now going in, viz.: American building material, hardware, common glassware, cutlery, fencing wire, mining and sugar machinery, agricultural implements, carriages, cars, steam engines, lumber, cotton goods, certain kinds of wearing apparel, and all kinds of articles for home furnishing and decoration, carpets, curtains, rugs, and novelties."
The value of our imports into Venezuela during the six years from 1889 to 1894 has varied from $\$ 3,738,961$ in 1889 to $\$ 4,716,047$ in 1891. During the same period the exports to the United States from Venezuela ranged from $\$ 12,078,541$ in 1891 to $\$ 3,464,481$ in 1894 . In 1895 the exports were $\$ 3,740,464$ and the imports $\$ 10$,073,951 , a falling off in exports, but a great increase in imports over the preceding year.

England supplies Venezuela with cottons, woolens and general merchandise ; the United States furnishes breadstuffs, some cotton goods, oils, provisions and considerable machinery ; Germany sells cotton goods, hardware, cutlery and general merchandise ; France,
silks and fancy goods; Spain and Cuba, wines and
The trade of Venezuela with the United States and was as follows

	Imports into Venezuela.	Exports from Venezuela.
United States	. \$4,089,732	\$3,464,481
Great Britain.	3,344,565	706,674
France.	1,196,600	9,264,000
Germany	1,740,018	5,229,574
Spain...	350,859	601,134
Belgium	50,146	2,746

We commend this subject to the attention of our readers as containing a very practical solution of the problem as to the best method of introducing our manufactured goods into countries where they are at present comparatively little known

The Indiana in a Gale of Wind

On her trip from Hampton Roads to New York Harbor, the Indiana passed through the heavy gale which recently swept along the Atlantic seaboard. It was a trying experience for both ship and crew, and the accidents which happened show in a very dramatic way what enormous strain these ships are subjected to by the ponderous guns and armor with which they are loaded down. A battleship riding quietly at anchor in a sheltered bay and a battleship rolling 36 degrees in a gale of wind are two very different things, and it is in the wrenching and pounding of heavy weather that the strength of structure is tested and any weak spots are developed. The accident which happened to the Indiana has frequently occurred in other navies of the world, and indeed, had it not been for the shortness of the time, stronger clamps would have been fitted to the Indiana before she started out on this last cruise. The story of that night's struggle with the runaway guns and turrets is a thrilling one as told to the New York Times by Captain Evans, and we give a few extracts below :
"Soon after we left Hampton Roads Monday all four of the 8 inch turrets broke loose at once from their gearing. That was about 2 o'clock in the afternoon We we
guns up
"We tied the two forward turrets together by bind ing the guns each to the other and fastening the hawsers to the bits, and managed the aft ones the same way. It was a very hard job. About 2 o'clock the next morning the forward ones snapped their hawsers and got loose again. The storm was then very severe, and the ship was rolling at an angle of 36 degrees. The decks were flooded with water, and this, with the pitching of the ship, made working on deck very dangerous. It was black as ink, and we could not see how to get in order to head to sea. We could only guess.
"To make matters worse, the forward 13 inch gun turret got loose, and those enormous guns began thrashing about in full command of the deck The 13 inch guns knocked great dents in the scupper pipe, broke stanchions and threatened to tear away the entire superstructure.
"It was very dangerous to work in that storm. I was afraid of losing two or three dozen men, and if I had not had the best crew in the world I don't know how we would have come out. We fastened a 5 inch haw ser on
string.
"We finally caught the big guns with an 8 inch hawse and tied them securely to the superstructure. It was an awful job, though, and we were in danger of being washed overboard every minute. All during the work the deck was completely flooded."

A Movable Post office on the Streets of New

A postal van for collecting the mail, and sorting it on the way to the general post office, has recently made it appearance on the streets of New York. It is drawn by a pair of horses and its internal arrangements are somewhat similar to those of the new postal cars which
were recently placed on the Third Avenue cable road In size and appearance it is not unlike an ordinary Fifth Avenue bus. It is painted a plain white, unre lieved by any striping, and entrance is made from the rear by a door, below which are steps reaching well to the ground. Along the left hand side of the car is fix ed the sorting and stamping table, and the front end is taken up with a letter rack. In the ceiling are placed two powerful gas burners which are supplied from storage cylinders, arranged beneath the floor of the van. A driver and two clerks are assigned to each vehicle.
The post office authorities have shown commend able enterprise in placing these experimental vans in service. They are a further extension of the idea which led to the placing of postal cars on the cable roads, which is to utilize the time occupied on the journeys from sub-post offices to the general office, by sorting the mail in transit. The postal van can reach suboffices which are not served by the cable cars; and its
greater mobility will render it an exceedingly useful
branch of the service. branch of the service.

Aluminum widl take and retain a very high polishfully equal to that of silver. The truly distinctive and beautiful color of aluminum is best brought out in a highly polished plate. Aluminum can be polished on a buffing wheel with rouge, the same as brass; and for polishing any considerable quantity of sheet this, of for polishing any considerable quantity of sheet this, of
course, is the most economical way. In the absence of course, is the most economical way. In the absence of
any special aluminum polish, several of which are on any special aluminum polish, several of which are on
sale, the ordinary cold brass polish will be found quite efficient, if it is ground fine enough. "Acme Polish" has earned a well merited reputation in America; it consists of the following materials: Stearic acid, 1 part ; fuller's earth, 1 part ; rottenstone, 6 parts. The whole ground very fine and well mixed. Use a fine white polishing composition, or rouge, or tripoli, and a sheep skin or chamois skin buff, although it is often polished with an ordinary rag buff. A steel scratch brush run at a high speed will give a high polish to brush run at a high speed will give a high polish to
sand castings, and will remove any yellowish streaks sand castings, and will remove any yellowish streaks
that may have been produced by too hot metal. A that may have been produced by too hot metal. A
fine brush gives a most beautiful finish to sheet metal or to articles manufactured from the sheet. By this means a frosted appearance is given to the metal-an effect in many cases equal to that given by a high polish. Remove the grease and dirt from the plates by dipping in benzine. To whiten the metal, giving a beautiful frosted surface, the sheet should be first dip ped in a strong solution of caustic soda or potash. This solution should be strong enough to blacken the metal. The plates should then be dipped in a mixture of two parts of strong nitric acid and one part of strong sulphuric acid; then in a solution of undiluted nitri acid; afterward in a mixture of vinegar and water, and finally washed thoroughly in water and dried as usua in hot sawdust. For burnishing, use a bloodstone or steel burnisher. For hand burnishing, use either a mixture of melted vaseline and kerosene oil or solution composed of two tablespoonfuls of ground borax dissolved in about a quart of hot water, with a few drops of ammonia added. For lathe work the burnisher should wear upon the fingers of his left hand a piece of canton flannel, keeping it soaked with a mix ture of melted vaseline and kerosene, and bringing it in contact with the metal, in order to supply a constant lubricant. Very fine effects can be produced by firs burnishing or polishing the metal, and then stamping it with polished dies, showing unpolished figures in re lief. In spinning or turning aluminum plenty of oi should be used to prevent the clogging of the tool, and to make it cut smooth in the turning, and to assist in the spinning.-From the Aluminum World.

Method of Making Diagram Ground Glass

Y H wood

Scratching diagrams on gelatine, celluloid and other substances has been advocated when one wished to make a small tracing to project by means of a lan tern. These scratchings have to be filled in with black in order to enable them to be seen clearly, and they have the disadvantage that, if a mistake is made, it cannot altogether be eradicated; besides, it is no easy matter to thus etch a line, as there is a great or the point to run more or less to one side.
The Dallenger method-used first by Dr. Dallengeris to get a piece of extremely fine ground glass, lay it upon the diagram to be copied, and trace it with pen cil. Should it be required to take out certain lines these are easily rubbed out with a piece of rag and water.
When the sketch is finished the glass is coated with spirit varnish, which intensifies the pencil marks, and at the same time renders the ground glass quite trans parent, as the varnish fills up the inequalities caused in the grinding ; and thus to all intents and purposes converts the glass again into clear glass, so that the diagram appears as though it had been drawn with Indian ink upon clear glass.-The Optical Magic Lantern Journal and Photographic Enlarger.

Broke the High Kite Record.

The observers at the Blue Hill observatory have sent to William A. Eddy definite details of their great kit ascension of October 8, when records were made with their meteorograph at a height of 9,385 feet above a level. More than three miles of piano wire were paid out, the ascension beginning at $9: 15 \mathrm{~A} . \mathrm{M}$. and ending 9:05 P. M. The pull on the wire was from 20 to 50 pounds at the start, and ranged from 50 to 95 pounds at the highest point, after which it slowly decreased. The instrument entered and passed through the clouds, as shown by the record of very dry air above th clouds. The temperature fell from 46° at the hill to 20° at an altitude of 8,750 feet. The meteorograph record in ink on a revolving cylinder run by clockwork was the best yet obtained. The lifting force consisted of seven Eddy and two Hargrave kites from six to nine feet in diameter, and the ascension was managed by Clayton, Fergusson, and Sewatland of the observatory. The instrument was more than a mile high during three hours. This breaks all kite altitude records. The height, 9,385 feet, is about 1,000 feet less than two miles.

A NEW DUMB WAITER SAFETY CLUTCH

The illustration represents an improvement in the hoisting apparatus for dumb waiters, which has been Thirty-fourth Anton Larsen, of One Hue New and City. The construction is strong and not liable to get out of order, and the arrangement is such that the cage, with its load, will be safely held at any point when one lets go of the hoisting rope. Fig. 1 shows the application of the improvement, Figs. 2 and 3 being sectional views. At the top of the usual dumb

Larsen's dumb waiter safety clutch.
waiter well is journaled a shaft on which loosely turns the pulley carrying the counterbalanced cage rope or cable, the hoisting pulley being secured on the onter end of the shaft, and the hoisting rope passing over it with two downward runs, either of which can be taken hold of to pull the load up or draw it down. On the shaft, near the cage-carrying pulley, a disk is secured by a key, as shown in Fig. 3, and on the inner face of the disk are two lugs, one adapted to engage an arm at one end of a spring friction band, while the other is adapted to engage a lever fulcrumed on the band. The arm of this spring band extends inwardly, and is secured by a screw to the cage-carrying pulley, the arm also having an opening for the passage of the hoisting shaft. The band is fitted within a ring-shaped ratchet wheel engaged by a pawl, as shown in Figs. 1 and 2. The arrangement is such that a downward pull on one run of the hoisting rope causes the lug on the disk to engage the lever to effect an opening of the spring band, and move it out of frictional contact with the inner face of the ratchet wheel, as shown in Fig. 2, when motion is transmitted to the cage-carrying pulley in the direction indicated by the arrow. At the moment that the pull on this run of the rope is released, the friction band moves back into its normal position, or into strong frictional contact with the inner surface of the ratchet wheel, which is held against rotation in an opposite direction by the pawl, thus holding the cage, with its load, stationary in the well. The spring band is sprung into position in the ratchet wheel, and is adapted to engage it with a force more than that of the highest load to be carried by the cage. This is the fifth patent which this inventor has obtained through the Scientific American patent agency.

COMBINED PIPE AND MONKEY WRENCH. This wrench, which has a roller jaw fulcrumed in arms on its inovable jaw, has been patented by

dIXON'S PIPE AND NUT WRENCH. sions.
against the tension of the springs and into engagement with the teeth on the handle, a thumb nut on a screw projecting upwardly from the wedge facilitating its ready adjustment as the movable jaw is to be moved orward or backward or fixed in any desired position relative to the outer jaw. The tool is adapted for use as a pipe wrench by the addition of a roller jaw journaled in arms on a transverse shaft or pin which slides in bearings near the front end of the movable jaw, a spring resting on the shaft being engaged by a screw block. As shown by the dotted lines in the sectional view, the roller jaw is moved to a rearward position when the tool is to be used as a monkey wrench, being swung forward only when it is desired to use the wrench as a pipe wrench.

The Vital Statistics of Egypt.

The vital statistics of Egypt, as recently published by the Lancet, are full of matter for reflection. In the first place, the rate of increase can be paralleled in no European country at any period since records have been kept. It represented 1.79 per cent in the year 1894 !-births reaching nearly 42 per 1,000 , while deaths only reached 24 per 1,000 . If there be any fraud in the return, it must go to diminish the asserted increase, not to enlarge it, for the motive would be to evade conscription. A death rate of only 24 per 1,000 in a country which ignores sanitation is startling; but the wonder grows immeasurably when we observe that in Alexandria and Cairo, where laws of health are enforced as strictly as may be, deaths represent 86 per cent of births, while in the rural districts they are but 54 per cent. It is the consequences, however, which interest us. In 1894 the population of Egypt below the Second Cataract was estimated at $8,000,000$; the census of 1882 showed $6,469,710$. A rise of $1,500,000$ in twelve years Authorities have hesitated hitherto to credit the population of $12,000,000$, in the time of Rameses II, which Champollion and the French savants made out upon such evidence as they could find. But these extraor dinary returns make it quite probable. The land under cultivation then was vastly more extensive than now. But the encroachment of the desert can be re pelled, if an irrigation system equal to that of old be once more established. Egypt, therefore, has a boundless expansion. But if the people multiply at such a rate under the pax Britannic, so they must in varying degrees elsewhere, and not in all our colonies is there surplus land for them to occupy. But meanwhile the birth rate of Europe steadily lowers. Any one can draw conclu-

Leasurement of Hallucinations.

prof. scripture, in science.
A typical case of the application of the method is found in measuring hallucinations of sound. The person experimented upon was placed in a quiet roon and was told that when a telegraph sounder clicked, a very faint tone would be turned on, and that this tone would be slowly increased in intensity. As soon as he heard it he was to press a telegraph key. The experi menter in a distant room had a means of producing tone of any intensity in the quiet room. In the first few experiments a tone would be actually produced every time the sounder clicked, but after that the tone was not necessary. It was sufficient to click the sound er in order to produce a pure hallucination. The per sons experimented on did not know they were deceived, and said that all tones were of the same intensity. The real tone could be measured in its intensity, and since the hallucination was of the same intensity, it was also indirectly measured. Similar experiment were made on other senses. For example, in regard to touch, a light pith ball would be dropped regularly on the back of the hand to the sound of the metro nome. After a few times it was not necessary to drop the ball. The person would feel the touch by pure hallucination
Similar experiments were made on taste. Of six bottles two contained pure water and the other four a series of solutions of pure cane sugar-the first one-half per cent, the second one per cent, the third two per cent, and the fourth four per cent sugar, according to weight. A block was placed in front of them so that the observer could not see them, although he was aware that they stood near him, because he saw them when he received his instructions. It was required of him to tell how weak a solution of sugar he could positively detect. The experimenter took a glass dropper and deposited drops on his tongue, drawing first from the two water bottles, and then from the sugar
Thomas Dixon, of Highland Avenue, McKeesport, Pa. solutions, in order of increasing strength. The sugar One of the figures in the engraving shows the wrench in the solutions was detected in the first trial. Proposing in use, and the other is a sectional view. Within the to repeat the test, the experimenter proceeded as before movable jaw is a recess in which is a block having on but drew from the first water bottle every time. The its bottom teeth adapted to engage teeth in the top of result was that when the pure water had been tasted the wrench handle, springs normally holding the teeth from two to ten times the observer, almost without exof the block up out of such engagement, and permit- ception, thought he detected sugar. A test on olfactory ting the movable jaw to slide on the handle. The top
surface of the block is inclined, and is engaged by a
that about three-fourths of the persons experimented surface of the block is inclined, and is engaged by a that about three-fourths of the persons experimented longitudinally sliding wedge to move the block down upon perceived the smell of oil of cloves from a pure
water bottle. In another set of experiments the subject was told to walk slowly forward till he could detect a spot within a white ring. As soon as he did so, he read off the distance on a tape measure at his side. The spot was a small blue bead. The experiment was repeated a number of times. Thereafter the bead was removed, but the suggestion of having previously traversed a certain distance was sufficient to produce an hallucination of the bead. It is to be clearly understood that the persons experimented upon were perfectly sane and normal. They were friends or students, generally in total ignorance of the subject, who supposed themselves to ce undergoing some tests for sensation. One case was found, however, of a suspicious observer who expected deception and who declared that he had waited every time till he was sure of the sensations; the results were just as hallucinatory as usual. The value of the method and the experiments lies mainly, I think, (1) in pointing out a method of determining the portion of a sensation due to the suggestion of circumstances rather than to the stimulus; (2) in application to mental pathology; (3) in beginning a scientific treatment of hypnotism and suggestion.

LEFEBVRE AND UPTON'S FORCE AND LIFT PUMP.
This is a pump designed to throw or lift a continuous stream of water, having a plunger barrel containing two reciprocating plungers separated from each other by a packing fixed in the barrel. A suction pipe having a valve extends from the lower end of the pump barrel, and a valved pipe leads from the suction pipe above its valve to the barrel above the uppermost plunger, while a second valved pipe leads from the suction pipe below its valve to the barrel between the upper plunger and the fixed packing.
The improvement has been patented by Julian L. Lefebvre and Charles S. Upton, of Eureka Junction, Washington, and in the illustration parts are broken

LEFEBVRE AND UPTON'S FORCE AND LIFT POMP. out to show valves, plungers and fixed packing. The plungers are rigidly connected by a stem which passes through the packing, and the upper plunger rod extends upwardly through the discharge pipe to connect at its outer end with a power mechanism. Th upper plunger is made with two cylindrical parts screwed together, and has a valve which open upward on the down stroke of the plunger and closes on its up ward stroke. When the plungers are on the up stroke, a shown in the engrav ing, water drawn in through the suction pipe passes into the lower part of the pump barrel and also up the pipe at the left, past the valve therein, and into the space between the fixed packing and the upper plunger, the water above the upper plunger being at the same time forced out through the discharge pipe. On the down stroke of the plunger he water previously drawn in at the lower end of the barrel section is forced by the lower plunger up through the pipe at the right into the discharge pipe, and the water in the pump barrel above the fixed packing is also forced through the valve in the upper plunger to the discharge pipe. Just below the fixed packing are air openings in the pump barrel to permit air to pass in and out on the up and down movement of the lower plunger. The pump is not liable to get out of order and the several parts may be readily taken apart for repairs when necessary.
M. Grosheintz (says the Gas World) has been in vestigating the action of coal gas on rubber tubing. He found when a pressure gage was connected to the ga supply by means of a rubber tube and the stopcock closed, in twelve hours there was not only no pressure but actually a defect of pressure indicated by the gage. Then he found that the tube had gained weight, for it had absorbed and, as it were, dissolved the gas; and then he found that the greatest sinner in this respect was the purest rubber, black rubber, which contains $1 / 2$ to $11 / 2$ per cent of solids; next came red rubber, with it 1 or 12 per cent; and the best of all was the ordinary ray rubber, with its 52 to 55 per cent of added solid material. The last will endure the longest time befor allowing gas to permeate it so as to produce a smell in the apartment.

THE AEROPHILE.

Since schoolboys will have the run of the fields for a few weeks to come, we shall make known to them a companion that loves liberty as much as they do. It is a question of a kite-not of that cumbersome and fragile object that as children we pulled with great trouble over the brush or through the fields, only to see it wrecked upon a rock or a bush, but of a strong and easily transportable affair, that rises so readily into the air that it has been named the "aerophile."
The frame, which is metallic, and like that of a parasol or umbrella, presents the triple advantage of offering great resistance, of assuring perfect stability to the kite, and of being capable of closing so as to take up but little space in a trunk or handbag. The covering is of cloth, and there is therefore no tearing to be feared at the first collision with some object. As for raising the kite, that is a very easy matter. The frame having been spread, it suffices to fix the string to the central ring either by a knot or by means of a small hook that, if need be, may be formed of a hair pin

The tail, which is formed of ribbons three or four yards in length, is provided at its lower extremity with pockets designed to receive sand or pebbles as ballast. These pockets are filled more or less, according to the strength of the wind, and are closed with a string or a rubber band.

The aerophile is capable of raising relatively heavy weights, and may therefore be used for experiments that necessitate the lifting of certain apparatus of light construction, such as photographic apparatus, registering apparatus, etc.-L'Illustration.

AN IMPROVED COFFEE DRIER

Coffee is grown on small trees and resembles a big cherry, in which the pit is replaced by two grains of coffee, face to face, coated with a parchment-like cover, but, rather surprisingly, the si rounding meat, or pulp as it is called, is said to be poisonous. The latest method of cleaning it is as follows: The freshly picked berries are continuously fed into a "pulper," chiefly consisting of a roughened face cylinder rotating in close proximity to a breast plate, which separates the pulp from the pits. As considerable of the pulp still adheres, the berries are now introduced into the "washer," filled with a running stream of water, and composed of a round bottomed iron trough through which a rapidly revolving shaft extends, containing numerous paddles. The coffee must next be dried to enable the removal of the parchment cover. This is usually accomplished in a natural way, by spreading it out on barbacoes-expensively prepared hard floors of earth or brick-where it is exposed to the sun's rays for a week or more, during which it is repeatedly turned over by laborers, and is often liable to injury by sudden rains, cloudy weather, or uneven handling. Evidently this is a very objectionable method of treat ing such a valuable and delicate product, and, conse quently, numerous attempts have been made to dry it artificially, but they have repeatedly failed, owing to the tenderness of the berry and its excessive percentage of moisture. In complete plants using drying machines the best practice is to mechanically extract the surface water from the washed coffee in a in a centrifug, to those employed in refining sugar, then evaporate the remaining moisture in the drier.

The coffee is afterward fed into the huller, much like a large coffee mill, which rubs off the parchment cover, which is removed by an at tached exhausting fan, separates and polishes the berries and discharges them in a and discharges them in a lean condition. The berrie are then passed through a winnower, which separates the coffee into different grades and delivers it ready for the market. The coffee planter ormerly performed these laborious operations by hand on very crude apparatus, but now the large plantations generally include an expensive cleaning plant, as perfectly arranged as a flour mill and managed by a skillfu oreigner.
Mr. S. E. Worrell, of Hanni bal, Mo., has built and intro duced a successful drying machine, which is illustrated herewith. Fig. 3 is a per spective view of the largest size machine, No. 4, having a capacity for handling 10,000 pounds of washed coffee pe day of twenty-four hours, in
whic's the drying cylinder is six feet in diameter by fifteen feet long. Two smaller sizes are made of a capacity of 5,000 and 2,500 pounds each per day. The rotating cylinder, A, as shown in the sectional views, jacket to save heat and equalize the temperature, and has at each end a heavy iron rim, supported and rotated by two chilled iron flanged rollers, carried on short steel shafts, journaled in inclined selfoiling boxes

THE AEROPHILE.

1. Apparatus closed Apparatus open.
bolted to iron bed plates resting on timber blocks and stone foundations. Motion is transmitted to the cylinder through the taper drum pulley, spur gearing, procket wheels and chain belt, from a countershaf overhead. To the inside of the cylinder are attached a series of segmental pockets, I, as shown in Figs. 1 and , of galvanized steel plate, the inner sides of which are ridironed with numerous traverse slots, i, for dropping the washed coffee in the falling streams, J. In rotating cylinder driers as heretofore constructed these streams have extended longitudinally through the drying chamber, which permits a portion of the hot air to escape without doing its duty--a waste which is saved these machines.
In operation a charge of 5,000 pounds of washed coffee is introduced into the stationary drying cylinder from the floor above, by movable spouts, through the

WORRELL'S COFFEE DRIER-SECTIONAL VIEWS.

Fig. 3.-WORRELL'S COFFEE DRIER.
five upper doors, H, and then the apparatus is put into motion. During each revolution of the cylinder the damp berries are carried up and dropped down in the numerous transverse streams, J, extending entirely across the interior drying chamber. The exhausting blower draws the air down into the top of the steam heater, containing 800 feet of steel pipe, seen in the back ground of the engraving, where it is heated to the required temperature, which is indicated by a thermometer, and the hot air is forced into one end of the drying drum. After passing through the drum in the direction of the arrows in Fig. 2, it is discharged through the open gates shown in the top of the pipe at the extreme left of the large engraving. To equalize the operation the direction of the hot air currents is reversed at regular periods by manipulating a gate in the air pipe where it branches near the blower, not in view in the cut. From time to time a small sample of coffee is removed from the doors, H, without stopping the apparatus, to examine its condition. When the con tents are thoroughly dried all these doors are opened and the coffee is dropped on the cooling floor underneath, or, if preferable, the gate in the pipe connecting the blower with the steam heater is closed and a special gate of the blower is opened, admitting cool air, which quickly cools the coffee before discharging it, in which event it can be immediately fed into the hullers or stored in bulk. The wire cloth division rings, L, and air distributers, c, prevent drifting of the coffee. A belt shifter on the taper drum driving pulley is pro vided to gradually increase the speed of rotation of the drying cylinder, as the segmental pockets, I, empty more rapidly as the product becomes drier. As the exhaus steam from the engine driving the plant is utilized in the heater and only six motive horse power is required for running the drier, the expense of the drying opera tion is very moderate

A Neolithic Burial Ground.

The discovery at Worms of a burying ground belong ing to the later stone age, by Dr. Koehl, the conserva tor of the Paulus Museum there, is, in view of the rarity of such graves, an important archæological event, say the London Standard. Up to the present about seventy graves have been examined, or only a part of this bury ing ground of neolithic man, and already the numbe of the vessels found, most of them very tastefully orna mented, exceeds one hundred. Not the slightest trace of a metal has as yet been discovered in the graves; on the other hand, the presence of arm rings of blue and gray slate is curious. In the most recently opened grave of women three arm rings made of slate were removed rom the upper arm of one skeleton, four from that , on. In man's grave there was on the nire skeleton a small conically polished ornament of syenite, not perforated, but provided with a groove for the string The other ornaments from the graves consist of pearls mussel shells made in the form of trinkets, perforated boars' tusks and small fossil mussels. These ornament were worn by men and women alike. There existed according to this, every kind of ornament, in that time of want of metal, made of stone. mussels and bones. Rudde and oer fragments, whit and were coloring the skin, are also fr quent.
In hardly a single case wa there missing from the wo men's graves the primitive cornmill, consisting of two stones, the grinding stone and the grain crusher. The men's graves contain weapons and implements, all of stone, with whetstones and hones for sharpening purposes. The consist of perforated ham mers, sharpened hatchets axes and chisels, as well as o knives and scrapers of flint That there was no want o food is shown by the man vessels, often six or eight, in one grave, and the remains of food found near them, the latter being bones of various kinds of animals. Several suc cessful photographshave been taken of the skeletons as the lie in the graves with thei belongings, so that their ap pearance after a repose of thousands of years can be preserved for all time. Espe cial value may be attached to these remains, and particu larly to the skulls, of the suc cessful recovery of which Prof. Virchow has already been apprised.

Five new asteroids were discovered on photographs Five new asteroids were discovered on photographs
of the heavens one evening recently by Dr. Max Wolf, of the heavens one evening recently by Dr. Max Wolf,
of Heidelberg. This brings the number of minor planof Heidelber
A French physicist, M. Chassevant, has found that by adding alcohol to the water the generation of acetylene gas from calcium carbide can be regulated much better than by using water alone.
A thought weighing machine has been invented by Prof. Mosso, the Italian physiologist, the rush of blood to the head turning the scale. The machine is said to be so delicate that it can measure the difference in the Latin.
A block of granite bearing the following inscription has, says the Academy, been recently placed on the southern shore of the Lake of Sils in the Engadine "In memory of the illustrious English writer and naturalist, Thomas Henry Huxley, who spent many summers at the Kursaal Hotel, Maloja."
A twelve year old boy at Parma has just had his heart washed. He was suffering from acute pericarditis, and his doctor, using an instrument invented by Prof. Riva, drew off the purulent serous matter in the sac, and then washed the heart and its serofibrous covering with a solution of sodium biborate. The boy recovered rapidly
Prof. Flinders Petrie has some large ideas abou museums. He wants the government to buy a tract of 500 acres, somewhere within an hour's ride of London, and gradually build it all over, for a storage place for ethnological materials. No museum in London is large
enough to hold the treasures that are being discovered by Englishmen all over the world.
Leydenia gemmipara Schaudinn is the name given to a parasitic amoeboid rhizopod which Berlin professors have recently found in the fluid taken from patients suffering from cancer of the stomach, and which they think may possibly be the cause of the disease. The discovery of this new form of protozoa was made at Prof. Von Leyden's University Hospital.
It is announced from Berlin that Herr Dormann, of Bremen, has succeeded in photographing objects, by Roentgen's method, through iron plates 22 centimeters ($81 / 2$ inches) thick. He has already taken more than fifty such photographs. Prof. Slabyc, of the Charlot tenburg Polytechnic Academy, who is greatly inter ested in this achievement, will continue Herr Dor mann's experiments.
The Austrian war vessel Albatros telegraphs from Cooktown, Queensland, that a party from that ship, detached for purposes of scientific research, was attacked on August 10 by the natives of the island of Guadal-
canar, one of the Solomon group. M. Foullon, the geologist, a midshipman named Beaufort, and two sail ors were killed, while four men were seriously and two slightly wounded. Many of the natives were shot dead and the rest took to flight.
Rockall, a desolate granite rock rising only 70 feet above the sea, between Iceland and the Hebrides, is to be made an English meteorological station. It lies 250 miles from land, the nearest point to it being the little island of St. Kilda, 150 miles away, and itself nearly a hundred miles from the main group of the Hebrides. Rockall is in the path of the cyclonic disturbances on the Atlantic, and the station there would give timely warning of storms approaching the British coast.
A sub-committee of the American Institute of Electrical Engineers, appointed in 1893 to investigate the subject of a suitable standard of light for photometric purposes, has recently issued a preliminary report, says finds the candle the least reliable. It is also evident from the bolometric curves that naked flames are subject to sudden and rapidly recurring fluctuations that may be almost entirely eliminated by the use of a properly constructed chimney. It seems likely that many of the difficulties which are unavoidable with flame
standards may be overcome by the adoption of a standard consisting of some surface electrically heated to a standard temperature. With this object the results of the committee's experiments on incandescent carbon will be looked forward to.
Prof. Thomson, in his presidential address to Section A of the British Association, made a pleasing reference to the attempts made by Prof. Oliver Lodge to deterto the attempts made by Prof. Oliver Lodge to deter-
mine whether a moving body puts in motion the ether of space in its neighborhood. The huge machine on which the experiments have been conducted is built on a pillar, isolated from the floor of the laboratory, and consists essentially of an electric motor, with its axis of rotation vertical, and having on its shaft two parallel
steel disks 3 feet in diameter the whole being capable steel disks 3 feet in diameter, the whole being capable of spinning like a top at a high speed. Light from an each of which traverses the space between the disks, one right-handedly and the other left-handedly. The one right-handedly and the other left-handedly. The
two beans then unite in a telescope and produce interference fringes. If the ether were moved by the matter, rotation of the disks would accelerate one ray and retard the other one, so shifting the fringes; no suc shift has, so far, however, been noted.

What Sanitation has Done for Life.
For conciseness and force in dealing with the results of sanitation, the address of Prof. Brewer, of Yale University, recently delivered before the Life Association of Western Massachusetts, has rarely been excelled. The question has often been debated, but never satis factorily answered, whether there was any substantial gain to human life from the ordinary medical methods of combating specific cases of disease, or whether the mere elimination of one form of disorder did not have
its compensation in the development of some other. In its compensation in the development of some other. In The gain is unquestioned and immense. The span of life measured from infancy to old age may not have been lengthened, but the number o^{2} : those dropping by the wayside has been so effectually reduced that life the wayside has been so effectualy reduced that life
insurance rates to-day are not what they must have insurance rates to-day are not what they must have
been a hundred years ago. We cull the following striking passages from the address of Prof. Brewer:
That human life has been prolonged by the application of science in the last fifty years, no one doubts. How this has come about forms an intensely interest ing chapter in the history of our civilization. But it is not a simple story. How much, mathematically, this amounts to, in years, in per cents, is an unanswerable question. We can never have the data in figures. Even if we had our vital statistics completed for that period, men would differ as to the relative value of the
several factors in this problem. Our great cities would several factors in this problem. Our great cities would
not exist-they could not exist without the aids of science. As to what would take place, the answer is as uncertain as the answer to the question, "What would now be the condition of Europe if Napoleon had never been conquered ?" "If Columbus had not discovered
America, who would have discovered it?" What we America, who would have discovered it? What we that our civilization of to-day is very much in advance of what it would have been without science, and the prolongation of human life is but one phase of the relations of science to modern civilizations. We have had an ancient Egyptian and Greek and Roman civiliza tions, which were pagan, and later Christian civiliza tion, and all were powerless to convert practices. Be tween the epidemics that raged from time to time and the high death rate in the best of years, the population of Europe, as a whole, probably scarcely increased a all for 1,000 or 1,200 years.
This century came in without a single city in Christendom with a million of inhabitants. Paris had in 1800 but 548,000 ; London and its suburbs in 1801, 864, 845. The other great English cities had less than 100, 000 . Great cities could not endure then. First, the
people could not be fed. Then, most of the population people could not be fed. Then, most of the population
had to be fed and food produced within 20 miles of the place of consumption. Science has now made it pos sible to transport food half way around the globe, and has discovered new methods of preservation as well. City population was not self-perpetuating. Man died off; the death rate was continually high, and from ime to time there was death by pestilence. Even of water, rather than to carry away sewage. Now cities are made nearly as healthy as the country. Anther reason why there could be no great cities in the modern sense related to business matters purely. 1
have dwelt upon this phase because cities are contain have dwelt upon this phase because cities are contain-
ing a larger and larger proportion of the inhabitants of ing a larger and larger proportion of the inhabitants o
civilized countries. And human life in cities is much prolonged. It is a law long ago demonstrated that the death rate increases as the density of population increases. This is still true, but sanitary science has normously diminished this rate.
Sanitary science has been of slow growth but of rapid fruitage. It was 200 years ago that a Dutch scientist discovered the yeast cell, but the actual sig nificance and working of the cell was not understood until 150 years later. In 1837 it was discovered that in
the yeast cells were living organisms which were multiplying in the fluid in which they grew. This was the cause of fermentation. For years chemists quarreled as to whether these germs were the cause or the effect of this fermentation, but the former theory is now fully life could originate in decaying animal and vegetable matter, but it was finally proved that this did actually occur.
This theory forms the foundation of the modern disinfecting processes, and from this time diseases of al kinds were studied in a new light and given radically different treatment. In 1849 and 1850 French scientists
showed that the blood of animals who had died of anthrax contained small particles, and ten years late it was discovered that these particles, when introduced into a living organism, would cause the disease. In 1870 it was proved that putrefaction, like fermentation, was due to germs. In the same year the germ of relapsing fever, one of the most dangerous diseases on he Continent, was discovered, and during the decade following there was much further investigation alon the same lines.
The germ for leprosy was discovered in 1879, for ty-
phoid fever in 1880, for consumption in 1882 and for phoid fever in 1880, for consumption in 1882 and for
cholera in 1884. This last discovery was the greatest
discovery of all, and it resulted from the heroic efforts of scientists who went to Egypt to investigate the disease while it was raging there in 1883. But the accuracy of the theory was not generally accepted until 1890. Now we know the cause of the disease, and there can be no excuse hereafter for an epidemic of cholera in any of our cities. When there was cholera in Hamburg a few years ago, the commercial interests of Eng land were of such vast importannce that she refused to quarantine her ports against the disease. Hundreds of cases were brought into England, but the disease was so thoroughly understood that it was stamped out as soon as it appeared in every case, and there was no epidemic. To what extent human life in the aggregate has been prolonged by better food and more of it, improvement in sanitation and the advances made in the scientific treatment of disease, can never be statistically determined. But it is certain now that diseases are due to the operation of causes which are pretty well understood. Cities understand that they can no longer af ford to have bad sanitation, and these improvements alone mean the prolongation of the working periods of men's lives.-Insurance Monitor.

Some Queer Industries.

The St. Louis Republic has compiled from the latest census the following odd ways of making a living :
Occupations open to the thrifty individuals of both exes have greatly increased during the last two deades, or even since the taking of the last decennial census, in 1890
The extraordinary progress of science during the ime specified and the application of its principle to the practical problems of human life have not only had the effect of greatly increasing the capacity for produc tion in the trades already firmly established, but have opened hundreds of queer side alleys which lead direct o the avenues of trade
There are, of course, dozens of these new and remarkable occupations with which science does not deal even in the remotest sense. In this class we find the rat catcher, the skunk farmer, the man who makes his living by picking up lost things in depots, theaters, living by picking up lost things in depots, theaters,
hotels, etc., and returning them to their owners with the expectation of being rewarded ; the clock winder, the man who collects orange and lemon peels, and the Lake Michigan syndicate, which is now engaged in raising black cats for their fur. They are not raising these cats on water, as might be inferred from the title, but have leased an island in the great lake, which is now plentifully stocked with both sexes of screeching felines.
There are still others in the non-scientific category of queer occupations, but it will only be necessary to nention a few. One is a "rattlesnake farmer," who lives in the Ozark Mountains, and makes the product f his "farm" bring money from three different direc tions. The oil he disposes of to druggists, who have regular customers that believe it to be a panacea for a hundred different ills; the skins he sells to would-b cowboys, who use them as hat bands, and the skele tons are always a ready sale, the purchasers being the curators of the natural history departments of the different college and society museums. The man who wakes people up in the morning, the old cork collectors, and the dog catchers are well known characters in every large city.
The individuals who gain a livelihood in pursuits hat are strictly scientific are equally as numerous a those who follow the more humble callings. In the list of occupations that are strictly scientific is the manu facture of artificial eggs, artificial coffee, and false dia monds. Also the industry of making buttons, combs, penholders and other articles of a similar nature from blood collected at the slaughter houses. The man who makes billiard balls, buttons and rings from potatoes which have been treated to a solution of nitric and sulphuric acids is also the proprietor of an "industry" wherein the fundamental principles are strictly scientific.
But the queerest of all is carried on by two young Pennsylvanians, who are making a regular business of extracting the poison from honey bees. According to the accounts, they have two different ways of collecting their crop of venom. In the first the bees are caught and held with their abdomens in small glass tubes until the poison sacs have been emptied. In the second they are placed in a bottle on wire netting and enraged until the tiny drops of venom fall into the alcohol which fills the lower third of the bottle. This venom is said to be a sovereign remedy for cancer, rheumatism, snake bite, and a hundred others of the more terrible ills of humanity.

Use of a Metal Globe for Roentgen Rays.Mr. Ben Davies, of University College, Liverpool, has been able to dispense altogether with the glass globe, making the sphere partly of copper and partly of aluminum. By means of his process, he is able to see small objects through three feet of solid timber, and the bones of the hand at a distance of thirty feet from
the source.-Photography.

Sorrespondence.

The Highest Balloon Ascont.

To the Editor of the Scientific American
In the Scientific American Supplement, No 1081, for September 19, 1896, under the head of "Miscellaneous Notes," I find the statement that "the highest balloon ascent ever made was by Dr. A. Ber on, near kiel, in Germany, 30,000 feet as the greatest altitude reached.
I take it this statement is scarcely correct
In the memorable ascent of Glaisher and Coxwell from Wolverhampton, England, on September 5, 1862, Mr. Glaisher's last record before losing consciousness was of a barometric pressure of $93 / 4$ inches, indicating height of 29,000 feet
At this great elevation Mr. Glaisher tells us the baloon was ascending at the rate of 1,000 feet per minute, and that when he resumed his observations, after regaining consciousness, it was descending at the rate of 2,000 feet per minute.
Comparison of the times of record indicate the inter val to have been thirteen minutes.
This, according to Mr. Glaisher's estimate in the Britannica, gives 36,000 or 37,000 feet for the greatest height attained
Of course, this barometric reading was not actually observed by Mr. Glaisher, owing to his insensibility at the time of greatest elevation, but Mr. Coxwell, who was occupied with the management of the balloon, could have made the observation had he been seated in Mr. Glaisher's chair and been called upon for no other exertion.
This, one might say, is not positive proof; still, I submit that a balloon, when at an elevation of 29,000 feet and ascending at the rate of 1,000 feet per minute, would not come to a stand until several additional thousand feet had been added to this, at least then, unapproached altitude
Mr. Coxwell tells us that several minutes, seven or eight, elapsed between his discovery of Mr. Glaisher's unconsciousness and his successful effort in opening the valve and terminating the ascent.
With these facts before us, the ascent of Glaisher and Coxwell would seem to be the highest ever made by
Marietta College Observatory, Marietta, O.

Premature Burial.

To the Editor of the Scientific American
I have waited for a number of months hoping that some one else would take issue with the article on the above subject, written by James R. Williamson, of London, England, and published in your issue of May 9 , 1896.

This article is about like many others which are to be found floating around through the daily papers and which voice, in one way, the popular idea that the danger of being buried alive is by no means slight. Yet there is little doubt that these newspaper yarns are, without exception, pure and simple fabrications, without the slightest real foundation in fact. Even were a person really in only a trance when placed in the coffin, our present burial customs would cause death to occur from suffocation, by closure of the coffin, long before the grave would be reached.
Some years ago I took occasion to carefully investigate all of these cases as reported in our local papers, and I have medical friends who have pursued similar lines of investigation. In not a single instance have any of the cases investigated been found to have any foundation in fact. I append a single instance, from the Columbus Evening Dispatch, of March 12, 1890, as the details as published in the paper seemed to be unusually complete.

Prepared for his Grave.

remarkable case of suspended animation-a LITtLLE BOY SUPPOSED TO BE DEAD, AFTER BEING placed in a coffin, is found to be alive.

Special to the Dispatch

' Findlay, O., March 12.-A remarkable case of sus pended animation is reported from Mount Blanchard, this county. Last Sunday, Arthur, the four year old son of Aaron Naus, after a long illness, apparently died. All the signs of life were gone; there was no breathing, no pulse nor warmth of the body. The undertaker was sent for, and proceeded to prepare the remains for burial, accomplishing his work in the full belief that condition until about three o'clock Monday afternoon, condition until about three o'clock Monday afternoon,
when those about the coffin were amazed to observe when those about the coffin were amazed to observe
signs of life. A physician was called and it was not signs of life. A physician was called and it was not
long until resuscitation was complete. He has continued to grow stronger, and there is now no doubt of his full recovery. It is the most wonderful case ever reported in the county."
A request for full particulars elicited the following from Dr. William N. Yost, of Mount Blanchard :

The report is substantially without foundation. I am the family physician of Aaron Naus, and live across
sick in the last six months. The only wonder to ou people and myself is as to the origin of the report."
Mr. Williamson says that the case which he cites is "only one of several hundreds of authenticated cases," but he fails to state the means used to authenticate. A single authenticated case with the proofs accompanying the report would be of more value than hundreds about which we know nothing except the report itself. I feel perfectly safe in saying that no authenticated case of premature burial can be found to have taken place in this country during the last fifty years, unless it be possibly during the hurry and excitement of an extensive cholera or yellow fever epidemic, when bodies
are sometimes buried within a few hours after death. J. F. Baldwin, M.D.

Columbus, O., October 2, 1896.

A Century of Vaccination.*

A hundred years have passed away since Jenner' first successful vaccination on May 14, 1796. Jenner' brilliant idea, pondered over for more than 25 years, was that smallpox might be abolished by the universal adoption of vaccination. Others had vaccinated before Jenner, but he was the first to rouse the civilized world to take an active interest in the subject ; and we must not forget that vaccination was not the outcome of laboratory experiments, but a practice resting upon a to mention Mexico and Persia, that of Europe, not to mention Mexico and Persia, that dairy maids and others who had "sore hands" from milking cows
affected with cowpox were afterward found to be protected against smallpox. The present time invites us to review the progress of vaccination in this and other countries, with the concomitant alterations in the mortality fromsmallpox, and to make an attempt to gather into a few lines the teachings of a century
What was the average yearly mortality per million living from smallpox, which we will throughout call the mean rate, during the last century? In the large cities it was over 3,000 , and in the whole nation it was at least over 2,000 . This is the mean rate. During some years the mortality rose as high as 5,000 or 6,000 per million, and even higher. Now we find a rapid fall of smallpox in every country which we examine as soon as vaccination became common. The fall was abnormal in one respect, because the adult population of Europe then consisted largely of survivors of smallpox in childhood. This fall is closely connected with the rise of vaccination in every country separately. Thus, in Sweden, during the 28 years 1774-1801, before vaccination the mean rate is 2,045 ; during 15 years 1802 -16 of permissive vaccination it is 480 , and during 77 years, 1817-94, of compulsory vaccination it is 155 . During the last 10 years the mortality is insignificant. In England in the last century the mean rate was over 2,000, according to able statisticians; during 12 years of permissive vaccination, $1838-53$, the mean rate is 417 during the succeeding 18 years of enjoined vaccination the rate sinks further to 154 ; and the mean rate since the epidemic of 1871-72 under enforced vaccination is only 53 , that is, for the 22 years 1873-94 : while for the 10 years $1885-94$ the mean rate is 26 . The law really enforcing vaccination dates only from 1871. In Prussia vaccination was encouraged only, not enforced on all children, till the law of 1874, after which all children born in the German empire were required to be vaccinated by the end of the second year of age, and all school children to be revaccinated. Well, the permissive era yields a mean rate of 309, but the 18 years 1875 -92 have a mean rate of only 15 , and during the last 10 years of this the deaths from smallpox in Prussia average only 7 per million yearly. In Austria vaccination is not compulsory yet. Austria's mean rate during the 35 years 1847-82 is 580 . One more example of a coun try still without compulsory vaccination, namely, Bel gium. The mean rate for the 10 years $1875-84$ is 441 This, again, is a rate resembling that of England or Sweden in the permissive era. In fact, we can say with confidence what the vaccination law is in any country from a mere inspection of the smallpox mortality for some years. Italy has followed Germany since 1888. Vaccination in infancy was then made universally compulsory, and also the revaccination of all children attending public schools. The mean rate per million in the chief townships during the nine years previous to the law as put in practice is 440 -just as we might have expected; the average during the 5 years $1890-94$ is 100 ; the average for all Italy during this latter period is 110 .
We are dealing now with large countries and vas populations, and we are considering the smallpox mor tality alone, apart from the question of the vaccinated or non-vaccinated condition of those who died. Ex amples enough have been given to show the remark able uniformity that exists in the death rates of vari ous countries, according to the state of the law in those countries. No other cause than vaccination can ac count for this. It cannot possibly be improved sanita tion that has caused the remarkable changes in the mean death rates above given, for more than one rea
son. Compare Prussia with Austria. There is a sud
den and striking change in the smallpox death rate of Prussia in the period succeeding the law of 1874 . Now Austria shows no such change in the death rate, and Austria is still without compulsory vaccination, while Austria has participated in the sanitary improvements of the age. And, on the other hand, Prussia did not uddenly jump into anideal sanitary condition between 1870 and 1880. But further, the reduction in smallpox mortality has not affected all ages alike, whereas improved sanitation does affect all ages alike. A\& in, t is absurd to talk of a natural decline of smallpox, as plague has declined and vanished, from this country at least, when we observe the virulence of smallpox in local outbreaks, and when we think of the very large mortality which countries like Spain and Russia still show, countries where there is very little vaccination. Here are the smallpox death rates per million living, for the single year 1889, in the following provinces of Spain : Almeria, 3,080; Murcia, 2,670; Coruña, 1,230; Malaga, 1,340 ; Cadiz, 1,330 ; Cordoba, 1,400. The rate for Germany is 4 for the same year.
What are the lessons which a hundred years' experience of the practice of vaccination by various nations taught mankind? First, we know that the rapid spread of this practice was partly due to an erroneous idea of the early vaccinators, Jenner himself included, namely, that one vaccination in childhood was sufficient to protect for life. Secondly, we know that the most rigidly enforced vaccination in infancy alone in any country is insuffieient to prevent severe outbreaks of smallpox. Thirdly, primary vaccination vastly reof smallpox. Thirdly, primary vaccination vastly re-
duces the mortality from smallpox, but it also shifts the incidence of this mortality from childhood to adult life. incidence of this mortality from childhood to adult life.
The natural susceptibility toward smallpox sinks of The natural susceptibility toward smallpox sinks of
itself from the first year of life till the end of childhood itself from the first year of life till the end of childhood
or the beginning of puberty, when it is lowest, after this it rises gradually with age. More adults now die of smallpox than in the early days of vaccination.
But statistics teach us that a successful revaccination during school age completely alters the situation, and renders a person safe for life against smallpox, with rare exceptions. Even a survived attack of smallpox does not absolutely protect against death from a second attack. Germany over twenty years ago acted upon attack. Germany over twenty years ago acted upon
these well known truths, and by the law of 1874 enforced both the compulsory revaccination of all school children and the vaccination of all children before the age of 2 years. And in Germany smallpox epidemics are abolished, and most of the few cases which occur are on the boundaries of the empire.

A Potato Tercentenary.

The holding of a potato tercentenary in England this year is now being agitated. As one of our foreign exchanges states: "In 1596 the first potato was planted in England, in Holborn, about the time that Sir Walter Raleigh was planting the first Irish potato at Youghal, near Cork. For two centuries the potato continued as a botanical curiosity. When first eaten it was a delicacy, sometimes roasted and steeped in sack, or baked with marrow and spices or preserved and candied. When Parmentier developed the plant in France, Louis XVI and Marie Antoinette wore the flowers as ornaments. Frederick the Great had to force the Pomeranian farmers to plant potatoes by the fear of his soldiers. It was the famine of 1771-72 in Germany that first demonstrated the value of the 'tubers.' The fact is that it has been only within the past century fact is that it has been only within the past century
that the potato has risen in its prominence as an escuthat the potato has risen in its prominence as an
lent, even in Ireland, the land of the 'murphies.'"
lent, even in Ireland, the land of the 'murphies.'"
The introduction of the potato into England wa directly due to Sir Walter Raleigh, whose Virginia expedition ships brought back some of the tubers in 1586 ; but to the Spaniards is really to be credited the discovery and European introduction of the new arti cle. It was undoubtedly through the Spaniards that the potato was brought to Virginia. There is no proof that the North American Indians cultivated the potato before the date of the Spanish Conquest. It grows wild to-day, as then, in Peru and Chile. The Spaniards co-day, as then, in Peru and the tuber to Spain long before the Raleigh incident; and from Spain it was taken to Italy, from which country it was introduced into Flanders, in 1558. The date of the proposed English tercentenary will, there fore, be about ten years too late. The very name of potato comes from the Spanish "batata."
But the potato has of late years fallen into something of its early contempt. The scientists of the cuisine, such as Dr. Cyrus Edson and Mrs. Rorer, are warning eaters not to depend too much upon the potato for nutriment. Leguminous food should largely supplement its use. Furthermore, overindulgence in a potato diet conduces to dyspepsia; and herein may ke revealed the origin of the prevalence of that distressing com plaint in America. The potato is not a root, as so many are accustomed to style it ; it is an underground stem, swollen by accumulated starch stored up for future use. Its exact place in the dietary has not yet been settled. It is a curious thing to note, too, that to the same genus (Solanum) belongs tobacco, which was given to Europe at about the same time as the potato; and the tobacco and the egg plant are its fellow escu-lents.-Southern Planter.

A TWENTY-FIVE TON GEARED LOGGING LOCOMOTIVE. The geared locomotive is finding increasing favor for The geared locomotive is finding increasing favor for work on the heavy grades encountered in mountain than solved by the legal answer just given to it by the logging. The device of coupling on another pair of Court of Appeal at Rouen. The case before that tri axles when it is desired to increase the adhesion, which bunal was as follows : Prof. Cesare Lombroso, of Turin is practicable on trunk railroads, is impossible on the the well-known anthropologist, was invited by a pubaverage logging road, on account of the sharp curvature lishing house in Milan to compile a manual of "Graph of the line. The length of the rigid wheel base must be kept down to a point which prevents any successful coupling up of many drivers by the ordinary methods.
ordinary methods.
The 25 ton locomotive shown in the accompanying illustrations is one of a type that is manufactured by the Climax Manufacturing Company, of Corry, Pa., for use in logging camps, coal mines, sugar plantations and under any conditions where heavy grades and rough and uneven track are encountered. The necessary lateral flexibility is obtained by carrying the locomotive upon two end trucks and transmitting the power to the wheels, all of which act as drivers, by means of flexible shaiting and bevel gears.
The frame consists of two 8 inch channel irons, and has large corner brackets riveted to the channels and bolted to oak end sills. The channels are also connected by double trussed iron bolsters which distribute the trucks.
The cylinders are bolted to the frame and the power is transmitted from the engine shaft by means of heavy steel bevel gears to a flexible shaft, which runs beneath the frame and over the center of the trucks. The details of the driving mechanism on the trucks are shown in the accompanying illustrations, one of which shows the style with corrugated wheels adapted for use on wooden track and the other for use on ordinary steel rail. At its junction with the trucks the line shaft is provided with a universal joint, and it is carried in cross boxes journaled upon the axles, the alignment being secured by means of sleeve couplings and bronze rings, which hold the gears in mesh and the line shaft in position. The cross boxes are provided with metal liners 14 inches long, adjustable to wear. The two inside pinions, which are cast solid to the horns, are keyed to the line shaft, and thus to the whel of the lom thus each wheel of tic lly is made practically a direct driver. The axles are 4 inches and the line shafts 3 inches in diameter. There are ten coil springs in each truck, one over each axle and the others between the sandboards. A steam brake cylinder is attached to the center of each truck, by which means the use of long brake rods, which cause corner binding on curves, is avoided.
The latest system of carrying the cross boxes and arranging the gear is that shown in the truck for use on steel rails, where the pinions are arranged on the outside of the axles.
These locomotives are doing good work on logging roads having grades up to 8 feet in 100 . In one case a 25 ton engine has pulled four loaded standard gage logging cars, with 3,000 to 5,000 feet of green hemlock logs on each car, up an 8 per cent grade and twelve loaded cars over a 4 per cent grade.

Nature says that Mr. George J. Gould has decided on an elaborate and systematic scheme of Arctic expluration of Arctic exploration which includes the building of a perma nent depot at a point always accessible during the season when navigation is open. A cordon of depots will be established at points further north from year to year.

TRUCK OF LOGGING LOCOMOTIVE FOR USE ON WOOD RAILS. professes to read a man's character in his handwriting. Prof. Lombroso had already been among the first to make this an object of study-his special investigations having been made with a view to find another aid to diagno i in cases of lunatics and delinquents. In th manual compiled for the Milanese house he con manual compiled for the Milanese house he confined
temporaries (he had no predecessors) on the same subject, and among others he made copious citations from the book of M. Cremieux-Jamin, a dentist practicing in Rouen. So little intention had he of plagiarizing from his author that he acknowledged his obligations to him in the preface, warmly eulogizing M. CremieuxJamin's talents and industry, and styling him the "first graphologist living." Unfortunately, in the chapter

A TWENTY-FIVE TON GEARED LOGGING LOCOMOTIVE.
dedicated to invalids and their handwriting, Prof Lombroso, in the midst of his own matter, interpolated three pages from M. Cremieux-Jamin's book, accompanied by three small clichés, omitting at the same time to cite that author's name, apparently a piece of sheer forgetfulness occasioned by Prof. Lombroso's unsystem atic mode of working, certainly not designed to injur M. Cremieux-Jamin's claims, which had already been amply acknowledged ander headings of greater importance. This plea, however, was disallowed by the Rouen tribunal, which found in those three pages-and in those three only-a flagrant act of plagiarism, while at the same time admitting that every other use made of the book by Prof Lombroso was within the limits of the law. The verdict seems to the Italian public a somewhat ungenerous one, the offense of Prof. Lombroso having been due to an obvious oversight, which an apology tendered in open court ought surely to have condoned. But the significance of the verdict does not stop there. Instances constantly occur in which after a general acknowledgment of indebtedness one scientific writer makes free use of another's work without suspecting that his failure to give name, chapter, and verse on each individual citation renders hin ology," the science, truly or falsely so called, which |liable to prosecution for plagiarism with (as in Prof. Lombroso's case) the penalty of a considerable fine True, in the vast majority of cases the "chivalry of scince" accepts the general acknowledgment of indebted ess as covering genal ess as covering all special obligations, and only where viduals or strained relations" subsisting between indi viduals or schools (as the Italians say subsist between
their countrymen and the French) is that acknowledgment deemed insufficient. The fact remains that it is in th power of a susceptible author to avail himself of such a plea as that which found favo with the Rouen tribunal. Moreover, it is often very difficult to decide between two authors pursuing the same line of inquiry as to who has priority in observation or discovery. Indeed, as research multiplies and work ers become more numerous in identical fields, the chances of coincidence in their finding are more and more apt to occur. Are these coincidences to provoke collisions between ival claimants to priority The Cremieux-Jamin v. Lombroso case would seem to favo the possibility. Meanwhile the corollary to be deduced from it is a reinforcement. of Prof. Michael Foster's demand for an international organiza tion of science to register a
frequent intervals the result
f contemporary investigation, and so by placing the orker and his output en évidence to minimize the risk of retracing ground already trodden, and to make clear what has already become common property and what till remains the possession of the original author. Roman Correspondent London Lancet.

The horror of being buried alive is with many peo ple so great that they leave instructions for some small mutilation to be inflicted upon them when the breath has apparently left them, so that assurance may be made whether they are really dead or not. But, thanks to the X rays, a Chicago physician claims to change this. He an nounces, says the Pho tographic News, that those rays will deter mine positively whether real death has occurred Dead flesh, he says, offers more resistance to the penetration of the rays than living, and a glance at the radio graph of the person would determine whe ther it was that of a corpse or not.

THE SESQUICENTENNIAL CELEBRATION OF PRINCETON UNIVERSITY.
The picturesque and historic village of Princeton, New Jersey, is now filled to overflowing by the alumni and friends of the famous institution which henceforth is to bear by right, as it has hitherto done by courtesy, the title of Princeton University. Its official designation, according to the first charter of October 22, 1746, was "The College of New Jersey;" but by the combined action of the State legislature and the college trustees, its name has been changed to Princeton University, the new title being assumed on October 22 of the present year.
The celebration by an American university of the one hundred and fiftieth anniversary of its foundation has awakened an interna tional interest, and many of the chief seat of learning in England and on the Continent are represented at the various gathering and exercises. Among the specialists en gaged for the preliminary course of lecture were Prof. J. J. Thomson, of Cambridge England; Prof. Felix Klein, of Göttingen Prof. Edward Dowden, of Dublin; Prof. Andrew Seth, of Edinburgh; Prof. Kar Burgmann, of Leipsic ; Prof. A. A. W. Hubrecht, of Utrecht. The programme of the formal exercises covered three days, October 20,21 , and 22 . The first day was devoted to a commemorative service, fol lowed by a formal reception of the delegates from other colleges and universities. The day following was set apart for the alumn and students, and included an oration by Prof. Woodrow Wilson in the morning and athletic contests in the afternoon. On Thursday, October 22 , the red letter day of the exer cises, official announcement was made of the university title, which was followed by the reading of the list of receint endowments, and by the conferring of com memorative degrees.
The history of this famous institution carries us back some twenty years beyond the century and a half which marks its present age, to the time when a certain Rev. William Tennant, a clergyman from the north of Ireland, settled as pastor of the Presbyterian church of Neshanuiny and built a small log sehool house, which soon acquired the name of "Log College." This was in 1726, and when the charter was granted to the College of New Jersey, in 1746, the friends and patrons of " Log College" became "the principal supporters and trustees" of the new institution. The second charter, in its amended form, is the fundamental law of Princeton. It was granted September 14, 1748, by Governor Belcher, of the Province of New Jersey and was subsequently confirmed and renew ed by the Legislature of New Jersey.
The college was opened in May, 1747, at Elizabethtown, with Jonathan Dickinson as president. At his death, in the following August, it was removed to Newark, where Aaron Burr took charge. In 1751 the trustees decided to build a col lege at New Brunswick, provided the inhabitants agreed to furnish five thousand dollars, ten acres of land, and two hundred acres of woodland. At the same time, Princeton same time, Princeton ing these terms, with the result that New Brunswick lost the college, the corner stone of historic Nassau Hall being laid at Princeton, in September, 1754. Upon the completion of the building in 1756, the college was removed from Newark to Prince ton.

One must travel far to find a spot around which are gathered more stirring memories than associate themselves with the little town which has been the center of the recent scholastic gathering. Princeton would be famous if it were known merely as the constant home for one hundred and fifty years of one of our most famous seats of learning; but to the odor of scholar ship it adds the glory of patriotism. Through all the long years of the revolutionary struggle the college maintained an unwavering constancy to the cause of freedom. This was largely due to the influence of Dr John Witherspoon, president of the college, who wa one of the signers of the Declaration of Independence,

UNIVERSITY HALL

noble instrument, which insures immortality to its author, should be subscribed this very morning by every pen in this house. For my own part, of property I have some, of reputation more. That reputation is staked upon the issue of this contest-that property is pledged; and, although these gray hairs must soon descend into the sepulcher, I had infinitely rathe they should descend thither by the hands of the public executioner than desert at this crisis the sacred cause of my country." Subsequently Dr. Witherspoon was a member of the Secret Committee of Congress, of the Board of War, of the Committee of Finance, and of the Committee to Procure Supplies. Nor were the gradu ates one whit behind their president in zeal. Brevard, with two other graduates, drew up the resolution pledging " life, fortune and sacred honor" to the sacred cause. It was from churches presided over by thre Princeton graduates that the so-called "Regulators"

Princeton graduates that the so-called "Regulators"
 went forth to fight the troops of Governor Tryon.

NASSAU HALL, ERECTED 1754—USED AS THE HALL OF CONGRESS, 1783

Frederick Frelinghuysen, a graduate of the class of 1770, said on leaving college, "I have learned patriot ism in Princeton as well as Greek." Then there is th famous deed recorded of a certain Rev. John Craig head, of the class of 1763 , who early in the war preached a sermon urging his congregration to enlist in the cause of independence, and as a climax to his discourse threw aside his gown, "disclosing a captain's uniform of the Continental Army." Thenceforth he left the pulpit for the battle field, and led the men of his congregation forth from the Cumberland Valley Dr. Robert Cooper, a classmate of Craighead's, was another warrior priest, acting for a time as captain of a company.
It was fitting that such a stronghold of revolution ary sentiment should be the battle ground on which

it is the Dean's house

 in front of which stand the two sycamores planted in 1765 by order of the trustees (so says the college tradition), to commemorate the resistance to the stamp act. Nearby stand the college offices, dating from early in the century. To the south of Nassau Hall lies the back campus, flanked by the East and West Colleges. The name is scarcely descriptive any longer, for some ifteen of the later buildings now stand far behind the "back" campus, and reach to the handsome Brokaw Memorial lying far to the south.Of the buildings chosen for illustration, Brokaw Me morial was one of the latest to be erected. Its existence bears eloquent tribute to the fact that the spirit of selfsacrifice. which prompted the patriot students of Prince ton a hundred years ago, lives within its walls to-day It commemorates the heroism of Frederick Brokaw,
who lost his life at Elberon, N. J., in a brave attempt to rescue a drowning girl. It is the gift of his father, Mr. I. V. Brokaw, of New York City, while the ground were laid out by admiring friends and alumni.
Marquand Chapel, 1881, the gift of Mr. Henry G.Mar quand, of New York, is built in the form of a cross, of rich brown stone, Its interior is enriched with frescoes and an interesting series of memorial windows.
One of the most notable buildings is the John C.Green School of Science, 1873. It is quadrangular in plan and Gothic in design, with a clock tower at one corner On the first floor is the Physical Laboratory, and on the east side are situated the rooms devoted to Civil Engineering and Graphics. On the second floor are the Botanical department and the Herbarium. The third floor is devoted to the Museum of Biology, which is particularly rich in rare and curious specimens. The Library Building, 1873, consists of a central octagon, with two wings. The bulk of the main library is in the large octagonal room, and the remainder-some 15,000 volumes-is in the basement. It was probably founded with the college, and it was enriched by a gift of books from Governor Belcher in 1755 . Its first catalogue, in 1760 , shows that it had 1,200 volumes. In 1854 there were but 9,313 volumes; but in 1868 it was enriched by the munificence of Mr. John C. Green, and when the present building-his gift-was opened, there were 25,000 volumes. There are now some 100,000 vol umes and $2 \tilde{2}, 000$ unbound periodicals and pamphlets.
The famous American Whig and Cliosophic Societies hold their meetings in handsome classic structures, of white marble, which are among the most striking of the

How to Estimate Trolley Car speed.
There is in the public mind a confusion of ideas as to the speed of electric street cars, says the Internationa Ticket Agent. Two inexpert observers guessing at thi peed will rarely come within miles of the correct esti mate. Yet it is possible for anybody, by a simple cal culation, to arrive at very nearly accurate information An electric car going at the rate of a mile an hou travels eighty-eight feet iir a minute. At two miles an hour it makes twice that distance in a minute, or 176 feet. At three miles an hour the distance traveled in a minute is three times eighty-eight, or 264 feet. This distance of 264 feet is about the length of an average city block. If it takes a car a minute to go a block, the rate of speed is three miles an hour. If the car goe two blocks in a minute, the rate is about six miles an hour. Three blocks in a minute means nine miles an hour. Four blocks in a minute indicates a speed o about twelve miles an hour. At five blocks in a minut a car is going fifteen miles an hour. When six block re traversed in a minute the speed is eighteen miles an hour. A rate of seven blocks in a minute is a speed o twenty-one miles an hour. It must be understood that verage blocks are required to make good such esti mates.

Whitewash for Exterior of Buildings

The Washington or government whitewash is made as follows : Take half a bushel of unslaked lime, slak it with boiling water, cover during the process to keep in steam, strain the liquid through a fine sieve or

EXPERIMENTAL DETERMINATION OF THE MOTION of projectiles inside the bore of a gun.
In a previous papert were described some preliminar experiments with the polarizing photo-chronograph applied to the measurement of the velocity of projectile outside of the United States 3.2 inch breech loading field rifle. The results of these experiments being sub mitted to the Board of Ordnance, a chronograph built on this principle, making use of polarized light, wa uthorized and constructed.
The original experiments were more of the nature of a laboratory investigation than practical tests in actua service. The objects of these experiments were twofold To perfect a practical chronograph upon this principle and to determine the adaptability of this instrument o the study of the motion of projectiles inside the bore of a gun.
In the papers referred to a full description of the in truments was given. Many important improvements, however, in details which add to the efficiency of the instruments, were developed during the progress of hese experiments, although no change was made in ny essential particular. A perfectly satisfactory source of artificial light was obtained, which afforded a grea advantage over sunlight, in being always ready and uniform.
In the improved apparatus the illuminated image of the magnified perforation in a piece of aluminum at ached to a fork was allowed to fall upon a plate. The parts of the image which fall somewhat behind the est gave waves differing in phase from the other part so that results like those exhibited in Figs. 1, 2 and ${ }^{3}$

Fig. 1.-TUNING FORK RECORD OF THE MOTION OF A PROJECTILE IN A GUN.

Tig. 2.--TUNING FORK RECORD OF THE MOTION OF A PROJECTILE IN A GUN
many buildings of the university. These secret societies are organized and conducted upon the lines of the halls of Congress. Whig Hall was founded by the celebrated Janes Madison aforementioned, who, as we have seen, was a graduate under the Witherspoon administration. Undoubtedly the teachings of the patriotic president were strengthened and wrought into action by the influence of these societies. They numbered in their rolls of membership all those courageous and gifted men who subsequently went forth to give valuable counsel in the early difficulties of the young republic.

University Hall was built in 1876 as a hotel, its pro ceeds to be given as an endowment to the E. M. Museum. It was ultimately turned over for use as a college dormitory.
Not the least interesting of our illustrations is that showing the University Athletic Club House, for has not Princeton won a worldwide fame by her many victories in baseball and football? Within the walls of this club house are the training tables at which the baseball and football teams sit during those days of common sense training to which the late successes of the college are mainly due.
We would fain linger among these classic surroundings and speak at greater length of the museum and archæological collection of Nassau Hall, and point out its historical war scars, and the famous portrait of Washington upon its walls ; of the Halstead Observa tory, gift of the late Gen, Halstead ; of the beautifu Alexander Hall, gift of Mr. Charles B. Alexander ; of the Art Museum ; and last, but not least, the Theological Seminary, wherein was laid the foundation of that ripe erudition which has so greatly enriched the pulpits of the Presbyterian church.
solved in warm water, three pounds ground rice boiled to a thin paste and stirred in while hot, half a pound of spanish whiting and one pound clean glue, previously dissolved by soaking in cold water and then hanging over a slow fire in a small pot hung in a larger one filled with water. Add five gallons hot water to the nixture, stir well and let it stand a few days, covered from dirt. It should be applied hot, for which pur pose it can be kept in a kettle or portable furnace. Th east end of the President's house at Washington is em bellished by this brilliant whitewash. It is used by the government to whitewash lighthouses.
A pint of this wash mixture, if properly applied, will cover one square yard, and will be almost as serviceable as paint for wood, brick or stone, and is much cheaper than the cheapest paint.
Coloring matter may be added as desired. For cream color add yellow ocher; pearl or lead, add lamp or ivory black ; fawn, add proportionately four pounds of umber to one pound of Indian red and one pound common lampblack; common stone color, add proportionately four pounds raw umber to two pounds lamp black.-The Hub

An extraordinary instance of hereditary tendency to suicide was told by Prof. Brouardel in Paris lately. A farmer near Etampes hanged himself with out apparent cause, leaving a family of seven sons and four daughters. Ten of the eleven subsequently followed the father's example, but not until they had married and begotten children, all of whom likewise hanged themselves. The only urvivor is a son, who is now sixty-eight years of age and has passed safely beyond the family hang ing age.
were obtained. The fine circular lines seen in the en graving are shadows cast by ordinary hairs fastened across the slit. They serve as reference circles by which the center of revolution may be accurately ound.
In carrying out this experiment a rod of wood is at tached to the end of the projectile and allowed to extend a little beyond the muzzle of the gun. This rod is furnished with a number of copper ferrules, as shown in Fig. 4, and in the longitudinal groove was embedded a wire which was connected with each of the fer rules, and arranged to communicate electrically with the inner surface of the gun. The projecting end of the rod is supported by a ring, G, attached to radia pieces, E, F, supported by plates, C, D, held by a split cylinder, \mathbf{A}, of wood, clamped on the muzzle of the gun by yokes, B. The ring, G, carries brushes which bea upon the wooden rod or ferrules carried thereby. To the support of one of the radial pieces, F, is at tached one of the electrical conductors, the other being connected with the gun
The photographic plate being in motion and the light being in position to throw a beam through the aperture of the aluminum on the fork, the prism and carbon bisulphide of the chronograph, the gun is fired and contacts are made by the brushes with the fer rules, thus producing the record on the plate by the opening and closing of the "massless" shutter.
By means of this device as many as seven observa-

* From a report by Dr. Albert Cushing Crebore, Asst. Prof. of Physics Dartmouth College, and Dr. George Owen Squier, 1st Lieut. 3d Artilery, Artillery School.
tions of the projectile were taken in a distance of 57 centimeters, which is somewhat less than one-third the whole travel of the projectile. The shortest distance between observations was 3.7 centimeters; the greatest distance observed along the bore was about 76 centimeters. Some of the time intervals were as small as the $1-2000$ of a second. The as small as the 1 zoo of a even interruptions above mentioned were figures indicate the great sensitiveness and accuracy of this apparatus. These experiments were confined to a $3 \cdot 2$ inch field rifle.
We understand the same experiments are to be tried in connection with some of the big guns.

The Craze for Relics.

'The collecting mania is a direct result of the passion for religious relics so prevalent in mediæval times. Hardicanute, in 1041, commissioned an agent at Rome to purchase St. Augustine's arm for one hundred talents of silver and one of gold. Henry III, deeply tainted with the superstition of the age, summoned all the English notables to meet him in London, when the king acquainted them that the great master of the Knights Templar had sent a phial containing "a small portion of the precious blood of Christ which He had shed upon the cross"-attested to be genuine by the seals of the patriarch of Jerusalem and others! A procession between St. Paul's and Westminster Abbey was performed, although the road between the two places was " very deep and miry." Herbert, in his life of Henry VIII, notices the great fall of the price of relics at the dissolution of the monasteries.
stolen at Kharoff. A few months ago three genuine teeth of Tasso were sent to Signor Baccelli, the Italian minister of public instruction, by a priest who received them under seal of confession from a thief. The teeth had been stolen from the skeleton of the poet, and the

Fig. 3.-TUNING FORK RECORD-512 (SINGLE) VIBRATIONS PER SECOND.
afterward. It was included among the royal jewelry of James II. The crozier of the same realized two and half guineas in the same sale, and was originally in e museum of Sir Hans Sloane.
The counterpane which covered the bed of Charles I the night before his execution, and which is made of a thick rich blue satin, en broidered with gold and silver in a deep broidered wo ap to a deep or, used by the faly ago, used by the family of Champneys of Orchardleigh, near Frome, Somersetshir as a christening mantle, from the period it came into their possession by marriage with the sole heiress of the Chandlers, of Camm's Hall, near Fareham, Hampshire, a family connected with Cromwell. The sheet which received the head of this king, after his decapitation, was until quite lately carefully preserved with the communion plate in the church of Ashournham, Sussex; the blood, with which it had been almost entirely covered, turning quite black. This king's watch was also preserved with this grewsomrelic, both of which came into the possession of Lord Ashburnham immediately after the death of the king. These, not having been sold, cannot be appraised at their full fancy price; but it may be mentioned that not long ago the prayer book used by King Charles I on the scaffold sold for one hundred guineas, or just half the amount which Sterne's wig fetched.-Temple Bar.

A Year of Thirteen Months.
Our attention has been directed by Mr . C. E. Gillespie, of Edwardsville, Ill., to a proposal to shorten the length and increase the number of the months of the
"The respect given to relics, and some pretende miracles, fell; insomuch, as I find by our records, that a piece of St. Andrew's finger (covered only with an ounce of silver), being laid to pledge by a monastery for forty pounds, was left unredeemed at the dissolution of the house; the king's commissioners, who upon surrender of any foundation undertook to pay the debts, refusing to return the price again."
Lord Cromwell's commissioners found, in St. Augus-
probably finding no market for them, took this method of returning them to their owner. Apropos of teeth, it may be mentioned that some time ago a certain nobleman constantly wore a remarkable ring, in which was set a tooth of Sir Isaac Newton; it was purchased for £730 in 1815.
The gold cross and collar of Edward the Confessor came under the hammer of Thomas, King Street, came under the hammer of Thomas, King Street,
Covent Garden, in January, 1828, and was purchased by tine's Abbey, at Bristol, some extraordinary relics, including " two flowers which bore blossoms only on Chistmas Day, Jesus' coat, our Ladie's smocke, part of the Last Supper, part of a stone on which Jesus sat in Bethlehem," and others. Henri Estienne, in the traite preparatif to his "Apologie pour Herodote," speaks of a monk of St. Anthony having seen at Jerusalem an extraordinary assemblage of relics, among which were a bit of the finger

Fig. 4.-ROD CARRIED BY THE PROJECTILE.
of the Holy Ghost, as :ound and entire as it had a Mr. Atkinson for $£ 165 \mathrm{~s} .6 \mathrm{~d}$. Its authenticity appears ever been; the snout of the seraph that appeared to to have been undisputed at the time. It was originally St. Francis; one of the nails of a cherub; one brought from Palestine by the British Princess Helena, of the ribs of the verbum caro factum; some rays the mother of the Christian Emperor Constantine, and of the stars which appeared to the three kings in passed into the hands of Edward the Confessor, with the east ; a phial of St. Michael's sweat when he was whom it was buried, and was exhumed many age, fighting against the devil; a hem of the garment which Joseph wore when he cleaved wood, and others, all of which the enthusiastic monk devoutly brought home with him to France. Such relics as these-to which may be added that of a tooth of our Lord's, which Guibert de Rogen describes a having operated many miracles, with the as sistance of the monks of St. Medard de Soissons-such relics as these, we repeat make all others hide their diminished heads
Few of these venerable and impudent absurdities have survived the iconoclastic tendencies of the last few decades, while even the rival holy coats of Treves and Argenteui are palpable swindles. The record of that of Treves goes back, it is true, to the year 1190 , but as a relic it is as authentic as the feather from Gabriel's wing. Quite recently the Moslem population of Southern Russia were reported to be in a state of great excitement owing to the theft of a valuable casket containing three hairs from Moham med's beard, accompanied by an imperial firman certifying their absolute authenticity! The casket, with its precious contents, was sent as a present from Constanti nople to Samarcand in Turkestan, but was

Fig. 5.-MEASURING THE VElocity of a projectile in a gun CONTACT MAKEB ATTACHED TO THE MUZZLE OF THE GUN.
vtific American of August 15 your editorial on the Metric System of Weights and Measures, and will ay that I most heartily concur with your sugrestions, in relation to the same, and believe it will undoub, edly, if adopted, add greatly to the facility and convenience of transacting business throughout the world.
"In connection with this idea I inclose an article which, I think. might be appropriately indorsed by leading journals, like the Scientific AmeriCAN, as it will be likely to prove a great convenience in estimating or computing time (as the other system might, in weighing and measur ing), being so much more convenient, simple, and easily remem bered than the compli cated system now in use."

It is suggested by Mr. John S. Brooks that on January 1, 1900, a new division of the year intc thirteen months be in stituted. It is claimed that this is not so preposterous as most people would be likely to consider it at the* first thought. Mr Brooks says that if such a division were made, the first twelve months would have just twenty-eigh days, or four weeks each, and the new month ne, to make 365 , and thirty in leap years After a few days there would be no need to refer to calendars, as the same day of the week would have the same date through the year. If January 1 were say Monday, every Monday would be the 1st, 8 th, 15 th, and 22 d every Tuesday the 2d, 9th, 16 th and 23d, and so throughout the year. The changes of the moon would be on about the same dates through the year, and many calculations, like interest, dates of maturing notes, Easte Sunday, and many other important dates, would be simplified. Mr. Brooks is of the opinion that although the present generation would have to figure new dates for birthdays, and all legal holidays, except new year would be on different dates, yet the gain would be more than the loss, as that would be permanent, and the objections trifling.
The proposed change certainly has the merit of novelty, and it is just to say that the arguments in favor of the metric system on the ground of utility apply with considerable force in the present case. We fear, however, that the objections on the grounds of senti ment, which are strong in the matter of weights and measures would be even stronger against the proposed revision of our methods of computing time.
recently patented inventions． Rallway Appliances．
Metaliic Car Truck．－James S． Hardie，Eldorado，Kansas．The invention covered b．
fhis patent consists principally of truck arches carryin the eournal eearings and formed with trancerpese open－
ings or the spring eata sand springs，a truck bolster slid ine
ing for the espring eats and springs a t turck bolster sidid－
ing in the opening and resting on the springs．A truck ing in the opening and resting on the springs．A truck thus made is of strong and simple construction，not liable
to get out of order，readily set up without the aid of skilled to get out of order，readily set up withount the aid of skille
labor，and may beconveniently inspected and repaire er necessary．
Hose Coupling．－Sherman W．Day Avonmore，Pa．A hose that works automatically in
coupling and uncoupling requirng no personal attention coupling and uncoupling，requirng no personal attention vised by this inventor．The head carries a valve，and in the head is a rocking valve block having a port，there bein a connection between the port and the valve ana the block and the valve，whereby the valve may be opened
nd closed by the movements of the block．The coup ling may be attached by bolts or otherwise to the draw head of the car coupling，or to the sill or framework of
he car at one side of the drawhead，projecting slightil forward，
Rail Joint．－Carl W．Dehn．Topeka， Kansas．This joint comprises two fish plates，made ap－ proximately L－shaped in cross section，and base plates fish plates to form a rest for the base of the rail，the base plates having S shaped edges abutting against one an－
other and extending in direct line with the rails at thei neeting points，tbe plates having on their under side ngitudinal ribs to fit snuply between adjacent ties．Thi oolts and spikes the parts cannot be removed unless the dinally over the ties．
Switch．－Charles H．and Wilbur H． turgis，Swartz Creek，Mich．This switch has a rockin instead of the usual sliding lateral movement，and is de．
igned to be inexpensive and durable，unaffected by sno nd ice，and safe under all conditions．A switch men ber comprising a rounded bottom and sides and a fla op is mounted to rotate between adjacent ends of portion of the body，the switches being so shaped that the point thrown from the rail will have a surface adapted o be engaged by the wheel flanges of a train，in such manner as to prevent accidental displacement of the switches when the train first reaches them or while it is

Electric Brake．－Edgar A．Hauer－ was，Saratoga Springs，N．Y．This invention relates to uuxiliary or emergency brakes，and provides a brake that ay be used in connection with the ordinary brakes circuitare arranged to engage with the track rail on closing the circuit，and means are provided whereby the magnet circuit may be closed by the opening of a nor nally closed main circuit either at the engine or upon any car．The circuit will be automatically close
the air brakes operated should a truck be derailed
Pneumatic Signaling System．－Ab－ erJ．McGehee，Jackson，Tenn．According to tisim provement a conductor＇s release valve on the cars has
combined in it botha brake－operating valve and a a signal valve，capable of discharging a limited volume of air to operate a whistle on the engine without applying th
brakes．The condnctor＇s valve is adjustable to the lengt fthe train from any part of which a signal mas be ransmitted to the engine，and all extra train pipes and oose connections are disperised with，air to blow the whistle being taken from the main reservoir back of the
engineer＇s value．The improvement may be adopted engineer＇s valve．The improvemen．
without changing any brake system．

Mechanical．

Drill Driving Mechanism．－Foster Milliken，New York City．According to this invention askeleton frame carries a seat or sadale，with pedal slac
driving cranks，etc．，together with a balance wheel， necting gears and driven shaft for imparting motion to a drill，thus affording a convenient and efficient bicycle
driving mechanism for drills，reamers，etc．The con－ struction is such as to enable the drill or other tool to be carried within a certain radius of any desired point，par－
ticularly in iron buildings，and there operated to great ticularly in iron buildings，and there operated to great
avantage with the least posible exertion．
BICYCLE WHEELTRUING．－－Frederick
Thrader，Rockaway，N．J．This invention provides Schrader，Rockaway，N．J．This invention provides
means by which a workman may accurately true a wheel， Consisting of a series of pivoted jaws arranged in a circle nd adapted to engage the iuner face of the wheel rim，
with means for simultaneously moving the jaws in and with means for simutaneously
out of engagement with the rim．The juws are pivoted
on bolks arranged in a circular series on a carrier which on blocks arranged in a circular series on a carrier which
may be turned and moved axially，there being means for moving the jaws into engagement with the wheel rim
Drier Felts of Paper Machines．－ Thomas Pusey，Stockton，Cal．，and Thomas H．Latimer
and Thomas H．Savery，wilmington，Del．An auto－ matic tightener for the drier felts has been patented by
these inventors，giving the felt at all times a aniform and hese inventors，giving the felt at all times a uniform and
proper tension without undue strain on any of the rolls and insuring the proper drying of the paper．A nor－ mally stationary but adjustable tightening roller is en－
gaged by the felt at one side，while another tightening roller arranged to move freely in the same plane $: s$ en－ gaged by the felt on the opposite side．a welght connected to the second roller automatically tightening the felt，
so that no attention is required on the part of the so that no attention is required on the part of the
machine tender for compensating in the varying length of the fetts．
Fluxing Machine．－Nehemiah R Saulsbury，Ridgely，Md．In the capping of tin cans
this machine is designed to deliver the proper amount of this machine is designed to deliver the proper amount of
acid to the cans preparatory to solderi．g them．It has a
tank with bottom ountets closed by vertically sliding
spring pressed valves，and the valves are raised to
open the outlets by pivoted levers controlled by the
movement of the cans．The amount of acid delivered novement of the cans．The amount of acid delivered
to the cans can be readily regulated and the acid may be sprayed or delivered in bulk．

Mining，Etc．

Quartz Mill．－Frank P．Snow，Baker City，Oregon．This invention provides，within a suta balls is propelled by the material fed to the mill，there ake up any precious metal in the materal ground the balls．The fineness of the product may be governed by changing the speed of the mill or the supply of water or material to be ground，particles too coarse and heavy
to be partially floated and carried by the current re maining in the path of the crushing balls until they are reduced to such fineness that they will pass with the rrent to th o overfow．
Alluvial Gold Washer．－James Miller，Sault Ste．Marie，Canada．This is a trough mad galvanized iron，and baving transererse interior corruga tions or ribs，over which are inverted V－shaped riffle plates，there being at each end rockers or crescent－ shaped ribs of steel in the exterior depressions．At each end are lugs or rings by which the washer may be sus－
pended from the inside or the outside．The washe pended from the inside or the outside．The washer，
when supplied with the material to be treated，with suf． when supplied with the material to be treated， ，tit sum
ficient water，is rocked to allow the gold to settle below the edges of the riffles，when the treated material is out and new thrown in until enough gold has collected to serve as amalgam in the usual way

Agricultural

Grain Drill．－Calvin C．Blair，Beloit， Kansas．For a grain drill or other form of planter，this invention provides disk furrow openers，each consisting disks so mounted that they will come together at their dropped thes and remain so while the sededs are heing ing to the depth to which the disks enter the ground The disks may be straightened to use for pulverizing purposes，or when the machine is to be moved to and from the fleld，and the seed－dropping mechanism is
driven from a caster wheel at the front of the machine． Clover Seed Harvester．－Samuel Hamilton，Wilson，Mo．Accoraing to this improve ment，a gathering device and rake and mechanism for
operating the rake are so attached to a mowing machine that the cothere will at all time travel close ground，and it and the rake will be unaffected by the vibratory movement of the mowing machine，the stubble also assisting in carrying the barvested straw to the
rake．A drop bar attached to the mower bar by short links has rearwardly projected teeth with upturned ends which direct the cut material to the rake，and the latter may be conveniently rocked to and from the drop bar

Transporting Trees．
－Charles 0 Halling，Minneapolis，Minn．A simple and easily op－ crated truck，by which trees of large growth may be
safely transported from one place to another，has bee devised by this inventor，the truck having a divided axle，a winding and hoisting mechanism，and a collapsi－ are place，the members of the basket being made，b ompressing devices，to clamp firmly the roots and the earth incasing them．

Miscellaneous．

Lantern Holder．－George T．Van Riper，Freeport，N．Y．Instead of suspenang lantern loosely on sazes，Y．
building or excavating operations，the lanterns bein liable to be stolen，this inventor provides a special form of lantern holder and means of securing it to a stake driven into the gronnd，or to a flat surface，such as a board or flooring．It comprises a casing having an open－ ing through each of its walls，one of the walls being
hinged，there being also an opening in the top of the casing，and means for locking it，and for conveniently at
Post Fastening．－Joseph Schmidt Pew York City．This is a device tor securing standard or posts to a fiooring，to faciitate erecting partitions，of a casing to be secured in a floor opening，with its top plate flush with the floor，while in the casing is movable a screw whose shank has a worm thread．A shaft ex－
tended through the casing has its outer end adapted for engagement by a turning tool，and a worm gear on the shaft meshes with the worm thread on the screw shaft，
whereby the latter may be turned and the screw entered whereby the latter may
into a post or standard．
Wheeled Scraper．－William Acker nan and Albert A．Hasselquist，Elgin，Ill．This inven ion is for an inprovement on a formerly patented inven tion of the same inventors，providing a scraper in which
the scoop will be entirely under the control of one man， who may also drive the machine，the parts being so ar－ control of the onerator，and so that the scoop may also be more readi－carried to the
stored to the working position．
Calcining Cement．－Ciifford Bonne－ ville，Allentown，Pa．This invention is for a method of and apparatus for calcining＇cement，the raw cement mate－
rial and a portion of cement being combined with a rial and a portion of cement being combined with
combustible material，the mass made plastic with water and then immediately subjected to a calcining and rolling action to form balls or lumps prior to the setting of the lumpe are immediately calcined the appratus affording convenient means for effectively carrying out this pro

Game Board．－Harold Gregson，De－ troit，Mich．This board has an inside cushioned mar－
ginal flange，various designated botom spaces with elas－
tic projections，with balls arranged in the field，in which also turns a catapult adapted to expel projectiles．The ewenting men arranged as bodies of soldiers，agains Sleith Truck－Seth C Nuter Sleith Truck．－Seth C．Nutter，Sher－ brooke，Canada．To facilitate the transfer of sleigh nventor has devised a light and simple truck consisting a pair of reach bars，on each of which is a groove end of two connecting cross bars and a buffer block with downwardly inclined nose projecting from eac

Harness．－Nelson H．Mesick，Glenco Mills，N．Y．In harness used on horses drawing two Mheeled vehicles，this in inventor has devised improve ments whereby the jars and jerks incident to the step ping or shoulder motion of the animal are not tran mitted to the vehicle，making easier riding for the occu
pants．A strap connected with the sadde is also con nected by a link with a tug，the strap being arranged yield longitudinally and vertically to relieve the tug o

Vehicle Power Storage．－Martin J McDonald，Trenton，N．J．This invention covers a m chanism for accumualing and storing the power lost J vincles in descending grades，and its subsequent en mitting gear engages the driving mechanism，rad clutch－controlled g ar carried by an accumulator shaft on which are coiled springs is in winding connection with the transmitting year．There is a secona clutch con－
nection between the accumplator shaft and the trans－ nection between the accumuator sart and the trans－
mitting gear，and a third clutch connection wherebs the prings may be wound up by the winding mechanism， The apparatus is part
Fence．－John F．Melvin，Mayfield， y．This is a picket fence made without posts，and com－ posed of veritical slats connected by upper and lowe
longitudinal wires
looped around each picket，bracing wires extending outwardly and downwardly from both sides of the fence，at suitable intervals，to separate an－ chorages in the ground．Corner brace wires are crossed ging and holding the fence straight and firm．
Ruling Pen and Holder．－Albert N Dow，Exeter，N．H．This is an improvement designe o be especially useful to accountants for ruling single
and double lines，the holder being made to serve as a guide to the alignment without the assistance of an or iinary ruler．The holder has bearing surfaces or points ink into the paper by pressure，and permit the holder to move over the paper onls in a atraight line．The device is also designed to be useful as an ink eraser，pencil mark
Stringed Instrument Improve－ IEsT．－William H．Richardson，Trenton，N．J，This invention provides a wrst guide especially adapted for piece，the guide aul tail piece being so shaped as to be readily placed in frm position on the instrument，and the guide supporting the wrist during the work of playing
without interfering with the freedom of a full or a fore－

Steam Radiator．－Augustus Eich STEAM RADIATOR．－Augustus Eich－
horn，Orange，N．J．This is a single inlet radiator，ad－ horn，orange，N．J. ．This is a single inlet raciator，ad－
justable e o ifferent degrees of radiation，and with a cen－ tral inlet pipe，improving the symmetry of the radiator． It is composed of a series of loops forming two separate sections，there being inner loops shorter than the in which is a three－way valve communicating with each section and with the steam feed，and capable of indepen Stovepipe Holder．－Frank J．Nor－ ton，Ithaca，N．Y．For holding a stovepipe safely con－ nected to the chimney into whose flue it is entered，so that
it will be impossible for $i t$ to become accidentally detached， this inventor bas devised a holder consisting of a piece of strap iron having one end bent to form a stop on the in－ side of the chimney，an adjustable stop sliding on the body of the iron outside the chimney，and the device be－ ing secured in position on top of a pipe as the latter is placed in posilion，when the pipe and holer are secured
together by a rivet or nail passed through one of several together by a rivet or nail passed turoght one of several ${ }_{\text {pipe }}$

Ash Sifter．－John N．Fordham， Brooklyn，N．Y．To effectively separate the cinders tion provides a circular casing adapted to be placed on an ash can or barrel，there being within the casing an in－ clined pivoted grate，from whose lower end extends a dis－ charge chute and from whose upper end extends a hop－ per in which the ashes and cinders to be sifted are placed． Thif eopper has a hinged cover，which is closed while the
sifting is being done，which is effected by turning the grate on its pivot pin by mean
Filter．－Joseph T．B．Selman．To－ ronto，Canada．This is an inexpensive filter designed for
attachment to an ordinary service pipe and having auto－ matic mechanism which makes it self cleaning，the filter being easily taken apart and put together when neces．
sary．In passing through the T connected to the water
 the brushes on which scruba a screen through which the watur passes to a fiter bed．and when the water is turned
off the impure water runs back and off through an anto－ matically opening valve at the bottom．
Design for a Display Box．－Charles Spilka，New York City．This box contains one or more
dual pockets，each pocket of a set having one end of proximately semicircular shape．
Nore．－Copies of any of the above patents will be furnished by Munn \＆Co．for 10 cents each．Please
send name of the patentee，title of invention，and date of this paper．

 tisements must $\overline{\text { be receiveci an woras to }}$ alin．saver ursaiav morning to appear in the folowing week＇s issue
ne
High erade well drills，Loomis Co．．Tiffin，obio
For mining engines．J．S．Mundy，Newark，N．J．
＂C．S．＂metal polish．Indranapolis．Samples free
Presses \＆Dies．Ferracure Mach．Co．，Bridzeton．N．J． Hande \＆Spoke Mchy．Ober Lathe Co．，Chagrtin Falls， 0 Papier Mache Manufrs，Crane Bros．，Westelda，Mass， Yanke Now．Whe Screw machines．milling macnnes，and drill presses，
The Garvin Mach．Co．．Sprine \＆Varick Sts．New York． More protable than your business．Investigate Ran
some＇s concrete system． 775 Monadnock Block，Chicaro Would manufacture metal specialties of undoubted The celebrated＂Hornsby－A kroy＂Patent Sarety 0
 The best book for electricans ana beginners in ele By mai st Mun 8 Co milise Machinery manufacturers，attention！Concrete and
mortar mixing mills．Exelusive rights for sale．＂Ran some，＂ 757 Monadnock，Cbicago．
Stay with your job，and with your wages pay install－ ments for a proftable olive orchard．Book let free．
Whiting＇s Olive Colony，Byrne Cripple Creek．－Its History to date，Illustrated．Jus out，with correct map and cosily full page views natural al life．This sreat book will be sent free prepaid witb
our big 56 col．f family paper 3 months on trial for 25 ． our big 56 col．family paper 3 months on trial for 2．2c．
（stamps or silver）；club of 5 ，$\$ 1$. Latest mining news． Mention the SCIENTIPIC AME
trated Weekly，Denver，Colo．

NEW books and publications

Shakespeare＇s Townand Times．By Weed Ward，London．New York：

The book is beautifully gotten up，having nearly one excellent photograph by Mrs．Ward，handsomely ropro． duced by the half－tone process．The interior views of the Shakespeare historical buildings are superior to any in that line we have seen．In addition to the numer－ ous illustrations，we note the excellence of the etterpress and the remarkable freedom from errors．
The authors confine therselves strictly to the town of Stratido the dhan in cironological statement of ered frum the accessible records relating to william Shakespeare＇s parents and other relatives prior to his位t，during his life，and after his father＇s and his own death．Any contributory evidence that can be found in preparing the young poet for his future work is can diady given，and weight is asso given to the stralned re－
ligious state of affairs that occurred durng the early part of his life．All of the facts are written in the usual pun－ or，clear cut，entertaining style that Mrs．Ward is noted
The book is divided into nine chapters，arranged in progressive sequence，as，for example，chapter one relates
to＂The Town and District＂＂the next is on＂Some His－ torical Notes；＂the third relstes to＂Shakespeare＇s An－ fifth to his＂Boyhood，＂the sixth to his＂Youth and Courtship，＂the seventh to＂ eighth to＂Mauhood and the Close of Life，＂the ninth to＂A Great Man＇s Memory，＂There are also three ap－ other relating to＂New Light on Shakespeare＇s Lineage，＂ and two very good maps of Stratford and vicinity One of the valuable historical features of the book is the Davenant bust beside each other．The resemblance is striking．The bast is one but lately discovered，having
been bricked in out of sight in an old theater building in London，and only found when the building was torn down．The bust is now preserved in the museum of the memorial building at Stratford．A reproduction of the 1598，by Richard Quiney，is an interesting relic．The book is certain to be a valuable addition to the many that have been published on the life of this great poet．and位位s a candid and accurate view of domestic life at that pon．Wich has beretofre only been Iightly foucheo to all interested in the life and works of the immortal

Lee＇s Vest Pocket Pointers．Chicago： Laird \＆Lee．Pr．220，vest pocket size．Price
50 cents．
For＂busy people＂this little book is designed to be a likely to be asked about，either from interest or curiosity， Alternating Currents and Alter－
nating Current Machinery．By
 Price $\$ 3.50$ ．
This book is issued as Volume II of a text book on cectro－magnetism and the construction of dynamos，
by Dugald C．Jackson，who is professor of electrical en gineering in the University of Wisconsin，John Price Jackson being professor of electrical engineering in the
Pennsylvania State College．It is a book designed to be oennsy high value to electrical encineers who disigned to be of high value to electrical engineers who labor to keep
abreast with the complex probems amost daily pre－
sented in the steadils enlarging scope of modern electril sented
cal development．

mathesumpries

HINTS TO CORRESPONDENTS
Names and Address must accompany all letters
or no attention will be paid thereto. This is for our
informan Refermation and not for publication. Fetcrences to former articles or answers should
givedate of paper and page or number of question
Inquiries not answered in reasonable time should me repeated ; corresponden in reasononaber wime sill bear in mind that
be that some answers require not a little research, and,
though we endeavor to reply to all either by letter
or in this department each must take his turn 13 u yers wishing to purchase any article not advertise in our columns will be furnished with addresses of
 personal rather than general interest cannot be
expected without remuneration. Scientitic Anirerean supplements referre
to may be had at the office. Price 10 cents each. to may be had at the otmice. Price 10 cents each.
Book referred to promptly supplied on receipt
Wine rals sent for examination should be distinctly
marked or labeled.
(6987) G. M. asks for a recipe for mak ing modeling wax such as sculptors use? A. Melt ove a moderate fire 100 parts yellow wax, and add 13 parts
Venetian turpentine, $61 / 2$ parts lard, $721 /$ parts elatriated bole. MIx thoroughly, pour the mixture gradually int a vessel containing water, and knead it several time perature sufficiently low not to create bubbles. Add Indian red if desired for color.
(6988) C. J. S. asks for a receipt for a brass stgn polish, such brass work as is used in front o store windows and exposed to all sorts of weather. A
Rottenstone made into a paste with siveet oil makes good polish for brass. The following may also be used oill, $11 / 2$ ounces ; turpentine, a sufficient quantity to make
(6989) C. A. F. asks what compound may be used to braze casting (rast iron) successfully. A
Cast iron is very dificult to braze. Make the surface that are to be brazed very clean by using file or scrape Rub up some borax with water on a piece of slate an rub the surfaces to be brazed with a piece of zinc w with the borax. Then bind the surfaces together, apply a trip of brass or the spelter and additional borax, an
6990) T. L. R. asks for a formula fo iquid bluing. A. Water, 15 parts ; dissolve in this $11 /$

INDEX OF INVENTIONS

or which Letters Patent of the

October 6, 1896

AND EACH BEARING THAT DAT [See note at end of list about copies of these patent	Garment supporter, C. E Gas burner, P. Keller. Gas engine, G. A. Thode.
e	Gas generators. device for charging hydrocarbon, A. B. Griffen.
	Ga
brake,	
Arr compressor, H. C. Sergeant.	Gathering and loading apparatus, J.J. Kinlage....
Annealing	Generator.
Baling press, J. R. Grimitit	
Barrel bead machine, A. Hitzert................... 568.978	Gold from sand, etce., apparatus for sepa
Bed and ba	drom substances containing it, extracting,
ottom, spring, T. M. M. Cottie	Gold or silver, apparatus for electrodeposition
ds, device for securing bedclothes on.	
${ }_{\text {Belt }}$ Bel, fastene	Grain separator tubuia
Bicycle crank shaft and	,
clee lock, clark ${ }^{\text {a }}$	
cyele saddles, means for attaching, B. S. Sea- Sear	Grindin\% and drilling
	Hair pin,
cyele se	Hatr pin and but
	Hame attachment, G. Siegentbaler......
Bicycles, etc., crank sb	nees,
Keating	arn
atering de	Harvesters. driving connection for, Cranidaii ${ }^{\text {d }}$
er cleaners, floating skimmer	
er cleaners, floating skimmer for,	Hay and stock rack. combined, R. McLane........
er fur	
	Heater.
Boring earth. ıminerals, etc., for prospecting pur-	Heating a
	Heating apparatu
,	
	Heel nawers.
Boxes, shelving, etc., adjustable partition for, N .	Hinge. gate,
ake ${ }_{\text {ake }}$ See Air brake. Car brake. Vehicle	Hotstin
ke. C. G. Polleys............ 569.124	
Brake shoe. G. W. Stevens	ven
dige	Horseshoe
Idee cate	
Broom head, Cookk Abbe	Horsesh
	Hose no
Burner. See Bunsen burner. Gas burner. Oil	Hot air
Can fillng machine, W. S . Plummer.-........... 569,030	${ }^{\text {Job }}$
d de	Hot wa
top,	
Canning basket	Hub,
opy or netti	Hydroca
ol	
Car brake	
coal	Ink st
couplin	Insulated electric
coupling,	Ironing machines, bosum stretcoer for
r coupling. A. F. Scbnetder................... 568 .	
Car fumpin, W. m. Baker...	See
Car fender,	Jewel
Car or carriage,	Jo
Cars, automatic electromagnetic brake for raii-	
way, E. At Hauerwas.	
	Knife open
	,
mbined, M. Sammis	
	Lamp' socket, incandes

 Corn basker and staik cutter, G. G. janney.....
Coton converer and distributer, pneumatic se
E. L. Smith

 Drill. See Grain dril

Electric cable,
Electric. .otor,
T. H. Hicks.
Electric waves

Envelops or the like, machine for marking, J.
Evaparty

aucet and air inle
st. Hubert.
Fence, A. H. Conk
Fence, T. Creene
Fence, G. Gross

Ringle... crimping device, w. w. .i..........st..
Fencer.
Fender. See Car fender.

Firearm, enector mechangsm for breakdown. G

G

 Glass bottles. etc., tool for fnishing, Lambert \&
Hofman.. old from substances containing it, extracting
H. R. Cassel

ame attachment, G. Siegentbaer......

ay and stock rack, combined, R. Mċiai........

Heating aparatus, hot water, J. C. Norton...... Hel wers.......i..................... 764

Lamp wick and producinn same. G. Hi Wiviburib:
 $\left\{\begin{array}{l}\text { lit } \\ \text { Lift } \\ \text { Lit } \\ \text { Lit } \\ \text { Lit }\end{array}\right.$

 2

 Paper reel and printer. D. J. Etiy.
Pen and bolder, ruling. A. Dow.
Permutation lock. N . Moore.
Photograpyn, apparatus Hore. setiong type an
sign oy means of, E. Porzsolt.

$.568,900$
-568999
.
569,075

\section*{| 569.140 |
| :--- |
| 569.8125 |
| 567.85 |
| 5688.893 |
| 568,944 |}

569,122
569,076

"

TRADE MARES.

Dんdvertisements.
ORDINARY RATES.
Inside Page, each insertion - 7.5 cents a line Back Page, each insertion-.-- 81.00 a line
Re For some classes of Advertisements, Special and

THitur W00D oi METAL WORKERS

Lootand hariolipowrimiactininery A- Wood-worting Machinery.
\boldsymbol{B}-Lathes, etc.

The Van Norman •• Universal Bench Lathe.
 BICYCLE Repair Outfits Tor Amatera and Workman. FRED FRASSE CO.

DORMAN'S VULGANIZERS ARMSTRONG'S * PIPE *THREADING

 CUTTINGG AOFWMACHINES
Both Hand and Powe

THE CURTIS
Water Pressure Regulator

 D'ESTE \& SEELEYY Co.

40,st., Boston.

The Handy Truck
 Boston \& Lockport Block Co. Boston \& Lockport Block Co.

FOR YOU AND YOURS
Whether for your own use in library or office, or to help the young folks in their studies, no single work in the world equals that splendid Library of Reference, the New

M \qquad
Every Volume

 Thing

13 942 Scranton, Pa

THE VICTOR VAPOR ENGINE

 THOMAS KANE \& Co.
4466 Wabash Ave., Chicago

MONITOR

MARINE GAS ENGINES AND AUNCHES
 MONITOR VAPOR ENGINE ' GOOWER COMPANY

Towers, Tanks and Tubs

 JUST READY. a practical treatise on Animal and Vegetable Fats and Oils:

 $\quad 810$ Wainut St., Philadelphia, Pa., U.s. A. A POLLO GALVANIZED IRON. $\begin{gathered}\text { Bend } \\ \text { weakens. } \\ \text { Drive eharp, to to seils through t. }\end{gathered}$.
Try it according to what you want it for
Every sheet guaranteen to bear any test whatever. Apollo Iron and steel Company,
THE SUBMERGED PIPE LINE ACROSS

$\left\{\right.$ PRJSI $\begin{array}{c}\text { Sour ores with our perfected } \\ \text { STEAM STAMP }\end{array}$

CATES IRON AN WORTIt from, CHICACO.
The X RAY; $\xlongequal{\text { Or, }}$
Pbotography of the Tnvisible and its Jalue in Surgery.

 Ior the subiect is most fascinating and instructive.
is unquesionamy the most important tsientific dis
mes covery fofat time. . 4 AMERICAN VESEY STREET, NEW YORK. PORTABLE SINGLE RAIL SURFACE

 PETROLEUM LAMP TRADE.——

Do You Know-What? That the Scientific American has been published
by MUNN \& CO. fifty years? that it is the best, the most popular, and has the largest circulation of any nest poparar devoted to science, engineering, mechanics,
newvan
inventions and the latest discoveries in all parts of the inventions and the latest discoveries in all parts of the
world? Such is the fact and the paper is mailed every week to
all parts of the United States, Canada and Mexico, one year, for $\$ 3.00$.
The useful information and recipes contained in the
columnof notesand $q u e r i e s i s ~ o f ~ i n e s t i m a b l e ~ v a l u e ~ t o ~ e n-~$ column of notesand queries is of inestimable value to en-
eineers, students, inventors and, in fact, to all classes of people; and the information, which is not attainable elsewhere, is worth more to the reader than many times
the cost of subscription to the paper. the cost of subscription to the paper.
The large number of engravings whic
issue involves a large expense, is a useful as well as an attractive feature of the paper. Every discovery, new invention or improvement of importance is illustrated
in the SCIENTIFIC AMERICAN. It teaches young persons to think and suggestsinvention. Teachers and employers who have the interest of young people at heart ADDRESS MUNN \& COMPANY, 361 Broadway, New York Do not forget to inclos* *
check or postal order fom
thrce dollars for one

DAIMLER MOTORS

TO 25 HORSE POWER

GAS, GASOLINE OR KEROSENE.
 On exhibition running at Madison Square Garden DAIMLER MOTOR CO.,

Experimental\& Model Work

DEA FNESS \& HEAD NOISES CURED, X Ray Apparatus
DAUGHTING or survering tavin logue. 13lack Cor. School, Paterson, N. \mathbf{j}. A gentleman of large commercial experience wants to
take out patent rights for valuable inventions, in So
Afthen Africa. Will buy inventions outright or pay royalty.
References. Address
burg, South African Repuchic.
ELECTRICITY PAPERS

 DEPARTURE BELLS over
 Bristol, conni., U. U. ©teet,

A.W. PABER

LEAD PENCLLS, COLORFD PENCLLS, SLATE
 78 Reade Street, New York, N. Y

THE BICYCLE: ITS INFLUENCE IN

BUY TELEPHONES

 Kokono," which hatter failed to eqive satisfaction.
Hundres of simiar cases may be cited affecting the western telephone construction co. 250 South Clinton Street, Chicago The Largest Manufacturers of Telephones in the U.s.

A DREAM OF COMFORT

FOR INVENTORS AND PROMOTERS.
mechanical specialty by well equipped Ma chine Works. Would manufacture under royalty, or buy privilege outright.
Address "'SPECI Address "SPECIALTY," care this paper.

FAIRBANKS, MORSE \& $\mathbf{c O}$.

The FAIRBANKS-MORSE GAS and GASOLINE ENGINES

STEAM PUMPS,
FRICTION GLUTCH PULLEYS.
elilable Gooos in All Lines
Chicamo,
Cincinnati
Onaha,
Cincinnati,
Incinatis,
Ponterapolis,
Portend

\qquad

GOEHE IS DEADS

 ECONOMY. EQUITY. SECURITY.

AMERICAN UNION

Life Insurance Co.

Paid-Up Cash Capital, $\$ 500,000$.
JANUARY 1, 1896.
\$488 ASSETS to each \$100 LIABILITIES.
A desirable Company for Policyholders. Writes POPULAR, ATtractive and liberal Policies at REDUCED COST

UNEXCELLED FEATURES. Incontestable after One Year
No restrictions as to Occupation, Travel, or Residence
Non-forfeitable after Three Years.
Paid-up or extended insurance provided in case of failure to pay premiums.

LIFE
AND \quad Loans up to 75 per cent. of ENDOWMENT Reserve.
POLICIES. $\quad \begin{gathered}\text { One Month's Grace allowed } \\ \text { for payment of premiums }\end{gathered}$ AN IDEAL AND POPULAR LIFE INSURANCE COMPANY No Uncertainty as to Cost. LOWEST PREMIUMS. highest ratio of assets to liabilities. Has written MORE Insurance and has MORE Insur ance in Force than any other Company i
like period of its existence.
Issues Renewable Term, Ordinary Life, Limited Payments, Endowments. Partnership or Joint

Energetic and Reliable Agents Wanted. Men
of Ability Can Secure Libernal Contracts. For particulars send to
kiy Trust Bldg., Cor. Montague and Clinton Sts.
Ettinger \& Freed, Mgrs., Brooklyn, N.Y.
The "Knapp" Electric Motor mail

KNAPP ELECTRIC \& NOVELTY CO., 45 Warren St., N.Y
Twelfth Edition Now Ready.
THE SCIENTIFIC AMERICAN
CYCLOPEDIA OF Receipts, Notes and Queries 12,500 RECEIPTS. 708 PAGES.
Price, $\$ 5.00$ in Cloth : $\$ 6.00$ in Sheep; $\$ 6.50$ in Half

THis grea

ran
Value. arraneed and conglensed in concise highest
convenient convenient for ready use. Almost every inquiry
that can be thought of relating to formuxa used
in the various manufacturing industries, will here be found answered.
Those who are engaged in almost any branch
of industry will find in this book much that
is of practical value in their respective tat is of practical value in their respective call-
ings. Those who are in search of independent
business or employment, relating to the home
manufacture of salable articles, will the hom it business or employment, relating to the home
manufacture of salable, articles, will find in it
hundreds of most excellent suggestions. Send for descriptive circular. MUNN \& CO., Publishers, 361 Broadway, New York.

The Easient Running Wheel in the World. THE BLACK MFG. CO., ERIE, PA R WALKER'S SELF-PULLING

Typewriter

This company owns Letters Patent No. 558,428, issued Apri 14, 1896, covering broadly all machines in which the cylinder turns up to expose the line of print, or in which a duplex or cross ribbon feed is used. The patent also covers many other features of modern typewriter construction. Infringers will be vigorously prosecuted.

Wyckoff, Seamans \& Benedict. 327 Broadway, New York.

PRIESTMAN SAFETY OIL ENGINE

The
 American
 Bell Telephone
 Company,
 125 Milk Street,
 Boston, Mass.
 This Company owns Letters-

 Patent No 463,569 , granted to Emile Berliner November 17, 1891, for a combined Telegraph and Telephっne, covering all forms of Microphone Transmitters or contact Telephones.
To Those Intending Building

To insure a perfect and permanent finish on all natural interior woodwork the use of the WHEELER PATENT WOOD FILLER is essential. It leaves the wood pores transparent AN OUTSIDE PAINT that outlasts lead and oil paints, is BREINIG'S LITHOGEN SILI CATE PAINT, especially adapted for buildings exposed to salt air.
Architects and owners, in theit own interests, should see their speciffations carried out in full, and examine bills

THE BRIDGEPORT WOOD FINISHING CO., New Tilford, Conn.

Andrew H. Kellogg

409, 411, 413, 415 Pearl Street, New York

Printer

Special Facilities for the production of all kinds of Catalogue Work

Long Distance Telephone, 2601 Cortlandt

ONE CENT Per Hour Is Cheap. H. P. That is is what Gafie, Relinber Econamiolal. GEet Ported.
WEBER GAS \& GASOLINE ENGINE CO., 402 Southwest Boulevard, KANSAS CITY, Mo.

"My Well and what came out of it." A story by the novelist Frank R. Stockton.
"Your Well and what will come out of it."
Pohlé Kir Lift Pump
Bulecins otel yoo wirite sent on appleation.
The Ingersoll-Sergeant Drill Co.

Address, 50th Street and Lancaster Avenue, PHILADELPHIA, U. S. A.

PHOTOGRAPHIC SIMPLICITY .
Is embodied in the Pocket Kodak.
EASTMAN KODAK CO.
$\begin{aligned} & \text { Booklet free at a a gencies } \\ & \text { or by mail. }\end{aligned}$
Rochester, N. Y.

Nickel Silver

 WatchesWe are casing all sizes of movements in this new metal. It takes a better finish and is more enduring than sterling.
It supersedes the old nickel plate, and enables one to have a perfect timepiece at small cost
Our Solid Gold and Filled Cases, as well as Sterling Silver and Enameled patterns, are in greater variety this season than ever.
New specialties have been added.
Our '97 Model
Trump Cyclometer,
the 10,000 mile wheel recorder
are all shown in our new catalogues, which will be sent to all.
The Waterbury Watch Co

WWLL COOKED JOINTS

Game, Poultry, etc.. assured
if you use the
maryland roaster AND BAKER.

 acturers who deliver express free.

MATTHAI, INGRAM \& CO., Sole Manufacturers of the GREYSTONE ENAM
 chen and general uso The low price will sirprise yo
Free! Clisus. $\begin{aligned} & \text { Catalog of Greystione Enamele } \\ & \text { Circulars of Maryland Roaster and Baker. }\end{aligned}$

- HAVE YOU GOT OUR CAT-

Gas and Gasoline Stationary Engine Gasoline Traction Engines Combined Engines and Pumps Gasoline Portable Engines

Che
 Photo= Engravings

"The Scientific American," "Puck,"

The MOSS Photo-Engraving Co.
273 \& 275 Mulberry Street, New York. he Pioneer in inoto-Eng Unaving Ent Establishme
Wrates.
Wror Prices and Specimens. 18 Write for Prices and Specimens.

PRINTIING INKS

