
a Weekly journal 0f practical information, art, science, mechanics, chemistry, and manufactures.

	NEW YORK, SEPTEMBER 26, 1896.	Werkir.

THE RIGID SUSPENSION BRIDGE AT LOSCH WITZ, SAXONY.
by robert grimshaw. The earliest suspension bridgessuggested probably by the vine trailing across from one tree to another on opposite sides of a stream, was characterized by extreme lateral and vertical flexibility. As in instance after instance this was found to be a source of danger, engineers in successive suspension structures endeavored to give an element of stiffness. One method employed by Roebling, at the Niagara wire rope bridge, was the addition of a wooden lattice girder: but attice girder; but this did not give suf-
ficient stiffness to permit of the passage of railway trains at any but a slow rate of speed.
About 1856 a railway was planned between Hamburg and Harburg, crossing the River Elbe twice

Scale, 1:100.

COUNTERPOISE ANCHORAGE.
with a width near Harburg of about 1,000 feet of deep water and 2,000 feet in all. At that time the erection of piers the erection of piers in deep and rapid rivers with sandy bottom was deemed risky and unsafe, and as the cantilever principle had not yet been introduced, the bridging of the deep portion of 1,000 feet span was planned to be effected by a suspension bridge (It pension bridge. (It may be noted that afterward girde bridges have been constructed both at Hamburg and at Harburg, with piers only 100 meters $=328$ feet apart.)

For stiffening this proposed structure it was recommended so to connect the chain with the roadway frame that each half formed a rigid beam hung from one end on a pier and hinged at the center to its mate. As the bending influence of the live load was highest (Continued on p. 248.)

Brinutifir Amprian.

ESTABLISHED 1845.
MUNN \& CO. Editors and Proprietors. published weekly at No. 361 BLOADVAY. NEW YORK.

sin

Remit by postal or express money order, or by bank draft or cbeck.
MUNN $\&$ Co., 361 Broadway, corner of Franklin Street, Ne $\boldsymbol{\pi}$ Yoris. The scientific Americn" supplement

Buiding Edition of Sicientific American.

MUNN \& CO., Publishers, 301 Broad way. New York.

NEW YORK, SATURDAY, SEPTEMBER 26, 1896.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 1082
For the week Ending September 26, 1896

V. Do Fectiometer.-1iilustration

events there. 3 Bilistranaliong

 IX. MINHG ENMGNEEANG. Firedamp Resting Station at

 due to wreckaze and condemnation, with ralazble tables.,
xill. optics. -The Collors Named in Litérature.- With table.

the secrets of germanys industrial success. Perhaps the most notable fact in the industrial world just now is the commanding position which is being won by the German manufacturers and the rapid encroachments which they are making upon the foreign trade of other nations, and particularly upon that of Great Britain. In taking note of this development we must remember that it is nothing new, that it is not the result of a sudden outburst of energy. It is merely the larger development, the coming of age, of a system which has been steadily at work in Germany for many urprise to industrial triumph, which has come as ing shock to Great Britain in particular, is no surprise to the German people themselves. In school and college, in workshop and factory, by carefully planned or granizations at home and abroad, they have set in mo fion a system of industrial forces which are now work ing out the desired results with mechanical regularity and precision.
The German mind is essentially scientific and me thodical. It was these qualities that contributed largely to the signal triumph of the German arms in the memorable war of 1870. During the quarter of a century that has intervened since the close of the struggle and the consolidation of the empire, Germany has been applying the same scientific methods to the arts of peace ; and with such success that it begins to look as though her industrial armies were going to occupy the broad fields of international commerce with the same resistless energy with which her battalions marched from Saarbruck to Sedan a quarter of a century ago.
Germany owes her industrial success to her system of scientific training in schools and colleges, to the close fellowship which exists between her factories and her schools, and to her elaborate organizations for the control and development of commerce
That the scientific course in German schools was thorough and effective has always been well under stood; but it has been reserved for a private letter written by Prof. Ostwald, the distinguished German chemist, to his English friend Prof. Ramsay, to open the eyes of the world, and particularly of the English people, who are most nearly affected, to the practical use to which the scientific researches of their specialists are put by the German people. It appears from this letter that there is a close alliance between the German technical schools. In the chemical industry for instance, it seems that splendid inducements are offered to the graduates of technical colleges to enter the to the graduates of technical colleges to enter the
laboratories which form part of the equipment of the factories. These young men are engaged, not for the executive work of the establishment, but for purely experimental work in the laboratory. They form a bri gade of skilled inventors, who devote themselves to the
discovery of improved processes and methods of manudiscovery of improved processes and methods of manufacture.
Speaking of this system, Prof. Ostwald says
" The research laboratory in such a work is only different from one in a university by its being more splen didly and sumptuously fitted than the latter. I have heard from the business managers of such works that they have not unfrequently men who have worked for four years without practical success; but if they know then to possess ability, they keep them notwithstanding, an i in most cases with ultimate success sufficient
to pay the expenses of the former resultless years." When we bear in mind that "there are often more than one hundred Ph.D.'s in a single manufactory, and that this little army of qualified scientists is occu pied solely in "making inventions," we begin to understand why it is that Germany is already pre-eminent in certain markets of the world, and it is likely to be come so in others before long. Invention is no longer left to the unaided efforts of the well meaning, but often uninstructed, individual. In the special laboratory there will be no long hours of fruitless search for an object whose supposed existence is based upon ignor ance of the first principles of physics or mechanics. In this admirable combination of the skilled theorist and the trained mechanic there is little left to chance and the development of an art is carried on by the sure and logical process of experiment, invention, and design.
Of scarcely less importance in German industrial economy is her elaborate system for the fostering and extension of trade. This includes the founding, in certain industrial centers, of chambers of These institutions are intended to deal with questions of home and foreign trade in the broadest possible manner.
" There is no question connected with the development of trade interests, of manufactures, credit capacity of foreign countries, advantages to be obtained by treaty stipulations, injuries resulting from measures adopted by other nations in restraint of trade, which is not thoroughly discussed and carefully considered by the many German chambers of commerce scattered over the country. These bodies report to the minister of commerce with regard to the influence and bear ing of all such matters, as they are connected with
the commercial interests of the various localities, and by petition or otherwise they often secure action through their minister and the minister of foreign affairs which is of great advantage to them."
As the necessary counterpart of this organization at home, the Germans are about to establish a system of commercial attaches, whose agents shall be specially trained for the service and shall form a recognized part of the national representation in foreign countries. The work of the attache will be similar to that which is now embodied by our own consuls in their "consular reports," many of which, be it said, are admirable documents and worthy of a wider circulation. He w ll furnish to the home government a statement in detail of the particular commodities which are required in his district, and will keep it informed of the volume and nature of the trade done there by competitors ; and, indeed, he will report any facts which might be of service for dissemination among the various local boards of trade above mentioned.
Visitors to the Columbian Exposition at Chicago will remember the truly magnificent display that was made by Germany, and particularly the collection which figured so prominently in the Liberal Arts building. It was a special effort, carefully planned and effectively carried out, and German foreign trade is feeling the stimulus of that costly display at the present moment. Our brief consideration of this subject suggests that, while it more immediately concerns the commercial supremacy of Great Britain, it has also a practical interest for the United States. In our future commercial development and expansion we shall certainly enter into a most active competition with the two nations above mentioned. It is a question which we shall do well to ask ourselves, whether our native inventiveness and mechanical skill should not be stimulated and rendered more efficient by such a triple alliance of science, industry, and organization as is now carrying Germany to the front by leaps and bounds.

The Serum Treatment of Leprony

In the New York Medical Journal for January 18 was mentioned a communication that had been made to the National Academy of Medicine of Bogota by Dr. Juan de Dois Carrasquilla in which he reported cases of leprosy that had been cured or much ameliorated by the use of an antileprous serum prepared by him. It was his second paper on the subject, and was presented before the academy on the 22d of last November; the first had been laid before the same learned body on the 30th of August, 1895. By the courtesy of the academy's permanent secretary, Dr. Pablo Garcia Medina, the same journal has now received a copy of Dr. Carrasquilla's third communication, made on the 24th of quilla's third communication, made on the 24th of method of obtaining the antileprous serum and his mode of employing it. These we can indicate only in outline. He first bleeds a leper, choosing an adult whose general condition is fairly good. The blood drawn varies in amount from a hundred to two hundred and fifty cubic centimeters. It is received into a sterilized vessel and carefully covered, kept away from the light, and, above all, kept perfectly quiet. In from twelve to twenty-four hours the superficial layer of serum, that only which is perfectly limpid, is removed with a pipette. If it has to be kept for some time before it is to be used, it is passed through a layer of powdered camphor contained between two layers of cotton, to preserve it, and it is kept away from light and heat.
Thus prepared, the serum is injected into an animal that is refractory to leprosy, preferably a healthy young horse in good condition. Ronx's method of procedure is employed. In regard to this operation, says Dr. Carrasquilla, there are two points that are of the greatest importance and at the same time difficult to determine-the amount of serum to be injected at one time and the interval that should be allowed to elapse between the injections. His experience leads him to think that forty-five cubic centimeters is the proper medium dose, given at intervals of ten days. The horse is bled in from five to ten days after the last injection, preferably from the jugular vein. The Nocard-Roux process is followed for obtaining aseptic horse serum, and it is treated in exactly the same way as the human serum.
The dose of the serum for use on the human subject is from one to five cubic centimeters, according to the strength of the serum, the constitution, age, and other circumstances of the patient. the period of the disease, etc., given subcutaneously. The locality to be prefer red for the injection is that bounded by the iliac crest and a transverse line passing just beneath the trochanteric fossa, or, better still, just to the outer side of the trochanter major. ureat care must be taben to make sure that the serum has not undergone any septic change. A full day should intervene between the injections. Febrile reaction follows in all cases, and the injection should not be repeated until this has subsided. Dr. Carrasquilla gives many other details, which we have not space to mention, and promises to publish further reports of results.

The Death of Lilienthal.

The following letter appears in Nature of recent date C. Runge.

Dear Sir: You are right in presuming that I can give you details referring to Otto Lilienthal's death authentic as far as they can be obtained
As early as the beginning of last spring, Lilienthal's experiments had taken a new departure. He had gradually come to the conclusion that the surfaces employed by him were not sufficient.
With a surface of twelve to fourteen square meters he could take sufficiently long flights to serve his purpose of observation and practice in strong, gusty wind, but he very rightly considered experimenting in a strong wind to be too dangerous, and with a light breeze about twenty square meters were found necessary This enormous surface, however, could not be handled with the same certainty and exactness as the olde wings, and as his system of steering consisted in shift ing his weight within the surface upon which it was suspended, he had hit upon the simple expedient of placing two surfaces one above the other
This system promised from the beginning to be a very marked advance. In former days Lilienthal had tried, over and over again, to make small paper models that would soar like birds, and had always been disappoint ed. Now this problem seemed to be solved. Thes two-story models, which resembled beetles rather than birds, soared in the most astonishing manner. He would let them off from the top of the artificial cone which he had erected at Lichterfelde, and they would which he had erected at Lichterfelde, and they would
take long and sometimes circuitous flights into the surtake long and sometimes circuitous flights into the sur-
rounding fields, and never showed the slightest tendency to take "headers"-a peculiarity very frequently hitherto observed in soaring models.
These experiments, therefore, seemed to prove that not only would a two-story surface be more easily steer ed, because a definite shifting of the center of gravity to one side would have a more marked effect (since the lateral extension of the whole structure was little more than half of that formerly used), but would also show a greater stability, a result all the more to be expected as the center of gravity of the system was placed more than a meter below the upper surface.
Experiments, which were begun without loss of time seemed to bear out this conclusion. Lilienthal appear ed to have suddenly gained in power and in the faculty of shaping his motion at will. It seemed to be only a question of time or opportunity that the great step would succeed of describing a complete circle in the air (which always appeared to us to be the key to a definite, if not complete success), when the disastrous accident occurred which has cost the bold experimenter his life.
The following is, as nearly as I can remember it, the The following is, as nearly as I can remember it, the
report of the mechanic who used to build Lilienthal's report of the mechanic who used to build L
wings, and to help him with his experiments.
On Sunday, August 9, Lilienthal had gone out to the village Rhinow, where he used to practice on the bare sand hills in the neighborhood. Nobody was with him except his mechanic. The weather was exceptionally favorable, a light wind blowing from the east with a velocity of about $5-6 \mathrm{~m}$. per second.
Lilienthal had selected one of these new two-story surfaces, which, in a considerable number of trials from the artificial cone in Lichterfelde, had shown itself to be especially successful. He took one flight, by way of warming to his work, and then prepared himself for a second, and gave the word to his man to look at hi watch and note the duration of the flight. The man
saw him soar down until he was nearly above the foot of the hill, then suddenly a gust of wind set in, lifted him up to a height of 30 m . above the ground-according to his man's estimate-and there he stood appar ently motionless in the air.
This was a frequent occurrence, and gave no cause for alarm at first; but now the man saw how Lilienthal gradually lowered the fore edge of his wings more and more without obtaining the desired effect of getting way forward and downward. The man felt uneasy at this pocketed his watch, and began to run toward the spot where his master was hanging suspended in midair. Suddenly he saw the apparatus heeling over forward still more, and then Lilienthal came down with it with great force head foremost, rolled over once or twice after striking the ground, and remained motionless.
When the man reached the spot, he found the apparatus much shattered, but Mr. Lilienthal apparently uninjured, though without consciousness. The local physician was instantly summoned and at first declared that nothing serious had happened. Lilienthal was brought to the neighboring inn, and within two hours recovered his senses. He seems to have felt no pain,
because he immediately declared he would soon get up because he immediately declared he would soon get up and continue practicing. However, his arms and leg
were lamed. It appears that his spine was fractured.
The man left him to the care of the physician, and took the next train to town to fetch his brother. When the brother came he found that he had swooned again ; and he did not recover his consciousness until death set in, which occurred the same night.
By publishing these lines the editor of Nature will, I think, fulfill a duty he owes the scientific world, as well
life, applied his rare energy, courage, and ability to the solving of a problem which has hitherto baffled the ingenuity of all modern engineering.
Lilienthal, who was a successful engineer and manufacturer, had not lived to see his forty-eighth birthday. He leaves a widow and three children.
Berlin, August 24 A. du Bois-Reymond.
The Bids for the Three New Battleships.
There is matter for congratulation in the fact that there were five separate bidders for the construction of the three first-class battleships recently authorized by Congress; for it proves how rapidly the shipbuilding facilities of the United States are developing, compared with what they were when the reconstruction of the navy was first begun, now some thirteen years ago. The fact that a firm should put in a bid to build an 11,325 ton battleship is evidence that its shipbuilding plant must be thoroughly up to date and capable of turning out the heaviest and highest class of marine work.
It is noticeable that the bids approximate very closely, there being but $\$ 85,000$ difference between the highest and lowest figures, as against a difference of $\$ 285,000$ in bids for the Oregon class of battleship in 1890 ; which goes to prove that our leading firms have acquired familiarity with this difficult class of construction, and have no unforeseen contingencies to provide against. Another noteworthy fact is that the cost of building a first-class battleship is greatly reduced from what it was in 1890. This is shown in the case of the Cramp's Shipbuilding Company, which is now offering to build an 11,325 ton ship for about half a million less money than they asked for the construction of a 10,288 ton ship in 1890 ; the figures being $\$ 3,180,000$ for the Indiana of 10,288 tons in 1890 , and $\$ 2,650,000$ for the new ship of 11,325 tons in 1896 .
The contracts were awarded as follows: One to the Newport News Dry Dock and Shipbuilding Company for $\$ 2,595,000$; one to the Union Iron Works, of San Francisco, for $\$ 2,674,950$; and one to William Cramp \& Sons Ship and Engine Building Company, Philadel phia, for $\$ 2,650,000$. Other bidders were John H. Dialogue \& Sons, Camden, N. J., $\$ 2,661,000$, and the Bath Iron Works, Bath, Me., $\$ 2,680,000$. The Union Iron Works secures one of the ships by virtue of an allowance of 4 per cent, which is made to cover the cost of transporting materials of construction across the coninent.
The new warships will embody the best features of the three types of battleships already built or building for the navy, viz., the Indiana, the Iowa and the Kear sarge. They will have the heavy armor of the Indiana the high freeboard and weatherly qualities of the Iowa and the powerful rapid fire battery of the Kearsarge. It will be noted that the 8 inch guns of the Indiana and Kearsarge type are wanting, but as an offset to this the new ships will carry a powerful battery of fourteen 6 inch rapid fire guns; and, while many admirers of our present ships will regret the absence of the 8 inch guns, it must be admitted that the change is in agreement with modern practice, and that it is warranted by the effective work done by the heavy rapid fire guns in the late Japanese war.
The general dimensions and principal features are Length on loadwater line, 368 feet; beam, extreme, 72 feet $2 \cdot 5$; freeboard, forward, 19 feet 6.9 ; freeboard, aft, 13 feet 6 ; normal displacement, 11,325 tons; mean draught normal displacement, 23 feet 6 ; indicated horse power (estimated), 10,000 ; speed in knots an hour (esti mated), 16 knots; normal coal supply, 800 tons; and otal bunker capacity, 1,200 tons.
The main battery consists of 4 thirteen inch and 14 six inch rapid-firing breech-loading rifles, and the secondary battery of 17 six pounder and 4 one pounder rapid fire guns, 4 machine guns, and 1 field gun. Four above-water torpedo tubes are placed two on each broadside, amidships, and will fire through an arc of 60 degrees.
The main turrets for the 13 inch guns carry 15 inches of Harveyized armor, and the 6 inch battery, of which four guns are mounted on the upper deck and ten on the main deck, is protected by six inches of the same armor. The waterline belt of Harveyized steel will be deck will be $23 / 4$ inches thick and will be continuous from stem to stern. The engines will be of the usual triple expansion marine type, and steam at 180 pounds pressure will be supplied by eight large single-ended boilers.
There will be no speed premiums; but a penalty is imposed at the rate of $\$ 25,000$ for each quarter knot that the ship falls below the contract speed of 16 knots an hour.

A medal, called the Neumayer medal, will be conferred soon by the Berlin Geographical Society on persons who have distinguished themselves in geography or meteorology, in honor of the seventieth birthday of Prof. George Neumayer, who, after having been irector of the Melbourne Observatory, has since 1870 burg. burg.

How Roquefort Cheese is Made.

It is supposed that hundreds of years ago the south france was disturbed by volcanic eruptions, which sit up the ancient granite rock, causing streams of lava to flow from them. The new surface consists of basaltic rock, which in its turn was fissured by eruptions and thrown up on a mountain range. The whole of the interior of a mountain was thus formed into caverns and caves, which belch forth hot sulphurous springs. It is here that the celebrated Roquefort cheeses are made.
The village of Roquefort is situated on the Mountain Larzac, which is about twenty-five miles in length and nearly 3,000 feet high. It consists chiefly of limestone, covered with sufficient pasture to feed the 300,000 sheep kept for their milk. The caves, keing formed by the displacement of rocks, consist of an intricate labyrinth of open spaces and passages connected with each other and with a subterranean outlet. A cool current of air, therefore, always of the same humidity and temperature, flows in a never interrupted stream through the aves.
There is nothing in the milk or in the preparation of the cheeses that gives them that peculiar flavor and delicious mellowness for which they are so renowned. This is entirely effected by the method by which they are cured.
When the cheeses are ready for treatment they are taken to the caves, and after being allowed to cool are carried to the salting room. They are rubbed with salt on one face and then piled on the top of each other until the cave is full. After standing for twenty-four hours or so, the reversed side is salted, and once more they are piled up as before. The cheeses have to be frequently reversed, in order that the moisture may be even throughout, and to develop the fungus which has previously been sown in the curd.
In forty-eight hours the cheeses become viscous, and are rubbed with a coarse cloth. In the course of another two days the fungus will appear on the outside, in the form of a sticky paste. This is carefully scraped off with knives, together with a thin stratum of crust, and set aside for food.
The cheeses are now sorted out; the most solid ones placed on the floor. In eight days' time they become covered with a yellowish red mould, together with other minute vegetation, which is removed and given to the pigs. The scraping is continued until the character of the mould changes, showing that the curd has altered its condition, and announcing the completion of the cure. Then they are again carefully scraped and wiped, and wrapped in tinfoil, and are ready for the market.
Roquefort cheeses have been cured for centuries by this process, and stand as a triumph of uneducated art. -Commercial Gazette.

Protective Sounds and Colors.

In the July number of Natural Scie;ce, Mr. R. I. Pocock describes the stridulating organ in the Indian and African scorpions and argues that it is protective in character. He writes: "Since the organs that have been here described are equally well developed in both males and females, and appear in the young long before the attainment of maturity, there is no reason to suppose that they are of a sexual nature, serving, like the chirrup of the cricket or the call of the cuckoo, to inform the one sex of the whereabouts of the other. If this were the case we should expect to find, first, that the organs were exclusively confined to one sex, or, at all events, better developed in it than in the other ; and, secondly, that they put in an appearance either just before or simultaneously with the reaching of the adult stage. Again, in spite of the opinion of many authorities, who maintain that the existence of a sound-producing organ implies of necessity the existence of an auditory apparatus in the same individual, we can only assert again that there is not a particle of evidence that either the large spiders or the scorpions can hear the sounds that their own stridulating organs emit. All the available evidence goes to show that in these groups of arachnids the organ is brought into use when its possessor is under the influence of irritation or fright, exactly as in the case of the rattlesnake's rattle. Like the snake too, both the scorpions and the spiders are furnished with highly developed poison glands, and it is a well known fact in natural history that animals so gifted are frequently rendered conspicuous by bright and staring colors, so that they may not be destroyed by carnivorous creatures in mistake for other harmless and edible species. Nature, in fact, for purposes of protection, has labeled them with her poison badge; and apparently with the same end in view, she has supplied the rattlesnake and the large spiders and scorpions with a sound-producing apparatus, which, when in action, serves as a danger signal to meddlesome intruders, warning them to beware of hostile interference.
On the other hand, it appears from experiments made by Mr. Frank Finn, says Science, that the lizard eats indiscriminately plain colored and bright colored butterflies, the supposed protective coloring not being of use in this case.

THE RIGID SUSPENSION BRIDGE AT LOSCHWITZ,

 SAXONY(Continued from first page.
in effect near the vertex, the hinge was placed considerably above the roadway frame.
As far back as 1861^{*} attention was called by Claus Koepcke, the engineer of the Hanoverian Railway, to the fact that the proposed hinge system was applicable to arched bridges, also; and three-hinged arches were recommended by him. Since then, a number of threehinged arched iron bridges and roofs have been constructed; a notable example being the roof of the Manufactures and Liberal Arts building at the Chicago Exposition. The "Flora" horticultural establishment at Charlotten burg, near Berlin, was the first roof example; and good instances of three-hinged suspension bridges are seen in the 80 meter $=262$ foot foot-bridge at Frankfort-on-the Main, one over the Tiber at Rome and the 244 meter $=800$ foot Point bridge over the Monongahela at Pittsburg.
More recently we have the Towe bridge over the Thames at London, the two side spans of which, each 305 feet $=92$ meters long, are each composed of two unequal sec tions, one 188 feet $=57$ meters and the other 117 feet $=35$ meters hinged at pillars and at center of length ; and the same system is ap plied in Koepcke's bridge between Loschwitz and Blasewitz, over the Elbe, just above Dresden.
Although this bridge was design ed only for ordinary street traffic, it would safely bear a double track steam railway. There is a carriage road 7 meters $=23$ feet wide, and on each side a footway 2.06 meters $=6.75$ feet ; the clear distance be $=6.75$ feet; the clear distance be tween railings being $11 \cdot 12$ meters $=$

In the construction of the bridge there are intro duced many innovations, the principal of which are: (1) Making the pillars part of the girders.
(2) Using springs in the hinges.
(3) Putting the center hinge at the level of the bot om member.
(4) Using cross beams in net-like arrangement
(5) Taking the pull of the bridge with loaded levers. (6) The use of the " bridge brake"
(1) All previous suspension bridges had masonry or iron columns to support the chains or girders; as at Frankfort, Pittsburg, Wheeling, Brooklyn, Niagara,
etc. In some cases (as at Rome, Italy) iron levers were used. But here the pillars form the back frames of the center gir ders. This gives great stability against wind and centrifugal force (as proved during severe equi(as proved ds) and permits equinoctial stors), and perem ex pand and contran and from temperature changes. The pillars are supported by square swing blocks on rollers resting on cast iron bed plates, weighing 7,632 $\mathrm{kg} .=16,850 \mathrm{lb}$. each. The total movement of a pillar between the extremes of minimum load in summer and no load in winter is 7 cm . $=2 \cdot 8 \mathrm{in}$.
The stone piers, which get but slight horizontal pressure from rolling friction, have the maximum vertical pressure of 1,090 tons from each of the four pillars. The bottom members of the side spans are kep in position by toes sliding lengthwise in the pillars, and hence are held against lateral pressure, besides being braked against longitudinal vibration as described under (6). Internal spiral stairs give access to summits and bases, and, in fact, to all parts, of the pillars, for the purpose of inspection,
to Provision is made to attach brackets prolongations of the cross beams, outside of the girders, for the support of two additional footways, should these be demanded by increase of traffic.
The center span is $146 \cdot 68$ meters $=481$ feet long, with a height of 24 meters $=78.7$ feet. The main chain is an inverted arch, the curve of which is an hyperbola having the vertex equation
$\mathrm{y}=1 \cdot 871 \sqrt{40 \mathrm{x}+\mathrm{x}^{2}}$
x and y being the vertical and the horizontal co-ordinates respectively
Each side span is 61.76 meters $=202 \cdot 6$ feet. Their main chains are in circular arcs with 375 meters $=1,230$ feet radius. Their bottom flanges are straight, and rise with a gradient of 0.0225 . The vertex, with average temperature, rises 0.608 meter or with an inclination of 0.0083 .
The side girders are connected at the abutments to loaded levers or anchors, each built in a room 10.5 meters $=34.4$ feet long, and transferring the pull of the bridge through four working points to the abutiments, which it reaches at a depth of $7 \cdot 5$ meters $=24 \cdot 6$ feet below the roadway
The constructive weight of each anchor is 225 tons $; \dagger$ its load is in all about 1,535 tons.
As additional anchorage, the lower anchor frames are placed in niches of the abutments, the weight of which latter would effectually aid in holding down the structure even if the normal bridge load (calcuture, even if the normal bridge load (calcu 82 lb . per square foot) should be trebled. As two railway trains, occupying the whole distance between girders, would load the bridge only to 480 kilogrammes per square meter, or 100 lb . per square foot ; and as in case of widening the bridge to the extra outside footways 2 meters wide, on brack ets, the constructive parts would have a load of only 50 per cent more than at present possible, it may be safely assumed that this bridge is safe beyond all possibility of doubt. The cross beams are laid diagonally, and intersect each other; one of each crossing parr having a height of $115 \mathrm{~cm} .=3.77$ feet and the other of $94 \mathrm{~cm} .=3.08$ feet, so that their flanges are uninterrupted. To counteract the interruption of the webs of the wider beams, there are at each crossing four angle irons. Between every pair of wide cross beams there is placed, to divide the interstice to be bridged by iron sheets of inverted U section, a rolled I beam. To prevent rusting, this I beam rests on bars $2 \mathrm{~cm} .=0.787$ inch square, laid along the middles of the wide cross beams and of the

* See Civil Engineer and Architect's Journal of that year. \dagger All the tons here mentioued are metric, of $2,20.5 \mathrm{lb}$. avoir

SPRING HINGE AT TOP OF PILLARS.
painting, or repairs.
(2) The use of
(2) The use of springs in the hinges was suggested by the bad performance, in common suspension bridges, of pin joints, which have been in some cases found entirely immovable. An instance of this was discovered at the Tetschen bridge over the Elbe, when Fraenkel found all the deformations of the chains, whether by load or by temperature, to take place only by bending of the links, in consequence of which discovery the permissible traffic had to be reduced
Now, while the halves of a rigid suspension bridge Now, while the halves of a rigid suspension bridge
may not be so flexible as a single chain link of a commay not be so flexible as a single chain link of a com-
mon suspension bridge, the friction, if pins were used, mon suspension bridge, the friction, if pins were used,
might cause bending of adjoining parts of the girders; especially as the pins must be of large diameter

The spring link principle * consists in producing at the joints pulling resistances in two crossing directions; hence care must be taken that the combination of stresses by direct pull and by bending do not exceed certain limits. The angular motions in three-hinged arches or in three-hinged suspension bridges are caused more by temperature changes than by load variations.
In this bridge the angular motions of each pillar, both sides of the vertical axis (the motionless point being nearly in the center of height of the pillar, or 12 meters $=$ 39.4 feet) is $\frac{0.07 \mathrm{~m}}{12 \mathrm{~m}}$. $=0.00583$, or about 20 minutes of arc.
The vertical motion of the vertex is therefore (the half span being 73.34 m . or 240.5 ft .) $73.34 \times 0.00583=0.42 \mathrm{~m}$. ; or 21 cm . $=8.3 \mathrm{in}$. above, and the same below, the neutral position. $1^{\circ} \mathrm{C} .=18^{\circ} \mathrm{F}$. change of temperature causes $4.5 \mathrm{~mm} .=\frac{3}{16}$ inch motion at the vertex.
The stress in a spring of the thickness d or the coefficient θ of change of its length, l, in consequence of bending it to an arc, w, may be found from the equation

$$
\rho=\frac{d w}{21}
$$

Now the middle horizontal spring is made
$=886 \cdot 5$ feet, gives 10,316 kilogrammes per meter $(=20,800$ lb. per yard) run

The movable load is estimated as 736 lb . per square

 yard, or $8,968 \mathrm{lb}$. per yard run.The maximum horizontal strain is 826 tons for each girder.
The minimum stress caused by the bridge weight is 1,158.6 tons, or $579 \cdot 3$ tons per girder
This bridge was built for the Saxon government, from the designs of Geheimerrath Koepcke and Mr. Manfred Krueger, the latter of whom was resident engineer. The builders were the Marienhuette firm, of Cainsdorf, near Zwickau.
up of three parts : two side parts each of two plates of 2 $\mathrm{cm} .=0 \cdot 8 \mathrm{in}$. thick and $100 \mathrm{~cm} .=39 \cdot 4 \mathrm{in}$. wide by 165 $\mathrm{cm} .=68 \cdot 9$ in. long, and a middle part made of four plates of the same thickness, $54 \mathrm{~cm} .=21 \cdot 3 \mathrm{in}$. wide and plates of the same thickness, $54 \mathrm{~cm} .=21 \cdot 3 \mathrm{in}$. wide and
$330 \mathrm{~cm} .=130 \mathrm{in}$. long; the cross sectional area being 1,232 sq. $\mathrm{cm} .=191 \mathrm{sq}$. in. ; the greatest tensile stress is therefore

826000 kg .

1232

As the angular motion at the vertex is double that at * Published in the Zeitschrift of the Hanoverian Engineers' Association,

$2 \times 0.00583 \times 8$
 2×330

The coefficient of elasticity being about $2,000,000 \mathrm{~kg}$. per square centimeter $=$ say $28,446,000 \mathrm{lb}$. per square inch, this θ corresponds to a change of tension of $0 \cdot 000141 \times 2000000=282 \mathrm{~kg} .=619 \cdot 6 \mathrm{lb} .$, or to a change of $2 \frac{8}{2} 2=141 \mathrm{~kg} .=309.8 \mathrm{lb}$. greater and less than the stress at the middle position. Therefore the tensions in the horizontal spring at the vertex will vary between $670+141$ and $670-141$; or 811 and 529 kg . per square centimeter or 11663 and 8676 lb . per square inch.
As the spring plates are not riveted together, and hence each one may bend separately, the difference in tensions in the uppermost and the lowermost fibers is only $1 / 4$ of that above calculated; the other $3 / 4$ of the 141 kg . being manifested as a difference of tensions, common to all constructions. There is, then, nothing risky in using springs or plates for hinges, as the materials will sustain the bending without damage, the more so as the maximum temperature changes occur only at long intervals, and the changes caused by load variations are but a small proportion of those caused by temperature changes.

The double vertical plates in the center withstand the shearing stresses caused by loads passing that point. The springs at the abutments have but slight angular motion-that due to flexure of the side span girder by load variations, temperature changes being here without influence.
Similar spring hinges have been applied to small cantilever bridges in Dresden, to prevent lifting of the girder ends on the four points of support.
(3) The vertex hinge has been put below the roadway surface to get the necessary horizontal stiffness by making the roadway framework a nearly straight girder with uninterrupted flanges, connected by the cross beams, which here form the wind bracing. All other suspension bridges have the vertex considerably above the roadway, to get necessary vertical stiffness. Thus in these others the transmission of stresses through the vertex distorts the connecting members and causes injurious horizontal motions of the whole girder.

Besides this, there is difficulty in making the hinges as single links (as in the Thames and Monongahela bridges) with pins, for heavy stresses, as the narrowing of the free space bet ween the girders must be avoided. On the contrary, the total breadth of the plates form ing the two main springs at the vertex of the Losch witz bridge is $2.8 \mathrm{~m} .=8.5 \mathrm{ft}$., and besides these, there are also two horizontal plates under the roadway, connecting the hips of the cross beams ; and a pair of ver tical plates for carrying the vertical stresses caused by moving loads passing the center opening. Thus considerable additional stiffness in the roadway has been obtained. The diagonal cross beams take part of the lengthwise stresses; while they also resist shearing ef fects, such as those caused by the wind blowing un equally on the different halves of the girder These halves of the girder. These connecting springs could only be applied by placing them below the roadway.
(4) Transverse beams crossing each other diagonally so as to make a horizontal lattice which stiffens the bridge against wind and passing loads were recommended as far back as 1860 , in the Hannover 'sehe Zeitschrift ; and in sche Zeitschrift, and in 1861 in the Civil Engineer and Architect's Journal of January 1.
The value of this bracing, together with the position of the middle hinge at the level of the lower flanges, in the Loschwitz bridge, may be seen in the fact that its lateral motion during the passage of thirty-six men keeping step was but $0.45 \mathrm{~mm} .=\frac{{ }^{1}}{5}$ inch.
Although special diagonal bracing may be strong enough statically, the greater changes of length by tension and compression in such special bracion which are of cours ings, which are, of course, weaks, than the cross al flexure and hence the oscillation period. The matter of oscillation of bridges is more appreciated of late years than tormerly, the conviction gaining ground rapidly that horizontal vibrations are as injurious to durability as vertical ones are
(5) Loaded levers to counteract the push of an arch were applied to the street girder of the bridge over the

Elbe at Riesa. The chains or cables of suspension bridges are usually anchored to the natural rock or confined in walled abutments; but there is seldom any precaution taken to permit easy access to all parts of the anchorage system, which last has often been rapidly destroyed by rust. The anchors of the Loschwitz bridge are accessible in every part, so that their coat of coal tar can be readily inspected, and, when necessary, renewed. The anchors bear, in addition to their regular load, the roadway, which covers them, and which is of slag blocks on Monier plate, their ends being inserted into the walls. They cannot give way by any increas

guntry

MUNDAY'S FEED WATER HEATER.

of the bridge load within the limits of the bridge strength.
(6) The bridge brake consists of clamps which oppose to the sliding or vibratory motion of various parts of a bridge a certain amount of sliding friction, regulatable by springs, by bolts and nuts or otherwise, and thus absorbing much of the vibration or other injurious motion. It is most successfully applied in the bridge here described.
At a trial of the stiffness of this bridge a load of steam 150 tons, caused a $=3 /$ inch and a company of soldiers marching over it in step caused scarcely perceptible vibration.

AN ELECTRIC SELF-LOADING CAR FOR STRE

 CLEANINGAmong the many novel applications of electricity one of the latest is that shown in the accompanying illustration, where it is utilized, through the medium
wheels and to the brush, the brush making five revolu tons to one of the car wheels. The brush runs in a ylindrical case which is open at the top and the bot om, and it is arranged to work both ways, a reversible teel deflector being arranged above the brush. The car consists of an upper platform, in the center of which is a shelter or cab containing the motor, and a lower closed section into which the street rubbish is thrown Its lower floor is formed in parallel sections, which are hinged transversely to the car, and by the operation o a lever can be opened for dumping out the refuse. The broom, which ordinarily, as shown in the illustration is the full width of the car, can be extended to cove nearly the full width of the street if so desired.
In operation these cars are used in connection with manual labor, the sweepings of the gutters and sides of the street being thrown toward the center, where they are picked up by the car, which thus sweeps its own section of the road, and also takes the place of the refuse carts.
The car is the invention of A. Jackson Reynolds, of Montreal, who states that when sweeping it travels at the rate of six to eight miles an hour, and that it car ries refuse, snow, etc., out of the city at a cost of $\$ 2.50$ per mile. For removing snow a car specially wide and long is constructed; and it is claimed that by running the car continuously during a snow storm there is no difficulty in keeping a street open. A self-loading car is now being built which will be one of the largest street cars in the world, being $81 / 2$ feet wide and 45 feet in length. It will have a capacity for cleaning 25 miles of street without stopping.

AN IMPROVED FEED WATER HEATER

The illustration represents a heater in which troughs connected with the supply pipes distribute the wate over tubes in thin streams or a thin sheet, within the shell of the heater, with whose upper portion steam inlet pipes are connected. The improvement has been patented by George' I . Munday, Brenham, Texas. On pposite sides of the interior of the shell are secured angle irons forming tracks, on which the tubes are removably supported by means of a supporting frame at each end. as shown in Fig. 1, and in the sectional view Fig. 2, a transverse shaft of the frame carrying rollers which travel on the tracks. The tubes are open at their ends, to permit the free circulation through them of steam admitted to the heater, and extended above the tubes are troughs supported by the end frames, the edges of the troughs being serrated to cause the breaking up and fine distribution of water flowing from them, each feed pipe discharging into transverse troughs. Below the tubes is a wire cloth screen, also supported by the movable frame, designed to receive falling scale, and in the bottom of the shell is an outlet blow-off pipe. When the tubes and trough are to be removed from the heater, for cleaning. an the removal of scale, th head of the shell is taken off and extensions of the angle iron tracks, as shown in Fig. 3, are connected with the ends of the track within the heater, the outer ends of the track ex tensions being supported in any desired manner rihen the whole interio mechanism may be readily drawn out. It is designed with this heater to hea the water as nearly a possible to the temperature corresponding with the boiler pressure, and effect the rapid formation of scale, which may be removed with but little trouble.

> Prof. Wm. H. Brewer contributes to the Yale Scientific Monthly an account of observations during the past 45 years on earth tremors at Niagara Falls. The heaviest vibrations were on either side of and near the Horseshoe Fall. They disappeared in places in the soft shales below the limestone, although they were evident in the harder limestone and sandstones that occur amid these. Passing down along the gorge, the vibrations decreased in in- of an electric car, for sweeping up and carrying off the tensity, becoming too faint to be perceived between the street refuse. The car is 8 feet wide by 25 feet long and 11 feet high. It is carried on two axles, and is fitted with the usual equipment of a trolley car. The brakes and the motor are placed above the wheels. The motor is connected by chain and sprocket gear to the driving

ELECTRIC SELF-LOADING CAR FOR STREET SWEEPING tensity, becoming too faint to be perceived between the suspension bridges, but increasing again on nearing the rapids. Persons living near the falls believe that crystals are more common in the rocks there than elsewhere, the texture having been affected by the jar of the cataract, but Prof. Brewer finds no evidence of this.

nventions.

Mr. Horace L. Arnold, in the American Wheelman, is correct in saying that a great deal has been written to exactly define what constitutes invention. Some very skillful and ingenious minds say there is no such thing as invention, and others advocate the view that the simplest and most obvious combination of old and well known elements is an invention. One view makes nothing whatever an invention, and the other makes anything an invention and the proper subject of a patent in case it has not been "anticipated" by exactly the same combination.
The courts are constantly called upon to decide whether the "subject matter" covered by the claims of a patent is an invention or the mere handicraft of a skilled workman, and sometimes the courts decide that what seem to be really intricate inventions are not inventions at all, or that extremely simple things are real inventions and fit subjects for patents
The point of view seems to be this: If the alleged inventor has done no more than a mechanic skilled in the art might do in the way of meeting the demands of the situation, he is not an inventor, he has not made an invention, and should not have a patent. But if what the alleged inventor has done was a stepping out of the beaten path, and required original thought, which may be defined as either finding new and better answers to old questions, or the first sufficient answer to a new question, then the result of his thought is invention, and the fit subject for a patent.

For illustration, take a cycle frame of the now universally adopted "diamond" pattern, made of tubing. The use of tubing could never have been the subject of a patent, because any skilled mechanic knows that a large hollow thing is stronger and stiffer than a small solid piece of the same weight. But had the "diamond" frame been brought out complete, all at once, by one designer in its present form, that arrangement of frame members would have been an invention, and might have been made the subject matter of one of the most valuable patents ever issued. In fact, the "diamond" design for a cycle frame was of slow growth and the outcome of successive approxima tions. Even so, it seems quite likely that had the man who was first to combine these preceding approximations, and produce ex actly the now universally used form of the diamond frame, applied for a patent, he would have had it issued to him and it might have been sustained by the courts and every cycle made might now pay a roy alty to the lucky Coventry man who, it is said, was the first one to show the diamond frame
I have said that the courts are continually
called upon to decide what constitutes an invention, and some of these decisions are evidence of very clear thinking on the part of the judges presiding. Often several judges sit together on a case, and they are not always unanimous in conclusions; the decision goes with the majority, one of whom writes all the considerations and premises and influencing circumstances which lead the majority of the judges to their decision, and this goes on file and into print as the opinion of the court in the matter. Sometimes where the decision is not unanimous a dissenting judge writes a little dissenting opinion, and that is printed, too ; but the dissenting opinion does not carry weight, although where all the judges concur the decision has a better front.
In a very recent decision it was decided that the direction in which a little hole drilled in cast iron was inclined was a matter of invention, and properly the subject of a patent, even in the face of the fact of previous unintentional use. The invention related to those gas fireplace logs which have asbestos moss on them and look, when in use, as if they were being burned, although the fire is really that of burning gas only. It is desirable that the gas flame should lie close to the cast iron fire logs, and that there should not be a little explosion when the gas is turned off. If the little holes through which the gas comes out of the hollow cast iron fire log to be burned are drilled at a sharp angle to the surface of the log, then the flame does lie close, and there is no explosion at the time of starting or stopping the fire. Yet, as the logs are half round and were laid on a driller table to have several rows of holes drilled in them, it had always been the practice to drill part of the holesinclined and part at nearly right angles to the surface of the fire log. The inven tion claimed lay in drilling all the holes at about the same acute angle to the face of the fire log, with the outer opening of the drilled hole higher than the inner opening, which avoids the explosion and makes the flame lie close to the log, and gives more heating effec for the same amount of gas burned.

At first sight it would seem that this was a very thin invention ; it was shown, however, that it was of com mercial value, as making a better and more economica fire log, and it was held that the previous accidenta drilling of angular holes lacking uniformity of angular direction was merely slovenly work, while the drilling
of the holes all at about the same angle to produce cer-
tain valuable results, and the gaining of these valuable results by this intentional uniform angularity of the gas jet holes, was invention, and to be considered more meritorious because of its extreme simplicity
In general terms, if a new and valuable result is gained, no matter how simple and slight the changes made to gain the novel effect, the courts sustain the patent. It is hard to avoid the conclusion that there was original reasoning used to gain a new effect from very slightly modified well known means, and when as is often the case, the new effect gained by such a slight change in old means is commercially valuable, the patent is almost always sustained.

THE "CLIMAX" FOUNTAIN PEN.

The illustration represents a new fountain pen which forms the subject of two recently issued patents. The pen is designed to write to the last drop of ink, without any liability to leak, and the flow of ink can be easily and instantly regulated to suit the writer or stopped entirely, enabling the pen to be carried point down in the pocket with absolute safety. The chief feature of the pen is that, by means of a nozzle re volving in a plug, the ink duct can be instantly shut or opened, the flow of ink increased or diminished, and all superfluous ink withdrawn from the nib of the pen and stored in cells or basins, where it remains perfectly air bound as long as the pen is out of use. The picture represents a small size of the pen, which is being intro duced by the Climax Fountain Pen Company, of No. 130 Broadway, Brooklyn, N. Y. As may be seen in the broken away section, when the nozzle is turned downward into the plug the ink duct is opened, and the ink is forced into the nib by air pressure; but when the nozzle is turned upward the ink duct is closed, and a reversed suction takes place by which the ink is withdrawn from the nib of both the pen and feeder The feeder is so constructed that, when the flow is regulated, blotting and leaking are impossible, as hardly a drop of ink can be forced out, even by violent shaking. The inside shaft of the feeder has an auto-
that indicates by its position on a lettered dia the direction of the wind at any moment, and this can be seen from within the house. Mr. Jefferson made and recorded his weather observations several time each day, and these were not neglected even during the performance of his most importait and engrossing public duties. In Paris, during a time when his right arm was disabled, in consequence of a fall, his weathe records were made with his left hand. Even during the exciting debate in Congress on the document which he had written, one of the noblest in the annals of the world-the Declaration of Independence-when he wa writhing under the bitter criticisms with which it wa attacked in some of its parts, his observations of tem perature were continued. The record in his pocke memorandum book contains the following entries

PHILADELPHIA, 1776.

For his temperature readings Mr. Jefferson used pocket thermometer

Work Spent in Pressing Pedals.
In a recent communication to the Paris Académi des Sciences, says Engineering, M. Bouny gives particulars of a series of experiments made to determine the power exerted in propelling a bicycle at differen speeds. The method adopted was to take an auto graphic record of the total force exerted on the peda throughout a complete revolution. To this end a disk was mounted on the bicycle crank concentric with the pedal pin. The pedal itself was mounted on s tif springs, and points fixed to it traced curves on the disk already mentioned. If no pressure was exerted on the pedal, these latte curves were simple concentric circles; when however, the rider began to work, the spring on which the pedal was mounted yielded proportionately to the pressure applied, and the curves then drawn showed by their de viation from the circular form the value o the force applied at any part of a revolu tion. One of the pointers in question meas ured the force applied in a direction perpen dicular to the plane of the pedal, while the other showed the pressure applied paralle
matically sliding valve keeping the ink always in fine flowing condition, and the pen, when necessary, may be washed without removing any single part, simply by holding it, point up, under the open faucet. Patents have been granted for this improvement in the United States and Canada, and other patents are applied for in England, Germany, France and Austria.

Thomas Jefferson as Meteorologist.*
The following items are extracted from notes furnished to the editor by the gentlemen named below. Further interesting remarks on this subject will be found in articles by Mr. Alexander McAdie, published in the Popular Science Monthly, vol. xiv, p. 331, and in Weather Bureau Bulletin No. 11
Monticello (in Italian "Little Mountain"), the home of Thomas Jefferson, is on the summit of Monticello Mountain, on the south side of the Ravenna River, in Albemarle County, and three miles southeast of Char lottesville, Va. This mountain, which towers up more than five hundred feet above the general level, commands a magnificent view of all the country to the north and east. The birthplace of Thomas Jefferson, called Shadwell, named after the parish in London where his mother was born, is a couple of miles away.
The general appearance of the Monticello mansion has undergone no alteration or change since Mr. Jeffer son's death. The central portion consists of two stories with a dome surmounting the center; the wings are of ne story and attic
Mr. Jefferson was one of the pioneer meteorologists of this country. He kept daily records of the tempera ture and other important weather conditions during the greater part of his life; he induced others in differ ent parts of the country to make records simultaneous y with his own observations; he collected and charted he results, and drew from them his own conclusion with regard to the character and movement of storms, tc. These conclusions were remarkably accurate, con sidering the meager data at his command for such investigations. Photographs and engravings of Monti cello show on the roof a part of his instrumental equip ment, viz., the wind vane, the construction of which is very simiiar to the modern vane. The vertical rod supporting the vane projects down to the ceiling of the portico, to the lower end of which is attached an
to this plane. The latter is by no means an insig nificant quantity, as all good riders shove their peda forward as well as down. The angle the pedal mad at any moment with the crank was also automatically recorded.
An examination of the diagrams thus obtained showed, in the first place, that there was no absolut dead point, such as occurs with an ordinary connecting rod and crank motion, and, secondly, that there is always some pressure on the pedal during the rise, the negative work due to which has to be subtracted from that done during the down stroke to obtain the ne amount used in propulsion. The experiments wer made at speeds ranging from $105 / 8$ to $211 / 4$ miles per hour the machine being run on a wooden racing track. The results, reduced to even English measures by means of formula of interpolation, were as follows :

Speed.	Work done per Semi-revolution
Miles per Hour.	Ft. lb.
10	18.58
105/8	$20 \cdot 96$
$12 \cdot 5$	33.98
15.0	47.50
17.5	56.75
20.0	$63 \cdot 62$
2114	66.08

It will be seen from the above figures that the aver age pressure of the foot required on the pedal increase rapidly with the speed, being at twenty miles an hour nearly three and one-half times as much as at ten miles per hour. Unfortunately, the gear used is not noted by M. Bouny, and so it is impossible to deduce from the above figures the average tractive resistance of the ma chine at the different speeds. Probably at the higher speeds named a large proportion of the total work done was expended in overcoming atmospheric resistance and the run of the figures might be changed considera bly if the trials were conducted on a roughish road in stead of on a smooth track.

ImPROVED hygiene and sanitation have reduced the death rate in the German army from 6.9 per thousand in 1870 to 2.4 in 1894. During the Franco-German war the French lost 23,400 men from smallpox, while the Germans, who had strictly enforced vaccination for thirty years, lost only 300 men from this disease. Since 1873 only two soldiers have died from smallpox in the German army

Sorrespondence

Dark Meteors

To the Editor of the Scientific American
In Scientific American of August 1 I read, under "Astronomical," the observation of Prof. Brooks at Geneva, on July 22. I have the honor of informing you that the observation of dark meteors passing across the disk of the moon is not at all new in astro nomical records. Already some years before Prof Brooks I discovered the phenomenon on Aprll 4, 1802. This was announced in three papers in the Dutch periodical De Natuur, respectively dated January \boldsymbol{z}^{2} 1893; September 4, 1893; and January 8, 1894.
Recently, I gave two papers on the subject, the flrst entitled "Observation de Météores Hors de l'Atmosphère Terrestre" (Bulletin de la Sociéte Belge d'As tronomie, I, No. 8), May 31, 1896, and the other "Mit teilungen uber Meteore," in the Mitteilungen der Vereinigung von Fremden der Astronomie und Kosmischen Physik, Jahrg. VI, Heft 8, redigiert von Prof. Foerster, director of Berlin Observatory. \dagger
Some elements of the meteor shower observed by me on September 13, 1895, across ths sun's disk have been calculated by Prof. Dr. Y. A. C. Oudemans, director o the Utrecht Observatory.
The above named articles prove undoubtedly my priority on this subject. On the other side the "cosmic meteors," as I called them, have also been observed, on my suggestion, by Dr: A. A. Nyland, with the great Fraunhofer refractor of the Utrecht Observatory, by some other observers, who assisted me, and by one in Dutch India (isle of Lombok)

I am, dear sir, yours faithfully,
A. M. du C. Muller.

Nymegen, Holland, September 2, 1896.

Hunting the Kangaroo.

by grorge b. walbe.

Twenty and thirty years ago the visitor to Australia could see more kangaroos to the square mile than there are jack rabbits to-day, and it was literaily impossible to avoid the countless flocks that swarmed over the whole island. With a good rifle he could take a position on a rock and shoot all day long, until tired of the monotony of the slaughter, or until some "old man kangaroo" became desperate at his killing and decided to turn the tables upon him. In those days men were paid liberally by the sheep owners to kill off the kangaroos, and it is reported that one hunter would kill several hundred a day, and one man is known to have cleared $\$ 4,500$, free of living expenses, in a single year.
The visitor to Australia to-day discovers a decided change in many ways, but not more so than in the comparative scarcity of the kangaroo. He may reside on the island for a month or two and not get a sight of one of these queer looking animals. He is similarly disappointed as the visitor to Florlda who expects to see alligators and diamond-back rattlesnakes crawling about every marsh and lagoon, making life actually langerous and fearful. The conditions which the pioneers in both places met and overcome no longer exist, and both Florida and Australia are so built up and civilized that the visitor must don the rough clothes of the hunter and hie himself to the desolate backwoods, far away from all towns and railroads, if he would find game worthy of his sporting blood
'There are kangaroos in Australia in numbers sufficient to satisfy the most exacting, but they must be hunted up and their favorite feeding places be located by good guides. The sheep herders caused the creatures to be destroyed in such numbers, before they became of any commercial value, that they are now rarely found outside of the "bush." In some of the private parks and large estates a few semi-wild kanga roos are kept, but they are protected so closely by laws that no one ventures to disturb them
About three hundred miles back from the coast, thousands of kangaroos can be found. A trip of one hundred and fifty miles back from Melbourne will take the hunter into a section of the wild country where good sport can be enjoyed. The country abounds in straggling bushes, with very few tall trees or woods to obstruct the travel; but the bushes, while in the open country, are tall enough to make good hiding place for the marsupials. They feed on the grass, roots, and leaves, and when startled by a hunter leap over the
bushes as easily as a rabbit jumps over the tufts of grass.

We left Sydney one bright afternoon with a party of four hunters and two guides, and started for the inte rior to try a week at hunting in the Australian "bush." Hunting small and large game in the various States of the Union and Canada had brought its pleasure in times past, but the novelty of hunting kangaroo in their native " bush" excited more feelings of pleasure and antieipation than we had felt for many years. We
anticipated little danger, although our guides assured

* These dark meteor pasing acroes the sna.

[^0]us that the element of danger was always present in
shooting these wild creatures. Win shooting these wild creatures. We were armed with good rifles, hunting knives, horses, two good kangaroo dogs, and the various accouterments necessary for any good hunt. The dogs were a pecuilar breed of lang in
greyhound. They were much stronger and rougher appearance than the ordinary greyhound, but they were equally as fleet and capable of running down a kangaroo in the open. They were powerful and fierce enough to attack the largest kangaroo, although the esults of the battle were not always in their favor.
Thus equipped for our journey, we took the railroad as far inland as we could, and then started across coun try on horseback. The land was wild and rugged overrun with strange plants and tree growths that attracted our attention by their beauty and oddity Beautiful birds fluttered over our heads, and hissing serpents disputed our passageway. Our guides, know ing the harmlessness of these reptiles, either passed thern without notice or hit them over the head with their strong riding whips.
As we proceeded inland the country became more open, but more wild and desolate. The foot of man seemed never to have traversed these lonely wilds Our first sight of a kangaroo was made on the second day out. While eating lunch in a quiet part of the country, the "bush" around suddenly seemed to be come alive with animals. The heads of some strange creatures bobbed up above the bushes on every side, and a peculiar tapping noise on the turf alarmed us We were on our feet instantly, with rifles in hand, pre pared to meet any kind of strange beast. Suddenly in front of us a succession of kangaroos passed, crossing a narrow opening so that we could secure a good glimpse
of them. Our guides hastily raised their rifles and shot, but the rest of us were too disappointed to do anything. These diminutive creatures, scarcely three feet high, the famous Australian kangaroo! Why, we expected to see animals seven, eight, and possibly ten feet high, and to have our hopes dashed to the ground in this way completely demoraiized our hunting nature Both natural history writers and hunters must have willfully lied when they described the kangaroo, or else our imaginations had stretched the dimensions to an unwonted degree
We were considerably reassured, however, a few moments later, when our guides brought in two of the dead creatures, remarking: "They'll make good eatin' Ever taste paddymelon?"

Paddymelon! Aren't they kangaroo?" we gasped in unison.

Strangers that don't know sometimes call 'em that but they're only paddymelon. We've run across a flock of 'em, an' you can get some good shots at 'em.' This was our first lesson in Australian natural his tory, and our guides gave us further valuable instruc tion before the day was over.
" Now you might be a-callin' this creature a kanga roo,". one of them said toward dusk, as he suddenly hit something on the ground with his whip, and then picked it up. The creature that he had knocked over was not more than a few inches long, but he was an exact imitation of all pictures we had ever seen of full grown kangaroos. The well developed hind legs and tail, the peculiar head and ears, the pouch for carrying the young in front, and the dwarfed front paws, were all there. Magnified about twentyfold, and a perfect kangaroo would be produced.
' No, that ain't nothin' but a kangaroo mouse, and he ain't what we're hunting after no more than the paddymelon."

It may be of importance to mention just here that the kangaroo and the kangaroo mouse represent the two extreme types of Australia's strange animals. Between these two extremes there are many other ani mals with the same essential features and apparently differentiating from each other only by their size. The kangaroo is the largest of the whole class, and next to him comes the wallaroo, then the wallaby, then the paddymelon, a specimen of which we had before us, the kangaroo rat, and the kangaroo mouse. The bush wallabies and paddymelons furnish more general sport to the hunters than the kangaroos, for they are more plentiful and not so timid. They move about the bush with great agility, and resemble shadows more than animals flitting around. It is a true test of one's skill to bring them down. During the next day or two we shot several of these animals, and prepared ourselves for the more exciting sport of kangaroo shooting. The dogs rather despised these smaller kangaroos, and did not offer to chase them unless they felt restive and sportive and needed exercise.
The first kangaroo was sighted on the fifth day out, and he loomed up in the distance so suddenly that we all made an exclamation of surprise. He was five hundred yards away, and our guides informed us that we could not approach much closer without startling him We drew about one hundred yards nearer and then started to get sight on him. The first bullet flew a hundred feet wide of the mark, and the kangaroo was off in an instant with the speed of an express train The next one we ran across we took the advice of our guides and raised the rifle to shoot over the crea
ture, and then gradually lowered it until the distance could be accurately gaged. Instead of being alarmed this, the creature merely looked up each time and then resumed his grazing. But suddenly the distance as properly gaged, and a bullet struck the animal in one of his fore paws.
Such a wound does not by any means handicap the animal in running, but the pain of the wound seemed to paralyze him, for he circled around several time and struggled and rolled upon the ground as if mor tally wounded. The two dogs rushed forward t pounce upon the game. Their deep baying close a hand brought the kangaroo to his senses, and placint himself against a tree he waited for the onslaught The hounds, expecting to find the animal nearly dead plunged recklessly forward, and the foremost suffered as a consequence. With one sweep of his sharp, sickle like hind claw, the old kangaroo nearly disemboweled him. The hound fell over with a yelp and expired in an instant. His companion stood at a safe distance and growled savagely.
At this instant we appeared upon the scene, and see ing so many enemies, the kangaroo suddenly turned and started off at a speed that no horse could attain We raised our rifles and took a flying aim. Two bullets brought the creature to the earth dead.
The hind legs of the kangaroo are powerful weapons One long claw, hard as bone or steel and sharp as a knife at the point, gives the kangaroo an implement that can kill a man or beast with one blow. The front paws are not so strong, but an old fellow has strength enough in them to seize a dog and hold him in a help ess position. When chased into the water they will sometimes seize a dog and hold him under the wate until dead. On land they will seize an eneny and hold him until the hind claws can cut him nearly in two.
They are also good boxers, and when the natives attempt to kill them with clubs they dodge the imple ment with all the skill of a professional pugilist, and unless the man is an expert he may get the worst of the encounter. Quite a number of hunters have been severely injured, and some killed, by attempting to corner a wounded kangaroo when enraged by a bullet wound. It is much better to bring the animal down with the rifle bullet, and be sure that he is dead befor approaching too close.
The fleetest horse cannot keep pace with the large species of kangaroos, but with a iittle tact the hunters are enabled to capture them whenever they are sighted When the creatures are once started on a run, they will not swerve from their course, but continue straight onward, leaping over bushes, rocks, and all ordinary obstacles. The hunters generally station themselves in the line that the animals are most likely to pursue, and then wait until the dogs or the rest of the party start them up. Several flying shots can thus be ob tained, and if one is accustomed to the work he will bring down one or more of the fine creatures.

Exposed Dry Plates on a Tour.

Exposed plates, and how shall we pack them, is one of those troubles always with us when away from hom on tour. Many are the methods which from time to time have been suggested, most of them more or les efficient.
During last summer holidays having used what plates had been taken away, some of Belgium make were bought and used. Upon opening them out in the dark room, the careful manner of packing employed was apparent. Each couple of plates were placed face to face, and wrapped up in thin paper. The comfort of face, and wrapped up in thin paper. The comfort of
handling, both in unpacking and replacing exposed handling, both in unpacking and replacing exposed plates in this manner, was such that this method of
packing our stock of plates when away from home has packing our stock of plates when away from home has been followed with every satisfaction, and can be com-
mended to any in doubt as to how to store them until mended to any in doub
It is simply necessary on taking them out of the slides to dust them, place two face to face without anything to separate them, then wrap in thin brown paper, and so on until the whole numbe: are done. Mark on each package in pencil the subjects the plates have been ex posed on, and any other mark of identity thought ad visable, then put them twelve at a time in the ordinary boxes they were bought in, which may then be wrapped p in stc ut paper and fastened wit $!$ wax or string, and when home again they are ready to be dealt with in th ordinary manner.-The Amateur Photographer.

Forelgn Bodies in the Throat.

The difficulty of removing fish bones and similar ob structions impacted at the lower end of the œsophagus is well known, and various mechanical measures and appliances have been invented to deal with the diffi culty. One of the most simple, however, and, as re ported, one of the most effectual, is to administer to the patient a pint of milk, and forty minutes afterward an emetic of sulphate of zinc. The fluid easily passes the obstruction, and is, of course, rapidly coagulated in the stomach into a more or less solid mass, which on being ejected, forces the obstruction beiore it and so effects its removal.

THE CALUMET AND HECLA COPPER MINE.

by willan p. kibbie.
The Calumet and Hecla stamp mill, the largest of the kind in the world, is situated at Lake Linden, Mich.
There are practically two mills in one, of eleven ball There are practically two mills in
heads each, and having a capacity of 6,000 tons conglomerate per day The metal is found deposited in the rock in all possible forms. The separation of the copper from the rock is effected by passing the stamped rock over a system of jigs, whereby the sand by its less specific gravity is floated off into a teady current of water and the teady rring the hater, and the copper, being the heavier, settles and falls through the sieves. One line of jigs succeeds another, over
which in succession the copper, which has just passed through a previous set of sieves, is made to pass, and the sand, which is sus tained in the water, is carried away by the current of water to the lake hy a system of sand wheels and launders.
The number of jigs and the ve locity of the current are so regulated as to secure the desired separation, with very little loss of copper. The Evans slime table is an important adjunct in copper wash ing; its use in saving copper from the waste, that is, the small parti cles, is pre-eminent.

ORE DOCKS OF THE CALUMET AND HECLA MINE.
ber in a week was 12 feet. The cost of sinking averaged $\$ 25.70$ per foot.
The hoisting plant at the Calumet and Hecla mine is probably the largest and most powerful of its kind in the world. The great Superior engine which operates the hoisting drums at the Calumet branch develops 4,500 horse power. The shaft of this engine is of steel, 16 inches in dia meter, and the balance wheels, of which there are two, are 33 feet in diameter and weigh 40 tons each The engine is run to a speed of 55 revolutions per minute.
The other hoisting engines, of which there are ten, have a horse power of 2,000 to 3,500 each. Five of these are of the triple expansion patterns, and are monuments to the master genius Leavitt
The hoisting drums, around which the wire rope attached to the skips coils itself, are 30 feet in diameter. Electric indicators and bells tell the engineer when to start and stop the motion of the drum. At the Red Jacket shaft of this mine an endless wire rope measuring 9,800 feet conveys the skips loaded with copper to the surface.
From observations taken by the writer in the Calumet mine, it is found that the temperature in creases only one degree in every 250 or 300 feet of descent, and the in crease is barely noticeable in the bottom of the mine, except in some shafts, and even then is not op twenty feet wide and one hundred feet deep, and you pressive, as is claimed.
may form some idea of the openings which the annual product necessitates.
Many persons will wonder how long the mine can last with such a great production. But when they are told that the mine is at present, opened up thirteen years in advance of the stoping, they will cease to wonder. Besides this, they have territory as yet untouched which insures thirty years more at the present rate of production.
The Red Jacket shaft of the Calumet and Hecla copper mine is the deepest in the world. Imagine a great hole measuring $14 \times 221 / 2$ feet inside the timbers, penetrating into the bowels of the earth, straight as an arrow, for 4,900 feet. This shade which has a capacity of four times that of the old shafts, is constructed after the following manner
The first cross cut which connects the shaft is at a depth of 2,106 feet, has a length of 1,553 feet, and inter sects No: 4 shaft at the 36 th level. The second cross cut, at a depth of 2,290 feet, intersects the "lode" at the 39th level, while the third cross cut intersects it again at the 42 d level, at a depth of 2,463 feet. From the latter intersection the levels range 90 feet apart, and afford access to all parts of the mine. Each level has three openings at the shaft proper, which is the main entrance, while on the northwest and south sides the

CALUMET AND HECLA STAMP MILLA.
The exact temperature at the bottom of the Red Jacket shaft when the drilling machines are working is 78 degrees, and when the machines are shut down, and have remained so for some time, the temperature does not exceed 81 degrees.
True, there are places in the Calumet and Hecla mines where the thermometer registers 105 degrees, and even 108 degrees, but this is in the pump rooms at the eighth, sixteenth, twenty-fourth and thirty-third level of Nos. 4 and 5 shafts, and this excessive heat is caused not by the internal heat of the earth, but by the big our inch steam pipe which carries the steam from the boiler house on the surface to the various pumps underground, even to the very last one on the line, 3,300 feet below the surface.
A fact to which some will hardly give credence is that the temperature in these mines is lower in summer than in the winter time.

Pruit as Medicine.

Why for ages have people eaten apple sauce with heir roast goose and sucking pig? Simply because the acids and peptones in the fruit assist in digesting the fats so abundant in this kind of food. For the same reason at the end of a heavy dinner we eat our cooked fruits, and when we want their digestive action even more developed we take them afte dinner in their natural uncooked state at dessert. In the past ages instinct has taught men to do this to-day science tells them why they did it, and this same science tells us that fruit should be eaten as an aid to digestion of other foods much more than it is now. Cultivated fruits, such as apples, pears, cherries, strawberries, grapes, etc. contain on analysis very similar proportions of the same ingredients, which are about one per cent of malic and other acids, and one per cent of flesh-forming albuminoids, with over 80 per cent of water Digestion depends upon the action of pepsin in the stomach. Fats ar digested by these acids and the bile from the liver. Now, the acids and peptones in fruit peculiarly assist the acids of the stomach. Only lately even royalty has been taking lemon juice in tea instead of sugar, and lemon juice has been prescribed largely by physicians to help weak digestion, simply because these acids exist very abundantly in the lemon.-Pop. Sci. Monthly.

The x Rays in a Patent Suit. In an action for infringement recently tried in England, the openings are made with a curve until they reach the plaintiff submitted as an exhibit a "shadowgraph" main drift, at a distance of 175 feet from the shaft proper
The largest number of feet sunk in any one month was $691 / 2$, and in one week $173 / 4$ feet, and the least num-
plaintiff submitted as an exhibit a "shadowgraph" of a box made with the Roentgen rays, to show that
certain fasteners made by the defendants had the certain fasteners made by the defendants had the
same function as those covered by the plaintiff's patent. -Illustrated Official Journal.

Hefining Silver by Electrolysis.

The electrolytic method for refining silver, which was devised by Mobius some time ago, appears to be in successful operation now at the works of the Pennsylvania Lead Company and elsewhere. The process is distinctly interesting on account of the new reatures which it involves. The silver to be refined is first treated by ordi nary well known metallurgical processes to reduce the quantity of other metals pres ent (lead, copper, bismuth ttc.) to at most 2 per cent It is then cast in sheets mea suring $45 \times 25 \times 1.3 \mathrm{~cm}$. and weighing $13-15$ kilos. each. These serve as anodes. The cathodes are formed of thin, rolled sheets of pure silver $33 \times 55 \times 2 \mathrm{~mm}$. in size. The electrolyte is a solution of the nitrate of copper and silver to which $0.5-1$ per cent of nitric acid is added to prevent the deposition of the copper Four cathodes and three anodes are placed in each cell at distances apart severally of 43 mm . The anodes are in closed in muslin bags for the purpose of intercepting the purpose of ind matter undissolved matters which fall from them as the action proceeds. These consist o gold, bismuth, the principa portion of the lead (in the form of dioxide), and a little silver and copper. A sheet of woolen cloth stretched on a frame near the bottom of each cell catches the silver as it is removed trom the cath the cath odes by a mechanically moved wooden scraper. The ants were anxious to run the other heats, in spite of intensity of the current employed is 18 amperes per the weather, but the management declined. The ansquare foot of cathode surface. The silver is collected nouncement of the success of the electric carriages from each cell at intervals of two days, the gold once a week. The silver is washed with water and then melted in graphite retorts capable of holding 560 kilos. each, and is thus obtained of a fineness of $999-999 \cdot \overline{0}$. The residue of gold, etc., after being melted, granulated and treated with acid, gives gold of a fineness of 996-998. In the above process, care must be taken that the amount of copper in the electrolyte does not exceed $4-5$ per cent, as otherwise the silver is not obtained in a pure state -The Electrical Review.

THE PROVIDENCE HORSELESS CARRIAGE RACE
In the last issue of the Scientific American we gave an account of the first two heats run on the Narragansett Park track at Providence, R. I. Owing to a severe storm which swept New England during the race week, the plans of the managers were upset and
tric carriage maae the fastest five miles, covering.the distance in $11: 27$. The prize money was reduced on account of the five heats not being run. The first prize, of $\$ 900$, was adjudged to the Riker Electric Motor Company, of Brooklyn, N. Y.; the second prize, of $\$ 450$, to Morris \& Salom, of Philadelphia, Pa. The contest-

CALUMET AND HECLA SMELTING WORKS.

Electric Farming.

The agricultural department of the Cornell University recently published the results of some experiments extending over a period of six years, upon the effect of the light of the electric arc lamp upon the growth of plants. There were two houses, both of which were exposed to sunlight during the day, and one of which received in addition the light from an arc lamp during a part of the night. The are lamps were inclosed in clear glass globes. It has been observed that the effects of the light of one inclosed in a glass globe are markedly different, the former in some cases proving injurious instead of beneficial to the plants. It was found as a result of these experiments that there was a decided beneficial influence on the growth of . lettuce, and that there can no longer be any doubt as to its advantages in forcing this plant. With seed sown under ordinary conditions, and the young plants placed under the influence of the light after they are well established, will show marked improvements up to a distance of forty feet. One curious thing was noticed, that the effect of the shadow of a beam or rafter cast by the electric light showed plainly on the leaves. It is stated in this report that Mr. Rawson, a fancy truck farmer near Boston, now uses the electric light in the commercial forcing of lettuce He has three lamps of 2,000 candle power each, which run all night. The hothouse covers nearly one-third of an acre. Mr. Rawson finds that he obtains a gain of five days per crop during the winter, which makes a gain of three weeks for the three crops during the winter. The gain from one crop, he estimates, is sufficient to pay the expenses of operating the electric lights during the whole season.

Prof. Bailey's experiments at Cornell confirm those of Mr. Rawson, as he states he finds many plants grow more rapidly when under the influence of the electric light at night. Among these are the daisy and the violet. He is convinced, he says, that the light can be violet. He is convinced, he sats in forcing certain plants.
used in

x Hay Experiments in Japan

We have received from Y. Yamaguchi and T. Mizuno, professors of physics, Daüchi Kōtō Gakkō, Tokio, Japan, an interesting pamphlet containing numerous excellent

THE PROVIDENCE HORSELESS CARRIAGE RACE-THE START.

only one more heat was run. the winners being Mor ris \& Salom; the Riker carriage was only a few yards behind.
The fastest mile was made by the Riker electric car riage, the time beıng 2:13. The Morris \& Salom elec- were witnessed by 5,000 spectators. Our engraving shows the carriages lined up for the start.
half-tone reproductions of good X riy photographs. The text is entirely in Japanese, but the pictures speak for themselves, and indicate a high degree of skill of the Japanese investigators in this new branch of physics.

At a recent meeting of the Royal Meteorological Society

 a paper was read on "Arctic Hail and Thunder Storms," in which the author, Mr. H. Harries, stated that the in which the author, Mr. H. Harries, stated that the storms are unknown in the Arctic regions is entirely storms are unknown in the Arctic regions is entirelyincorrect. He examined one hundred logs of vessels incorrect. He examined one hundred logs of vessels
which have visited the Arctic regions, and found that which have visited the Arctic regions, and found that
out of this number seventy-three showed that hail was experienced some time during the voyage. Thunder storms were less frequent, but were experienced seven months of the year, being most frequent during August.
The Albert Medal of the Society of Arts has been awarded, with the approval of the Prince of Wales, the president of the society, to Prof. David Edward Hughes, F.R.S., "in recognition of the services he has rendered to arts, manufactures, and commerce by his numerous inventions in electricity and magnetism, especially the printing telegraph and the microphone.' The council of the society have awarded silver medals to the following readers of mechanical and scientific papers during the session 1895-96: W. J. Dibdin, for his paper 'on "Standards of Light;" A. A. Campbel Swinton, for his paper on "Roentgen's Photography of the Invisible;" E. W. Moir, M.I.C.E., for his paper on "Tunneling by Compressed Air;" and George Simonds for his paper on "Bronze Casting in Europe."

Observations have been made by Prof. Lloyd Mor gan on instinct in young birds," says Appleton's Popu lar Science Monthly, "with a view to determine how far the activities involved in swimıning, diving, run ning, flying, feeding, bathing, etc., are instinctive or congenital, and how far the definiteness of this and other activities is a matter of individual acquisition Other observations were on congenital and acquired timidity. They indicated that while the performance of the activities in question has a congenital basis, they are perfected by individual acquisition, and that there is no instinctive avoidance of insects with warn ing colors, this seeming to be entirely the result of indi vidual experience. No material support was afforded to the view that the instinctive activities result from the inheritance of what is individually acquired."
Huxley's table on the "Chemical composition of man of the average weight of 154 pounds" was for years the standard, but it has recently been superseded by a new one compiled by the Paris Academy of Sciences, say the Mining and Scientific Press. The table is appended

Elements.	Pound
Oxygen..	11
Hydrogen.	. 21
Carbon.	21
Nitrogen.	. 3
Phosphoras.	. 1
Calcium	. 2
Sulphur.	0
Chlorine.	-
Sodium (salt	.
Iron........	. 0
Potassium	. 0
Magnesiu	0

The late Dr. Brown Goode made the following com parison in a report of the United States National Museum: "There is not a department of the British government to which a citizen has a right to apply for information upon a scientific question. This seems hard to believe, for I cannot think of any scientific
subject regarding which a letter, if addressed to the scientific bureaus in Washington, would not receive a full and practical reply. It is estimated that not less than 20,000 such letters are received each year. The Smithsonian Institution and National Museum alone receive about 6,000 , and the proportion of these from the new States and Territories, which have not yet developed institutions of learning of their own, is the largest. An intelligent question from a farmer of the frontier receives as much attention as a communication from a royal academy of sciences, and often takes more time for the preparation of the reply."

At a recent meeting of the Philadelphia Academy of Natural Sciences, Dr. Charles S. Dolley described a centrifugal apparatus, which he called a planktonokrit for the quantitative determination of the food supply of oysters and other aquatic anımals. By means of its use he is enabled to make a large number of plankton estimates in a day, and thus judge of the characters of given areas of water in connection with fish and oyster culture at different times of the day, states of the tide, varying depths, etc. The method employed is that of the centrifuge, an apparatus which consists of a series of geared wheels driven by hand or belt, and so arranged as to cause an upright shaft to revolve up to a speed of 8,000 revolutions per minute, corresponding to 50 revolutions per minute of the crank or pulley wheel. To this upright shaft is fastened an attach ment by means of which two funnel-shaped receptacles of one liter capacity each may be secured and made to revolve with the shaft. The main portion of each of hese receptacles is constructed of spun copper, tinned. When caused to revolve for one or two minutes, the entire contents of suspended matter in the contained water is thrown to the bottom of tubes properly placed, from which the amount may be read off by means of a graduated scale.

Annual Report of the Commissioner for the Fiscal Year 1895-96

Department of the lnterior,
United States Patent Office
Washington, D. C., September 5, 1896.
SIR: I have the honor to submit the following re port of the business of the United States Patent Office or the fiscal year ending June 30,1896 . RECEIPTS AND EXPENDITURES
Receipts from all sources were.................... $\$ 1,307,09030$
Expenditures (including printing and binding, stationery, and conuingent expenses).... 1,097,368 85 Surplus.

On ACCOUNT OF THE PATENT FUND.	
Jane 30, 1895.........	84,566,757 73
Jane 30, 1896.	209,221 45
Total.	84,776,479 18
Number of applications awaiting action on the part of the office on July 1, 1896 . \qquad	8,943
COMPARATIVE STATEMENT.	

Date.	Receipts.	Expenditares.
Juue 30, 1890	\$1.347,203 21	\$1,081,173 56
Jone 30, 1891.......	11.202,794 ${ }^{59}$	1,145,502 $1,144,134$
June 30, 1893.	1,288,809 07	1.111 .44428
June 30, $1899 \ldots \ldots$.	1,1188,523 18	1,033,9f2 38
June $30,1885$.	1,195,557 090	1,038,166 08 $1,097,36885$

Date.	Applications for Patents, ncluding Reissues, Designs, Trade Marke, Labels, and Prints.	Applications A waiting Ac tion on the Part of the Office.
June 30, 1890........	43,810	6,585
June 30, 1891........	48,644	${ }_{9}^{8,947}$
June 30, 1898..........	43,589	8,283
June 30, 1894.	39,206	7,076
June 30, 1895.......	41,014 45,645	4,927
June 30, 1896	45,645	8,943

Summarizing these tables, there were received in the fiscal year ending June 30, 1896, 41,660 applications for patents, 1,641 applications for designs, 84 applications or reissues, 2,460 caveats, 2,064 applications for trade marks, and 171 applications for labels. There were 22,791 patents granted, including reissues and designs; 1,782 trade marks registered, and 11 prints registered The number of patents which expired was 11,466 . The number of allowed applications which were by opera tion of law forfeited for nonpayment of the final fees was 4,014 . The total recelpts were $\$ 1,307,090.30$; the receipts over expendituesr were $\$ 209,721.45$; and th total receipts over expenditures to the credit of the Patent Office in the Treasury of the United State amount to $\$ 4,776,479.18$.

CURRENT WORK
On the 30th of June, 1896, all but four of the examin ers had their work within one month of date, two were between two and three months trom date. At the close of the fiscal year there were 8,943 applications awaiting action on the part of the office. Very respectfull your obedient servant. John S. Sfymour,
The Secretary of the Interior.
Commissioner.

The Function of Hair.

"A highly interesting paper on 'The Function o Hair,'" writes the Vienna correspondent of the Lancet, "has been read by Prof. Exner at a meeting of the Medical Society. He said that writers have hitherto occupied themselves mainly with speculations on the circumstances which have led to man becoming denud ed of his hairy covering. The hairs, however are not only degenerated organs, but have also to fulfill some unctions. There is a group, such as the eyelashes and the eyebrows, for instance, which are sensorial organs, possessing tactile functions, and, moreover, serve as protection to the eyes. In places where two integumentary surfaces are in contact . . . they act as rollers and facilitate the gliding of the integumentary surfaces on each other. A third function of the hairs consists in the equalization of surface temperature. There is no doubt that the hair of the scalp protects the head against external cold and also prevents the loss of heat through the very low thermal conductivity mingled with them."

National Academy of Design.

The fifteenth annual exhibition of this veteran instiution is to be held in this city on November 23, and closes December 19, next. Only the work of living artists not previously shown in New York or Brooklyn will be on exhibition.
In connection with the academy is the Department of Schools, beginning October 5, 1896, and ending May 15, 1897, where several branches of art are taught by some of the best artists. The president is Thomas W. Wood, and the secretary J. Carroll Beckwith. Of the artists on the council may be mentioned such names as Walter Shirlaw, J. G. Brown, Frederick Dielman and F. S. Church

Prof. Roentgen, the discoverer of the X rays, is a yclist.
A French peasant has made a wooden bicycle in which even the nails are made of wood.
One of the largest bicycle concerns in the United States will adopt the chainless wheel for an 1897 model. A tire has been invented in which feathers are used. It is contended that when a puncture occurs, the first tendency is for the down to be carried up into the puncture by the pressure of the air on the inside.
T. Edge has just broken the English 1,000 mile bicy cle road record by traveling from Land's End to John o'Groat's and back to Forfar in four days nine hours and nineteen minutes. This is fourteen hours better than the previous record.

Part of the Paris horse market has been set aside for a public bicycle market, which will be held once a a public bicycle market, which will be held once a
week. The track used to show off the horses will also week. The track used to show off the horses will also
be used for the trial of the machines. All bicycles sold be used for the trial of the machines. All bicycles sold
in the market will pay a tax of ten cents to the city.
Consular Agent Mertens, at the port of Valencia Spain, reports to the Department of State that the ladies of Spain are taking up bicycling, and he thinks this will help in removing that barrier which prevent them from going out unless attended by some responsible duenna. American wheels are unknown in Spain though an inferior French machine called "L'Ameri caine" and bearing a spread eagle with the United States coat of arms is extensively advertised. There is said to be a good chance for our wheels in Spain, as Germany is barred out by tariff discriminations and the French and English wheels are unsatisfactory.
The bicycle track in Moscow is one of the best in Europe, says the Bicycling World. It is one of the most modern things about the old Russian capital, and is situated on the plain of Hodinsky, where the recent great loss of life occurred. The track is 600 meters, less than three laps to the mile, all of cement, with steep banking at the turns, and a system of electric timing which, indifferently successful at Paris, works like a charm in Moscow. There are more than 4,000 cyclist in the city and two large clubs. The development of cycling in Russia is -wonderful, considering that the roads are horrible-rutty, stony, hilly, and frequently covered with the miserable pave, that despair of European wheelmen.
There is evidence to show that the ball bearing was invented at the works of Messrs. Boulton \& Watt somewhere about the year 1760. Its inventor was John Wyatt, a native of Weeford, near Lichfield. W yatt, it is said, tried hard to solve the problem of cutting files by machinery, but failed. He was more successful with a spinning machine, in which some claim he anticipated Arkwright and Hargreaves, and even more successful with a compound lever weighing machine. Lack of capital led to financial embarrassment, and drove him to Boulton \& Watt's shops, which were then a kind of refuge for inventors in distress. It was there he de vised the ball bearing. For more than a century the ball bearing was practically neglected. A short pamphlet narrating Wyatt's achievements was published by Hamilton, Adams \& Company in 1885.
In the last British consular report from Venice it is said that cycling has spread through the province said that cycling has spread through the province
with wondertul rapidity. The wide and smooth roads which exist in North Italy and which are carefully maintained in a good condition at the expense of the state are covered with cyclists. Bicycles and tricycles of English make are considered the best, and would be naturally preferred, but for the lower prices of machines manufactured in ltaly, or those coming from Austria and Germany. Most people prefer, for economy's sake, to buy the cheaper ones. There would be a field there for low, very light machines at a moderate price, as well as for practical cycle boats or water cycles, of which there are none in use so far. There are no cycles propelled by steam, oil, or electricity, and no horseless carriages in the district. The vice consul thinks that there will be an opening for the sale of machines, and also in establishing lines for the conveyance of parcels and passengers in horseless wagons and carriages. The nuisance of the gongs which youthful wheelinen attach to their mounts has been reierred to in the New York Tribune. A device which has been suggested, if it has not already been adopted by noise loving riders, is a chime of bells, of harmonious tones. If the thing goes much further, the board of health will have to take a hand to protect the nerves of a suftering community. A noise-producing arrangement which is common in some parts of Connecticut and elsewhere, although wholly or comparatively unknown in this city, consists of strips of rubber passed around the diamond frame of a bicycle. The ordinary bands can be used if the front wheel is removed so that they can be put on, or a long strip of rubber, wound around and around, will serve. The strips must be stretched as tight as possible. In a wind the rubber acts as an Æolian harp, giving forth a sound not entirely unmusical. Sometimes it resembles the buzzing of an approaching trolley car, and is a great mystery to those unfamiliar with it, especially if there are no street railway tracks in sight.

WATERBPOUT OFF COTTAGE CITY, MARTHA'S VDNEYARD.

 to my knowledge. mists could be still seen fall ing into the snow-white foaming area below. The duration of this second and most perfect phenomenon of the day -there wer three in all was about half an hour.About twen tyminute after its disappearance a third began to form, gradu ally coming downward from the same clouds, though from a spot a little farthe north; but it hardly reached completion. It is very import ant to note that, in $t h i s$ third case, the ocean below was entirely quiet for time being only disturbed later on, when the same pro cess of conden sation men tioned above caused a simi-
lar downpouring, especially noticeable in the period o retraction. It was soon apparent that the agency causing the spouts had spent its energy; the column was evidently thinner in substance and its formation slower and hesitating. It stopped midway, sending only an attenuated end further, to be withdrawn up ward soon after.

During almost all of the time since the appearance of the first spout there was a heavy rain storm accompa nied by flashes of lightning from the northern and darkest portion of the long motionless stratum of clouds above mentioned.
Cottage City, which had been in sunshine until then was visited by a drenching rain some hours later.
The long duration of the phenomena just described enabled the writer to form a somewhat different opinion of the nature of such waterspouts from what is com monly held. True, I must fall back upon the old (or rather older) explanation that such whirls are caused by two winds striking each other at an obtuse angle. The greatest rotary velocity must be placed at the spot about one hundred feet above the ocean, toward which the cloud matter from above and the spray from below were drawn. As condensation was continually trans forming this cloud matter into water, it stands to reason that by far greater quantities of it were drawn down than was apparent to the eye.
But the spout is from above and not írom below, as a glance at the cut conclusively proves. This also definitaly settles the question as to what part the ocean
by dr. f.c. v. H. vom ranl
About 12:30 noon, August 19, 1896, one of the very dark clouds hovering over Vineyard Sound, between the mainland and Cottage City, was seen to send out a downward and sharply pointed streak of cloud matter, whose funnel-shaped basis above was not at all times visible. After a duration of about 15 minutes it broke and completely vanished. The apparition quickly emptied of their summer residents all the cottages along the Sound and adjacent islands, Nantucket included. No photographs were taken of this first spout,

Shortly afterward a long tongue emanated from the same clouds, and was slowly pushed downward to a point about 100 feet from the surface of the ocean. Its height was certainly a mile, and the band-like shape gradually increased in width. With a glass, slow gyratory movements could be detected, also longitudinal stripes caused by falling water. This cloudburst made the water below, over a surface of many hundred yards, look like a boiling pool. The jumping spray from this was also caught and drawn upward into the whirl toward the downpouring column. This latter, now of lighter color being struck by the sun, was gradually withdrawn upward, evidently thinning and broadening toward its base. With a glass, falling
takes in the constitution of the column; which is practically none. The "boiling as if in a caldron" is not caused by the action of the circling wind, but by the great quantities of falling water. Nor is there a whirlpool action in, nor a rising from, the body proper of the ocean. The way the spray, caught and drawn up, looked at times easily explained to me how this delusion originated
The surprising tranquillity of the clouds shows that such currents of wind need not be of great height, at least not at their borders, where alone such whirls can take place. That the spouts scarcely shifted their position is proof that the velocity of the concurrent winds was almost equal. It is certain that this velocity cannot have been great. Several small vessels in close proximity at the time report that there was a great noise and gusts of wind in the immediate vicinity of the display, while beyond this there was almost a dead calm (Boston Globe, September 1). This latter statement, however, seems to be somewhat exaggerated.
The attitude of the public was almost as interesting an object for observation as the waterspouts themselves. That they would create intense excitement, expressed in various ways, as all unusual occurrences like comets, meteors, eclipses, earthquakes, etc., are apt to do, was natural. Not so easily to be explained are the accounts which some entirely honest people gave afterward in good faith. Positively astonishing were the wonders god faith. Positively astonishing were the wonders

WATERSPOUT OFF COTTAGE CITY, MARTHA'S VINEYARD.
raised so as to produce an electric arc, or lowered, so as to dip into the fused mass; they can also be rotated backward and forward, so as to form a uniform distribution of the heat. The bottom of the furnace is insu lated, and forms the negative electrode; it may either be formed of carbon, or of metal cooled by a powerfu air current. Estimates of the probable working expense are given in the original paper.-The Electrical Review.

Globe Statistics.

A new computation of the population of the globe has recently been made by the French statistician and savant P. D'Amfreville, says the Literary Digest. He figured out a total of about $1,480,000,000$, distributed a follows : Asia, with $825,954,000$; Europe, with $357,379,000$ Africa, with $163,933,000$; America, with $121,713,000$ Oceanica and the Polar regions, with $7,500,400$; Aus tralia, with $3,230,000$; or a grand total of $1,479,729,000$ souls.
In connection with these data the English statisti cian Schooling makes some interesting comments. He states that of every 1,000 inhabitants of the globe 558 live in Asia, 242 in Europe, 111 in Africa, 82 in America, 5 in Oceanica and the Polar regions, and only 2 in Australia. It then appears that Asia contains more than one-half of the total population of the earth, and Europe nearly one-fourth. Africa contains only one ninth, and America only one-twelfth. In Australia th entire popula tion is less than the number o inhabitants in the city of London alone or in the cities of Paris and St. Petersburg combined.

In Europe the number of inhabitants to thesquare mile is 95 , in Asia it is 48 , in Africa it is 15 in America it is 8, in Oceanica and the Pola regions it is 3 in Australia only 1. Ac cordingly, Eu rope contain for each of it inhabitants 2.8 hectares of land; Asia, 5:2 hectares; Afri ca, 17.6 h e.c tares; Oceanic and the Polar and the Polar regions, 84 hectares; Ame rica, $31 \cdot 2$ hec tares; Austra lia, 235.6 hec tares. [A hec tare is equal to
hey had seen with their own eyes, and even more as tonishing was the exaggeration which prompted the description. One can now better understand the origin of many of the natural wonders which are from time to time recorded, and that they are not always the product of diseased or hysterical minds.

The Electric Furnace for Iron and Steel.
In the blast furnace method of reducing iron the metal takes up impurities such as sulphur and silicon and these are entirely removed in subsequent treat ment by the Bessemer or Martin process. The present methods of smelting must hold the field for ordinary rades of iron ; but when purity is of importance, and when special qualities of steel are required, it will prob ably prove advantageous to prepare pure iron by elec rical methods of reduction, and to carbonize this sub sequently. A furnace suitable for this and similar pur poses is described by R. Urbanitzky in the Zeitschrif fur Elektrochemie, vide vol. ii, page 350. It is line with a basic lining, like a Bessemer converter; this is non-conducting and almost infusible, and keeps the ron free from impurities. In the Heroult furnace used at Neuhausen, the positive carbon is vertical, and th material to be used has to be introduced into the na row space between this and the walls of the furnace. It is preferable to have a positive electrode, consistin of four carbons arranged symmetrically about a verti cal axis, and inclined at about 20° to it. These can be
$2 \cdot 741$ acres.]
The yearly increase of population on the globe is about 5 to every 1,000. At this ratio the population of th earth would be doubled every 139 years.
Of every 1,000 Europeans, 262 are subjects of Russia, 139 of Germany, 116 are Austro-Hungarians, 107 French 106 English, 84 Italians, 48 Spanish, 17 Belgians, and 121 of the minor countries.
In reference to the density of population, Belgium takes the lead with 546 to asquare mile, followed by Eng and with 312 , Italy with 263 , Germany with 237 , France with 184, Austro-Hungary with 171, Spain with 90, Rus sia with 49. The average of all the other countries is 47 to a square mile, and the average for all Europe is 96 .
In Asia the $826,000,000^{\circ}$ are distributed in the following manner : China takes the lead with 350 millions, British India with 278 millions, Japan with 40, East Indian Islands with $391 / 2$, French possessions in India with 19, Corea with $101 / 2$, English Burma with $71 / 2$, Persia with $71 / 2$, Asiatic Russia and Turkestan with $71 / 2$, Siberia with $41 / 2$, Afghanistan with 4, Ceylon with 3, Arabia with $21 / 2$, all other parts of Asia with $431 / 2$ millions.
Of every 1,000 Asiatics, 424 are Chinese, 337 are Hin dus (subjects of England), 48 are Japanese, 48 are Indian Islanders, including 23 in the French possessions, 13 are Coreans, 11 are Siamese, 9 are Burmans, 9 are Persians, 9 are Russians, 5 are Siberians, 5 are Afghans, 4 are Singhalese, 3 are Arabs, and 52 belong to smaller nationalities.

Bullets Swerved by Electricity.
A curious phenomenon was recently observed by the committee of the Swiss Federal Rifle Meeting at Winterthur in summing up the results of the practice shooting of the troops. It was found that nearly all the shots fired from the right side of the range had hit the target to the right of the bull's eye, while those fired from the left side had, with an equally singular persistency, hit the left half of the target. The great number of men who took part in the shooting precluded the idea that this singular result could have been due to the personal peculiarities of the soldiers; for while it may be true
that one marksman habitually shoots too high, another that one marksman habitually shoots too high, another
too low or to the right or left of the mark, with a large number of individuals firing at the same target, these idiosyncrasies of marksmanship would be set off one against the other and the misses would be fairly distributed on all sides of the bull?s eye. It became necessary, therefore, to find an extraneous and single cause for the remarkable uniformity with which the bullets
appeared to have been deflected from their proper appeared to have been deflected from their proper
course. The wind could not have produced the effect noted, since, in the first place, allowance had doubtless been made by the riflemen for deflection by aerial currents; and on the other hand, if the wind had diverted the missiles, the deflection would have been in the same
direction on both sides of the range. An examination of the steelclad bullets extracted from the targets disclosed the fact that they had become magnetic ; and this led the committee to entertain the theory that the phenomenon observed by it might have been due to electric influence exerted by the large number of telegraph and telephone wires which run along both sides of the range at Winterthur. Further experiment at the ranges of Thun and Berne proved this theory to be correct; and the remarkable discoveries made at these trials may effect another complete change in military tactics. The following account of one of the experiments is given by the Journal de Génève
"At Thun authorities established parallel with the rifle range, at a distance of a little more that 40 yards, an electric current of 8,000 volts, carried along four steel cables. With a view of tracing the whole effect, paper circlets were placediat every 10 yards. The first experiments were made with the Swiss model rifle of 1889. With this the influence of the electric current was at once apparent. In a distance of 260 yards the bullet took a lateral deviation of 24 yards, and after that the curve of the trajectory was still more marked. The second experiments were made with the Japanese 3 mm . rifle of Col. Yamagata, and they were still more decisive, the bullet being rapidly attracted to the elec-
tric wires and following their course with absolute ser vility. Further attempts were made with artillery The range selected was one of 3,000 yards, and 200 yards in front of the targets, but 40 yards to the side, was placed the electric battery. Every shot was diverted by its influence far to the side of the target-to be exact, the deviation was one of 14 degrees.

The conclusions drawn from these experiments ar that a section of infantry exposed to fire at 300 yard would enjoy complete safety if a dynamo or accumula tor were placed on its flank; a whole company would be in the same security at 500 yards, and artillery fire could be rendered innocuous at 1,000 yards. If these facts are sound, the new small bore rifle is doomed, and we shall have to return to the heavy bullet of lead because it is unaffected by electricity. But to military reformers this will signify a repulse along the whol line."

The facts may be as stated, but the conclusions by no means follow. We should dislike, in case of a fight to be the man running a dynamo that had a weaknes for drawing bullets to it. It would have all it wanted of them, and the attention of the commanding office would be chiefly occupied with detending his dynamo. Besides, if skilled marksmen can allow for the deviation due to the wind, why not for the deviation due to electricity?
It would, perhaps, be premature to assert that the consequence of this discovery will be the doom of the nodern small bore military rifle, with its steel jacketed bullet; for it might be practicable to inclose th eaden missile in hard bronze or some other metal not affected by magnetism. Artillery would probably re main destructive enough on the battle field by the use of explosive shells. It is in naval warfare that the discovery may have the most important consequences n .Conan Doyle's "Stark Munro Letters" the hero is credited with an invention to render a warship immune from the shots of an enemy by placing electric accumu lators at its stem and stern. The idea was to deflec steel projectiles by magnetism, just like the Swiss military authorities have in fact succeeded in doing It would certainly be a revolutionary departure if, in stead of incasing our battleships in heavy bombproo armor, we could encompass them with an impalpable magnetic veil which would compel the great armor piercing steel projectiles to pass harmlessly by.
The discovery, however, will give the military and naval experts a new problem to work out. In passing is worthy of remark how frequently the apparently been followed by the demonstration of their possibil
ity. Phileas Fogg's wonderful trip around the world in eighty days would to-day be a very commonplace performance; and another generation may see Stark Munro's magnetized battleship an accomplished fact Fiction seems stranger than fact only because so smal a part of the truth of science has been revealed to humanity.

Library Circalations.

Those high class weeklies that are in general demand the public libraries throughout the country enjoy circulations" that are of ten beyond the claims of their publishers or the beliefs of advertisers. It has been recently shown that, during eleven days, the six copies f Harper's Weekly were called for and read by 550 people in the Chicago Public Library. In the same period at the same place, four copies of the Youth's Companion were read by 228 individuals and two copies of the ScI entific American by 213 people. If the public libraies of the whole country showed the same proportion f calls for these publications, it will be readily seen that their library circulation alone must run away up into the thousands.
But there is a vast number of weeklies and monthlies, oo, that do not get into the public libraries, for the eason that their intellectual caliber is not high enough. This is an important item which all advertisers might wisely consider-whether a medium is of a sufficiently high standard to find place in the public libraries, be cause, if it is, it is sure of a much larger number of eaders than if it is not.-John Chester, in.Printer's Ink.

New Metals for Coins.

Advices from Washington, D. C., state that experi ments with pure nickel and aluminum as substitutes for the present nickel pieces and one and two cent bronze pieces will be made at the mints by order of Director Preston during September or October. A resolution was passed by the House of Representatives authorizing such experiments. There is some doubt whether the actual adoption of a new metal for the minor coins will be recommended at an early date by he treasury officials, even if the experiments prove suc essful. The objection to a change in any form of coins or notes is the disposition of the public to refuse the old forms and insist upon having the new. This would drive into the mints for recoinage $\$ 14,000,000$ in nickel pieces, which are now in circulation, and $\$ 7,500$,00 in pennies. The advantage claimed for pure nickel, nstead of the alloy now used in five cent pieces, is its greater hardness, durability and distinctness of impresgreate
sion.

RECENTLY PATENTED INVENTIONS.

Railuay Appliances.

Street Railway Switch.-Hugo L. Dallig and Wladyslaw Kryszewski, Jersey City, N. J. This is a switch which may be readily set by the driver
or motorman on a car, according to the direction in which the car is to travel, either along the main track rails or to the side track rails. The invention comprises a pivoted switch point on the under side of which is a segmental rack meshing with a pinion carried by a rock shaft in gear with a second rock shart carrying two arms, whule an arm pivoted on one of these arms nas a
head adapted to be engaged by a roller carried by the head adapted to be engaged by a roller carried by the a headed arm also adapted to be engaged by a roller carried by the car.
Car Cúupling. - Tbomas Galligan, Bradford, Ohio. This invention relates \mathbf{o} couplings of lue Janne type, in which the drawhead has a pivoted
laterally movable knuckle, the coupling beng automati-
eally effected when two cars come together, and the cars eally effected when two cars come together, and the cars being readily unconpied from the side, without it being necessary for the trainmen to go between them. The pivoted knackle has a hooklike latching jaw, and a
spring is adapted to hold the. jaw in coupled engagement. spring is adapted to hold the. jaw in coupled engagement.
The hook nose is slotted and perforated to permit the coupling of ears with a link and pin of the old style, the link being held in connection with the coupling so it will not be lost when not in use.
Car Coupling. - Joseph L. Linou, Narbonne, France. According to this improvement, the
coupling apparatus attached to each end of the car comprises a spring jaw placed horizontally on one slue and a shackle placed vertically on the other side of the ordinary coupling, the shackles being always opposite the cor-
responding jaws when the cars come togetber. The responding jaws when the cars come togather. The
shackles are of such depth as to allow of a certain shackles are of such depth as to allow of a certain
amount of variation in the height of the car. The coapling is automatically effected as the cars come together, and the cars are readily uncoupled from either side.

Electrical.

Electric Railroad. - Cbarles Sill, New York City. This invention provides for dispensing with both the overbead conducting wires and the undergroun 1 conduits which have heretofore been employed
for supplying the carrent for electric cars, and substitutor supplying the carrent for electric cars, and substitut-
ing therefor a conductor placed in a longitudinal duct ing therefor a conductor placed in a longitudinal duct
within the rail. A sectional trolley wire extends in a reccss along the inner side of the rail, the conductor and the trolley wire being normally disconnected from each other and automatically connected as the car parses
along, whereby all sections of the trolley wires are cut out and remand dead except when a car is passing over them. By the construction provided for making connec-
tion between the conductor and the trolley, complete in tion between the conductor and the troliey, complete inthe duct in which the conductor is located.

Advertising Device.-Frederick A. Ruge, Springfield, N. Y. According to this device, a series of incandescent lamps is arranged in fanciful
shapes or torms to attract attention, means being pro vded tor closing the circuits through any desired series of lamps and leaving the others cut out. By this means certain sign may be exhbited for four or five minates,
and after this exhibition the circuit closer will be turned and allese the circutt through another series of lamped showing another sign.

Mechanical.

Pipe Wrench. - Joshua Musgrave William Cook, Agular, Col. This is an lmprovepipe, and provides hor auch construction aroand a pipe, and provides for such construction of the on substantially the entire circumference of a pipe, obviating the danger of cruahing in the pipe. The wrench jaw has a curved serrated inner surface, and on its outer ders on the chain links, each of which has a bifurcated portiou and a stem portion, and is preferably curved on
its inner edges to conform somem its inner
the pipe.
Machine to Hull Coffer Berries. -Afredo D'Costa Gomez, Bucaramanga, Colombia. Beaeath the nopper, from which the berries drop in a
stream, according to this improvement, are two rollers of unequal size revolving in opposite directions at different rates of speed, the larger roller being roughened and the smaller one smooth, a knife separator projecting upwardly between the rollers. The berries are subjected to sufficient crushing or squeezing pressure by the rollers o cause the fibrous hull to adhere to the rongh sarface
of the larger roller, the grains going toward the small of the larger roller, the grains going toward the smail
roller, and the separation being completed by the knife

Paper Making Machine.-George W. Lewthwaite, Greenwich, N. Y. This invention provides yielding perforators for puncturing the felt belts for car-
rying wet pulp while the water is being extracted from rying wet pulp while the water 18 being extracted from
the latter, instead of the rigidly mounted pins heretofore employed, by which the felt is torn or cut. 'The pins, according to this improvement, are supported in a yielding material, such as rubber, held in troughs secured in V shaped longitudinal prooves in a roller provided for each endless felt apron over which the wet pulp is carried.
whereby the pins will pield out of the telt withont whereby the pins will yield out of the felt without siltting
it, and thas preserve the strength and porosity of the felt apron.

Miscellaneouc.
Cash Recorder. - David J. Wilson, Washington, D. C. This is an instrument for use by bank tellers and similar officers, the teller printing in the
depositor's book the amount and date of the deposit and simultaneously printing the amount apon a record strip,
there being also mechanism for calculating the aggregate apon the record strip and printing the sum at the foot.
The book, on presentation, is placed in an The book, on presen tation, is placed in an opening in the
side of the casing of the machine, where a type bar has side of the casing of the machine, where a type bar has two sets of adjustable type, strip holding devices being the book in position to receive the impression from the other set of type, while print
of both sets simultaneously
Bicycle Railway. - William F. Mangels, Brooklyn, N. Y. This invention provides an apgels, Brooklyn, N. Y. This invention provides an ap-
paratus by means of which an unskilled person can safely mount and nde around a track without incurring danger. Within a suitable buildıng is arranged a track,
preerably but little wider than the tire, and having low preferably but little wider than the tire, and having low
side guards and adjacent to the track, at about the side guards, and adjacent to the track, at about the
height of the handle bar, a continuous rail is supported height of the handle bar, a continuous rail is supported
by fixed standards, the top and bottom edges of the rall by fixed staudands, the top and bottom edges of the rall by hangers on an auxiliary frame attached to the bicycle. The frame is light and readily attached to the bicycle, the latter being then securely held in vertical position on
a good track, where it may be propelled with but little a good track, where it may be prop
frictlon by an inexperienced tider.

Portable Fire Escape. - Edward Ruley, Spokane, Washington. This is a device which may be carried in a satchel or in the pocket, and consiste of two metal tapes wound on a pulley having differential sections inclosed in a metal case, a combined suspension and brake device of elastic rod or wire being
wound aroand the enlarged central portion of the pulley and extending below the case for connection with and extending below the case for connection with a
strap, to be attached to the body of the person to be lowered. The friction device acts as a brake to prevent too rapid paying out or the tapes, and this friction may be
increased by manual pressare as desired. The apparatus increased by manual pressare as desired. The apparatus
18 very compact, a case about three inches in diameter commodating tapes afty feet long.
Sash Lock and Operator. - Michael F. Kobinson, New York City To raise and conveniently lock a sash to form any desired opening, for ventilation or other parposes, or to securely lock it when
entirely closed, without using the ordinary weights and entirely closed, without using the ordinary weights and
sash cords, this inventor has devised a construction sash cords, this inventor has devised a construction
which comprises gearing suitably located in a small casing in the side of the window casing and engaging a rack on the sash, a spring operating the gearing in connection with a locking device composed of a clutch,
one member of which is connected to the gearing, while the other member is movable in and out of connection. The locking mechnnimm cannot be interfered with by Cun
Curtain Fixture. - Alderic F. Giouard, Leominster, Mass. This is a fixture which mas be adjasted to any length of shade roller and secured apon the window casing withont the ald of nails or
screws. Brackets carrying adjustable sildes to which screws. Brackets carrying adjustable slides to which
the curtain fixtures may be conventently attached are
frame by means of clamping plates which are brought into firm engagement with the inner faces of the win dow frame throngh cross rods connected by a sleeve, the rods and sleeve having a right hand interior thread at one end and a left hand thread at the other end
MUSICAL Instrument. - Francisco Barrientos, San Juan Bautista, Mexico. This invention relates to instruments played with a pick, and is de aves, producing sounds as if he were playing two in struments. For this parpose a special construction of the instrument is provided, in which a raised stop is arranged on its body laterally of the strings to arrest the pick, the pick being double, and the performer striking the bridge.
Vehicle AXle Spindle and Box.John A. Rumrill, Salina, Kans. The axle spindle, according to this invention, has a socketed stub end and a grooved journal bearing, while the box has hollow bear-
ings spaced by an annular chamber, the improvement regs spaced by an annular chamber, the improvemen also affording means for storing a supply of labricant which automatically feeds itself while it lasts.

Farrier's Knife. - Francis M. Me cartea, San Juan, Cal. This knife has at one end of its thumb screw, the blade having at its end a mud scraper and a hook or pick for cleaning out the seam on the
bottom of the horse's noof, while at the other end of bottom of the horse's noof, while at the other end of
the hanale are pivoted a bleeding knife and a searching the hanale are pivoted a bleeding knife and a searching tool. In the handle are also chambers to receive two lance, and a sounder or probe, and the other constituting lance, and a sounder or probe, and
a hoof pick, a needle and tweezers.
Suction Dredge.-James H. Bacon, Wilmingwon, N. C. This dredge has an open bottom
suction box in which swing oppositely arranged consuction box in which swing oppositely arranged con-
nected cutters that are automatically actuated on dragging the box along the bottom of a waterway. The box ging the box along the bottom of a waterway. The box
valves in its sides actuated from the deck of the dredge, and adjustable stops limit the swinging motion of the cattere.
Applyina Paints or Varnishes. Howard C. Cleaver, London, England. This inventor has devised an apparatus to faclitate the application
of oil paint, fiatting paint and varnish with greater raof oil paint, fatting paint and varnish with greater ra-
pidity, uniformity, smoothnese and lightness than possible with a brush, the paint or varnish being atomiz ed and projected in fine spray by an air blast through an extt orifice, where it is met oy a blast directed acioss the orifice. By this means the paint or varnısh is laid so lightly that a second coat may be applied as soon as the previons one becomes tacks, quickly giving a smooth
surface without brush marks and dispensing with sarface with
bing down.
Wheat Steamer, Hfatrer, etc.Willam H. Reits, Somerset, Pa. This is a devicc for
usc with flour mills, regulating also the feed of the
wheat to the break rolls. The fights of the conveyer are so constructed that the wheat will be carried from posite side, the grain being moistened by steam or water condensation at a point above the conveyer, and the fights bringing the wheat in contact with the steam, while the grains are thoroughly mixed to render them all equally moist. The grains are also thoroughly warmed, the heat serving to maintain the moisture on the exterior
of the grain.
Churn Operating Mechanism. Zachariah A. Taylor, Bridgeport, A:a. For churns!havng a vertically movable dasher, this inventor has devised an operating mechanism consisting of a suitably mounted drive shaft geared with a councries a series of pins adapted to engage an arm on vertically movable cross head, the pins thus ralsing the cross head as the gear is revolved, and the cross head, which is connected with the dasher, beng quickly re urned by means of springs. Owing to the regularity of解 butter is quickly formed. The mec
Jar Clamp.-Frank H. Palmer, Brookyn, N. Y. According to this invention a ring-shaped rame seated on the jar cover has downwardy extending eck or the jar, and on the top of the frame ore which is held a spring rod on which is pulcomed cam with a friction roller in its cam end. By means of the cam lever the clamp is readily applied, the spring rod yielding sufficiently to prevent the cracking or breaking of glass,
Sanitary Pail.-Charles M. D. Baron, New York City. This invention covers an improve-
ment in the construction of a pail on which a patent was formerly granted to the same inventor, greatly lessening or cost of manufacture and providing an airtight covery pail, to be readily secured in place means of the bail. The cover is light and strong and he handle on the bail acts as a locking roller for the cover.

Designe.

Grip for Skirts, etc.-Ella L. Cole, New York City. To hold a belt in close engagement shank adapted to go outside the belt and another depending shank on which are twin spurs or hooks. Note.-Copies of any of the above patents will be
furnished by Munn \& Co. for 10 cents each. Pleas furnished by Munn \& Co. for 10 cents each. Please
send name of the patentee, title of invention, and date seud name of
of this paper.

NEW BOOKS AND PUBLICATIONS

Alaska: Its History and Resources, Gold Fields, Ruutes, and Scenery. By Miner
W. Bruce. I.lustrated. New York:
 Pooper Union. Pp. 128 cention 75 cents
Many want to know about Alaska, what the mach deated country is, what is its climate, its conditions of book, with beautiful illustrations and really attractive text, will excellently supply. There is much that is practical and popular in it, such as the descriptions of the Indians, with their mode of life, with their boats, clothg, etc., all of which is in the line of the most attractive kind of anthropology. The illustrations from photographs are especially good, and say a great deal for the P. M., sptaking eloquently of the long Arctic twilight. How to do Business. By Seymour delphia. Pbiladelphia: P. W. Ziegle \& Company. Pages 334.
This is, in many senses, an up-to-date book, bright original, and full of information not generally found
heretofore in books of this class, Modern methods of banking and making collections; the business in ne otiable papers, stocks, bonds, and other secarities insurance ; importing, exporting, shipping, and warehousing ; margin trading; bneiness correspondence ;
short cuts in figures ; doing business by telegraph, and odern bookkeeping ideas, form the subjects of some of the most important chapters. For a young man wanting to understand how business in general is conducted is the great commercial centers, this book, thoroughly mac ered, affords a " short cut" to a most serviceable stock of information. Its author is Director of the Department of Industry and Finance of the Drexel Institute, each chapter, thus adapting it for use in commercial The Engineering Index. Vol. II. neering Magazine. Pages 474. Price neer
$\$ 4$.

This volume, and the one preceding it, form a classipress for the past eleven years. The work was begun by the Association of Engheering Societies, and is now being carried out by the Engineering Magazine, it being
a Manual of Steam Boilers. Their
By Dr, R H. Thurston Siblev Cul
ege, Cornell University. New York:
John W
Price $\$ 5$.
This is the fifth edition, revised and enlarged, of a well known standard work for technical schools and engineers, designed to be a faing complete, systematic, and scientific treatise, while yet meeting the practical wants of an engineer laying out work. Dr. Thurston is also the author of a "History of the Steam Engine," ing," and other works in this line and for the past quarter of a century has been recognized as one of our lesing authorities in mechanical engineering.

Dusiness and $\boldsymbol{x}^{\text {Personal. }}$

 tisements must be recived at pwolication office as earry a
Thursiay mornino to appear in ine foilowino weec's ien

Marine Iron Works. Chicaro. Catalogue free. Higb grade well drills. Loumis Co.. Tiffn, Oblo.

Indianapolis. Samples free

 Presses \& Dies. Ferracute Mach. Co., Bridgeton. N. For bridge erecting engines. J. S. Mundy, Newark, N Handle \& Spoke Mchy. Ober Latbe Co,,Chagrin Falls, O Screw machnnes, milling macmnes, and drill presses.rbe Garvin Macb. Co., Laight and Canal Sts.. New York. ARents wanted for our carriage shaft bolder. Circular
ree. Sample 6 coc. Butcher Mfg. Co., Cambridge, Mass Macbinery manufacturers, attention 1 . Concrete and ortar mixing mills. Exclusive
ome," 757 Monadnock, Cbicago.
Wet Tool Grinder, Sensitive Drills, for all light work,
especially adapted for Bicycle work. C. N. Cady especially adapted for Bicycle work. C. N. Cady
Canastota, N. Y. The celebrated " Hornsby-Akroyd " Patent Safety O Engine is buit by lue De La Vergne Refrikerating Ma The best book for electricans and beginners in elec
ricity is " Hxperimental Sclence," by feo $⿲$ l. By mail. $M 4$, Munn \& Co.. pabhishers, 361 Broadway y. y. Stay with your job, and with your wages pay install mentif a protiable oilive orcharc. Booklet fre Cal.

CF-Send for new and complete catalogue of Scientifc nd other Books for sale by Munn \& Co.. 361 Broadway,

HINTS TO CORRESPONDENTS. Namer and A d dreme must accompany all letters
or no attention will be paid thereto. This is for our
informan information and not for poblication.
Refrerences to former articles or answers should
 be repeated; correspondento will bear in mind that
Bome answers require not a little research, and.
though we endeavor to reply to all either by lettel though we endeavor to reply to all eithererch, by lettei
or in this departunent. eacch must take his turn.
uy yers wishing to purchase any article not advertised uyers wishimg to purchase any article not advertised
in our columns will be ournished with addresses of
honese

 winice.
marked sent for or labeled.
(6957) W. E. K. says: Will you kindly give me a recipe for preserving cider, in your Notes and
Queries? A. Professional cider makers are now using calcium sulphite (sulphite of lime), instead of mustard and sulphurous oxide gas. It is much more convenient and
effectual. To use it, it is simply requisite to add $1 / 6$ to $1 / 4$ f an ounce of the sulphite to requisite to adids in the cask, first mixing the powder in about a quart of the cider, then pouring it back into the cask and giving the
latter a thorough shaking or rolling. After standing latter a thorough shaking or rolling. After standing
bunged several days to allow the sulphite to exert its full action, it may be bottled off. The sulphite of lime (which should not be mistaken for the sulphate of lime) is a commercial article. It will preserve the sweetness of the cider perfectly, but anless care is taken not to ad too much of it, it will impart a slight sulphurous tast fectly clean, and the corks wired down. A little cinns mon, wintergreen, or easeasfras, etc., is often added to sweet cider in the bottle, together with a drachm or so of bicarbonate of soda at the moment of driving the stopper. This helps to neutralize the acids, and renders the iquid effervescent when unstoppered ; but if used in aces, it may prejudicially affoct the taste.
(6958) H. R. S. says: Will you please publish the receipt for making a flour paste? A. T. A. Richardson, the architect, recommends to every 2 table common moist or brown sugar, and a few drops corro ive sublimate; the whole to be boiled, and continually stirred to prevent getting lumpy, till of the right thicksential oil, as lavender or peppermint.
(6959) J. C. W. says : Would you be so kind as to send me your formula for browning blue prints your valuable paper, at your earliest poaible conveniences A. Immerse the blue print after it is dried in a solution of aqua ammonia containing 22 per cent am.gas, 2 parts; distilled water, 18 parts. Leave the print in this solation from two to four minutes, or until the blue color in a filtered solution of tannic acid water, and plange water, 100 parts. Keep in this solution about twelve hours. If not as dark as desired, intensify by adding to the bath a few drops of ammonia water. Take out after a few minutes and wash thoroaghly. The prints resemble sepia drawings. A greenish tone may be given blue prints by immersing arter washing in a 1 per cent soluion of sulphuric acid.
(6960) W. C. W. sass : Will you please give me receipt for a good wine of coca ? A. This is a French preparation. 1ts strength is about 1 in 30 , and the dose a wineglassful. Coca wine is, roughly speakextract (Extractum Cocæ Liquidum B. P., or Extractum Erythroxyli Fludium U. S.) To obtain the liquid extract, coca leaves are exhausted by percolation (which
differs from either decoction or infnion) with proof
spirit. At the termination of the process the strength
should be adjusted so that 1 ounce $=1$ of leaves. The should be adjusted so that 1 ounce $=1$ of leaves. The
process of percolation is as follows: The leaves are laced in a vessel very like an elongated funnel, closed nto a receiver, and a small tube passes up its outer side and enters it near the top, forming a means of commun cation between the two. Spirit is now poured on the leaves, and the percolator closed. As the percolate
filters slowly through into the reservoir, the disalters slowly through into the reservoir, the dis placed air passes up the tube, and so maintains an eques
librium in both vessels. The virtue of the coca leaves lies principally in the presence of the alkaloid cocaine This, in the dried leaves, is supposed to exist as an nert salt, similar to many of the cinchona alkaloids in
(6961) M. H. R. says: I have a 12 inch reflecting telescope, 22 inch focus. What diameter and trength of concave lens is required to make an amplifier "Barlow "lens to be used with the telescope, to ena nake any difengraphs of the moon? And will make any difference as to which side of the lens is put or tube of the telescope as to where the amplifier can be placed. The nearer the focus the smaller diameter it can be. As to focus, it will depend on how much ampliftcation is wanted. The general size of a Barlow lens is 1 inch diameter and 6 inches focus. If it is correctly made for pnotographing, it will not make any difference (
(6962) H. S. writes: Some weeks ago here was pabished in your weekly an exhaustive article on the heat-resisung powers of diferent materials sutabe for steam boiltrs and pipe coverings. I am in a di. pute as to the map ore deciding. We . relative valne of differt materials. We aive following teets of Mr. G. B. Dumford, of Hamilton, Ont.

Combinati

abeestos and hair felt and chopped straw, A plastic cement manufactured by parties at Troy, N. Y., with $1 / 2$ inch half felt outside. $86 \cdot 6$ Paper pulp mixed with lime putty, 1 inch red with sheeting of wood pul.
Mineral wool cased with wood...
Sharcoal.
Loam and chopped straw sealed with wood
Asbestos.
Coal ashes
Fire brick
Sand.
 567,429
56744
567.542
567.400

inform me how to polish cattle horns. A. First scrape with glass to take off any roughness, then grind some and dipped in the powder, rub them until a smooth face Is obtained. Next polish with rottenstone and linseed oil, and finish with dry flour and a piece of clean linen rag. The more rubbing with the stone and oil, the better
the polish. Trent sand is used in the Sheffeld factories. It is a very fine and sharp sand, and is prepared for use by calcining and sifting.

TO INVENTORS.

INDEX OF INVENTIONS For which Letters Patent of the September 8, 1896 and EACH BEARING THAT DATE. (See note at end of list about. copies of these patents.

Prdvertisements

WOOD or migal worizi

SE-Lathes, etc.
SENECA FALLS MFG. COMPANY. AMERICAN PATENTS. - AN INTER

AMrictas BCP
B.
To be bad at

Bur The ephones That Are Good--Not Cheap Things The Wayne County Telephone Co., Fairfeld. Th. have
purchased and Installed a full . Western" equipment
to take the place of a so-called "renulne Hunnings"
 Hundreds of similar cases may be cited affecting WESTERN TELEPHONE CONSTRUCTION CO. The Largest Manufacturers of Telephones in the $\boldsymbol{U} . \mathbf{S}$.

BICYCLE •• Repair Outfits for Amateur and Workman FRED FRASSE CO.
 HOISTS. ONE MAN CAN HANDLE A TON.
GT Send for Particulars.
BOSTON \& LOCKPORT BLOCK CO. Transits and Leveling instruments.

 The Rivett Lathe Faneuil Watch Tool Co.
Boston, Mass Adopted by all., great un
 "My Well and what came out of it.""
A story by the novelist Frank R. Stockton.
"Your Well and what will come out of it.
Pohlé Kir Lift Pump
The Ingersoll-Sergeant Drill Co.

apollo galvanized rron Some work almost requires Apollo. Any iron will Is there any advantage in using inferior iron?
a for rong work Apollo Iron and Steel Company,

[^1]

Books

$\substack{\text { and } \\ \text { Cid } \\ \text { co } \\ \hline}$

ARMSTRONG'S * PIPE *THREADING
 CUTTING-AFF MACHINES
Both Hand and Power. Both Hand ard Pogeriches
 THE ARSTMSTRONG MFG MO.

CROOKES TUBES AND ROENTGEN'S

 CT 0 do $\stackrel{\sim}{\hookrightarrow} \boldsymbol{\sim}$

 THE NEW are the stand JEPARTURE BELLS ourfe

FOR SALE, choice sites for Factor ies, Foundries, Refineries, Chem ical Works, Lumber Yards, etc and Dwellings in New York City.

Vhev B. WO. Suation is Baltiment
 diat WE UNOERSELI AII!

 , the beat thing that teree OHIO ELECIRIC WORKS.
11 S . Water St.

FOR SALE!

MOTOR COMPANY, Single and Twin Screw Launches.
Motors from 1 to 25 Actual Horse Power. Safest, cleanest and speediest power boat built.
No smoke or smokestack p , boiler. No smoke or smokestack, no boiler. no elec
tricity. No steam or naphtha under pressure tricity. No steam or naphtha under pressure
Run on one pint of gasoline per horse power per hour. No licensed engineer or iniot per
Also Stationary Motors and Horseless Carriages.
 Gurden, New York, during October.
OFFICE AND WORKS, "STEINWAY," LONG ISLAND CITY, N. Y. ACETYLENE APPARATUS.-ACETY

 SUNART'S "VENI, VIDI VICI," sunart magazine suanaiti nin for filuarated cata
logue-2ent tatap.

RUSSIAN PATENTS

MONITOR MARINE GAS ENGINES AND LANEHES
 (8) Tin A.W. FABER

 MUNN \& CO., 361 Broadway, New York.
The HARTFORD, No. 2
Has an Automatic Platen Lift
An Automatic Switch for ribbon movement, feeding both ways Automatic Lever Locks
Alignment that is positively permanent
Compared with the Hartford, no other machine is up-to-date We solicit cash trade and can give such customers A GAIN 0 50% over what is offered by competing houses in our line THE HARTFORD TYPEWRITER CO.
 The Typerviter exchange, $1 \frac{1}{2}$ Barclay St., New York 56 Adams St., Chicag 38 Court Sq., Boston 818 Wyandotte Street, Kansas City, Mo. We will save you from 10 to 50 per cent. on Typewriters
of all makes.
Send for Catalogue.
DIXON'S Write the Smothest and
Lant the hongest.
Mention Scientiric Am Erican
 BICYCLISTS' TAPERING RUBBER PLUGS
 are the ideal tire menders
sip or be puncured ane
live ac. stamps for assorted

AUTOMOBILE CARRIAGES: THE

 a dream of comfort

 chairs. Illus. hatalaocouplining fee.
P. C. LEWIS MFG. Co.
Box 12. Catskill. N. Y. Catskili, N.
 THE SUBMERGED PIPE LINE ACROSS

How to Build a Home

Those intending to build will find the very best practical sug-
gestions and examples of Modern Architecture in the handsomest
gestions and examples of Modern Archit
Architectural Magazine ever published
"The Scientific American Building Edition.
Each number 18 111ustrated with a Colorea plate and numerous
bandomee eneranings made dirirect from photographs of builinings.
tonetor
 owners' ${ }^{\text {and }}$ 'architects' names and addresses. The 'illustrations
include eseashore, southern, colonala and city residences, churches, schools. public buildings, stables. carriage houses, etc.
All who contemplate buildng, or improvine homes or structures All who contemplate buildanf, or improving homes or structures
of any kind, have in this handsome work an almost endless series of

[^2]For sale at all news sands.

GGAHE IS DEAD

PROPOSALS.

FISH

 CONTRACTS WANTED.

 Experimental \& Model Work
 Experimental \& Model Work SARBORUNDUND MANUFACTURE OF STARCH FROM

Twelfth Edition Now Ready.
the scientific american CYCLOPEDIA OF Receipts, Notes and Queries

$$
\text { 12,500 RECEIPTS. } 708 \text { PAGES. }
$$ Price, $\mathbf{5 5 . 0 0}$ in Cloth: $\mathbf{~} 6.00$ in Sheep; $\mathbf{~} \mathbf{6} .50$ in Half

Morococo, Postpaid.

Tested and True.

The Easient Running wheel in the World.
THE BLACK MFG. CO., ERIE, PA. hale a century of cycles -an

Address, 50 th Street and Lancaster Avenue, PHILADELPHIA, U. S. A.

DAMON-PEETS CO., 44 Beekman St., N. Y WEBSTER GAS AND GASOLENE ENGINES

At $\frac{1}{4}$ Prichzavezwse
PREISTMAN SAFETY OIL ENGINE

(TYO ESTABLISIIEI 1545 .
The Most Popular Scientific Paper in the World Oniy Siven a Year, nehunnz Postage.
This widely circulatell and splendidy illustrated paper is published weekls. Every number contains six-
teen pages of useful information and a larke number of original engravings of new inventions and discoveries, representing Engineerıng Works, Steam Machinery,
New Inventions, Noveltes in Mechanics, Manufactures, New Inventions, Novelties in Mechanics, Manufactures,
Cluemistry, Flectricity.Telegraphy, Photography, Archiecture, Agriculture, Horticulture, Natural History, tc. Complete list of Patents each week.
TIFIC AM ERICAN will be sent for one year of the SCIENpostage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of Three $\mathbf{W o l l a r s}$ by
the publishers; six months, 81.50 ; three months, 81.00 . Cluhs.-- Special rates for several names, and to Post masters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside of envelopes, securely. sealed, and cnrrectly addressed,
seldom poes astray, but is at the sender's risk seldom koes astray, but is at the sender's risk. Address
all letters and make all orders, drafts, etc., payable to all letters and make all orders. drafts, etc., payable to
MUNN © CO., $\mathbf{3 6 1} 1$ Broadwas, New York.

This is a separate and distinct publication from THE SCIENTIFIC Americas, but is uniform therewith in of engravings, many of wnich are taken from forelgn papers and accompanied with translated descriptions. The scientific american Supplement is publisbed weekly, and includes a very wide range of contents. .
preserts the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geology. Mineralogy, Natural History, Geography Archæology, Astronomy, Chemis-
try, Electricity, Light, Heat, Mechanical Engineoring Steam and Railway Eneineering, Mining, Ship Building, Marine Engineering, Photography, Technology. Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Riography. Medicine, obtainable in no other publication. and Manufactures at bome and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPlement. for the United States,
Canada, and Mexico. $\$ 5.00$ a sear; or one copy of the SIIENTIFIC AMERICAN and one copy of the SUPPLEMent, both mailed for one sear to one address for 87.00 .
Single copies, 10 cents. Addiess and remit by postal Single copies, 10 cents. Addiess and remit by postal
order, express money order, or check,
MUNN \& CO., $\mathbf{3 6 1}$ Hroadway, New York.
giluitang Elition.
The Scientific American Building Edition is
issued monthly. 82.50 a year. Single copies, $2 j$ cents. Thirty.two large quarto pazes. forming a large and eplendid Maeazine of Architecture. richly adorned with
elegant plates and vtber fne engravings. illustrating the most interesting exampies of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number
of a variety ot the latest and best plans for private residences. city and country, including those of very moderate cost as well as the more expensive. Drawings in Plans. Descriptions, Locations, Estumated Cost, etc. The elegance and cbeapness of this magniffeent wo bave won for it the Largest Circulation of any
Architectural publication in the world. Sold by all

Export Fdition of the ScIentific american, with which is incor-
porated "LA America Cientifica e industrial," or Spanish edition of the SCIENTIFIC AMERICAN is pub-
lishod monthly, and is uniform in size and typoraphy with the Scientific American. Every number contains about 50 pages, profusely illustrated It is the finest scientifce, industrial export paper published. It circulates throughout Cuba, the West Indies, Mexico, Cen-
tral and South America, Spain and Spanish possessions - wherever the Spanish language is spoken. The Scientific american Export Edition has a large guaranteed circulation in all commercial places throughworld. Single copies, 25 cents. foreing trade may bave large and handscmely displayed announcemen s publes MUNN \& CO. Publishe

PRINTING INKS

[^0]: in, on May 28, 1896 Prot. Foersfer to the Astronomical Assembly at Be
 in, on May 28, 1808

[^1]: O:500

 MILLSTONES Grind Everything.
 FACTORIES. DIAMOND hardness.
 Always Sharp. Requires No Dressing. ETURTE Sond for Circular. CHEAP as Buhr.

[^2]: Puelished Monthly. Subscriptions $\$ 2.50$ a Year. Single Copies 25 Cents.

