
a Weekly Journal 0f practical information, art, scievce, mechanics, chemistry, and manufactures.

NEW YORK, AUGUST 15, 1896.

THE BATTLE SHIP INDLANA AT ANCHOR IN NTEW YORK BAY.

THE INDIANA-FORWARD TURRET, LOOKING AFT FROM THE BOW.-[See page 156.]

Frientifir smmerican．

ESTABLISHED 1845.
MUNN \＆CO．．Editors and Proprietors． published weekly at
No． 361 BROAD WAY，NEW YORK．
TERMS FOR THE SCIENTIFIC AMERICAN．
 Remit by postal or express money order，or by bank draft or check．
MUNN \＆CO．， 661 Broadway，corner of Franklin Street，New York．

The scientific American Supplemen （Established 1896．）
is a distinct paper from the ScIENTIFIC AMERICAN．THE SUPPLEMIENT
is issued weefly．Everv number contains 1 octavo pages．uniform in size
with SciENT

Building Edition of Scientific American． （Established 1885．）

Export Edition of the Scientific American （Established 1898）

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No． 1076.
For the Week Ending August 15， 1896.

II．FDacticai notes on preparation of difificult specimens．PUTNAM．

THE METRIC SYSTEM OF WEIGHTS AND MEASURES．

There is a question being agitated just now in Eng－ land which is of great commercial importance to that land which is of great and may become so，at an early day，to the country，and may become so，at an early day，to the
United States．We refer to the movement in favor of United States．We refer to the movement in favor of
adopting the metric system of weights and measures in place of the cumbersome and confusing tables at present in use．The agitation has progressed as far as the in－ troduction of a bill before Parliament，making the use of the system compulsory after a specified length of time．It has met the opposition which was to be ex－ pected from a people who have a strong sentimental attachment to the usages and traditions of the past， and，in spite of the many economies of time and labor which would be realized by the introduction of a deci－ mal system，it will probably be a long while before the mal system，it will probably be a long while before the
Englishman exchanges yards for meters and pounds for kilogrammes．
The arguments in favor of the metric or decimal sys em are too well known for repetition，and the incon venience of the English system of reckoning money is forcibly impressed upon the American tourist when， upon landing at Liverpool or Southampton，he has to forego cents and dollars in favor of pounds，shilling and pence．
If the question were simply one of sentiment，or even of convenience，it is likely that the foot and the yard，the pound and the hundred weight，would continue to im－ pose themselves upon the workshop and the mart inde finitely ；but fortunately for England，the United States and the world at large，there are questions relating to the foreign trade of Great Britain which are likely to be the controlling factor in the case，and lead to her adoption of the modern and more convenient system．
It seems that many of the foreign countries with which England carries on an extensive trade are using the French system．As matters now stand，the dimen sions，weights，etc．，of the machinery which is purchased by the South American states，for instance，is expressed in terms of measurement with which they are not familiar． It would seem at first thought that this difference of It would seem at first thought that this difference of
measurements was a small matter，requiring only a few minutes＇calculation ；but it appears to have proved the decisive factor in German and English competition， these foreign countries in many cases preferring to pur－ chase their machinery from a country which expressed its dimensions and value in familiar terms．Of course， the German manufacturers have not been slow to make the most of this slight difference in their favor；and a large part of the decrease in English foreign trade with certain countries is attributed by the manufacturers directly to this cause．
If this be true，and there is no reason to doubt it we may look for an early adoption of the metric sys tem in Great Britain；for sentimental and conservative as they may be，they are too practical a people，es pecially in all matters affecting their supremacy in trade，to allow a long established but cumbersome custom to prove a stumbling block to the continued advancement of their commercial interests．
Side by side with the many admirable institutions which our forefathers brought over from the mother country，there are some that $\}$ had better have been left behind；and conspicuous among these is our present system of weights and measures，which is practically alive to the disadvantages of the system，because side alive to the disadvantages of the system，because side
by side with it we are using a decimal system of coin－ age，and the defects of the one are emphasized by the speed and convenience of the other．
The arguments in favor of the metric system for England are equally strong，or soon will be，as applied to the United States；for although our foreign trade does not approach the volume of British foreign trade，
it is likely that in the course of time it will do so，and even exceed it．Prudence would suggest that we should avoid the dilemma in which the English manu－ facturers find themselves，by making an early change to the metric system．Our present weights and meas ures have no special claim upon our regard．They are ours by inheritance，not by choice，and any temporary inconvenience which might be experienced in making the change would be amply compensated by the sub sequent saving in time and trouble，and the avoidance
of the serious handicap to which we shall otherwise be subjected in the markets of the world．

New York Rapid Transit．

Rapid transit in New York City has taken an impor tant step forward in the decision of the commission to reject the plan of Messrs．Gould and Sage for the exten sion of the elevated railway system by a system of sur face roads．The commission announces that it has no power to authorize the Manhattan Elevated Railroad Company to build a surface road north of the Harlem River，as they proposed to do at a recent meeting of the Commission．At the same time the engineer of the board was instructed to draw up plans，at as early a date as pussible，for a system which will be practically the details of which will be found in our issue of August 1 ；the chief difference being that the limit of cost is
put at $\$ 30,000,000$ in place of the $\$ 26,000,000$ mentioned in the engineer＇s report．As the figure represents only 60 per cent of the limit imposed by the law，there can be no objection to the scheme on the ground of cost ： and the fact that the elevated road＇s proposal is re－ jected very much simplifies a question which ought to secure the support of all who have the welfare of the metropolis at heart．

$$
\begin{aligned}
& \text { Palladium Toning. } \\
& \text { BY A. A. KELLY AND H. HUMLY. }
\end{aligned}
$$

We have recently been making a few experiments as to the suitability of this member of the platinum group for toning silver prints．The salt that we found to be most useful for this purpose was the chloro－palladinite of potassium，represented by the formula $\mathrm{K}_{2} \mathrm{PDCl}_{4}$ ．This salt，when combined with citric acid and sodium chlo－ ride in the following proportions ：

Potassium chloro－palladinite
Sodium chloride．
Sodium chlorid
Citric acid．．．．
Citric acid．．．．．
Distilled water

.5 grains .50 ＂ .50 ＂

yields a series of tones ranging from sepia to black which are far softer in effect than anything of the kind that can be obtained from a platinum or gold toning that can be obtained from a platinum or gold toning
bath．When ammonium molybdate is substituted for the sodium chloride in the above mentioned bath a fine chestnut brown color will be obtained．
Prints toned in the above bath are to be fixed in the usual hypo bath，the only extra precaution necessary to observe being that the prints should be thoroughly washed for at least fifteen minutes between toning and fixing．If this be omitted，they will be hopelessly stained by a deep yellow compound of palladium，which is formed when a salt of this metal comes into contact with hypo．To insure even toning the prints should always be washed for a few minutes prior to being im－ mersed in the toning bath
An objection that will probably be raised against this process is the comparatively great expense of palla－ dium as compared to gold ；and another，perhaps，that the particular salt of palladium mentioned is difficult to obtain commercially．The first objection will dis appear when we remember that a bath made up with the palladium salt will tone at least twice as many prints as a bath containing an equivalent amount of gold，and，at the same time，that while gold chloride costs 1 s ． 9 d ．per tube of 15 grains，the same quantity costs 1 s ．9d．per tube of 15 grains，the same qual
of chloro－palladinite will only cost a penny more
As to the difficulty of obtaining the chloro－palladinite， As to the difficulty of obtaining the chloro－palladinite，
this should not be a serious obstacle to any amateur this should not be a serious obstacle to any
who possesses a slight knowledge of chemistry．
In brief，the process of preparing it is this：Take 1 drachm of palladium chloride and dissolve it in half an ounce of pure hydrochloric acid，then 50 grains of chlo－ ride of potassium is taken and dissolved in half an ounce of distilled water．The two solutions are then mixed together and evaporated to dryness on a water bath－a piece of apparatus that may be easily extem－ porized by taking a 4 pound golden sirup tin，half filling it with water，and placing an ordinary saucer on top in place of the lid．The solution to be evaporated is then placed in the saucer and the whole apparatus is tood either on a spirit stove or on a tripod above a Bunsen burner，and the water allowed to boil until the solution in the saucer dries up．The residue on the saucer will be the chloro－palladinite of potassium，and is in the form of a brown crystalline powder．
The palladium chloride may be purchased in quan－ tities of 15 grains and upward at most of the big dealers in apparatus and chemicals at about 13s．per drachm， from which the cost of the finished chloro－palladinite works out at about 1s．10d．per 15 grains．
In conclusion，we think that anyone who follows out carefully our directions in trying this process will obtain very satisfactory results．－Photographic News．

Testing Quicksand．

Suppose we take a certain quantity of quicksand， dry it artificially，and then try to make it into quick sand again．Put it into a box and pour water on it carefully．Instantly the water is soaked up，and if we measure the volume，or better，the weight，of the sand we shall see that it takes up a quantity of water that measures 30 ver cent of its own volume，or 20 per cent by weight．The rest stays above the layer of sand． If we now pierce a little hole in the bottom of the box， we shall see pure water run out；the sand forms a kind of immovable filter．Also by turning the box upside down we see the sand keep its form like a stopper．It follows from this experiment that we cannot obtain quicksand in this way．We must reverse the condition of the experiment．Let us put the water into a vessel and sift in the dry sand in a thin stream，while shaking the vessel lightly．Then we shall get the thick but easily flowing compound known as quicksand．That the mixture may keep its mobility two conditions are necessary：1．The quantity of water contained must not be less than 21 per cent by weight． 2 ．The whole must be continually though lightly shaken．If we in－ crease the proportion or interrupt the agitation for an instant，the mass settles down，retaining about 20 per cent of water，while the surplus，if it exists，rises to the top．－La Nature，Paris．

The Making of Mammoth Cave

Hardly any other cavern has been so repeatedly decribed as the Mammoth Cave of Kentucky. Its bibliography includes more than 400 recorded titles of books, pamphlets, magazine articles and excerpts from scientific proceedings. Among this mass of literary material there is a guide manual and map, published about fifteen years ago by the writer of this article, and recognized as of standard authority by the managers of the cave. The time has come for a new manual, and in preparing it I have gone over the ground again, with the expert co-operation of Dr. R. Ellsworth Call. Between us every avenue, room, pit and dome of the vast cavern has been re-explored (with one or two exceptions), there being more than 200 in all. Among the many things to which our attention was directed was the vexed problem of cave making. Almost every writer, popular or scientific, mentions two causes as particularly active; namely, the disturbance of strata by earthquakes and the grinding force of pebbles and sand by whirling water. Our conclusion is that neither of these agencies had much to do with making the Mammoth Cave.
Limestone caves form a class by themselves, unlike those in lava, basalt, granite or sandstone. But they also differ greatly among themselves. Some of them have undoubtedly been subjected to repeated seismic action, like the fractured and cemented rocks of Virginia; whereas the limestones of Kentucky are remarkably homogeneous, and show hardly any signs of disturbance from their primitive condition. The entire region has been carved into its present shape by simple erosion. Imagine a vast plain covering fully 8,000 square miles, slowly and gently uplifted, and meanwhile subjected to the chemical and mechanical action of air and water; and the result would be such an area as that in the heart of which Mammoth Cave and many similar caverns are found. The surface now is undulating, with thousands of "kos, and sink several hundred feet high, often in the shape of symseveral hundred feet high, often in the shape of sym-
metrical cones, left by the wearing away of the weaker metrical cones, left by the wearing away of the weaker
rocks, the original strata being undisturbed even to rocks, the original strata being undisturbed even to
the very apex; and the latter being oval depressions of various sizes, without inlet or outlet, except through funnels communicating with underlying caverns.
On leaving the Louisville \& Nashville Railroad, at Glasgow Junction, we are in Edmondson County, with its 4,000 sink holes and 500 open caverns-a cave hunter's paradise, only imperfectly explored and invitruns to Manmoth Cave, and passing several rival attractions, we skirt the margin of Eden Valley, adorned by fertile farms that are flanked by the virgin forest. This, instead of being a true valley, is really an enornous sink holes, probably due to the falling in of some immense cavern. Beyond it we soon approach Mammoth Cave and its associated group of grottoes, all drained into Green River, which is the only openly unning stream in all that region.
In general terms, the Mammoth Cave may be described as a congeries of caves and grottoes of various sizes and levels, whose walls and floors have been worn thin and finally broken down, thus making one vast labyrinth. The explorer cannot tell to what huge chambers he may be admitted by some small aperture. And this is one thing that makes even a tentative sur vey difficult and unsatisfactory, as compared with a similar survey of a surface area.
The occlusion of some of the large avenues is interesting and instructive. Wherever this occurs it shows a falling in of the roof, with a strong presumption that the passageway extends beyond the mass of debris. The original entrance to Mammoth Cave was through what is known as Dixon's Cave, which proceeds with dimensions of surprising magnitude for 1,500 feet, and then abruptly ends in a pile of rocky fragments mixed with clay, making a hill about a hundred feet high. Shortly beyond this is the present entrance, which is plainly due to a breaking down of the cavern roof. Following the main cave for perhaps two miles we reach the cataracts, where, at times, the water descends in great volume and force. Just beyond them the roof has been crushed downward by the superincumbent weight, showing the strata in sweeping reversed arches -the only place in this cave where such a phenomenon is observed. Going on through several grand enlargements, one of which as measured is 500 feet long, 300 feet wide and estimated to be 130 feet high, we see myriads of rocky fragments, by many supposed to have been due to the action of earthquakes. But as the strata overhead show no signs of fracture, even where the rocky canopy covers two acres by one block of limestone, as in the great hall just mentioned, we explain the fallen fragments wholly by aqueous agency. The main cave ends in an occlusion of debris. A similar mass is found at the end of the Audubon Avenue, and others appear elsewhere. The fact that the limestone from which the cave is excavated is overlaid by sandstone accounts for the paucity of stalagmites. as compared with the neighboring White Cave, and many
plain the bigness of Mammoth Cave. It is big because never obliterated by the causes
destroy subterranean passages.
Pits and domes played an important part do so, in the making of Mammoth Cave. It understood that these terms are identical

Vertical shafts seen from above are called pits, but domes if seen from below. Following Dawkins, Shaler and other eminent authorities, we have been accustomed to re gard these as irregular tubes cut down from the highest to the lowest level, by whirling water, using pebbles and sand for teeth. But we are now convinced
that this theory is untenable. Were it correct, the that this theory is untenable. Were it correct, the pits should be wider at the top than at the bottom; but in every case it is otherwise. A small crevice five feet across may expand into a dome several hundred feet in diameter. There is water in most of these shafts, but it trickles down the sides, or flows along the floor, and not a sign appears of its having ever been "whirled about with pebbles for teeth," as is stated by Prof. Shaler. The grooving is invariably vertical, with no marks of boring, drilling or grinding. We examined minutely many small domes formed on exactly the same plan as the larger ones. In every instance their arch was solid, except for the narrow aperture through which water gently flowed. On the floors of some of them were pebbly basins, but in others not a pebble or a grain of sand was visible. All the great pits extend down to the drainage level, and contain standing no whirlpools
no whirlpools.
Our conclus
Our conclusion is that the typical domes have re sulted from simple solution by the agency of acidulated water. In proof of this we found, in Gorin's Dome, Lucy's Dome, and elsewhere, masses of limestone, both fallen and in place, that seemed solid and firm, but that crumbled to fragments or yielded like putty under the hand. This, indeed, is such an element of danger that Manager Ganter had his men go to the summit of Gorin's Dome with sledge hammers, and break down the edges until they came to sufficiently solid rock to support the timbers of the new bridge he is building there, and from which one of the finest cave scenes in the world will be made visible to the tourist. On inspec tion, the limestone is found to be highly oolitic, hence its friability when the round, egg-like particles of which it is composed are set free by the dissolving of the cement that holds them together. These particles, roll ing down with the trickling water, would naturally carve just such vertical grooves as actually exist. We may add that much of what has been mistaken for sand is really comminuted limestone. Great banks of it are sometimes found, and elsewhere true silicious sand
Such exaggerated statements have been made as to the dimensions of the domes and pits, that we took pains to sound them all. We began with the well known Crevice Pit, in Little Bat Avenue, that opens into the Mammoth Dome. Lee's map, published in 1835, and claiming to be made by instrumental survey, makes this pit 280 feet deep, or " 120 feet lower than the black hreen River." The shelving edges of this agy also projecting shelves below and out of sight, on which, unless one is careful, his plummet is liable to lodge, the weight of the line causing it to continue to be paid out, a circumstance that probably deceived Mr. Lee and others, as it did ourselves more than once. We made three measurements of the Crevice Pit; one was by or dinary line and plummet; another was by tying a large stone to the line, as a bob that would jump the ledges, and make it impossible to mistake the paying out of the line for the pull of the weight; the third way was by attaching a lard oil lamp by wires to the line, and watching the light till it reached the bottom. Finally, by going around through Spark's Avenue to the Mammoth Dome, we made sure that our weights had prop erly landed.

The line was then measured by a steel tape, the result being that the pit is 89 feet deep, instead of 280 . Even if we add to this the estimated height of Klett's Dome, the entire vertical opening cannot exceed 150 feet. I am thus minute as to methods, because we took similar pains in measuring the other pits. There is no question as to the peril of the task. The depths of some of the pits may here be given, as determined either by Dr. Call, Mr. Ben Hains, or myself.
The so-called bottomless pit, as measured by me, is fact in 105 feet deep, although commonly saia to be 173 feet in depth. The covered pit, instead of being 120 feet, as formerly stated, was found to be but 54 feet
deep. Garvin's pit is 95 feet deep, with a domeabove it 35 feet high. My measurement of Scylla made it 135 feet deep; but I suspect that slack line was paid out, as its twin pit, Charybdis, was proved to be but 89 feet deep. Dropping a line from the "window" of Gorin's Dome, where tourists usually look, I found it 88 feet down to the floor. From the new bridge across the summit of the dome it was 105 feet to the stream flowing at the bottom. While thus casting my lines from above, Dr. Call and his guide went down a sort of abtural well and saw that my weights had touched the
floor. They then distributed lamps at advantageous points, as we did from above; and the guides flung numerous fireballs, with great skill, so as to alight on different ledges. Thus we contrived to illuminate the entire dome, as it had never been done before, and the effect was splendid beyond description. The Long Route ends in a pit called the Maelstrom, stated to be 190 feet deep by W. C. Prentice, who descended into it and 175 feet by Dr. Forwood. But as measured by Mr. Hains, by a cord knotted at every five feet, and allowing for the stretching by the plummet, it is 98 feet deep. We do not question the veracity of others, but allow for their mistakes in taking measurements where the ex perimenter is liable, by one careless step, to follow his plummet down into the frightful abyss.
The subterranean rivers have, of course, been an im portant factor in making the Mammoth Cave. One who sees them at their lowest stage in the summer months, and floats over them at leisure, awakening their won derful echoes, has no idea of their tremendous volume and force during winter and spring. I have been in the cave when the Dead Sea, Lake Lethe, the river Styx, Echo River, and the Roaring River were all combined into a mighty stream fully two miles long, as known, and how much further it flows into inaccessible channels nobody knows. Its depth at such times is at least 100 feet in the deepest places, and it sets back into the large pits already mentioned. Moreover, this great flood has a powerful current that makes any attempt at its navigation dangerous. The guides have told me of their narrow escapes from having their craft swept under overhanging ledges, or swamped where there was no shore. What are called the upper and lower big springs, in the cliffs of Green River, are wholly insufficient to serve as the main exits for these pent-up waters. About five miles below them a mighty stream gushes from the rocks with force enough to stem the current of Green River to its opposite bank ; but unfortunately it is on the wrong side of the river, unless passing through a tunnel before it gets there, of which we have no proof. These subterranean rivers are, after all, the chief cave makers. They hollow out the long horizontal passageways, swaying to and fro like liquid batter ing rams, hammering down the weakened walls, and undermining the arches, thus making the successive tiers, or galleries, for which the cave is noted, many of which, having been deserted by the waters long ago, like the upper gallery called Gothic Avenue, are extremely dry. And yet, even in the walls of these broad avenues, we frequently find the deep vertical grooves, proving that there were also pits and domes, of which these are the only remaining traces. Thus our conclusion is established that Mammoth Cave was made, not by earthquakes, nor by whirlpools with pebbles for teeth, but almost solely by the chemical and mechanical action of water.

Prof. Andrée's Arctic Trip.
Advices received at Hammerfest, Norway, on August 6, say that Prof. Andree has completed the in flating of his balloon, and is awaiting a favorable wind to start on his journey toward the pole.
The following letter has been received from M. Andrée by Prof. Retzius at Stockholm

Pike's House, Dane's Gate, June 27. Dear Friend: At this moment forty pens are scratching on board the Virgo, for to-day a steamer arrived bound to Frefjorden, which is to take our let ters. I take this opportunity to tell you and your wife that everything is going on well here. After having searched only one day we found a good spot for our balloon house, and we are now occupied in putting it up. It lies on the northern side of the Danish Islands. We have there sufficient space, good protection against storms, and a good landing place. The hydrogen apparatus has already been put on shore, and with this the most difficult part of the landing has been finished. The barrel of sulphuric acid has held out excellently. We can now examine the balloon a little better, and it seems to be in very good condition. Capt. Nilsen, who since the middle of May has been sailing about here, says for thirty years he has not seen such favor able ice. All on board are in the best spirits. Need I add more to convince you that the whole expedition feels very comfortable, and that no apprehension or care oppresses us? If everything goes on in the same manner for the next three or four weeks to come, we shall then set out for our expedition to the North Pole, and to none of us the idea occurs that we may meet serious difficulties. Strindburg and Eckholm are occupied with magnetical and cartographical examina tions, and have begun a map of the Danish Islands. The snow shoes did good service, for they prevented us from sinking in, though the snow is at several spots meters deep.

A despatch from Glacier, British Columbia, an nounces the first ascent'of Rogers Peak, the highest pari of the Hermit Range of the Selkirk Mountains, by Prof C. E. Fay, of Boston, and his party. This is Prof. Fay's kirks.

tHE NIVET APPARATUS FOR TESTING BUILDING

 MATERIALS.The testing of building materials is a matter of undoubted importance. The solidity of our structures and our safety may depend upon the care with which such testing is effected. Learned societies and govern ments themselves have occupied themselves with this important question, and commissioners have been ap pointed for a study of the conditions under which the tests should be made, in order, if possible, to succeed in unifying the methods employed, and in obtaining concordant results. The tests to which the materials must be submitted require the bringing of great stresses into play. The apparatus used are inconvenient to maneuver, are of great weight and are high priced, and so trial tests are not made so frequently as might be desirable.
In 1895, Mr. Nivet presented to the meeting of the French Association for the Advancement of Sciences an apparatus for testing building materials (other than metals) that constitutes a genuine portable laboratory, and that seems to us to be destined to render valuable services in the testing of lime, cement and stone in workyards. The entire mechanism is contained in a box measuring 13×20 inches, and three inches in height, in which also are placed the moulds, F F (Fig. 1), neces tary for the preparation of the test pieces. The weight of the apparatus with all the accessories does not exceed 88 pounds.
The measuring device is a Regnier dynamometer (Fig. 2). This instrument consists of an elliptic steel spring, R, upon one branch of which is fixed a divided dial, C. This latter, which our draughtsman has supposed to be transparent in order to allow the details of the parts to be seen is provided with a needle, a whose he parts to be seen, is provied which meshes whose axis carries a toothed wheel, and which meshes with a rack, c, that slides freely in its mounting. One end of this rack is in contact with the spring when the needle is at zero, and the spring is not bent. When the short axis of the spring is compressed through a pull upon the long axis directly, or upon the lugs, e e, the spring exerts a thrust upon the end of the rack, and consequently causes the needle to revolve by a cėrtain number of degrees proportionate to the distortion, that is to say, to the force to be measured.
Since the rack is not fixed to the spring, the needle, when the latter expands, remains in the position that it occupied at the moment at which the force was suppressed or simply diminished. It thus indicates the maximum value of the force that has been applied. Before beginning an experiment it is evidently necessary to place the needle at the zero of graduation by hand. When the short axis is acted upon directly, the dynamometer is very sensitive. It is much less so when we operate by traction upon the long axis. The dial carries two divisions corresponding to these two methods of using the instrument. The figures inscribed upon the dial represent a fifth of the real stresses in order to render it possible to read the weights per square centimeter that determine the breakage of test pieces of five square centimeters section. The results given by test pieces of different section are calculated by means of multiples, a table of which is affixed to the box containing the instrument.
In Mr. Nivet's apparatus, the upper lug of the dynamometer, which acts upon the meter, which acts upon the
lower branch of the spring, is hooked to a second lug is hooked to a second lug
pivoted through a knife edge upon a lever L (Fig. 1), which is itself pivoted at O upon the frame of the machine. This lever, L, may be rendered stationary by means of a nut, v. The lower piece is connected, according to the operations to be effected, with operations to be effected, with
different parts, as we shall see further along.
The traction is effected by means of a screw, V, maneuvered from the exterior of the box by a handle. This screw carries along the jaw,
M, as well as the lugs, E E. It is through the intermedium of this jaw and of these lugs, $E E$, that the traction is transmitted to the test pieces.
The dynamometer and the different parts of the apparatus rest upon a horizontal cast iron frame that forms a part of the box. The weight of these different parts and of the test pieces themselves is thus annulled and has no influence upon the results.
The apparatus may be used for two series of tests. The first series comprises the traction and compression tests used in laboratories.
Traction.-The test pieces, R, of the materials to be examined have the form of a figure 8, the constricted $p^{\text {art of which has a section of } 5 \text { square centimeters. In }}$
order to perform the experiment, the lever, L, is rendered stationary by means of the nut, \mathbf{v} (Fig. 1). The dynamometer is attached at its lower part to the jaw, \mathbf{M}^{1}. The test piece is placed between the two jaws, which embrace its periphery. Each jaw is strengthened by a crosspiece, T. Upon slowly revolving the screw, v, a traction is effected whose value at every moment is given by the needle of the dynamometer. When the breakage takes place, the spring abruptly expands, but the needle remains in place and indicates the breaking stress. As the points of suspension and jointing are in a line with the axis of the screw, the stress is transmitted

Fig. 2.-Details of the dynamometer.
solely in this direction, so that the test piece is submit ed to no flexional stress.
Compression.-The experiments in crushing are made with tubes whose section is 5 square centimeters, $2 \cdot 5$ square centimeters, or, better, 1 square centimeter. The lever, L, is rendered free (Fig. 1) and the two jaws, M and M^{1}, are connected by the metallic piece, A, which has the form of a figure 8.* The test piece is placed between the two plates, P P, one of which rests against the cast iron frame of the box, and the other is movable with the lever, L. The movable plate is placed at such a point of the lever that the pressure shown by the dynamometer shall be multiplied by 5 . The plates engage with the frame and lever by conical points that enter conical seats in the larger center. They are, therefore, capable of taking on a certain amplitude of motion, and are not necessarily parallel, like the plates of hydraulic presses. This arrangement permits of correcting the irregularities in the moulding of the test pieces. In employing the press, we have almost always two coefficients of crushing, one called the beginning of crushing and the other the final crushing. The first

Fig. 1:-NIVET apparatus for testing building materials. begun to act. compression. ages.
by the needle, we endeavor to push the latter back with the finger. It will stop at a much lower pressure. The lever apparatus completely crushes the solid experimented upon, unless the continuous action of the weight be arrested by an obstacle. The dynamometer, on the contrary, automatically preserves the test piece against such action.
This delicacy of operation permits of studying the clearages produced by the crushing. Such clearages generally separate from the cube of the pyramids that have the free faces as a base and a quarter of the sides as a height. As the dynamometer is capable of indicating a pressure of 1,210 pounds, and as the lever multiplies the stress exerted by 5 , it is possible to produce between the plates a compression reaching 4,950 pounds that are distributed over the cubes of the different dimensions indicated. The cubes are exactly centered by a play of nuts that are separated when the test pieces are grasped by the plates, the screw having

The second series of tests is made by employing a single test piece in the form of a prism with a square base of $3 / 4 \times 3 / 4 \times 4$ inches, upon which the apparatus permits of obtaining as many as nine breakages-one by flexion, two by traction, two by shearing and four by

Flexion.-The breakage test by flexion is made upon the entire test piece. The lever, L, is rendered stationary (Fig. 1); the jaw, \mathbf{M}^{\prime}, is suppressed; the test piece is grasped at its two extremities by the lugs, E E, kept at 4 inches from each other, while a piece, C, fixed to the dynamometer and guided by a slide in the frame bends it exactly at the middle. The way in which the breakage occurs shows the defects of the test pieces in homogeneousness when they exhibit dissymetrical break-

Traction.-The test piece is divided into two equal fragments by the flexion test. Each of these serves to effect a traction test. To this effect, the dynamometer is connected with the jaw, \mathbf{M}^{\prime}, and the small prism is held between two clamps, S. Each of these consists of two quoins connected with each other by a slide at right angles with the parallel faces that grasp the prism, and the inclined faces of which engage between the branches of the jaw. When the screw is revolved, these inclined faces tend to squeeze the faces of the prism so much the more in proportion as the traction is stronger. They thus prevent a sliding, and a breakage by pulling soon takes place. It must be remarked that the pressure exerted upon the solid by the parallel faces of the clamps is at right angles with the axis of traction and consequently has no influence upon the result of the breakage by traction. Moreover, such pressure is relatively feeble, the angle of the inclined planes being very small and the surface that serves to transmit such stress being relatively wide. As the coefficient of breakage by crushing is about ten times that of traction, the pulling occurs before the compression of the prism in the clamps has been able to reach an important value. Such compression can therefore have no influence either upon the actual test or upon the ulterior experiments.
Shearing.-After these tests, the prism is divided into four fragments, the two longer ones of which are selected for experiments in shearing.
The lever, L, is rendered free (Fig. 1), and the two jaws, \mathbf{M} and \mathbf{M}^{\prime}, are con. nected by the piece, A. The prism is placed in the square space of a vertical cylinder, H , inserted in the frame of the apparatus in which it revolves with slight friction. The shearing is done by an edge of the lower face of the lever operating through its center. This face moves upon the upper plane that terminates the cylinder carrying the test piece. The shearing will therefore be done exactly according to this plane of insetting of the solid-a con dition that we believe is realcorresponds to the breakage of too long an edge, and ized only in this apparatus. the other is obtained upon a cube already broken and incomplete.
In the Nivet apparatus, the needle has but a single stoppage point; which corresponds exactly to the weight that has caused the rupture of equilibrium of the molecules of the compressed solid. Upon continuing to work the screw, we crush the test piece without the needle making a greater pressure. On the contrary, the pressure has diminished, as may be ascertained, if, after having registered the indications given
*This piece carries a cylindrical rod having a section of 1 square milli meter, say $1 \cdot 1$
setting testa.

Compression.-If we neglect the fragments detached by shearing, we still have four segments of a prism that may be used for tests in crushing.
These tests are made as with the cubes by placing the solids between two plates, P P, that have been previously provided with two punches or disks of metal three-quarters of an inch in width. There is thus seized between the punches a cube inscribed in the prism. Under the pressure of the punches, when the crushing occurs, the clearages are the same as those ob tained with the cubes. The same pyramid is separated in carrying with it the part of the prism that exceeds the width of the punch. There is the same clearage,
consequently the same work, and the same coefficient. The four segments behave like cubes, and, if the material is homogeneous, give results that are sensibly equal.
This second series of tests has the great advantage of permitting all the operations to be effected upon the same solid. One can thus study the relations that may exist between the various coefficients that result therefrom. The precision of the apparatus, in fact, permits not only of verifying the coefficients of quality renot only of verifying the coefficients of quality re-
quired by the conditions of a contract for supplies, but also of effecting true scientific researches. Through this apparatus Mr. Nivet has been able to indicate a few laws of the resistance of materials called nonelastic. A study of such work would exceed the limits of this article. We shall add that the tests upon traction and shearing give figures proportional to the sec-

TRIAL OF THE COMPRESSED AIR MOTOR BY THE THIRD AVENUE RAILROAD COMPANY, NEW YORK. The compressed air motor is a device which is suffering from the prejudice engendered by many years of costly but comparatively fruitless experiment. Invention and capital, seeing its promising possibilities, have frequently joined hands in the effort to produce an efficient motor, but beyond learning some valuable lessons as to the chief sources of loss, and the direction in which improvement must be sought, they have failed to produce an effective machine.
At the present writing, interest in the compressed air motor has been revived by rumors of its adoption by two large corporations: the Metropolitan Traction Company and the Third Avenue Railroad Company, both of New York City; the former making use of the

The cars, one of which is shown in the accompanying illustration, are similar in their general appearance to an ordinary street car; but they are provided with a ruck whose construction is suggestive of the bar frame of a locomotive, the truck, moreover, being suspended by springs from the axle boxes, and the cars being similarly suspended from the truck. Underneath the seats and beneath the floor of the car are sixteen air reservoirs, similar to those in the power house. In the center of the car and also beneath the floor is placed a hot water tank, by means of which the air is heated before it enters the cylinders, and the difficulty of frozen exhaus passages is overcome. It is 18 inches in diameter and 7 feet long, and is filled with 500 pounds of water.
Before the car starts on its run, its air reservoirs ar charged with cold air at 2,000 pounds pressure by means

SIDE VIEW OF ENGINES AND AIR BRAKE, HARDIE COMPRESSED AIR MOTOR.

THE HARDIE COMPRESSED AIR MOTOR CAR.
tions upon which we operate, while the tests upon Hoadley motor, and the latter adopting the system in crushing give more complex results. In this latter case vented by Mr. R. Hardie.
the coefficient is proportional to the section when the height of the solid tested is equal or superior to the side of the base; but it increases as soon as the ratio of the height to the side of the base diminishes, and becomes infinitely great when the height is very feeble with re' spect to the base-which is precisely the case with mortar joints. The tests upon crushing must, therefore, be made upon solids whose height is equal to or greater be made upon solids whose height is eq
than the side of the base.-La Nature.

for the

New ocean Record for the American Line.
The American liner St. Louis on her last trip reduce the ocean record from Southampton to New York from 6 days 5 hours 22 minutes, which was the time of her sis ter ship, the St. Paul, to 6 days 2 hours and 22 minutes. Her average speed was 20.86 knots an hour, which is slightly better than that of the St. Paul, which was 20.82 . It is probable that to one of these fine ships will fall the distinction of being the first to bring the time of crossing below six days.

The trouble with the ear old nature. When air was compressed into the storage reservoir, a certain portion of the power was expended in raising the temperature of the air (according to the well known law), and this heat, which was subsequently lost by radation, represented a dead loss of power. Moreover, when the air was expanded in the cylinders, there was a corresponding reduction of temperature, which was often so great as to cause freezing and chok ing up of the exhaust passages.
In the Hardie system it is sought to prevent the first loss by compressing the air in three stages, and recover ing the heat of compression by passing the air through tubes around which cold water is circulating. The cool ng water is fed to the boilers and the heat which it has withdrawn from the compressed air is thus recovered After passing the third stage of compression and cool ing, the air is forced at a pressure of 2,000 pounds to the
square inch into a reservoir consisting of a stack of
rolled steel flasks, 9 inches in diameter and 20 feet long.
of a flexible tube connecting with the power house supply, and steam is admitted to the heater until its con tents are raised to a temperature of 350 degrees. It takes a little over half a minute to charge the reservoirs. In operating the car, the air is first expanded by a reducing valve to a pressure of 150 pounds, and passed into a receiving cylinder, whose capacity is one cubic foot. It is then admitted to the heater, where its action is thus described by General Herman Haupt, the consulting engineer of the company: "When the air passes into the tank of water heated to 350 degrees, each 50 cubic feet of air absorbs and carries over an amount of water in the shape of steam equivalent to 2 cubic feet of air. This adds 50 per cent to the volume and, as the air is itself expanded 50 per cent by the increase of temperature, the total gain of volume as the air and steam pass from the heater is 100 per cent The condensation of the steam in the cylinders and pipes liberates the latent heat and maintains the temperature at such a point as to render freezing impos ible."
heater was tested on a couple of experimental runs, on the first of which, with the heater in use, 308 cubic feet of air were used. The heater was then emptied, and the same run was made with cold air, when more tha double the amount, or 661 cubic feet, were required.
The two cylinders of the motor, 7 inches diameter by
The 14 inches stroke, are built into the frame on each sid of the car, and lie inside the wheels. A short connect ing rod from the cross head operates a vertical rocking lever, from which a connecting rod transmits the motion o a crank on the outside of the driving wheels. The two wheels on each side are connected by a coupling rod, so that the whole weight of the car is available for adhesion.
The valve gear is of the ordinary Stephenson link type, with an additional valve on the back of the main valve to regulate the cut-off.
The controller and "reverse lever" are situated as in an electric car on the front platform. The throttle valve is operated by a crank handle, and the reversing and cut-off are effected by the lever. There is another lever for working the air brake, by means of which also an auxiliary supply of air can be admitted to the cylin ders at starting.
The reciprocating parts are counterbalanced, and this work appears to have been judiciously done, as there is no perceptible oscillation due to this motion. The gene ral appearance of the car is pleasing, the moving parts being hidden from view by letting down the slat apron, which is shown in the illustration hinged back against the side of the car

science Notes.

The meteorological and magnetic observatory of the University of Odessa has for its function not only the reading of the numerous instruments with which it is equipped, and the discussion of the results observed and registered, but it is intended also to serve as a high school where students of the faculty of physics and mathematics can be trained in the work of meteorology and physical geography. Schools in meteorology are so few, says Nature, that the development of the curri culum of the Imperial University at Odessa will be welcomed by all who think that trained investigators and experimental work are needed for the advancement of the science
A paper on "The Application of the Formula of Clapyron to the Melting Point of Benzine" has been printed in the Comptes Rendus by M. R. Demerliac. It records an experimental study of the lowering of the melting point of benzine by pressure. The pressure gage used had been calibrated against a mercury column directly, and the alterations in temperature were neasured to 0.001° by the changes in resistance of an iron wire forming an arm of a Wheatstone's bridge. The alteration in melting point for an additional presure of one atmosphere calculated from Clapyron's formula is 0.02936°; the experimental figure is 0.0294 , the difference being less than the errors of observation.
Punctuality in woman has been attained under hypnotic suggestion, in a remarkable set of experiments recently reported to the Society for Psychical Research. A young person of nineteen, who had never shown any capacity for calculation, and who was in good health at the time, though her nerves had been unstrung for a year before, was hypnotized and directed to do certain simple things at specified times, writing down the time when she thought she did them. The intervals suggested varied from a few hundred to over 20,000 minutes, and sometimes as many as six suggestions, starting at different hours, were working on her at once. The experiments read like the painful examples in the mental arithmetics. At 4 o'clock one day she was asked to do something in 10,080 minutes, beginning at 10 the day before. In fifty-five experiments there were only two failures. On awakening, the subject had no recol lection of the suggestions made to her.

On the glass of a Crookes tube, which has been used for some time, being heated in the blowpipe, it assumes a dead or dull appearance, which, observed M. Gouy to the Paris Academy of Science, at first leads to the supposition that it has become devitrified. The alteration is, however, limited to the internal surface of the tube, being so much more marked as the glass has received a more intense cathodic radiation, and being absent in the portions not so exposed. The microscope shows that this dull surface is chiefly constituted by a vast number of gaseous bubbles in the substance of the glass, but near its surface. On the heating being continued, these bubbles unite and increase in volume, so that at length they become visible through the magnifying glass, and sometimes even to the naked eye. Glass, therefore, which has been exposed to intense cathodic rays, gives out numerous gas bubbles when
softened by heat, a phenomenon which occurs in no softened by heat, a phenomenon which occurs in no other case; and it would seem that the cathodic rays stance of the glass, afterward remaining occluded unti set free by the softening of the glass. The experiment which gave rise to these observations were made with four glass tubes slightly differing one from another, but only one of them showed a considerable number of bub bles in the portions most exposed to the cathodic rays.

the society for the promotion of enaneer

 ing eddcationThis society is one of those affiliated with the Amer
can Association for the Advancement of Science, and will hold its meeting, as usual, a few days before that of the A. A. A. S., namely, from August 20 till August 22 , at Buffalo.
The annual address by the president, Prof. Mansfield Merriman, of Lehigh University, will be on "Som Modern Tendencies in Engineering Education.'
Dr. Merriman has been an educator for nearly twenty years, beginning at the Sheffield Scientific School of Yale University, soon after his completion of an advanced course of study. He was graduated from the school as bachelor of philosophy in 1871, as civil engineer in 1872, and as doctor of philosophy in 1876, and began teaching in 1877. In 1884 he removed to his present station at Lehigh University, where he is professor of civil engineering. He has been identified with the American Association for the Advancement of Science since 1883, having been elected fellow in 1885, and vice president of the Mechanical Section for the Brooklyn meeting in 1894. His address before that section on "The Resistance of Materials under Impact" is pubished in the volume of proceedings for that meeting. He has been a prolific writer of text books and essays in his department of science, his latest work having been a volume on higher mathematics, issued during the present month of August, in which Prof. R. S. Woodward was associated with him.
Dr. Merriman was one of the founders of the Society for the Promotion of Engineering Education, which was launched in connection with the memorable mechanical exhibition at the World's Fair in Chicago, so hat the society is only three years old.
Its proceedings from year to year have attracted in

MANSFIELD MERRIMAN,
the society for promotion of enginerring education.
creased attention, and are regarded by engineers as valuable contributions to technical literature. A large number of papers will be read at the approaching ses sion, the interest of the meeting being greatly stimu lated by the fact of meeting so near to the wonderfully expanded industrial enterprises which have taken root at Niagara. A great increase in the number of topics presented to the mechanical section of the A. A. A.S. is also promised for the same reason.

Saturday, August 22, will be given up to an excursion to Niagara Falls, under the direction of Mr. George E. Mann, president of the Engineers' Society of Western New York, and every afternoon other excursions will be made.

The programme so far as yet made up includes the following papers to be read on different days: Presi dent's address, "Past and Present Tendencies in Modern Engineering Education," Mansfield Merriman; Report of Committee on " Uniformity of Symbols for Engineer ing Text Books," I. O. Baker, chairman; "Agreement on Definition of Engineering Terms," Thomas Gray "Seminary Methods as Applied to Engineering Sub jects," F. P. Spalding; "An Experiment on the Conduct of Field Practice," F. O. Marvin; "A Quarter Century Progress in Engineering Education," Robert Fletcher; "The Method of Teaching Perspective to Engineering Students," H. S. Jacoby; "The Study of Modern Languages in Engineering Courses," T. M. Drown; "A Course of Study in Naval Architecture," C. H. Peabody ; "The Elective System in Engineering Colleges," M. E. Wadsworth; "The Desirability of Lec tures to Undergraduates on the Ethics of Engineering," C. C. Brown; "Quantity versus Quality in Smaller Colleges," Albert Kingsbury ; "Biology for Civil Engi neers," G. C. Whipple; "The Conservation of Government Energy in Promoting Education and Re search," C. W. Hall ; "The Hale Engineering Experi ment Station Bill," W. S. Aldrich; "How to Divid mubjects for Original Investigation among Different

Colleges," C. H. Banjamin ; Report of Committee on "Entrance Requirements for Engineering Colleges," F. O. Marvin, chairman ; "Credit for Shop Experiance in Entrance Examinations," W.T. Magruder; "A Course of Study in Municipal and Sanitary Engineering," A. N. Talbot; "Engineering Education in Japan," J. A. L. Waddell ; "Modeling as an Aid to Teaching Machine Design," G. W. Bissell; "A Course of Study in Mechanieal Railroad Engineering," H. W. Hibbard.
The meeting of the society will be held at the room of the Engineers' Society of Western New York, in the Library building, Buffalo, August 20-22.

Cycle Notes.

For comfort the front tire should be considerably fter than the rear one
District telegraph boys in New York City have been provided with bicycles.
The bicycle has reached the Soudan; at last accounts there were two in use there.
A room for checking bicycles has been provided at the Metropolitan Museum of Art in New York city.
The Argentine Republic has passed a law forbidding women to ride bicycles in public. The law was framed to protect the interests of the owners of public vehicles. Riders should never allow the adjusting cone of the head of the wheel to become loose, as continued jolting will thus weaken that part of the wheel, which bears the greatest strain.
A pneumatic grip is one of the latest contrivances to make the trip more enjoyable. Grips provided with a ball joint are also being introduced
Even to the farthest eastern part of the world the bicycle has found its way. A bicycle club has been formed at Vladivostok, which is the end station of the great Siberian railway, 10,643 kilometers east of St. Petersburg.
A London bicyclist, Mr. Jefferson, who has undertaken to ride to Irkutusk in Siberia, reached Moscow by a roundabout journey of 2,500 miles from Rotterdam in six weeks. He went by way of Hamburg, Dantzig, Riga, St. Petersburg, and Novgorod, and had bad weather, snow storms, and bad roads in March and April.
Bicycle manufacturers are making a large draught on the supply of elmwood. Most of the wood used in the rims of bicycle wheels are now made of rock elm. During this year 3,000,000 rims will be required for the trade. It takes about $21 / 2$ feet of wood for a rim, so that the $3,000,000$ rims will call for $7,500,000$ feet of wood. As only the finest wood can be used in rims, amounting to only a fifth of the bulk of rock elm, these rims will call for the cutting and handling of nearly $40,000,000$ feet of this wood.
An inventor of Switzerland has designed a bicycle which he thinks will effect a revolution in the shape and mode of propulsion of the wheel. He proposes to utilize the strength in the back as an aid to the legs in propelling the wheel. The pedals are on a line with the bottom of the seat, and are placed in the front part of the frame. There is a back to the seat which affords a brace for the rider's back, enabling him to exert much more power than in the present model. The steering bar consists of a long handlesimilar to that of children's tricycles.

It is not surprising that some of the leading features of bicycle construction should be traced back for cen turies. The invention of the pedals has been attributed equally to a Frenchman, Michaux, to a Scotchman, and to a German, according to one's nationality, but it seems that none of them can have the honor of priority to this method of propulsion, for according to a book published in 1694, under the title of "Recreations Mathe matiques et Physiques," the inventor was a doctor named Elie Richard, living at Saintonge. It appears that in 1690 he constructed a carriage which was driven from behind by a footman, "who worked it with two feet by means of two iittle wheels concealed in a box and attached to the axle."
Wooden handle-bars are considerably in vogue just now and promise to gain rapidly in favor. Indeed the prediction is ventured that in a year or two they will displace the metallic ones as completely as wooden rims have ousted those of steel. Some riders have long wanted wooden handle-bars, but could not buy them Now several manufacturers offer them for sale, although the dealers do not seem to have a large supply on hand The price is $\$ 2.50$ to $\$ 5$ apiece. The chief advantage o them is that they absorb vibration. Wheelmen often complain of a numbness of the hands and wrists afte long rides, and even after short ones over cobblestones. The wood is springy, and prevents this after effect, a well as adding to the pleasure during the ride. Then too, there is a saving in weight. A wooden handle-ba was found to weigh $171 / 2$ ounces, against $251 / 2$ ounces fo the steel one which it replaced. This, however, is only a secondary consideration. There is, perhaps, little choice in strength between the two kinds. It is confidently asserted that any accident which would break a bar of elm or hickory would do serious damage to one of hollow steel, such as is in general use. The new handle-bars are covered with cork where they are new handle-bars are
grasped by the hand.

Sorrespondence

The Gold Dollar

To the Editor of the Scientific American :
I inclose the following clipping from the Scientific American of May 19, 1849 :
"THE GOLD DOLLAR.
"This beautiful coin has at last been issued. It is somewhat smaller than a five cent piece, and is very beautiful. It is our opinion that it is the most beautiful coin in the world."
Need I ask if you have found reason to change your opinion of the gold dollar, as expressed forty-seven years ago?

I found the clipping yesterday, and think it may interest you at this strange hour of our country's his tory.

Newport, Rhode Island.
[We see no reason for changing our opinion in regard to the beauty and worth of the little coin.-ED.]

Nothing New Under the Sun.

To the Editor of the Scientific American :
Having just been looking over a bound volume of the Scientific American for 1846 and 1847, volume two, of your magazine, I beg to call your attention to two points therein, which are very interesting in view of first, the discovery of the pneumatic tire, and second the X rays of Roentgen. For the first, refer to bottom of first column, page 262, volume 2 , issue of May 8, 1847. It shows that the exact principle of the pneumatic tire was in use at that early day
Second, seventh article of third column, page 290 volume 2, issue of June 5, 1847, states that a Belgian savant has discovered that electric light makes human bodies so diaphanous as to make the arteries, nerves, etc., visible, and their action studiable.
Although Crookes tubes were not mentioned, it is possible that some similar device was used, in the then undeveloped state of electrical science. It would be in teresting to know whom the Belgian savant was.
Standard, Florida.
A. C. Firth.
[We reprint the items to which our correspondent refers.-ED.]

pNEUMATIC TIRES

A number of cabs with newly invented wheels have just been put on the pave here. Their novelty consists in the entire absence of springs. A hollow tube of India rubber about a foot in diameter, inflated with air, encircles each wheel in the manner of a tire, and with the addition of this simple but novel appendage the vehicle glides noiselessly along, affording the great est possible amount of cab comfort to the passenger. Scientific American, May 8, 1847.

THE X RAY IN 1847
A Belgian savant says he has just discovered that electric light directed on the human body makes it so diaphanous as to enable the arteries, veins and nerves to be seen at work, and their action to be studied.Scientific American, June 5, 1847.

Absorption Photography and X Rays.

To the Editors of the Scientific American
The scientific interest connected with the Roentgen or X rays has brought out, through a large number of investigators, a great variety of phenomena bearing directly or remotely upon the original methods and results. While studying the work of others on the X rays proper, the recollection of an accident which the writer had in some photographic work led to a series of experiments along a line which may or may not be connected directly with the Roentgen rays. The experiments were begun about the middle of March and are
not yet finished. So far as the writer is aware, no not yet finished. So far as the writer is aware, no
work has been reported in just this line of investigawork has been reported in just this line of investiga-
tion. The object of the experiments was to ascertain, tion. The object of the experiments was to ascertain,
if possible, if photographic negatives could be gotten similar to X ray negatives by the action of energy previously stored in certain bodies. The results of the experiments which are to be given seem to point very strongly to an affirmative answer.
Experiment No. 1.-From a newspaper was taken a cut of a pair of eyeglasses, and from a glazed paper was taken another cut. These were exposed for about an hour to sunlight and were then removed to a dark sensitive glass plate and very carefully and thoroughily sensitive glass plate and very carefully and thoroughly
wrapped in white cloth and paper and then placed in a tight box and allowed to stand in a dark room for about one day. At the end of this time the plate was slowly developed and found to reveal the picture clearly, the one on the unglazed paper being slightly more dis tinct. A similar experiment was tried, using lamp instead of sunlight, and gave similar but not so strong results.
Experiment No. 2.-At the same time that No. 1 was being carried on, a figure cut from the inside leaf of a book which had been in the dark for the most part for a year or more was, without exposure to light, placed over a sensitive.plate. No results were secured in this case.
Exp

Experiment No. 3.-Over a pine board was placed a
black woolen cloth, and to this were fastened fragments of zinc, copper, graphite, silver, glass, rubber, and wood. This was exposed to sunlight for an hour, and after cooling was placed over the sensitive plate, carefully wrapped in cloth, and placed in a tight wooden box and kept in the dark room for about one day Upon developing, only the wood and rubber showed much.
Experiment No. 4.-On a small piece of pine board were fastened the following articles: muscovite, cop per coin, mica, an iron key, and a piece of glass. The whole was then exposed to sunlight for an hour, taken to the dark room, and when cool all the articles were removed and the wood placed over a sensitive plate and thoroughly protected by wrapping in cloth and placing in a tight box in the dark room. After one day the plate was developed, and all the articles were revealed on the negative by light figures, but the iron key and the copper coin seemed best to shut out the light. Similar experiments were successfully performed by exposure to powerful incandescent gaslight and to incandescent electric light, though the results were not so intense as by sunlight.
Experiment No. 5.-A key was placed over one side of a common Kodak roll film and a piece of brass placed on the opposite side. These were placed in a dark box and connected with the two poles of a battery for several hours. When developed, a very faint shadow appeared.
Experiment No. 6.-A piece of mica and an iron key were heated in an alcohol flame till the edges just began to be red hot. They were then allowed to cool and were placed over a sensitive plate in a perfectly dark box in a dark room for twenty-four hours. When deeloped, there was revealed the shadow outline of each Experiment No. 7.-A current of electricity from a dynamo, sufficient to produce a small spark, was passed through an iron key. The key was allowed to cool and was then placed over a sensitive plate, in a tight box, or twenty-four hours or more. When developed, ther was seen the shadow outline of the key.
Experiment No. 8.-A fresh fern stem was placed over a sensitive plate, and after being so kept for twenty four hours, the plate was developed and there was revealed the outline of the whole stem, with a much darker central portion corresponding to the circulator system, all of which was very clearly brought out.
In some of the experiments which have been men tioned there was contact with the plate, while in others equally good results were obtained without contact Considerable skill and a rather long time were required in the developing process. The results described are but a few of those obtained along this general line of study. It will appear from these experiments that in no case did the light pass through the object to be photographed ; and further, that light is not necessary. All of these experiments, but especially those in which the objects were heated or exposed to an electric curthe objects were heated or exposed to an electric curfirst, that the photographic action is due simply to energy stored in the body to be photographed and afterward slowly given off, there being a great differ ence in the power of absorption and radiation in vari ous substances; second, that this energy may be from other sources than luminous rays, if these only reach a maximum rapidity of vibration; and that when this ate of vibration is reached a molecular change in the silver salts of the photographic plate is started, with reater or less intensity, depending upon the characte and source of the energy, and completed in the devel ping process
From certain researches now being made, the writer would venture the suggestion that possibly certain phenomena connected with the Roentgen photography proper may be in part explained by these general state ments. He hopes to present, at some future time, a series of expriments of such a nature as to confirm this statement.
E. J. Babcock.

Chemical Laboratory, State University of North Dakota, July 21, 1896.
[We have examined the photographs made in the manner described. They clearly show that the objects represented must have stored considerable energy to have produced the results secured by Professor Bab cock.-EDs.]

The Holtzer Projectlle.

To the Editor of the Scientific American
In the Scientific American of July 4 you give an nteresting résumé of tests of the Harvey-Carnegie plates destined for Russia, in which you say :
"The plate was attacked in rapid succession by five 6 inch and three 4 inch Holtzer armor piercing shell fred at high velocities."
And farther on you add: "While its ability to keep out and completely pulverize a 6 inch Holtzer shel showed what splendid ballistic resistance it possessed." We are thoroughly convinced of the excellence of the Harvey-Carnegie plates, but we must make some reservations in regard to the production of the shells used. In the first place, we have never made 4 inch projectiles
for the United States. Further, if we delivered any 6
inch projectiles, they were made more than four years ago, and at that time the superiority of the Harvey plates had not been established.
If these plates have been improved since then, we have introduced also improvements of our manufacture and we can now make projectiles capable of piercing (without being broken) Harvey plates, provided that the increased velocity is given to these projectiles required by he greater resistance of the new plates
We would be greatly obliged if you would make your readers acquainted with the real condition of affairs by inserting a correction in an early number of your paper.

Jacob Holtzer \& Company.
Acieries d'Unieux Loire, France.
[We published the statements in regard to tests as furnished to us by the authorities in March.-Ed.]

The Healthfulness of Sewage Farm Products.
Concerning the question of the healthfulness of crop grown on sewage disposal farms, the Hospital speaks as follows :

This is a question which cannot be settled with a precision approaching to the mathematical, either in physiological laboratories or by means of statistics gathered from the experience of the community at large. But there is an old scientific method, now a large. But there is an old scientific method, now a
good deal despised, whereby men of intelligence can good deal despised, whereby men of intelligence can
arrive at trustworthy conclusions; and that is the method of careful observation, personal experiment and an appeal to the court of common sense. By the use of this method many facts like the following have been accumulated by generations of experimentalists, and they settle the controversy in a practical sense. For example, if a cow is fed on turnips, within twentyfour hours her milk will taste of turnips, and if butter be churned from the cream, the butter will taste too The intensity of the turnip flavor is the measure of the quantity of turnips taken. In like manner, if pigs be quantity of turnips taken. In like manner, if pigs will fed on horseflesh, as they often are, their bacon will
taste of th ϵ horseflesh; if they be fed on fish, the bacon taste of th ϵ horseflesh; if they be fed on fish, the bacon
has a fishy taste. The same is true of hens and their has a fishy taste. The same is true of hens and thei
eggs. Feed hens on decaying animal matter, which hey will eat greedily, and both their eggs and flesh will be most unpleasant and unwholesome eating. In the case of ducks the facts are much more striking Ducks are very unclean feeders. Give them abund ance of garbage, and they will refuse corn and similar food. Their flesh is then most pungent to the taste and in many people is so potently poisoning as to pro duce diarrhœa. Animals fed on sewage farms unde ertain conditions are liable to have their flesh and ertain conditions are liable to have their flesh and
secretions changed in character by the sewage-produced herbs and grasses upon which they feed. If the sew herbs and grasses upon which they feed. If the sew-
age on a given farm be so managed that no more of it age on a given farm be so managed that no more of it
be put into the soil than any given crop can adequately deal with, then the crop will be sweet and natural, and the cattle or other animals fed on it will be sweet and natural too. But if the soil be gorged to repletion with sewage, then the crops will be surcharged with sewage elements, and unfit for food, and the meat and milk of animals fed on such crops will be like the crops and very unpleasant to the taste as well as dangerous to health. It is in the last resort all a question of the intelligence and conscience of the managers of sewage intellige

Ground Moles in Sugar Beet Gultivation

When farmers take upon themselves the destruction of ground moles, they little|realize that they are work ing against their own interest. The animals live en tirely upon insects and can devour in twenty-four hour everal times their own weight, leaving all vegetable matter alone. If the surface of the soil shows indica ion of their presence, it may be declared in advance that they have found on their passage through the substrata the requisite food for their maintenance which in the case of beet cultivation generally means white worms. These would have subsequently come to the surface and partially destroyed a crop of beets. That rows of roots have suffered from ground moles is insignificant in comparison with acres of beets that would have been victims of insect ravages. It fre quently happens that the tiller prides himself upon the success of his beet crop, while his neighbor, sug gests the Sugar Beet (journal), has been less fortunate when the real cause may have been that in the latte case the ground moles have been destroyed and in the former they were left to themselves.

The Largest Ship in the world

According to Prometheus the largest ship in the world s building at the Vulcan shipyard in Bredon, near Stettin, Germany, for the Hamburg-American line The same builders constructed the first large expres teamer built in Germany, the Augusta-Victoria, of the same line. The new monster steamer has a length of 625 eet on the waterline, and is therefore considerably large than the Campania, which is 600 feet in length between perpendiculars. The engines will have 27,000 horse power and a speed of 22 knots is expected. The engines and boilers will also be furnished by the Vulcan shipyards. Construction has been commenced already

THE UNITED STATES FIRST CLASS BATTLESHIP INDIANA.
A visitor on approaching the battleship Indiana by water, as she lies at anchor in a roadstead, is first of all impressed with the power of destruction which is suggested by the gleam of the many pairs of long and powerful guns with which she fairly bristles. They are her distinguishing feature, and mark the Indiana as the most powerful fighting machine in the world today. Not only is she able to give the hardest blows, but she could stand more hammering than any other ship. There are faster battleships, and bigger, but none that could hit so hard or endure so long.
Together with the Massachusetts and the Oregon, she was built for the defense of the maritime cities and harbors. The trio might aptly be termed the watch dogs of the coast.
Looking at her massive form, it is difficult to realize that she has greater bulk below than above water. The floor of the outer shell of the hull lies 24 feet below the water line, and is some 348 feet long, and $691 / 4$ feet broad at its widest part. Within the outer shell, and $31 / 2$ feet distant from it, is an inner shell, each being watertight, and forming a complete ship's hull in itself The space between the two is divided up laterally by the plate frames (answering to the wooden ribs of the old three-deckers), which are riveted to both shells. These lateral spaces are again subdivided by a series of plate frames, or girders, which run the length of the ship, being riveted to the cross girders at the intersection, and also to the inner and outer "skin" of the ship. This arrangement cuts the space into small com partments, or "cells," each separate and watertight The double bottom constitutes the below water armor or protection of the ship against the torpedo, for while the explosion of these deadly weapons might break in the outer skin. the inner skin would possibly remain in

BOW TORPEDO ROOM.
second illustration on the front page. The most striking objects are the muzzles of the two forward 13 inch guns, which show their black mouths protruding 23 feet through the portholes of the revolving turrets.

WARDROOM MESS.
tact, and the flooding would be confined to the cells in the neighborhood of the explosion. If the inner skin should be broken, the inflow of water would be localized by the athwartship and longitudinal watertight bulkhead, which extend above the water line.
The double skin rises to within $41 / 2$ feet of the water line, where it forms a shelf, upon which is carried a wall of Harvey steel armor $81 / 2$ feet high, 18 inches in thickness, and extending amidships for two-thirds of the length of the ship. At each end of the side walls is a transverse wall of steel, slightly thinner, but of the same height. The roof of this great rectangular fort is formed of $23 / 4$ inches of steel, and down below its safe shelter are placed "the vitals," that is, the engines, boilers, and stores of shot and shell. Forward and aft beyond the 18 inch side belt, the steel deck is extended in a gradual curve to meet the bow and stern. This steel deck is known as the berth deck, and some eight feet above it is the main reck, which extends flush throughout the ship, and finishes the hull proper. The line of this deck may easily be traced in the first of the illustrations on the front page. Between the top edge of the 18 inch belt and the main deck the protection consists of 5 inches of steel, backed by some 10 feet of coal, which will together keep out all the rapid fire shells, and such of the heavier shells as are fired from long ranges, or strike obliquely to the armor-as many of them will.
If we walk along the main deck to the starboard bow and look back, we get the view shown in the rifles, placed in pairs in two turrets,

The turret is formed of a solid circular wall of steel 17 inches thick, which revolves upon a circular track, located just below and within the top edge of a circular
steel fort or barbette 17 inches thick, which is built up rom the 18 inch armor belt below. It will thus be seen that from the top of the turret down to $41 / 2$ feet below the water line there is a coninuous wall of steel 17 and 18 inches thick for the protection of the gun thick for the protection of the gun
crew, the turning machinery, and the powder and shell. In the uncertainties of war it is not likely that one shot in thirty that struck this turret would effect an entrance; and experience shows that not oneourth of that number would probably score a hit in half a day's fighting, if the battle of the Yalu is anything of a guide. Just over the muzzle of the starboard gun is seen the turret sighting hood with its two horizontal and two vertical slots, or peep-holes, from which the gunner watches the enemy, and, by means of convenient levers, trains and fires the guns.
Peering over the main turret are

A 100,000 CANDLE POWER SEARCH LIGHT.
the visitor descends to the berth deck and walks to lecting. The scientist would add some bottles containthe extreme forward end of the ship, he will find himself in the bow torpedo room. Immediately in front of him he will see the fixed launching tube, which is built into the framework of the ship, parallel to its axis, and is inclined slightly downward to the water. Its outer end is closed with a cover plate shown on the front page view above the water line at the bow. Suspended from the ceiling are the 18 inch Whitehead torpedoes. When they are to be fired they are picked up by the chain hoists, run along the overhead tracks and lowered into the tube. The breech is then closed, and the torpedo is discharged, either by compressed air or by a small powder charge.

The torpedo, which weighs 835 pounds, contains three compartments. In the first is the charge of guncotton, which is fired by contact; the second is charged with air at 1,300 pounds to the square inch pressure; and the third contains the little compressed air engines, which work the screw propellers. It is provided with horizontal rudders, by which it can be made to run at any desired depth. The shock of discharging the torpedo starts the engines, and they will drive it for 400 yards at 30 knots, or for 800 yards at 27 knots, an hour. There is another fixed torpedo tube at the stern, and on each broadside there are two movable tubes-as shown in the smaller cut-which are fitted to the side of the ship with a ball and socket joint, and are capable of being trained on an object in the same way as the guns. The space between the main turrets is occupied by the superstructure deck and the bridge deck, upon the latter of which are stowed the lifeboats, gigs and steam pinnaces. On each side of the ship a powerful steam crane is provided, with sufficient reach to enable it to pick up a boat from the water, lift it 35 feet into the air, swing it round, and lower it into position on the bridge deck. It is operated by a man who stands on a platform attached to the crane, where, by means of levers, he can control the various motions of lifting and turning. be provided in planning the Indiana was the living quarters of the officers and crew. In general the officers' quarters are found aft of the after turret and on the berth deck. Our illustration shows the officers' wardroom mess, which the landsman would term a dining saloon. At the far end of this room will be seen a select library of scientific works. The extreme after end of the ship is occupied by the captain of the ship The living quarters of tho crew are forward upon the berth deck and upon the main deck within the superstructure.

Our illustrations were made from photographs obtained through the courtesy of Capt. Robert Evans, and Lieut. Frederick L. Chapin.

```
Sea Mosses.
```

by eugrnia pruder

One of the pleasantest seashore occupations is the collecting and mounting of sea weeds, the "ocean's flowers." The process is flowers." The process is
very simple and easily accomplished, if one goes at it rightly and can have the patience to be particular to the extreme of preciseness.
The paraphernalia or outfit necessary for the collector is, first of all, suitable clothing for himself, as, in this work, one must not be afraid of wettings. The finest specimens are always sure to be outside one's reach from dry land. It seems as if the waves had a special spite against such seekers, and they are always on the lookout for every possible chance to give a ducking.

A small meshed net attached to a long light pole, and a pail of some kind, are all the implements that are really necessary for col-

the steam launch hoisting crane.

re rocky, old wharves and piers are usually good the lecting grounds. Now and then one can find some very good specimens on the beach; still, this is uncertain, it being only occasionally that they are washed ashore.
As far as possible, use nothing but sea water with mosses. Should it be impossible to obtain this in sufficient quantity, then make the water salt by artificial
ing alcohol for preserving specimens for microscopic study; also he would carry in his pail some large mouthed bottles for keeping the different species separate. The amateur who knows not one kind from another should pick up all he comes to and decide upon the keeping after floating each one by itself.
The best time for collecting is at half flood. When the tide is flowing, mosses are more plentiful. The
keeping them there until mounted. Experience has shown that the delicate varieties cannot be dried suc cessfully, to soak out and mount at leisure. The larger, coarser ones, like rock weeds and devil's apron, it does no harm to dry and soak out at will ; at best these can only be pressed and mounted like flowers: Anothc: very necessary point to be observed is that the floating and mounting should be done as soon as possible after collecting. Leaving them in soak over one night only collecting. Leaving them in soak over one night only
has frequently been sufficient to extract all their brillianey of coloring, and in some case has rotted them down completely.
A moderately thick, unglazed paper is best for mounting, although any kind may be used if not too thin. Many procure cards from the photographer which are very good.
In mounting, have at hand two dishes with plenty of water; one of ordinary size, in which the plants may be floated and washed, while the othe should be large enough to take in easily the card to be used. When the moss is transferred to dish number two, place the card underneath, letting it rest on the palm of the left hand. Take an ordinary hat pin in the right hand and gently work the moss into its natural position of growth, just as one would arrange a plant for pressing At the same time that this working out and arranging process is going on the left hand should be busy manipu lating the card by various tips and turns, so that when it is finally drawn from the water the moss adheres in lifelike form. All the details are diff cult to give in words. Experience and practice are the best teachers.
After the moss is in place and the card is taken out, incline it slightly that the water may run off entirely before being put in press. The driers used in pressing should be of some absorbent paper, like the pads used by the botanist, or the ordinary blotting paper. The cards are laid on this paper, with moss uppermost, then covered with any thin white cloth fron which all dressing has been previously removed, then another layer of paper, and so on to the . On the top of all place a board weighted down ith stones, the amount of pressure being governed by the quality of moss, the coarser varieties requiring ore than the finer, more delicate ones
The majority of specimens will adhere to the paper naturally; still there are some that will require an ex tra fastening of mucilage. The driers should be changed twice a day until the cards are dry, which in some cases will be accomplished in one day, while again in others it will require sev eral.
A poorly mounted specimen is worse than nothing while, on the other hand one well done makes a pic ture such as no painter's brush could ever hope to excel in delicacy of tone and coloring. - The Outlook.

Steel Rails for New

 South wales.The government of New South Wales, as will be seen by an advertisement in another column, is desirous of making a contract for the manufacture, in that colony, of 150,000 tons of steel rails, with fish plates, bolts, etc. Any one wishing to undertake the business must state the prices per ton for the manufacture and delivery, each tender to be accompanied by a deposit of $\$ 25,000$, and the delivery of the rails to be at the rate of tifteen thousand tons per annum, but the manufacture must be entirely in the colony, out of iron mined there, and with native coal, coke, or other fuel. The delivery of the rails is to commence eighteen months after signing contract, and be spread over a period of ten years.

That a woman has been successful in inventing a cap for use by firemen in going through rooms filled with for use by firemen in going through rooms filed whould be encouraging news to women inventors generally. According to the Syracuse Standard, it appears that Mrs. John H. Miller has invented such a cap described as follows
The cap is made of fine strips of asbestos conformed to the shape of the head. It is held fast in place by a rubber band, making it airtight. Its weight is only sixteen ounces, and it is so constructed as to enable a person to carry it on the arm without inconvenience. There is a strip of mica before the eyes ; so no incon venience is suffered in this respect. A silk sponge, through which no smoke can enter, but which permit the ingress of air in plentiful quantities, fills an aper ture for the mouth, and when properly adjusted the cap is so simple that its efficacy is apparent at a glance
When it is understood that firemen are unable to re main in a smoking building longer than three or four minutes at a time, an invention of this character, which enables a man to grope about in a stifling atmosphere for an hour, certainly reduces chances of losing life through suffocation to a minimum.
A practical trial of the cap was given in Syracuse which worked perfectiy. Mr. Miller, the husband of the inventor, put on the cap and entered a smokehouse so densely filled with smoke that it was impossible to go near the door without protection, and there remained 35 minutes, with no possible chance of getting air from the outside. A fireman connected with No. 1's com pany entered the smokehouse without the contrivance and remained eight seconds before coming into the fres air, half suffocated and gasping for breath.

A SECTIONAL CAM

A cam especially adapted for use in stamping mills, and which may be readily removed for repairs or re placed by a new one without disturbing the cam shaft and the other cams, is shown in the accompanying illustration, and has been patented by George W. Ra venscroft and Nils I. Magnusson, Mogollon, New Mexico. It has a two part hub, fitted on the cam shaft and fastened against lateral movement by two keys driven radially into the hub parts at their joint, and the hub parts have cam wings extending in opposite directions, with the usual curved cam surfaces to engage and disengage the arms of the stamp rods. In the rear edges of the wings are dovetailed grooves engaged by dovetailed arms extending from the hub parts. The two parts of the cam are readily moved into engagement with one another by moving them toward each other from opposite sides of the cam shaft, and the keys are then inserted at the joint of the hub parts, to hold them in place and prevent lateral displacement of one hub part relatively to the other. To insure a positive tightening of the cam on the shaft, a curved wedge is fitted on the shaft and in recesses formed in the hub parts at one of the joints, the base of the wedge having an inwardly extending lug engaging a recess in the shaft. The wedge is placed in position previous to moving the sections of the cam in engagement with each other, and by pres

RAVENSCROFT AND MAGNUSSON'S SECTIONAL CAM
sure against the working surfaces of the cams the wedge and the cam sections are made tight on the shaft in proportion to the pressure exerted. Communications relative to this invention may be addressed to Thomas F. Cooney, of Cooney, New Mexico.

Death of Sir Robert Grove.

The Right Hon. Sir William Robert Grove, D.C.L. LL.D., F.R.S., died in London on August 2. He was born in Wales in 1811. He was educated at Oxford and became a lawyer. Being temporarily prevented by ill health from following his profession he turned his attention to electricity, and in 1839 invented the powerful voltaic battery which bears his name, and the gas battery.

A NEW LIGHT FOR PHOTOGRAPHERS. by O. f. TOWNSEND F.C.

Four hundred candle power for 10 cubic feet of gas burnt per hour, costing one farthing! Noiseless, pow erful yet soft, absolutely steady! What more can a photographer or anybody else desire in the way of gas lighting? My attention was called to the new lamp by a brilliant illumination appearing through the door way of the workshop at King's College, where, like good photographer, I was devoting my spare time to the mysteries of cabinet making. The light seemed too bright for incandescent gas light, and yet not cold and ghost-like enough for the electric arc ; so my pic ture frames were neglected, and I proceeded to the

Fig. 1.-THE ASPIRATOR.

engineering shops whence the light was coming. Here I saw a number of what appeared to be large incandescent gas mantles, mounted on cylindrical copper tubes crewed into the ordinary gas pendants. The brilliancy f the light, however, showed that something unusua was at work, for the large machine shop was as brigh as day. In a few minutes I was introduced to M Caton, the inventor, who was superintending the expe imental installation. With the greatest courtesy and much enthusiasm, M. Caton explained the principles on which his invention, "La Lampe Caton," was based and invited me to call on him in Leadenhall Street where I had an opportunity of going into the question more thoroughly.
Before describing the new lamp further, a few words about the principle on which the incandescent gas light works will make the account of the light more intelligi ble. A Bunsen or other similar burner, in which a mixture of air and gas is burned, is non-luminous. To produce luminosity it is necessary to have solid parti les of some kind in the flame. A candle is luminous, because one zone of the flame contains solid particles of carbon, which are raised to a white or yellow incandes ence by the intense heat. The hotter the flame, the greater will be the quantity of light given off by the ncandescent body. In the ordinary incandescent burn r, the mantle, composed of a fine network of infusible substances similar to lime, takes the place of the carbon particles of the ordinary candle or luminous gas flame The actual flame that plays on the mantle is non luminous, the light being emitted by the incandescent material in the mantle. Now, if instead of allowing the gas to burn with a mixture of the air it can drag in through the air holes in the burner, and the air sur rounding the flame, sufficient air is forced into the flame to burn the whole of the gas without calling on the outside air to supply any, the intense local heat of the blowpipe flame is obtained. That is the principle of M. Caton's lamp : the mantle is kept at an intens heat by a blowpipe flame.
The secret of success in the new burner is that the gas and air are mixed perfectly before reaching the flame, and consequently the combustion is perfect. Another most important point is that the gas and air travel at the same rate, so that there is no noise or flickering.
This desirable end is attained by causing the air and gas to pass through a spiral tube, or series of tubes, whence they issue thoroughly mixed. It is essential to success that the tubes should be cut to a particular pitch or angle, which the inventor has determined. To a lanternist this mixture of gas and air before reaching the burner will seem dangerous in case of lighting back, but the mixing tubes are safeguarded by wire gauze. Even without this the inventor declares that the quantity of air and gas actually mixed at one time is too small to cause an explosion. In cases where the burner has been damaged accidentally, a slight puff has followed and the gas has been blown out; nothing more.
The air necessary for combustion is supplied by a mall injector, worked by water pressure. For a large installation a metal one would be required, but where only a few lamps were used a glass one, such as is commonly used in chemical laboratories, would be sufficient. The cost of the metal injector would be $£ 1$ perhaps, and that of the glass one a few shillings. To this must be added the cost of a few feet of iron or compo piping, as the case may be-a comparatively small item. The cost of the water power required is insig-
nificant. For five 400 candle lamps, eight gallons of water per hour at the ordinary high pressure of town services would be ample. Water is charged by meter at 6 d . per 1,000 gallons, so that the water for a light of 2,000 candles would only cost 1 d . for twenty-four hours. The temperature of the flame is $1,800^{\circ}$ Centigrade $\left(3,270^{\circ} \mathrm{F}\right.$.), so that no chimney can be used with the lamp. Paradoxical as it may appear, the heat produced is less than that given off by burning the same quantity of gas in any other way. Although the local heat is intense, the total quantity given out is comparatively mall, because so much of the energy of the flame is converted into light. M. Caton wishes it to be clearly understood that he only claims the lamp, and is willing to use any mantle on the market. Purchasers, therefore, need have no fear of infringing existing patents. The price of the lamps has not been fixed at present, but it will probably not exceed 2 s ., to which must be added the cost of the mantle. Lamps of all sizes are made, to give light from 25 to 400 candles; the smal lamps having the same efficiency as the large ones.
What struck me as the great advantage of the lamp from a photographic point of view was its remarkable diffusiveness. There were no heavy shadows anywhere Even right under the lamp no appreciable shadow of the pipe could be seen. The light seemed to proceed from the lamp horizontally, to be diffused softly and evenly by the walls. The inventor took me behind a heavy piece of machinery, where with almost any other heavy piece of machinery, where with almost any other being in diffused daylight. Reading was perfectly easy, and colors could be distinguished quite as well as in daylight.-The Photogram.
Note.-The two accompanying iliustrations show the principle of the water pressure injector. Fig. 1 is a sectional view. The water falling vertically through the emall opening draws the air inward through the side duct and carries it into the bottle. Fig. 2 shows the whole apparatus, the and the flexible tube is the pressure exerted on the air in the bottle aiove the water, which is used to give a gentle air blast with the gas to the burner.-Eds.

A Lighthouse with no Lantern
The most extraordinary of all lighthouses is to be ound in the Hebrides, Scotland, on Armish Rock, Stornoway Bay-a rock which is separated from the Island of Lewis by a channel over 500 feet wide. On this rock a conical beacon is erected, and on its summit a lantern is fixed, from which, night after night, shines light which is seen by the fishermen far and wide. Yet there is no burning lamp in the lantern and no attendant ever goes to it, for the simple reason that there is no lamp to attend to, no wick to trim, and no oil well to replenish.
The way in which this peculiar lighthouse is illuminated is this, says the Marine Record: "On the island of Lewis, 500 feet or so away, is a lighthouse, and from a window in the tower, a stream of light is projected on a mirror in the lantern on the summit of Armish Rock. These rays are reflected to an arrangement of prisms, and by their action are converged to a focus outside the lantern, from where they diverge in the necessary direction." The consequence is that, to all intents and purposes, a lighthouse exists which has neither lamp nor lighthouse keeper, and yet which give as serviceable a

Fig. 2.-ASPIRATOR ARRANGED FOR PRODUCING
light-taking into account the requirements of this ocality-as if an elaborate and costly lighthouse, with lamps, service room, bed room, living room, store room, oil room, water tanks, and all other accessories were erected on the summit of the rock.

Dr. John Haldane, lecturer on Physiology at Oxford University, is one whose labors would appear to deserve more than passing recognition. In his experiments to discover a means of preventing the loss of life among miners, resulting from underground explosions, he actually inhaled carbon monoxide for seventy-one minutes, with the result that vital energy was nearly extinguished, and life would have flown had not oxygen been speedily administered.

THE TOMB OF KING RENE AND QUEEN ISABELLA OF LORRAINE.

Following the example of the majority of princeswho were his contemporaries, Rene I, Duke of Anjou, Lorraine and Bar, Count of Provence and Piedmont, King of Sicily and Jerusalem, etc., the "Good King Rene," as popular tradition called him, made, in his lifetime, careful provision for his burial. It was in the city of Angers, in the choir of Saint Maurice Cathedral, that he Angers, in the choir of Saint Maurice Cathedral, that he Is abella of Lorraine. His "Comptes et Memoriaux," published by Mr. Lecoy de la Marche, prove to us that in 1447 he was already occupying himself with the execution of a monument that he desired should be a sumptuous one, should be a sumptuous one, and up to his death this was his constant thought. Three artists were successively em ployed upon it-Jean and Pons Poucet and Jacques Morel, the designer of the tomb of Charles I of Bourbon and of Agnes of Bourgogne in the Church of Souvigny. All died before putting the finishing touches upon

SKULL OF THE QUEEN.

SKULL OF THE KING

The Color of the Negro Race.
The Hospifal speaks as follows regarding the color of the negro race: "It has occurred to a writer in an American medical newspaper to discuss the question of the blackness of the negro's skin. It will be a revelation to many to learn that the baby negro is not born black. Even so long ago as 1765, Le Cat noticed that the newly born negro is of a reddish color. That observation has since been frequently confirmed; and it servation has since been frequently confirmed; and it
is now pretty widely known that, though the baby negro begins to follow in the footsteps of his parents as re gards color within a few day after birth, yet at the moment of birth he shows a disposition to aspire toward the civilized races being white, or at worst red in hue It is generally as sumed that the primest of al the causes of a negro's black ness is the hot sun beneath whose more or less vertical ray he is doomed to live. There is however, a physiological con dition of the skin which differ entiates that organ from the in tegument of a European. 'The negro, says our Americ an
scientist, 'possesses a more developed vascular sudori parous system than we do.' In other words, he ha more and larger sweat glands, and they are more liberally supplied with blood. By means of these he perspires much more abundantly. This condition is possibly a contributory factor in his blackness. It i an important element in the investigation to remember however, that the blackest of all black people are al most invariably found under certain very definite climatic conditions. That is to say they are found where great heat, strong light, and much atmospheric moist ure are in combination. For example, 'the blackes
negroes in Africa are those who live in Guinea, where
coffin there was a vessel of common earth containing charcoal. A few hairs still adhered to the skull The teeth had almost entirely disappeared. The king, in fact, was seventy-one years of age on the day of his death. Isabella, on the contrary, who died at the age of forty-three, and who preceded her hus band by twenty-eight years in the burial vault of Saint Maurice, still possessed nearly all her teeth. The skull had been sawed for the operation of embalming, and its cap rested upside down at the side. A few tufts of hair were still to be seen at the apex. At the feet lay the leather soles of pointed shoes, whose vamp it, and when the king himself departed this life at Aix, July 10, 1480, all was not yet finished
of there now remains nothing or nex ing by Gaigneire details of the Comptes and a draw ing by Gaigneires, preserved at Oxford, have kept a re membrance of it for us. It consisted, under a richly carved, painted, and gilded arcade, of a sarcophagus upon which reposed the white marble effigies of the of knights and as many figures of women in the act of mourning.
At the back of the sepulchral vault, a painting upon wood, for a long time attributed, without proof, to which was probably of fabric, no longer existed. Ther
royal personages, nothing remained but the skeletons, to which still adhered a few particles of organic matter that the embalming had preserved. Time and humidity had destroyed all the vestments in which we know they of the king's head there was a crown. in the Alongsio of the king's head there was a crown ; in the right hand mounted by a cross. These three pieces of gilded copper (trumpery executed for the occasion) were almost

SKELETON OF KING RENE.

Rene himself, showed the dead king-a crowned skeleton allowing the royal emblems to fall from its hands. Up to the middle of the last century, the monument stood in the first triforium of the choir, on the north side. In 1769, the canons, desirous of wainscoting the choir, moved the monument to the nave. This first mutilation was followed in 1793 by a complete and final destruction.
It was owing to the transfer of the monument from the choir to the nave that the royal remains were not violated at the revolutionary epoch. They had been forgotten.

As will
As will be remembered, during the course of some work on the pavement of the choir, September 16, 1895, a fortunate accident led to the discovery of the royal burial vault, and permitted of ascertaining the presence therein of two leaden coffins, one of which was provided near the head with an aperture through which a crown was perceived. There was no doubt of it ; it was indeed here that rested King Rene, and the aperture was really the one that, according to history, was made in 1482 by the incredulous canons in order to verify the identity of the body brought to them from Aix by Queen Jeanne de Laval, second wife of the king. The authentication having been made, the vault was sealed up again.

On the 16th of last June it was again opened in the presence of Mgr. Mathieu, bishop of Angers. The top having been removed, the two coffins were hoisted to the surface-that of the king first. During the course of this operation, the decomposed lower part gave way and the royal remains fell to the bottom of the vault. In order to prevent a repetition of such an accident, the cofinn of the queen was opened in situ. Of the two
wewe no jewels nor emblems that recalled the rank of the departed.
Carried to a chapel of the cathedral, the remains of Rene and Isabella passed the night of the 16th and 17th therein. They were placed in new oaken coffins lined with lead, and to which were fixed two copper plates bearing the simple inscription: "René d'Ạjou, Isabella de Lorraine." The two new coffins were then lowered to the bottom of the vault, which had been previously repaired, and in which was deposited a leaden box containing an account of the operations of June 16 and 17, in order to enlighten such future rum magers and archæologists as might be tempted to

COFFIN OF ISABELLA OF LORRAINE.

trouble once again the sleep of the dead king.-L'Illus tration. \qquad
President Cleveland has appointed a scientific commission to investigate the condition of the fur seals in the North Pacific and Bering Sea. The members of the commission are Mr. Jordan, of Stamford University (president), Lieutenant-Commander Moser, command ing the fish commission steamer Albatross, Dr. Stejne er and Mr. Lucas, both of the United States National Museum, and Mr. Townsend, Fish Commissioner.
the greatest amount of rain annually falls.' On the other hand, 'the people who live in the dry section of the Nubian Desert have red skins.' Heat, light and humidity are all causes of pigmentation, and if to these we add the fact of the highly 'developed vascular sudoriparous system' of the negro, we have traveled as far as our American investigator is able to help us The question is one of genuine scientific interest ; and perhaps, when the Matabele, and the Dervishes, and the Soudanese have all settled down quietly in the ways of civilization and order, science may turn her attention in this direction and tell us much that is both new and interesting about those races who differ so markedly from ourselves in color, character and many other particulars."

THE earth tremors and sounds produced by the Niagara Falls have been often referred to, in most cases probably with some exaggeration as regard their intensity. In a pape published in the Yale Scientific Monthly, Mr. W. H. Brewer describes some careful obrarvations made at various times during the last forty-five years. During one year spent at Lancaster, a village twentyseven miles from the falls, sounds, possibly due to the falls, were heard on thre occasions, but it was uncertain whether they might occasions, but it was uncertain whether they might
not have come from Buffalo, which is hardly ten miles distant. The tremor observations were made within a few miles of the falls, and show that the vibrations are extremely irregular, varying both in amplitude and period. Some times they stop for an in stant, then steadily increase in intensity, reaching one or several maxima, afterward steadily declining. The momentary pauses do not, however, recur at regular intervals.

RECENTLY PATENTED INVENTIONS.

Engineering.

Elevated Railway Structure. David D. Toal, New York City. A structure combining lightness with strength has been devised by this inven-
tor, a series of arches instead of straight supports being used. and the structure being designed not to interfer materially with the light of stores and dwellings. The sound is deadened by laying the rails upon a lead bed,
and there is a lead cushion in their under-fianged surfaces, the cushions being virtually an integral portion o the rails. The abutting ends of the rails are made wit spikes, bolts are employed for attaching the rails to th track beams or sleepers, all the parts being of metal. It casing to deaden the sound.

Ralluvay Appliances.

Car Fender. - Montgomery Queen, Brooklyn, N. Y. According to this invention the car piatform is extended forwardily beyond the dastboard by
sills, and the fender, which is preferably made of sheet iron, extends over the space beneath the platform and forward of the steps, shielding the latter from striking an obstruction. The front of the fender is made on the face, the design being to throw to one side anything in the path of a moving car. By means of links and a
drum mounted on the platform the fender is readily raised, being readily dropped to lower position by the movement of a lever, springs assisting its downward ment of side fenders to prevent provides falling or being drawn under the car.
Car Fender.-Prentis E. Law, Santa Barbara, Cal. This improvement consists of a truck frame In front of the car and movable along the track, being date itself to curves and inequalities, and the truck fram carrying a fender adapted to move obstructions to one side out of the path of a moving car. On the front of the mally held pressed forward by springs, and on contac down close upon the track, breaking the force of the blow and moving the obstruction sidewise off the

Car Truck Bearing. - William J. O'Byrne, Pontoosuc, Ill. This bearing consists of two
plates adapted to be connected by bolts to the adjacent faces of the body bolster and swing beam, the plates be ing made cup-shaped to form small, oscillating table ith a circular retaining marginal flange metal ball is placed and is free to roll in all directions forming a sensitive bearing between the body bolete and swing beam at each end, allowing the trucks to read y adjust and readjust themselves in all directions. As any curve, the lateral swaying or lunging of the car bod on curves is readily provided for.

Electrical.

Outlet Box for Electric Wires. Charles A. Mezger, Brooklyn, N. Y. Two patents hav been granted this inventor for outlet boxes for electrical conductors.and conduits, to take the place of the old
form of outlet boxes, in which the box was formed with orm of outlet boxes, in which the box was formed with ductor or conduit, the improvement allowing an opening orenings to be readily produced at the requisite poin The box is made in two main parts or sections, jome gether edgewise, and it has a number of partly wholly completed openings in its sides and bottom wal or a readily removable plate covers each opening, the ox having openings at all convenient points. The paceiving and supporting the ends of electric wire couduits in wiring buildings, avoiding the necessity of providing a special box for each location, and.permitting.the boxes to be ordered in any required number previous to he commencement of the work. All the boxes may thus be placed in position before the plastering is com placed in places formed to receive them in the finished walls of a building
Secondary Electric Clock.-Jasper H. Wilson, Rockwood, Tenn. This invention is for a circuit closer within another clock, the improvement calling for but few operative parts, whereby the clock is not liable to get out of order, and may be cheaply made. Any desired number of clocks may be located in a single circuit controlled by one circuit closer, the invention beng particularly adapted for use in railway stations, factories, etc. All of the clocks in a circuit are under the so that there can be no variation of the several clocks as to time.
Electric Blasting Machine. ames Macbeth, Brooklyn, N. Y. This invention proniting charges of explo es, the invention consisting in a dynamo electric machine mounted in a case, with the axis of its armature vertical, while combined with the armature are a propelling screw and a sliding nut. A deism, so that the armature may revolve by its cun moism, so that the armature may revolve by its own mo-
flentum, and there is an automatic circuit breaking mechanism. By the improved construction cog gearing and springs are avoided, and the necessary impetus is given to the armature by a simple push of the handle, interrupting the short circuit and allowing the self-in
duced current to fiow out through the conductors conduced current to flow out through the conductors con-
nected with the binding posts, thus ignitirg the fuse nected
charge

Mechanical

Beveling Machine.-Henry M. Loud, Ausable, Mich. For quickly and accurately forming
ims, and for other similar work, this inventor has de vised a machine in which is a revore weing pivoted on the able a rest on which is adapted to rest the piece of wood to beveled. The machine is of very simple and dura le construction, and accurately forms the desired beve the wood, so that the beveled ends may be readil

Engraver's Block. - Henry Straw Garner, Iowa. For firmly clamping and holding article oo be engraved, this inventor has devised a simple too hat may be easily and quickly adjusted and adapted to the work in hand, comprising clamping blocks wes on
rotate on substantially horizontal axes, and have o otate on substantially horizontal axes, and have on be engraved. The block consists of a base with upwardly extended portion in which are the trunnion bearings of ring, while a bed piece has trunnion bearings in the ring at right angles w the ring trunnions, a spring
viding a yielding anchor for the trunnioned parts.

Agricultural

Corn Planter attachment.-Alfred \cdot Thomas, Carbondale, Kansas. This is a simple and ive improvement adapted for use as a check-ro by dropping the fertilizer, such as lime, plaster, etc., on he hills. The fertilizer is contained in a box carried on frame attached to the axle of the planter, the box bein ehind the dropping devices and leaving an opening in ars lower part. The opening is controlled by a val planter to drop the fertilizer on each hill, or on alternate bills, as desired.
Sieve Holder.-Jefferson Tollefson . AnEgar, Iowa. The sieve holder and its sievesdesigne tc., the tailboard being adjustable with the top sieve an the tailings sieve forming a part of and being adjustable in combination with the top separating sieve, the combined upper sieve being adjustable with the tailboar a
and dispensing with the loose tailboard and tail rack ornd dispensing with the loose tailloard and tail rack o
dinarily used. The adjusting devices are so connected ith the sieves that the upper and under sieves are op ted from different centers, the upper sieves bele ieves moving during adjustment to different planes. -

Miscellaneous.

Scale Beam. - Gaylord C. Wosster Rulo, Neb. According to this invention a detachab beam is anged parallel to the main scale beam an raduated with several horizontal series of marks fo beam, there being a separate poise, screw stem, balance weight and hanger for the detachable bean. The scale is for use in weighing commodities where a second or tare weight is to be deducted from the first weight, the net
weight being immediately indicated as soon as the tare is ligh being immediately indicated as soon as the tare both in net pounds and in bushels and fractions of bashel, of any given womatical calculation
hat Cleaning Machine.-Conrad S Schwarz, Philadelphia, Pa. A simple and easily pe been devised by this inventor, the machine being de signed to be a great convenience in public places, as hotels, barber shops, hat stores, etc. In a table of light
construction, similar to that of a sewing machine, a readle is arranged to rotate a friction disk on the lowe end of a vertical shaft which carries at its upper end hat carrier adapted to fit and readily conform to the in. which is set in rapid motion by operating the rreadle and by holding a cloth or suitable brush on the hat it will

Eyeglasses.-Franz Heilborn, Bresau, Germany. According to this improvement a perfoilver, is pivoted or hinged to the margin of the glass proper, and adapted to be swung clear of or against either eries of fine holes. The holes are preferably in concen tric or radiating series, and need not be of equal sizes or persons with strong improvement is designed to ena distance of about a foot, while those suffering from primary irregular astigmatism may read at the same distance without glasses.
Receptacle for Mucilage, etc. Walter D. Gregory, Newark, N. J. For mucilage, blacking, etc., to be applied with a brush or swab, this invention provides a receptacle and a brush or swab designed
to be always pliable and ready for use, and yet free from excess of liquid when not in use. The bottle or receptade has an apertured cover through which a tubular hanor of the brush projects, the brush or swab having on outer or delivery end and its inner or receiving end. A cap covers the brush end
Comb. - Heinrich Traun, Hamburg, Germany. This invention provides a device for protect Ing the teeth of a comb, the device being formed by a bow which is rotatable, and arranged on the comb in such
a manner that in one position it allows the free use of the comb, while in another position the teeth are protected againsthooking in and breaking when the comb is put into a case. The comb and its protecting bow are pre
ferably manufactured by one pressure, and the protecting bow may be applied to any kind of comb.
CuSPIDOR.-George A. Wolff, Lafay ette W. Johnson, and James F. Wallace, Winslow, Ari in palace cars, coaches, club rooms, etc., its construction being such that when not in use it will be entirely con-
cealed, but its gate or door will be opened by the pressure of the sot upon a knob, the cover automatically restoring itself to normal position after having been car-
ried to one side.

Fence Stay.-John S. Martin, Baugh an, Ohio. In a fence formed of running wires, the
ppermostand lowermust wires are formed with kinks ent inwardly toward the center of :the fence, and thes ires are connected with each other and with the othe ence wires by links, thus retaining the fence wires paced distances apart, and allowing a limited amount of
lasticity at the interlocked connections of the link th each other and with the fence wires,
Portable Wire Fence.-James W Hammett, Eureka, West Virginia. This invention con hree feet underground at the corners or intersections the fence, the anchor parts being left in the ground, ition after it has been taken down and moved to anat po point. The fence strands are preferably formed in sec ions, the wires being secured by stays and strut brace nd a gate panel is made like any other section excep at it has a bare board and a wire strut brace.
Manufacture of Glass Jars.-Anmethod whereby the mouth and neck of the article is moulded, and the body is blown in a mould. When the outh an 1 neck are moulded in the form of a cup, mp of molten g!aas is placed in the cup to melt its bo ould and blown to form the body of the aticle from he mouth and neck.
Temporari Binder.-James A. Rob ts, Chicago, Ill. This is a binder in which the sections nay be conveniently adjusted to suit the work to be
eld. It has two sections, from one of which two rods project, the other section being slidable on these rods; the latter section has two clamping arms connected to
operate as toggle links, and adapted to engage the rods and bind them against the section on which the arms a .
Heating and Ventilating Stove. John D. Barrier, Mount Pleasant, N. C. This stove ha ouble walls surrounding the fire pot, and the outlet for he discharge of the products of combustion is surroundween the donble walls, the upper end of the drum com municating with the air of the room and having amper. A hot air tube extends across the fire pot and is adapted to draw air from the room. The construction is simple and inexpensive, and is designed not only to

SEWing Machine Ripper Attach rent.-Francis M. Batchelor, Portland, Oregon. This evice is provided with a knife sliding in a slot in the pex of a peak-shaped rest secured on the top of a table esting on a sewing maching table. The knife has straight cutting edge, parallel to which is a elot engaging the knife when the needle bar is set in motion, the material advanced on the apex of the rest being then ripped or cut.
Flooring.-Thomas Cantwell, New York City. This invention relates to hardwood or inplace so that it will not be liable to warp. The board ave on the side a rabbet for forming a botom hange having a transverse slot, a clamping iron passing with parit of the body into the slot, while an arm extending flange. No fastening devices fare visible on the surface of the flooring, and the flooring boards are drawn very
firmly down upon their supports, being effectively prevented from warping and longitudinal shifting.
Pencil Sharpferer. - Henry M.
 fastener being held in a tube or the barrel in which the end of the pencil is to be placed, whick may also be provided with an eraser. The sharpener is reversible, and
the knives are grouped together to receive the point of the knives are grouped together to receive the point
the pencil between them, when a quick and prop ing of the point of the lead may be mad

Bicycle Riding Habit.-Max Diamond, Brooklyn, N. Y. This is a ladies' hahit which ombines skirt, trousers and leggings in one garment. The skirt and trousers are connected together at the waistband and have a divided body at the rear, where
plaits extend from top to bottom of the skirt, the trousers forming an integral part of the inner edges of the plaits. The garment permits the wearer to easily mount and dismount a bicycle, the skirt not hindering the free
movement of the limbs, and the garment hangs gracefully when used as an ordinary walking skirt.

Sprocket Chain and Wheel. James and Herbert Monks, Hartford, Conn. This im and wheel being designed to move with a minimum rriction, and the chain firmly engaging the wheel. O pair pivot of the chain, and between the ends of each pair of links, are bearings, alternately arranged, one
betag substantially spherical and the other formed of two concentric rings, both bearings being designed to rol slightly on the face of the sprocket wheel.
Suspenders. - Charles G. Mathews clasp having two pivoted arms provided with spring jaws on their inner faces, the jaws being adapted to firmly engage and press the material between them. Suspenders provided with the improvement are adapted to conveniently engage and support trousers and draw ers, and the suspender ends may be
the trousers when a button is torn off
A Non-Refillable Bottle.-Wil liam Laudahn, Port Angeles, Wash. This bottle has an and easily breakable portion the top being broken of when the bottle is to be emptied, and thus preventing the refilling and selling of the bottle as an original package. The stopper in the auxiliary neck supports a plate carrying a spring pressed pin, and a locking disk adapted to
be locked with the neck has a recess receiving the pin, rendering it impossible to obtain access to the content

Lap Board.-Sophia M. Rivers, New York City. To facilitate hasting and similar work, this woard is made substantially in the form of a cylinder, eld upon the lap its inner surface being conveniently ome fabric or formed with ribs or corrugations, Th outer face of the board is also adapted to secure a pat tern upon to facilitate cutting out waists and similar garments.
Ale Pump.-George R. and Hermann J yoke is rigidly Yornk City. In this pump an inverte arger yoke embraces the other, their ends being pivo aly connected together, while a lever mechanism is fiex piston rod. With this improvement the reciprocate the placed in any desired position or at the pump may be piston rod operated without binding in the pump cyl nder, no matter in what position the lever or equivale operative device may be located.
Mechanical Theater.-Thomas B. norndyke, New York City.- This is a coin-operate building, in which is an automatically rising and fallin cartain, aancing Igares, music, etc., one or mcre figure being adapted to be moved from the wings of a miniacuse the figures to dance pupon setting the platfor, motion Thedroping of a the unlocking of a motor preferably in the form of clockwork, which actuates the mechanism for manipulating the dancing figures, the platform, the curtain and Uas
Preparing Dentists' Gold.-Chaun A. Flower, New Bethlehem, Pa. Two patents have
been granted this inventor for preparing gold which is especially adapted to weld or cohere into a solid filling without the use of a mallet, forming beautiful, tenacious melting point to establish its granular form, then suddenly cooled to expand the granules and render the gold oft and cohesive, then again subjected to a heat o bout $220^{\circ} \mathrm{Fah}$. and gradually cooled, then again heatew minutes, and allowed to cool. One of the patents providestor plunging the gold atter it comes from the annealing or tempering furnace into a bath of water charged with electricity, whereby the gold is not only
changed jhysically by tne chilling effect but it is signed that the polarity of the bath shall aid the par icles in assuming the form and relation best adapted to coherence, the surface being also kept clean and bright. Meat Block and Chopping BowlDavid H. Brannen, Fort Scott, Kansas. This block is
fat on one side and concave on the other, and has legs pivoted near one edge, and reversible to project below The block when in one position but not in the other. The device may also be used as a bread board, dough
raiser, etc, and may serve as a stand or table for supraiser, etc, and may
porting heavy articles.
Plaiting Machine.-Bruno Kippels and William Zeller, Moorhead, Minn. This invention relates to a machine for forming coifs such as used for a simple and inexpensive one, easily worked and effectively serving its purpose. The machine has a glass cov-
ered table over which a presser plate is held in which are ered table over which a presser plate is held in which are slots accommodating the shanks of plungers detachabiy
fastened to a plaiting blade. The blade is manipulated fastened to a plaiting blade. The blade is manipulated
by means of handles, being raised from the fabric, pulled forward and lowered to engage the muslin or other thin goods at a point in advance of the last plait, the shoving rearward of the blade forming another plait.

Designs.

Sprocket Wheel.-Oscar F. Burton, Belleville, N. J. This design consists of two concentric coothed rings, one of less diameter than the other, the wo rings being so close together as to appear integral.
Hassock-William B. Shaw, Brooklyn, N.Y. The top of this hassock isof stellated form, the sides tions closely following the edges of the top of the hassock, while at opposite sides tabs appear extending from Noте
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 10 cents each. Please
send name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS

 F. Berger's French Method. By Francois Berger. Paris, France : F.Berger. London : D.
York: F. Bett.
New York:
75 cents.
Professor Berger has very excellent ideas as to how French should be studied, and the following work embodies them. We believe that it will facilitate very
much the learning of the French language, and the method he advises seems to be a most excellent one. Modern Methods of Sewage DisPOSAL. For towns, public institu-
tions and isolated houses. By George
E Waring. Second edition, revised E Waring. Second edition, revised,
New York: D. Van Nostrand Com-
pany. London: Sampson Low,
Marston \& Company, Limited. 1896 . Marston \& Company, Limited. 1896.
Pp. 253.
Price $\$ 2$.
Mr. Waring has done such excellent work in the practical work of sewage disposal that everything relating
thereto coming from his pen will be received with much appreciation. The title page shows the scope of the work, as referring particularly to a smaller class of dis posal plants. A most exhaustive index gives quick reperence to all the matters in the book and by its title shows how excellently selected has been the field covered by this book. Iss illustrations and the printing and genera
make up are beyond criticism.

ƏBusiness and Personal．
 tisements muss io e receiveci at pubilication office as eariv aa
Thursaiav mornino to appear in the fouowino week＇s issue

Marine Iron Works．Cbicago．Catalogue free． High grade well drills．Loomis Co．．Tiffin，Obio． For hoisting engines．J．S．Mundy，Newark，N．J．
＂L．S．＂metal polish．Indianapolis．Samples free．
Presses \＆Dies．Ferracute Mach．Co．，Bridgeton．N．J． Presses \＆Dies．Ferracute Mach．Co．，Bridgeton，N．J． Handle \＆Spoke Mchy．Ober Lathe Co．，Cbagrin Falls．O
Laundry machinery wanted．Emil Lundgren，Har Laundry machinery wanted．Emil Lundgren，Har
mony，Pa．
Screw machines，milling macnines，and drill presses Screw machines，milling macnines，and drill presses．
The Garvin Mach．Co．，raieht and Canal Sts．．New York． Engineers．－Go into the proftable business of concrete
construction．Ransome＇s system， 758 Monadnock Block， Chicago．
Wet Tool Grinder，Sensitive Drills，for all light work，
especially adapted for Bicycle work．C．N．Cady，
Canastota，N．Y．
Fmerson．Smith \＆Co．．Ltd．，Beaver Falls，Pa．．will send Sawyer＇s Hand
free to any address．
The celebrated＂Hornsby－A broyd＂Patent Safety Oil
Engine is built by the De La Vergne Refrigerating Ma Ennine is built by the De La Vergne Refrigerating Ma－
choot of East $138 t \mathrm{t}$ Street，New York The best book for electricians and beginners in elec－
tricity is＂Fxperimental Science，＇by Geo．．1．Hopking． By mail．$\$ 4$, Munn \＆Co．．，publishers， 361 Broadway，v．Y Concrete．－See Kidder＇s new book on＂Building Con－
struction and Superintendence．＂Comstock， 23 Warren Street，N． \mathbf{Y} ．
Stay with your job，and with your wages pay install－
ments for a proftable olive orchard．Booklet free． Whiting＇s Olive Colony，Byrne Building，Los Angeles Cal．
manufacturing invited．－Parties with paying ar－ ticles for manufacture needing additional capital and
location，write Secretary Board of Trade，Tidioute， Ya No bonuses；no experiments；only practical busi－
Pess now paring，or which can be made to pay，a rea－ ness now paying，or which can be made
sonable per cent．on investment desired．
T－send for new and complete catalogue or Scientife New York．Free on applifation．

瓝 Mrathand

HINTS TO CORRESPONDENTS．
Naunes and Add ress must accompany all letters
er no attention win be paid hereto．This is for our
inf ir not attention and not por pubbiceretion
informion and
 sereepated：coirespondents will bear in mind that
though we end eaine not
to

 Books referred to promptiy supplied on receipt minera
Iincralk sent for examination should be distinctly
marked or labeled．
（6922）G．F．H．says：Will you please send me by mail the formula used in preparing bir
lime ？A．Boil the middele bark of the holly，gathered in June or July，for 6 or 8 hours in water，until it become tender；then drain off the water，and place it in a pit under ground，in layers with fern，and surround it with
stones．Leave it to ferment for two or three weeks unti it forms a sort of mucilage，which must be pounded in mortar into a mass，and well rubbed between the bande in running water，until all the refuse is worked out then place it in an earthen vessel，and leave it for four or five days to ferment and purify itself．Remarks：
Bird lime may also be made from mistletoe berries，the bark of the wayfaring tree and other vegetables，by similar process．Should any of it stick to the hands， may be removed by means of a little kerosene oil or tur birds or small animals，who are blinded and confused by the leaves．etc．，．sticking to them．The＂lime＂（from
German＂leim＂）indicates glue．Another preparation is made by heating linseed oil until it emits an infammable vapor or by boiling down printer＇s varnish until tough and sticky；or use a solution of cabinetmaker＇s glue in
water with addition of strong chloride of zinc solution．
（6923）W．W．L．asks（1）for complete directions for making a Ruhmkorff coil piving a ten inch
spark in air．A．A coil of twice or three times the lineal dimensions of the one described in our Surput MENT，No．160，if properly constructed，should do the work．The secondary should be wound in eight or ten ing such a coll succesesfully are such that it should not bo ttempted by the amaterr．2．How do focusing tube differ from Crookes tubes？A．In the shape of the American，No．14，vol．74．Special X ray tubes are de scribed in our Scientific Anerican，Nos 22 as 25 ，vol．74，also Surplement，No．1057，with notes on making．
（6924）G．C．B．writes：1．What length park will I obtain with a coil built similar to Georg Hopkins＇（12／2 inch spark）induction coil，but of hargen
dimensions？ space， $11 / \times \times 444 \times 814$ ；iron core， 114×9 ，primary coil， 3
layers of No． 16 d．．c．．，secondary No． 36 inch sill wound in layers．A．All we can say is that theoretically the length of spark should vary with the 5 th or 6 th power of
the lineal dimensions．In practice，the result will be far less favorable．It would be safer to use the 3 d powe Thus a coil twice as long，wide，etc．，should give a spark eilght times as long．2．Would you suggest any change
in the winding（size of wire，turns，etc．）？A．Wind the
secondary in sty or more sections，so as to separate por－
tions of widely varying potential
3 tions of widely varying potential．．．Which would b
better，winding the secondary in layers with t turn of better，winding the escondary in layers with a turn of on
paper between layers or win in halvesas in Hopkins
隹 coil？A．See preceding answer；wind in disk fashion ．Have you published any notes in the scieviry ducing the \mathbf{X} rays？Please give number of issue and ubject of articles．A．Exhaustive data on this subject will be found in Scientific american，Nos．7，10， 12 ， and 14，vol．74，also Supplement，Nos．1050，1054， 1055 ，
1056，1057，1058，1065，1067，1068，and 1069．These arti dess give practical directions for taking the pictures，ap paratus necessary，etc．；they also treat on the physical questions involved．You may anticipate much trouble in building so large a coil．Try smaller ones first．Dis－ pointment in results is to be anticipated．
（6925）H．A．H．asks： 1 ．What is the eest and simplest method for polishing mahogany an er you to the following books：＂The Hardwood Fin－ isher，＂by Hodgson，price \＄1；＂The French Polisher＇s
Manual＂price 20 cents，postpaid．2．Is the indicate coil for alternating currents described in ScIENTIFI American of March 11，1893，suitable for producing X rays，using a T．H．alternating dynamo，with 12 fiel
coils，and running at 1,500 revolutions per minute，as source of current？Would the alternations be rapid enough ？A．Yes．Probably it would be well to omit the Leyden jars．3．Could above coil be used to excite made much smaller，but should be based on giving a least 200,000 volts．Give enough turns in secondary，when divided by turns in＇primary，to produce a multiplier which
multiplying the original voltage，would give 200,000 ． Would it be possible to secure an index to Notes and Queries for the last six or seven volumes？Do you know of any subscriber to Scientific American who has one \boldsymbol{q} A．Possibly some of our subscribers may （692）J．
（6926）J．J．O＇D．asks：1．By what pro－ cess can melted lead be reduced to powder ？A．Heat the ray well chalked on the inside．Throw it into the ai nd catch it，and repeat this until it has solidiffed． will then be in fine granulated form（test lead）．2．Also
what process will convert litharge back to metallic lead？ what process will convert litharge back to metalic lead
A．Heat with powdered charcoal and sodium carbonate
（692\％）J．C．M．says：Do you know of nrithing that will cure sweaty will drop off them when it is warm．A．When perspiration is excessive it may be regulated by using as a wash，once a day，not oftener，for bout two minutes，liquor atropix， 2 drachms；water，
int．The face and other parts may also be washed a ften as desired with alum， 1 ounce；glycerine， 1 ounce
（6928）R．H．F．asks ：Please explain he difference between a tornado and a cyclone，and he atmospheric disturbance．A．The tornado is a sud den outburst of wind in an otherwise quiet，sultry atmo
phere；it is ushered in by a load，indescribable roar imilar to a continuous roll of thunder ；its path is very narrow－seldom more than 500 feet wide at greatest de－ struction；it moves，generally，from southwest to north－ east，and rarely extends more than twenty miles ；it ver ften rises in the air，to descend again at a point a few with of anead；itisalways accompaned by thunderstorms， ally a funnel shape，which appears to be whirling though ome observers have described its appearance like that of
huge ball rolling forward．A tornado may be consid－ ered as the result of an extreme development of condi－ ions which otherwise produce thunderstorms．A cy mes 1,000 miles in hana，is a very broad storm，often lowed half around the world；the winds circulate be t from right to left，or the way one torns clock hands backward（in the southern hemisphere this motion is reversed）．The air pressure always falls as one ap－ proaches the center，where，at sea，there is a portentous ften win cear sky visible at times．The cyclone winds with the extrurricane force，but are not to be compared he most solid structures are raved．The brenc which rombe or tourrillon describes almost exactly the tor－ unnel－shaped clouds，experienced on the west coast of Africa，and which，to this day，inspire the utmost fear in the minds of the natives．This is supplied by the chief of the Weather Bareau．
（6929）J．W．P．says：Can you give me ome information regarding pyrocatechin as a photo－ graphic developer？A．Pyrocatechin is said to possess equal to pyrogallol；the solution only alters very slowly n exposure to air，and is much more stable than by very favorable to printing，which proceeds more rapidly than with other developers．It gives brilliant prin tain the fingers．It does not fog the plates．It does not plates．The following are the principal solutions：So lution A：Water， 1 ounce；sodium sulphite， 20 grains procatechin， 10 grains．Solation B；Water， 1 ounce potassium carbonate， 100 grains．For use in ordinary expososed plates，take one part A to two parts B．For plates that have had a timed exposure，the following one solution developer is recommended：Water， 2 ounces； sodium sulphite， 25 grains；sodium carbonate， 50 grains ； per cent boric acid solution is recommended instead of omide．
（6930）A．E．G．asks how to remove bi－ hromate stains from the hand．A．Pour a little solu the fingers the stains rapidly bleach．Subse On rubbing ir with rain or distilled water would be preferable ； but ordinary water will answer．Or take a warm，strong solution ot hyposulphite of soda，and add thereto a small quantity of ordinary sulphuric acid．The same
action as with sulphurous acid will take place．

TO INVENTORS，
 INDEX OF INVENTIONS
 United States were Granted
 July 28，1896，
 AND EACH BEARING THAT DATE

Ad vertising device，F．J．Langer． Air brake，street car，D．B Annunciator，C．C．Gould． Antiseptic sgilts，impregnating fabric H．Hirschier． Ash pan or receptacie．M．M．Koch． Axle box，car，A．A．Weber．．．．．．．．．．．．． Bag making and packaging machine， Bearing thrust，．．．．．．．．．iiibert． Bed botiom，spring，A．Cole Bed botiom，spring，A．Cole Bed，folding，W．J．PYle．．．．．． Bedstead spring．W．M．Jones Bench，See Work bench． Bicyce frame，，G．G．İeyner． Bicycle gearing．P．N．Stover Bicycle handle bar，P．W．Ste Bicycie handle bar，P．W．Stevens． Bicycle lock，S．G．Kell． Bicyce pump， Bicycle riding habit，M．Diämöd． Bicyce Bicyce stand，W．H．Hart，Jr．．．．．．．．． Bicycle supporting stand，W．Ne．Beard Bicycle wrench G．K．Kelsea． Bicycle wrench，G．K．Kelsea．．．．．．．．．． Bicycles，mechanical movement Binyer，iemporaric，F．A．Bradley． Binder，temporary， Block．See Meat block． Board．See Drawing board．Lap boar

564,704
5648
54,746
564,988
564,785
564,856
54

Finter，G．A．Selleras：Filter press，Be Rem	

 ．
564，641
564,899
54

1
$\frac{1}{L}$

564,936
$56\{2901$

Curtain fixure．C．Mathems．．．．．．．．．．．．．．．．．．．．？

564,627
564,48
564.88
564.688
564.638

ike．
… 564,689
56439

SQAHEISDEADA
 THE BLISS School of Electricicity

Bliss Building, WASHINGTON, D.C. The only Institution teaching practical Electrical Engineerıng exclusively. Laboratory equipment exce
ent. Instruction the best. Catalog on application.
Howard Chainloss Bicycle,
 BUY TELEPHONES The Wanc Cout Are Good-Not cheap Things
 Hundreds of similar cases may be cited affecting th
apparatus of nearly all so-called competitors. WESTERN TELEPHONE CONSTRUCTION CO.
 Portable X Ray Apparatus

 CRROKES TUBES AND ROENTGENS

 RAMS THi Doabio Acting Rams

Towers, Tanks and Tubs patent sectional ALL Iron Towers ALL WOOD TOWERS. ELEVATED TANK8
Louisiana Fire Sprinkler Plants. Louisiana Red Cypress
a Specialty.
W. E. CALDWELL CO., 219 E. Main Street, LoUISVILE, KY., U. S. A. E THE SCIENTIFIC AMERICAN CYCLOPEDIA OF
Receipts, Notes and Queries 12,500 RECEIPTS. 708 PAGES.
 THork grait

 alled for.
it is entirely
distinctfromthe istinctfromthe book in being
thoroughly up
to date to date.
The work may the product of practical ex-
perience of the
ablest chemista
 and workers in
all parts of the
world, the information given being of the highest
value, arranged and condensed in concise form convenient for ready use. Almost every inquiry
that. ${ }^{\text {and }}$ be thought of relating to formu: used that. can be thought of, relating to rormu:※ used
in the various mannfacturing industries, will here
be found answered. Those who are engaged in almost any branch
of industry will find in this book much that of industry wil find in this book much that
is of practical value in their respetive cal.
ins. Those wh are in search of indepe ndent
 nog facture of salable articleg will fin
of most exellent sugestions.
send for descriptive circular.
\$50 Buys The Highest Grade, Best Made Tachine Ever Offered.

THE HARTFORD

No. 2.
New and important features: Type-bar made wide, with side gulde. Alignment perfect. Ribbon moves crosswise and action the lightest made. Everything guaranteed. cular free.
 THE HARTFORD TYPEWRITER CO. 1 Laurel St., hartford, CONN

SCIINCEMECHANICS

 CONTRACTS W WNTED.
 DRILS
 zuck
TURBINE
WATER WHEELS
SENDFOR PAMPHET.

Experimental \& Model Work
 TELEPHONES Soad patat to munfature
 DRAMHTINQ ar survexing tugh

DEAF NESS CUREDITHE

 MANUFACTURE OF STARCH FROM

ROSE POLYTECHNIC INSTITUTE

The Edison Phonographic News a PHONOGRAPH or A KINETOSCOPE

Thes have n tone that

 BELS

PROPOSALS.

 SUPPLY of $\mathbf{1 5 0 , 0 0 0}$ tons of steel rails and other Permanent Way Materiale to be Manufactured in the Colons of New Sonth Wales.
Ofers are hereby invited by the Government of New South Wales, Australia, and wiil be received by the Secretary for Public Works in Sydney, and the Agent-
General for New South Wales in London, up to $11: 30$ o'clock on the 30th day of December, 1896, from persons willing to contract for the supply of 150,000 tons oe steel ralls and the necessary quantity of Elish-plates Fisb-bolts and Splikes, manufactured in the Colony of New South Wales, out of iron ore and other necessary minerals the natural product of, and with coal, coke, or other fuel, smelted, gotten and raised within
the said Colony, upon the Terms and Conditions which can be seen at the offces of the Minister for Public Works, sydney (or the Agent-General for New South Wales, London).
J. H. Young,

Minister for Public Works.

EGETABIISHED 1 S45
The Most Popular Scientific Paper in the World

This widely circulated and splendidy illustrated teen pages of useful information and a large number of teen pages of useful information and a large number of
original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Noveltes in Mechanics, Manufactures, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Fllectricity.Telegraphy, Photography, NrchiChemistry, Hiectricity.Telegraphy, Photograp by, , Archi-
tecture, Agriculture, Horticulture, Natural History, etc. Complete list of Patents each week. Trrms of sin becripioin.-One copy of the Scien-
TIFIC AMERICAN will be sent for one year - 52 numberspostage prepaid. to any subscriber in the United States. postage prepaid, to any subscriber in the Unted states,
Canada, or Mexico. on receipt of Whree Dollsur by
the publishers; siim months, 81.50 ; three months, 11.00 . the publishers; six months, 81.50 ; three months, *1.00.
Clubs. - Special rates for several names, and to PostClinbs. - Special rates for seve
masters. Write for particulars.
masters. Writ way to remit is by Postal Order, Draft, or
Txpe safest
Express Money Order. Money carefully placed inside Express Money Order. Money carefully placed inside of envelopes, securely sealed, and corrrectly addressed,
seldom goes, astray, but is at the sender's risk seldom goes astray, but is at the sender's risk Address
all letters and make all orders, drafts, etc., payable to
俍
 This is a separate and distinct publication from The
SCIENTIYIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full
of engravings, many of wnich are taken from foreign papers and accompanied with translated descriptions. The Scientific american Supplement is published weekly, and includes a very wide range of contents. It
preserts the most recent papers by eminent preserts the most recent papers by eminent writers in Arts, embracing Biology, Geology, Mineralogy, Vatural
History, Geography Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering, Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Akriculture. Horticulture, Domestic Econowy, Riography. Medicine,
etc. A vast amount of fresh and valuable information etc. A vast amount of fresb and valuable information
obtainable : n no other publication. and Manufactures at home and abroad are illustrated and described in the supplement.
Price for the SUPPlembnt. for the United States,
Canada, and Mexico. $\$ 5.00$ a year; or one Canaaa, and Mexico. $\$ 5.00$ a sear; or one copy of the
SciENTIFIC AMERICAN and one copy of the SUPPLEMENT, both mailed for one year to one address for $87 . .00$.
Single copies, 10 cents. Address and remit by postal rder, express money order, or check,
MUNN \& CO., 361 Brondway, New York.
TGuilding Eflition.
the scientific American Builing Edition is
issued monthly. 82.50 a year. Single copies, 25 cents. Thirty.two large quarto pazes. forming a large and aplenaid Maeazine of Architecture. richly adorned with
elegant plates and vther fine engravings; illustrating the most interesting examples of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number dences. city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with Floor Plans. Descriptions, Locations, Estimated Cost, etc. The elegance and cheapness of this magnifcent work
have won for it the Largest Circulation of any
Architectural publicalion Architectural publication in the world. Sold by all
newsdeaiers. 82.50 a year. Remit to

Fxpurt Edition
of the "IENTFIC AMERICAN, with which is incor-
porated "LA AMERICA CIENTIFICA E INDOSTRIAL," or Spanish edition of the BCIENTIFIC AMERICAN is pub-
lished monthly, and is uniform in size and typograply
 tains about 50 pages, profusely illustrated It is the finest scientific, industrial expo t paper published. It circu-
lates lates throughout Cubs, the West Indies, Mexico, Cen-
tral and South America, Spain and Spanish possessions -wherever the Spanish language is spoken. THE SclENTIFIC AMERICAN EXPORT EDition has a large guaranteed circulation in all commercial places through-
out the world. $\$ 3.00$ a year, postpaid, to any part of the world. Single copies, 25 cents.
RT Manufacturers and others who desire to secure
foreign trade may bave large and handsc.mely displayed foreign trade may bave large and hands.mely displayed
announcement ${ }^{\text {º }}$ published in this edition at a very moderate cost. Rates upon application.

2fovertisements.

 mside Page. Back page, encin insertion. - - si.00 n line
 ment, as the letter press Adverti.e ments must be
coeeved at Publication Office as early has hurrdav
morning to appear in the foliowing week's issue.

Cribune : Bīycle

Tested and True.

The Easieat Running Wheel in the World.
THE BLACK MFG. CO., ERIE, PA.
MANUFACTURE UF BICYCLES.-A

Putnam Bicycles,
Cyclometers, 75 c, Cyclometers,
Toe Clips.
, Lamps, 80c. to $\$ 3.00$. Other Sundries at Low

TURN THE X RAYS ON THE

The No. 4
YOST
WRITING TACHINE 㫧

The distinctive features of the Yost Machine
permanent alignment airect

Yost Writing Machine Co. 6ı Chambers St., 50 Holborn Viaduct, NEW YORK CITY. LONDON, ENG.

The

American
Bell Telephone
Company,
125 Milk Street,
Boston, Mass.

This Company owns LettersPatent No. 463,569 , granted to Emile Berliner November 17, 189r, for a combined Telegraph and Telephっne, covering all forms of Microphone Transmitters or contact Telephones.

DAIMLER MOTOR COMPANY, Highest Grade Single and Twin Screw Launches. Safest, cleanest and speediest power boat built. No smoke or smokestack, no boiler, no electricity. No steam or naphtha under pressure. pun on one pint of gasoline per horse power minute. No licensed engineer or pilot. Also Stationary Motors. offige and works, "steinway," long island city, n. y.

AFENTS WANTED FOR FINETOOLS IN EVERYSHOP caTMLOGER C.H. BESEYE CD.

HAVE YOU GOT OUR CAT-
Gas and Gasoline Stationary Engines Gasoline Traction Engines Combined Engines and Pumps

Gasoline portable Engines USED A Mon CHARTER GAS ENGINE CO., BOX 148, Steril
 Mia Mpmemitit EXCHANGE, $1 \frac{1}{2}$ Barclay St., New York. 156 Adams St., Chicago. 38 Court Sq., Boston. 818 Wyandotte Street, Kansas City, Mo

 Saddie in the market. Twenty years' experience in
working leather enables ustomake good this claim
ALI STYLES ©ENTIEMEN'SAIIDI, SS
 THE DUGUID SADDLERY CO., Syracuse, N. Y
The $\$ 5$.oo POCKET KODAK EASTMAN KODAR 00 EASTMAN KODAK CO.,
sample photo and booklet
ROCHESTER, N. Y. SCIENTIFIC AMERICAN SUPPLE-

As erics. A
ine country.

ACCOUNTANTS Who use the Comptometer
have no trouble with their have no trouble with their
trial balance. Has it ever oc-
curred to you curred to you that by getting
one you might save lots of time, avoid mistakes and not
ruin your nerves? FELT \& TARRANT MFG CO FELT \& TARRANT MFG CO.
52-5E ILIMOIS 8 t ., chicaao.

JUST OUTI

50th Amiviersary Dumber

of тне
 "Scientific American."

is published a resume of the progress of the Industrial Arts and Sclences during the past ifty year enense or pains have been spared to make this a publication of rare merit and great value.
articles have all been prepared by specialists. Some of the principal subjects treated are

Reduced Fac-eslmile of Cover Page.
The Transatlantic Steamship. Naval and Coast Defense. Railroads and Bridges. The Sewing Machine. Physics and Chemistry. Electric Engineering. Progress of Printing. The Locomotive. Iron and Steel. Phonograph. Photography. Telegraph. Telephone. Telescopes. The Bicycle History of the Scientific American. Many other articles of great interest, by the best scientiff writers of the das,
most important of which is the prize essay, entitled
"THE PROGRESS OF INVENTION DURING THE PAST FIFTY YEARS," FOR WHICH A PRIzE OF $\$ 250$ has been anarded.
Probably never before has so mucb valuable information of historical interest and importance been pubished in so condensed and popular a manner. It will form a valuable additton to any library, and should be in the hands of all who desire to keep abreast of the times.
fer 72 pages profusely illustrated. cover in colors. price 10 Cents. Mailed to any address in the United States, Canada or Mexico. To foreign countries add 8 cents extra fo postage. For sale by all Newsdealers throughout the country or address

MUNN \& CO., Publishers of the "Scientific American," 36I Broadway, New Mork

COLUMBIA

HALF A CENTURY OF CYCLES-AN

 PREISTMAN SAFETY OIL ENGINE

 The Scientific American Reference Book.

A most useful little bound book of 150 pages, comprising, probably, the most extensive varlety of standto the public for so small a price, onds 25 furnished Among its contents are: The Last Census of the tles; Tatates (1890), by States, Territories, and CounMap of the of cities having over 8,000 inhabitants; Patent Laws full text); Thiniature outline; The tart); The Copyright Law (full text): Tbe Princtpal Mechanical Movements-illustrated by 150 small dia-Rrams-of value to inventors and designers of mechanInventors; Valuable Tables relating to Steamer Flec tricity, Heat, Metals, Weights, and Measures.

25 cents.

MUNN \& CO., Publish recel
ONLY PRACTICAL MAGAZINE CAMERA.

\cdots

 SUNAITT PHOTO CO. $\begin{gathered}\text { Bend for nlistrated cata } \\ \text { logue-2 cent stamp. }\end{gathered}$ ACETYLENE GAS AND CARBIDE OF Culchum.-A About the new inuminant, its qualities.chemistry, pressure of liquefaction, its probable future chemistry. pressure of tiqueffact in, its probable future.
experiments perturmed with it. A moss valuabole series
of articles.

 centse arah
deilers.

