a Weekly journal 0f Practical information, art, science, mechanics, chemistif, and manufactures.

Vol. LXXXIV.-No. 24.]	W	RK, JUNE 13, 1896	[${ }^{\text {3 }}$ W WEEKLY.

CONSTRUCTION OF THE YARROW WATER TUBE BOILER.

We have been favered by Mr. Yarrow, of torpedo boat fame, with photographs and a description, showing his new system of expanding boiler tubes by steam, and other improvements in the boilers themselves. The tube expander which is here shown in operation in the shops at Poplar, London, was designed to replace the old apparatus, which was worked by hand. The introduction of the steam-driven tool has resulted in a great saving of time and cost over the old system. The expander, which is small and compact is suspended at the desired height, and is driven either by a motor or, as shown in our engraving, by a cord from the overhead shafting, operating through a length of flexible shafting. The taper mandrel within the body of the expander is revolved by the action of the rollers, the body being driven by the miter gear, which can be seen in the cut. By giving the rollers a slight inclination they are made self-feeding, and overexpanding is guarded against by providing expanding is guarded against by providing q stop. In the accompanying illustration
three of the Yarrow boilers are shown turned three of the Yarrow boilers are shown turned
up on end for the purpose of expanding the up on end for the purpose of expanding ther
Mr. Yarrow states that the impression that it is a difficult matter to retube his style of boiler, on account of the tubes being straight, is erroneous, as may be seen from the accompanying cut, which shows a section through one of the boilers. If it is desired to insert a tube, say in the center of the tube plate, it is only necessary to pass it far enough through the upper or lower

DIAGRAMS SHOWING METHOD OF RETUBING AND AUTOMATIC FEED OF THE YARROW BOLLER.
ing a faulty tube, though, of course, all the tubes in ing a faulty tube, though, of course, all the tubes in
its way have to be also removed. The lower tube end its way have to be also removed. The lower tube end
is expanded, in the case of repairs, by sending a boy into the water pocket for the purpose. When this cannot be done, a long mandrel is passed through the tube and operated from above.
The accompanying section of the upper drum of a Yarrow boiler shows the new system of automatic feed. All makers and users of water tube boilers are aware of the value of any system that will automatically re water at any one time and the fierce ebulli tion causes great and rapid fluctuations of water level
Yarrow \& Company are endeavoring to owercome the difficulties of constant feed by providing an automatic device within the drum of the boiler, and by providing each boiler with its own independent donkey pump. It is claimed that only in this way can the obstruction of a breakdown in any one boiler be localized. In any group of boilers which have a common source of feed supply the bursting of a tube in one of the boilers will call for an extra supply of water that will be greater in all probability than the capacity of the pump. As a consequence the water level will be lowered, not merely in that particular boiler, but in the whole set. This would be a dangerous pre dicament and might easily result in serious injury to the complete plant.
These considerations are especially strong when applied to the water tube boiler, where the internal pressure in the tube would cause a specially large escape of

water in the event of its rupture, as compared with the tubes in the common form of boiler, where the pressure is external.
Another advantage to be secured by using separate ferd is that it favors the use of a very simple and reliable device for securing automatic feed. It is self evident that any so-called automatic feed must be absolutely reliable, for the reason that the knowledge that such a feed has been fitted to a boiler will cause the stokers to pay less attention to the water level.
The device shown in the cut has proved very suc cessful on a boat fitted with engines of 300 horse power; though it remains to be seen how it would work on a large scale. About the center of the steam drum is arranged an inverted funnel, which is perfor ated so as to insure that the water level within it shall be the same as the generallevel in the drum. The funnel serves to prevent any: violent ebullition of the water within it and maintains it at a steady level. Above the water in the funnel and near its surface is fixed the stean supply pipe for the donkey pump. So long as the water is below the pipe the donkey will supply the boiler; but when it reaches the pipe, water, in place of steam, will pass to the pump and actuate the steam piston. Now, since the steam piston is larger than the pump piston, it follows that, as long as water flows through the steam pipe, the boiler will be relieved of water, and this will go on until the leve falls again. It is thus evident that a double advan tage is secured by this system-the boiler is pumped up if the water is too low and it is relieved if it be too high, both actions being automatic.

The Pool of siloam.

The excavations which are being made in Jerusalem have disclosed much that was hitherto unknown about the pooi of Siloam. The identification of the site of this pool is important, because of its bearing on the situation of the city walls. It has hitherto been considered that the pcol of Siloam, shown to every visitor of Jerusalem, was one of the few undisputed localities in the topography of the sacred city. Now, however, as investigation progresses, doubts have been raised on this point. Among archæologists a contest has arisen as complicated as that concerning the site of Calvary, the sepulcher, and other sacred places in Jerusalem. The pool of Siloam is in size the least of all the Jerusalem pools, which from the most ancient times have been relied upon by the inhabitants to store up water from the springs. It had, however, the singular characteristic of suddenly increasing in depth as the water poured in from some unknown source.
The pool of Siloam, although small in size, played an important part in the sacred history of Jerusalem It was to Siloam that the Levite was sent with the golden pitcher on the "last and great day of the feast" of tabernacles; it was from Siloam that he brough the water which was then poured over the sacrifice in memory of the water from the rock of Rephidim. It was to this Siloam water that the Lord pointed when he stood in the temple and cried, "If any man thirst, let him come unto ine and drink." The Lord sent the blind man to wash at the pool of Siloam, the sacred ness and efficacy of whose waters are still believed in at Jerusalem. The pool of Siloam, which has now been almost wholly uncovered and which is the one formerly shown to visitors, is $181 / 2$ feet in depth, 14 feet wide at one end and 17 at the other. The wate in it is maintained at a depth of 3 to 4 feet, but is likely to rise a foot or more at any moment. It is faced with a wall of stone, now greatly out of repair Several columns stand out of the side walls extending from the top downward into the cistern. The water passes out of the pool through a channel cut in the rock. which is covered for a short distance. Thi subsequently opens and discloses a lively, copious stream which empties into a garden planted with fis trees. Jerome, who lived only six miles from the pool of Siloam, refers to the intermittent character of its waters, which has led some historians to identify it with Bethesda. Josephus speaks of its waters as hav ing been very abundant, but recent investigations do not bear this out.
There are a large number of somewhat similar pools in Jerusalen, which has thirty or forty natural spring within a radius of eight niles. If it could be shown that one of these was in reality the pool of Siloam whose location has not hitherto been questioned, i would add a still further confusing element to the dis cussion of the historical sites in Jerusalem. Many o the most impertant places depend for their identifica ion upon their nearness to or remoteness from th pool of Siloam. The mysterious ebb and flow of the waters of the present pool has been largely relied upon as sufficiently proving its identity with that referred o in the Scriptures. It has now, however, been found that a similar phenomenon takes place in the Fountain of the Viryin, which is close br. There the wate rose a foot in five minutes, and within five minutes more it sank to its former level. It is believed that the excavations which are being made in Jerusalem may explain this apparent mystery, which nobody has yet been able to account for.-Public Opinion.

Srientific © ${ }^{\text {An merican. }}$

ESTABLISHED 1845
MUNN \& CO.. Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK

TERMS FOR THE SCIENTIFIC AMERICAN

 Established 1545.$)$One copy, one year. for the U. S. Canada or Mexico.. 8300
One copy, six montbs, for the U. \mathbf{S}. Canada or Mexico......... 150 necopy. one year.to any forelgn country be a MUNN \& CO.. 361 Broadway, corner of Franklin Street, Ne Y York.

The Scientific American $\begin{gathered}\text { (Established 1896) }\end{gathered}$

Building Edition of Scientific American. (Establishéd 1885.)

Exor Editon of the Scientife American Estnblished 1898)
 RO. Readers are specially requested to notify the
any failure. delay. or irregularity in receipt of papers.

NEW YORK, SATURDAY, JUNE 13, 1896.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 1067.
Fer the week Ending Jane 13, 1896.
Price 10 cents. For sale by all newodealiers.

 Mix

OUR SEMI-CENTENNIAL ESSAY COMPETITION.
We would draw the attention of competitors for the $\$ 250$ premium, offered for the best essay on the "Progress of Invention During the Past Fifty Years," the fact that the date limit set for the reception of manuscript is drawing very near. There is a danger of the essayist underestimating the time which will be necessary for him to do justice to so comprehensive a subject. Although the paper will be comparatively short, covering about two and a half columns of the ScIENTIFIC AMERICAN, it is liable to involve an amount of previous reading and general reference which will cover more time than the intending write may estimate. For this reason, and in order that the judges may have ample time to examine manuscrip which will be submitted to them, we trust that intend ing competitors will not defer the transmission of their essays until the last allowable date.
We also direct attention to the card which is appear ing in our carrent issues, by means of which we ar endeavoring to obtain an expression of opinion on the part of cur readers as to what invention introduced during the last fifty years has conferred the greates benefit upon mankind. The answers that have already come in indicate that opinion will be far from unani mous; and the value and interest of the vote will de pend largely upon the number who favor us with a re ply. We hope that the majority of our readers wil find the matter of sufficient interest to send a card ex pressing their views.

PATENT SOLICITORS AND THE PROPOSED PATENT BAR.

Such relations as those of lawyer to client or of phy sician to patient have always been recognized as sacred. In the professions also so much depends unon the competency as well as honor of the practitioner that the law very properly takes cognizance thereof and requires proof of standing and of comperency be fore any person is allowed to practice ip the profes sional role. In the lawyer's care are placed the right of his client to property, to freedom or to life itself He very justly is subject to rigid investigation befor being admitted to the bar and is required to serve a clerk's apprenticesbip before practicing independently A similar condition obtains in the case of the physi cian. He must possess definite and statutory qualif cations before he is allowed to practice his profession and take upon himself the dispensing of remedies against the ills of mankind. His adjunct the apothe cary is subject to similar requirements. Exhaustive examinations, practical and theoretical, have to be passed before the pharmacist can legally put up a sin gle prescription. He is obliged to understand the qualities of all drugs ; to watch every prescription for the detection of possible error in it. If an error has crept in involving danger to the patient, he is to note it, and guard against it, and must act as a constan check upon the physician, thereby giving additiona protection to the patient.
There is another case where relations just as sacre and confidential exist as between members of the above professions and those whom they serve. We re fer to the relations of patent solicitor and his client.
The services of a specially trained patent solicito are essential, and the inventor has to enter into inti mate and confidential relations with him-relations precisely comparable to those of lawyer and client His secret work is all disclosed. The steps of his in vention are discussed; he tells what led to it, wha was his first conception, in order to enable the funda mental idea to permeate specification and claims. It would be lhard to find a more confidential relation ship than tbat of inventor and his patent attorney Honor is the first essential in the practitioner's char acter. The papers are prepared, the solicitor, under his power of attorney, is given carte blanche to prose cute, and fees are paid. Competency is now required ute, and fees are paid. Work
Within the past two or three years the country has been flooded with pamphlets, tracts and circulars from patent solicitors whose irregular practices are widel known in the profession. To warn the widely scattered class of inventors against such offenders is a slow, un satisfactory, and impracticable process. The invento is left to be enlightened only at the hands of that hard master bitter experience.
These irregulars are often possessed of capital and by extensive advertising are able to lure the unsus pecting into their clutches, and in some cases these "gentlemen" have a quite extensive practice before th Patent Office. . Their business methods are widel known and are thoroughly understood in the Patent Office, whose officials would gladly embrace any oppor tunity to disbar such attorneys from rractice, wer not the provisions of the law for attaining this end so very circumscribed that it is practically impossible to procure the evidence necessary to convict.
The remedy for these evils is suggested in the annual report of the United States Commissioner of Patents. He proposes the establishment of a patent bar analccous to the bar of courts of regular procedure, but a bar whose members should be solicitors of patents. There
is no thought of restricting the membership to lawyers,
but the idea is to insure proper representation of the but the idea is to insure proper representation of the rights of applicants for patents. The essentials for practice before the office having been determined on, and the conditions for the issuance of a license or diploma being fixed, none save those holding such license or diploma should be eligible to appear as attorneys in the prosecution of patent cases before the office. Such an asscciation could take cognizance of practices over which the Patent Office would have no jurisdiction and could punish offenders against common professional morality. Such a course of common self-defense has been found necessary in England, and resulted in the establishment some few years ago of the Chartered Institute of Patent Agents.
The necessity for such an association arises from the very limited powers of the Commissioner of Patents in disqualifying those who are known in the profession to be disreputable and dishonest. Stories constantly reach us of inventors who have lost their fees or who have had their interests jeopardized or their patents lost at the hands of irregular attorneys ; but the Patent Office, although perfectly aware of the practices of such attorneys, is not able to protect such victims or punish such offenders, as the latter are sufficiently clever not to commit an act of "indiscretion" after the Patent Office has jurisdiction over the case. The Commissioner has pointed out in his report the only solution for these abuses, and the establishment of a patent bar would elevate permanently the standard of the profession, and
would redound alike to the advantage of the prowould redound alike to the advantage of the pro-
fession and to the great mass of inventors, who number many thousands, and who deserve to receive every protection from barm and imposition.

the river and harbor bill.

The River and Harbor Bill has been passed over the President's veto in the House by a vote of 220 to 60, and on the foilowing day it was similarly passed in the Senate by a vote of 56 to 5 , the vote in the House being taken without any debate, that of the Senate be ing preceded by a debate of four hours. There is one important feature of the bill that has now become law which will commend itself to all engineers who have had any practical experience in river and harbor improvement: we refer to the provision which it makes for the letting of the whole of a contemplated scheme of improvement by contract, and the authori zation of the expenditure of the whole sum necessary to carry it out
It is safe to say that there is no department of public works in which the old system of executing work by piecemeal has proved more extravagant and waste ful than in this. In river and harbor improvement the exigencies of the case generally demand that the work shall be pushed through with dispatch. To place a certain sum of money at the engineer's dis posal, and tell him to go ahead and do as much as h e can with it, is in some cases to invite disaster. Thi has been proved time and again in the construction of jetties, training walls, revetments, etc., where the
construction of the trestle, mattress, or other preliminary and more or less unstable structure has neces sarily to precede and keep well ahead of the stone riprap and ballasting which is subsequently added to give it stability. It has been a common thing for the harbor jetty, which has been built in the summer, and left without rock ballast because the year's appropriation had run out, to be swept away by the winter's gales. Moreover, the intermittent system of work in volves the idleness and depreciation of a vast amount of valuable plant, which under the present arrange cent will be kept continuously at work.
It is unfortunate that the annual report of the engineers in charge of this branch of work, or at least a brief digest of it, is not more widely read by the public at large. The mere recital of the vast improve ments which have been made in both harbor and river navigation would make the large sums annually asked for this work appear more reasonable and less extravagant than they are popularly supposed to be. A few feet more depth of water on an ocean bar, or as many inches gained on the gravel bar of an inland river, will mean many thousands of tons increased capacity for the channel or river in question, and an enormous advance in the trade of the districts which are served thereby.

COAST DEFENSE.

The nation has received another emphatic reminder of the necessity for improved coast defenses in the shape of a statement by a member of the Senate Committee which recently inspected the fortifications of the port of New York. At the close of the inspection Senator Squire stated that the committee was instructed "to visit and examine the harbor de-
fenses of the city of New York, it being known that the port of New York was better protected than any other of the twentr-seven ports from Portland, Maine, down." At Sandy Hook they found "just two of the direct fire guns in readiness for firing." There
were "sixteen mortars ready for placing, but without
conning towers or rangers." At Fort Wadsworth
there were "five 8 inch guns, not yet emplaced, and there were "five 3 inch guns, not yet emplaced, and
it will be some time before they are ready. At Fort Hamilton" the committee "found a 10 inch gun not yet mounted." The senator drew attention to the fact that "few people stop to think an enemy can come in through Long Island Sound and Hell Gate." On the Sound they "found at Willets Point two 10 inch guns
not yet emplaced," and three or four 8 inch guns not yet emplaced," and three or four 8 inch guns "Here is the seat of the great torpedo school, having the only compiete casement in the United States." The torpedo arrangements are very complete; and "they undoubtedly form a most deadly defense, if properly protected with guns; but they are not protected."
As compared with the above mentioned guns already on the ground, "the committee in its report will say what is absolutely needed for the defense of New York. First of all, ninety-three direct fire 8, 10, and 12 inch long range, high power guns. In addition to these, one hundred and seventy-six 12 inch steel rifle mortars and twenty-five rapid fire guns."
Such is the present condition of the New York defenses, and New York is the best defended of the twenty-seven ports. It must, moreover, be remembered that the building of high power guns and the preparation of emplacenents is the work of years. "If all the manufacturing facilities now avaiable were put into use, it would be impossible properly to fortify New York alone in less than three years." Of all the contemplated national expenditures none is more
urgent than this, for there is no other point at which an enemy could deliver a blow with such im mediate and lasting effect. The spirit which prompts military preparations of this kind is not aggressive, but, as its
name indicates, strictly defensive, and therefore pacific. name indicates, strictly defensive, and therefore pacific.
In view of the statements of Senator Squire, it is gratifying to note that the agreement just reached by Congress on the Fortifications Bill gives the country by ever made. The bill now carries $\$ 11,572,964$, of which $\$ 7,377,888$ is an outright appropriation and $\$ 4,195,07 \mathrm{e}$ an authorization of contracts. We note, moreover, with pleasure, that the House and Senate conferees have provided for the manufacture of a 16 inch gun, being prompted thereto by the consideration that improved methods of manufacture will enalle us to turn out a reliable gun of this caliber, and that its superior smashing effect upon hard-faced armor renders it a desirable weapon for coast defense. The arguments in favor of these large guns will be found in detail in our issue of May 30 .

Superheated Steam.*

The practical difficulties in the way of realizing the promised economical gains resulting from the use of superneated steam have thus far more than balanced the advantage derivable by its application in all ordinary and usual cases. It was at one time the most attractive and common field of invention.
Of the four principal and recognized methods of re ducing that waste which comes of initial, or cylinder, condensation-compression, jacketing, compounding and superheating-the last named, could all mechani cal difficulties be overcome, would be by far the best and most effective. The two kinds of difficulty to be overcome are those attending the construction of a uperheater incapable of injury by the process of superheating and the introduction of the required and variable amount of superheat at the engine with out injury to cylinder, piston, valves, or packing.
The boiler, as well as the cylinder, is the gainer by superheating, for the reduced expenditure at the cylinder means less demand upon the boiler, and the added heating surface at the superheater gives a still further gain.
The economical effect of a small amount of super heat is seen in the securing of dry steam at the engine and in the reduction of cylinder condensation, and, if the superheating be carried far enough, the engine is transformed into a superheated steam engine. The effect of superheating, so far as employed in the steam engine, ordinarily, is the checking of heat waste by initial condensation. The real linit of gain at the engine is found when the gain by reduction of initial con densation reaches its economical maximum. A more serious difficulty is found in constructing superheat ing apparatus that shall be safe, adjustable to the varying demands of the engine, and costing little for maintenance.
The economy of superheating comes of the fact that it is possible to reduce the waste of condensation by the expenditure of but a fraction of the amount of heat in superheating the charge that would otherwise be expended through such condensation. The application of one thermal unit in superheating invariably saves several units of heat which, with saturated
steam, would be stored temporarily in the metal of the cylinder, to be later discharged without performing its share of the work. "The limit in superheating is, to day, considered to be practically somewhere inside of $500^{\circ} \mathrm{F}$. or within a range of not much above $100^{\circ} \mathrm{F}$.
above the usual maximum temperature of saturation." The results of some fifty authentic and well conducted experiments show that the gain in fuel ranges from ten to fifty per cent of the fuel used with wet steam ; that about $100^{\circ} \mathrm{F}$. gives complete extinction of initial condensation; that even fifteen or twenty degrees will nake an important gain in reduction of inernal wastes; that every discreetly applied use of this sstem returns from two to ten times its cost in heat expended; and that the indications are, judging from past and present practice, that good engineering in this direction pays well. The average of fifty-two cases observed by the writer gives a gain of twenty-six per cent with a superheat of $105^{\circ} \mathrm{F}$.
Taking an average case in which the quantity of heat brought over from the boiler is $1,100 \mathrm{~B}$. T. U. and twenty five per cent condensation occurs at entrance into the cylinder, the heat wasted per pound is 275 B. T. U. To supply this amount of heat by super heating the steam would demand an increase of tem perature of $570^{\circ} \mathrm{F}$. The economy is weasured by the difference between this equivalent of the waste and the quantity of heat expended-wasted in a certain ense-in its reduction.
The conclusions of practical importance are :

1. Superheated steam, as hitherto employed in the steam engine, has absolutely no thermo-dynainic value The value of the maximum measure of ideal efficiency, $\left.T_{1}-T_{2}\right) T$, is in no manner altered by its introduction into the system.
2. Superheating has for its sole purpose and result in the steam engine to-day the reduction of the inter nal thermal wastes of the engine, consequent upon the phenomenon known as initial or "cylinder condensa tion." Here it is extraordinarily effective, and a smal quantity of heat expended in superheating the entering steam effects a comparatively large reduction in the expenditure of steam in the engine.
3. Superheating is superior to any other known means of reduction of internal waste, such as jacketing; while the multiple cylinder engine has also its limitations.
4. The introduction of metallic packings and of high test lubricants has enormously reduced the difficultie resulting from destruction of packing and decomposition of lubricants underthe action of superheated steam. 5. The low temperature of gases in the uptake o modern boilers, while it lessens the difficulty of destruction of superheaters by heat, necessitates a corre pondingly large area of superheating surface. One of the most serious and attractive problems for the en ineer to-day is the production of a superheater which will withstand gases of high temperature, transfe their heat to steam, and have a reasonably long life.
5. Small engines will gain by superheating more than large, slow engines more than fast, and simple ngines more than multiple cylinder systems.
6. The larger the waste to be checked in the engine, the farther should the superheating be carried.
7. The extent of superheating should be adjustable -not only to the particular size and type of engine in view, but also in the same engine-to the extent to which expansion is carried
8. The average simple engine consumes an annual amount of fuel about equal in value to its own first cost Five dollars being returned in saving to each dollar paid or superheating, it will pay annually to expend the full equivalent of the interest on the price of the en gine in maintaining a good superheating system. When, however, as has hitherto usually happened, this account includes such large interest and wear and tear accounts as cause the total annual expense to exceed this financial limit, the engineer will wisely decline to thus invest capital.
9. Given an efficient superheater, and the engineer can adjust his temperature and pressures of working fluid to the character of material in boiler and engine and secure the best adjustment of the therinal to the dynamic linit.
10. This is to-day the greatest problem presented to the designing and constructing engineer, unless it be that of rendering the interior of the cylinder non-con ducting, so as entirely to prevent initial condensation thus making the steam engine a purely thermo-dy amic machine.

The Scientific American Supplement

The readers of the Scientific American, who have not seen late numbers of the Scientific Ameri can Supplemfint, are urged to send for a copy, in order that they may see the new features of it. An entire page is devoted to Engineering, Electrical, and Miscellaneous Notes. These notes are excernts, ab tracts and translations from the scientific and techni cal press of the world. A column of Selected Formulæ is also given each week. The object of this collection is to give the latest formulæ and to form an appendir to the "Scientific American Cyclopedia of Receipts Notes and Queries." Various other interesting fea tures have been added which will make the Supple MENT more popular among a larger class of readers. Snbscription price, $\$ 5$ per annum; single copies, 10 cents each.

A HANDY CAMERA STAND.

The ingenious camera stand shown in the accom panying illustratiou has been patented by Mr. Lafay ette Noble, of No. 40 Washington Street, Haverhill, Mass. It consists of a ferrule, which is adapted to be fitted on the top of a stick which has been driven into the ground for the purpose. It is secured in place by a thumbscrew, and its upper end is reduced to carry a cylinder, which is slipped on over the same, and also held in place by a thumbscrew. The upper end of this cylinder is provided with notches, which receive the hooked ends of four arms, which, when in place, extend at right angles to each other in a horizontal

2

NOBLE'S CAMERA STAND.
plane, and form a base for the camera to rest on. The outer ends of these arms are provided with upwardly projecting lugs, which engage the ends and sides of the camera. The upper edges of the arms are notched to receive the lower forked end of a block, Fig. 5, which extends above the arm and engages a recess in the bottom of the camera. By this arrangement lateral and longitudinal movement of the camera are entirely prevented. It will be seen that, by loosening the upper thumbscrew, the cylinder, arms, and camera may be swung round into the desired position. If so desired, the lower ferrule may be formed to receive three supports, as shown in Fig. 4. It will be seen that when not in use the arms can be unhooked and slipped into the ferrule, as shown in Fig. 3, the whole apparatus occupying so little space that it can easily be carried iin the pocket. On account of its handiness, it should specially meet the needs of the amateur photographer.

Lord Rayleigh has been appointed a foreign mem ber of the Copennagen Academy of Science.

IMPROVED GAS ENGINE.

Mr. Harry L. Parker, of Princeton, Illinois, has patented an improved gas engine, the details of which are shown in the accompanying illustration. The invention consists of an auxiliary cylinder, having a valved connection with the main cylinder, and provided with a valved piston moving in unison with, and traveling in the same direction as, the main piston. The main piston is connected at its front face by a pitman with the main driving shaft, and on the rear face it has a hollow piston stem which passes into an auxiliary cylinder, where it carries a piston. The two cylinders are connected by suitable ports and by a conical plug valve operated from the main shaft, whereby the explosive mixture may be admitted from the auxiliary to the main cylinder. The main cylinder is also provided with an exhaust port, which leads through said valve to the final exhaust as shown. In the engraving the engine is on the forward stroke, and the cylinders are connected through the valve; ou the return stroke the valve will be thrown over, opening the exhaust from main cylinder and closing the ports between the two cylinders. The inner end of the main cylinder is provided with a diaphragm to prevent the mixture from burning faster than it enters the cylinder. The ignition is done by suitable electrodes set in the head of the cylinder. The auxiliary cylinder is provided with a chest at its outer end, connected with the gas and air supply, which contains a port operated by an outer valve and controlled by an inner self-closing valve as shown. A similar valve and port are provided in the auxiliary piston, said port being controlled by a self-closing valve. In operation, when the two pistons are on the forward stroke, the explosive mixture is drawn into the auxiliary cylinder, the amount being regulated by the outer valve in the chest. On the return stroke the misture passes through the portin the auxiliary piston into the annular space between the hollow piston stem and the cylinder, where it is compressed to four or more atmospheres, according to the relative diameters of the cylinder and piston stem. The plug valve is now in the position shown in the engraving, and the mixture will pass into the main cylinder, and, becoming ignited, will propel the main piston. During this following stroke. The construction is such that a 50 horse power engine could be started by means of a hand air pump and a sinall reservoir, carrying 20 or 30 pounds pressure

PATENT AUTOMATIC COPYING LATHE WITH AUTOMATIC SCREW FEED.
This machine has been designed for turning from patterns all kinds of irregular shapes, such as spokes,
neck yokes, singletrees, hammer, hatchet, railroad, mining pick and ax handles, shoe lasts, gun stocks, and other similar wooden articles. It has been constructed from entirely new designs and embraces improved labor saving features, which increase the quality of the work and enable a facsimile of any pattern placed in the machine to be produced. It is massive and heavy, built from iron and steel throughout, and designed for the hardest service.
The cutter head is fitted to a heavy steel spindle, running in large bearings attached to a vibrating frame, which is traversed upon planed ways across the path of the material to be turned by means of a heavy screw. The hand lever projecting up over the carriage is used for bringing the cutter head up to the work, or locking it back out of the way when not in use. The feed can be instantly changed frow right to left or from left to right, which effects a saving of time, as the machine is prepared to commence the cut at either end of the stick. It will beobserved that the knives cut on the under side of the material, discharging the chips down ward and overcoming any liability of injuring the operator.

The feed is very powerful, with three changes of speed, and automatic in its action, stopping instantly when the end of cut is reached, or arrested at any point desired. The tail stock is fitted on top of the frame, which is planed true, and is always in perfect

PARKER'S IMPROVED GAS ENGINE

lignment with the head center, and it can be quickly adjusted horizontally to or from the head center for short or long turning, taking 48 inches at the longest or anything shorter, and turning work from the smallest sizes up to 8 inches in diameter
The pattern which guides the path of the cutter head and governs the shape of turning is placed upon centers at the rear portion of the machine, and it should be of an exact duplicate of the shape desired to turn, but the size of the article turned may be varied, either larger or swaller, from the same pattern This machine, which is manufactured by the Defiance Machine Works, Defiance, Ohio, works per

fectly in the hardest seasoned timber, turning the work smooth and producing perfectly square corners with out tearing, and it is extremely simple to operate.

The tight and loose pulleys are 10 inches dianeter 5 inches face, and should run 430 rotations per minute the floor space occupied by this machine is $41 / 2$ feet by 8 feet.

A CUSHION PAVEMENT.

The improved street pavement herewith illustrated has been designed and patented by Mr. Daniel W Campbell, of North Creek, Warren County, New York. The blocks are all made in one shape and size, being formed with plane faces on the top, bottom, aud sides, but having offsets or ledges formed at each end, the front ledge being at the top and the rear ledge at the front ledge being at the top and the rear ledge
The depth of the said ledges is such that when the blocks are laid together there will be a square void between them whose depth will be approximately one third the height of the blocks. In paving a street the brick or stone blocks are laid in rows transversely to the street, with their flush sides in contact, and the offsets forming a continuous ledge or step across the street as shown in the engraving. Upon this ledge is laid a strip of wood or other flexible waterial, and another row of blocks is then laid in place, its upper other row of blocks is then laid in place, its upper
ledges overlapping and resting upon the upper face ledges overlapping and resting upon the upper face
of the strip as shown. Suck a form of construction of the strip as shown. Suck a form of construction
presents a flexible pavement, which will be comparapresents a flexible pavement, which will be compara-
tively silent under a passing vehicle; and the longitudinal strips will assist in preventing the formation of ruts and hollows in the surface of the street. It will be seen that by completely overlapping the wooden strips the blocks exercise upon them merely a compressive strain, and do not tend to shear them off, as is the case when such strips are engaged by groove formed in the adjoining faces of the blocks.

COPPERSMITHING

The present illustrations represent the manufacture of the copper vacuum pans used principally by sugar manufacturers, distillers, etc. In the manufacture of sugar the sirup is run into these pans, where it is evaporated by means of steam to the point of crystallization. The pans range in size from about 3 feet to 15 feet in diameter and from 8 to 25 feet in height. The pans when completed consist of a dome, belt and bottom. The dowe and bottom being beaten to the proper form by hand and the belt plates rolled into shape and brazed, the different sections then being placed in position and bolted together. Connected to the sides on the interior of the bottom sec-
tions are coils of copper pipe which are heated with steam for boiling the sirup.
The number of feet of pipe for each apparatus depends on the size of the pan and the amount of evaporation required. In the largest of these pans as many as 3,000 square feet is used. The pipes range, according to the size of the pan, from 2 to 6 inches in diameter. The copper comes from the mills to the coppersmith in sheet form cut into the proper shape

CAMPBELL'S CUSHION PAVEMENT

The belt plates range from about 28 inches to 24 feet in length, from 14 inches to 12 feet in width, and from $1 / 8$ to $5 / 8$ of an inch in thickness. The belts are made in from two to eight pieces, according to the heigh and diameter of the pan. The copper plates for the dome and bottom come circular in shape and flat They are first suspended over a forge containing a hot coke fire until they become red hot and then beaten into shape with wooden mauls. The furnace or forge s about 10 feet in length, about 4 feet in width and bout $21 / 2$ feet in height. The copper sheet is sus pended to within 4 inches of the fire until it become red hot, which takes about twenty minutes. Two perators then beat the heated metal with the mauls beginning about half way from the center, the heavy blow causing the material to bend and form itself into the proper shape. During the beating process
the metal is turned and held in position by an at tendant with a pair of tongs. The mauls are about 12
incbes in length, about 5 inches in diameter, and weigh 15 lb . each. It requires about two days to beat out a dome 8 feet in diameter and 30 inches in depth. The object of beating the metal while hot is to keep it a uniform thickness. After the beating process the dome or bottom is suspended on what is called a head. This head is abo at 8 inches square and made of steel, the top of which is slightly curved and swooth. The head rests in an iron brace which is fastened securely to the end of a heavy wooden beam about 5 feet from the floor. The under side of the dome or bottom rests on top of the head, the two operators who stand on a raised platform then hammering the metal smooth, hard and bright. The planishing hammers used weigh about 6 lb . each, and are very highly polished and made of steel. An attendant also turns the material during the hammering process, which takes about one and one-half days. The ends of the belt are then scarfed and rolled and the parts brazed. The ends of the belt to be brazed are placed over the forge fire, which is blown up to a temperature of about $1,800^{\circ}$ Fah. A brazing spelter composed of about 60 per cent of copper and 40 per cent of zinc is then placed along the joint, which melts and unites the two parts solidly together. Bolt holes are then bored in the 5 inch flanges on the belt, bottom and dome and the sections then put together.
The copper pipe is placed in the bottom section in rows one above the other, between braces made of gun metal, the coils of pipe being placed about 10 inches apart. As the sections are put together a coating of putty, cousisting of red and white lead and oakum, is put between the flanges, waking it airtight when bolted. After the putty has been applied, two iron rings, one being placed on top of the flanges and the other on the bottom, are bolted securely together with $3 / 4$ inch iron bolts, about $31 / 2$ inches apart. The large copper vacuum pans, that measure 15 feet in diameter and containing about 3,000 feet of pipe, will weigh about $80,000 \mathrm{lb}$. To build one of these large pans it will require about four months with the labor of from twelve to fifteen men. The cost of these pans ranges from $\$ 500$ up to about $\$ 15,000$, according to the size and quantity of material used. The copper costs from 16 to 22 cents per pound, according to the size of sheet, the length and the width and thickness. The sketches were made at the North River Copper Works, New York.

IT is said that the habit of turning around three or four times before lying down has survived in the domestic dog from his savage ancestry. It then serve to break down the grass and make a bed.

STEEL HEAD FOR SMOOTHING DOME

Science Notes.

 sale.Dr. Adalbeıc Kruger, Director of Kiel Observatory, died recently. He was an astronower of world-wide reputation and waseditor of the Astronomische Nachtrichten.
Rev. W. C. Ley, a meteorologist of considerable reputation, died on April. 22. His researches were principally on the clouds and the movements of the upper air currents.
The University of Pesth has conferred honorary deg:ees upon Lord Kelvin, professor in the Glasgow University ; Herbert Spencer, the English philosopher ; Max Muller, the orientalist; Prof. James Bryce, M. P., the eminent English geologist and scientific a uthor, and Dr. John Shaw Billings, of Philadelphia.
It is said that dew is a great respecter of colors. To prove this take pieces of glass or board and paint them red, yellow, green, and black. Expose them at night, and you will find that the yellow will be covered with moisture, and the green will be damp, but that the red and the black will be left perfectly dry.
Negroes are black owing " to the stimulating action of solar heat, combined with moisture and an excess of vegetable food, yielding more carbon than can be assimilated, the character being then fixed by heredity." This extraordinary theory appears in a recent geographical school book bearing the name of Cam bridge University
The Paruchowitz bore hole, near Rybrick, in Silesia, which attained a depth of 2004.34 m . (nearly 1,096 fathoms) when the rod broke, has passed through eighty-three carboniferous strata, the total expense having amounted to $\$ 18,700$, says the Practical Engineer. The 384 thermometrical observations that were made showed a very irregular increase of temperature with depth, the average being $1^{\circ} \mathrm{C}$. ($1.8^{\circ} \mathrm{F}$.) for every $35 \cdot 14 \mathrm{~m}$. ($181 / 2$ fathoms).
The question as to the fusibility of platinum in a carbon heated furnace seems at last to have been definitely settled by Victor Meyer, says Science. A sheet of platinum completely inclosed in a mass of fire clay was fused to a globule in a blast furnace heated with gas carbon. In this caseaction of carbon or of furnace gases on the platinum was absolutely excluded. Under similar conditions an alloy of platinum with 25 per cent iridium was unchanged.
Filehne has studied the action of copper when combined with albuminous substances, and finds that a cupratin compound, analogous to Schmeideberg's ferratin, can be administered to dogs and cats in doses of 2.6 grammes within twenty days without injurious effects. He infers that compounds of copper with albumen would not be injurious in human food, and that from 0.01 to 0.02 gramme of copper daily in this form would not cause any sensible disturbance. The case is very different with copper stearate, which causes serious degeneration of the liver and kidneys when administered for some long time, though it was not possible in this way to produ Deutsch. Med. Wochensch., 1896
In the Contemporary Review for May, Dr. Alfred R. Wallace describes M. Elisee Reclus' proposed gigantic model of the earth, and argues that the construction of such a globe would be feasible and desirable. Bat he thinks that the scale proposed by M. Reclus, $10 \frac{1}{10000}$, should be reduced by one-half. This would give an internal diameter of 167 feet and a scale of almost exactly a quarter of an inch to a mile. The chief point made by Dr. Wallace is, however, that the model should be placed on the inner surface of the sphere.
Theredhas been a volcanic eruption on the island of Socorro, off the Mexican coast. Two months ago, which is the latest date of news received, lava was running down the mountain sides, overflowing the lowlands, and moving toward the sea. The news came in a letter to the Hydrographic Office from the schooner Zampa, bound for Tacoma, whose captain spoke the Danish bark Schwalde, of Guaymas, which passed Socorro on March 20. The sky and sea were filled with ashes miles away from the island, and the blazing mountain was first made out at night. It was a magnificent sight, the Danish captain said, but he did not dare venture too near, on account of the troubled condition of the ocean.

An extremely interesting series of experiments on the action of a powerful magnetic field on the cathodic rays in Crookes' or Hittorf's tubes is described by Herr Kr. Birkeland in the Elektroteknisk 'Tidsskrift (Christiania). These experiments prove, says Nature, that in such a field the cathode rays are strongly deflected in the direction of the Iines of force, and can even be concentrated on to the surface of the tube until the glass melts. Moreover, the evidence suggests that the rays which emanate from one and the same cathode fall into groups, of which the physical con stants are connected by some definite law, just as are the frequencies of the different tones emitted by a vibrating rod. The investigation has an important bearing on the theory of the aurora borealis. The Danish meteorologist, Herr A. Paulsen, is of opinion that the aurora owes its origin to phosphorescence of
the air produced by cathodic rays in the upper strata of the atmosphere, and Herr Birkeland suggests that the earth's magnetism may be the cause of this phosof the terrestrial poles.

INSECT REMOVER AND DESTROYER.

A new and improved machine for the renoval of potato bugs and like insects from vines has been Michigan The invention consists of a machine with

REEDER'S INSECT REMOVER AND DESTROYER.
a body shaped substantially like the hull of a boat, having a pointed front and a rounded keel as shown in the illustration. An upright mast is provided in front of the driver, upon which is fitted a cross bar, at the ends of which are pivoted two oar-like arms, which project on each side of the machine and terminate in brooms or brushes. The inner ends of these oars have suitable handles which can be grasped by the driver, and he is thereby enabled to beat and brush the bug-infested rows of potatoes on each side as he drives the machine through between them. At the front central portion of the body of the machine a clevis is provided, to which the machine may be attached. As the device is driven through a potato field the bugs are brushed into the space be tween the rows and crushed by the passage of the body of the machine over them.

IMPROVED BOILER FURNACE.

The improved furnace shown in the accompanying illustration has been patented by Mr. Henry Theodore Dieck, corner of Alvar and Dauphine Streets, New Orleans, La. The furnace may be constructed with only one shell, as shown in the illustration, or with two or more shells if desired. At the front end of the shell is a firebox with grate and ash pit of the usual construction. The bridge wall slants. upwardly and

DIECE'S IMPROVED BOILER FURNACE.
rearwardly, and terminates in a flame bed, which is segmental in cross section, and has its upper surface eccentric to the exterior surface of the shell, the greater distance between the flame bed and shell being at the upper portion of the former. The flame bed falls slightly toward the rear, where it curves up and over, finishing against the end of the shell just above the shell flues, into which it guides the furnace gases. The flame bed extends upwardly on both sides to or above the shell flues and provides a larce heating sur ace; and as the area of the cross section of the flame bed increases in a rearward direction, ample provision is made for the proper combustion and flow of the

The Proposed Extensions or the Manhattan Elevated Railroads.

A committee of the Manhattan Elevated Railroad directors has submitted to the Rapid Transit Com mission a comprehensive plan for the extension of their system. Briefly stated the proposed extensions and additions are as follows:

1. A new two track structure to commence at the Battery Place station on the west side and run along West Street to Little West Twelfth Street; then by Tenth A venue to Twenty-third Street, where a spu would be run from the Pennsylvania and Erie ferry houses to Ninth Avenue. Another spur would run from Christopher Street ferry to the Eighth Street station of the Sixth Avenue line.
2. A cross town line from the City Hall station at the entrance to the Brooklyn Bridge, running up the entrance to the Brooklyn Bridge, running up
Centre Street to Caual Street, and westward along Centre Street to Caual Street, and westward along
the same to a junction with the proposed West Street the sa
line. line.
3. To provide increased accommodation and speed on the up and down lines, it is proposed to provide four tracks on the Third Avenue line from Chatham Square to Sixth Street, and three tracks from Sixth Street to the Harlem.

On Second Avenue it is proposed to lay a third track from Grand Street to the Harlem River.
The Ninth Avenue line is to have a third track from the Battery to the curve at One Hundred and Eighth Street, whence a new line is proposed which shall run via Tenth A venue or the Western Boulevard to Fort George.
Mr. Gould stated that the company stood ready to build these proposed lines at once; and he submitted two other routes which the company were prepared to cover as soon as the growth of the neighborhood called for it. The first of these was a line from the Fort George extension at One Hundred and Sixtysecond Street and Tenth Avenue, to run ont along the Kingsbridge Road to the city line. The other future extension was to take place from the One Hundred and Seventy-seventh Street terminus of the present line toward the sity line to the north. To provide for a pressing need Mr. Gould said that his company was prepared to build at once a branch line from the One Hundred and Forty-ninth Street station on the east side line, running along the Westchester Road to the Bronx River. It is reported that the representatives of the Manhattan roads stated that they were prepared to build the extensions with their own capital and that they made no stipulations as to the payment of damages.
It must be admitted that this proposal is framed on comprehensive lines, and that it appears to meet the pressing necessities of the hour most admirably. The directors of the elevated roads have a rare opportunity just now to establish themselves in the confidence of the public, by pursuing the liberal and far-sighted policy which is outlined in their present proposals.

Explorer Peary's Planc.

Civil Engineer R. E. Peary's plans for his Arctic ex pedition this summer are now substantially complete. pedition this summer are now substantially complete.
Instead of St. John's, N. F., as in former years, SydInstead of St. John's, N. F., as in former years, Syd-
ney (Cape Breton) will be the point of departure, from ney (Chape Breton) will be the point of departure, from
which expedition will leave about July 15 in a steam whaler from the Newfoundland fleet. From Cape Breton the course north ward will be laid along the Labrador coast, as the conditions of ice will permit ; then, crossiug Davis Straits to the Greenland coast, stops will be made, if practicable, at Godthaab and Godharn, and possibly at Upernavik. Lieut. Peary will push forward with all practicable speed to accomplish the main object, the obtaining of the great accomplish the main object, the obtaining of the great meteorite, the largest in the world, which
ed and located not far from Cape York last year. ed and located not far from Cape York last year.
With the meteorite secured, the southern course wiil With the meteorite secured, the southern course wiil
be laid across Melville Bay to Godhavn, where a call will be made on the return for the purpose of embark ing any of the party who may have awaited the ship at that point. Coming south, an attempt will be made to penetrate Hudson Straits and, if possible, examine some valuable mining prospects which have been reported in an uninhabited and inaccessible place on the north coast of its waters. Calls may also be made at the Labrador ports, if circumstances favor, and it is possible that while the ship is absent Peary may go, if conditions are favorable, north of Cape York, to his former headquarters at Inglefield Gulf. The scientific party from Cornell University, headed by Prof. Ralph S. Tarr, of the department of geology, will embark on the steamer, leaving her at some point agreed upon in Greenland, for scientific field work, during the time of her absence to the north. Prof. Burton, of the Boston Institute of Technology, is also contemplating a similar scientific field excursion, and one or two other passengers may be added to the party. North of Godhavn, however, Mr. Peary will be without associates, excepting the captain and crew of the steaner, whose aid will be ample for the work which he will have in hand. If the expedition accomplishes its designed work and obtains the meteorite, it will return directly to New Fork,

A premium of $\$ 250$ is offered by the Scientific American for the best essay on
the progress of invention during the past
This paper should not exceed in length 2,500 words The above-mentioned prize of $\$ 250$ will be awarded for the best essay, and the prize paper will be published in the Special 50th Anniversary Number of the Scientific American of July 25. A selection of the five next best papers will be published in subsequent issues of the Scientific American Supplement a our regular rates of compensation.
The papers will be submitted for adjudication to a select jury of three, consisting of-
Prof. R. H. Thurston, Cornell University
Judge A. P. Greeley, Washington, D. C.
Prof. R. S. Wood ward, Columbia University.
Rejected MSS. will be returned when accompanied hy a stamped and addressed envelope.
Each paper should be signed by a fictitious name, and a card bearing the true name and the fictitious name of the author should accompany each paper but in a separate sealed envelope.
All papers should be received at this office on or be fore June 20, 1896, addressed to

Editor of the Scientific American,
361 Broadway, New York.

©arrespondence.

x Ray Experiments.

To the Editor of the Scientific American :
I have in my possession a Crookes tube, exactly identical in construction with the one described on page 342. Scientific American of May 30, excepting the glass bulb, which is pear-shaped.
Considering the fact that I am using this tube with an ordinary Wimshurst induction machine of my own construction, with 20 inch hard rubber plates, its work is simply marvelous.
For the benefit of your readers who desire to use this kind of apparatus, I would say that the condensers should be small, not over 16 or 18 square inches of foil surface on each side, and the outside coatings should be connected with each other; the anode of the Crookes tube should be connected to the positive pole of the machine and cathode to the negative pole, with a spark gap of not less tha.a one-half inch. Gap should be made between ball terminals, as a good, clea spark is absolutely necessary; if air is so damp as to break it into a brush discharge, no effect will be obtained in the tube.
The light is, of course, intermittent, but if the machine is in good order and runs fast enough, the sparks follow each other in such. rapid succession as to be practically continuous in lighting effect on a fluoroscope, which this tube illuminates brilliantly, bringing out the bones in the hand very distinctly. The tungstate calcium used in fluoroscope is sold by dealers as high as $\$ 5$ perounce: but an ounce of it-enough for two or three fluoroscopes-can be made for 30 or 40 cents, as follows : Mix about 1 ounce each of common salt, tungstate soda, and choride calcium; last two articles should be bought at retail for about 2 cents per ounce. Put the misture in a common crucible, also obtainable for about 10 cents, fit a tin cover to it and bury to the lid in a good coal fire-the kitchen stove will do-so as to bring it to a full red heat; leave it for two or three bours, or until contents are fused to a clear liquid, then set it out to cool and crystallize. The resulting hard, glass-like mass should be broken out with an old chisel or by breaking the cruciblebroken up and thrown into a jar of water, which will gradually dissolve the chloride of sodium formed, and the fine crystals of tungstate calcium will settle to bottom. Wash by decantation till all taste of salt is gone, and pour out on filter or blotting paper and dry.
Make your screen of thin wood or cardboard, coat with common prepared glue, and sift on the tungstate, shaking off all that does not stick when dry. Fasten to botton of ordinary box of the fluoroscope form, and you will have as good a fluoroscope for a few cents a can be bought for a few dollars.
I think I have demonstrated, and with rather poor apparatus, that the \mathbf{X} ray will produce a visible image on the sensitive plate in less than $1-1000$ of a second.
When I run my static machine very slow, the spark can be made to jump the gap arranged as described at about the rate of one or less per second. The fluoroscope then shows a distinct instantaneous flash of light as each spark passes, seeming to indicate that the \mathbf{X} ray is produced only at or during the instant of the passage of the spark, which, according to Wheatstone, occupies about $1 \cdot 24000$ of a second of time.
Desiring to test the effect of one spark and upward on a plate, I placed a common pocket comb in a metal edged case on a 4×5 plate holder, containing plate covering about three quarters of an inch of holder,
slowly run till one spark passed the gap, then plate of steel was moved up three-eighths of an inch, and one more spark passed, thus giving two sparks exposure to remainder of plate; the steel block was then pushed up another three-eighths of an iuch, and two more sparks passed, giving four to remainder of plate, and sparks passed, giving four to remainder of plate, and
so on up through 8, 16, 32,64 , etc., to 512 on last threeso on up through 8, 16, 32,64 , etc., to 512 on last three-
eighths inch of plate. Plate was developed imwediately, the print frow same plainly showing the metal rim of comb case down to the seventh space from top, corresponding to eigit sparks, equal to about 1-3000 of a second's exposure.
My machine works in the open air, which is very damp most of the tine at this time of year, hut with a properly cased powertul machine and a spark gap of one inch or more, Ithink it could be on the
that one spark would produce a visibis inage on the plate.

Middletown, N. Y.
[We have received from Mr. Ogden some specimens of his X ray photographs, which are vers fine; also the photograph mentioned, which shows the inage
produced by exposures of different lengths.-Eds.] produced by exposures of different lengths.-Eds.]

The Utility of Colored Skin.

Man, no matter what country he inhabits and what are the exterior conditions that he undergoes, has an internal temperature that varies within very narrow limits. If the exterior temperature is very cold, the circulation becomes more active and the chemical changes that generate heat are more intense, while physical conditions, such as friction and perspiration contribute also a large part toward maintaining this balance of temperature by modifying at the proper time the formation or emission of heat. Races and climate produce in these vital actions certain curion modifications which have hitherto received little atten tion. It would be, for instance, interesting to know whether the human temperature is the same in all lati tudes and for every race. Davy was one of the first to ake up this question in two voyages to Barbados and Ceylon. He concluded that the temperature varie with the race by several tenths of a degree as we
approach the tropics. The observations of Jousset approach the tropics. The observations of Jousset held a different opinion, M. C. Richet, who has sum ned up the work on this problem, concludes that the temperature of men of different races, under the same conditions of environment, is sensibly the same." This racial influence is then no greater than that bich soue have attributed to sex; that is, it is prac tically null.
Dr. Eijkmann, director of the Pathological Institute Weltevreden, Batavia, Java, has attacked this ques tion anew. He has especially tried to find how a Malay and a European react under the influence of exterior temperature, and what, in particular, is the role played by the color of the skin in the physical regulation of temperature. - He Las performed, for the olution of this problem, the following experiments.

One means of regulating temperature is by the oss of heat by conduction and radiation. If we place a thermometer near the skin of the arm or the chest and surround it with a sort of guard, the thermometer will rise the faster as tbe heat given out by the body is greater. M. Eijkmann has made this experiment in both Europeans and Malays. The results differ slight ly according to season. During the warm and dry season the advantage is with the natives; the temperature of the thermoneter placed near the arm is $38.55^{\circ} \mathrm{C}$. $\left[92 \cdot 39^{\circ} \mathrm{F}\right.$.] with Europeans and 34.05° [93 29° F.] with natives. On the contrary, during the cool wet season, Europeans give 32.75° [$90.95^{\circ} \mathrm{F}$], whi wet season, Europeans give $32 \cdot 75^{\circ} \quad 90.95^{\circ}$ F.], while radiated off less heat. Observations made at different hours of the day prove that, in general, the loss of heat by radiation is a little less with natives than with Europeans, and this difference is about $0.4^{\circ}\left[0.7^{\circ} \mathrm{F}.\right]$
What causes this difference? We must in the firs place eliminate the color of the skin. To test this, the with skin carefully removed from the shoulders of per sons who bad recently died. The one was from a European, the other from a Malay. On one cylinder the European's skin was placed outside the Malay's on the other, the Malay's was outside the European's. This arrangement was to prevent all possible error due to a difference in the conductivity of the two skins. The two receptacles were then filled with water in such manner that the thermometers plunged in each marked at the outset the same temperature. The results of the experiments made under these conditions show that there is no appreciable difference in radiating power between the brown and the white skin. The bulbs of two similar thermometers were covered with a double layer of skin [as before]. . . . Thus dispos ed they were exposed in a damp chamber to the sun's
rays. At the end of a certain time the temperatures rays. At the end of a certain time the temperatures
were as follows: White skin on outside, $47.5^{\circ}\left[117 \cdot 5^{\circ}\right.$ F.]; brown skin on outside, $50 \cdot 1^{\circ}$ [122.18 ${ }^{\circ} \mathrm{F}$.] But we return to the radiation. The color of the skin has no influence, and cannot explain the fact that the loss of

Other experiments give us the true reasons, which re ate to the evaporation that takes place at the surface f the skin, which is greater in Furopeans because they drink more.-Paris Cosmos.

Study of a Swiss Avalanche

Natural Science gives a summary of the report made by Profs. Heim, Forell and Chodat on the great Gem ni Pass a valanche of September 11, 1895. The detaile description of the results of the catastrophe made by men of good standing in the scientific world is of grea value. The avalanche was caused primarily by the plitting away of the lower parts of the Altels glacier The Abstract says: "On reaching the foot of the Altels, the avalanche, which up to this point inust have consisted of one vast moving block of ice, measuring one and a quarter millions of cubic meters [4,000,000 cubic feet], was reduced to fragments, at the same time that the heat generated by the shock converted hese into a semi-fluid condition. Among the debris were to be seen some blocks of considerable size, but only a few exceeded two meters [$61 / 2$ feet] in diameter. With the velocity acquired in its descent, this river of ice rushed across the pasturage and up the western lope of the valley to a height of 1,300 feet along the rocky wall of the Weissfluhgrat. Not being completely able to surmount this barrier, the main mass came surging back-like a vast sea wave recoiling from the liffs-with such force that some of it returned to a height of one hundred feet up the eastern side. Isolated blocks, however, were hurled clear over the ridge into the adjoining valley, the Uschinenthal.
"The a valanche was preceded by a terrific blast of wind which swept a way chalets, trees, men, and cattle as though they had been feathers. This is proved by the fact that, far above the limit reached by the avalanche, hundreds of trees have been uprooted, and lie in regular rows, indicating with mathematical exactitude the direction of the aerial current. These trees are for the most part of great size, several indeed having trunks one ineter in diameter. Such as were protected by a large rock or a reverse dip on the hillside have been spared. Others, standing with only half their height above such hollows, have had the exposed part blown off, while the subsequent oncoming of the avalanche has not succeeded in tearing up what was left of them, even when it has enveloped their base. This wind produced a veritable bombardment of ice dust mixed with stones, which has stripped the roots and branches of the trees laid low by the wind itself, and which must have killed man and beast before ever the real avalanche overwhelmed them. Further away the trees have only been denuded of their upper portion, the branches composing which were transported to a great distance, and now form a compact line of debris among the far-off scattered rees, like the bank of sea wreck left on open coasts after a fierce storm. Ice bombs, too, round like cannon balls, out with an average diameter of one foot, which lay all about in the neighborhood of the fallen nass, bore eloquent testimony to the extreme violence of the wind. On the way from the Hotel Sch warenbach, before coming to the Bernese frontier, the green pasture was strewn with these balls like a battle field n old muzzle-loading times.
"The true avalanche, in its recoil from the rock wall, has formed an inmense rampart, separated from the rock by a deep trench. On the sides, under the tress of the enormous power of the wind, which, like the avalanche itseif, was deflected by the Weissfluhgrat, blocks of considerable size were driven around as n a whirlpool, so as, at least on the northern edge, to have been forced back up the slopes of the Altels toward the entrance of the gorge leading to Kandersteg. These different atmospheric motions were well marked, owing to the disposition of the materials which came under their influence. Near the W interegg, the trees, shrubs, and grasses were all bent toward the north, forming an exterior zone, which was more and more thickly covered with the dust, etc., raised by the catastrophe as the central mass was approached. A second zone, within the first, was found to consist of the loose rocks, etc., thrust aside by the head of the ce mass as it dashed up the west slope; the inner edge of this zone was itself covered by a layer of ice and snow, representing the matter that kept pouring off from the sides of the central body in its upward progress, and also the results of the reflux which took place when its further advance was barred. Some of the ice and stones hurled against the Weissfluhgrat had adhered to it, being plastered, as it were, into the issures and gullies. These masses were being constantly detached from their precarious position, and kept descending in roaring avalanches."

Dr. Roentaen has published some new facts about his rays. He finds that all solid bodies can generate them; the only difference being in the intensity, the greatest intensity being produced by platinum. He finds that the insertion of a Tesla coil between the Ruhmkorff coil and the ray-producing apparatus is very advantageous, and that the \mathbf{X} rays and the air traversed by them can discharge electric bodies.

Meat and Milk from Sewage Farms. If a cow is fed on turnips, within twenty-four hours her milk will taste of turnips, and if butter be churned from the cream, the butter will taste too. The intensity of the turnip flavor is the measure of the quantity of turnips taken. In like manner, if pigs be fed on horseflesh, as they often are, their bacon will taste of the horseflesh; if they be fed on fish, the bacon has a fishy taste. The same is true of hens and their eggs. Feed hens on decaying animal matter, which they will eat greedily, and both their eggs and flesh will be most unpleasant and unwholesome eating. In the case of ducks the facts are much more striking. Ducks are very unclean feeders. Give them abundance of garbage, and they will refuse corn and similar food. Their flesh is then most pungent to the taste, and in many people is so potently poisoning as to produce diarrhœa. Animals fed on sewage farms under certain conditions are liable to have their flesh and secrutions changed in character by the sewage-produced herbs and grasses upon which they feed. If the sewage on a given farm be so managed that no wore of it be put into the soil than any given crop can adequately deal with, then the crop will be sweet and natural, and the cattle or other animals fed on it will be sweet and natural too. But if the soil be gorged to repletion with sewage, then the crops will be surcharged with sewage elements, and unfit for food, and the meat and nilk of animats fed on such crops will be like the crops, and very unpleasant to the taste as well as dangerous to the health. It is in the last resort all \imath quêstion of the intelligence and conscience of the managers of sewage farms.-Hospital.

ARCHIMEDEAN SCREW USED FOR DRAWING WATER.

The principal contrivance in this machine consists of a sort of covered screw (or Archimedean screw) placed diagonally upon its axis, the lower end of which enters the water of the reservoir, A, and the upper one of which ends in the reservoir, B, which is the one to which it is desired to raise the water.
Around the long piece of wood, C , that we call an axle, it is necessary to wind tubes of lead or other metal (marked D and E in the Gigure), the mouth of which will be in the reservoir, A, and their outlet a little above the reservoir, B.
When this Archimedean screw revolves in the proper direction, the parts of the pipes that enter the reser voir, A, will become filled with water through the mouths of the tubes, and, through the revolution of the tubes, the liquid will be gradually carried from the lower to the upper part of the screw, where it will empty into the reservoir, B.
This screw is revolved through the intermedium of the large wheel, F, which is at the upper end of the axle, C, and which is actuated by manual power in
pulling the rope, G, just as one pulls a bell rope. Ou engraving is from an old print.

ORANGE TREE JACKET.

A jacket for protecting orange trees against the ac tion of frost has been patented by Mr. Philip F. Brown of Blue Ridge Springs, Va. By reference to the illus ration it will be seen to consist of a tubular, longitud nally split waterproof jacket, which is formed of an nner layer of woolen goods or other suitable non-con ducting material, and an outer coating of rubber. Ar anged between the two layers are several coil springs, whose ends are held in the longitudinal edges of the

BROWN'S ORANGE TREE JACKET.

ackets, so that under their action said edges will be caused to overlap and the jacket given the form of oll or coil.
To place the jacket in position, the edges are sprung apart and it is then drawn around the trunk, the springs causing it to close upon the tree and snugly mbrace it. Br keeping a stock of various sizes of thes ackets on hand the orange grower can jacket his grove at very short notice and thus prevent the great loss due to freezing. The use of this device makes it possible to grow the semitropical trees in the parks of the North.

The Ruins of Ang-Kor Wat.*
Around the ruin, and some three or four hundred yards away from it, there is a wall twelve or fifteen eet high, and in an excellent state of preservation. It is impossible to follow this wall all throughout, on ac
*These, the most inaccessible and most interesting ruins in Furth scribed in Surgeon-Major MacGregor's book, "Through the Buffer State."
count of the dense jungle growing about it here and there. But I followed the outside of it as well as. I could from the southwest corner to the south gate ${ }_{n}$ and counted seven hundred and fifty-three steps, represeuting half the length of the wall in a west-east direction. Making due allowance for the more or less tortuous way that I was compelled to take, this rough measurement would make the wall in this direction something like three-quarters of a mile long. Our Kumer guide said that the walls, as well as the buildings, were square, with equal length of sides; but whether he was right or wrong about the walls, which we were not able to measure thorouhly, we found that he was quite wrong about the buildings themselves; for I measured them afterward, and found that, with the exception of the central platform, they were really oblong in figure, with the longer sides directed east and west and the shorter ones north and south. Inside the parklike wall is another wall, only a few feet high; and inside this again, only a short distance from it, is the magnificent ruin itself. I happened to have a measuring tape with me, twelve yards long, but by attaching a piece of twine to it we were enabled to get a length of twenty-seven yards. With this combination we measured the building, and the measurements may be relied on as correct enough for all practical purposes.
The bass reliefs are raised three or four feet above the ground, and are about four or four and a half feet wide. Speaking roughly, they look to the naked eye about half as wide again as the frieze of the Greek Parthenon, to be seen in the Elgin rooms of the British Museum. The sculptures are somewhat less 'relieved" from the general surface than the bass reliefs just mentioned, but they are apparently quite as finely just mentioned, but they are apparently quite as finely
chiseled, and in a much better state of preservation. It was on this inner wall that the measurements of 705 feet by 588 feet were taken, extending from the outer door post on the one side of the building to that on the opposite side. Bass reliefs abound on the walls almost everywhere throughout the ruin ; but it is on the outside of this inner wall of the corridor that they are particularly aburidant and extensive. Taking the sum of the four sides, there is nearly half a mile of almost continual sculpture on these four walls alone, and representing various scenes, most of which are of a warlike character, while one side in particular is occupied by what appears to be a tug of war on a large and ancient scale. Scores of men on one side are doing their ntmost to pull over exactly the same number of men on the other side, while the umpire, or whoever he may be, represented by a larger figure than the rest, is seen in the midale between the two contending parties, and sitting on the back of a turtle, whatever allegorical meaning that fact may contain.-Public Opinion.

THE HORSELESS CARRIAGE RACE ON DECORATION DAY. Booth-Crouch carriage and the third was the Roger two hours in Mail Street before the start was made. $_{\text {the }}$ The Cosmopolitan Horseless Carriage Race from carriage, a French invention. The carriages began to a number of wheelmen were on hand to follow the City Hall, New York, to Irvington and return, for arrive about half past nine in Printing House Square carriages over the course. Among them was a represen $\$ 3,000$, was run on May 30, the winner being Charles and they afterward moved up into Mail Street at the tative of the Scientific American. The start was

THE COSMOPOLITAN HORSELESS CARRIAGE RACE-THE ROGER CARRIAGE.

THE COSMOPOLITAN HORSELESS CARRIAGE RACE-THE BOOTH-CROUCH CARRIAGE.
E. Duryea, of Springfield, Mass. There were nearly \mid back of the Post Office. The large number of people made at five minutes to twelve; the route was up thirty vehicles entered for the race, but on the morn- who assembled to see the start showed that the race Broadway to Fifty-ninth Street, to the Bonlevard, and ing of Decoration Day only six appeared to compete had attracted considerable attention. The crowd at then along Eleventh Avenue to Kingsbridge, where or the prize. Four of thesc belong to the Duryea last became so great that the police reserves were call- the judges were to meet the carriages Motor Company, Springfield, Mass., one was the out to maintain order. The carriages remained for

The route from Kingsbridge was through Broadway,

Yonkers, Hastings and Dobbs Ferry to the Ardsley Country Club, the return being made over the same road. The ride through the city was very exciting. The carriages dodged back and forth in front of and around cable cars and wagons, and demonstrated beyond argument that the horseless carriage is much more capable of control than the ordinary horse and carriage. They passed through the most crowded portions of the city, which was in boliday attire in honor of the day. The crowd at Madison Square was particularly dense, but the carriages had no difficulty in making their way through the crowd without accident. When the Boulevard was reached, speed was increased and the wheelmen had difficulty in keeping up with some of the carriages. The only serious accident of the day occurred on the Boulevard, where a wheelman was run into and seriously hurt by one of the horseless carriages. The operator was arrested.
From the Boulevard to Kingsbridge there are a number of hills, and in places the road is very bad. The carriages had no difficulty whatever in climbing these hills at a good pace, and demonstrated that they were all excellent in coasting down a hill. The noise made by the carriages was not particularly noticeable, and they did not appear to scare horses along the route. Occasionally they stopped to make minor repairs. Kingsbridge was reached at 1:10 P. M. Here the water tanks were filled, and the carriages awaited the arrival of the judges, who came on a special train. The judges were Gen. Nelson A. Miles, U. S. A.; Gen. William G. Craighill, Mr. John Jacob Astor, and Mr Chauncey M. Depew.
The judges examined the carriages, and then took the train to Irvington. The speed race really began at this point. Four of the carriages made the turn at the Cosmopolitan building, at Irvirgton, and passed the judges' stand at the new Ardsley Casino, where a stop was made to get water. Carriage No. 1, in charge of Frank Duryea, arrived at the Casino at 3:15 P. M., the time from Kingsbridge, a distance of 13 miles, being made in one hour, five minutes forty-two and two-fifths seconds. Carriage No. 2, a Duryea vehicle, arrived at 3:30 P. M., and No. 5, the Roger carriage, in charge of T. W. Brander, arrived at the Casino porch at 3:44 P. M. The judges stood on the Casino veranda and gave the official time as each carriage arrived. The award was based upon the following points, the maximum being 100 : speed, 35 ; simplicity of construction and durability, 30 ; ease in operating and safaty, 25 : cost, 10. Several exhi bition tests were given on the Ardsley Park ground The first of the horseless carriages returned to the Post Office, New York City, at 7:13 P. M. It was one of the Duryea wagons, managed by Mr. F. Duryea. There was a large crowd in waiting as the vehicle came down Broadway and turned into Mail Street, north of the Post Office. The greatest speed was attempted between Kingsbridge and the Ardsley Country Club. In Yonkers arose an obstacle which filled the racers with gloom. Peabody Hill reared its lofty head above them and resisted every effort of the motor. So the driver and umpire descended and pushed it over the crest of the hill. Several of the carriages met with misfortune
The trial proved beyond question that the American horseless carriage of the day is a success and is wel adapted for use in our city, as it appears that it can be turned and stopped more easily than ordinary vehicles. We present illustratious of two of the carriages taken by the special photographer of the Scientific American just at the start. We have already illustrated the victorious Duryea carriage in the Scientific American for November 9, 1895.
The Roger vehicle was made in Paris and weighs 1,730 pounds; the guiding is done with the wheels, which turn inside of a narrow space, the inside wheels turning more than the outer. It is guided with extreme ease, and was stopped and started on the day of the race in good time. The five horse power Benz motor is actuated by gasoline. The ignition is produced ioy an electric spark ; the cylinder is cooled by a water jacket; the power is transmitted to the rear wheels by means of belts, sprockets and chains. Two belt shifters permit different speeds, and differential gear allows the back wheels to turn with ease. The wheels are provided with solid rubber tires. The race demonstrated that the pneumatic tires were better adapted for the motor carriages than the solid tires. The other carriage, which we illustrate, is the BoothCrouch carriage, made at Youngstown, Ohio. The motor was made by W. Lee Crouch, of New Brighton, Pa. The fuel used is gasoline. The carriage was driven by Dr. Booth, of Youngstown, Ohio, and it would undoubtedly have made a very successful showing if it had not met with the misfortune of the break ing down of the spark apparatus.

The first woman who has received the permission of the minister of pablic instruction to attend lectures in the University of Mnnich, Bavaria, is Miss Ethel Gertrude Sikeat, daughter of the well known editor of Chaucer's works

EDISON'S NEW ELECTRIC LIGHT.

A notable example of the stimulation of invention by new discoveries is found in the latest work of Edison, which follows the discovery of Roentgen and the louroscope of his own invention. This latest invention is a fluorescing lamp in which is found the promise of the artificial light of the future. The lamp appears to have all the qualities requisite for per ect illumination; the light is mild but effective; it i diffusive like daylight. It gives off no perceptible heat, which latter quality goes to show that its economy has no parallel in other kinds of artificia illumination.
One form of the lamp consists of a highly exhausted oblong glass bulb having wires sealed in the ends, each wire being provided with a small plate inside the bulb one of these plates being inclined to cause a distribu ion of the rays over the side of the lamp. The inner surface of the lamp is covered with a granular mineral substance which is fused on the glass and is highly tuorescent. When the lamp is excited by connection with an induction coil, the fluorescent material be comes luminous.
Originally Edison used calcium tungstate for his fuorescing material; but by trial he found that the vacuum soon deteriorated, and after a long series of ex periments has discovered a fluorescing material which does not affect the vacuum, while it has a higher eff ciency than the calcium tungstate.
Mr. Edison thinks that the fluorescing material con verts all of the X rays into light. He has a theory a to the manner in which the light is produced. The crystals are compos:d of light and heavy particles and the impact of the waves produces a stress in the crysals which causes the emission of light. Mr. Edison describes these waves as sound waves, because they differ in their mode of vibration from ether waves Their motion is infinitely more rapid than that of

EDISON'S FLUORESCING VACUUM LAMP.

sound waves with which we are familiar; they ar comparable as regards velocity with electric or light waves. As to efficiency, the fluorescing lamp produce light at the rate of 03 of a watt per candle power. When this is compared with 3 watts per candle power or incandescentlamps, and $1 / 2$ watt per candle powe or arc lamps, it will be seen that there must be great economy in the fluorescing lamp.

The Record-breaking Trip of the St. Paul.
Friday, June 5. 1896, will be a red letter day in the annals of the American transatlantic marine. The passengers which the St. Paul landed at the North River dock, New York, at twenty minutes past four in the afternoon of Friday, had only left Southampton at noon on the previous Saturday, so that the time of the whole trip of $3113 \cdot 7$ knots was only 6 days 5 hours and 32 minutes. The excellence of the performance will be better understood when it is renembered that she traveled over the long route thereby adding fully three hours to the time she would have taken had she followed the record course of the New York, which was 3,047 knots long, and was covered in 6 days 7 hours and 14 minutes. The average speed for the whole trip was 20.82 knots. The highest hourly average speed for a whole day was made on Monday and Tuesday, when she covered $521^{\circ} \cdot$ and $521 \cdot 7$ knots, and slightly exceeded 21 knots pe hour.
The story of the St. Paul's trip, her tenth to the westward, is thus told by her log:

	Distance.	Lat.	Long.
May 30, left Southampton, 12 noon. Ler.			
May 31........ 48788	$49 \cdot 48$	14.01
June 1.	.. $521 \cdot 9$	48:33	$27 \cdot 11$
June 2.. 521•7	$45 \cdot 51$	89.17
June 8.	... 513.0	$42: 38$	$50 \cdot 13$
June 4..	.. 508.6	4146	61:38
June 5.	$518 \cdot 9$	$40 \cdot 38$	72.56
	418	To Sa	
8,118.7			

front rank for speed, being exceeded only by the Campania and Lucania, one of which has avoraged slightly over 22 knots for the whole trip and about 23 knots for a single day's run. It must be remembered however that the horse power of these ships is 30,000 against the 10,000 horse power of the American ships.
The engiues and boilers were being driven at full pressure for the whole distance, and the chief enginee states that there was not a single case of heated jour nals or leakirs tubes. This is an admirable perform ance when it is remembered that the boilers carry 20 puunds of steam, and the revolutions are about 90 per minute. The coal consumption is given out as 31 tons per day against a reputed consumption of ove 500 tons for the Lucania and Campania.

Notice to Our Readers.

In order to obtain the opinion of the readers of the ScIENTIFIC AMERICAN as to what invention intro duced within the last fifty years has conferred the greatest benefit upon mankind, we publish the accon panying card, which please cut out and return to the editor. Those who preserve the paper for binding and do not desire to deface their files, or who read this notice at a library, will please answer by postal card. It is desired to get as full a vote as possible. The result of the vote will be published in the Special 0th Anuiversary Number of the Scientific Ameri CaN on July 25.

```
Editor of the ScIENTIFIC American.
        Dear Sir:
        I consider that....................
invented by...................................
kind.
Name.
Address
```


The Significance or Gesture in Disease.

When you ask a patient to locate his pain, he does so by a movement of one or both his hands. The ges ture, however, not only indicates its seat, but describe its character and distribution. This is an all im portant point. If the pain is widely distributed over the whole chest, the patient locates it with a circular rubbing motion of the palm of the band, indicating the diffinsed soreness.
The pain of a serous inflammation, on the other hand, is described by first drawing the hand away from the body and then, with the fingers close tofrom the body and then, with the fingers close toflexed, cautiously approaching the seat of the inflammation.
In appendicitis the patient does not touch the skin at all when asked to locate the pain. He simply holds the palm of his hand over the diseased area.
With very violent abdominal pains which are not nflammatory, the patient slaps himself vigorously across the abdomen on being asked to indicate the location of his trouble.
If a child refers a persistent pain to the stomach, and there is no tenderness or pressure, disease of the spine is indicated.
In hip joint disease, the pain will be referred to a point inside the knee.
With terrific diffused pain in the leg, not due to an inflammation, the patient grasps the leg firmly. If it is a darting or lancinating pain, he will indicate it with one finger.
In the pain caused by the descent of renal calculi and gall stones, he follows their course with the top of the thumb or index finger.
The pain of hepatic neuralgia or "shingles" is indicated with the thumb or finger.
In joint pains the patient approaches the seat of rouble very cautiously with the hand spread flat.
The degenerative pain of locomotor ataxia is described by grasping the affected area firmly, indicating a band-like pain. Or, if the pain is sharp and lightning-like in the leg, the pain gesture is perfectly descriptive, an energetic downward motion, at the same tipe twisting the hand as though manipulating a corkscrew.
A patient will indicate the seat of a severe syphilitic beadache by hammering with the tips of his fingers. A patient complained of a severe headache. "In what part of the head is it ?" he was asked. "The vertex," he replied. On being asked to indicate the exact spot, he placed his finger on the parietal eminence. This he did three times in succession, though claiming to feel the pain exactly on the top. Upon examining the mouth a defective tooth was found. As soon as it was removed the pain disappeared.-

This pertormance places the St. Paul well up in the Nato Board of Health Mage

SUN SPOTS OBSERVED MAY 31, 1896

To the Editor of the Scientific American :
Prevailing severe storms have induced me to make two drawings of a large group of sun spots visible to the protected naked eye on May 31, 1896, as a dark spot near the lower limb of the sun, as shown in Fig. 1, and of which Fig. 2 is a telescopic enlargement. To those who recognize the direct influence of solar eruption on our earth's electrical state, with its consequent at mospheric disturbance, the appearance of such a large group at this time of storm would seem to afford some proof.
L. H. Horner.

Springtield, Mass., June 1, 1896.
Employment of Fogged Films. At the London Camera Club conference Capt. W. De W. Abney suggested the following method of using fogged films: It sometimes happens that a celluloid film coated with a sensitive geiatino-bromide emulsion is accidentally exposed to light (light fogged), or has been exposed in the camera; but for some reason or other it is not thought desirable to proceed with development, etc. These

Fig. 1. SUN sPOTS OBSERVED MAY 31, 1896. Fig. 2. be used in the foll" films may in a bath the following way: They are placed in a bath of potassium bichromate and sensitized just as though they were pieces of ordinary carbon tissue. When dry they are printed in the usual way, but with this important difference, viz., that the celluloid is put next the negative image, i. e., the printing is through the celluloid, and so first reaches the back of the film. Thus no transfer is needed, so that when the faint image of silver subsalts is visible, the developnıe.ct of the bichromated gelatine in hot water may take place just as though ordinary carbon tissue were being an nipulated. Experience shows that it is found best to prur the hot water over and over the surface, so as to thoroughly wash out the soluble gelatine. We have now an image in gelatine containing a developable silver salt. Development may now take place in the ordinary way. Furthermore, where local treatment is required, brush development and brush fixation may be applied. This opens up a field for local treatment.

A DESTRUCTIVE BOILER EXPLOSION

by frank woodmancy.

The W. P. Orr Linseed Oil Company's mill, at Piqua, Ohio, was wrecked by the explosion of one of the boilers Sunday night, April 5. Three men were in the building at the time, but none were seriously hurt. Had the explosion occurred an hour later, a number of employes would have been at work, as they were to go on duty at midnight. The capacity of the boiler was one hundred horse power and the explosion shook the entire city. A four story wing of the building, fifty-five by seventy-five feet, was completely razed and the main structure badly wrecked, besides do-ing considerable damage to other property.
A practical engineer of several years' experience gives his theory as to the cause of the explosion in the following
"There is but one plausible theory, and that is what is known in our terms as 'foaming.' The cause most liable to produce this effect is the use of deleterious compounds, of which many are now of which man are manufactured ostensibly for the purification of boilers by removing exotic substances, such as scales of magnesia, lime or sulphur, but which in re-

a destructive boiler explosion at piqua, ohio.
who with a six inch photographic lens of forty feet focal length, specially constructed by Brashear for the occasion, will attempt to repeat and improve upon the remarkable results he obtained during the Chiiean eclipse of 1893. On his plates the image of the moon will be nearly four and a half inches in diameter, and the corona will be more than a foot across.

Mr. Burckhalter, with a leis of twenty feet focus, will wake photographs of just half the size, using an ingenious contrivance of his own, which, by means of a star shaped screen revolving swiftly in front of the photographic plate, gives to the outer regions of the corona an exposure many times longer than that allowed to the lower and brighter portion. It is hoped in this way to bring out satisfactorily on the same plate the whole extent of the corona in a single picture-a thing never yet accomplished. On negatives that show the outer portions well the inner portions have hitherto been entirely overex posed, and their interesting de tails quite obliterated.
From England Mr. Curistie, the Astronomer Royal, takes amount, in my opinion, would have been necessary to out a large party equipped to occupy at leas produce the effect attained by this explosion." out a large party equipped to occupy at leas
two stations. A party also goes from France in two stations. A party also goes from France in charge of Deslandres, of the Paris National Observatory; but we have no information as to its compo sition and outfit, except that their work is to be wainly spectroscopic; nor do we yet know whethe Germany will have a party in Japan.
In Siberia a number of stations will be occupied by the Russian astronomers, and some of them will be very thoroughly supplied with photographic apparatus. The most of them will make only visual observa tus. T
tions. tions
In Norway and Finland the observers will be numerous, though for the most part amateurs. There will, however, be at least one English party provided with instruments precisely like those taken by Mr Christie to Japan, so as to give strictly comparable results; and America will be fairly represented by several observers. But the sun will be rather low and the duration of totality so short (less than two minutes) that the results are likely to be much les satisfactory than those obtained in Siberia and Japan The special aim of the observations will be, of The special aim of the observations will be, of
course, to get information about the corona-its structure, the variations, if any, which occur during the two and a half hours while the shadow is traveling from Norway to Japan, and the peculiarities of the coronal spectrum. The identification of terrestrial helium a year ago has naturally much intensitied the interest in the thus far mysterious element, provision ally called coronium, which produces the most conspicuous line in the coronal spectrum, and ha hitherto been found nowhere else, unless, perhaps, in one or two of the so-called "new stars." lt is earnestly hoped that on this occasion we may get some new light on the subject.
But while the corona will be the principal object of observation, other mat ters will be looked after also. The spectrum of the "reversing layer" - the lowest region of the chrc mosphere - will be care fully studied, as well as that of any prominence that may be visible; and an attempt will be made to determine the precise region where the grea "H" and "K" bands o the solar spectrum have their origin - bands a present ascribed to calci um, but in many ways ality, from the fact tha
they are composed largely of sodium compounds, assist in creating extraneous matter. When this condition is produced, gases are almost certain to collect under the water and elevate it sufficiently to create a deceptive condition in the gage, on which most engineers depend for guidance.
"The result of this is that the heating surface of the boiler is exposed to a fierce heat, with nothing to cool $i t$, on account of the elevation of the wat. r. The con sequence is obrious, especially where an engineer is
astronomical experience is needed for many of the proposed operations, which are for the most part photographic. The visual spectroscopic observations are also provided for, as well as polariscopic and photometric. Mr. and Mrs. James accompany the party, and Mrs. Todd goes with her husband
The liberality of Col. Crocker and other friends
in San Francisco enables the Lick Observatory to
send out a second party, headed by Prof. Schaeberle
very peculiar in their be
havior if they are really due to that metal.
If the weather is fine, we may fairly expect real and mportant additions to our knowledge; but the "Prince of the Power of the Air" is a very malig nant and intractable demon.-The Independent.

Governor Morton has signed the bill relating to the use of the reservoir site on Fifth Avenue, New York City, for the erection of the new New York Public Library, Astor, Lenox and Tilden foundations,

RECENTLY PATENTED INVENTIONS

 Railway Appliances．Railroad Tie Plate．－Alexander B．B．Harris，Bristol，Tenn．This tie plate is made so as to form a spiked socket with straight cylindrical outer
edges，without any toe or flange at their lower edges，but making the two opposite tongues which lie in the line o the grain of the wood thicker at their lower ends than they are above，while the other tongues are of the same
size below that they are above，so that when the spike is size below that they are above，so that when the spike i
driven it expands the lower edges of the two thickened tongues outwardly in the line of the grain of the wood， out does not expand the others，which would produce
strain transversely to the tie and split the latter．Th form of spike is changed from an elongated nail to short and thick plug，which，while having a spiked head does not penetrate the wood of the tie，but simply serve to expand the pendent tongues of the tie plate in the
bored hole of the tie，thus furnishing a very strong body of metal to resist the lateral thrust of the rail and the cutting of the heads of the spikes whenever the ca wheels jump the track．
Electric Block Signal and Train Ga．The object of this invention is to provide a railwa system so arranged that it is impossible for trains to col lide with each other or to be accidentally switched；me chanism is provided for cutting off the steam and apply ng the brakes of oppositely moving locomotives whe hey enter the same block，also for applying the brake hen a locondtive enters a block in which there is means for obtaining these ends consist，broadly stated in two maln conductors forming parts of an open circuit charged by any suitablesource of electricity and extended parallel with each other and along the track of a broken onductor，the brakes of which are one at each block and with which brakes are associated a series of bridge con．
ductors，and in mechanism carried by the locomotives of ductors，and in mechanism carried by the locomotives of ing the throttle and brake valves and suitable conducting devices for co－operation with the conductors of the track．
The invention also comprises improved mechanism for lighting trains and head lights．
Car Coupling．－Charles H．Sinith， Birmingham，Ala．This invention relates to improve－ consists of a knuckle having an edge wall of the tail piece longitudinally recessed，this recess having a pocket
at its end nearest the knuckle pivot，and a keeper bar at its end nearest the knuckle pivot，and a keeper bar that is interlocked with the pocket and keeper guard，and ormally projects the free end of the spring away from the tail piece of the knuckle．It also consists of an up－ ward extension of the drawhead chamber and a curved lifting bar，adapted to work in a slot at the top of tbe
extension，and adapted to engagea gravity block which extension，and adapted to engage a gravity block which帾
Car Fender．－William T．Donohue， New York City．The object of this invention is to provide a fender which will normally be carried in an upright position in front of the aasinboard of the car，yet be close
enough to the ground at its lower end to strike an object falling in the path of the car，and to devise a means whereby the fender，as it strikes an object，will be imme－ diately placed in operative connection with the axle of the car or other driving shaft and be instantly turned downward to an inclined position or to a position to con vert it virtually into a cradle to receive the person．Means are also provided by which，when the fender is lowered
sufficiently，the driving connection between the driving shaft and the fender will be severed，the driving mechan－ ism being also automatically set in action by inward gripman of all responsibility of the manipulation of the
fender and enabling him to devote all his time and at－ fender and enabling him to devote all his time and at－ Dra wbar for Raillroad Cars．－John Shaw，Woodburn，Ore．The object of this device is to re－
lieve the cars in a train of the pulling and puishing and strains and jerks，thereby freeing the car body of the extending longitudinally on the under side of the car from one end to the other．The said frame is mounted to slide and springs interposed between
the bcdy of the car take up the strain．
Car Coupling．－James A．Ward，Del－ a，Idaho．This d side latching or Janney type．The device is adapted for reliable operation and dispenses with the loose pintle bolt between the knuckle and drawhead，so as to afford a cheap and durable hinged joint between these parts；
furthermore，to adapt a car coupling for ready release furthermore，to adapt a car coupling for ready release when in a coupled condition with a similar coupling．
The drawhead has a pintle formed on one of its side The drawhead has a pintle formed on one of its side
walls and a reduced or web portion between said wall and the pintle，and of a knuckle having a channel to en－ gage the pintle．This channel has an outward opening of less width than［the diameter of the pintle，the inner wall of said outward opening being adapted to engage the inner surface of said reduced or web portion，and de－
fine the opening of the knuckle．

Mechanical

Vapor Engine．－Albert F．Rober， Uwaco Washington．This improvement is designed for vapor engines，whereby the air and vapor are mixed in proper quantity and positively fed into the exposion cyl inder to insure a positive impunse to the piston at each
revolution of the main shaft． a valve casing haring a channes connected at one end
with the working cylinder and at the other end with compressed air reservoir，a valve for oontrolling the oil passing to the said channel，and a valve in said channe mixture to the cylinder at the proper time
Steam Blower．－Georgo R．Jarman， Durham，N．C．The object of the invention is to pro－
vide a new and improved generator which is simple and vide a new and improved generator which is simple and
ourcable in construction and more especially designed for
use on stationary engines or locomotive boilers to pro－
duce a forced draught in a very mace a forced draught in a very simple and economical capacity of the boiler．The invention consistas princi pally of a tube in the steam chamber connected with ceam supply and provided with angular ports leading hrough the said ports into the tube to travel forwardly

路

Tap and Die Holder．－James M．Car－ penter，Pawtucket，R．I．This invention relates to a tap nd die holder，and is arranged to permit the tap and die to accommodate or adjustitself reiative to the work and to compensate for any defect in the die itself and defect ap or di holdes 0 as thread．It consists of a hollow head and a hollow die seat having universal movement therein and provided in its bore with an outwardly flaring surface adapted ts en－ gage the inner end of the die，and an annular cap remov－ ively to the head，and provided at its opening with an wwardly flaring surface adapted to engage the outer en D
Device for Lowering Boats．－John lhert Gamble，Ashville，Ala．This invention provides simple and durable neously with the lowering of the boat，ladders or ste will be carried down，enabling a person to readily descend rom the deck to the boat．Another object of the invention is to hold the boat away from the side of the vessel in ough sea，thereby preventing the boat from becoming as to allow the boat to freely rise and fall with the
in of the water．
Refrigerating apparatus．－Hu Maxwell and Robert R．Maxwell，Fresno，Cal．The pri－ mary object of this invention is to provoretion especiall adapted for domestic use．In brief，it consists of two roughs supported one above the other and having an ab－ sorbent cloth extending from one trough to the other and orming an inclosure，of which the refrigerator is formed． The cloth is held in the upper trough by a removable top water to the troughs and cloth．The top also supports

Hand Truck．－Harry York and George Hand Truck．－Harry York and George ruck for the purpose of preventing its forward or back ward movement while being loaded．It consists of an or dinary hand truck，of a transverse swinging brake barhav－ ing parallel arms＇secured to the frame or the truck，the arms being jointed and attached to the brake bar，a heli－ cal spring being employed to maintain the brake bar track is lowered to position to be moved the brake is an tomatically released．
Thill Coupling．－Charles T．Red－ simple and novel construction by which to effici intly se cure the thill iron to the clip，to secure the bolt so that will not turn，to hold the securing nut from turning on the said bolt and to accomplish that result through the aid of a spring，so arranged that it not only coooperate n securing the locking of the nut，but also effcienay vention consists in certain novel features and The tions and arrangements of parts in which this object is obtained．
Fire Escape and Extinguisher． Joseph Clabron，Lexington，Ky．The main object of hose holding and manipulating apparatus，and one by which persons may ascend and descend a building and which will be capable of holding a hose in position to
throw a stream of water upon the building．The inven－ tion consists，broadly stated，in a ladder held to the side of a building and having a peculiarly constructed be raised or lowered，and having also a peculiarly con tructed hose holding and hoisting device
RADiAtor．－Augustus Eichhorn， Orange，N．J．and inbines thent provides a saperio heating mechanism．These results are obtained，first，by constructing the radiator with two divisions of different radiating capacity，each section being thrown in and out of operation by valves controlling the exit of cold air，
and，therefore，the inlet of cold steam ；and，second，by a series of plates which inclose the base of the radiator and hrough the floor and finto the air conduit which passe trolled by register mechanism operative from the exterio of the radiator．Supplementary to the broad idea of this invention，it includes various novel features of construc tion attending the register mechanism and the plates for forming the air space．

Electrical
Safety Appliance for Elevators \rightarrow John H．Tennyson，New York City．The object o ing a botton in the elevator cage or car or at upon touch ing a button in the elevator cage or car or at any prede－
termined point within one or more electrical circuits，the brake drum of the elevator engine will be instantly ap－ plied together with the brake controlling the guiding shaft，and also the supply of steam is cut off from the
elevator engine，and the safety clutches or clutches o the elevator car will be immediately brought into action through the medium of the same button or in the cus
tomary manner．The above result is through the medium of simple，durable and ecconomic urough the medium of simple，durable and economine
mechanism，which is applicable to any form of engine or to any type of hoisting or manipulating machinery or elevators．

miscellaneons．

Damping Device for Music Boxes －Henry Langfelder，Jersey City，N．J．The object o
device arranged to positively bend the tongue of the
comb previously to its being sounded by the pin of the comb previously to its being sonnded by the pin of the
cylinder and the tooth of the star wheel．It comprises a esilient damper for the tongue and a resilient bar projections moving with the tonguesounding mechanism．

Two Compartment Bottle．－Hugh Gallagher，New York City，assignor to Lillie Deecban， Brook a new and improved two compartment bottle which is simple and durable in construction and is specially de－ signed for containing separately two kinds of tablets， pills，or other articles．It consists principally of a bottle bod y formed with a neck a teach end to receive a closing evice，and so formed at or near its middle with inwardls xtending projections integral with the body to form tw

Pneumatic Tire．－Harry C．Dean ong Island City，N．Y．This invention relates to tir ight，simple and punctureproof tire，either of the sing or double tube variety；the tread is provided with an nular shield formed of a series of plates of hard material these plates being each provided with elongated or slotte openings and rivets，the rivets of one plate working in
the slots of adjacent plates．The shield is arranged in－ ide the outer sheathing or shoe of the tire so that it wil e protected from wear，while in turn it prote
inner portion of the tire from being punctured．

Paper Toy．－Edward Tinkham Gib on，Minneapoiis，Minn．The invention consists first iden ides，stage platiorm and background to the stage of
 of these said parts from the blank of paper by die cuts， lines，and locking the parts together in position ；second， of paper＂scene slifts，＂or＂scenery，＂which are used in combination with the theater；and，third，of paper fig－
ures representing actors，each of which is provided with ares representing actors，each of which is provided with a long strip extension projecting at a right angle to the
erected figure，and which figures may be caused to move about upon the stage platform by manipulating the said surface of the said strip extension is on the same plane as that of the figure，and manipulating them from the back of the theater when the surface of the said strip exten－
sion is bent at its junction with the figure to form a right gle with the surface of the figure

Design for a Mirror Frame．－Al献 Wanner，Jr．，Hoboken，N．J．This design consista of panels having scroll ornaments at certain of the cor ing a departure in such fremes the design，and one marn ments on the frame outside the panel or panels at the Note．－Copies of any of the above patents will be furnished by Munn \＆Co．，for 25 cents each．Please
send name of the patentee，title of invention，and date send name of
of this paper．

NEW BOOKS AND PUBLICATIONS．

 PES ClERK MAXWELL AND M ODERNPHYSICS．By R．T．Glazebrook，
F．R．S．London，Paris，and Mel－ bourne ：Cassell \＆Company，
ited． 1896 ．
Pp．
224． Already reviewed．
lumbian Knowledge Series． Handbook of Arctic Discoveries．
By A．W．Greely．Boston ：Roberts By A．W．Greely．Boston ：Roberts．1896．Pp．x，257．Price $\$ 1$ ． General Greely presents，in this little work，a most ac ceptable account of work done by Arctic explorers．No than Arctic and Antarctic exploration，and this abstract of everything that has been done up to date will，we are convinced，be highly acceptable．We are so inclined to forget what has passed and give undue credit to the pres ent that，if for no other purpose，the book will be usefu in showing how successful old time explorers were in
reaching high latitudes and how very little has been reaching high latitudes and how very little bas been
gained in Arctic exploration．Numerous maps have en given to elucidate the text．
The Process Year Book．1896．Pen－
rose \＆Company，London，England
E．\＆H．T．Anthony \＆Company New York．Pp．160．Price $\$ 1$
The book is an annual comprehensive epitome of the rogress that has been made darig the past year in hal sides numerous other processes．It is copiously illus trated，some examples showing the remarkable progress that has been made as regards the use of screens and of dry plates．There are several interesting articles on prac－
tical subjects by experienced workers and a fund of useful information．That the delicacy and accuracy of the hal tone process blocks is fast superseding the steel engrav found in this book．There is a full exposition on the subject of tricolor printing，a process rapidily growing in favor，and one of interest to printers desirous of ex－ tending their business．The book is handsomely
printed，and is an excellent example of a substantial printed，and is an

Anderson＇s Photo－Mechanical Pro Cesses and Guide to Color Work
By MacFarlane Anderson． 1896 New York ：E．\＆H．T．Anthon
Company．Pp．182．Price $\$ 5$ ． A compact，well printed handbook containing explici directions for the working of several different processes including photo color printing work，with illastration
of apparatus，screens and specimens of different styles of half tone engravings，by a writer of experience and ability．It is a book that will be appreciated by all pro－ cess workers and others desirous of acquiring a know ledge of the practical operations necessary in the manu

$\mathfrak{\supseteq u s i n e s s}$ and खersonal．

The charge for Insertion under this head is One Dolara a line
for each insertion ：aiout eipht wordis to a line．Aaver－ tisements must be received at pubilication office as eariv as
Thursaiay morning to appearin the following week＇s issue．

Marine Iron Works．Chicago．Catalogue free．

Mariner \＆
W．Hoskins \＆Co．，Assay Furnaces， 81 Clark St．，Cbicago．
Presses \＆Dies．Ferracute Mach．Co．，Bridgeton．N．J
Screw machines，milling macnıes，and drill presses
rbe Garvin Mach．Co．．taight and Canal Sts．，New York． The celebrated＂Hornsby－Akroyd＂Patent Safety O Engine is built by the De La Vergne Refrigerating Ma－
chine Company．Foot of East $138 t h$ Street，New York ＇The best book for electricians and beginners in ele tricity is＂Experimental Science，＂by Geo．M．Hopkins． Stay with your job，and with your wages pay install－ ments for a proftable olive orchard．Booklet free．
Whiting＇s Olive Colony，Byrne Building，Los Angeles； Cal．
Concrete Contractors－Make more money by extend－ Construction．Liberalterms for exclusiver rights．Ran－ some \＆Smith Co．， 758 Monadnock Block，Chicago．
Cripple Creek－Its History to Date，Illustrated．
Just out，with correct map and costly full page natural as life．Thisgreat book will be sent free prepaid stamps if 56 －col．f family paper 3 months on （stamps or silver）．club of 5，\＄1．Latest mining news．
Mention the ScIENTIFIC AMERICAN and address Illus．

Send for new and complete catalogue ot Scientific ew York．Free on application．$\&$ Co．． 361 Broadway．

HINTS TO CORRESPONDENTS．

（6874）R．W．S．says：Can you send me paper describing method of obtaining the enamel or glazed effect obtained on photo．work？A．Apply the
prints face down while wet to the smooth varnished side of a ferrotype piate，squeegeeing it by rolling a rub ber roller over the back，having blotting paper between
the print and paper．When dry it will have a high polish and drop off the sheet．The polish is called glace finish． Tomount：such prints without losing the gloss，make the following mounting solution ：Soak 1 ounce refined gelatine in cold water for an hour，then drain off and squeeze out the water as much as possible；put the gela line in a jelly pot and place the latter in a pan of hot
water on the fire ；when the gelatine has melted stir in water on the fire ；when the gelatine has melted stir in
slowly $21 / 2$ ounces pure alcohol，and bottle for use．This glue will keep indefinitely，and can be melted for a few minutes by standing the bottle in a basin of hot water．As it contains a very small percentage of water，
it hardly affects the gloss of the prints and dries almost mmediately．
（6875）G．L．writes：Will you please answer through your valuable paper or otherwise the
following questions： 1 ．What is the essential difference in quality between magnet and annunciator wire？A it is a difference in the insulation，the annunciator wire
having paraffin in the insulation，while magnet wire has a thin insulation of cotton alone． 2 2．Will magnet wire wound on fields of dynamo be improved if paraffined \＆A．It is good practice to do so－shellacking is perhaps preferable．3．What formula for electropoion fiuid do you give，so as to give a Grenet battery 2 volts
and $21 / 2$ amperes？A．One gallon sulphuric acid and and $21 / 2$ amperes？A．One gallon sulphuric acid and three gallons of water are mixed．In a separate vessel
six pounds potassium bichromate are dissolved in two gallons boiling water．Mix，and use only after cooling． gallons boiling water．Mix，and ase only after cooling．
There are many variations on the above．4．If I increase the plates of a Grenet cell，what advantage would I get A．It tends to increase amperage and to lower resistance ．What would be the effect if I run too high an amper age through a wire ？A．It would melt the wire，ofte explosively．6．What is the safe carrying capacity of No． 18 wire ？Of No． 5 wire？A． 25 amperes and 5
amperes respectively．If exposed to the air they will carry more than this．7．Where can I get resin oil，o how can I make it ？A．Apply to a dealer in chemical Try Queen \＆Company，Philadelphia．8．Can you give address of some electrical college ？A．Columbia Uni－
versity，New York． 9 ．Could a voltmeter be made by versity，New York．9．Could a volmeter be made by passing the current through a platinum wire，and would
it expand in proportion to the current can be so made．The Cardew voltmeter is an example Your problems are incorrectly solved．The metal seem to be zinc－analysis would be needed to determine it．
（6876）F．G．D．says：Through your vauable column would you give me a practical metho a good filling for the same．A．Paint the slgn with asphalt varnish，leaving the parts to be atched unpainted，
raise a border around the outside，made of soft beeswax
or asphalt, to hold the acid. Use nitric acid diluted with
five times the quantity of water. Pour the dilute acid on to the sign about $1 / 4$ inch deep. When the letters are cut deep enough, which must be found by trial, the acid may be poured off and the plate cleaned by heating and wip ing, and finally with turpentine. For filling cement for signs: Melt together in a clean iron pot 2 parts each of then add 1 part of gum shellacin fine powder. It may be used hot and mixed with smalt, vermilion, or other pig. ent, if desired.
(6877) J. L. L. says : I beg to ask you to be so kind as to send me here the number of your
journal in which the bleaching of beeswax is treated Pure white wax is obtained from the ordinary beeswax by exposure to the influence of the sun and weather coarse is sliced into thin flaker and laid on sacking o raise them from the ground. The wax is turned over frequently, and occasionally sprinkled with soft water, if
there be not dew and rain sufficient to moisten it. The wax should be bleached in about four weeks. If on breaking the flakes the wax still appears yellow inside, it is necessary to melt it again, and flake and expose it a
second time or even oftener, before it becomes thor oughly bleached, the time required being mainly de pendent upon the weather. There is a preliminary pro cess, by which, it is claimed, much time is saved in the
subsequent bleaching. This consists in passing melted wax and steam through long pipes, so as to expose th wax as much as possible to the action of the steam thence into a pan heated by a steam bath, where it is stirred thoroughly with water and then allowed to setle. The whole operation is repeated a second and readily bleached
(6878) Dr. H. S. asks : Can you tell me how to precipitate the silver and gold in a cyanide solu tion of gold and siluse A. Precpe etale youls by uncoated or with coatings dissolved off by nitric acid.

TO INVENTORS
A nexperience of nearly tifty years, and the preparation
of more than une nundred thousand appliaction for pa
tenis at home and abroad enable us to understan tbe

INDEX OF INVENTIONS

or which Letters Patent of the

June 2, 1896,

AND EACH BEARING THAT DATE
(See note at end of list about copies of these paten

Bicycle, bevel meared. J. Parker.
Biccylod riving eaar. J.Tullius.
Bicycle handle, B.

Bracket. See Sielf bracket......................
Brake. See air brake. Car brake. Velocipede
brake.

Burner. Sei incandescent burner.
Butternine, R. A
Simpsonn.
Butcon and drawers support, combined. e. $\%$

Cbair. See Folding or collapsible chair. Revolv-
ing shair Rocking claair.
Check blaik,

Locomotive circulating exhaust attachment

- - - - - - -

мй...........

at

noe
Temper
(emme
Tobersar car ilub
Stin
${ }_{\text {dram }}^{\text {dram }}$
r.
Yale
mat

วひvertisements．

Foot Power Screw cutting －thes $\begin{aligned} & \text { Automatic } \\ & \text { Cross Feed }\end{aligned}$ 9 and 12 inch Swing． Sention Catalogel Features．
SENEA FALLS MFG．COMPANY， AMERICAN PATENTS．－AN INTER

为THE CURTIS Steam \＆Grease SEPARATOR IT WILL separate water from steam，and
sodefenet the water that it cannot get back
int othe current
 from exhaust steam．The grease may be
driwn of at interals，and the sediment
removed． D．ESTE RESELLEEY CO．
29－33 Haverhill Street，

Esimares urinhediocomplecicuising pants manutature MIN NG MACHINERY deoveriftion

 THE ORNAMENTAL IRON INDUS

気＂Fuel Saving．＂＂Close Regulation．＂
THE MASON HyDRAULIC DAMPER
fing REGULATOR Will work on $1 / 1$ lb．variation．High
or Low Pressure．Catalogue free． THE MASON REGULATOR CO．，7 Oliver St．，Boston，Mass． $\mathbf{2 O}^{\prime \prime} \mathbf{X} \mathbf{8}^{\prime}$
Engine Lathe
Powerful．
Strong

Weighs 3,100 lbs．Made by
F．E．REED CO，Box 817 ，Worceter，Mass，U．
ARMSTRONG＇S＊PIPE＊THREADING
 CUTTINGGOANDACHINES
Both Hand and Pomer．

BOLT CUTTERS AND NUT TAPPERS

WEL
WELLS BROS \＆CO．， Greenfield，Mass．

 Marine Service．
Launch with 9.1. ．H．P．＂Giobe＂Eneine，property
Address，50th Street and Lancaster Avenue，PHILADELPHIA，U．S．A．

NICKEL Electro－Plating Apparatus and Material

A Book of Tools

Facts about Fact－ory Trucks and Micrometer Calipers，in＂A BOOK OF TOOLS．＂

CHAS．A．STRELINGER \＆ Address Box 12% Adv．Dept．DETROIT，MICH

4 For Bicycle Manufacturers
居 Qut BUINT＇S TURRET DRILLS Arranged for Tapping with from two A．D．QUINT，

How to Build a Home

Those intenaing to build win ind the verr be－t practical sug． chitectural Magazine everer published
＂The Scientific American Building Edition．＇
Each number is illustrated with a Colored plate and numerous
bandsome engravings made direct from photographs of buildir：gs， together with interior views，tloor plans，description，cost，location， owners ${ }^{\prime}$ and architects ${ }^{\prime}$ names and addresses．The illustrations
include seashore，southern，colonial and city residences，churches schools，public buildings，stables，carriage houses，etc．
All who contemplate building，or improving homes
All who contemplate building，or improving homes or structures of any kind，have in this handsome work an almost endless series of
make selections，thus saving time and money．

$$
\text { Published. Monthly. Subscriptions } \$ 2.50 \text { a Year. Single Copirs } 25 \text { Cente. }
$$

The more searching the test，the more sat isfactory the qualities revealed by the number SIX model
REMINGTON STANDARD TYPEWRITER

WYCKOFF，SEAMANS \＆BENEDICT THE FADING OF PIGMENTS．－A PA

The Writing shows everything on the $* * * T Y P E W R I T E R$ Daugherty Typewriter Co． Pittsburg，PA

Raw－Hide Bound Mallets

Weight 124，1594，and 24 ounces． Add 1 cent per ounce for postage． Add 1 cent per ounce for postage．
BROCKTON MALLET CO．，Brockton，Mass．

ACETYLENE APPARATUS．－ACETY－

BOOKS ON ELECTRICITY AND MAGNETISM

 who will furnish lis address. Industrial Publishers, Booksellems \& importe

| 1 |
| :--- | :--- |This SCREW CUTTING LATHE 6 inch 4-jaw Chuck threads) versible, 6 Lathe Tools, Set Twist Drills, \$69.85. FRED FRASSE CO

The Edison Phonographic News A PHONOGRAPH or A KINETOSCOPE the great money-earning wonders. Sample copy 10c.
THE OHIO PHONOGRAPH CO . CINCINNATI, 0 . The Bartley Direct Running Saw Mill

HOUSE DOOR HANGERS
The first made with adjustable track.
The track can bc put (HT) Send for Book.

\$Physical and School Apparatus GALVANOMETERS STANDARD, SINE, TANGENT,
REFLECTING and WIEDEIANN GALVANOIETERS.
E. S. Ritchie \& Sons, Brookline, Mass.
 That Are Good-Not "Cheap Things."
 Western Telephone Construction

cturers of
TELEPHON ES
 Julius Andrae \& Sons Co. TILWAUKEE, WIS.

Seventeenth Edition of
Experimental Science

Just the thing for a
womar, holiday present for any man In the new matter contained in the last, edition will be
found the sientifi Use of the Phonoraph. the curious
optical ill usion known as the Anorthoscope, Logether
 graphy. incuding Hand Cameras, Cane Cameras, eto-
Systems of Electrical Distribution, Electrical Ore' Find

 VELOX P
O. $\underset{\text { when }}{\text { PR } R ~} \begin{gathered}\text { A Revolution in Pho } \\ \text { tographic Printing. }\end{gathered}$ GLOSSY or MATT
 Nepera Chemical Co

MONITOR MARINE GAS ENGINESD LAUNCHES

SMALL GASOLINE LAUNCHES
 Canoe Launch

FOR INVENTORS AND PROMOTERS. WANTED: Some easy selling electrical o
mechanical specialty by well equipped Ma chine Works. Would manufacture unde oyalty, or buy privilege outright
Address "SPECIALTY," care this paper

 CYCLE GHAIN ease, speea and comfort. GRAPHITE seris it will pay you to

Howard Chainless Bicycle.
为

You USE GRINDSTONES

Mire forming. machine de partment is in
charge of R. C. Manville.
THE WATERBURY MACHINE CO. P. O. Box 1025 ,
WATERBURY, CONN., U. S. A.

AUTOMOBILE CARRIAGES: THE

Small motons for All Purroses.

CROOKES Mell st., PRIOVIDENCEE, R. I Photography.-The new photogr raphy as performed by

Eclipse
Cream Separators
 market. CHAPMAN SEPARATOR WORKS

- DEAFNESS Wilson's Common Sense Ear Drums

ATTENTION! INVESTORS ROR BATEI: Foreign Patents-Canada, Mexico, England, Ger-
many, Austria, Belfium, France, Italy, one of the many, A Astria, Belgium, France, Italy, one of the
most novel and useful in Ventions of the age. For
further particulars address, RYERSN D. GATES 108 La Salle St., Chicago. Ile., U.S.A

 $\underset{\text { Affice or desk room. Could act as secretary of company }}{\text { OTM }}$ and procure capital. Veritas, P. O. Box T73, New York. SCIINCDPMECHANISS.

 WELL DRILLING MACHINERY

VOLNEY W. MASON \& CO. FRICTION POLLEPS, CLDTCHES, and ELEV ATORS PROVIDENCE, R. I

- Hawkins' "Aids" to Engineers

Q COPY LETTERS
 LPS Send for illustrated circular.
JOHN H. ANDERSON,
1O MOHADHOck, CHICAGO.

MANUFACTURE OF STARCH FROM
 C. F. SPLITDORF, Manuzacticina

Ofdoertisements.	
olrdinaley leates. nside Paxe. each insertion. - $\$ 5$ cenrs a line Back Page. encin inserion. - - $\mathbf{\$ 1 . 0 0}$ alint	
The above are charges per agate line-about eigh words per line. This notice shows the width of the eime and is set in agate rre. ment, as the letter press Adverti.3ements must, be morning to appear in the foliowing week's ssue.	

Columbia
 that Glitters." Your pleasure and safety depend on knowing what is under enamel what is under enamel and nickel before you buy a bicycle. ot ot x
 No question about Columbias. If you are able to pay $\$ 100$ for a bicycle why buy any but a Columbia?
 the agent. By mail for two 2 -cent stamps then.
 HARTFORD, CONN Branch Houses and Agencies are almost everywere. fif Columbias are not propery renese Ail Columbia Bicycles are fitted with MART we know Mo tires so cooo as hartfords.

MANUFACTURE OF BICYCLES.-A

Typewriter

This company owns Letters Patent No. 558,428 , issued April 14, 1896, covering broadly all machines in which the cylinde turns up to expose the line of print, or in which a duplex or cross ribbon feed is used. The patent also covers many other construction. Infringers will be vigorously prosecuted.

Wyckoff, Seamans \& Benedict. 327 Broadway, New York.

The
American
Bell Telephone
Company,
125 Milk Street,
Boston, Mass.

This Company owns LettersPatent No. 463,569 , granted to Emile Berliner Movember 17, 1891, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.

A WATCH movement is a machine whose value depends upon the perfection of each of its parts and the mechanical skill with which those parts are put together. We not only make every part of a WALTHAM movement, but we make the machinery by which those parts are made. There is the least possible chance for inaccuracy. The "RIVERSIDE" and "ROYAL" movements are as accurate time=keepers as human ingenuity has yet made possible.

For sale by all retail jewelers. AMERICAN WALTHAM WATCH COMPANY.

Premo Camera

ROCHESTER OPTICAL CO., Rochester, N. Y
Scientific Book Catalogue LEECENTIIY PEBLISHED.
Our New Catalogue containing over 100 pages, includ lng works on more than fifty different subjects.
be mailed free to any address on application. DIUNN \& CO., Publishers Scientific american,

A Boiler Feeder

For High Pressures
works at 150 to 250 LBS. STEAM
OUR STOCK INJECTOR AT AS easily as 25 TO 150 LBS. May we tell you about it?
PENBERTHY INJECTOR CO 116 Seventh Street, DETROIT, MICH

Their popularity has forced everybody into making singletubes ILPBUPESNGETVBSS AR COST MOST-WORTH MOST RUBBER HARTFORD,CONN. NEW YORK. GHICAGO. $\overline{\text { HALF A CENTURY OF CYCLES.-AN }}$

"KRIM" Cyclists'

 Storm Suit.
 $\$ 3.50$. Sold se
Cape
Cair
Pa Pair Leggings, $\$ 2.00$
Send for circulu
2 Send for circular " K.
Agents W anted. CLEVE \& KRIM, Makers of Fine Mackintoshes. Patent applied for. THE BICYCLE: ITS INFLUENCE IN
 THE Theme CYCLE SADDLE The

THE DUGUUD SADDLERY CO., Syracuse, N. Y.

If Inventors and Manufacturers Having new articles of merit to place on the market
will tor ward samples or description of their goods, bhes

