

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS. CHEMISTRY, AND MANUFACTURES.

a rice cotting machine.

pumping engine and flume for a 1,000 acre

RICE CULTURE IN SOUTHWESTERN lodisiana.
ву н. н. снllders,
At present rice is a leading industry in only two States of the Union, though at one time it was grown in many States. Louisiana and South Carolina are now the rice-producing States, and in these States its production continues to be profitable. Within the last few years some impetus has been given this industry in Southeastern Texas, but so far it amounts to little more than an experiment. At one time rice was planted in the States of North and South Carolina, Alabama, Georgia, Florida, Mississippi, Louisiana, Texas, Virginia, Tennessee, Missouri, Kentucky, Arkansas, Michigan, Minnesota and California, and for some reason, perhaps by the law of the survival of the fittest, the acreage decreased until the quantity produced in all except the two States mentioned was no longer appreciable. This falling off may have been caused by destructive competition with foreign countries and by the discovery that the soil chosen for rice production in those States above mentioned was found to be inadequate and unsuited for lucrative results
Rice is grown in Ionuisiana in the lower Mississippi, La Fourche and Terre Bonne River valleys and in the south-

a rice plantation warehouse, 480 feet long.

CYCLONE THRASHER AT WORK ON RICE PLANTATION.
western portion of the State, in the parishes of Calcasieu and Acadia. Rice growing for commerce began in South western Louisiana in the year 1884. Before that time the largest field that could be found that could be found was five acres in size. But that year a colony of Iowa farmers settled in Calcasieu Parish, and each year since that time the acreage has continued to increase in that belt of prairie country taking in Acadia and St Lan Acadia and dry Parishes.
The older author ties on rice growing have claimed that this cereal must be grown in alluvial soil, but this statement is successfully contradicted by the facts, and other wet soils have been found that bave in found that have in them the elements that enter into the body of the rice grain. The soil in Southwestern Louisiana is clay loam, with clay subsoil. It is thoroughly saturated with moisture, and the underlying subsoil acts as an imsubsoil acts as animpervious basin, preventing anything
like a perfect ablike a perfect ab-
sorption, or the dissorption, or the dis-
appearance of the appearance of the
water from the surface. Unlike the prairies of Western Texas, all during the winter, and not unfrequently during the summer seasons, the water stauds the water stands ankle deep even in places covered by the "feather top" or "broom sage" grass; and the pedestrian who would (Continued on p.295.)

Srientific smmerian.

ESTABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN. (Established 1545.)
"wamex One coppyone year.to any foreingcountry belongingto Yostal Union 4
Remit on potal or enyress money order cr by bank dratt or check.
MUNN \& Co., 361 Broadway, corner of Frank in trreet, Ne York.

The scientific American Supplement (Established 1876)
is a distinct paper from the SCIENTIFCA AMERICAN. THE SUPPLEMENT
is issued weekiy.
wivery number contains 16 octuro puges unitorm in inize

Building Edition of scientific American (Established 1885.)

Export Edition of the Scientific American (Estnblished 1878)
 Tr The safest way to remit is by postal order. express money order.
CO. br bank check. Make all remittances payable to order of MUNN Readers are specially requested to notify the
failure, delay, or irregularity in receipt of papers.

NEW YORK, SATURDAY, MAY 9, 1896.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 1062.
For the week Ending May 9, 1896.

I. A

oUr fiftieth anniversary prize essay

Though it is doubtless well known to the majority of our readers that the Scientific American rank as one of the oldest journals in the United States, they may not be aware that it has now been making its appearance, week by week
We period of half a century
We feel that it is due at once to our readers and to ourselves to make some special commemoration of so interesting an event as the fiftieth anniversary of the formation of the present firm, and we have decided that this shall take the form oi a profusely illustrated special number, which will be issued on July 25 of this year.
It has been the aim of the SCIENTIFIC AMERICAN to keep the public faithfully informed, week by week, of the world's current progress in the arts and sciences and it is our intention to devote the anniversary number to a review of this progress during the past hal century.
One of the most interesting features of the issue will be the publication of a prize essay on the subject of "The Progress of Invention during the Past Fifty Years," for which we are offering a premium of two hundred and fifty dollars.
The conditions governing this competition will be found on another page, from which it will be seen that all manuscript should be received at this office on or before June 20, 1896. The papers will be passed on by a select jury of three, whose names will be announced in a later issue. We are desirous that all the essays submitted should receive careful attention, and
to this end we request that intending competitors will forward their manuscript at their earliest convenience. We also draw attention to the arrangements which we have made to secure a vote upon the question as
to what invention introduced within the past fifty to what invention introduced within the past fifty kind. The result in any case will be of special interest, and particularly so if, as we hope, the majority of all of our large body of readers and subscribers will express their opinion.

modern steamships and navigation.

The modern steamship is a favorite subject for ex emplifying modern progress. In early days man dreaded the ocean, and the cruise of Ulysses along the shores of the Mediterranean and Æneas' voyage with its constant landings are records of the old time coasting navigation. Little by little man forced his way upon the more open seas, until at the present time the ocean is crossed with almost the regularity of a ferry, and probably with greater relative regularity. The five hundred foot hull is driven remorselessly through
seas at a speed that would have swamped the ship of fifty years ago. The twenty to thirty thousand horse power expended in driving the engines of a liner repre-
sent the consumption of a ton of coal every two or sent the consumption of a ton of coal every two or three minates. So regular is the operation of engine screws act as a \log and measure the ground covered as accurately as the regular log and log line. Every adjunct available for increasing the efficiency of the service is employed
In all its appliances arranged to be operated on the unstable platform supplied by a steamship in a gale of wind, the seagoing steamship embodies some of the greatest triumphs of modern engineering and science Yet in spite of this the una voidable weaknesses and imperfections of the service go to prove how well founded with man's dread of the sea. Ship after a misse its port in a fog and runs on the beach, or by pure luck avoides a similar catastrophe and tries hard to attain the tribute of silence for its narrow escape. The mere fact that the shores of our coast are patrolled by members of the life saving service, part of whose duty is to burn a warning light if a vessel is seen dangerous ly near the shore, proves the crudity of our most ad vanced methods of navigation. The fact that the captain of the St. Paul, which went ashore on the beach at Long Branch, was exonerated from all blame shows that man has not yet achieved his mastery over the sea with its concomitants of fogs, gales and ocean cur rents. Recent strandings and collisions in the harbo of New York go to prove the same thing.
The ingenuity of the inventor has done much to ameliorate these conditions. Gas buoys float upon the waves, and, charged with compressed gas, give a brilliant light for three months or more without any attendance. A long dangerous channels or near shoals electric bunys are established supplied with current from the shore station miles distant. Wave action is utilized most ingeniously in the whistling buoy and bell buny to give audible warnings to navigators.
The modern lightship is no longer an almost helpless hulk, whose only safety is in her anchors. She is a well built ship, with steam or nower signaling plant, and perhaps with steam propelling engine to bring her to port if her cables give away. Along the coasts
the most elaborate system of patroling and of life saving stations finds development, the bicycle even hav
ing recently been adopted in the patroling of hard beaches. The almost romantic history of the inventor Francis and his metallic lifeboat and the account of the many rockets and mortars devised for carrying lines to wrecked ships go to show what the invento has done to save life and property from wrecked ships. In lighthouses proper, the advance from the old reflecting light with candles as illuminants to the mod ern lantern with Fresnel lenses, with a four-wick oi antern, Wigham gas burner, or electric arc light, giv ing an illuminating power of hundreds of thousands of candle power, tells what science and invention have done to avert disasters.
This work, all of which may be termed shore work, really a concession to the imperfections of naviga ion. The problem of safety at sea should be at tacked on the ship itself. The unsinkable ship, whose engines cannot be totally disabled, has not yet been invented. She is approximated to only. In the best of the ocean steamers the unavoidable imperfections bear eloquent testimony to man's inability to cope with the sea.
The first thing that impresses a novice who takes the tiller in a boat for the first time is the extreme difficulty of keeping a moving vessel upon a fixed course. He finds that unceasing attention and constant changes of the rudder are required. The tiller cannot be held in one position for more than a few econds at a time. On the modern liner the same thing holds. The power the helusman can exert by the steam steering gear is instant in effect and ample in mount, but is not sufficient in either factor to enable him to hold the ship upon a constant course. As the ship rolls and lists, one or the other propeller, if she is a twin screw ship, has the greater effect, and her head constantly tends to go to starboard or to port and the tendency has to be counteracted by the helm. Every wave parted by the bow exerts some degree of deflecting power, also to be met by the helw. Looking at a six or eight inch compasscard, these deflections may seem of little account, but when referred to a radius measured by a day's or hour's run, or even by the ship's length, they appear in their true magnitude
A single degree of deflection on a radius of five hundred feet, taken as the ship's length, represents a devia tion of nearly eight feet from the course. An error of ne degree for an hour's run would give a deviation of nearly 2,000 feet, and for the day of over four miles. But a degree on the compass card is very little. A point, the regular unit of the compass card, is eleven and a quarter degrees, and many a ship yaws from side to side over an arc of two points, giving a length deviation of eighty or ninety feet. In all accurate work the surveyor or geodosist uses the compass a ittle as possible; not only on account of its varia tions, but because it is impossible to read it to a smal enough fraction of the circle. With a vernier a cir cle can be read down to seconds; with the compass degree can barely be fractioned. The comvass with this imperfection is accurate enough for the steamship navigator because it is too good for his steering capacity; the ship cannot be held down to a compas course. Compass errors are constantly corrected by observation, and the instrument is only used in run ing from one observation to another. But perfect navigation would imply perfect dead reckoning. It i doubtful if man's powers will ever mount to the heigh of perfectly controlling a shipat sea, or even of enab ling her to live up to her compasses.
The futility of dead reckoning received a startling illustration in the stranding of the St. Paul. A few days of fog put her miles south of her proper position and far ahead of her reckoning. Groping along with constant soundings she ran ashore upon a beach of reasonable regularity of pitch, and narrowly escaped erious damage or total wreck.
The most prominent improvement in modern steam ships develops a new imperfection. Twin screws ar now almost universal in the more modern types of first class ships. In the old single screw system trouble was experienced from the screw lifting out of water as the ship pitched. Every approach of a. screw to the surface weakens its propelling power. This is so well recognized that in many small vessels the screws are carried below the line of the keel to give them "solid water" to work in. In the twin screw ship the lifting trouble is iutensified. Not only does pitching raise her screws toward the surface, but rolling and listing do the same. The screws carried well to the sides ap proach alternately the surface as the ship rolls in a moderate sea, so that standing by the taffrail the blades can be seen showing their tips out of water. The pitching trouble is diminished by the increased length of modern ships, but the rolling of the screws out of water takes its place.
The rolling interferes with the direction of motion of the ship, as it changes the relative propelling power of the two screws. The ship is pushed first to one side and then to the other, the total of the propelling force is reduced and the constant shiftings of the rudder also go to impair her speed. If she takes a list and holds it she may need a port or starboard helm to be
maintained for a considerable time, the deflected rudder operating to destroy speed. In overcoming the trouble described there would seem to be a field for ingenuity and invention. The modern steamship and modern navigation are as yet far from perfect. Dead reckoning fails to give position because the direction of course is uncertain, and speed cannot be accurately maintained or determined. All the troubles co-operate to produce uncertain results, and really scientifically accurate work at sea is still far from realization.
There are problems of the most difficult kind to be dealt with in controlling the ship and in supplying means

The National Academy of Sciences

The stated or spring meeting of this, the most distinguished of American scientific associations, was held in Washington for four days, beginning on April 21. It was the first session held in Washington since the election of Prof. Wolcott Gibbs to the presidency of the academy, and the meeting was looked forward to with much interest. In accordance with a rule established at the meeting held in Philadelpnia last autumn, the business and other private affairs of the academy were discussed in secret session, beginning at ten o'clock in the morning, after which the members adjourned to luncheon, which was served in the United States National Museum, and the afternoon was then given up to the public reading of papers with their discussion. This practice was found to work excellently, and the friends of the members, or those interested, who desired to listen to the papers, accordingly knew when to come, and were not, as was the case previously, compelled to be in attendance all day waiting for the adjournment of the business sessions of the academy.
The attendance of members was unusually large, and among those present were: Cleveland Abbe Washington; Carl Barus, Providence, R. I.; John S. Billings, New York ; Lewis Boss, Albany, N. Y.; Henry P. Bowditch, Boston, Mass.; William H. Brewer, New Haven, Conn.; William K. Brooks, Baltimore, Md.; Edward D. Cope, Philadelphia; Samuel F. Emmons, Washington; Wolcott Gibbs, Newport, R. I.; Theodore N. Gill, Washington; G. Brown Goode, Washington ; Benjamin A. Gould, Cambridge, Mass.; Arnold Hague, Washington; Asaph Hall, Washington ; Charles S. Hastings, New Haven, Conn.; George W. Hill, West Nyack, N. Y.; O. C. Marsh, New Haven, Conn.; Alfred M. Mayer, Hoboken, N. J.; Thomas C. Mendenhall, Worcester, Mass.; Edward S. Morse, Salem, Mass.; John W. Powell, Washington; Ira Remsen, Baltimore, Md.; William A. Rogers, Water ville, Me.; Ogden N. Rood, New York City ; Henry A. Rowland, Baltimore, Md.; Charles S. Sargent, Cambridge, Mass.; Charles A. Schott, Washington; Samue H. Scudder, Cambridge, Mass.; William Sellers, Phila delphia, Pa.; A. E. Verrill, New Haven, Conn.; Francis A. Walker, Boston, Mass.; Charles A. White, Wash cis A. Walker, Boston, Mass.; Charles A. White, Wash ington ; and Arthur W. Wright, New Haven, Conn.
The following programme gives a full list of the The following programme gives a
papers presented before the academy:
papers presented before the academy:
The Geological Efficacy of Alkali Carbonate Solutions, by Eugene W. Hilgard ; On the Color Relations of Atoms, Ions, and Molecules, by M. Carey Lea; On the Characters of the Otocolidæ, by Edward D. Cope Exhibition of a Linkage whose Motion Shows the Laws of Refraction of Light; Location in Paris of the Dwelling of Malus, in which he made the Discovery of the Polarization of Light by Reflection; and (1) On Experiments showing that the X Rays cannot be Polarlarized by passing through Herapathite, (2) The Density of Herapathite, (3) Formulæ of Transmission of the X Rays through Glass, Tourmaline, and Herapathite, by Alfred M. Mayer; Biographical Memoir of James Edward Oliver, by George W. Hill ; Biographical Memoir of Charles Henry Davis, by Charles H Davis; Biographical Memoir of George Engelmann, by Charles A. White; Legislation Relating to Standards, by Thomas C. Mendenhall; On the Deter mination of the Coefficient of Expansion of Jessop's Steel, between the limits of 0° and $64^{\circ} \mathrm{C} .$, by the Interferential Method, by Edward W. Morley and William A. Rogers; On the Separate Measurement, by the Interferential Method, of the Heating Effect oi Pure Ra diations and of an Envelope of Heated Air, by William A. Rogers; On the Logic of Quantity, by Charles S. Peirće ; Judgment in Sensation and Perception, by John W. Powell; The Variability in Fermenting Power of the Colon Bacillus under Different Condi tions, by A. W. Peckham (presented by J. S. Billings) Experiments on the Reflection of the Roentgen Rays, by Ogden N. Rood; Notes on Roentgen Rays, by H. A Rowland ; Some Studies in Chemical Equilibrium, The Decomposition of Diazo-compounds by Alcohol and On Double Halides containing Organic Bases, by Ira Remsen; Results of Researches of Forty Binary Stars, by T. J. J. See: On a Remarkable New Family of Deep Sea Cephalopoda and its Bearing on Mollus can Morphology, The Question of the Molluscan Arche Report of
Benjamin, Ph.D
type, an Archi-mollusk, and On sowe Points in the Mor phology and Phylogeny of the Gastropoda, by Addison
E. Verrill ; Source of \mathbf{X} Rays, by Albert A. Michelson and S.W. Stratton ; The Relative Permeability of Mag nesium and Aluminum to the Roentgen Rays, by Arthur W. Wright; The State of Carbo-dioxide at the Critical Temperature, The Motion of a Submerged Thread of Mercury, and On a Method of Obtaining Variable Capillary Apertures of Specitied Diameter, by Carl Barus; On a New Type of Telescope Free from Secondary Color, by Charles S. Hastings; The Olin diadæ and other Medusæ, by William K. Brooks ; Budding in Perofhora, by William K. Brooks and George Lefevre; and Anatomy of Yoldie, by William K. Brooks and Gilman Drew.
As is shown by the list of papers, those on physical sciences predominated, and the Roentgen rays was a popular topic. Notwithstanding papers on this subject by Michelson, Rood, Rowland, and Wright, it was evident that as yet no theory as to their origin was tenable. Experiments by one authority seemed to in dicate conclusively that his opinion was correct whereas a second authority pointed out a new series of experiments that clearly indicated another point of view. No accepted conclusions were possible, and it was agreed that the question of their origin was a complex one.

The naturalists were represented by Cope, Verrill, and Brooks, each of whom presented papers before the academy, principally technical.
The members chosen to the council were Benjamin A. Gould, Henry P. Bowditch, George J. Brush, Ir Remsen, Othniel C. Marsh, and Simon Newcomb These gentlemen, together with the officers who are ex-officio members, constitute the governing body The academy appointed Ira Remsen, of Johns Hopkins, John Trowbridge, of Harvard, and George J. Brush, of Yale, as delegates to the sesquicentennial celebration of Princeton University, which will be held in Princeton on October 22 of this year
The third day's session was made conspicuous by the announcement of the names of those who had been chosen members of the academy. Although it is pos sible to elect five persons at the Washington meeting such an event seldom occurs, and this year but two names were accepted. The first was Charles Doolittl Walcott, director of the United States Geological Sur vey, who is perhaps the first authority on the Cambrian in the United States, and who has worked his way from the ranks of the survev to its highest place, succeed ing Maj. John W. Powell in the directorship in June 1894. The second academician chosen was Rober Simpson Woodward, now professor of mechanics in Columbia University, New York City. Prof. Wood ward was for some years connected with the United States Naval Observatory in Washington, and then passed to the service of the United States Coast Sur vey, whence he was called to Columbia. Both of the gentlemen elected are well known in scientific circles and are members of the American Association for the Advancement of Science.

Cycling Notes.

The charities of Paris receive $\$ 3,000$ as their share of the recent cycle meeting.
In France, bicycles are taxed at the rate of about $\$ 2.25$ each per year ; the tax yields about $\$ 400,000$ pe annum.
"Pedaleurs" and "pedaleuses" are the terms which the Parisians now employ to designate cyclists of the two sexes.
During the year 1895 there were exported from England
$\$ 6,959,050$.

Cycles are used in large numbers in Johannesburg South Africa. It is said there are 4,000 in use by al lasses in that place.
A paper published in Paris devoted to builders in vites architects to discuss the accommodation of bi cycles in private houses.
Strange to say, the wheel now forms no inconsiderable portion of the miscellaneous supplies forwarded to the missionaries abroad.
An Englishman named Jefferson has started on a 6,000 mile bicycle ride to Irkutsk, in Siberia. His ma chine and baggage weigh sixty pounds.
The Naples authorities have just imposed a tax upon wheels used for pleasure or sport. This tax is ness purposes, they are only taxed five francs.
A few of the New York postmen have tried the experiment of using wheels in making their rounds, but the roads have proved so poor that it is feared they will have to abandon the use of the wheel.
The only cycles which are exempt from taxation in France are the whecls in the hands of dealers which have not been sold and those owned by various gov ernment officers for the use of their messengers.
It would really seem as though the horse was discredited even in the far West, for a short time ago Oregon, traded thirty head of horses for a bicycle. Though Moscow has nearly five thousand wheelmen
only about one-half have permission to ride in the city limits. Russia asks $\$ 12.50$ duty on each wheel imported into that country, no matter what the price may be.
Queen Margarita, of Italy, while riding in a part of the park at Monza from which the public is excluded was stopped by a guard who scolded her for trespass ing, and asked her name. She sent the man her pho tograph and a ten franc piece bearing her effigy with that of King Humbert's.
The experiment which has been tried in New York of mounting policemen on wheels has turned out in a very satisfactory manner. The bicycle police have rendered most efficient service in the pursuit of wheel men who violate city ordinances, and in the catching f runaways and criminals.
Many wheelmen do not pay sufficient attention to the lubrication of the chain. It is really remarkable how nuch easier a wheel will run which has its chain cleaned for every twenty-five or fifty miles ridden Both the stick graphite and the paste graphite may be used together with advantage.
The following is given as a receipt for a fine lamp oil: Fill a pint bottle with two-thirds of the best lard oil and one-third of headlight oil, to which add a piece of gum camphor about the size of an egg. The cam phor is supposed to cause the oil to give a very white light, and it is said that the lamp will not go out easily.
Cycling is not a very dangerous recreation after all, as is proved by statistics. In England only 30 death were produced by cycling in twelve months. On com paring this number with the total number of the fata highway and street accidents through England and Wales, it will be found that barely two per cent of them were caused by cycling.
What can be done in case of emergency was demon trated a short time ago by a wheelman who had his tire badly punctured on the way home from Coney Island. He detached his injured tire, and, securing heavy piece of rope, substituted the rope for the tir and made the journey home, some eight miles, in safety. The club of which he was a member has had the rope framed.
It is an ordinary sight in London to see bicycles chained to the railing outside of the fasionable and exclusive clubs along Pall Mall and Piccadilly. The house committees of the various clubs having declined to allow a wheel to be taken inside the clubhouses, some of the clubs have rented small places near by where liveried attendants look after and clean the heels of members.
A curious story is told of a French cyclist who wheel ed up to a gendarme and asked him for his sword, say ing that a mad dog was running ahead and he wanted to kill it. The officer gave the wheelman his sword and the latter disappeared. He presently returned and handed back the sword dripping with blood. He had overtaken the infuriated animal and dispatched him without dismounting from the wheel.
The San Francisco News Letter brings forward an interesting point. It wonders if any enterprising boy will ever open stands where bicycles can be cleaned while you wait. After a long tripa rider would gladly pay a small sum to any boy who would do the job properly. Berlin has opened establishments for cycle cleaning. For a small annual subscription the whee is called for, cleaned as often as desired and returned In many of our riding academies cleaning is now a feaure of the business.
In London the way of the transgressing cyclist is hard. A member of the nobility, who lost control of his machine going down a steep hill, was fined for furious riding. A German baron was fined for riding on the wrong side of the street. Mr. Arthur Balfour came to grief while riding on his bicycle in White chapel. He got jammed in a crowd of vehicles and had to take the pieces of his bicycle to Downing Street in a hansom cab. He has had two other accidents within a short time.
A wooden bicycle path is to be erected in Kalamazoo, Mich. It will be constructed of heavy plank; the rain of the lumber will run with the course of the rack, the boards being sawed through the center upon a circle corresponding with the course of the track The piece will then be reversed, the straight sides be ing placed together, thus forming a section of the track The end joints will alternate and all uneveness will be planed down. In this manner the track will offer as little resistance as possible, says the American Wheel man.

In driving out a refractory crank key or other part of similar dimensions, where there is danger of "burring" the edges or destroying the thread, if only a ham mer or wrench is employed, it is a good plan to use a copper penny to protect the part. In case of a crank key to be removed, for instance, put a piece of shingle or almost any kind of wooden chip, on the under side of the crank boss, against the key, land hold the copper penuy on top of the key or cotter pin. You may strike the penny with absolute freedom from fear of injuring the pin, and drive it out, no matter how tight.

an efficient boiler tube cutter.

To quickly and conveniently cut off a tube in the boiler, for removal and the substitution of a new one, the appliance shown in the illustration has been devised and patented by Julius Richard, of Bisbee, Ari zona Territory. The cutter slides in a tool carrier in which is a feed screw holding loosely a feed block which is longitudinally movable, and is formed with an incline to feed the cutter outwardly in contact with the tube. A yoke resting on the front face of the boiler sheet surrounds the outer end of the flue to be

richard's boiler tube cutter.

cut, and the feed screw is turned in the yoke by means of a nut on the outer end of the screw, whose inner end is smooth, and carries the feed block loosely between a fixed and a removable collar. The feed block. has a length wise dovetailed groove in which slides the base of the cutter, whose shank extends through an opening in the wall of the tool carrier, the latter rotating with its front end on the feed screw, and being turned by a rod or bar to move the cutter around within the flue to be cut. The yoke is cut out on one side to permit the insertion of the bar in one of the apertures of the carrier, whereby the latter may be turned in a step by step manner, the cutting edge of the cutter then cutting the inner side of the flue, and the cutter being from time to time forced outward by the turning of the nut on the outer end of the feed screw. To lock the yoke in working position, a threaded boss in its base at one side is engaged by a screw connecting it with a plate extending in front of the flue below, and in this plate turns a short shaft with a square off set on its outer end and cam-actuated jaws on its inner end, the turning of the shaft by a wrench or other tool moving the ja ws outward into firm contact with the inner surface of the adjoining flue, and thus firmly supporting the yoke in front of the flue to be cut off.

THE INGLETON STEAM PLOW.

The accompanying illustration shows Mr. Ingleton's newest design of steam plows, which is being manufactured by the Ingleton Manufacturing Company, whose ffice is at 308 Walnut Street, Philadelphia. As will be seen by referring to the engraving, the machine differs widely from all other steam plows, inasmuch as the travel of the plows is in a direction at right angles tion at right angles o the travel of the engine. The advantages of such an arrangement may be said to be as follows : The resistance of the plows being across the line of travel of the engine, there is no tendency to hold back or impede the forward pede the forward
motion of the latter. motion of the latter.
The gearing of the The gearing of the
engine is thereby reengine is thereby re-
lieved from all strain lieved from all strain, and the driving wheels, having nothing more to do than merely carry the weight of the engine, do not slip, nor sink into the land, as they do when a heavy load is attached directly behind the engine. As a matter of fact, the plows have what is known as a lead, which gives them a tendency to draw toward the land, and this drawing tewdency the unplowed land, coupled with the power
required to turn over or push the six furrows back from the apparatus, has the tendency to force or propel the machine ahead, precisely the same as a steamship is propelled by ber screw. It has been found, according to Mr. Ingleton, that the apparatus attached to the back end of the traction engine not only requires no hauling, but when in full work has to be held back by the engine.
Another advantage of these plows is the low speed of the apparatus, which is from one-half to three-quarters of a mile per hour across the field, while a swath frow thirty to fifly feet wide is cut. This rate of speed gives the engine-whose crankshaft is making 200 revolutions per minute-an enormous power over its work. Added to this is the important advantage of the engine having to run across the fields but once for every thirty or fifty feet plowed; whereas, in pulling every thirty or fifty feet plowed; whereas, in oulling
a set of gang plows behind it, it would have to cross the field once in every seven feet, and then at a rate of at least four miles per hour, or eight times faster than in the present case.
It should be stated that although the apparatus has a forward move of half a mile per hour only, yet the plows, attached to the enAless chain, travel at a rate of four miles per hour, or eight times faster than the engine is moving, so that almost the whole power of the engine is consumed in doing actual plowing. The cost of plowing an acre of land by this system has been placed at 45 cents
The machine was exhibited at the Minnesota and Missouri State fairs, in operation, last September and October, aud was awarded a special diploma by each of these associations.
A large number of these plows is being ordered for South America

A New Type of Telescope.

A very important discovery has been made by Prof. C. S. Hastings of the Yale Scientific School, the result of which is a new type of telescope, in which the defect known as the secondary color aberration is removed without the use of other than the ordinary silicate glasses, says the Evening Post.
In developlng last summer the optical equations in volving the thickness and separation of lenses to the second order of magnitudes, Prof. Hastings found a term which might be of the opposite sign to that in volved in the equations of color correction. Although it seemed improbable that this would afford a means of correcting the old error, it demanded, in the professor's opinion, further investigation. After mueh labor he demonstrated theoretically a new method by which the secondary chromatic aberration, which had resisted solution for almost a century and a half, might be remedied. He next constructed a telescope with a ratio of focal length to diameter of only eight and a half, for use with the spectroscope. This has fulfilled in every way the hopes founded upon the theoretical investigation. It shows the solar spectrum with absolutely unvarying focus from extreme red to extreme violet, eliminating all secondary color aberration. While the experiment has not gone beyond this, there is no reason to doubt that the method is applicable to relescopes of all sizes.
Several years ago Prof. Hastings published a con-

Hastings will add at least ten per cent to the power of the telescope, so that an instrument with a ten inch object glass will be about equal to an eleven inch telescope of the existing type.

AIR PRESSURE RELIEF VALVE FOR HOSE

 couplings.The illustration represents an improvement to be applied to the coupling heads of flexible tubing or hose connecting the train pipes of adjacent cars, for lower ing the air pressure sufficiently to enable the coupling

HOLE

to be easily broken. A patent has been granted for the in vention to William C. Colwell ocomotive foreman, S. S and O. G. Division, Ocala, Fla. As represented in Fig. the half coupling head is shown attached to the free end of the hose, and a portion is broken out to show the position and a section of the relief valve screwed into a bottom opening in the couplins head, Fig. 2 being a side view of the valve. As will be seen, the valve proper seats downward and has two aligned stems, the upper one working in an inner removable head, and being surrounded by a spring which holds the valve normally closed when no air pressure is on. The other stem of the valve pro jects downward through a hexagonal head in whict are lateral passages communicating with the chamber of the valve, there being also openings in the inner head of the casiny and in its side, communicating with the valve chamber. By pressing with the thuml on the outer end of the valve stem, the tension of the spring is overcome and the valve is lifted to permit the escape of air from the coupled hose, enabling the couplings to be easily detached from each other.

The Engineer Road Carriage Competition.
As was announced last year, The Engineer, of London, has offered 1,000 guineas to the owners of horseless car riages that are successful in a competition to be held some time in 1896. The Engineer hopes that the anti quated laws which still obtain will be repealed in time to have the race this year. One hundred guineas have been added to the 1,000 already offered, this addi tional sum being for a naphtha or gasoline engine, as it is hoped that the laws governing the carriage of light oils will be modified by the time of the competition. The exhibition of machines will be held at the Crystal Palace, the grounds of which will also afford facilities for holding the sub sidiary trials. The date and the route which will be fol lowed in the run have not been definitely decided as yet, but the run will probably occur some time in October, and the course will not be less than 100 miles and return, or 200 miles in all. Any vehicle which does not complete the run at a minimum speed of five miles an hour including all stop pages, will be dis qualified. No speed over ten miles per hour will be taken hour will be taken into account. The judges which have
been appointed are

THE INGLETON STEAM PLOW.

struction involving a lens of but two kinds of glass, which very nearly met the desired end. But it has proved impossible to obtain large pieces of glass of the required kinds, and thus the method has been confined to small telescopes. It is an interesting historical fact that Fraunhofer, while endeavoring to solve this same problem, discovered the lines of the solar spectrum which bear his name. The discovery of Prof.

Sir Frederick Bramwell, F.R.S., M. I.C.E. ; Mr. John A. F. Aspinwall, M.l.C.E., chief engineer to the Lancashire and Yorkshire Railway ; and Dr. John Hopkinson, F.R.S., M.I.C.E.

The late Richard A. Proctor stated that our earth receives only the one two-billionth part of the heat of the sun.

AN IMPROVED DENTAL PLUGGER

The illustration represents a dental tool which has a double action, being able to strike a number of blows with the point at one revolution of the driving shaft, and the point being brought into action either when its working surface is pressed against an object or when the point is pulled rearwardly. By its use, also, fillings of any shape may be perfectly placed and located in any desired position. The improvement has been patented by Ormond E. Wall, Honolulu, Hawaiian Islands. Figs. 1 and 2 are side and sectional views of the tool, Fig. 3 showing a portion of the plugger barrel, with a hand piece in position in its end. In the forward end of the barrel is screwed a plug, bored to receive the loosely sliding point chuck, having at its outer end a socket for the plugger point, while within the barrel, adjacent to the plug, is a slid ing cylinder, longitudinally grooved to receive a pro jection preventing it from revolving on the pressing of an exterior button. The point socket has at its inner end a head screwed into the outer end of this cylinder, and in the opposite end of the cylinder is a plug, the inner face of which, and of the chuck head, have ratchet or undulating surfaces, as shown in he transverse view, Fig. 4, an intermediate re volving piston also having two similar undulating surfaces. The piston is secured to the end of a drive shaft turning loosely in a guide block, the shaft being rotated in various ways, and being shown in Fig. 2 adapted to receive a slip joint. An ordinary drill hand piece may, however, be employed, as shown in Fig. 3. In operation, the plugger point is screwed to the chuck, the ratchet teeth of which are, by pressing on the point, brought in contact with the ratchet teeth on the outer face of the rotating piston, the four ratchet teeth causing fcur blows to be struck at each revolution of the piston. For the back action, the cylinder is moved forward by pulling on the plugger point, when the teeth of its inner ratchet engage with the inner ratehet of the rotating piston, producing a similar series of back-acting blows. By pressing on the button to prevent the revolution of the cylinder, the operator is enabled to pick up gold, carry it to the cavity and place it in position, without the plugger making any blows and without stopping the machine.

BERLIN INDUSTRIAL EXPOSITION OF 1896

The Berlin Industrial Exposition was opened on May 1, by Emperor William. This exposition is of enormous proportions and will be a great credit to the empire. Forty buildings have been erected for the purposes of the exposition in Treptow Park in the north of Berlin. The grounds used for exhibition purposes are larger than those of the Paris Exposition of 1889. The river

Spree, which is so narrow in the heart of the city, widens out at Treptow Park, really forming a small lake. This gives a chance for some fine effects of landscape gardening. The position of most of the buildings will be seen by referring to the engraving
The main building covers a space of 53,000 square meters, and is intended to shelter the displays of most of the groups exhibiting in the exposition. Two tall

WALL'S DENTAL PLUGGER.
and slender towers and a grand aluminum cupola give this building a very striking and graceful appearance. A vast, crescent-shaped colonnade in front of this structure serves as a covered promenade ground, and contains, besides an elegant cafe, a number of institutions for the convenience of the visiting public, such as post and telegraph office, telephones, reading rooms and bureaus for the press, money brokers, inormation, etc.
The building for Chemistry, Mechanics, Optics and Photography (2) contains the exhibits of these groups, and also a lecture room for lectures on popular scientific subjects. The great Fisheries building, consist-
ing of two adjoining wings connected by a central structure, will harbor in its walls the groups of Food Products and Beverages (3) and the Fishery and Sport Exhibition (4).
The municipality of Berlin exhibits in a separate pavilion (5) the system of technical, industrial and mechanical schools now established in the capital of Germany. The building for Water and Gas (6) shows models and plans of conduits and gas fixtures of all sorts. The Alpine Panorama (7), with an inclined plane railway, presents a drastic and imposing picture of the Zillerthal and its glaciers. Visitors will enjoy such a magnificent view from the Restaurant (8), situated on the banks of the Spree, that it will become deservedly a favorite resort. In the marine exhibition (9) large models of all sorts of shipping, men-of-war and merchantmen, will be displayed and maneuvers carried out in exact imitation of real naval exercises. The Giant 'Felescope referred to in our last issue (10) will provea great attraction for scientists and the public in general. Old Berlin, with the Theater Old Berlin (11), a mostartistic reconstruction of the old city, carries the visitor back centuries ago to that time when the present vast metropolis was but the capital of the Electorate of Brandenburg. The German Colonial Exhibit (12) will strive to give a faithful picture of the German Colonies, not only by exhibiting their natural products and manufactures, but also by displaying groups of the natives and by showing the mode of life they lead at home. The Grand Main Restaurant (13), situated as it is in the center of the grounds and on the choicest spot of the same, will doubtless prove a favorite resort for all visitors.
The progress made in educational matters up to date, as well as all improvements in sanitary and benevolent institutions, can be studied in the building (14) erected especially for those groups.

A most original and interesting spectacle of Oriental life will be presented to the visitor in "Cairo in Berlin" (15), a gorgeous but faithful imitation of the capital of Egypt with its streets and buildings. The Horticultural Exhibition (16) will be a beautiful and magnificent display of nature's most graceful products.
Gondolas and many pleasure boats of every style will enliven in an interesting and attractive manner the Grand Lake (17), constructed on a former popular playground, and this magnificent artificial basin of water, with the exten water, with the extensive avenues of fine old plantains visitors itl visitors will never forget, while in strong contrast with
this artificial body of water, still vying with it in beauty, is the old Carp Pond (18), with its green banks, its swans and waterfowl. It was the idyl of Treptow Park and will prove to be the idyl of the Exposition.

Notice

A premium of $\$ 250$ is offered by the Scientific American for the best essay on
the progress of invention during the past fifty vears.
This paper should not exceed in length 2,500 words. The above-mentioned prize of $\$ 250$ will be awarded or the best essay, and the prize paper will be published in the Special 50th Anniversary Number of the Scientific American of July 25. A selection of the five next best papers will be published in subsequent issues of the Scientific American Supplement at our regular rates of compensation.
The papers will be submitted for adjudication to a elect jury of three, to be named hereafter
Rejected MSS. will be returned when accompanied by a stamped and addressed envelope.
Each paper should be signed by a fictitious name, and a card bearing the true name and the fictitious name of the author should accompany each paper, but in a separate sealed envelope.
All papers should be received at this office on or before June 20, 1896, addressed to

Editor of the Scientific American,
361 Broadway, New York.

Sorrespondence.

Raising the Water Level of the Great Lakes.
To the Editor of the Scientific American :
Observations made here during the slow opening of navigation this season have thrown considerable light on the vexed question of maintaining the levels of the Great Lakes against the constant tendency of the water to decline and leave the harbors and river passages too shallow for the accommodation of the fleet.
This is doubtless the most serious problem that confronts the commerce of the lakes. In spite of the work done by the government in deepening the Datroit, St. Clair and St. Mary's Rivers to 20 feet, which work is now nearly finished, the desline of the levels of the lakes themselves is such that the work will prove to be practically valueless unless something is done to save the water in the lakes themselves. Buffalo harbor is as deep as any on the lakes, and still the grain fleet now arriving is scarcely able to stir unless the wind is favorable.
The decline of the level of Lake Erie from the government normal is now fully two feet and Niagara River is estimated to be 6 to 8 inches lower than it was last spring. While it is a matter of dispute whether the deepening of the passages affects the lake levels, the work is so necessary that investigation would produce no results nearly so valuable as the discovery of some means of holding the lakes themselves in place.
There is much speculation over the utility of dams at the mouth of this and other lakes, but the plan will hardly be tried till something arises to make it appear feasible. The advocates of dams have feared to ask an appropriation of Congress for the purpose of experimenting, especially when so many other improvements are wanted, but would welcome anything
tending to show that dams would prove effective. It appears that the evidence is now to be had.
The first vessel left Butfalo this season on April 20. There was at the time about 80 miles of ice to pass through before reaching open water. This ice disappears mainly through the action of the sun, but dur ing the week, or perhaps fortnight, taken for it to disappear, large masses of it become detached and pass down the river. Naturally, this ice occasionally strikes the rocks at the head of the river, as the water is shallow, where it forms an imperfect dam. For some time the vessel men in the harbor, which is on
the lake level, noticed that the depth of water was subject to sudden variations. An observation of the water line on the docks would show a rise or a fall of a foot or more in an hour or so.
These changes were carefully observed now for the first time, as there was so much more dependent on the depth of water than usual at this time of year. Most of the incoming grain fleet could not be moved about the harbor unless the water was at its highest, while usually they have come and gone at any stage of the water. The water level is materially affected by the wind, but there were changes of level that took place with no corresponding change of the wind, and it was at length found that whenever the ice field escaping into the river was caught on the shoal at the head of it the water rapidly rose and the vessels aground inside could be released.
The main point of the showing seems to be the effectiveness of so frail and irregular a barrier as that formed by the ice, and, after that, the rapid rise of the water. But for the destructive force of storms and the flow of ice in spring, the showing is sufficient to prove that the dumping of ordinary stones,"such as are constantly obtained from marine rock blasting, would ble that in any case these loose stones would remain several years without any cement or anchorage to
hold them, especially as in former years the silt from the harbor was dumped on the same shallows, where it remained for the most part till carried away by the of the following spring.
The conclusion to be reached from this action of the ce cannot be less than this: That the proposed daws need not be nearly as complete and expensive as was supposed and that they will produce the desired re sult.

John Chamberlin.

Buffalo, N. Y.

Premature Burial.

To the Editor of the Scientific American :
The interesting paragraph in the Scientific Amer ICAN of March 21, on "The Progress of Cremation," induces me to offer a few observations upon the above mentioned subject. In addition to the sanitary advantages which the practice of cremation possesses over other forms of the disposal of the dead, is that of the prevention of premature burial. The regulations of the British Crematorium at Woking, Manchester, and Glasgow, require that, previous to cremation, the body shall be examined by one independent medical practitioner, in addition to the doctor attending, and
the examiners are obliged to certify to the fact, as well as the cause, of death. In ordinary cases a cursory and perfunctory inspection of the face of the corpse is all that is usually made, and when it is re membered how difficult it is in cases of trance, catalepsy, and suspended animation to distinguish apparent from real death, and that not a few persons (ac cording to the evidence of those who have looked into the facts) have been buried alive, any system that will minimize this terrible risk will be welcomed by thie reflective portion of every community. Alluding to the difficulty of discriminating between real and apparent death, Dr. Franz Hartmann, in his work, "Premature Burial" (the English edition of "Buried Alive," published at Boston, Mass.), observes :
"Apparent death is a state that resembles real death so closely that even the most experienced persons believe such a person to be really dead. In many cases, not even the most experienced physician, cor oner, or undertaker can distinguish a case of apparent death from real death, neither by external examina tion nor by means of the stethoscope, nor by any of the various tests which have been proposed by this or that writer, for all those tests have proved to be fallible, and it is now useless to discuss them at length, because the medical profession has already agreed that there is no certain sign that a person is really and not apparently dead except the beginning of a certain stage of putrefaction. All other tests ought to be set down as delusive and unreliable. Mrs. Schmidt, a young woman of Kempen, died of cholera, and was
put into a coffin in which she remained for seventytwo hours. Two doctors, Dr. Junker and Dr. Leon, certified to her death. At the hour appointed for her burial, her husband arrived and found the corpse of a blue black color. Believing that it would be danger ous to his life to handle the corpse, he postponed the burial to following day. On the next morning he approached the body and imagined that he found signs of life in it. He, therefore, went to the physician and informed him of it, but the doctor laughed at his credulity, telling him, however, to rub the body with vinezar. This was accordingly done, and, after an hour, the lady returned to life, and recovered entirely within a few days."
This is only one of several hundreds of authenticated cases collected by Dr. Hartmann, the details of many of which are too painful for presentation to your readers. The subjert needs thorough ventilation, and the existing mode of examining the dead in America and
England requires drastic reform. This may be brought about or helped forward by the attention now being directed to the public health and the public safety in respect to the establishment of crematoriums in every London, N. W., England.

Use of Descriptive Trade Name

A question of much interest was decided by the English House of Lords recently in the case of Reddaway et al. vs. Banham. It appeared that the appellants had been making belting of camel hair for some time, and had stamped the words camel hair belting upon their goods, together with a camel as a trade mark. The respondent, a former employe of the appellants, made similar belting, and sold it with the words "camel hair belting" stamped upon it. In the trial court the jury found that the phrase meant among the people that bought the goods belting made by the appellants, and no one else, and that the repondent had tried to pass off his goods as those made by the appellants. A judgment in favor of the re-
spondents was reversed by the court of appeal on the ground that the belting made by the respondent might be fairly described as camel hair belting, and that he was entitled to use these words. The House of Lords, however, reversed the decision of the court appeal, on the ground that while, as a rule, no man
his goods, yet if the facts show that by the use of this title a trade rival is selling goods as if they were the goods of another, a case is made out for the interference of the courts.

A marble bust to the Notes. A marble bust to the memory of the philosopher
Luigi Ferri was erected on March 16 in the hall of the University of Rome.
A balloon sent up from Paris, recently, attained the height of 15,000 meters, or $91 / 2$ miles, before it came down near Cambrai.
\mathbf{X} rays are to be applied to practical agriculture. Dr. Graetz, of Munich, has taken a picture of a one-day-old pig, showing its bony structure. By continuing to make pictures of the pig the action of food on its growth will be shown.
The French government has decided to continue the ension of 25,000 francs to Louis Pasteur's widow.
Doctors D'Arsonval and Charrin, of Paris, have been taking the temperature of our internal organs. They find that it is highest in the normal liver, which is one degree Centigrade hotter than the intestine; then fol low in a decreasing ratio the spleen, the heart, the kidney, the marrow, the brain, the muscles, and the skin.
The National Academy of Sciences, acting on the request of the Secretary of the Interior of the United States, has reported a commission to investigate the forestry problem, consisting of Charles S. Sargeant Alexander Agassiz, Henry L. Abbot, William H Brener, Arnold Hague, and Gifford Pinchot. The secretary will recommend to Congress an appropriation of $\$ 25,000$ to cover the expenses of the commission. The dragon flies are the champions on fast flying. M. Marey, the French scientific photographer, found that in order to photograph one of the creatures on the wing he had to make the exposure only wing he
M. Berthelot, the celebrated French chemist, has re signed from the Ministry of Foreign Affairs of France. James Stirling says: "A valuable aliy of the field geologist is to be found in the land crab. The work performed by this diminutive excavator in bringing up pieces of the rock forming the subsoil helped the miner to find coal seams in South Gippsland, just as the burrowing wombat had disclosed a stanniferous ode in the Australian Alps. From similar evidence officers of geological surveys have traced outcrops in places where the rock was masked by alluvium."
The statement is interesting as coming from Prof. William Huggins, foremost in such researches, that beyond the violet end of the spectrum there is a whole gamut of invisible rays which only reveal themselve by their effect in promoting chemical action, and sim ilarly, beyond the other end of the visible scale, the deep red, there is a gamut of invisible or dark rays which are only perceived by their heating effects. Some idea, he says, of the importance of the "ultra red" may be gathered from the fact that it has been traced to a distance nearly ten times as long as the whole range of the visible or light-giving region of the spectrum to learn, then, the character of these mysterious dark ays, it has been clearly necessary for science to fit itself with some new sort of eyes for seeing what ordi hary eyes cannot, namely, heat rays and chemica rays, and, in respect of the latter, the photographic plate has brought out some wonderful facts, while the bolometer has been used in feeling for absorption lines in the great invisible spectrum which lies beyond the red.

Ten thousand people visited the South Kensington and Bethnal Green Museums in London on the first Sunday on which they were thrown open. Only ten attendants and thirty-four policemen had to work on Sunday.
The nomination of John J. Brice, of California, for Commissioner of Fish and Fisheries has been con firmed by the Senate.
Descartes' tercentenary will be observed by the publication of a complete edition of his works, by authority of the French government.
The new Royal Observatory at Edinburgh has been ormally opened. The observatory contains a 15 inch refracting telescope and a 24 inch reflecting telescope. Among other instruments in the building is the great Dun Echt electromagnet. A clock at the observatory is connected by telegraph with Greenwich The steam yacht Blencathra will carry an excursion o the Arctic regions next summer, says Science. The yacht will visit Iceland, Greenland and Hudson's Bay. The expedition of the Russian G ographical Society, quipped for the exploration of the Irkutsk region of Siberia. has started and will be absent for three years. The idea of the numbering of the heavenly bodies, whether planets, satellites or stars of the smallest size, was formed at the Astronomical Congress in 1887, and already 189 photographs have been taken with a view to the publication of an international catalogue. Some of these photographs only contain a dozen stars, but others are crowded even to the number of 1,500 . It is $\mathbf{3 , 0 0 0 , 0 0 0}$ stars.

RIGE COLTURE in sodthwestern lodisiana. (Continued from first page.)
reach some desired spot by a "near cut" across a field would soon find himself wading in water above his shoe tops. This prairie country covers a large scope of country, and, going westward, from New Orleans to the Texas line, begins at La Fayette and runs continuously beyond the Sabine River, repeatedly interrupted by forests that generally shade deep running streams.
Considering the limitless character of this prairie country, the surface of the country is scarcely marked by farm inclosures, and thus is evidenced the unlimited possibilities held out to the farmer, who must pay a large price for a few acres in other States. The sizes of the farms in this section range from fifty to two thousand acres.
The consumption of domestic and foreign rice in the United States for ten years past has been as follows :

1884..	Domestic. Sacks. 490,000	Foreign Sacks. 333,000
1885.	600,000	246,000
1886.	615,000	208,000
1887.	448,000	410,000
1888	465,000	491,000
1890..	500,000	450,000
1891.	600,000	500,000
1892.	1,000,000	500,000
1893.	1,000,000	500,000
1894..	1,000.000	500,000

In preparing the land for use, the first thing done is to dig the necessary main and lateral ditches and levees for irrigating purposes, and then look out for an abundant supply of water at the proper time. There are three sources from which the water supply is drawn, viz, rainfall, which is always hazardous, reser voirs and flume pumping.
The rice planter with extremely limited means constructs his system of ditches, and then relies on the elements to furnish him his moisture, and in due time, if his basins fill with water, he turns it on when needed. The reservoir is an artificial basin that catches the water in the rainy season or is supplied by a pump at or near some abundant water supply, and the water is turned on at the proper time. The most expensive means of irrigating, though the most cer tain, is by pumping and carrying the water through "flumes" to the larger and, at a convenient time, the smaller ditches inclosing the rice lands. This latter supply of water is taken either from a bayou, river or swamp.
The planting season is in the months of March (after about the 10th), April, May, and as late as June, while harvesting begins late in August and sometimes continues to October, though not generally so late.
I am indebted to Messrs. C. C. and W. W. Duson, o Crowley, Lonisiana, for the subjoined information and for some of the pictures. They say: "The commercial names of the most popular varieties now in use in the United States are the Honduras, Carolina and Japan. The Honduras rice has much the longer and broader kernel and derives its name from the fact that the seed originally came from Honduras. The Carolina rice has a smaller kernel than the Honduras and requires less water for its cultivation. The Japan variety has
a shorter berry than either of the otbers and is also much larger in circumference, and while the straw is much finer and shorter, the yield is more prolific and brings a nigher price."
In growing rice the land is prepared the same as for wheat or other small grain and the seed then sown broadcast or in drills, about one and one-fourth bushels being used to the acre. When the crop comes up it resembles nothing so much as a Dakota wheat field. After the young plant gets from six to twelve inches above the ground it is flooded with water four to twelve inches deep, and then the water remains until that part of the rice stem above the water begius to turn yellow, ready for the reaper. The water is then drawn off into the ditches, and in a few days the hot sun dries the ground and the reapers are put to work.
The following formula gives the ingredients of the Indian rice, the same that is planted in South Carolina, brought originally from Madagascar, and about the same chemically as that planted in Louisiana :

Moisture	$\begin{gathered} \text { Per cent. } \\ \cdot \quad 13: 00 \end{gathered}$
Nitrogenous matter.	744
Starch	77.63
Fatty or oily matter.	0.70
Ash	1123
	100.00

An average yield of a good farmer is fifteen barrels or sixty bushels to three dollars per barrel, though sometimes the price goes below that figure, but when the cost of cultivating is so low as one dollar per barrel or fifteen dollars per acre, the profit is fair.
Rice is thrashed and winnowed as soon after harvest ing as is convenient to the planter, and is then placed in sacks in the rough state, when it is called "paddy." rice grain from the hull.
The different terms used for the processes of convert-
ing the rice in the field into a marketable article of commerce are "cutting" or "harvesting," " stacking," "thrashing and winnowing," "raying" and "hull ing." At present most of the rice goes to New Orlean for the final preparation, there being several large mills in that city. There is one mill at La Fayette, and it is now working to its full capacity. Rice will keep in the rough or "paddy" state an indefinite length of time, and loses none of its nutritious or fecundating strength.
The Southern Pacific Railroad, which passes through this rice section of Louisiana, has furnished the fol-
lowing figures, showing that it shipped rice in the rough state in 1886 to the amount of $2,000,000 \mathrm{lb}$.; in 1887, 4, $000,000 \mathrm{lb}$; in 1888, $8,000,000 \mathrm{lb}$. ; in 1889, 16, 000,000 $\mathrm{lb} . ;$ in $1890,60,000,000 \mathrm{lb}$.; in 1891, $180000,000 \mathrm{lb} . ;$ in 1892 $1893,300,000,000 \mathrm{lb}$.
The following tabulated statement of our total rice production (cleaned rice) is furnished by one of the largest dealers :

-	Carolina		
Season.	${ }_{\text {Coast. }}$ Pounds.	$\underset{\substack{\text { Lonisiana. } \\ \text { Pounds. }}}{ }$	${ }_{\text {Total }}^{\text {Pounds }}$
1894-1895.	33,020,800	76,800,000	109,820,800
1895-1896*	56,600,000	160,000,000	215,600,000
Estimated.	all in yet.		

In making lawns in a locality where the surface is mainly sandy and poor one often finds, either acci dentally or by observing the nature of the natural tree growth, that there are patches of clay beneath the gravel or sand: and, if near at hand, this clay is just what is wanted for making the lawn, and it is quite worth the trouble and expense of carting to the lawn site and placinc a layer of six or nine inches just below the surface, so that it will serve to retain moisture and the grasses to root into. If nothing is done to stiffen the surface in a sandy or heath soil, a satisfactory lawn is almost hopeless. The reverse of this light soil is the heavy clay, with just a thin layer of lighter soil on the surface. On this surface the grasses will grow rank, coarse weeds will in time oust the grasses
to a great extent; the lawn will not be fit to walk on in even only showery weather, and for games-tennis, croquet, and the like-it can seldom be used. Such a surface must first of all be underdrained by ordinary field drain pipes, laid from ten to twenty feet apart according to the excess of moisture to be drawn off Oftentimes in such sites it is difficult to obtain a suffi cient fall as an outlet to the drains, and in such cases it is folly to attempt to underdrain a large area, bu for smaller plots, such as tennis courts or croquet lawns, the outfall drain can be made to empty in a dry pit, which would be sufficient. In clay districts it is often difficult to get sand or chalk to mix with the clay for the surface, and one has to fall back upon such mate rial as burnt ballast, made by burning the clay with coal dust, or even coal ashes or wood ashes half burnt, and this last is about the best, as the charcoal so quickly absorbs superfluous moisture.
Trenching the ground deeply is the most important condition in lawn making. A foot and a half is the depth generally specified. Trenching for a lawn is a different process from trenching for tree planting or shrubberies. By proper trenching a uniform surface is obtained, which is important in a lawn; for, if there are inequalities of surface, the lawn can never be mown properly, either by machine or scythe. Therefore, if have been growing their places must be rammed hard before the trenching is done. Before the trenching any alteration in the grade must be made, and if the natural surface layer is disturbed thereby, this must be eplaced at the time of trenching; otherwise a uniform urface of equal texture and richness will not be ob tained, and the result will be a patchy surface, that is, in the poor and dry parts the grass will be thin and pale, and have an unsatisfactory appearance. The renching for new lawns should be done in autumn and winter, and the surface allowed to lie rough till early spring, when it should be lightly forked over to make it even, and afterward evenly trodden or olled, raking off the large stones, and then the sur face is ready for either turfing or sowing, which is best done in April.
Sodding.-The old fashioned way of making a lawn was tolay sod cut from the nearest pasture, and this is done now to a great extent in country places, and that is why one seldom sees good lawns in even what are termed the best gardens. Very seldom, indeed, can perfect sod be cut from a pasture, that is, turf com posed exclusively of grasses; and even when cut from heep pasture, and apparentiy free from weeds, when the turf is laid on a richer soil weeds will invariably crop up in it and in time become a nuisance, only to
be got rid of by persistent hand weeding, a tedious and costly process on lawns of large area. The true way of making a perfect lawn is unquestionably that of sowing pure grass seeds guaranteed to be free from seeds of weeds, and nowadays the most reputable seed houses do this, and supply mixtures to suit any soil. portion suitable for the different kinds of soil is quit fine art.

Sodding is a simple operation. The chief points to observe are cutting the sods of uniform thickness, and laying them immediately on the surface that has been prepared by leveling and making firm. After being sown, the turf should be well and evenly beaten. and after this it should be rolled, and then a laver if fine rich soil thrown on and brushed in so as to fill up the interstices. Seed sowing is best done in April during fine or showery weather. It should be evenly scattered by hand on the firm and even surface, and lightly raked in, and as the sower proceeds another should scatter over the seed a layer of fine soil ; but it is most important that this soil has been sterilized, and that there are no seeds of weeds in it, and therefore must not be taken from the surface anywhere, particularly from a kitchen garden.
Seeds sown in April quickly germinate, and when the sward is about two inches high it should be well rolled, and after a day or so, should be mown, first with a scythe and after that it can be mown by a lawn mower, which should not be set too low at first. Later in the season it may be cut lower, though it is a mistake to set it too low, as the grass roots are torn, and the lawn does not recover for some days, and, besides, a lawn cut too close dries up so much more rapidly. It is the practice of some to scatter artificial manure on the young grass crop, but this is not necessary if the soil has been properly prepared. Better reserve the manure until the lawn really requires it, which it will in a season or two after sowing, in order to keep it perfect. The edges of lawns by walks are generally made by turves, even if the main part is sown ; bu this is a mistake, as the difference between the laid turf and the sown grass will always be perceptible. The best way is to overlap the edges a few inches and sow with seed, and when the turf is thick, cut off the edge. Though April is the best time for sowing, it can be done from March till May, if not too dry, and in autumn during August and September. The quantity of seed required is about fifty pounds per acre smaller areas will, of course, require quantities in proportion
Tennis courts, croquet lawns, cricket pitches, or golf links require special care in making, as it is highly mportant that these should be in a fit condition to play upon in all weathers. They must, therefore, be made to provide against being soft and spongy during a wet season, and not dry up in a dry one, and the principles for making these are the same as for the perfect lawn. Special care should be taken in making the parts that undergo most wear in plaving, which in tennis are the base lines, in cricket the wickets, and in teeing greens the centers. On all lawns wher games are played it is essential the surface should be as level as practicable, and in order to effect this it is, in tennis and croquet, often necessary to cut out from a slope and fill up parts. This cutting out requires to be very carefully done, otherwise the part cut out from the solid will often be poor and dry, and the filled up part will cause the grass to grow rank; therefore even and deep trenching is necessary all over, so as to make he surface of uniform texture and quality.-Abstract rom the Gardeners' Magazine.

National Electrical Exposition.

The exhibits are being rapidly installed in the Grand Central Palace, on Lexington Avenue between Forty third and Forty-fourth Streets, New York City, where the National Electrical Exposition will open on May 4. The building is remarkably well adapted for exhi bition purposes, as it measures 200 by 275 feet. The enter is occupied by a main exhibition floor, and around it is built a building six stories high, and there is also a basement. Large elevators and numerous stairways give access to the different floors. The stairways give access to the different floors. The
building is lighted by 4000 incandescent lamps. The lighting plant will supply current to exhibitors either lighting plant will supply current to exhibitors either
for light or power. The model of the Niagara power for light or power. The model of the Niagara power
plant will be run with current transmitted from Niagara over Western Union wires. About forty receiver will be grouped around it, so that visitors will hear the roar of Niagara. Mr. Edison, Mr. Tesla and other celebrities of the electrical world will be present on the opening night, which promises to be a memorable oc asion. One of the most interesting exhibits will be the loan collections of apparatus. The valuable Morse relics will be shown.
The department of physics and electrical engineer ing of Cornell University has also provided an impor tant exhibit. The Lighthouse Board have loaned an exhibit showing how Gedney's Channel is now lighted Mr. W. J. Hammer will show a notable collection of two hundred portraits of celebrated electricians. The great companies are nearly all represented by an adequate display
The Patent Office exhibits 360 models of electrical apparatus. A practical working laboratcry has been provided and special lectures have been arranged for.

The Swiss National Exhibition at Geneva was opened on May 1. and the Millennial Anniversary Exhibition at Budapest on May 2.

THE SPEED TRIAL OF THE UNITED STATE BATTLESHIP MASSACHUSETTS.
On Saturday, April 25, the first-class battleship Massachusetts, a sister ship to the Indiana and Oregon, course off Cape Ann. As the course was covered twice in succession, the total dis tance run by the ship was sixty knots, and the boilers and engines and engine per bot pushed to thei fullest capaci ty the whole of that distance.

The engine performance during this severe trial was admirable There were no heated journ als, nor was there a leaky joint, tube or rivet in the boilers. On the first run over the course the average speed was 16.03 knots, and the second thirtyseond wa

BATTLESHIP MASSACHUSETTS-SIDE ELEVATION AND DECK PLAN.

解 16.21 knots, making an maintained this high rate of speed is the more re- short by leaking or priming in boilers or overheating an mour markable because speed was not one of the objects of the engines. an hour. This is $1 \cdot 15$ knots faster than the speed called aimed at by her designers, her displacement being In view of the high average speed of the Indiana for by the contract, according to which the builders mainly devoted to guns and armor, in which she is type, it has been suggested that the six new battlewere to receive $\$ 25,000$ for every quarter of a knot probably the most formidable battleship afloat to- ships should be supplied with sufficient horse power to above 15. She thus earns a bonus of $\$ 100,000$ for her day. The possession of this extra knot of speed adds give them at least an equal speed. The Kearsarge

and her mate are of 1,237 tons more displacement than the Indiana, and yet, as at present designed, the horse power is to be only ten thousand, which is the amount that was indicated by the Massachusetts during her recent trial. The estimated speed corresponding to the ten thousand horse power of the Kearsarge is fifteen knots. It would be a wise policy to make the fifteen and a half to sixteen knot speed of the Indiana type the lowest allowable rate of speed for the battleships of the new navy. When a fleet goes into action, its speed will be limited to the speed of the slowest ship, and a wise policy would suggest that the new battleships should be as least as fast, if not a little faster than, their predecessors, even if this should involve the addition of another thousand horse power to their boiler capacity.
The Massachusetts and her sister ships are designed specially for coast defense, as distinct from the Iowa, which is a seagoing battleship. They sit low in the water, their freeboard being about 12 feet, and consequently they will form a more difficult target to hit than the lofty ships of some foreign navies which have a freeboard of over 20 feet.
Their sphere of action will lie off the coasts and in the harbors and roadsteadis, although itshould be understood that, if called to do so, they could make the transatlantic trip with ease. As they will operate within easy reach of the home ports, they do not require to carry a large supply of coal and ammunition. The weight which is ordinarily devoted to these in the seagoing ship has been devoted in the Massachusetts to guns and armor, with the result that she could deliver heavier blows and stand more hammering than any other battleship afloat.
Protection.-The "vitals," that is the engines, boilers, and magazines, are protected by a continuous vertical wall of 18 inch armor at the water line, $71 / 2$ feet high, which is roofed in by a flat steel deck $23 / 4$ inches thick. At each end of this armored wall a circular barbette of 17 inch armor is built up to a height of 15 feet above the water line. Within this revolves a turret of 15 inch steel, in which is placed a pair of 13 inch guns. It will thus be seen that from the water line up to the guns there is a continuous wall of steel 17 and 18 inches thick to protect the turret machinery, the powder and shell, and the gun crew.
The eight 8 inch guns, which are carried at the great height of 26 feet above the water line, are similarly pro tected. A stout ammunition tube of 5 inch steel protects the ammunition in its passage from below the armored deck to the base of the barbettes. The barbettes are protected by 8 inches and the turrets above them with 6 inches of steel. The 6 inch guns are protected by 6 inches of steel, and shells are prevented from entering and bursting below them by a belt of 5 inch steel, which rises above the 18 inch belt armor. A conning tower situated at the base of the military mast, and protected with 10 inches of steel, will shelter the commander when he takes the ship into action.
Now, when it is remembered that the 18 inch armor is barely penetrable by the heaviest artillery under ideal conditions at the proving ground, and that the

VANITY FAIR at olympia--SCREENING the lady.
6 and 8 inch armor is equally proof against the shells of the heavier class of rapid firing guns, it is safe to say that the Massachusetts could carry her guns unharmed through a long protracted naval fight.
Armament.-The great offensive power of the Massachusetts is shown in the accompanying table.

No.	Caliber Inches.	Weight of shot Pounds.	Muzzle velocity Feet.	Muzzle energy Tons.	$\left\lvert\, \begin{gathered} \text { Muzzle } \\ \text { penetration of } \\ \text { iron } \\ \text { Inches. } \end{gathered}\right.$
	13	1,100	2,100	30,627	
4	${ }_{6} 8$	1250 100	2,150 2,150	${ }_{3}^{8,011}$	${ }_{15}^{21.6}$
$\begin{gathered} 20 \\ \mathbf{6} \\ 6 \end{gathered}$	6-pounder rapid firing guns. 1-pounder Torpedo tubes.				

It is the battery of 8 inch guns which gives this type of vessel its superior power of attack as compared with other ships; and in a naval duel it would probably decide the issue in its favor

THE ILLUSION VANITY FAIR AT THE OLYMPIA. We illustrate a very clever illusion which has re cently mystified thousands of people who patronize

VANITY FAIR at OLYMPIA-THE LADY HAS VANISHED.
the Olympia in this city. It presents the disappear ance of a lady, apparently through a solid looking glass. The method used is remarkably ingenious.

A large pier glass in an ornamental frame is wheeled upon the stage. The glass reaches down within about two feet of the floor, so that every one can see under it. The only peculiarities which a skilled observer would be apt to notice are a wide panel extending across the top of the frame and a bar crossing the glass some four feet from the floor. The first is ostensibly for artistic effect-it really is essential to the illusion. The horizontal piece purports to be used in connection with a pair of brackets to support a glass shelf on which the lady stands-it also is essential to the illusion.
Brackets are attached to the frame, one on each side, at.the level of the transverse piece, and a couple of curtains are carried by curtain poles or rods extending outward from the sides of the frame. Across the ends of the brackets a rod or bar is placed and a plate of glass rests as a shelf with one end on the rod and the other on the horizontal piece, thus impressing upon the audience the utility of the crosspiece. Its realfunction is not revealed.
A lady steps upon the shelf, using a step ladder to reach it. She at once turns to the glass and begins inspecting her reflection. The exhibitor turns her with her face to the audience and she agains turns back. This gives some byplay, and it also leaves her with her back to the audience, which is desirable for the performance of the deception. A screen is now placed around her. The screen is so narrow that a considerable portion of the mirror shows on each side of it. All is quiet for a moment, and then the screen is taken down and the lady has disappeared. The mystification is completed by the removal of the portable mirror, it being thus made evident that the performer is not hidden behind it.
Two of our cuts illustrate the performance as seen by the audience, the third explains the illusion. The mirror is really in two sections, the apparently innocent crossbar concealing the top of the lower one. The large upper section is placed just back of the lower piece, so that its lower end slides down behind it. upper section moves up and down in the frame like a window sash, and to make this possible without the andience discerning it the wide panel across the top of its upper portion goes back of the panel, so that its upper edge is concealed.

Out of the lower portion of the same mirror a piece is cut, leaving an opening large enough to admit of the passage of the person of the lady, The third cut, with this description, explains everything. The mirror as brought out on the stage has its large upper section in its lowest position. The notched portion lies behind the lower section, so that the notch is completely hidden from the audience. When the glass shelf is put in place, the performer steps upon it and is screened from view. The counterpoised glass is raised like a window sash, exposing the notch. The screen is just wide enough to conceal the notch, the fact that a margin of the mirror shows on each side of the screen still further masking the deception. From the scene piece back of the mirror an inclined platform is projected to the opening in the mirror. Through the opening the lady creeps and by the assistant is drawn away behind the scene; next the platform is removed, the glass is pushed down again, and, the screen being removed there is no lady to be seen. The fact that some of the mirror was visible during the entire operation greatly increases the mystery. The lady passes through the notch feet foremost, and her position, facing the mirror makes this the easier

Lippman's Interference Color Photography.
In a lecture before the Royal Institution, of London, on April 17, M. Lippman, as reported in Photography, stated that the essentials of his interference method of photography in colors required an emulsion almost transparent, with no visible grain, the film to be in contact during exposure with a mirror, for which a sheet of platinum could be used, but mercury was bet ter. The rapidity of light was stated to be 186,000 wiles per second, but by means of the mirror it was induced to stand still and have its portrait taken. The duced to stand stint and have its portrait taken. The
formation of the stagnant waves was shown by a very pretty experiment with an India rubber tube suspended from the ceiling; and the explanation that at the nodal points there was no movement of light, and consequently no reduction of silver, led up to the explanation of the deposition of the silver in strata, of which there were about five hundred in the thickness of an ordinary sheet of note paper.
The reproduction of color by these negatives was explained from the analogy of the phonograph, which was able to set up vibrations similar to those which had caused the impression on the cylinder.
Mimicry in Plants.-While, in animals, color is greatly influenced by the need of protection from their numerous enemies, plants rarely need to be concealed, and obtain protection by their hardness, their spines, their hairy covering, or their poisonous secretions. There seem to exist, however, a few cases of true protective coloring, the most remarkable being that of the stone mesembryanthemum of the Cape of Good Hope, which in form and color closely resembles the stones among which it grows : and Dr. Burchell, who first discovered it, believes that the juicy little plant

VANITY FAIR at oLYMPIA-THE DISAPPEARANCE EXPLAINED. thus generally escapes the notice of the cattle and wild herbivorous animals. Mr. J. P. M. Weale ha also noticed that many plants growing in the stony Karoo have their tuberous roots above the soil, and these so perfectly resemble the stones among which they grow that, when not in leaf, it is almost impossible to distinguish them.

Recommendations in Regard to

Some time ago, aiter an unexplainable explosion of a gas cylinder at a suburban railway station near London, the Secretary of State appointed a committee to investigate ard obtain scientific advice. The committee gave the matter carefol consideration and ascertained that, of nineteen cases of explosions in different parts of the world, four were due to carelessness, one from mixed gas or vapor due to improper compressing arrangements, four to bad cylinders, three to bad cylinders or to excessive pressure due to over charging, one due to ignition from oil, and one for which no cause can be assigned. Five were caused by explosions of pressure gages or reducing valves attached to cylinders. The report says further, which we find in the Magic Lantern Journal and Photographic Enlarger, that the committee offers the fol lowing recommendations:
A.-CYLINDERS OF COMPRESSED GAS (OXYGEN HYDROGEN, OR COAL GAS)
(a) Lap-welded Wrought Iron.-Greatest working pressure, 120 atmospheres, or 1,000 pounds per square inch.
Stress due to working pressure not to exceed $61 / 2$ tons per square inch.
Proof pressure in hydraulic test, after annealing, 224 atmospheres, or 3,360 pounds per square inch.
Permanent stretch in hydraulic test not to exceed 10 per cent of the elastic stretch.
One cylinder in fifty to be subjected to a statical hending test, and to stand crushing nearly flat between two rounded knife edges without cracking.
(b) Lap-welded or Seamless Steel.-Greatest working pressure, 120 atmospheres, or 1,800 pounds per square inch.
Stress due to working pressure not to exceed $71 / 2$ tons per square inch in lap-welded or 8 tons per square inch in seamless cylinders.
Carbon in steel not to exceed 0.25 per cent. or iron to be less than 99 per cent.
Tenacity of steel not to be less than 26 or more than 33 tons per square inch. Ultimate elongation not less than $1 \cdot 2$ inches in 8 inches. Test bar to be cut from finished annealed cylinder.
Proof pressure in hydraulic test, after annealing, 224 atmospheres, or 3,360 pounds per square inch.
Permanent stretch shown by water jacket not to exceed 10 per cent of elastic stretch.
One cylinder in fifty to be subjected to a statical bending test, and to stand crushing nearly flat between rounded knife edges without cracking.

Regulations Applicable to all Cylinders.-Cylinders to be marked with a rotation number, a manufacturer's or owner's mark, an annealing mark with date, a test mark with date. The marks to be permanent and easily visible.
Testing to be repeated at least every two years, and annealing at least every four years.
A record to be kept of all tests.
Cylinders which fail in testing to be destroyed or rendered useless.
Hydrogen and coal gas cylinders to have left-handed threads for attaching connections, and to be painted red.

The compressing apparatus to have two pressure gages and an automatic arrangement for preventing overcharging. The compressing apparatus for oxygen to be wholly distinct and unconnected with the compressing apparatus for hydrogen and coal gas.
Cylinders not to be refilled until they hav emptied.
If cylinders are sent out unpacked, the valve fittings should be protected by a steel cap.
A minimum weight to be fixed for each size of cylinder in accordance with its required thickness. Cylinders of less weight to be rejected.
B. -The committee suggests that factories where gas is compressed be inspected regularly, something on the plan of boiler and elevator inspection in the United States.
Such an inspection should be directed to all matters referred to in this report as important in securing safety. The inspector should act on a scheme of instructions, which could be modified from time to time as experience showed that modification was permissible or ne essary. The inspector should have the right to examine the specifications to which cylinders were manufactured, to inquire into the precautions taken to secure proper thickness and complete anneal ing, to examine the records of tests, and occasionally to order tests of cylinders for his own information. He should, acting in accordance with instructions, order the reannealing or retesting of cylinders. He should have the right to test the pressure gages, weighing apparatus, and other. appliances, and to require alterations to be made if they were unsatis factory. He should occasionally examine cylinders to see that they were not overfilled.

When an inspector was satisfied that the arrangements at any factory were adequate and that the precautions laid down were being taken, he should report to that effect, and a certificate should be issued stat
ing that the factory had been inspected and that the arrangements had been found satisfactory.
Factories holding such a certificate should be author ized to test and mark cylinders, and to place on them a special form of test mark.
C.-After such inspection and tests, the committee think that the railway companies might, without risk withdraw the regulation as to packing cylinders, in the case of firms holding a certificate of inspection.
The high pressure system is adopted to some exten in the United States as regards other gases than oxygen and hydrogen. Explosions here of moderate pressure cylinders are very rare indeed, and we believe the express companies are not specially exacting in the transportation of such cylinders, because of their general reputation for safety.

A TURBINE WATER WHEEL.

The illustration represents a turbine water wheel of which the gates are balanced, so that they may be opened or shut with but little exertion, and made to close either the inlets or the outlets of the buckets. The improvement has been patented by Adam W. The improvement has been patented by Adam W.
Haag, of Fleetwood, Pa. Fig. 1 represents a vertical Haag, of Fleetwood, Pa. Fig. 1 represents a vertical
section through the wheel and Fig. 2 is a plan view, section through the wheel and Fig. 2 is a plan view,
with a portion of the top of the wheel casing broken with a portion of the top of the wheel casing broken
away, showing the buckets. A central, inwardly away, showing the buckets. A central, inwardly
curved belt surrounds the bucket section of the wheel, providing an inlet and outlet for each bucket, as indicated by the arrows. A series of tangential partitions is arranged in the wheel casing to form inlet buckets, and an annular gate which surrounds the wheel is secured to the lower ends of two racks, which move vertically in the casing, and whose upper ends are secured to the under face of a float. The float is preferably made of metal, and has a central opening through which the wheel shaft is carried, aud is also connected by tubular rods with the space below the

HAAG'S TURBINE WATER WHEEL.

penstock, the rods serving as guides for and to de liver water from the float. Attached to the upper sec tion of the wheel casing is a cover, in bearings on which is journaled a transverse shaft carrying pinions meshing with the racks to which the gate is secured and the transverse shaft has at one end a be vel gear meshing with a similar gear on a vertical shaft a whose upper end is a hand wheel. The float is designed to be of suitable capacity to perfectly balance the annular gate and the connected operative mechanism. When the wheel is in operation the gate is located, as shown in Fig. 1, at the division between the outlet and the inlet, but by turning the hand wheel, the gate may be moved upward to close the inlets of the buckets, or it may be carried downward below the bottom of the penstock, to close the outletan arrangement designed to be especially advantage ous if any obstruction should enter the inlets.

Salted Petroleum.

The Revue Industrielle, quoting from the Practische Maschinen Constructeur, describes the following pro If of rendering petroleum uninflammable :
If to 250 gallons of petroleum there be added 550 pounds of common salt, and the mixture be heated to $100^{\circ} \mathrm{C}$., there will be collected about 60 gallons of volatile and easily inflammable hydrocarbons that are commonly called benzines. The remaining petroleum is no longer inflammable below $100^{\circ} \mathrm{C}$., and, as it contains chloride of calcium, bromide of magnesium and sulphate of magnesia, its illuminating power is increased. To these 190 gallons of petroleum that have undergone distillation there are added 375 gallons of crude petroleum, and the mixture is heated for one hour at $100^{\circ} \mathrm{C}$., and then allowed to cool to 40°. Then the 60 gallons of benzine that were previously separated are added, and the whole is again heated up to about 85°. The fuel thus obtained will be uninflammable below $75^{\circ} \mathrm{C}$.

Notice to Our Readers,

In order to obtain the opinion of the readers of the ScIENTIFIC AMERICAN as to what invention introduced within the last fifty years has conferred the greatest benefit upon mankind, we publish the accom panying card, which please cut out and return to the editor. Those who preserve the paper for binding and do not desire to deface their files, or who read this notice at a library, will please answer by postal card. It is desired to get as full a vote as possible. The result of the vote will be published in the Special 50th Anniversary Number of the Scientific Ameri CAN on July 25.

Editor of the Scientific Americian. Dear Sir:

I consider that.

```
invented by.
has conferred the greatest benefit upon man
kind.
    Name...
```


Why Sand Floats on Water.

In a recent number of the American Geologist Mr. Frederic W. Simonds gives some interesting observa tions on sand floating on water. It is quite well known that smal!, dry particles of substances of greater specific gravity than water will float upon it, by reason of capillary action. The surface tension of the water enabling the water to form a depression somewhat larger than the particle, this has the same result as if the specific gravity of the particle had been decreased The phenomenon observed by Mr. Simonds at Llano River is interesting, as the granite sand was larger and heavier than the dust which had usually been obheavier than the dust which had usually been ob-
served heretofore. He tried various kinds of sand and served heretofore. He tried various kinds of sand and
found that they all floated, with one exception. Mr. Simonds says:
"The morning after my arrival, the river was found to be rising, and, as I stood on the bank, at the point where we secured our water supply, I noticed a considerable froth and what appeared to me at the time scum passing down the stream. I spoke of the condition of the river to my companion, Mr. Laurence D. Brooks, of Austin, who remarked that what seemed to be scum was really sand. I thereupon went down to the water's edge, and, dipping up some of the floating material, was astonished to find that the patches were composed of sand, mainly of quartz. At this time-half-past nine or ten-the water supported a large number of patches, which varied in arta from less than a square inch up to several square inches, all swept along by the current.
"A week later, when the river was well down and the sandy stretches of its bed had become quite dry on their surface, I gathered sand by handfuls, and sent it floating down the stream in such quantities that the sand rafts actually cast shadows on the bottom as they passed:
"When shaded, it will be seen that the floating sand grains cause a depression of the water's surface, which indeed is quite as apparent in the case of isolated grains as in that of patches. I recall one intance where the depression, of very short duration, possibly but a few seconds, was so great as to be positively startling. As I was sprinkling some sand upon the river, for experimental purnoses, a pebble almost as large as the end of my little finger fell into the center of a floating patch, which, to my great astonish ment and delight, was depressed like a funnel for say half an inch, before the cause of this unexpected phe nomenon broke through the surface and sank to the bottom.
"It appears from these and other observations that the weight of the sand grains actually depresses the surface of the water; yet the elastic reaction of that surface is sufficiently great to prevent them from sinking, especially when the resistance offered by their angularity is taken into consideration. In the launching of grains the more rounded would tend to roll over in the water and thus become wet, in consequence of which they would sink, while those of an irregular shape would overcome the tendency to roll and remain par tially dry, thus fulfilling a condition necessary for floating."

Experiments have been carried on in Germany by Drs. Hall, Riegel, Notbe, and others with the view of ascertaining how the bacteria of the soil may be rendered useful. Herr Notbe has succeeded in cultivat ing these bacteria on a large scale, and he is convinced that the sowing of the bacteria necessary for the as imilation of nitrogen and the successful cultivation of leguminous plants will make soils more productive which need them, and will do so in a cheaper and more conveniert way than the method of inoculating suitable earth, devised some years ago. a special monogram by the Department of Agriculture, to which we are indebted for the accompanying illustrations. The damage done to crops by rabbits, especially in large sections of irrigated and formerly nation. The Indians originated this method, the jack rabbits, on being started from their hiding places, usually making for the open plain, where they might be turned in their flight as desired. In the modern rabbit drives precautions are tak en that no escape is left for the animals when once surrounded, and a drive always means a gala day large numbers of people turning out with sticks and clubs and scattering over a considerable area to start the rabbits and drive them toward the mouth of the corral. The Grand Army rabbi drive, March 12 1892, is said to have been the largest one on re cord. The drive took place between Oleander tween Easton, twelve miles southwest of Fresno, and the conclusion of this drive forms the subject of one of our illustrations. nearly 2,000 horsemen took part, the hunt in which some twenty square miles.
The details of the great drive near Fresno are portrayed as follows by a writer in the Chicago Tribune A close fence forming the corral is built about 500 yards square, with an opening or entrance for receiving the drive at one end, the opening being perhaps 50 feet wide. This is the finishing point of the drive, and will hold thousands of rabbits. From this opening diverge two fences, close enough to keep the rabbits from jumping through, about 5 feet high. These two fences diverge from the entrance for about 3 miles, increasing in their distance apart as they increase in dis. tance from the entrance.
By 7 o'clock in the morning all is bustle and preparation for the drive. Some men have heavy sticks and some heavy clubs, but no heavy clubs, but no
pistols or any kind of pistols or any kind of
firearms are allowed, firearms are allowed,
and no dogs. The sticks and no dogs. Thesticks
and clubs are used to and clubs are used to
beat the brush and to kill the rabbits at the finish. A general is appointed to give orders, and under him, are those who keep the lines in order. But sometimes they are anything but orderly. The order to start being given along the line, the cavalcade rushes forward. Boys with hoots and cries

LARGEST CALIFORNIA JACK RABBIT DRIVE-20 000 RABBITS KILLED.

CALIFORNIA RABBIT DRIVES AND HUNTS.
This subject has recently been wade the subject of arid lands in the West, has made necessary the taking of such extraordinary measures for their extermi-

Many try the back track only to meet death in the attempt. All the horsemen gallop in cowboy style, some with long sticks in their hands. Great numbers of rabbits dash in every direction in front of the advancing hosts, and far ahead the long ears of hundreds more can be seen racing for life, occasionally crouching and then starting ahead again, but still surely advancing into the inevitable death trap. The close proximity to the finish makes the chase exciting. Those on foot are heated and eager. The fence on each side is closare heated and eager. The fence on each side is clos-
ing in fast, and although still some distance from the

A CALIFORNIA JACK RABBIT DRIVE-RABBITS ENTERING THE CORRAL.
British Excavations at Athens.

The British school at Athens has undertaken, besides its excarations on the island of Melos, some excavation work in Athens itself, which, so far as one can judge at this early stage, gives promise of very important results for the topography of ancient Athens. The site of the ancient Athenian suburb called Kynosarges, known chiefly for its gymnasium, was for a long time thought to lie at the foot of Mount Lyka bettos, on the southeastern side. This was Leake's view, and was not disputed till recently, when Prof. Doerpfeld made it clear, from a comparison of the testimonies of an cient authors that the Kynosarges must have lain further to the south, along the banks of the Ilis sus. In pursuance of this view, Mr Cecil Smith, director of the Brit ish school, had his attention at. tracted to a spot on the south bank of the river, sev eral hundred yards below the Stadion, where the ground fall away from a smal plateau in re markably abrupt and perpendicu lar manner, indi cating the pres ence of hidden walls.
As on eithe side of this pla teau are two prominent hills which might well be those mentioned by ancient authors in connection with the Kynosarges, it wa decided to dig a trench through this plateau The trench, at a depth of a few inches, brought to light numerous walls, chiefly of the Roman period; and one of the first constructions whose outline could and one of the first constructions whose outline could
be traced exactly was that of a Roman calidarium. be traced exactly was that of a Roman calidarium.
This would seem to point to the existence of a gymThis would seem to point to the existence of a gym-
nasium, and this fact, if proved, would go far toward settling the question of the Kynosarges site, provided that the remains of the classic period can be foun beneath or beside these Roman remains. Nuwerous interesting frag ments of ancient Greek vases and various me tallic objects have been found in the rubbish excavated; the remains of a huge vase of Melian type, as it seems deserve especial men tion, as this would be almost a unique find in Attica. The wide extent of the ruins and the solid character of the masonry discovered thus far make it evident that this is the site of a large public building or group of buildings-a very significant fact for a spot so far outside the ancient city walls. The British school is to be congratulated on having secured a piece of work which promises to be of such impor tance for the study of ancient Athenian to pography ; and if it should prove at length to be the site of Kyno sarges, it will be a source
run hither and thither, wielding their sticks. Men on but it brings tears to many an eve, and makes th foot in advance lines are followed by those on horseback and in vehicles. Those on foot seem to have the best success in putting up the rabbits.

After advancing a few miles the commencement of the fences diverging from the corral can be seen. The scene is humorous at times, when a horseman is seen dashing at full speed after a jack rabbit and a man on foot running in another direction after another. Now hundreds of the poor creatures are easily discerned as
the fences appear on the left and right, miles apart.
ut it brings tears to many an eve, and makes th heart sore to witness the finish. It is a relief to everybody
end.

The steamer Windward, of the Jackson-Harmswort expedition, will leave again for the Arctic Sea, early in June. The vessel will carry letters for Dr. Nansen, on the chance of falling in with him north of Franz Josef Land. More members will be sent out to recruit the Jackson-Harmsworth expedition.
special satisfaction to Englishmen that the site wich was eagerly sought by two English excavators which was eagerly sought by two English excavators
at the beginning of this century, and for whose disat the beginning of this century, and for whose dis-
covery Lord Byron once planned excavations, should have been brought to light by the British school at Athens.-London Times.
MM. Deherata and Bemoussy have tried a series of experiments which showed the great ad rantage of liming strongly argillaceous soil; the lime tends to pre serve the porous structure.

RECENTLY PATENTED inVENTIONS.

Engineering.

Balianced Slide Valve.-George S. Vaughn, Oil City, Pa. To thoroughly balance the slide and other causes to a minimum this inventor has devised an improvement consisting of an apertured plate having a
nub sliding in the steam chest cover, and on which slides hub sliding in the steam chest cover, and on which slides
the top face of the slide valve, having an inlet bore which the top face of the slide valve, having an inlet bore which
is at all times in register with the aperture in the plate. the all times in register with the aperture in the plate.
The improved plant is of simple and durable construcon.
Pressure Reducing Valve.-Thomas P. Ford, Brooklyn, N. Y, This is an automatically working valve which may be conveniently set to the de-
sired reduction of the initial pressure, a reducing valve chamber being connected with the steam inlet, a main valve controlling the passage from the inlet to the outlet, ducing chamber and the outlet to permit the steam passing to the outlet to press on the main valve. The valve
may be readily examined and repaired on simply unmay be readily ex
Smoke Consumer.-William C. Welsh, Allegheny. Pa. According to this invention funnels ar arranged in the smoke box at about the level of the bot mo re epace, while other pipes embedded in the walls being also an inlet and steam pipes arranged to create blast through the side pipes. The improvement is designed to not only perfectly consume the smoke, but
also to effect a substantial saving in fuel and better aming efficiency
Bilge Water Discharge.-Nicholas Power, New York City. This invention provides a siphon apparatus designed to be automatic in its action, so
contructed that the valves will be opened to their full predetermined level in the bilge well, a steam supply pipe being connected with one end of a differential valve of the apparatus and an ejector connected with itts oppo-
site end. When the water reaches a fixed lowest mark, site end. When the water reaches a fixed
the valves of the device are instantly closed.

Mechanical.

Screw Cutting Machine. - Hio P. Eilers, Cleveland, Ohio. This is a triplemachine, espe cially designed for manufacturing purposes, in which a clally designed for manufacturing purposes, in which a
single operator can readily handle the work for the three
carriages, while the machine can be run at a speed which carriages, while the machine can be run at a speed which will insure a long life to the parts and dies and also pro-
duce perfect work in large quantities. The clutch ring duce perfect work in large quantities. The clutch ring heretofore employed in machines of this kind is dispensed
with, and the connection between the yoke, toggle and diehead is very simple, red
Nut Lock.-Jefferson D. Tynes, Fort mith, Ark. while the other end is formed with a straight portion and an arm extending upward past the first end. The device
is more particularly designed for use on rail joints, but is plicable also for other purposes
Thaseling Machine. - Ernst Gessner, Aue, Saxony, Germany. In machines for raising the
nap on cloth, this inventor provides teaseling rollers of nap on cloth, this inventor provides teaseling rollers of
different diameters on one drum, united with one another to run at the same axial speed, giving different sur pposite directions to the teeth of the larger rollers. The reater the difference in diameter between the large and C.e small rollers, the greater is the teaseling effect on the cloth, and for raising light goods it is preferred to revolve the teaseling rollers not only by the
but also by belts, cords or gearings.
Soldering Iron.- Rudolph C. Becker, Springfield, Ohio. This iron has a central hollow
space with a small valve-closed passage extending to the space with a small valve-closed passage extending to the
top or point of the iron. The handle of the iron is tubular and the stem of the valve extends up it to the woode valve to its seat, from which it may be raised by a thumb piece. The soldering liquid is held in the chamber o cavity of the head, the valve being raised to permit it to
flow out, as it is liquefied by the heating of the iron in use.

Agricultural

Stamberry Planter.-Louis B. Schell, San Antonio, Fla. The frame of this planter is
supported by a forward planting wheel on which are supported by a forward planting wheel on which are
three trip pins and two rear covering wheels, a plow being centrally located. A centrally pivoted arm has spring. controlled jaws to receive the plant, an extension of the from a holder on the rear of the frame and automatically deposited in the furrow made to receive it, immediatel in advance of the covering wheels. The distance be tween the plants may be regulated by setting the trip
pins as desired, and the planter may be used for planting pins as desired, and the planter may
seedlings or slips of any description.
Hay Press.-Charles A. Anderson, Cale, Indian Ter. This invention provides a rapidly
working press, of strong and simple mechanism, in which the bale being formed may be tied by passing needles and wires through recesses in the plunger, forming wire horse power is also provided for the press, and a quick return of the plunger is obtained. A pivoted tucking
plate above the mouth of the receiving chamber materiplate above the mouth of the receiving
ally assists the feeding of the press.

Miscellaneous.

Radiant Heat Bath.-John H. Kel ogg, Battle Creek, Mich. This invention provides an baths, being designed to induce perspiration at a much baths, being designed to induce perspiration at a much
lower temperature and more powerfully promote the ac-
tion of the skin and the elimination of carbonic
acid. Ittconsists of a cabinet whose walls are provided acid. Ittconsists of a cabinet whase walls are provided
with mirrors refling light toward the center, there be ing incandescent electric lamps on the walls, while a
sliding table carries the person into and out of the che sliding table carries the person into and out of the cham-
ber. good circulation of fresh air is maintained while the treatment is in progress.
Preparing Flaked Cereals.-The ame inventor has patented a process for making an immade of wheat, barley or oats, the outer husks being moved, and corn or other grains. The grain is first
soaked at a temperature which prevents fermentation, soaked at a temperature which prevents fermentation,
then heated to cook the starch, dried, rolled between cold then heated to cook the starch, dried, rolled between cold
rollers, and the flakes baked until thoroughly dry and risp, forming per ecly rook, ready to be eat without further preparation. It will keep indefinitely
being perfectly sterilized, and is especially well adapted or sick and convalescent people.
Stage Apparatus.-Carl E. Nilsson, STAGE ApParatus.-Carl E. Nilsson,
New York City. To produce an aerial ballet this inventor has devised a simple apparatus to be arranged above the pearance of floating in the air, moving up and down and laterally. It comprises movable guide pulleys on opposite
sides of a main pulley and simultaneously movable tosides of a main pulley and simultaneously movable to-
ward and from it, there being also a supporting frame ward and from it, there being also a supporting frame
with slides connected by cable, a cable mechanism for turning the pulley and suspending wires connected with is strong and simple and not likely to get out of order. Desulphurizing Blast Furnace inder of ander smelting or blast furnaces, while in adles, is desulphurized, according to this process, in such manner that it retains sufficient fluidity to be cast into moulds, or to be granulated in water after its treatment is finished. The slag is treated with easily fusible subfances that wil unite with the principal impurities to orm a scum, calcined sodium sulphate and fused sodium lag may be cast into ornamental building materials or

Hot Water Heater. - John E. Wal: lace, Altoona, Pa. This heater has upper and lower reser-
voirs connected by a series of spiral pipes which surround he main combustion chamber, in which the gases and products of combustion are held for a maximum of time, and in the lower reservoir is a central space which constitutes the fire pot. The body of the heater consists of
two casings, between which is an air space in which air wo casings, between which is an air space in which air
is heated before it enters the fire, and an improved grate potary direction and reciprocally
Water Tank Valve. - Thomas V. Coony. Albuquerque, New Mexico. This is a valve of ranged to prevent leakage and be perfectly noiseless when opening and closing. The chamber in the upper part of the valve casing is enlarged, and in operation the
pressure on the upper surface of the valve exceeds that pressure on the upper surface of the valve exceeds that
on its lower surface, quickly forcing the valve to its seat on its lower surface, quickly forcing the valve to its seat,
where it is not affected by any fluttering of the water g the float to bob.
Fence Post.-Calvin Kutzner, Cairo hio. This is a metal post made of two connected up rights of angle iron, set in a central recess of a base there being a metal cap on top of the base. Notches and hooks are arranged in the uprights, with movable keys by means of which f
Plastering Compound. - James E. Summers, Richmond, Va. Two patents have been granted this inventor for improvements in plastering
compounds, one of the compounds producing a gray fin ish and a rough but attractive surface particularly desir ble for churches and offices. It is made of crushe lag, plaster of Paris, lime, and other ingredients, in cer In the other compound hydraulic cement and vegetable fiber are also employed, the material being mixed in the room being plastered, and the compound being adapted for use on wood, wire, or metal lat
stone, hardening in about two hours.
Photographic Dark Room.-John P Brockway, Denver, Col. This invention consists of a
chamber having removable sides provided with sleeves chamber having removable sides provided with sleeves
for the arms of the operator, so that he cantpass his hands nd arms into the chamber to manipulate the plates, alms, etc., while the rest of his body is on the outside. the development of plates or the filling of plate and film

Bed Spring. - James M. Crutcher, Atlanta, Ga. According to this invention, elastic rings are arranged in rows, and cross rods extending between djacent rows of rings, and connected at their ends with he frame, are connected with the rings by oppositely
extending V -shaped portions. A very strong but elastic network is thus obtained, the rings assuming differe shapes according to the weight or strength of the pull pon them, and ass
Cuff Button.-Anton Brunka, New York City. This invention relates to ink buttons, and
provides a construction of the link which permits of more eadily connecting and placing the buttons, rendering readily connecting and placing the buttons, rendering
hem also more easy of removal. One of the buttons is made with a novel socket or tube receiving a bar projecting from the other button, and in the use of the button hrough the other, the parts being then guided into engagement with each other and so held by a spring
catch.
Shirt Waist. - Alfred Wolf, New York City. This invention provides a device for attachporting the waistband of the skirt at the rear, reinforcing also the gathers and preventing the watst from working
up oeyond the waistband. Secured to the shirt waist
over the gathers is a tab or flap in which are eyelets
adapted to receive hooks on opposite sides of a placket
of a shirt, tapes at the ends of the tab passing around the
Garment Supporter.- Richard M. Skinaer, Flemingsburg, Ky. This device consists of a safety pin adapted to engage the waistband of a pair of
drawers, while extending up from the shank of the is a hook adapted to engage the waistband of the pin a button on the trousers
Bottle Stopper.--Henry Leidel, New York City. A "safety" stopper, to prevent the refilling of bottles once emptied, has been devised by this inventor,
the invention consisting of a valve chamber at the neck the invention consisting of a valve chamber at the neck
of the bottle, with valve seat and inclosed valve arranged of the bottle, with valve seat and inclosed valve arranged
to open outward, to permit the contents of the bottle to to open outward, to permit the contents of the botlle to
be removed, while the valve engages its seat when the bottle is in vertical position, thus preventing liquid from when applied is difficult of removal without breakage.
Poison Distributer.-George A. Brown, Hardman, Oregon. This is a device more espe-
cially designed for dropping poisoned grain for killing quirrels and cor dropping poisoned is a box containing the poisoned grain, a valve sliding in charge the poisoned grain upon the ground, at the decharge the pois
sired locations.
Display Box. -- Leopold Sonn, New York City. This is a box especially adapted for the packing and display of neckwear, the construction being
such that each necktie may be mounted on an independent support removably secured in the box, thus not only displaying the neckwear to the best advantage, but preventing the soiling of the ties by handiling, as in removing A purchased tie and its support may also be wrapped up purchased tie and its support may also be wrapped up
together, preventing the rumpling of the tie in the hands r pocket of a purchaser.
Hygienic Chamber. - Amador T. Blanco, Havana, Cuba. This inventor provides a chamber for the isolation of a sick person, the air to be con-
tantly renewed and brought to any desired temperature and humidity, and moistened or mixed with antiseptic or aromatic substances. On the top of the chamber is a ing a blower, a purifier, a heater, a saturator, and a condenser, and there are gasometers for supplying oxygen other novel features.
Adjustable Rest for Bicycles. Franz Kampf, New York City. At each side of the rear wheel an attaching plate is secured to the frame and car ries a pivoted and braced rest arm, which may be swung
to contact with the ground or raised therefrom and folded to contact with the ground or raised therefrom and folded the handle bar. The device is designed to steady the bicycle to facilitate the learning of the beginner, enables women to mount readily, may be used as a brake, and
also to hold the wheel in upright position when at

Body Shield.-Edward Hunt, Denver, Col. To protect from the wind the throat, breast, face and
earsof a bicyclerider or boatman, this inventor has devised earsof a bicyclerider or boatman. this inventor has devised V -shaped shield comprised of two parts of stiff material in connection with'a V-shaped face shield, provided with windows and ear muffs. The shields are attached to bicycle
Air Gun.-John C. Raymond, New York City. This is a toy gun more especially designed ressed air, at the same time making a noise by exploding a fulminate. The stock of the gun has an air reser gun communicating with the reservoir by a valved port, while a port also leads to the barrel through the stock, there being likewise a plunger in the barrel and a spria
between the plunger and the inner end of the barrel.
Oyster Dredger. - Norbert Moudeaux, Houna, La. This is a device adapted for atachment to the gunwale of an oyster boat, the dredger to stand on it and move it readily either toward the bow or the stern of the boat. The dredger may be operated by one man, the tongs being quickly
and carried inboard and dumped.
Por'table Elevator. - Micheal M Carthy and John H. Wehmhoff, Dalton City, Ill. This in improvement in elevators, having transporting wheels and a platform on which loaded wagons may be
driven and then hoisted at one end to dumptheir lo into a box that slides vertically, and may be tilted to discharge its contents, as into a granary or other receptacle. The elevator has a wheeled axle pivoted at
may be readily hauled from place to place.

Designs.

Covered Dish.--Robert L. Johnson, Hanley, England. The handle of the cover of this dish surrounded by scroll figures, while the body of the dish at its sides is divided into panels by scroll figures approaching the shape of a cornucopia,
being of scalloped decorative contour.
Jug.-Arthur S. Higgins, New York City. This jug is decorated on its surface to represent
the capped and cloaked figure of George Washington the cloak being thrown open to represent a portion of and.
person, the flgure also holding a sword in on
hand
Fan.-Lina Barkley, Monroe, La. This is a circular fan, the outer edge of which is made up of a dge effect, the central portion having radial divisions, outside of which are represented leaves, buds, and

Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please of this paper.

PBusiness and Wersonal

 he charge for Insertion unier this head is ome Dollar a linefor each insertion : aiout eight wordis to a iine. Advertisements must ie receivea at puibication office as eariv as Marine Iron Works. Chicago. Catalogue free For Sale-Steam yacht 88 ft . complcte equipped, nearly
new. Cost $\$ 14,000$. Price 85,000 . Also 50 other steam yachts. Send for illustrated list. Cbas. P. Willard \& Co., Cbicago.
High
High grade well drills. Loumis Co., Tiffin, Obio. C. s." metal polish. Indianapolis. Samples free. a Hoskns. Assayers, 81 Clark Presses \& Dies. Ferracute Mech. Co Bridgeton. v. J. Principles of Mechanics. Open Court Pub. Co.,Chicą0 Screw machines, milling macnınes, and drill presses.
The Garvin Mach. Co. Laight and Canal Sts., New York. Emerson, Smith \& Co., Ltd., Beaver Falls, Pa.., will send Sawyer's Hand
free to any address.
The oelebrated "Hornsby-Akroy d" Patent Safety Oil Engine is built by the De La Vergne Kefrigerating Ma-
chine Company. Foot of East 138th Stre et, New York. The best book for electricians and beginners in electricity is " Fxperimental Science," by Geo. M. Hopkins.
By mail. \$4, Munn \& Co., publishers, 361 Broadway, N. Y. Stay with your job, and with your wages pay installWhiting's Olive Colony, Byrne Building, Los Angeles,

Carpenters-Make more money. Investigate Ransome's Concrete Construction. Easily learned. Liberal
terms for exclusive rights. Ransome \& Smith Co., 622 Boylston Bldg., Cbicako.
8150.00 buys the copyright, plates, cuts, etc., of the half tone engraving "Modern High Speed Passenger Laco-
motive," size $181-2 \times 28$ inches. A"snap" for some ishing bouse. C. L. Clark, Ashton, II.
Wanted.-Copies to complete flles of the following Re-
volutionary mazazines: Massachusetts Magazine New York Magazine. Royal American Marazine, Columbia Magazine. state price, and whether perfect or not. Address M. A. C., Box 773, New York.
Cripple Creek-lts History to Date, Illustrated.-Just
out, with correct map and costly full page views of out, with correct map and costly full page views of
mines natural as life. This great book will be sent free mines natural as life. This great book wili be sent free
prepaid with our big 56 -col. family paper 3 months on prepal wit our biz
trial for 25 c . (stamps or silver) ; club of 5 , \$1. Latest
mining news. Mention the Scentic AmEricAN mining news. Mention the SCIENTIFIC A
and address Illustrated Weekly, Denver, Colo.
We-send for new and complete catalogue or Scientific New York. Free on appe by Munn \& Co.. 361 Broadway.

HINTS TO CORRESPONDENTS.
Names and A ddress must accompany all letters
orno attention will be paid thereto. This is for our
information and not for publication.
 though we endeavor to reply to all eithererch, by letter
or in this department. each must take his turn let
Buers wish Buy yers wishing to purchase any article not advertised
in our columns will be furnishe with addresses of
houses manufacturing or carryng the same.
Special wVrit ten intormantion on matters of personal rather than, general interest cannot be
expected without remuneration. Scientitice Anurrican SMpplements referred
to may be had at the office. Price 10 cents each.
Books referred to promptiy supplied on receipt of Wince.
marked or labeled.
(6843) H. P. asks: 1. What are the comparative values of (a) soft gray cast iron, (b) malleale cast iron, (c) common wrought iron, (d) Norway iron Soft gray iron is probably best for field magnets of dynamos. The softest wrought iron is best for field magnets of motors. The cores of armatures should be made
of the softest iron. 2. Can you give the approximate ratio of resistance which should be maintained between the windings on the field and armature of small motors or battery currents, series winding? A. For series
winding give the field magnet windings wo-thirds the resistance of the armature windings. 3. How would it be for shunt winding? A. For shunt winding the product of armature and field resistance should equal the
square of the external resistance. 4. Has either system square of the external resistance. 4. Has either system
of winding any marked advantages over the other? If so, please state them. A. Shunt winding is advantageous for cases where the external current varies, but neither is
perfect, and no absolute preference can be expressed. 5 . perfect, and no absolute preference can be expressed. 5 . Is not the drum armature more uni versally used than the ring, and what are the chief merits of cach? A. The merit of the drum armature is that it is easily wound; the
passing of the wire through the central opening of the awkward. 6. H resistance than is represented by the size and length of wire used? If so, can you say, roughly, in what proporrunning or at rest. Counter electromotive force is developed when running, which operates exactly like an ohmic This prevents a motor from running too fast, and enales it to absorb more energy when going slov:. The argoing slow than whis far more liable to burn out wher. M. Hopkins, in describing the winding of the induction coil in his invaluable book," Experimental Science," says
wind in a lathe "set as for cutting a very fine thread," and wind "as close as possible without touching." Can the coil referred to? No. 36 B. of an inch in diameter. Theoretically, 196 convolutions to the inch would not tonch. My lathe will cut
the inch. Would this be fine enough? A. The diame-
ter of the wire fixes the fineness. No. 36 wire has a diameter of 5 mils, or 200 to the inch. Allowing for
space, this would give a setuing of 100 to 150 "threads to the inch." Your other queries are so indefinitely put that they cannot be answered definitely. A coil once punc
tured is practically irreparable, except by rewinding The current which can be used on a coil depends on the size of the primary wire. Counter E.M.F. helps to pre ent too strong a current passing. You can allow, as nuare of tinfoi gives two square feet of surface. coil made by an amateur giving a 2 inch spark shows good practice. Experience is very requisite in making
(6844) L. J. H. asks : 1. To what resist ance should field magnets be wound to be in proportion to in proportion to field? A. See answer to preceding query . How much resistance in ohms has an armature wound ith 1,500 feet of No. 26 wire ? A. The ressistance of quarter this amount, because it is wound in para lel hen the armature is rotating, counter E.M.F. is gene in its action on the current.
(6845) O. R. says : Can you inform me uerie cientific american (in your Notes and Queries) in what manner I can stamp a name on to
polished and crocused steel, by using rubberstamp? What acids I am to use. A. For etching brands and marks on polished steel surfaces, such as saws, knife blades, and are a rubber stamp with the required design me, prothat the letters and figure that are to be bitten by the cid shall be depressed in the stamp. Have a plain hor raround the design, large enough to allow a little bor ar of common putty to be laid around the edge of the amped design to receive the acid. For ink, use resin, esin put 1 teaspoonful lard oil. melt, To $1 / 4$ pound of onfol of lampblack; thoroughly mix sud in a table trpentine to make it of the consistency of printer's in hen cold. Use this on the stamp in the same manne when stamping with ink. When the plate is stamped ace a little border of common putty around and on the dge of the stamped ground. Then pour within the tand a few monents, according to the depth required, hen pour the acid off. Rinse the surface with clea ith the turpentine. Use care not to spill the acid ove解 tric acid, 1 part hydrochloric acid, to 10 parts water by measure. I
(6846) J. C. W. says: We have as great an evil here in the Johnson grass as the Russian thistle in the Northwest. I saw a notice published not long since troy the weeds and grass along its track with electricits as this a success? If so, about what current was use nd how often applied? It seems that if the smallest round, it will grow and multiply faster than microbes. As yet all our efforts to destroy it seem but cultivation. felectricity will kill in any practical method of ap plication, about what current would be necessary ? About and about what would it cost? How many revolution er minute would be required to give such current? A. Answer by the Assistant Botanist United States Depart ment of Agriculture: Johnson grass is propagated largely by its perennial roots, and the chief difficulty in radicaling itis in kiling those roots. The roots are hled by direct expos, the drying effect mer drought or during open winters will effect their de ndy grass, so that it can the more easily weaken the Johnso tivation. Heavy seeding with cow peas will also choke位 to a considerable extent. Small patches may be cid If thy destroyed by the application of carbolic acid. If the Johnson grass has become well establishe sufficient growth to produce good hay crops, the most conomical method is to use the land as a permanent eadow, cutting one or two crops of grass each year, and We doubt the possibility of getting satisfactory result by the application of electricity.-ED.]

TO INVENTORS.

INDEX OF INVENTIONS

 or which Letters Patent of the April 28, 1896,
ND EACH BEARING THAT DATE

 nimat bit, B B. Beribon....

Beam clamp, adjustable, A. B. Carll. Bed support, A. J. Robinson. nedtead attachment, Mauerman \& wöunderlich Benct drill and lathe, combined seif feeding.	Glove case. Vess \& Kenney............................. Gluing or pasting sheets of paper, machine for, ing or past
	Governor, engine, K . D. . Minis. Grading and ditchlne machine, c. C . Corey et ai Grading and ditching machine, P . J. Creedon.a.Grain cleaning and scouring machine, ©. S. Jack-
	Grain, etc., shock cover for, B . Walker Griddle, F. O. McCleary Hair pins, magnetizing box for. C. A. Hussey
	Hammer. C. M. Blydenburgh Hammer, pneumatic, J. Beche. Jr Harrow and pulverizer, combined. \mathbf{w}. Mc̈cüne
	Harvester, grain binding, P. Hanson.
	Heatery See Waters beater..................
	(eamp and fax eleaner, A. Aneell..................
	Invalid chair, D. s. Carrick. rrigator, hot water, J. A. Noble Jack. see vehicle jack. Jack post, C. V. Card.
	Lader apparatus tre
	Lamps, machine forcleantng wire gauze cylinder. of safety, G. Grossmann.\qquad
	Liquid indicator, automatic. F. A. Morse Liquid separator, centrifugal. E. G. N. Saienius. Lock. See Bicycle lock. Sash lock. Seal lock. Locomotive track sauding device, H. Tirmann
Car coupinn, Ja	
	Lcg loader and turner, steam. P. McNerney Loom bedrle motion, R. B. Gopdyear Mail bag catcher and crane, S. S. A. Andrewe in Mandolin, N. Merril crane, S. S. Andrews. Manuscript or printed notes, cover for, w. T
	Mop, wringer, H. A. Wölf Motor. See Traction motor. © $\mathbf{\text { Vapor motor }}$ usic box W Main
	Music leaf holder and turner, W. H. Spence
ceecrspavice	
	Packing, piston rod, is. Hughes. Pad. See Calendar pad. Pan. See Frying pan.
	Paper bag, orren is 'Hoisisal...
	Paper cutting machine, H. i. Köeqei Pen, fountain, J. W. Laughlin Pbotographs in colors. producing, M. Anderson
Coal cr	
Cocks, etc., fastening and stop for ras, J. A.	
des	
	Pipes, device for thawing frozen, s. D. Siliver. Plaiting machine, W. A. Lorenz.i.io.........
	Plants , oeons for supporting and bandilins pot.
	(eater
	Refrigerating apparatus, I. A. Dodge. Register. See Fare register. Regilator. See Feed water regulator. Rivet, W. R. Fox
	Road roller, reversible, M. \mathbf{G}. Bunneii.
	Rock and coal drill or auger, J. T. Snyder........... Roller. See Road roller. Roof making app liance, G. C. Henning.....
	. Mcadams Saddle, riding, W. C. \& J. D. Padgitt Safe, L. L. Treman
	Seal char, M. Mrover.......................:
	separator. See Liquid separator. Steam and watar. separator and stacker, W. Huddle. Sewing machine buttonbole attachiment, w. $\dddot{\mathbf{M}}$.
	Ammerman. ewing macbine, sole, L. Goddu ewing on shank buttons. machine for, R. Thors-
	sin attachment, w ndow, P. Davies harpener, disk, J.' D. Armstrong. harpener, knife, O. Johnsou.
	Sharpener, knife, O. Johnsou..........................
	(eater
	hoord. barree.j.i.............................

559,068! TRADE MARKS.

 PRINTS.
The Hazelton or Porcupine Boiler, sectional view,",
Hazelton Boiler Company.

 cents. In ordering please state the name and number
froadwe patent desired, and remit to Munn \& Co., 361

"My Well and what came out of it." A story by the novelist Frank r. Stockton.
"Your Well and what will come out of it.
Pohlé Air Lift Pump

THE OBER LATHES

SINTZ GAS ENGINE COO.

"WOLVERINE" GAS AND GASOLINE ENGINES, STAT TMANARE. 3 The whiverine it the only red

 PRIESTMAN SAFETY OIL ENGINE

FINEST AND FASTEST

re rivett lathe
Faneuil WatchTool Co.
With the nematachamp the Riveet 1 u utomatic chuck NEW TOOLS . . . NEW CATAICOGUE, 1896 Patent Steam Pump Goo

层罗

LIDGERWOOD CABLEWAYS HOIST AND CONVEY LOADS UP TO
20 TONS. SPANS UPTO 2,000 FEET 20 of these cable arsy nese on the lidgerwood manufacturing co.
ROCK DRIIIS R AIR COMPRESSORS \& GENEFAL MACHINERY FGF
MINING,TUNNELING.
QUARRY \&RALROAD WORK QUARRY \&RALROA
RAND DRILLCOIOO

NEWAYCO AUTOMATIC CIRCUIT BREAKERS

BICYCLE • • Repair Outfits (\%) Send for List 223 . FRED FRASSE CO. 1 Warren Street, New York
THE SUBMERGED PIPE LINE ACROSS

Transits and Leveling Instruments.

Tanaits and Leveling instruments.
NLLATED ELECTRIC LEVELS

ACETYLENE APPARATUS.-ACETY

TWELL DRILLING MACHINERY WILLIAMS BROTHERS. ITHACA, N.Y. MOUNTED OR ON SILLS,FOR DEEP OR SHALLOW WELLS, WITH
STEAM OR HORSE POWER S SEND FOR CATA LOG UE
The Edison Phonographic News A PHONOGRAPH or A KINETOSCOPE the great money-earning wonders. Sample copy 10c.
THE OHIO PHONOGRAPH CO., CINCINNATI, 0.

The Handy Truck Self-Lub. © $\$ 2.00$

A Book on Trucks Free. Boston \& Lockport Block Co.
43 Commercial St., Boston, Mass. EXPLOSIVES AND THEIR MODERN tures delivered before the London. Society. of Arts, on
the explosive mixtures and compouns of modern times
at Gunpowder and the recent improvements in its com-
position, guncotton. nitrogly cerine and nitroglycerine

EXPERTMDDEEAMAKIMG

DORMAN'S VULGANIZERS

 121 E. Fayette St., W. DORMIN B CO.

Guaranteed to opente perfecty or no pay; Mnde for niternating or direct current.
AUTOMATIC GIRCUIT BREAKRE COMPANY, NEWA YGO, MICHIGAN, U. S. A

> xcel in every essential feature of honest conxetion ction the etan PERFECT BEARINGS

EXCEPTIONAL DURABILITY SUPERIOR BEAUTY

 The romad Crcle Sadole

Tor L seat post.

 OUESTER TELEPHONE CONSTRUCTION CO. 250 So. Clinton Street, CBICAGO.
Largest Manufacturers of Telephones in the United States

HELLO, CENTRAL!

 americian patents. - an inter

TVELEPHONES
 responsible parties. Sold thont on trial to
the last two years, every one a success. Julius Andrae \& Sons $\mathbf{C O}$ IILWAUKEE, WIS
RAMMS

 The Bartley Direct Running Saw Mill

RGRHE IS DEAD

507

 SHORTHAND by Mail. stur
 Experimental \& Model Work

DEAF NESS CUREDITHE

Crole

STEEL STAMPS SNinm sinquaf for

MEN:WOMEN

automobile carriages: the

 FRE BICK Kimat BROOK LYN FIRE BRICK WORKS.
88 Van DIKe Street, BROOKLYN, N.

COPY LETTERS

BRASS BAND

 LYON \& EEALI, 33.35 Adams Bt, Ch.čga

29 Years of experience

HAVE YOU SEEN？
The variety of Colum－
bia Bicycle bia Bicycle advertising
is great．All the good
pints all the delight of riding them，cannot be fully described in any one advertisement，nor in
a hundred． a hundred． me wish to know how

son，and so offer a

columela PRIZE

 to whoever shall send us the greatest advertisements clipped from newspapers or magazines issued since Jan． 1 ， 1896 ． Many advertisements differ only in a wordor two；others in the style of type；distinct variations only，however，will be counted． Each advertisement must have plainly
attached to it the name and date of the news． paper or magazine from which it is clipped． Entries must be received by us at Hartford
En before Tuesday on or before Tuesday June 30，1896．In case
of a tie，the award will be made acording to
priority of receipt and entry．Address Department of Statistics， POPE MFG．CO．，Hartford，Conn．

Of The Champion $\begin{gathered}\text { For } \\ \substack{\text { For } \\ \text { Evars } \\ \text { Cass of } \\ \text { Work }} \\ \text { up }\end{gathered}$
$y^{\text {Dio }}{ }^{\text {dite }}$ Hammer
BEAUDRY \＆co．
46 Oliver Street，Boston
AFENTSW WANTED POR FINE TOOLS In EVERYSHOP．

HALF A CENTURY OF CYCLES．－AN

 AMErican SUPrlement，No． 10112. Price 10 cents．

The

American
Bell Telephone
Company，
125 Milk Street，
Boston，Mass．
This Company owns Letters－ Patent No． 463,569 ，granted to Emile Berliner Novem－ ber ${ }^{17}$ ，1891，for a combined Telegraph and Telephone， covering all forms of Microphone Transmitters or contact Telephones．

Penmstuana Iron works compary． BUILDERS OF THE ＂GLOBE＂GAS
 GASOLINE ENGINES
 for Stationary and Marine Service．

Address，50th Street and Lancaster Avenue，PHILADELPHIA，U．S．A

Right $=$ Tires

FOR RACINE

No．75．Hartfor SSingle Tubes－the stand
ard racing tires，the k ind Baldrode in俭 FOR PLEASURE
No．80HartfordSingle－Tubes－thestand．

㿥 FOR SECURITY
 fice a little spead for greater security from
puncture．The ideal tire for tandems．
侐FOR ROUGH SERVICE
No． 7 OHartford Single－Tubes－the stand
ard tires for rocky，hilly country
多 The Hartford Rubber Works Co．
舜 new rork．

Palmer Fabric

Makes a Tire ELASTIC EASY RIDING and FAST （taking less strength to propel）

Palmer Tires

Are Durable，GUARANTEED and Easy to Mend
They are expensive，and only found on High－Grade Wheels． uade by
Palmer Pneumatic Tire Co． Chicago．
Facts About Pneumatic Tires

BUNDY
STEAM
TRAP

WHAT IS YOUR COAL COSTING YOU THIS YEAR？ It will cost a great deal less if you buy a BU NDY＂TEAMy
TRAP．Yon can＇t aftord to be without one．Book＂59＂free A．A．GRIFFING IRON COMPANY，66－68 Centre St．，NEW YORK

Monarch

King of Bicycles－A Marvel
Strength，Speed and Reliabilit

ALL PRITHMETICAL solved rapididy and accurately
by the Comptometer Saves
6opercent oftime and entire－

THE BICYCLE：
ITS INFLUENCE IN
Gas and Gasoline Stationary Engines
 COMBINED ENGINES ENINES gasoline portable engines

BALL BEARING AXLES AND RUB

Any Place
By Any
For
Charter gas encine co．，P． 0. Box 148，Sterling，II

How to Build a Home

gestions and examples of Modern Architecture in the handsomest Arolitetural liseain

＂The Scientific American Building Edition．＇

Each number is illustrated with a Colored plate and numerous
handsome engravings made direct from photographs of buildiings， together with interior views，floor plans，description，cost，location， owners＇and architects＇names and addresses．The illustrations
include seashore，southern，colonial and city residences，churches， nclude seashore，southern，colonial and city residences，churches，
schools，public buildings，stables．carriage houses，etc．
All who conterplate building，or improving homes or structure of any kind，have in this handsome work an almost endless series of the latest and best examples from which to make selections，thus saving time and money

ENGINES Boilers and Machine How How Now

TASTES VARY

in bicycles the same as in other things．Some like the peculiar characteristics of one bicycle， some of another．No one make of bicycles can suit everybody， but ot ot ot ot ot o＊

has gained a larger measure of popularity in proportion to the years it has been on the market than any other wheel in the worid．It is of the＊＊＊＊ HIGHEST
STANDARD OF QUALITY in every detail and particular， is light，graceful and beautifully finished，and sold to all alike at $\$ 85$ ONE FAIR PRICE $\$ 85$ INDIANA BICYCLE CO． INDIANAPOLIS，IND．
Eastern Wholesale Branch，339 B＇way，N．Y．

ASTMAN KODAK CO．
to and booklet
cent stamps．
ROCHESTER，N．Y．

PRINTINTG INKE

