a Weekly Journal 0f Practical information, art, science. mechanics. chemistry, and manufactures $\underset{\text { ESTABLISHED }}{\text { Vol. }} \underset{\text { 1845. }}{\text { LI }} \mathbf{1 7}]$

Sections and elevations of hull. The veseel in light condition and awash.

Stientific ${ }^{\text {andm}}$ merican．

ESTABLISHED 1×45
MUNN \＆CO．，Editors and Proprietors． PUBLISHED WEEKLY AT
No． 361 BIROADWAY，NEW YORK．

NEW YORK，SATURDAY，APRIL 25， 1896.

Contents．
（Mustrated articies are marked wirh an asterisk．）

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No． 1060.
Hor the week Ending April 25， 1896. I．AUTOCARS．－Motor Vebicle Tests．－The engineers submit their
report of the tests made at Cincogo．Valuable data for maters
and users alike．－Continuation report of the tests made at Chicago．－Valuable data for makers
and users alike．Continuation of tris classic and exnaustive in－
vestigation of the moto－venicle problem，with
 III．ELECTRICITY．－The Blot Accumulator．－－Exhaustive $\begin{aligned} & \text { report on } \\ & \text { new secondary battery of the Plante type．}-8 \text { illustrations．．．．．．}\end{aligned}$ IV．MECHANICAL ENGINEERING．－A Curious OId Steam Engine．

 lustratinns．e．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．inder to the 1693
preceding address on theinvention of the Bessemer process．．．．．． 1691

THE INVENTION OF THE BESSEMER PROCESS． The recent controversy between the aged Sir Henry Bessemer，who carries his knighthood by virtue of the fact that he has been considered the inventor of the fanous process which bears his name，and Mr．Joseph D．Weeks，president of the American Institute of Mining Engineers，who disputes his right to the glory of the invention in favor of William Kelly，formerly of Pittsburg，Pa．，and lately deceased，is notable both for the unexpected nature of the claim and for the bigh position of the contending parties
The statement that the Bessemer process is not Bessemer＇s is so startling and seemingly so improbable that nothing short of the highest authority could ren－ der it worthy of serious consideration．As it is，the announcement was made by the president of the American Institute of Mining Engineers，and it formed the subject of his annual address before that dis－ tinguished body．Both the high official position of the author of the address and the occasion on which it was delivered gave an importance to the statement which no one was quicker to realize than the veteran inventor himself－he is now in his eighty－fourth year －and he at once wrote a lengthy reply to Mr．Weeks which showed that he had lost in his old age none of that controversial power for which he was famous in his prime．Mr．Weeks＇address and Bessemer＇s reply are both extremely interesting，and we give them in full in the current number of the SUPPLEMENT，to－ gether with a reproduction of the drawings accom－ panying the original patents granted to Bessemer and Kelly by the United States Patent Office
Briefly stated，the facts of the controversy are as follows ：In 1847，and from that date on to 1851，when he appears to have given up in discouragement，Kelly was experimenting with an apparatus for blowing air upon fluid iron for the purpose of refining it．The ap－ paratus was crude，and as far as the evidence goes no attempt was made to force the air up through the body of the metal itself，as the blowing was all done by one tuyere，which was＂swung down into the me－ tal＂irom above．Mr．Kelly would appear to have met with little success in these experiments，and thi for technical reasons which we now well understand and which are clearly pointed out by Bessemer in his reply．At any rate，Kelly does not appear to have thought it worth while to cover his apparatus with a patent．

Mr．Weeks，however，claims that，crude as Kelly＇s appliance may have been，the fact that he used the pneumatic process in any form entitles him to the credit of the latent possibilities which it possessed． Bessemer，on the other hand，claims that the way in which Kelly went to work shows that he was ignorant of the true principles of the production of steel by de－ carburization with the air blast in a separate vessel and that his single tuyere directed down upon the sur face of the molten iron was merely a modification of the old＂finery furnace，＂in which the molten pig was slowly decarburized by blowing air from several tuyeres upon its surface．［In this，it should be noted， Bessemer does not quote correctly the description of Kelly＇s tuyere，which is spoken of as being＂swuug down into the metal，＂not above or＂upon it．＂］

It is certainly significant that during this early period the public heard nothing of Kelly＇s experi ments，and that he made no claim for a patent until after the world had been startled in 1856 by the celebrated paper read by Bessemer at Cheltenham， England，describing his steel－making process in detail．
If during these years of experiment，prior to Besse mer＇s announcement，Kelly was seeking to make stee by＂blowing blasts of air up and through a mass o liquid iron，＂as subsequently to the announcement he asserted he was，and if his apparatus contained all the essential features of the invention，it is a mystery that he did not patent it．As a practical forge master he must bave been well aware of the enormous value o the secret which he possessed
Is it not possible that a clear conception of the prin ciples of the process，and of its inestimable value，only dawned upon Kelly after its successful development and announcement by Bessemer ；and that he hastened to claim（in all honesty let us admit）a substance of which he in reality had only possessed the shadow？ Mr．Weeks has brought forward his claim in good faith，and has gone carefully into the subject，and hi claim for Kelly is based principally upon the inter ference proceedings，which were instituted at the time， and which were favorable to Kelly＇s claim and which enabled him to procure his patent．Whatever glory from a legal point of view Kelly obtained from the issuing of this patent，the hard facts remain that what crudest description had ever constructed was of the unsatisfactory that he did not proceed to apply for patent until some eight or nine years after his first ex－ eriments took place．
The question as to who was morally entitled to the credit of this great invention was well thrashed out，at the time it was flrst agitated，now some forty years
ago；and the accumulated honors which America has
showered upon Bessemer showed that the public at large decided it emphatically in his favor．This tri－ bute of the American people was the more remarkable and conclusive because it was rendered with the ful knowledge that there were in existence the rival pat ents of their own countryman Kelly．It is abundantly evident that the people of that day who were in touch with all the facts of the case，and had access to the evidence，concluded that，whatever technical claim Kelly had established upon the invention，the mora claim belonged to the man who had put it into a prac tical mechanical shape
It seems as if the true standard of invention should rest upon the broad basis of public service or utility and not upon a mere nebulous idea which the inven tor has failed to develop．The object lesson taugh ky the controversy is that whatever the technica nature of the claim may be，the world at large is inclined to regard diligence on the part of the inven tor as an essential，and to award the laurel of succes to him who has been the first to confer a boon upon humanity by developing the idea into a practical and seful invention

PASSAGE OF THE FORTIFICATIONS BILL

The Fortifications Bill，as passed by the House on the 14th inst．，is in every way an admirable measure Its appropriations are based upon the recommenda tions of the Endicott board of 1885，which made an ex haustive examination of the various harbors and sea coast cities，and devised a complete system of land for tifications，whose total cost was to be $\$ 100,000,000$ ．It is evident that such a large sum could not be immedi ately expended，for the reason that our plant for mak ing guns and mounts has an annual capacity of only 10＇per cent of the material represented by that amoun of money．
The present bill authorizes a total expenditure of $\$ 11,384,613$ ．of which sum $\$ 5,842,337$ is specifically ap propriated，and authority is given to the Secretary o War to make contracts involving the further expendi ture of $\$ 5,542,276$ ．
The amount appropriated and authorized by con ract under each subdivision of the bill is as follows Gun and mortar batteries，$\$ 5,260,000$ ；sites for fortifi cations，$\$ 250,000$ ；preservation and repair of fortifica tions，$\$ 50,000$ ；plans for fortifications，$\$ 5,000$ ；sea wall and embankments，$\$ 17,975$ ；torpedoes for harbor de ense，$\$ 100,000$ ；armament of fortifications，$\$ 5,502,673$ proving ground，Sandy Hook，N．J．，$\$ 38,000$ ；Water town Arsenal，Mass．，$\$ 43,500$ ；Watervliet Arsenal N．Y．，$\$ 3,105$ ；Benecia Arsenal，Cal．，$\$ 4,500$ ；Ordnanc and Fortification Board，$\$ 100,000$ ；Fortress Monroe sewerage system，$\$ 9,860$ ．
This generous appropriation，which is even large than the government can expend during the ensuing year，may be taken as a pledge of the fact that the country is waking up to the imperative necessity of providing for national ，defense by means of a system f coast fortifications．
While this appropriation was being passed by the House，Mr．Squire was speaking in the Senate in sup－ port of his bill to authorize an expenditure of $\$ 80,000$ ， 000 ，of which $\$ 10,000,000$ are to be appropriated for the fiscal year ending June 30,1897 ，and an expenditure i to be authorized of $\$ 10,000,00 \mathrm{~J}$ for each of the seven iscal years ending June 30,1904
The total sum is less than that contemplated by the Endicott board，but the number of guns，mounts etc．，provided for in the bill is amply sufficient to put our principal maritime cities in a thorough state of defense．
The total number of direct fire high power guns o all calibers provided for is 517 ，and of mortars， 1,056 To construct these guns and their mounts，and to build their emplacements，about eight years will be re quired．This is the least time in which the money could be expended to good advantage．
The bill before the Senate may be considered as complewentary to that just passed by the House，and it is earnestly to be hoped that it will be incorporated with it．There are sone questions which ought to lie beyond the reach of party politics，and of these the question of national defense is first．The considera ions which have led to the appropriation and au horization of over $\$ 11,000,000$ for immediate works of defense are equally cogent for the authorization of the ther $\$ 70,000,000$ ．These considerations are strong to day，but they may be weak and futile to－morrow．We re just now involved in，or threatened with，inter national complications，and the views of Congress on ational defense are certain to be sounder in the presence of danger than those of a future Congres hat may have to consider this same question in a time of profound peace．
The passage of the Squire bill would insure the completion within a measurable time，and at a regula rate of progress，of a complete system of land de fenses．The nation would be committed to it，and the necessary funds would be voted and forthcoming a ast as the government factories and engineers re quired it．

The Annual Exhibition of the New York
Microscopical Society. by e. o. hover.
The seventeenth annual reception and exhibition of the New York Microscopical Society was held in the American Museum of Natural History on the 14th of this month. Judging from the large number in attendance, popular interest in minute objects is not on the wane. About 4,000 ticizets were issued, and fully 3,000 people came to the exhibition.
The catalogue contained a list of sixty-eightexhibits, most of which were divided up into several sections, so that the number of things to be seen was very large and comfortably filled the central and north wings of the mammal floor in the museum. Evidently no attempt at novelty was made by many of the exhibitors, for one could see such old standard objects as the head of a mosquito, the eye of a fly, arranged diatoms, and the circulation of blood in the web of a frog's foot, but there was much that was new or in the nature of advances along lines of recent research. Everything, both old and new, was received with delight by the crowd of visitors, however, and expressions of wonder and admiration could be heard on all sides during the entire evening.
One of the curiosities in the way of mechanical skill was the Lord's Prayer written with a diamond point on glass within a space $\frac{1}{\delta 00}$ by $\frac{1}{665}$ of an inch in dimensions. Under the microscope the 227 letters of the praver were as distinct and legible as if written in the ordinary manner. This writing was done by an Englishman named Webb, and was accomplished by means of a system of levers attached to an ordinary pen. A still wore remarkable feat was accomplished by the same man in writing the whole of the Bible, about $3,700,000$ letters, in a space $\frac{1}{5}$ by $1 / 4$ of an inch in size. This second slide was also at the exhibition, but Stephen Helm, who exhibited them, did not bring with him a microscope adapted to displaying it. Another curiosity was the reduction of photographs to such small dimensions as to be scarcely visible to the unaided eve, and yet so clear as to come out in all their details under the microscope.
The fleas which infest mice, the grewsome mites from ordinary cheese, and the Uropoda, a mite parasitic on beetles, were some of the exceedingly minute forms of insect life that aroused the interest of many visitors. William Bentenmuller exhibited sections of trees from United States of Colombia which had been tunneled in all directions by the carpenter bee, and under a microscope near by he showed the mouth parts of the insect, the tools with which it had been able to do so much exca vation. The vegetable origin of coal was dewonstrated by means of a thin section of brown coal which showed the cells very perfectly.
A mere glance at the microscopic beauties of which A mere glance at the microscopic beauties of which
nature is lavish in the mineral kingdom was afforded nature is lavish in the mineral kingdom was afforded
by seven exhibits entered at and near the beginning of the catalogue. One set of these was a series of specimens of mica from the northern part of this city which inclosed between its lamellæ minute crystals of several other minerals. The most delicate of the mineral specimens shown was exhibited by Dr. W. G. Levison and consisted of microscopic crystals of calcite pierced and supported by extremely fine hair-like crystals of pectolite from the trap rock of the Palisades. Some of the important'applications of the microscope
to the everyday life and health of man and to his business and comforts were on exhibition and were worthy of the closest study. One of these was a large number of bacteria and cultivations and photographs of them exhibited by Dr. Leteve and George Rambaud of the New York Pasteur Institute. The bacillus of tuberculosis (consumption) is so small that when magnified 800 diameters it looks to be not more than an eighth of an inch long. It was exhibited by H. B. Baldwin.

The microscopic character of iron and steel has received much study of recent years and many new facts regarding it have been learned within the past year or so.

Mr. P. H. Dudley, of New York, had a large and very instructive exhibit of micro-photographs to show the results of his work. By means of these, he illustrated the changes which take place and the compounds formed in the mass under treatment with heat. The photographs exhibited showed the results of study of the structure of $0.02,0 \cdot 14,0.45$ and $1 \cdot 25$ car bon steels
At different temperatures different compounds of carbon and iron are formed, and steel is by no means a homogeneous material. Beginning with the normal ferrite or pure iron, with its adwixture of carbon, increase of temperature produces molecular changes and recrystallizations, four stages of which are sufficiently definite to have received provisional names. These are in the order of their appearance, troostite, cementite martensite and sorbite (earlier called perlite). The re lations of these to each other are of the highest importance in determining the adaptability of a steel to a particular use. Up to within a very few years it has been supposed that chemical couposition determined the strength or desirabilits of steel for any use except
in tools (where tempering was understood), but now the importance of structure as obtained by proper heat treatment, rather than composition alone, has begun to be appreciated for gun metal, armor and boiler plates, and even for steel rails. Mr. Dudley's work has lain especially in the last department, and has shown that it is possible to temper the heaviest steel rails and thus improve them greatly in every respect. His photographs showed that rails manufactured according to his system presented almost absolutely the same amount of deflection under the "drop test" for all the samples from very large lots, and such deflection can be calculated in advance. The steel is prepared for study by careful polishing and then by etching by weak nitric acid. The temperature is regulated and deterwined by means of electricity. Reflected light only can be used, of course, since iron is perfectly opaque. One feature of the evening was the lecture by the retiring president, Dr. Edward G. Love, on the use of the microscope in the examination of textile fabrics for the detection of fraud in material, overweighting, for the detection of fraud in material, overweighting,
and so on . The lecture was highly interesting and inand so on. The lecture was highly interesting and in-
structive and was illustrated by numerous lantern slides. In the main collection a series of microscopic preparations of various textile fabrics was shown to illustrate the lecture more fully. The series comprised wool, silk, cotton, and linen, and showed what mate turers.
The officers of the society for 1896 are: President Edward G. Love; vice president, Frank D. Skeel secretaries, George E. Ashby and Rev. J. L. Zabriskie; treasurer, James Walker ; curator, G. E. Ashby ; librarian, Ludwig Riederer. The committee in charge of the annual exhibition was George \mathbf{W}. Kosnak, George H. Blake and William B. Tuthill, and to them is due in large measure the credit for the success of the affair

Why We Are Right Handed.

There is a general belief that the greater strength and dexterity of the right side of the body is based more on habit and imitation than on any inherent difference between the two sides. In an interesting article in Chambers's Magazine Dr. R. A. Lundie tells us that this is not exactly the case. It is often the case that when the body possesses two similar organs, one of them shall do most of the work, while the other is perfectly capable of being trained to take its place,
should the occasion arise. He advises the training of should the occasion arise. He advises the training of the left hand, therefore, at the outset, although he acknowledges that the preferential use of the right is based on natural reasons. Says Dr. Lundie :
'In all communities lefthanded individuals seem to occur, in somewhat varying proportions. Among our selves, about one in fifty is said to be lefthanded. There is no doubt, from frequent experience, that the
peculiarity is hereditary; so that we could not be much surprised if a race were met in which lefthandedness was the rule and not the exception. Yet the reversa of so general a law as that of prevalent righthand edness would need to be established by very conclu sive evidence; and, though statements have been made as to a preponderance of lefthanded individuals in various parts of the world, none of them are supported by such careful and prolonged observation of facts as would be necessary for their unhesitating acceptance.
"One of the prevailing ideas about righthandedness is that it is merely a matter of training, and that lefthanded individuals have become so either from want of care on the part of nurses and parents or from imitation of some older person. In many chil very early age, before the child has learned to handle anything but the very simplest toys, and therefore before training can have caused a preference at all. More than this, the experience of lefthanded persons is on record in whom the peculiarity has been early noticed and combated, but without the slightest effect.
"It is well known that, though our external configuthe internal organs is very different. The heart lies obliquely in the chest, and more to the left side than the right; the liver, by far the heaviest of the internal organs, is on the right side; the two lungs are differently shaped; and, moreover, the blood vessel supplying the two sides, especially in the upper re-
gions of the body, are differently disposed. It is natural that these irregularities of arrangement should have been thought, in some way or other, to supply the explanation."
After describing a number of theories of righthand edness, based on the lack of physical symmetry in this and other respects, Dr. Lundie goes on as follows :
'There is, however, one extremely curious and in teresting instance of want of symmetry in the bodily unctions, which is not merely analogous to right handedness, but closely linked with it. The nervous on one side of the brain only. So intimate is the relation of this subject to righthandedness that we must consider it in some detail.
"It is well known that each side of the brain is con nected with the movements and sensations mainly on the opposite side of the body; the right brain moves the left arm and leg, and vice versa. Now, cases ar not infrequent in which, with or without 'a shock,' or at least some degree of obvious loss of muscular power on the right side of the body, the faculty of recalling and repreducing spoken words is totally or almost totally lost. Such loss of speech is technically called aphasia. It was first shown some thirty-five yearsago by a French physician, that this particular symptom is associated with damage to a limited and very defiis associated with damage to a limited and very defich
nite part of the brain substance on the left side, which nite part of the brain substance on the left side, which
has since been known, in honor of its discoverer, as has since been known, in honor of its discoverer, as
Broca's convolution. When the power of speech has thus been lost, it is possible, if the mental faculties are not otherwise damaged, to acquire it again, by just such a course of training and practice as the child passes through in learning to speak at first, even where Broca's convolution has been so damaged as to be quite incapable of performing its functions. In such a case, the portion of the brain on the right side cor responding to Broca's convolution is capable of taking up its work; but only by being educated to do so just as the damaged portion of the brain had been originally. If after this the power of speech is lost again, by damage to the right side similar to that which had impaired the left, there is no hope of its being restored a second time.
'It is thus clear that there are two organs or por tions of the brain capable of controlling speech; and that under ordinary circumstances only one of them is trained to do so, the other lying fallow. All the edu cation is given to one favored side, and all the work is done by it; but the neglected one, if called by neces sity to undertake the work, can be trained to do it, and to do it , apparently, as satisfactorily as the other.
"Here, then, is a singularly complete analogy to the preferential use of the right hand : there are two sets of organs, either of which may be used for speech, one on each side of the brain, but only those upon one side are trained; only they have the education carried out which makes them effective. Yet if the educated centers are so damaged as to lose their functions, the others can be trained to take their place. So we have two hands, either of which may be trained tor the per formance of delicate movements : yet in most of us only one of them has been so trained; the other re mains comparatively awk ward and inactive, unless accident compels it to try to take the place of the edu cated hand.

A striking analogy ; but it is more than an analogy. We have said that the active speech center is that on the left side; and this is the case in the great majority of individuals. But occasionally it is found that the right, and not the left side of the brain has been edu cated as regards speech. When this is the case, it is always found that the individual has been lefthanded. Whatever then is the cause of righthandedness, it is closely associated with leftbrainedness, if we may use the expression, not only for the comparatively coarse movements of the hand, but for the fine adjustments of windpipe, tongıe, lips, etc., which produce articu late speech, and the far finer machinery within the brain itself which registers our stores of words."
But although Dr. Lundie thus connects righthandedness and lefthandedness with anatomical and physio logical facts, instead of regarding it as an accident or a result of training, he does not recommend that w should leave the other hand altogether helpless. H gives the following excellent advice on this point :
"When a child displays a decided preference for the use of the left hand, it is, as we have seen, useless to make forcible efforts to suppress it. By all means let the right hand be trained in writing, in using knife and spoon at table, and in as many actions usually ighthanded as can be easily superintended. But the use of the left on other occasions should not be pre-
vented; this will only diminish its training and its aptitude without greatly increasing the dexterity o the right.
"There seems to be no good reason why righthanded people should not attain some of the ambidexterity which is usually the privilege only of the lefthanded. A little trouble expended in practicing with the left hand, as well as the right, throwing, drawing, and other coramon movements requiring skill, would be rewarded by a much increased useful ness of that generally neglected member. If there is a natural preference for the right hand, it is probable that no amount of practice would make the left equally expert in actions that have once been well ac quired by the right. But the experience of the lefthanded seems to show that it is well worth while for the righthanded to give more attention to their de pised left hands than they usually do."

Vesuvius is again in eruption and visitors climb no higher than the observatory. Liquid lava is flowing from many little outlets in the crater opened last July The appearance of the mountain is very picturesque at night.

AN IMPROVED T-SQUARE

The illustration represents a tool designed to be more satisfactory than the one ordinarily employed in locating points and taking distances, dispensing with the ordinary ruling and measuring separately with a T-square and scale, the latter being adjustably placed in the arm of the square, so that any given distance can be laid off, beginning at any point on the paper. The improvement has been patented by Morgan J. Hawmers and Charles R. Clark, of Champaign, Ill.

HAMMERS \& CLARK'S T-sqJ̇ARE.

The block of the chain shown in Fig. 4 , with one in inserted, needs no explanation, as it is of the usual type. Fig. 5 shows one block and one side plate with the pin in the slot of a side plate, and Fig. 3 shows the chain still further assembled. The system is obvious. The pin is thrust through the central portions of the slots in the side plates and through one of the apertures in the block. It is turned so as to bring the side, A, Fig. 8, toward the ends of the side plates, and is then slid into the slot. The heads or flanges of the pins hold them securely in place, and the parallel sides of the neck prevent any rotation in the side plates.
If it went no further than this, the chain would be an improvement of no low order because, the parts being interchangeable, it the chain breaks on the road, the rider is able with the simplest tools to replace the broken ink with parts from an extra lịnk carried in the saddle bag. But its adjusting quality is still more striking. By sliding one of the pins back to the center of the side plate and rotating it through half a circle, the portion B, is brought to the front in place of A, and the link is shortened by the depth of the slo at A. It is clear that, as the pins are drawn this would be an excessive amount for almost any case, and that it would be very trouble

At the working side of the blade of the square is an edge of transparent material, under which, in a longitudinal channel, is movable a strip of steel marked off in inches for the greater portion of its length, the inner end portion only being marked for the fractions of an inch, and this portion coming under an elongated opening in the transparent edge. At each side of the center of the elongated opening is a pointer, and the scale is movable endwise in its transparent sheath by an angled lever fulcrumed in a chamber of the head, a short arm of the lever being pivotally conne.ted with the scale, while its longer arm has a knob extending through a curved slot in the upper face of the head. The square is placed on the paper to mark off the required number of inches, and the knob is moved to carry the scale outward for any required fraction of an inch, as indicated by one of the pointers.

THE BALDWIN ADJUSTABLE CYCLE CHAIN.

The modern bicycle is the product of two main factors, the chain gearing and the pneumatic tire. Any defect or trouble in these parts tellsheavily against it. Above all, the chain is the source of trouble, on account of wearing at the joints, technically though incorrectly called "stretching." As the rivets wear, the chain becomes too long and out of pitch with the sprocket wheels. Profuse lu brication may keep it going, but it never works properly after this wear has de clared itself. It would seem easy to prevent, in great measure, the trouble, by hardening the links and rivets. But it hardening the links and rivets. But i the rivets are made of hard steel, they cannot be headed, and if of soft steel,
they wear. To illustrate the effects of they wear. To illustrate the effects of "stretching," Figs. 1 and 2 of the cut
may be referred to, the first showing a chain in pitch, the second one? which has stretched out of pitch.
These figures have another interest of their own. They were dra wn from a Baldwin chain which had been used on a bicycle for 6,000 miles, and the stretch shown in Fig. 2 was removed by the simplest possible manipulation, and the chain was brought into the condition shown in Fig 1 in a few minutes by the rider himself.
The peculiarities of the chain we de scribe affect its construction and adjustability. It contains no more than the normal number of parts, and in the omission of the usual holt and nut for connecting the ends, the parts have even been reduced in number.

The pins are secured in place without riveting. Each pin is turned and worked into its completed shape by machinery and is hardened. No further operation is required, as its shape is such that, once in place, it stays there and is prevented absolutely from rotating in the side plates. Figs. 7 and 8 show the pin. It is originally cylindrical, but is slotted out a short distance from each end, so as to form a neck. This neck is cut in from three sides of a square only, as shown in Fig. 8, one side being left intact ; the side, A, of the neck opposite the un touched part, B, being rounded. The pin is next hardened and is ready for the chain.
The side plates are shaped as shown in Fig. 6. The central enlargement of the slot is large enongh to let the pin pass through. Owing to the diminished area of the pin at the ncck, this portion can slideinto the long slots of the side plate.

THE BALDWIN ADJUSTABLE CYCLE CHAIN

second with 3,824 vessels and $1,362,317$ tons. Norwa is third, with nearly 1,000 less vessels than the United States, but nearly the same amount of tonnage. France occupies only the eighth rank, between Swe den and Greece. In regard to the steamers : England counts 5,771 vessels with nearly $10,000,000$ tons. Ger many, which cowes second, has 826 steamers of 1,306 at the top.

771 tons, France third, with 501 steamers and 864,598 tons, while the United States holds fourth place with 447 steamers and 703,399 tons.

a NOVEL mechanical motor.

The illustration represents a motor which may be conveniently operated bs fout power to convert reciprocating into rotary motion, and to multiply the movement, to drive machinery of various kinds. It has been patented by James M. Dickson, Roseneath, Miss. In a frame of suitable strength and form, two treadle levers are alternately depressed to rock a shaft car rying a segment rack meshing with a pinion on a shor shaft which also carries a large gear wheel. The lat er meshes at its lower side with a pinion on a shaft carrying a screw or worm meshing with a spirally

DICKSON'S MOTOR

toothed segment gear journaled on a transverse shaft, and extending from this segment is an arm to which is pivoted a connecting rod whose opposite end is coupled to a crank in the power shaft. A second connecting rod pivoted to the segment is coupled to a second crank in the shaft, set opposite or quartering to the first crank. By operating the treadles a continuous rotary movement is thus given to the power shaft, and the motor is especially well adapted for use in cases where it is essential that the hands be otherwise employed.

Guarding Against Moths.

Muths deposit their eggs in the spring, and this therefore, is the proper time to take precautions against their ravages among goods which contain wool. It is not the moth, but the moth maggot, that does the mischief. The moths fly through the house in April and continue sometimes as late as August
seeking places in which to lay eggs
There are from a dozen to about seventy five of these eggs in each nest, which hatch after a little while into small white worms. These worms devote their lives to eating the material in which they find themselves. As to remedies, almost every one has something to recommend, but al of the remedies are of but little account after the moth egg has been laid. Therc are things like cedar, camphor, and to bacco, the odor of which is disagreeable to the moth. and when the female is looking for a place to deposit her eggs she may be deterred from laying them near these substances, but if the eges are really laid, the grub will pursue its destructive work without paying any attention to the odors, and would do so were the smell many times more pungent. The principal attention should therefore be given to keeping the moths out.
If goods are in stock and likely to remain, some of them, at least, through the summer, better thoroughly beat them with a thin rattan and air them for several days in the sun. Nothing displeases moths 80 much as sunlight, direct or even indirect. Then wrap them up in newspaper; wrap perfectly tight and paste the ends so that no openings remain for the insects to get through. They cannot eat through paper. Examine at least once a month, to make sure of it, and beat and air. Furriers have no other secret than this for keeping furs. For clothing the garments should be thoroughly beater in order to be certain that no eggs are in them, and then they should be sealed up in paper boxes or bags. Such boxes may easily be procured in any large town or city, an excellent pattern being the boxes used by tailors for delivering garments. The crevices where the cover fits on should be made tight by the use of strips of gummed paper, also a commercial article, and one may feel assured that no damage will be possible. Paper bags are also sure, but they should be sealed

A DURABLE BICYCLE TIRE.

The illustration represents a bicycle tire which will not be readily punctured, and which will not collapse when punctured. It has been patented by Dr. Emil Christiansen, of Leavenworth, Kansas. The tire is of the hose pipe pattern, preferably of rubber or a combination of rubber and fabric, and has a valve for its inflation, of any approved construction. The tire is much thicker at its tread than at its side and inner surface, such increased thickness forming a cushion preventing the puncturing of the tire by tacks, pieces of glass, etc. On the inner surface of the tire arelugs,

CHRISTIANSEN'S PNEOMATIC TIRE

preferably made of rubber, and the lugs are connected by springs of such length that, should the air escape from the tire, the springs would hold it distended and enable the tire to be used when not inflated almost as well as when inflated.

The Electrical Conductivity of Aluminum. In an article appearing in the London Electrical Review, Mr. G. L. Addenbrooke announces that, ac cording to researches of Lord Kelvin, the conductivity of pure aluminum is 68.5 per cent of that of pure copper. The usual conductivity, as given in the books, hitherto has been 56 per cent that of copper. Lord Kel vin's research has, therefore, raised this by 21 per cent so that the conductivity of a wire of pure aluminum of the same section, instead of being a little over a half that of a copper wire of similar section, is more than two-thirds the conductivity. Consequently, the diameter of an aluminum wire of the same conductivity as a given copper wire will be only 15 per cent greater or less than one-sixth greater than that of the copper wire. This is a small fraction, and it is evident that for such a small increase of diameter the extra cost of insulating aluminum conductors to the same thickness as copper ones, and to secure the same conductivity, will present no serious obstacle.
Looked at in another light, copper is about 3.3 times the weight of aluminum ; on Lord Kelvin's figures the conductivity of wire of equal weights of copper and aluminum will therefore be as $100: 22 \cdot 6$, so that the weight of an aluminum wire of the same conductivity as a copper one would be four-ninths of the latter, or considerably less than one-half.
It would be difficult to say what extra cost would be entailed in manufacturing aluminum of this purity, but it may be assumed that before long the resources of metallurgy will be equal to it at a moderate cost.
As aluminum is just as pliable and easy to work as copper, it goes without saying what an advantage it would be in constructing heavy cables, and how much less strain on the insulating material it would impose. For overhead conductors for the supply of power the advantages of obtaining a condnctor of equal conductivity, with a trifling increase in diameter and of half the weight, are also manifest.

As a conductor, aluminum is now about twice as costly as copper; but as by the electrolytic process the price has already been reduced in eight years from 90 cents per ounce to 35 cents per pound, it is abundantly clear that, with the inevitable improvements which are taking place, the difference in price between aluminum and copper, which still exists, will be wore than obliterated before long.

Unsafe Petroleum Lamps.

Starting out with the impression that something should be done to put a stop to the loss of life and the fires caused by "lamp accidents," the London Lancet has been experimenting with a number of lampsalmost all of the cheap sorts-purchased at shops in the poorer districts of London. Even the cheap oils were found to be reasonably safe and were found to pass the flashing test of 73 degrees. Out of the whole number of twenty-two laups which were tried, two only were probably safe, and of the rest six were "very dangerous," nine "dangerous," and five "uncertain."

It was found very difficult-almost impossible, indeed -to cause even the cheapest of these lamps to explode although efforts were made to bring about the result. Eiven when the temperature of the oil and reservoi was 100 degrees, blowing down the chimney simply xtinguished the flame. Generally speaking, the con clusion is that a great majority of accidents arise from the faulty construction of the lamps.
The reservoir should be of metal or non-fragile material. It should be fixed firmly in the base, and not rest loosely, as is the case with many beautiful and artistic lamps, in a cup-shaped stand.
The lamp should have a base heavy enough to minimize the risk of upsetting.
The burner should be connected to the reservoir by a screw with well cut thread, requiring at least three entire turns before it becomes detached from the reservoir. It should be made tight to the reservoir by means of a washer Bayonet joints, or pin and slot joints, not to say Bayonet joints, or pin and slot joints, not to say
the mere fitting on of the burner like a cap the mere fitting on of the burner like a cap
on the mouth of a reservoir, should be proon the

The wicks should be constructed of material of good quality, and should fill the space of the wick tube. The wick should be replaced by a new one as it gets worn and diminishes in size. Circular wick tubes should never be fed by a flat wick, the edges of which are not likely to close up in the wick tube. The wick inkely to close up in the wick tube. The wick
in these cases should be a complete cylinder.
The wick tube shouid be made to descend in the reservoir within at least a quarter of an inch of the bottom. Assuming the screw of the burner to be free from defect, it would be impossible for oil then to escape-the source of most of the danger of lamps, nearly all of which have their wicks hanging unguarded in the reservoir. This arrangement would also render it im possible for flame to travel into the reservoir space.

SKIRT PROTECTING SCREEN FOR BICYCLES.

The illustration represents a folding screen attached to the front end or head of a lady's bicycle, there being a screen at each side of the head, adapted to be folded up against it or unfolded and extended past the pedals, to protect the feet and ankles from view when mounting or riding, and to prevent the skirts from being blown about the limbs. The improvement has been patented by Theron R. Cherry, of Buckhannon, West Va. The folding, fanlike screens are secured by suitable clips or brackets to each side of the head, the

CHERRY'S SCREEN FOR LADIES' BICYCLES

rods of which each screen is composed being covered by any suitable fabric and piroted together at their lower curved ends, while extending down upon the forward arm of each screen there may be, if preferred, a light leather casing into which the screen may be folded and held in compactly folded position by cords raps. The curvature of the arms causes the screens to extend outwardly a sufficient distance to avoid the
pedals and not interfere with their operation by the feet of the rider. The invention also provides for a front screen, not shown, slotted to straddle the front wheel, and close the space and prevent draught between the side soreens.

A WARP SIZING MACHINE ATTACHMENT.

The illustration represents an attachment to the ordinary slasher, to enable the operator to size and put on the beam a small number of ends-or large, if required-but particularly for double beam work, where the double or top beam only requires a small

WOODMAN'S WARP SIZING IMPROVEMENT.
number of ends, the same to be done at one operation, and at the same time that the regular warp threads are being sized which are to constitute the main body of the fabric. The attachment has been patented by Alvin Woodman, No. 32 Wilder Street, Brockton, Mass. This attachment is for supporting and operating an auxiliary beam on a slasher on which a portion of the warp threads are to be wound, having a fixed spindle on one side and a rotating spindle at the other, driven by gears in connection with draught roll gear of slasher. The latter spindle being provided with a fixed and a loose disk, the latter having the usual stud or pin for driving the auxiliary beam, and the speed being regulated by frictional contact between the two disks. This contact can be so finely adjusted that just the exact amount of tension and speed required can at all times be maintained for and speed required can at all times be maintained for either a large or small number of ends. Fig. 1 shows ar-
rangenent of gearing and Fig. 2 section of friction disks, rangenent of gearing and Fig. 2 section of friction disks,
with spring and hand wheel regulating nut. The concentric rib on one disk and a groove on the other are for properly holding in place either a large or small friction pad, for either a large or small number of ends. By this improvement, therefore, after sizing and passing over the drying cylinders all the threads required for both the regular and special weave, they are separated at the measuring roll, and wound on separate beams at one operation. This machine has been in very successful operation for more than one year.

Fine Crushing and the Leaching Process of Gold

 Extraction.In the earlier days of gold mining, when the common method of recovering the gold was by the use of the amalgamated plate, the stamp battery was used almost exclusively for reducing the ore to pulp of the desired fineness. With the introduction of the leaching process came the demand for finer crushing, and a more perfect separation of the precious metal from its inclosing material, so that the chemicals might penetrate the pulp with a more searching effect. The demand has brought out various forms of crushing machinery, and some of the mills have shown remarkable results, both in capacity and in the fineness of the crushing. An interesting test of the comparative efficiency of the new methods of crushing was recently had at Nevada, where the rock is of the hardest kind, and has proved very destructive to most forms of pulverizers. Pulp from a Griffin mill, with a capacity of 25 tons of rock a day, showed on an average of from 89 cents to $\$ 1.65$ per tun in the tailings. The test was made by Capt. J. R. De Lamar, of New York City, and, as a result of the experiment, he is adding a dozen of these mills to the plant.

Chrysoprase in California.

A rich vein of chrysoprase, a rare variety of chalcedony of great ralue, has been discovered in Tulare County, Cal., by Curator Wilcomb, of the Park Museum. Chrysoprase in its perfect state has been found in limited quantities in lower Silesia, California, and Oregon, and an inferior grade is found in Vermont; but the present find of chrysoprase is of the finest quality, and the gems when cut command a high price.

Sorrespondence.

The April stars.

To the Editor of the Scientific American :
A correspondent calls attention to a singular, and to me unaccountable, slip of the pen in my article on "The April Sky," in the Scientific American for April 11. As printed, the statement reads that Spica, the chief star in Virgo, is to be seen shining between Arcturus and Vega. In fact, it is Areturus which is between, although not exactly in a line with, Vega and Spica. When Arcturus is on the meridian at midnight in the latter part of the month, Vega is about half way up the northeastern slope of the sky, while Spica is in the southwestern quarter, about three-quarters of an hour past the meridian.

Garrett P. Serviss.
Science Notes.
Prof. Daviel Giraude Elliott, of the Field Columbian Prof. Daniel Giraude Elliott, of the Field Columbian
Museum. of Chicago, has left London for Aden on a Museum. of Chicago, has left London for Aden on a
scientific expedition into Somaliland and Gallaland. He is accompanied by Carl Akeley, taxidermist, of Chicago, and by Mr. Dodson, of the Natural History Museum, London, who went with Dr. Donaldson Smith on his recent expedition to Lake Rudolph. The object of Prof. Elliott's journey is to collect specimens for the Field Columbian Museum, of Clicago. Mammals chiefly will be collected, but almost everything pertaining to zoology-birds, reptiles, and fishwill be brought back.
The granite monument marking the Mexican boundary line, at Tia Juana, in San Diego County, Cal., was upset by a flood shortly after it was erected by the International Boundary Commission. The shaft fell into quicksand and efforts to recover it were unsuccessful. It has been necessary to buy a new site for another monument.
In the Minnesota Botanical Studies for 1895 (the organ of the Geological and Natural History Survey of Minnesota), Mr. Roy W. Squires has an interesting note on the result of a series of experiments on the temperature of a trunk of Acer negundo between January and June. He states that as a general result the temperature of the tree is lower than that of the air in the morning and at noon, while it is higher in the evening. The mean temperature of the tree, as compared with that of the air, was $1.31^{\circ} \mathrm{C}$. higher in January, nearly the same in February, nearly 1° lower in March, 0.85° higher in April, and 1.13° lower in May.
The AOlian harp has been put to a scientific use Prof. Carl Barus has shown that the sound made by the wind whistling across a fine wire varied with the velocity of the wind. He showed that the velocity of the wind could be computed from the pitch of the note observed in the case of a given diameter of wire and for a given temperature of the air. With the aid of speoial microphonic attachments, the sounds could be conveyed through a distance so as to be isolated from the other noises at the place of exposure. By the use of a number of wires the direction of the wind could be determined.

In 1886 Hoffman determined the presence of the bacilli of tuberculosis on the bodies of flies collected in the room occupied by a consumptive. Six years later, a physician of Switzerland, Dr. A. Coppen-Jones, proved that infection can be, and actually is, carried not only by the bodies of flies, but also by their feet. Flies which have been infected with the bacilli were permitted to walk across the surface of sterilized potatoes. In two days' time numerous colonies of the bacillus prodigiosus made their appearance.
Spain has seen the necessity for reafforesting her mountains. In order to foster tree planting, the little king recently went to a village a few miles from Madrid and planted a sapling, after which two thousand Madrid school children each planted a tree. Medals were distributed among them with the inscription "First Arbor Day instituted in the reign of Alfonso XIII, 1896." A similar festival is to be held yearly in different places.
At the observatory of the Pic du Midi, the zodiacal light is always visible on clear moonless nights, and E. Marchand has. says Knowledge, during the last three years, made careful observations upon it. It is not confined to a fusiform region in the neighborhood of the sun, but continues that region right across the sky as a faintly luminous track, always dimmer than the Milky Way at its dimmest. The cosmic matter surrounding the sun extends far beyond the earth's orbit in a very much flattened ellipsoid, but is especially condensed in the neighborhood of the sun, and forms there the more brightly luminous fusiform zolii
acal light as usually seen in the morning or evening.

The results of the Plankton expeditionary investiga The results of the Plankton expeditionary investiga-
tions, as stated, prove that ocean germ life, capable of reproduction, exists everywhere, except at the greatest ocean depths, being more prolific in the Canary, Florida, and Labrador waters than in the north or south equatorial currents. According to this account, bacterial life has been found at depths of 1,300 to 3,500 those species requiring oxygen for their existence,
great number of which are also phosphorescent. M. Delebccque is quoted as having found that, in lakes, the quantity of magnesia is constant at all depths and in all seasons, the supply being derived from the abrasion of the beds of rivers draining into inland lakes with in abundance at great depths, whereas they are present only in small numbers at or near the surface. The researches by M. Boutan are also mentioned, the fact transpiring that photographs of animal and vegetable life were obtained by him at considerable depths, the great value of these photographs consisting in the fact that living organisms found in deep waters cannot be brought to the surface for examination without a complete change taking place in their characteristics.

AN IMPROVED SEWER INLET.

A catch basin or sewer inlet that is very strongly constructed, that it may not be injured by a heavy vehicle passing over it, and the cover of which may not readils be removed by children, is shown in the accompanying illustration. It has been patented by George A. Ensign, and is being introduced by the Defiance Machine Works, Defiance, Ohio. A substantially conical collar surrounds the bottom opening, that it may be coupled in any approved manner with a sewer pipe, and a horizontal flange is made integral with or attached to the rear portion of the casing to facilitate firmly anchoring it in place. The front open portion of the casing has a depression front open portion of the casing has a depression
adapted to receive the lower web of a grating, there adapted to receive the lower web of a grating, there
being in each end of the grating a vertical groove in being in each end of the grating a vertical groove in
which fits a vertical flange on the inner face of which fits a vertical flange on the inner face of
the casiug. At the rear of the casing, near the top, is a step and flange adapted to engage a rearwardly

extending tongue on the under facel of the cover, lips at each side of the cover similarly engaging projec tions of the casing.

Stokehold Temperatures in Ships.
The following is an extract from the official report f the Surgeon-General, United States Navy, referring to the state of things which frequently exists. On the cruiser Cincinnati, for instance, he remarks : "Temperatures are recorded from 90° to 170° Fah. Tentative efforts made in November to improve the system, particularly the blowers in fire rooms, have not succeeded in ameliorating the heat now common in those places. I have myself recorded fire room temperatures as high as 168° Fah. In the engine room lower platform the average is about 102°; on the upper platform it frequently reaches 135°. By the present system of forced ventilation for the engine department very little air above the rail is taken. Air is mainly taken through the spardeck hatches; also in part from the after-berth deck, and from beneath the deck near the large engine room hatch. Blowers in th condenser room force air to the engine room proper and those above the upper platform of the engine oom pass the air to the fire rooms. When under way a wind sail sends an additional supply of fresh outside air to the condenser room. The supply gotten above the upper platform in the engine room, in addition to its warmth, is also somewhat contaminated by contac with metal and oily surfaces. The blowers in the forward fire rooms do not properly function at present, and are said to be useless. Their supply is through broad louvres under the pilot house. The six fire room ventilators extending well above deck houses are 20 in. in diameter, and it is through them the fire rooms get their main supply of fresh air. The condense room blowers ventilate the main engine room. Unles these excessive heat conditions in the fire rooms, con tiguous passages, and intricate coal bunkers are ong endure continuous labor there. It is physically impossible for the class of men enlisted for this parpose
in our navy to undergo the strain of these unfortunate conditions. Though the ship has had as yet no severe or continuous steaming, the firemen constantly apply for relief from symptoms of heat irritation, such as muscular cramps, disordered heart action, nausea, head pains, and weakness."

The Influence of Tea, Coffice and Cocoa on

Dr. James W. Fraser, in a recent number of the Journal of Anatomy and Physiologs, has recorded the results of an interesting series of experiments on the action of our common beverages on stomachic and intestinal digestion. The experiments, says the Lancet, have been most carefully arranged from a physi cal standpoint, and give us some valuable hints on the digestion of the chief alimentary principles, but they have no bearing, it should be mentioned, on individual variations of human digestion, or on the influence of the various glands in preparing the gastric or intesti nal juices. They are, however, of much value in show ing how standard preparations of the peptic and pan creatic ferments are modified in action when our ordinary daily beverages are allowed their free action on the digestion of various articles of food. The digestive processes were carefully investigated, and absorption was imitated by a proper dialyzing arrangement. An arti ficial peptic juice, and afterward an artificial pancrea tic juice, were employed, and the amount of nitrogenous matter dialyzed was most carefully estimated. The food stuffs experimented on were raw and cooked serum and egg albumens, raw and cooked myosin, syntonin, alkali albumen, casein, gluten, starch and oleine. The results obtained from an exhaustive series of experiments and analyses show that all the three typical infused beverages-tea, coffee and cocoaretard the digestion and absorption of all the nitrogenized proximate principles of dietetic substances when peptic and pancreatic digestion are taken together, and that they uniformly retard peptic digestion although tea may assist the diffusion of peptones from the stomach. Pancreatic digestion is also uniformly retarded, and diffusion thereafter is but rarely assisted, so that neither of them compares advantageously with water as astandard beverage for experimental in vestigations. A summary of dietetic advice is added to Dr. Fraser's observations, which will, in the main, agree with that which is now given by our best agree with that which is now given by our best
authorities in cases of dyspepsia; and we are glad that authorities in cases of dyspepsia; and we are glad that
experimental inquiries afford so strong a basis of support to empirical clinical observations :
"1. That it is better not to eat most albuminoid food stuffs at the same time as infused beverages are taken, for it has been shown that their digestion wil in most cases be retarded, though there are possibly exceptions. Absorption may be rendered more rapid, but there is a loss of nutritive substance. On the other hand, the digestion of starchy food appears to be assisted by tea or coffee; and gluten, the albuminoid of flour, has been seen to be the principle least retardof flour, has been seen to be the principle least retard-
ed in digestion by tea, and it only comes third with cocoa, while coffee has apparently a much greater re tarding action on it. From this it appears that bread is the natural accompaniment of tea and cocoa wben used as the beverages at a meal. Perhaps the action of coffee is the reason why, in this country, it is usu ally drunk alone or at breakfast, a meal which consists much of meat, and of meats (eggs and salt meats) which are not much retarded in digestion by coffee . That eggs are the best form of animal food to be taken along with infused beverages, and that appar ntly they are best lightly boiled if tea, hard boiled if coffee or cocoa, is the beverage. 3. That the casein of the milk and cream taken with the beverages is probably absorbed in a large degree from the stom ach. 4. 'That the butter used with bread undergoes digestion more slowly in presence of tea, but more quickly in presence of coffee or cocoa; that is, if the fats of butter are influenced in a similar way to oleine. 5. That the use of coffee or cocoa as excipients for cod iver oil, etc., appears not only to depend on their pro nounced tastes, but also on their action in assisting the digestion of fats."

Tenacity of Life in Insects.

Mr. J. C. Warburg writes to the Entomologist : "When I was still new to collecting in South France, I discovered one day, to my great joy, a large female of Saturnia pyri hidden away in some bushes. The pecimen was the first I had ever caught, and I de cided, on account of its large body, to stuff it (a quite unnecessary operation; 1 have kept dozens since un stuffed). The moth was first apparently killed by being forced into a cyanide bottle, where it was left about an hour. The abdomen was then emptied and the cavity filled with cotton-wool soaked in a saturated solution of mercuric chloride. The insect, pinned and set, was discovered next day attempting to fiy away from the setting board."

Some Syrian tobacco has so small a percentage of nicotine that this alkaloid can hardly be detected.

THE HOLLAND SUBMARINE TORPEDO bOAT. The idea of a submarine vessel for purposes of attack originated long before the time the SCIENTIFIC AMERIcan was founded. In the days of the revolution David Bushnell built one near Peekskill. His old barn, which was still standing some years ago, was the last reminder of his futile attewpt. Robert Fulton bent his energies in the same direction and exhibited to Napoleon, in the harbor of Brest, a boat which, sailing on the surface, could be submerged and could be propelled under water for a long time. Napoleon put an old hulk at his disposition, which was successfully de stroyed hy submarine attack, but as the speed under water was only two knots an hour, the emperor failed to avail himself of the invention. Bushnell's was in actual service, and nearly destroyed, in 1776, the British sixty-four gun ship Eagle. Sergt. Ezra Lee, who was alone on the submarine boat, would probably have been successful in his attempt to sink the vessel, but was unable to successfully attach his torpedo to the bottom of the ship.
In our present issue we illustrate a boat now under construction by contract for the United States government which will go far to show the value of this means of attack. Mr. J. P. Holland, an adopted citizen of the United States and a native of Ireland, for nearly twenty years has been working on this subject-submarine navigation-and has built three boats, the first of which was begun in 1877. Ten years later he proved bis plan to be so far practical as to be able to interes the naval department, which issued a circular to in ventors calling for designs. Meanwhile in foreign countries other submarine boats were being tried, none of them seeming to prove entirely successful, or at least not succeeding in winning the desired confidence of the naval authorities. But at last in the present boat we have a bona fide war vessel being built under contract for the United States government, and one which it is hard to believe will not be a valuable auxiliary to the navs.
The Holland vessel is of cigar shape, with frames $31 / 2 \times 31 / 2$ inches, weighing 12 pounds to the foot. Her outside plating is $1 / 2$ inch thick, tapering to $3 / 8$ inch at the extreme ends of the vessel; for a portion of her length she is double skinned. She is propelled by triple expansion engines actuating triple screws as long as the swoke stack is above the surface; and for her diving operations, when the smoke stack has to be completely housed, the residual pressure of the steam will be used for her propulsion, water heated under pressure evolving steam for a long time. Then, when this fails, she will have her storage batteries and electric motors to operate the propellers.
Three stages of flotation are provided for; in her light condition with the hull well above the water she is to make $131 / 2$ knots per hour; her next stage is that termed the "awash" condition. For this the body of hull is submerged, an armored superstructure, in cluding a conning tower with 8 inch Harveyized steel plates, projecting above the surface, while, concentri cally placed, the air tube and the smoke stack rise above the whole. The superstructure is carried for ward and aft, and pointed at both ends to give a clean entrance and run, so as to interfere as little as possible with the speed. Her speed under these conditions is to be $121 / 2$ knots an bour. Her third stage is the submerged condition. For this the smoke stack and air tube are housed, the opening through which they projected is hermetically closed, and the vessel is in condition to be sunk to a depth not exceeding 45 feet, her strength of construction being sufficient to enable her to resist the prissure of the water at this depth. She still has flotation, there being a margin of 375 pounds of buovancy in her favor, the submersion being obtained by special devices. Submerged she is to make $61 / 2$ knots per hour.
The submersion is to be effected in two ways. At her stern she carries horizontal rudders. If the vessel in moving, by inclining these rudders the bow is caused to pitch down ward and the vessel runs down an inclined plane determined by her axis, the inclined plane really representing the resultant of ber buoyancy as a vertical upward component and her inclination of aris as a downward acting component. This diving action is similar to that used in the old Tuck submarine boat Peacemaker, which has been several times described in our columns. But the vessel is also to be able to dive from a state of rest. To secure this power she carries at her bow and stern two screws with vertical axes actuated by electric motors. By working these screws in one or the other direction, at varying rapidity, the vessel can be sunk rapidly, can be maintained at any desired level, can be rapidly drawn upward to the surface, or its approach to the surface can be made as slow as desired.
It having at last been settled that ocular navigation is impracticable under water, a tube is pro vided to be raised above the surface when the vessel is submerged, which tube is to carry an inclined mirror or prism, camera lucida fashion, by which the coumander will be able to watch the enemy and guide his course. In the restricted volume of the boat a com-
pass cannot be used, owing to the proximity of ao
much iron and steel. An attempt is to be made to hold her mechanically in a straight course by a tri
angular drag. The theory of this is that she should angular drag. The theory of this is that she should be started on a proper course by ocular methods, with the drag set astern of her when oi such course, any inclination from the desired direction causing the drag to pull to one side or the other, artuating the rudde so as to bring her back to her original course.
She is to carrs five automobile torpedoes, two ex pulsion tubes and the necessary air plant for operating them. When diving, she must be able to reach a depth of 20 feet below the surface of the water within one minute from the light condition; when awash she must be able to dive to the same depth within 30 seconds. She has an automatic pressure diaphragm which governs her submersion so that she cannot ex eed the safe depth.
The general distribution of machinery is shown in the sectional view, while the bow and stern views and side elevation are also given. Another view shows he in light condition and awash, while the submarine attack is illustrated in another cut
The air supply is primarily obtained from reservoirs where it is stored under $2,000 \mathrm{lb}$. pressure. Moreover a float with air tube is provided which can be allowed to ascend to the surface, when air can be pumped down through the tube into the hull.
The following are the dimensions:

Horse power of engines 1,800
Provision is to be made for the escape of the crew in ase of accident. This will take the shape of buoyan diving helmets or suits, and a method of opening th
hatch so as to escape if the boat remains submerged.

The Cotton mills of Japan.

According to a Japanese native paper, the numbe f spindles in the cetton mills of Japan now exceed $1,000,000$. In consequence, the supply of yarns is exceeding the demand, and some of the spinners are of opinion that it is a risky attempt to start new mills at present, as there will be caused many difficulties in the way of obtaining raw cotton and maintaining the equilibrium of supply and demand. According to the returns prepared by the Cotton Spinners' Union; Osaka, the number of spinning concerns in the union and of their spindles are as follows:

	$\xrightarrow{\text { Noo of }}$ Coferns.	No. of
Actively working		${ }_{682,130}$
Not yet opened or being established.		352,427
Total		2e4

Besides these are several concerns outside the union
A mong them the Kyoto Spinning Company has 10,000 spindles, of which 2,000 are actively working; the Heian (10,000 spindles), the Fushimi (10,000 spindles), the Bizen (5,000 spindles), the Nishinari (15,000 spindles), the Kawachi (10,000 spindles) and the Tokwa (75,000 spindles, to be established in Shanghai), are all being established. The number of spindles throughout the conntry, active and inactive, is put at $1,119,557$.-In dustrial Record.

Methods of Closing Cracks in Cast Iron.
Many methods for closing cracks or pores in cas Iron have been devised, according to Industries and Iron. Chemical or other products, such as salam-
moniac or urine, are often used to cause the formation of an iron salt, easily oxidizaible, which in a short time gives a certain quantity of hydrated oxide of iron. This is made use of very often to stop up leaks which This is made use of very often to stop up leaks which
develop in metallic cylinders. This method is, how ever, a some what lengthy one. several days being oftentimes necessary to obtain satisfactory results; that is to say, entire absence from leakage. A method of closing cracks or pores in a more rapid and certain man-
ner has lately been devised by M. A. Dernalght, of ner has lately been devised by M. A. Dernalght, of
Brussels. The method is described as follows: The cylinder is filled with a certain quantity of perchloride of iron. The liquid is then compressed until globules appear on the external surface. The cylinder is then impregnated with perchloride of iron right through, as regards its thickness. Any perchloride in the cylin der is then emptied out, the cylinder being then wiped
until the polished surface is again made brilliant. It is then filled with ammonia at 22 degrees Baume, this also being subjected to compression. The effect of this operation is soon noticeable, the perchloride of iron in the metal becomes transformed under the influence of the ammonia into hydrated oxide of iron, at first somewhat frothy in character, and afterward, under the influence of the external pressure, rough and compact Some hydrochlorate of ammonia also remains, which will soon afterward react on the iron, which will eventually be converted into an oxide compound, adding itself to the first. The leaks marked at the commencement of the operation will be entirely stopped
as soon as the ammonia commences to move out
externally, the whole operation not occupying more than a couple of hours. One advantage of the new
process is that leaks are stopped by an independent injection of hydrate of iron, while in the many processes at present in use the result is obtained at the expense of the iron in the cylinder, that is to say, one part has to lose that which another portion gains.-Railway Review.

A Metol and Hydroquinone Developer.
Mr. John Russell says our old friend pyro is an exceedingly valuable developer, with, however, a tendency to give too dense a deposit in the high lights be fore the half-tones are well out; it also stains the hands and plates, giving slow printing negatives, and sometimes produces color fog. Hydroquinone, though excellent in many respects, frequently gives exaggerated contrasts, and in cold weather works so slowly as to inconveniently prolong development. For correctly exposed plates amidol works splendidly : but with full exposure fails to give printing density. Eikonogen and rodinal also, though very powerful, fail in the same direction. Metol is, perhaps, the most powerful developer we possess, and comes nearest to pyro as a density giver, its only fault being a tendency toward oversoft results.
Efforts have been made to combine developers of opposite characteristics, such as hydroquinone and eikonogen, in the hope of securing the advantages of both by neutralizing the faults of each, and the most perfect arrangement of this kind is a combination of metol and hydroquinone. Tinese agents work remarkably well together, the tendency of hydroquinone toward undue hardness neutralizing and being neutralized by the fault of metol in t'ee direction of over softuess. By this combination we get a develope which keeps well, works rapidly, with perfect freedom from fog or stain, brings out all available detail with true gradation, gives good printing negatives withou undue opacity, and is capable of considerable modification. It is, therefore, the nearest approach to an ideal developer, and has, after many varied trials, become my favorite. The formula I have adopted is as follows:

The metol and hydroquinone should first be dissolved in hot water; when cold the other ingredients may be in hot
Though this is a so-called single solution developer it can be modified to suit any requirement by dilution and the employment of a 10 per cent solution of potassium bromide.
For very short exposures it shonld be used full strength. For normal exposures it may be diluted with an equal bulk of water, plus 1 grain of bromide per ounce. Further dilution, with still more bromide, will be necessary for overexposure. Dilution gives contrast ; concentration gives power and density with reduced contrast. The same solution may be used for several plates, and development must be continued until the apparent density is much greater than is usual with pyro.
In the hands of careful workers the convenience. power, and ease of working with this combination, a: , its capability of giving excellent results, will always make it a favorite developer. - The Photographic News.

Bacteria in the Treatment of Flax.

The ancient and familiar process used in the manu facture of linen, and known as the "retting" of flax has long eluded all endeavors to place it upon a sound cientific basis. Prof. Winogradsky, of St. Petersburg has, however, recently shown that it is directly de pendent upon the action of particular bacteria. Con iderable difficulty was experienced in discovering the pecial microbes responsible for the process, and sev eral different varieties were isolated by means of gela tine plate culture from the retted or fermented flax but in no case, when inoculated on to sterilized flax, did retting ensue. When, however, portions of retted flax were added to the sterilized flax, vigorous fermen tation was set up in from twelve to fifteen hours. In the next series of experiments, pieces of sterilized flay were inoculated, placed in tubes containing water, the urface of which was sealed from the air by means of a film of oil. In this manner, after a long series o successive inoculations, a somewbiat large, spore form ing bacillus was discovered, which subsequent experi ments proved to be the specific microbe responsible for the retting of flax. It was obtained in a condition of undoubted purity by anærobic cultivation on slices of potato which were rubbed over with chalk, and from these cultures the retting of sterilized flax wa accomplished with the greatest ease. Prof. Wino radsky is of opinion that the so-called pectic fermen tation, by which is understood the transformation during retting of insoluble pectic substances into solu ble, nust now be regarded as a fermentation proces

A QUADRICYCLE FIRE ENGINE.

We illustrate herewith a quadricycle fire engine that attracted considerable attention at the recent bicycle exhibition at Paris, and which presents unquestionaexhibition at Paris, and which presents unquestiona-
ble advantages over the hand engines in use in all places that are too small to afford the luxury of steani fire apparatus.
As shown by our engravings (Figs. 1 and 2), the engine consists of two tandem bicycles coupled by crosspieces in front and behind and having but a single steering post in front. The free space between the two frames is occupied at the t wo frames is occupied at the front by a hose reel, in the
center by a rotary pump, and at the back by a coupling that allows the pump to be put in communication with a water tap.
This entire affair weighs scarcely more than 130 or 133 pounds, which represents about 33 pounds per man. It will be seen that upon such a machine four trained cyclists machine four trained cyclists
can reach a fire at a speed can reach a fire at a speed
that could never be attained that eculd never be attained
by fire engines drawn by by fire
As soon as the engine has reached a favorable position, the four men jump from their seats, and, while two of them adjust the couplings, a third unreels the hose, and the unreels the hose, and the
fourth, turning down the fourth, turning down the
jointed support, raises the back of the nachine and throws the pump into gear.
The four men afterward
get into their saddles and pedal in situ with a mean \mid Thisfact is of some value to the under writer, the quesvelocity that causes the pump to discharge about 4,500 gallons an hour in the form of a stream 100 feet in length in a horizontal direction and about 75 feet upwardly. These figures are those obtained at the trials wade at the Palace of Industry on the 23 d of last December.
All the preparatory maneuvers require scarcely more than two or three minutes. If, on another hand, we take into consideration the fact that such machines, propelled by men with some little training, can reach a fire in a quarter or a third of the time made by ordinary hand engines, we shall realize how great an interest attaches to the use of them in country places where a fire so easils assumes the importance of a disaster by reason of the tardiness with which the first help comes. Everything, therefore, leads to the belief that this invention is destined to completely revolutionize the fre apparatus of small towns and villages.-La Vie Scientifique.

The Boston Aeronautical Society.
The Buston Aeronautical Society was organized Mas 2, 1890. Prof. William H. Pickering, of Harvard Ob. servatory, was chosen president, and Mr. Albert A. Merrill, secretary. For several months fortnightly meetings have beeu held, and at these meetings papers treating of aeronautical subjects have been read and discussed. The members have found these discussions decidedly instructive and helpful.
The objects of the society are to encourage experiment with aerial machines and to disseminate knowledge concerning the great problem of aerial navigation.
Preparations are being made for many interesting experiments, which will be tried at the field meetings of the society, to be held during the coming summer and autumn.
Among other things, the society has undertaken to encourage the fascinating study of scientific kite designing and the delightful sport of kite flying.
The society wishes to circulate its notices and reports from time to time, and it therefore requests all who are in any way interested in this subject, whether as experimenters, students or general readers, to place their names on file, addressing the secretary of the Boston Aeronautical Society, Box 1197, Boston, Mass. An important notice concerning money prizes to be a warded for the best kites will be ready for mailing May 1, 1896.

Fig. 2.-THE ENGINE READY FOR OPERATION.
sary to reduce the 1,000 pounds pressure in the cylinder to a small fraction of a pound at the burners. This is done by a Pintsch valve, a rather complicated me chanism.
"Two important questions present themselves at this point : First. What would be the result if a pos sible fire in the building reaches the acetylene cylin der? Second. What would be the result if the reduc-

How the Use of Acetylene Gas Affects Fire

Charles A. Hexamer, secretary of the Philadelphia Fire Underwriters' Association, read at its recent special meeting the following interesting paper, an extract of which we take from the Insurance World. He says concerning acetylene: "It is a colorless gas, unaffected by ordinary chances of temperature, of a strong odor, resembling garlic. It combines with some metals, including copper and its alloys, forming acetylides, but will not combine with or corrode iron or steel.

Fig. 1.- the schoedelin quadricycle fire engine.
ing valve failed, and the entire gas pressure in the cylinder were suddenly thrown into the gas pipes in the building? It is stated that, while it is true that an increase of temperature involving the gas cylinder would produce increased pressure, before the pressure would cause a rupture of the cylinder (which is said to be tested to 3,00) pounds) decomposition of the acetylene gas into carbon and hydrogen would result, with no explosive effect. This result, it is claimed, has been obtained by heating a small cylinder of liquefied gas in a fire to a cherry red heat. While this may be true (and similar decomposition of gases-notably hydrogen sulphide, which in a cylinder subjected to heat deposits free sulphur and liberates hydro-gen-are known), it remains to be demonstrated whether cylinders of liquefied acetylene gas can be safely heated without disastrous results, the fact being that the quantity of hydrogen liberated equals in bulk the acetylene decomposed; the danger of a rupture of the cylinder, therefore, is not eliminated by the decomposition of the acetylene. The result of failure of the reducing valve, which operates automatically, can be easily imagined : The liberating of a gas at nearly a thousand pounds pressure into gas pipes not intended to carry more than a few pounds pressure must necessarily produce disastrous results.
"From the above it will be seen that the points of interest to the underwriter are the presence of cylinders of liquefied gas in buildings in case of fire, and possible failure of the valve intended to reduce and regulate the slight pressure of gas necessary at the burner. There is no reason why the objection from these points should not be overcome. Cylinders of these points should not be overcome. Cylinders of
compressed gas can and should be located outside the compressed gas can and should be located outside the
building, and a safety valve can be provided to empty building, and a safety valve can be provided to empty
the cylinder, discharging the gas into the open air outside of the building, in case the reduction fails to act.
"Besides furnishing acetylene in liquefied state under pressure, it is proposed to introduce small gas rachines intended to generate acetylene directly from the calcium carbide. Apparently no special hazard attaches to this plan, provided the gas machine be located ontside the building, and provided the calcium located ontside the building, and provided the calcium
carbide be stored in a dry place and free from an accicarbide be stored in a dry place and free from an acci-
dental contact with water, which, generating the gas, might cause a fire or an explosion by coming in con tact with an open light.
"It is too early to formulate rules and requirements for safe introduction of acetylene gas for illuminating purposes. The subject has hardly passed the experi mental stage. The result of an accident to a cylinder of the compressed gas brought it forcibly to the attention of the underwriter. That the disaster was the result of the accidental and possibly careless breaking of a valve being experimented with cannot be allowed to modify the deduc tion to be drawn. As an illuminant, acetylene is so far superior to ordinary city gas that, if the claim made as to the relative cheapness of its production can be substan tiated, its general introduc tion may be expected. A careful consideration of the subject by underwriters' associations is necessary. In the meantime underwriters are wise who carefully consider each application for the use of this new gas in its present state of development, and until proper regulations and requirements have been formulated for its safe introduction, refuse to grant per mission for its use in buildings covered by thei policies."

In the Japanese Imperial Budget for the current year, the sum of $\$ 21.639$ has been set aside for earth quake investigation. This is a grant over and above the usual expenditure of the central observatory con trolling the seismic survey of the country,

THE DUDLEY POWDER PNEUMATIC GUN. The Scientific American has given considerab atteution in the past to the development of the pneumatic gun. A weapon adapted for aerial torpedo practice, one which could place with reasonable accuracy a torpedo containing from one to five hundred pounds of high explosive at any point within a radius pounds of high explosive at any point within a radius of two miles, appeared destined to be a very effective
weapon, especially for coast defense. The principal weapon, especially for coast defense. The principal
objection to the pneumatic gun was the extensire airobjection to the pneumatic gun was the extensire air-
compressing plant required to operate it. The gun compressing plant required to operate it. The gun
itself in lightness and simplicity was all that could be

THE DUDLEY PNEUMATIC GUN-VIEW OF THE BREECH MECHANISM.

the dodley gon after the explosion.

THE DUDLEY PNEUMATIC GUN TAKEN APART.

SIGHTING WITH THE DUDLEY PNEUMATIC GUN.
piece in a four inch gun weighs only two hundred and fifty pounds. This fact, in connection with the few ness of parts, so strikingly shown in the last named cut. gives an idea of the simplicity and practicability of the piece. The general features of its construction are these.
Three tubes constitute the principal elements. These lie parallel to each other side by side, as shown in the illustrations. The long central tube is the firing tube, and is the piece which weighs 250 pounds. The two side tubes are connected by an air passage at their forward ends, which ends are closed. The rear end of the left hand tube, also closed, is connected to the rear end of the central barrel or firing tube. The right hand tube and the Giring tube have breech mechanisu like that of a breech loading rifle.
The action and manipulation of the piece is sim plicity itself. A metallic powder cartridge is inserted into the rear end of the right hand tube and its breech is closed. A torpedo is placed in the central tube whose breech is then closed. The powder is fired. The air in the tubes is compressed by the gases generated from the explosion, the pressure rising to 850 pounds The force of the explosion, cashioned by the two columns of air intervening between the powder and the projectile in the central tub:, acts upon the projectile. With a slight noise and without a particle of smoke or flame the projectile is driven out of the barrel and passes smonthly through its trajectory. About the same effect is attained as with the regular pneumatic gun. The extensive air-compressing plant of the latte is, in the case of the Dudley gun, represented by a simple blank cartridge

The recoil of the piece is comparatively slight, and springs are provided to take it up. The gun experi mented with is of four inch caliber, and with its mount weighs 2000 pounds, the mount alone weighing 750 pounds. The side tubes are three inches in dianueter. Over 160 rounds had been fired from it up to the day of the accident, and after all this practice there is a noticeable absence of fouling. Fifteen ounces of $\mathbf{D u}$ pont square scale smokeless powder form the charge The projectiles are of the familiar type used with the original dynamite gun. The body of the shell is a brass cylinder with pointed ends. To its front is attached the fuse; from its rear a tail piece extends which carries rings or vanes set at an angle so as to insure rotation. The entire shell, tail piece and all, i 52 inches long and fully charged weighs 32 pounds. In the main body, the brass cylinder just alluded to, the charge of nitroglycerine explosive is placed. In the forward end of the charge and inclosed in a metal cas there is embedded a detonating charge of guncotton In the center of the guncotton is a cylindrical case o fulminating mercury.
The Merriam fuse operates by inertia or by direct im pact. If the shell strikes the water, the inertia oper ates the ignition. A steel ball within it is driven for ward, owing to the retardation of the motion; and the ball by striking causes the detonation of one or more percussion caps, three being used to insure firing. The ignition of a tube of slow burning powder is thu effected, which communicates with the fulminating mercury and so explodes successively the guncotton and the main explosive in the shell The period of the explosion is determined by the slow burning pow-
der; by altering it the time element can be regulated der; by altering it the time element can be regulated with the greatest accuracy.
For attack upon armor, instant detonation is re quired, and this is secured on the direct impact prin ciple, by crushing in of the head, and the driving back of one to three firing pins, which ignite quick burning powder, the fulminate, the gun cotton and the main explosive in instantaneous succession.
The element of safety is introduced in the Merriam fuse by a little windmill or vane on the front of the fuse. This is inclosed in a recess, whence it escapes as the shell leaves the gun, and instantly begins to turn, actuating a screw which has been screwed down upon the firing ball. After the shell has traveled a few hundred feet, the ball is free to work the instant the shell is arrested in its flight.
The shells are shown in one of the cuts. Fig. 1 shows the service shell packed with high explosive, the fuse vane being concealed within the forward cone The rear cone is of aluminum. Fig. 2 shows a prastice
cone charged with gunpowder, lead ballasted, and with the fuse vane shown projecting from its forward end. It was with a shell of this type that the accident occurred. Figs. 3 and 4 are simple non-explosive practice shells, one of wood, the other of metal. The ballasting of the projectiles is of the greatest im portance, as their steadiness of flight depends on the center of gravity being in a definite place.
The shell is placed in the tube without any sabot or packing, and it can be thrown about a mile and a half. The sighting mechanism operates with a level sight line, the elevation of the gun not af fecting the line of sight. A fixed pressure, and consequently fixed initial velocity of about 700 feet, is em-
ploved, the range being determined by elevation. At ployed, the range being determined by elevation. A tory is used.

The gun was tested at Mattinicock Point on Long
Island Sound on Monday, April 13, in the presence of Island Sound on Monday, April 13, in the presence of General Nelson A. Miles, U. S. A., and of a very dis water ghed gathering. Five shots were fred into the with 92 per cent explosive. These were' exploded suc cessfully by Merriam fuses.
Target practice with dummy shells loaded with four pounds of gunpowder and with different fuses came next, in the course of which one of the shells exploded in the gun, blowing out a piece of the firing tube and slightly wounding two of those present. Had the premature explosion occurred with one of the fully charged shells, the results would have been most dis astrous. As it is, the accident will simply lead to the discarding of the type of fuse which seems to have

THE PROJECTILES FOR THE DUDLEY GUN

brought about the accident. One of our views shows he gun after the disaster, with a p
he central section of its firing tube
A feature of the gun is the slight recoil, and conse quently slight foundation needed to carry it. A cou ple of timbers to which the stindard is bolted are am ple. It could be established on a ship's deck withou any additional bracing being required, and its simpli city and lightness of parts adapts it for field use. It places the pneumatic gun on a par with field artillery something hitherto not effected.

Semi-Precious Sto

Mr. George F. Kunz, the ackno wledged authority on precious and semi-precious stones, communicates to the New York Sun the following inferesting facts re ative to the discovery and source from which collec ors and museums obtain their specimens, and a de scription of the properties of which the different stones re composed
Public interest in the fancy or semi-precious stonestha ncreased greatly in America since the Centennial Ex position of 1876. Formerly jewelers sold only diamonds rubies, sapphires, emeralds, opals, pearls, garnets, and agates, but now it is not unusual for the mineralogi cal gems, such as zircon, star sapphire, star ruby, tour maline, spinel, or titanite, to be called for, not only by collectors, but also by the public, whose taste has ad vanced as much in precious stones as it has in art.
Spinel is the most valuable of the semi-precious stones, and is one of the few minerals that are orna mental and beautiful enough for gems in their natural state. No other stone has so wide a range of color, and each color in turn is represented by many distinct shades. The flame red and crimson stones have been mistaken and sold for rubies, but, although the hue may be vivid, yet it lacks the richness of the ruby The orange red spinels are called rubicelles, the pink ones balas rubies, and a charining variety of blues blue greens, inky blues, purples, and violets, terminat ng in the black spinel, called pleonaste, gives this tone a range of color almost unequaled.
One would little expect to find among the jewels of the queen of the ruby mines any other than true rubies; but the English officer who, in 1886, took the hairpin from the private chamber of Soup-Y-La, the Queen of Burma, in the palace of Mandalay, was sur prised to find that the red jewel in it was not a tru ruby, but a fine ruby spinel.
Beryl is one of the most lustrous and brilliant of gems, and occurs in a variey of shades of yellow golden yellow, yellow brown, brown, green, sage, and rass green. Aquamarine is the term applied to th white, light green, light blue. and yellow green beryls, so called from their resemblance to the color of sea water. The yellow ones have been called golden beryls. All these varieties are often exceedingly beautiful and brilliant. The finest aquamarines are found in Russia, Brazil, Ceylon, Maine, New Hamp shire, Connecticut, and Mount Antero, Colorado; at the last locality, at an elevation of 14,000 feet, almost on the line of perpetual snow.
The large aquamarine now at the Field Columbian Museum in Chicago, the finest ever found in the United States, is from Stoneham, Me. It is brilliant cut and weighs $1833 / 4$ carats. The color is light bluish green, and, with the exception of a few hairlike internal striations, it is perfectly clear. One of the finest
known beryls is a superb blue green crystal, found in the Urals in 1820, weighing six pounds, and valued a $\mathbf{2 3 , 0 0 0}$. It is now at the School of Mines in St. Pe ersburg. Others worthy special attention are the on in the sword hilt of Prince Murat, sold in the Hope collection, and the frog of sea blue aquamarine on a jade leaf, shown at the Paris Exposition of 1878, and now in the James Garland collection in New York City.
The name topaz generally suggests only a yellow stone, yet there are light blue and green varietie which have frequently been sold as aquamarines, though the topazes are heavier than aquamarines and I bave frequently detected the difference withou opening the paper containing them. Topaz admits of a very high polish, and is very slippery to the touch. Strange to say, the yellow topaz when slightly heated becomes pink; heated further, the pink grows paler, and by long heating is entirely expelled, leaving the gem colorless. The sherry colored or brown topaz is bleached in a very short time by the rays of the sun or strong daylight, and all the white topazes found in nature have been decolorized in this way. The topaz is found in granite rocks in Siberia, Japan, Peru, Cey on, Australia, Brazil, and Maine, and in volcanic rocks in Colorado, Utah, and New Mexico.
One of the most beautiful of all gems, and one not known two decades ago, is the green garnet called demantoid, or "Uralian emerald," or "Bobrowska gar net," found at Poldnew aja, near Sysserk, in the gov ernment of Orenberg, Russia. It varies from yellowish green to an intense emerald color, and has such a power of refracting light that it shows a distinct fire like the diamond or zircon, and in the evening ha almost the appearance of a green diamond.
Pyrope, or Bohemian garnet, has been long and ex ensively sought and worked in the region near Mero nitz, Bohemia, where it is gathered from surface de posits and conglomerate rocks, coming from a decom posed peridotite. The gathering and cutting form a reat industry in that country. Pyrope occurs unde similar conditions in the diamond bearing rocks of South Africa, and also in Arizona and New Mexico and from both these regions gems of rich color are ob tained and sold under the name of Cape rubies and Arizona rubies. The African stones are larger than the American, and perhaps equal to them in color by daylight, but the latter are much richer by artificia ight. Only the clear blood red color then remain visible, while the Cape rubies retain a dark tint, inclining to brown. About $\$ 5,000$ worth of cut stone from Arizona are sold annually, and some peculiarly ine ones have brought from $\$ 50$ to $\$ 100$ each
The torquoises of commerce come from Nishapur Persian the Desert of Sinai (Egyptian turquoise), and several localities in New Mexico. Those from Persia are of a softer blue and opaque; those from Egypt a darker blue and translucent, frequently changing to green; those from New Mexico are a fine blue, and fully half a million dollars' worth has been sold in the past five years. The best specimens come from Nisbapur, where they occur in a clay slate. There is in the color of the best turquoises a peculiar quality partly arising from the fact that the delicate blue tint is ningled with a slight infusion of green and partly from faint translucency of the stone. Turquoise is no opaque, thin splinters transmitting light easily, and utting and scraping like ivory with a polished cut.
The true turquoise, which shows various hues and ones of blue, greenish blue, bluish green, is not to be confounded with the blue fossil turquoise, or odornto lite, which is a fossil bone, colored by phosphate or ron.
Turquoise often becomes green by age, as may be requently seen in turquoise cameos of the Italian cinquecento. When green spots appear on turquoises he color can often be restored by allowing them to r nain in a solution of equal parts of alcohol and am monia, or embedding them for a time in fuller's earth wet with alcohol or water. These spots are often due to the absorption of grease or other fatty compounds which separate from the soap when the hands ar washed, or to the action of perfumes which leave oily essences upon evaporation. Sometimes, however, they result from a natural change, and hence this beautiful gem cannot be guaranteed, although the owners of the American mines replace any stone that changes color within six months. In a coronation chair in the Kremlin are several old turquoises, some of which are beautifully blue, while others in the same chair have changed to green. Turquoise has been found all the way from Colorado to Peru.

Dissolve eight parts of borax and two parts of car bonate of soda in one hundred and sixty parts of hot water, and dissolve in this thirtv-two parts of bleach d shellac broken up small. \dot{W} hen this is dissolved add one part of glycerine dissolved in one hundred and sixty parts of water. If any deposit forms after few days, filter off. This varnish can be run on the -Photography

DOUBLE DECK CARS。

It was suggested in a recent issue of the Scientific American that the congestion of traffic on importan lines of travel，such as the Broadway cable line，New York，might be relieved by the introduction of a cer tain number of double deck cars．There is an objec－ tion to the use of trailers on the ground of obstruction to traffic on the intersecting streets，which would not obtain against this form of car．It provides，upon a single wheel base，the same passenger accommodation as two ordinary cars．Its introduction on a line running through a crowded thoroughfare would double its carrying capacity without adding to the bulk of the vehicular traffic．The accom－ panying engraving shows the general appearance of a number of twenty two foot double deck electric cars， two foot double deck electric cars，
built by the J．G．Brill Company，for built by the J．G．Brill Company，for
the new electric railway in Cape the new electric railway in Cape
Town，South Africa．They have a seating capacity of sixty－four passen－ gers，thirty－two above and thirty－two below．The seats on both decks are arranged transversely，with a central aisle．
It will be seen that the increase of 100 per cent in the seating capacity is obtained at the cost of comparatively little extra dead weight in the car itself，which，in its essential features，is similar to the ordinary single deck car．The increased accommodation is obtained by the addition of a roof carried on light iron rods，two eud stairways，and the seats，together with such increase in the strength of the car body and frame as may be necessary．The platforms are specially commodious，and accommodation is provided for the motorman，controller and brake apparatus on the outside of the step landing．The cars are mounted on Eureka maximum traction pivotal trucks，and are equipped with Westinghouse No． 3850 horse rower motors．We are indebted for illustration and details to the Street Railway Journal．

THE DOUBLE DOVETAIL AND BLIND MORTISE．

by emery leverett willisms．
There are many peculiarly ingenious devices used by cabinet makers in the nicer parts of their work．
Often these tricks serve the purpose of making a finer finish or a better construction，and are frequently invented by some clever mechanic．
I remember when a boy，and interested as most boys are in the possibilities of a jackknife and a small set of carpenter＇s tools，seeing my father construct a double dovetail，which to me appeared an impossible feat That it could be put together so as to be dovetailed in both directions，might well surprise many better acquainted with woodwork than I．
Like all things apparently intricate，its secret is simplicity；but when both pieces are glued tightly together，as shown in the drawing，it is a puzzle．
It is constructed like a simple wedge，the cut in the wood where the dovetail is inserted being entirely hidden when the pieces

are together．

Inserting the dove－ tail at the wide cut on the side，it is pressed into place，wedging it－ self easily and nicely self easily and nicely
into the position show－ ing a double dovetail． I am not sure that this particular dovetail has any practical value， otherwise than making a nice finish，as its strength is only in one direction．
At another time my father was engaged in repairing some antique furniture，among which were some old English chairs．The gentleman who owned these called my father＇s attention to one，the legs of which were braced by rungs， still tight and secure as when made．Under
each rung，in the leg of the chair，was a wooden plug，its grain running exactly as that of the leg．It seemed as if a mistake had been wade by the one who built the chair，he having evidently made the mortise cut too low and had tried to hide his error by filling it with this wooden plug．After a moment＇s in－ spection，my father saw that th＇s was not a mistake， but an old English trick，called a blind dovetail．
A cut is made in the leg of the chair twice as long as the width of the rung，the lower half of which is as wide again as the upper．The end of the rung

pipe，the grease being first removed．Molasses，honey，
made petroleum－tight by saturating or varnishing with this compound．As a rule，all substances which are soluble in water are quite insoluble in petroleum． For stuffing boxes for withstanding both water and petroleum，castor oil may be employed，as this pecu－ liar oil seems quite insoluble in either water or petro－ leum．＂

Injurlea by Electricity．

－The use of electricity has become so general and accidents are so frequent that every－ body should be advised how to extend aid to a person injured by an electrical current．A German medical publica－ tion gives the following suggestions： （1）The current should be shut off at once if the means are at hand and the person called upon understands how to do it．（2）If this cannot be done，be careful not to touch the injured per－ son＇s body with the hand．If no India rubber gloves are at hand，the body should be dragged away from the wires by the coat tails，or the coat should be taken off and folded（a dry cloth may be used for the purpose）， when the injured person may be grasped through it and dragged away． （3）When it is not possible to remove the injured person from the wires， raise that part of the body that is in contact with the earth or the wire from it，using the covered hand．This

DOUBLE DECK CARS．

 current，and it will generally bento building a chair or other piece of furniture，this would be of especial value．

Making Petroleum－tight Joints．

The following useful notes have been communicated by Mr．Hiram S．Maxim to the Engineer on the mate－ rials and methods for making tight joints in petroleum pipes and vessels：＂Many have supposed it to be quite impossible to make a petroleum joint that would not leak，especially with the light varieties，such as naphtha and gasoline，when subjected to both heat and pressure．However，as a matter of fact，it is no more difficult to wake a petroleum proof joint than a waterproof joint．In making up steam or water joints we naturally employ something which is insoluble in water．If an ordinary steam or gas fitter is asked to make a petroleum－tight connection，he is sure to em－ ploy red lead and oil，and for a gasket or washer he is equally sure to use India rubber，both oil and India rubber being quite soluble in petroleum．In my expe－ rience I find that a joint which is screwed together dry is less apt to leak petroleum than a joint made up of the orthodox red lead and oil．To make a good petroleum joint with common iron pipes，a very good system is to heat both the male and female threads sufficiently to dissipate every trace of oil；then make the joint up with thick shellac varnish，which may．be combined with ordinary dry vermilion or even Vépe tian red．A joint of this kind I have found to stand well．A very good joint can also be made with ordi－ well．A very good joint can also be made with ordi－
nary yellow bar soap rubbed into the threads of the glue，mucilage，or glycerine are quite petroleum－proof． For a stuffing box，ordinary wicking saturated with common yellow bar soap may be safely employed． Canvas saturated with shellac varnish makes a good washer，but soft metallic washers are better．A very good flexible diaphragm for a regulator may be made of closely woven cotton fabric varnished on both sides with a compound of gelatine and glycerine．About equal parts by weight make a very tough and elastic compound．Wooden vessels，bags，etc．，may also be
disturbed by either and and beds．This is specially the case with elderly people．In such cases the mischief is not always done place insidiously，extending over days or even weeks．

A mastodon＇s skull，in a fine state of preservation， was dug up at Buchanan，Mich．，near the Indiana boundary，a few days ago．It measures $21 / 2$ feet in width and has four perfect teeth．The teeth measure about 4 inches by $61 / 2$ inches．

2Business and Personal. The charge for Insertion under this head is one Dolar a line
for eaci inseertion : a oovur eionit woras to a line. Advertivemonts must be received at puobication office as eariv as

Marine Iron Works. Cbicago. Catalogue free. For hoisting engines. J. S. Mundy, Newark, N. J. C. S." metal polish. Indianapolis. Samples free Mariner \& Hoskins, Assayers, 81 Clark St., Chicaao W. Hoskins \& Co., Assay Furnaces, 81 Clark St.,Cbicako Presses \& Dies. Ferracut.e Mach. Co., Bridgeton, N. J. Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls. O Well Drill Prospecting Macb'y, Loomis Co., Tifinn, o Plaster Retarder. Special price for 30 days, Blue Rapids Plaster Co.. Blue Rapias, Kans.
Wanted-Promoter to exploit a recently patented ele
vator safety device. Address C. B. L., Box 773 , N. y. Screw machines. milling macnunes. and drill presses.
The Garvin Mach. Co.. raight and Canal Sts., New York. Wanted-Competent foreman for manufacturing sbeet
and wire specialties. Address "Enterprise," Box 773, N. Y.

Fmerson. Smith \& Co.. Ltd., Beaver Falls, Pa.. will send Sawyer's Hand
free to any address.
Now Ready-Practical Handbook on the Care and Management of Gas Engines, by G. Liecke Cild. Cloth,
\$1. Spon \& Cbamberlain, 12 Cortlandt 81. Spon \& Cbamberlain, 12 Cortlandt St., New York. For Sale-European patents. Article paying immense
proft. Will duplicate machinery for foreign manufacturing. E. F. Knikht, 701 Pontiac Building, Cbicago. The celebrated "Hornsby-Abroy d" Patent Safety Oil
Engine is built by the De La Vergne Refrigerating Ma-
chine Company. Foot of East 138th Street, New York. chine Company. Foot of East 138th Street, New York
The best book for electricians and beginners in elec
 Young Men seeking a proftable business should in
vestigate Ransome's Concrete Construction. Easily learned. Liberal terms for exclusive righion. Easily $\&$ Smith Co., 622 Boylston Bldg., Cbicago
Wanted.-Copiesto complete files nf the following Re-
volutionary magazines: Massachusetts Magazine. New volutionary magazines: Massachusetts Marazine. New
York Magazine. Royal American Marazine, Columbia York Magazine. Royal American Mapazine, Columbia
Magazine. State price, and whetber perfect or not.
Address M. A. C., Box Ti3, New York.
Cripple Creek-lts History to Date, Illustrated.-Just
out, with correct map and costly full page views of mines natural as life. This great book will be sent fre prepaid with our big 56 -col. family paper 3 months on
trial for 25 c . (stamps or silver) ; club of 5 , \$1. Latest trial for 25 c . (stamps or silver); clab of 5, 81. Lates
mining news. Mention the SCIENTIFIC American mining news. Mention the SCIENTIFIC A.
and address illustrated Weekly, Denver, Colo.
CTV Send for new and complete catalogue ot Scientift
and other Books for sale by Munn \& Co.., 3 Bil Broadway New York. Free on appliration.

RECENTLY PATENTED INVENTIONS.

 Rallway Appliances.Car Fender. -Sylvanus D. Wright New York City. This fender has a forwardly-extending ing its side bars with the dashboard, the frame being adapted to spring backward slightly on striking a person
in the path of a moving cur. The platform held in the in the path of a moving cur. The platform held in the
frame is made of wire netting, and at its rear has a slightly curved back to form a head rest and protect the body of any one picked up by the fender, the body being safely held until the car is stopped. The improved de
vice may be readily disconnected from one end of the car and placed at the other end.
Switch.-John Kesselring, Girardville Pa. This invention affords an improvement in switches
which antomatically return to a certain normal position, there being adjacent to the switch tongue a mating rail with transversely movable portion, and a guard railalong. side the mating rail, while extending through the mating rail and guard rail is a rod on which are springs to press
the mating rail of the switch tongue toward the guard the mating rail of the switch tongue toward the guar
rail. All the parta return to their normal positions a soon as the train leaves the potion
the switc
Car Axle Lubricator.- James S. Patten, Baltimore, Md. This inventor has patented, in
one integral device, a brass or journal bearing proper, a one integral device, a brass or journal bearing proper, a
journal cap or hood-like cover and protector, and means for deflecting and confining the oil within required lim for deflecting and confining the oil within required \lim -
its, the pendent front and sides of the cap or hood di verging from a point in contect with the journal and hav ing near their rear ends transverse ribs extending down-
ward from a point where they are in frictional contact ward from a point where they are in frictional contact
with the journal. There is also provided a spring-sup with the journal. There is also provided a sp.
ported oil box in which are oil take-up rollers.

Electrical.

Storage Battery. - Alexander F. Vetter, New York City. This 18 a battery of sumple and
inexpensive construction in which the active material is positively held in the plates, positive connections with the plates being effected by arms connected integrally with the metal thereof. Ordinary lead pipe is used, th sides pressed together to close the tube at its lower end tube extension, the active material being then placed in the tube section and the top of this portion being close by pressure. Outside or end plates constituting the nega-
tive elements have downwardly inclined openings on their inner faces, the outer surface being left intact, and the ositive plate is similarls perforated in both sides.
Electric Light Shade.-Willis E. Robinson, Faribault, Minn. According to this invention, a shield is provided consisting of a clamp having oted a holder carrying a spring maintaining the holder in adjusted position relative to the clamp, the holder also carrying a shading leaf. The improvement is more especiany adapted for incandescent lamps, being adjust-
able rertically and laterally or at any angle to the

Electric Switch. - Abraham K. Dresher, Worcester, Pa. In this switch the space be
tween the stationary and movable contact surfaces is tween the stationary and movable contact surfaces is
great when the switch is open and small when the great when the switch is open and small when the tact spring being provided and a novel binding post t. hold it and receive the conducting wire. The mechanism for causing a long break and a short make is formed of long and short spring and wedge cams, and by making the movement necessary to complete the circuit small it is made possible to make the mov
circuit larger, thus avoiding arcs.

Mechanical.

Bookbinder's Rasping Machine. Edward J. Campbell and Patrick J. Haggerty, Brooklyn N. T. This machine compries a frame in which recipvices adapted to act saccessively on the work, while means are provided for moving the work transversely to the slide. The machine mechanically produces the rag ged or jagged edges heretofore made by hand on the front and bottom edges of a book to imitate the natura bedge of haud-made paper
Box Making Machine.-Hiram Goo and Stuart B. Hopkins, Delevan, N. Y. This invention consists principally of a head-clamping device having an intermittent rotary motion and a nailing device in con-
junction with the clamping device, to drive the nail into junction with the clamping device, to drive the nail into
the hoop and head when the rotary motion of the clamp the hoop and head when the rotary motion of the clamp
ceases. It is more especially designed for making checese boxes, etc., and bends a strip or band of wood nto side of the box and tacking the overlapping ends of the hoop, cutting off the surplus material of the hoop to fin ish the box

Agricultural.

Steam Plowing Apparatus. - Ed ward Ingleton, Pottstown, Pa . This is an improvemen on a formerly patented invention of the same inventor and comprises a wheel-supported frame carrying tracks
moved by endess chains and chain wheels, carriages in rise and lower the plow shate on the cariges Thich cost of manufacture is lessened and the constructio simplifed, the chain of plows being made to travel at the side of the frame instead of at the top andjbottom. Im proved means are also provided for raising and lowering
the plows, and effecting the connection between th he plows, and effecting the connection between the
plowing apparatus and the traction engine or other moto moving the apparatus.

Miscellaneous.

Starting Race Horses.-James J Sullivan, New York City. To insure fair and promp
starts in racing this inventor has devised a starts in racing this inventor has devised a screen to be
stretched across the track in front of the horses to pre vent the passage of any of the horses before the proper time. The screen frame is connected by link hinges with
supports at the sides of the track, and on the given signal supports at the sides of the track, and on the given signal the screen is swung forward and upward out of the way
by men working in concert and pulling on the ropes at by men working in concert and pulling on the ropes at frame.
Snow Melting Machine.-Burton S Craig, Clinton, lowa. In this machine an elevator an being a tank beneath the conveyor, and boiler and pipes to melt the snow so arranged as to confine the heat and onducted to the utmost extent, the melter or ditch a heside of the road. The machine may be drawn b horses or driven by a motor, and a brush at the rear of the

Photographic Camera. - Alejandio cual y Sn Juan, Havana, Cuba. This inventor provide nobjective which will be light-tight and free from projecting parte, avoiding all danger of fogging by light en ering through the $81 i t i n$ which the diaphragm move ime of exposure may be varied in the same manner as the ens camera, the focusing being made with the apertur ielding the clearest image and the exposure being mad with a different sized aperture.
Soldiers' Intrenching Tool. --James H. Gageby, United States Army (Fort Niobrara, Neb. ransverse handle, and a second handle extends down in front of the blade, the whole being made of one piece of
metal, and forming a light, strong and efficient tool which may be used by a soldier lying down or kneeline ere being no long handle or awkward leverage.
Thill Coupling.-William Horning nexpensive construction designed to hold the thills se curely without limiting their free swinging movement o he axle. It is also so constructed that it may be con-
veniently adjusted to take up looseness resulting from wear, and rattling is prevented.
Vehicle Shafts.-Charles A. Floyd front end of each shaft is made with a terminal loop or eye to which the back band is attached, and the loop ha also a cross stay to which the trace is attached. The ordinary projecting ends of the shafts are thus dispensed with, and. there is less danger of injury to other animals
in case of collision, or of injury to a horse falling in

Lock. - Wilson T. Bohannan, Brook yn, N. Y. This inventor has devised a key guard for
rdinary latches or locks, rendering them more secure It consists of a guard adapted to be introduced into the ke combinations may be made, and the same style of lock be made to require different keys. The wards of the guard are also so made that the key can be turned only

Sash Balance. - Joseph H. Bane,
weights are not employed, and which is also readily ad justable to counterbalance any window sash that may be
placed in the frame. A pivotal housing carries placed in the frame. A pivotal housing carries an ad
justable spring adapted to engage a fixed support, a fric tion wheel in the housing engaging the sash, while disk in the housing have ratchet wheels engaged by pawl carried by thefriction wheel. The sash may be raised
with but little effort, but more exertion is required to with but little effort, but more exertion is required to
lower it, and it may be readily held and locked ai differen lower it,
points.

Gas Stove. - Robert Morton and Robert Pringle, London, England. This stove has an air heating chamber above the combustion chamber, up. cast gas flues being suspended from the top of the air ber, below which are the burners, while the gas supply onnects with a gas heating chamber in one of the flues with other novel features, the arrangement of the a tubes and other parts of the stove being so proportione and the consumption of gas and air so adjusted that th ames burn with a pure white light and perfect stead Hoor and Joseph Matthews and Kennon Mott, Brunswick, Ga he hook and eye, according to this invention, are eac made of a single piece of bent wire, and each has tw harp points adapted to be attached to a garment by tw After the hook is in the garment its points or pins ma be threaded in the under face of the garment, or covered a sewed-on strip of material.
Dress Belt. - Henry Bruning and Ed belt having front end sections united to a section by a ring at each side, the front end sections bein closed by a buckle. The strap adjacent to the connect
ing rings has an embossed or offset recess, whereby ing rings has an embossed or offset recess, whereby a
belt. G. Molteni, Hoboken, N. J. This is a simple and incxpen oor casing, over which a clothes line may be passed, the ther end of the line being extended around a pulley on distant post or other support. With this improvemen the sheave carrying the pulley line may be secured it almost any position
change of the parts.
Rotary Brush.-William S. Beard Pine Bluff. Ark. For dusting rooms, and brushing suite, ated by spring power, and which at the same time co ects the dust removed. It comprises a spring motor in casing driving a train of gear wheels which drive
brush shaft, end brushes being held on the extreme oute ends of the shaft, and a receptacle for the sweeping projecting forward under the brushes and being secured to the under side of the casing.
Cleaning Beer Pipes, etc.-Charles eters, Brooklyn, N. Y. For forcing a cleaning liqui beer, according to this invention, a cleaning liquid re eptacle is connected with a compressed air supply, and
connection is also made with the pipes to be cleaned, in uch manner that the column of cleaning liquid sup plied, instead of being driven at a constant speed, is a shaking action of the pipes.
Show Case. - John Conlin and Robert Whitty, Ripon, Wis. This invention consists principally
of a casing provided with a cover hinged to a frame mounted to swing, the improvement being more especially designed for exhibiting cigars and similar articles, and permitting the shopkeeper to open the case for a pre-
ferred customer to select and remove the desired goods, ro open it only so that only the shopkeeper can tak out the goods.
Display Hook and Price Card Holder.-Frederick W. Pelster, Johnstown, Neb. This a simple and inexpensive device made of spring wire, and having clamping arms to clamp the goods, one of the and guided on the other arm, the projecting side portions being connected and braced by a clip adapted to hold a price card or ticket. The device affords a secure means of supporting goods for display, with attached price card or ticket.
Note.-Copies of any of the above patents will be furnished by Munn \& Co, for 25 cents each. Please
send name of the patentee, title of invention, and date of this paper.

HINTS TO CORRESPONDENTS
Names and Address must accompany all letters
or no attention will be paid thereto. This is for our or no attention will be paid thereto. This is for ou
information and not for publication.
sefrrences to former articles

 or in this department. each must atake his turn letter
in ers wishing to purchase any article not advertised
in our columns will be furnished with addresses of

 Boclic referred to promptly supplied on receipt of
mpice.
ins sent for examination should be distinctly marked or labeled.
(6837) S. N. S. says : Please state ap proximately the total horse power in use in the United
States and world. A. The following figures of the world's steam power are given by the Bureau of Statistics in Berlin. Of the steam engines now working in the world,
ve years. France has 79,590 stationary and locomotive oilers, 1,850 boat boilers, and 7,000 locomotives; Ger lany, 59,000 land boilers, 1,700 ship boilers, and 10,000 tives. The working steam engines of the United States represent 7,500,000 horse power ; of England, 7,000,000 horse power ; Germany, 4,500,000 horse power ; France $3,000,000$ horse power ; Austria, $1,500,000$ horse power This estimate does not include the locomotives, whose number in the world is 105,00 , representing a total of ,000, a orgore the 2,000 s steam engines, there ore, aggregate more than $28,000,000$ horse power, equiv
(6838) R. P. B. writes: I wish to know an induction coil, wound with No. 36 silk covered wir vound in two sections, the same being ingulated in the best possible manner. What is the idea of making the coil in two sections? Winding the coil clean across is much easier, and, if it is just as good for the purpose ntended, I would prefer to do so. How many cells of battery do you think I would need to produce \mathbf{X} ray with the coil $75 / 2$ inches long recenty hastrated in th upplement? A. The object of winding a coil in sec-
ions is to keep a good distance between leads in the se ondary differing greatly in potential. It is advisable to se more than two sections. Six or eight cells shoul suffice for \mathbf{X} ray work, but you must anticipate much difficulty and probable disappointment. Your coil seem ar too small.
(6839) A. S. C. writes : 1 am about to a a small powerful battery. Which kind should I use A. Storage batteries are incomparably the most power-
nul. They are described in our SuPPLEMENT, Nos. 159. Anl. They are described in our Supplement, Nos. 159 388, 845, and 997. Primary batteries are given in grea ariety in the Supplement, especially Nos. 157, 158, 159,
92. For a large bichromate battery of high power, se
(6840) M. N. asks if he can run a bat (6840) M. N. asks if he can run a bat nce to put in to get a required current A. If you have 110 volt lamps, each one will pass mpere. Therefore, arrange in parallel twice as many mps as your motor will take of amperes and let the act as resistance.

INDEX OF INVENTIONS

Unhich Lettern Patent of

April 14, 1896,

and eagh beairing that date

[See note atend of list about copies of these patents.]
 Zabniser
Botled liquors, controilina device for, T. Höi-
lander. Box. See A xie box. Display box. Journal box
Bandink box.
Brake. in place. means for holding, J. P. Womble.
Brake. See Car brake. Car safet' brake. Vebicle

DESIGNS.

WVoertisements.

ORDINARY RATES.

Star * Foot Power tar Sceew unting Lathes $\begin{gathered}\text { Automatic } \\ \text { Cross Feed }\end{gathered}$ 9 and 12 inch 5 wing. SERECA PALLS MrG. COMPANY,
695 Water St. Seneca Falle, N. $\mathbf{~} \mathbf{Y}$.

Machinery at Low Prices, Smal Rongine

X RAYS. CROOKES TUBES
 of approved sizes and types.

Also Candelabra, Decorative, and Miniature Lamps and Electric Signs.

```
Edison Decorative and
Miniature Lamp department, Harrison, N. J.
```


WHAT'S IN A NAME?

Much, everything, nowadays. Competition is keen, and tempts to dishonesty in business. For that reason "reputation" counts most. When you're buying a wheel have regard to the name of the maker.

The Whitman wheel-because it IS a Whitman wheel-is the standard of honest manufacture in all its parts. You are sure of satisfaction in every way. Illustrated catalogue on application. If the Whitman wheels are not on sale in your town, write for agency
WHITMAN SADDLE CO., 118 Chambers St., New York

W. W. OLIVER, 1480 Nlagara St., Buffalo, N. Y.

The Curtis Patent Damper Regulator Is the cheapest and most reliable. The only regulator guaranteed to change direction on a variation of $1 / 4$ of pound steam pressure, It D'ESTE \& SEELEYY CO. 29 to 33 Haverrill streex, boston STEEL STAMP \& $\left\{\begin{array}{l}\text { Name stamps for } \\ \text { ant }\end{array}\right.$

WIRE STRAIGHTENER

CHANDLER \& FARQUHAR,

Combination Pliers

THE BILLINGS \& SPENCER CO

Lidgerwood Hoisting
 Engines.
300 Styles and Sizes. OVER 12,000 in Use. LIDGERWOOD MFG. CO 96 Liberty Street, New York.
OLDS SAFETY VAPOR ENGINES
 trine teat simplidit

SINTZ GAS ENGINE CO Grand rafids, MIOE,
Manfactirers of the iniutzin and

PRIESTMAN SAFETY OIL ENGINE

Rom 530 P PHILC.
"WOLVERINE" GAS and GASOLINE

CE-HOUSE AND COLD ROOM.-BY engravinge. Contained in SiciENTIFIC A A MERICAN FOur ffce aná from ail. Price 10 ce

This beats Wind , stam, or Forse
WERTE $\mathbf{G A N G I N E}$

 TRANSITS AND LEVELING INSTRUMFNTS. adustable BENCH LEVEL

"My Well and what came out of it.' "Your Well and what will come out of it Pohlé Air Lift Pump The Ingersoll-Sergeant Drill Co.

LIGMT MAGNINERY

AUTOMATIC WIRE STRAIGHTENING

 Fastest Grinders Known
MLSOR
I. In Over 600 Factories. CHEAP, DURABLE Diands Everything
Diamond Hardness.

Fit any Mill Frame. 8turtevant Mill Co. stay Sharp. Boston, Mass.

Canoes, Combination Row and Sail Boats,
Cruisers and Launches OF send tamantion

STERLING CYCLE WORKS 274-276-278 Wabash Avenue CHICAGO

 The romuial Crcle Saddle

for Ladios' use. Broad and comfortable, and guaran-
teed to hold its shape. Most sensible and serviceable to in the market. Most sensible and serviceable

 THE DUGUID SADDLERY CO., Syracuse, N. Y.

 STEELSTAMPS SDIIES FoREVERYPURPDSE C.H.HANSON,

HENRY CAREY BAIRD \& CO.

 Sionainut si. Philadelphia. Pa.E.E.S.A. Scientiri Mow avd Revised Catalogue of Practical and

DEALER FOR
W. LE DOUGLAS
\$3. SHOE BESTINTHE 6 for shoes, ex- $\$ 3$.
glas Sho, and
you can buy for
LES AND WIDTHS None geturer in the worla.
price is stamped onless name the bottom.
 TAXE NO SUBSTIIUTE. If yourdealer
cannot supply you, send to fac-

 Congress, button, and LACE, made in all leather the best selected men. We
make and

 The WINSHIP Platform Sprinkling $\left.\begin{array}{c}\text { Send } \\ \text { for dir- } \\ \text { culars. }\end{array}\right) \underset{\substack{\text { The most compote } \\ \text { Wprinkling }}}{\text { Wagon ever buit. }}$

DARR PIRK

On the Crest of the Alleghanies.
To those contemplating a trip to the mountains in the Allegheny Mountains, ,3,00 feet above the sea level. offers such varied attractions as a delightful atmowinding roads through the mountains and valleys, and the most picturesque scenery in the Allegheny range. The hotel is equipped with all adjuncts conductive to
the entertainment, pleasure and comfort of its guests. the entertainment, pleasure and comfort of its guests.
There are also a number of furnished cottages with facilities for housekeeping,
pure water, piped from the celebrated "Boiling Spring," nd are inghted with electricity. Deer Park is on the the advantages of its splendid vestibuled Limited Express trains between the East and West. Season
excursion tickets, good for return passage until October 31st, will be placed on sale at greatly reduced rates The season at Deer Park commences June 22d, 1896. For full information as to rates, rooms, etc, address Deer Park, $\quad \begin{gathered}\text { GEORGE } \\ \text { Garrett County, }\end{gathered}$ Manager,

A RARE OPPORTUNITY.

 Grand Rapids, Mich., April 10, 1898.
 min Phumitior EXCHANGE, 1t Barclay St, New York 156 Adams St., Chicago 38 Court Sq., Boston.
818 Wyandotte Street, Kansas City, Mo.

A GREAT OFFER!

Positively Limited to June 1 st.

 From the "sCIENTIFIC ATIERICAN

 ans ine or the stuadent or apprentice fust makitno

EMGMGDPAFDG DGGTMNABY FOR \$1.00 CASH AND \$1.40 A MONTH FOR A YEAR.

If you do not already own thiggreat mork, LOSE NOTIME Minvestigating our proposition. Do not over-

More than $\$ 750,000$, and the services of over 100 learned editors and specialists, employed to produce this magnificent self-educator.
It is a Complete Dictionnary of the Engligh language. Every word is exhaustively treated as to its
origin, history, development, etymology, pronuciation and various meaniugs. It in a Comprehensive Encyclopmedin of anatomy, botany, chemistry, zölogy, geology, art, music, It is a Su perb Library Book. substantially bound, printed from new plates, in large, clear type, on heary topics as are covered by the largest of other encyclopmadias.

Adopted by the PHILADELPHIA BOARD OF PUBLIC EDUCATION on February 1, 1896, in preference to all other Dictionaries and Encyclopedias; previously adopted by st. Louis,
Bledo Jersey Cly, etc., and now recognized as THE STANDARD IN PUBLIC SCHOOLS from Maine to TWO EXPERT OPINIONS-THOUSANDS SIMILAR.
Rev. Charles H. Parkhurst, D.D.

$$
\begin{array}{l|l}
\text { Parkhurst, D.D. } & \text { Ex-Postmaster General Bissell. } \\
\text { NEW YoRE, March 9, 1896. } & \text { Gentlemen: }
\end{array}
$$

 REMEMBER, UNTIL JUNE FIRST ONLY
readers of the Sorivntipic American can obtain this unrivaled treasure-house of practical
but little above cost of paper, printing and binding, and on terms easy almost beyond beiief.
HOW TO GET THIS GREAT WORK. - Send \$1.00 by post-ofice order, express order, or check,

AGENTS WANTED SYNDICATE PUBLISHING COMPANY, 236 So. Eighth St., Philadelphia, Pa.

We make the only succesaful
YLENE GENERATORS
for houses, microscopes, stereopticons, reading lamps, photo galleries, and anywhere requiring the brightest light of the century.
WALMSLEY, FULLER \& CO., 1:34-136 Wabrsh Avenue, We Furnish Calcium Carbide.

BUY
 TELEPHONES

 WESTERN TELEPHONE CONSTRUCTION CO.,
250 So. Clinton Street, Ceicago. HELLO, CENTRAL!

 trated catalog and particuars by return mail.
PHEENIX INTERTO TELEPHON ECO.
131 Liberty St., New York.

NEWAYCO AUTOMATIC CIRCUIT BREAKERS AUTOMATIC ©ícicuit breaker company, NEWA YGó, MICHigan, u. s. A.

aren ..emar tanks.

GGOHE IS DEAD

 $\overline{\text { SHORTHAND }}$ Write w,

RAUGHTING or SuRVEYiNG (any ght

 Now; a great bargain for any one wanting an engine. FOR SALE $\begin{aligned} & \text { The foreign rights of a valuable Amer- } \\ & \text { ican invention. Fasily placea on roy saly }\end{aligned}$

AARBORUNDUMO

WWOODEN TANKS.
 ${ }_{217}^{\text {E. C. Main Street, Louisviile, Ky }}$

FIPE BPICY Fonall PURPOSES.

 S8 Van Dyke street, BROOKIMN N.5
5
8Rough Castings.

MENIWOMEN

A.W. FABER

Manaractory Raskished 1761.
 PENS, INES, PENCIL, CASES IN SILVER AND IN
GOLD, STATIONERS' RUBBER GOODS, HULERS, 78 Reade Street, - . . New York, N. Y. ONLY PRACTICAL MAGAZINE CAMERA SUNART's
VENI, VIDI, VICI,"
$\begin{gathered}\text { UNART MAGAZINE, } \\ \text { SUNART FOLDINGs. }\end{gathered}$

SUNATET PHOTO
Send for Illustrated Cata-
logue-2 cent stamp.
Scienific Book Gatabosue Our New Catalogue contanning over 100 p. pases, includ-
ing works on more than try diferen mbjects. Will
ing morled fre to De minn \& CO., Publishers Scientricic American

361 broadwas, New York

Thine haven tone that's
 DEPARTURE Mano

