

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS, CHEMISTRY, AND MANUFACTURES

THE MANUFACTURE OF THE HAMMOND TYPEWRITER. internal construction, and the infinite care and nicety Prominent among the many iudustries which have of adjustment that enter into its manufacture, may grown to large proportions within a comparatively not be so well known. We present in this issue a series short space of time is that which is devoted to the de- of cuts which serve to show the leading details of the velopment and manufacture of the typewriter. This well known Hammond typewriter, and the various most useful, we might say indispensable invention, \quad processes which are adopted in its manufacture.

which was at first regarded as nothing more than an | | processes which are adopted in its manufacture. |
| :---: | :---: |
| The Hammond is known as a "tybewheel," as dis- | | interesting toy, now gives employment to many thou- tinguished from the "typebar" machines. In the latsands of operatives, and entails a heavy investment of ter, the type is attached at the ends of a series of bars, capital in numerous large and thoroughly equipped which are pivoted in a circular frame, each bar carry factories. While the various forms of the typewriter, ing one letter and making its own impression upon and its busy "click," are familiar to our readers, its the paper, which is placed centrally within them. In

the Hammond the position is reversed, the type being cast in one integral piece, called the type shuttle (Fig. , which is oscillated horizontally upon the outer circumference of an annular ring, called the anvi (Fig. 6), the desired letter being brought into position in front of a hammer which, under the impulse of a spring, drives the paper against the type. The primary object of this arrangement is to secure perfect alignment and an uniform impression
The first object is gained by arranging centrally and rigidly within the machine a solid steel wheel, or annular disk, called the anvil. This is held in position by a central vertical shaft or pin, which snugly engages an accurately drilled hole in the transverse ba of the anvil. On the outside of this wheel and fitting snugly against its face is a vulcanite shuttle (Figs. 4 and 6), upon which is formed (Fig. 4) the whole of the type which is to be used. On the inside the shuttle is provided with a thin steel web, which is passed (Continued on page 151.)

le, showing gteel web. 5. Original form of shuttle, in two parts. e. Detail view of tspe bar ard hammer mechanism. 7. The Hammond typewriter complete.

Frientific Ammeriam.

ESTABLISHED 1845.

MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 BROADIVAY, NEW YORK.

terms for the scientific american.

 One copy, one year. for the U. s ., Canadia or MexicOne copy, six months, fort he U. S., Canada or Mexico
$\begin{array}{lll}\text { necopy.one year.toan y foreign country bel onging to Postal Union } & 400 \\ \text { Remit by } & \mathbf{5 0}\end{array}$ MUNN $\&$ CO., 361 Broadway, corner of Franklin Street, or co eck. The scientific American Supplement is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMENT
is issued weiriy. Everv number contains 1 octavo pages, unitorm in size
with SIENTIFIC AMERICNE

On of the Scieutifi
(Established 1898)

NEW YORK, SATURDAY, MARCH 7, 1896.

table of contents of SCIENTIFIC AMERICAN SUPPLEMENT NO. 1053.

PENDING TRADE MARK LEGISLATION

One of the chief annoyances in the way of the registration of trade marks is the rather foolish and unne cessary requirement that the applicant should make declaration, when applying for registration, that the goods upon which the mark is stamped are used in commerce with a foreign nation or an Indian tribe. This is one of the anomalous requirements of the other wise admirable statutes now governing the registration of trade marks. It frequently happens that the applicant has extensive trade relations between the States, but engages in no foreign commerce. He is, therefore, in no position to procure the protection granted by the trade mark laws, and before his mark will be registered it is necessary for him to practice what may be called a pious fraud, and ship some goods for sale to Canada or some other neighboring State, whereby he becomes qualified and can subscribe to the required declaration. Such a practice is objectionable and the cause for it should be removed. The commerce between our States is now so enormous that there is no reason why those engaged in such trade should not receive the same recognition before the Patent Office that is accorded to those whose special
trade leads them into the channels of foreign comtrade leads them into the channels of foreign com
merce. With a view to remedying this feature of our present law, a bill bas been introduced into the Senate, and is now in the hands of the Committee on Patents, which seems to possess much merit.
Senate bill No. 1627, the one alluded to, is to amend the present trade mark act so that it shall be applicathe present trade mark act so that it shall be applica-
ble to trade marks used in commerce "among the several States."
The old trade mark act of July 8, 1870, based on the patent and copyright clauses of the Constitution, attempted to provide broadly for the registration of any lawful trade mark. This the Supreme Court of the United States decided, in 1879, that Congress had no power to do under those clauses of the Constitution mentioned in said act. The power of Congress to enact trade mark laws must, of course, be found in the federal Constitution. Such power, the court said, could not be found under the eighth clause of section eight of article one, which provides that Congress shall have power to pass laws "to promote the progress of science and useful arts by securing for limited times
to authors and inventors the exclusive right to their to authors and inventors the exclusive right to thei
respective writings and discoveries," because an ordi nary trade mark has no necessary rela tion to invention or discovery. Both inventions and writings involve the element of originality, while a trade mark does not necessarily embody that idea, but is generally nothing more than an adoption of some device or word already in existence, as the distinctive symbol of the person using it. It does not necessarily depend upon novelty, invention, or discovery, but is founded simply upon priority of adoption.
It therefore falls under the provision of the third clause of the same section. which provides that Congress shall have power to regulate "commerce with foreign nations and among the several States and with this clause, but very curiously omits any reference to commerce "among the several States." This defect the present bill aims to correct; it recognizes that fact and is framed in reference thereto. It seems to be in accordance with the requirements of the times, and is needed to protect a very large and important class of trade marks which are in use in commerce among the several States, but which are not in use in Cot
with foreign nations or with the Indian tribes.
It is hoped that this bill will receive the good treat ment that it deserves at the hands of the committee, and that it will be considered by them in such good season as to enable it to be passed by the Senate be fore the session is too far advanced.

There is another bill now before the Committe which is of a very different kind, and which belong to that class of bill which appears at every session of every legislative body, and which, perhaps, serves to
amuse its promoters and those having a sense of humor whose attention may have been called to it, but which generally and quite properly fails to emerge out of Committee.
House bill No. 4.349 has been introduced into Congress to create State trade marks. It provides that the Governor of any State or Territory of the
United States or the commissioners of the District of Columbia may adopt a public trade mark, each for his or their respective State, Territory, or District, and file a description and illustration of the same in the Treasury Department of the United States. The Sec retary of the Treasury, upon receipt of said descrip tion and illustration, and his fee of $\$ 25$, is required to register the same and issue a certificate of registation United States, and shall be conclusive proof of the adoption and registration of such trade mark. Every such trade mark can be used only under and in accordance with such rules, regulations, and restrictions as may he provided by the laws of the State, Territory, or District adopting and filing the same, and upon goods
wares and merchandise produced, grown or manufac
tured therein, and upon packages and wrappers containing the same. To infringe such trade mark on yoods, wares, or merchandise which are, or which are intended to be, for sale, shipment, consumption or use without and beyond the boundaries of such State, Territory or District is declared to be a misdemeanor, punishable by a fine of not less than one hundred dollars nor exceeding one thousand dollars, or imprisonment for not more than two years, or by both such fine and imprisonment.
This bill is undoubtedly the outgrowth of the Tillman case. Our readers will remember that the history of that case was as follows: On July 15, 1893, Benjamin R. Tillman, Governor of South Carolina. on behalf of said Staie, filed an application in the Patent Office for the registration of the word "Palmetro" as a trade mark used in the sale of intoxicating liquors. The application was refused by the examiner on the ground that a State of the Union is not within the terms of the law permitting the registration of trade marks, because it does not come within the designation of "person" or "corporation" used therein. On appeal to the Commissioner, the latter refused the application, holding that the State of South Carolina had no authorized sale of liquors outside its own limits. Tillwan then applied to the Supreme Court of the District of Columbia for and obtained a mandamus to compel the Commissioner of Patents to register the trade mark as applied for. Thereupon the Commissioner of Patents appealed to the Court of Appeals of the District of Columbia, and that court reversed the judgment below and dismissed the petition on the ground that the trade mark applied for had not been lawfully used in foreign commerce.

It will be noticed that in the pending bill the registration of such State trade marks is made a part of the duty of the Secretary of the Treasury. He has no discretion in the matter. We do not approve of such provision. If a State is by statute to be entitled to register a trade mark, we see no reason why its application for registration should not be filed in the Patent Office, like the applications of "persons" or "corporations," and subject, like those, to being re jected if found to be an infringement upon some inark previously registered. Should the act become a law however, the courts will undoubtedly be called upon sooner or later, to decide the power of a State to en gage in foreign commerce for the purpose of revenue or profit.

The passage of this bill would lead to endless confusion and litigation, as each State would be author ized to make its own trade mark laws and there is no federal examination and supervision, as the Secretary of the Treasury is instructed to register State trade marks in spite of the fact that he may be aware that such registration may be a direct infringement of the trade marks of some prior applicant, whose rights in the premises the Secretary is summarily forbidden either to question or protect.

Burning Powdered Coal.

Engineering contains a description of a process which has lately been brought out by Carl Wegener for utilizing powdered coal. The coal, which has been ground to pass through a 60 mesh screen, is fed into a hopper which is located in front of the furnace. At the bottom of the hopper is a grating, which can be agitated from 150 to 250 times to the minute, accord ing to the rapidity of feed desired. The coal dust falls through the grate into the bend of an air supply pipe which enters the furnace at the top of the furnace door. A sit falls into this pipe it is met by the induced draught and carried into the furnace. The interior of feet urnace is lined with firebrick for a length of 10 or 1 is no grate and there are no fire doors, so called, the is no grate and there are no fire doors, so called, the was recently made in Berlin of a Cornish boiler, fired first by hand and again by the same coal in a powdered condition. The results show that the dry powdered coal evaporated from and at $212^{\prime} 9 \cdot 12$ pounds of water per pound of dry coal, as agrainst 6.48 pounds for solid coal, fed by hand stoking. It was claimed that the poor condition of the grate is responsible for the very low results in the latter case. The trial, however shows good economy for the Wegener system. The grinding costs about 10 per cent of the value of the coal

A luminous foresight for use in a bad light with guns of various kinds has been patented in England by Mr. Winans. A tiny incandescent lamp, supplied with current from a simple form of battery concealed in the stock, is mounted within a shield at the muzzle of the gun, and a faint ray of light, calculated to indicate the position of its source, is exposed in the direc tion of the shooter's eve, and this is su fficient to enable him to obtain the required alignment with the back ight and with the target, be it animate or otherwise The special application of the sight is for game shoot ing at night and for service purposes. such, for instance as the illumination of a machine gun used against tor pedo attacks during the nigbt.-Army and Navy Journal.

An Expedition to Labrador.

An expedition bound for the interior of Labrador will leave Philadelphia in June for the purpose of studying the Eskimo and collecting specimens of the fauna and flora of that region. |The party will be comwanded by G. H. Perkins and will consist of four students of zoology, geology, botany and archæology and a number of college students and others. Prof. Frank Russell, curator of the University of Iowa, ac companies the expedition as archæologist. From St. John's, Newfoundland, to Labrador, the trip will be made in the ship Kite, which was formerly used by Mr. Peary. At St. John's, Newfoundla nd, this party will be joined by ten scientists sent out to explore the coast of Elsemere's Land and will consist of a number of scientists, including Dr. T. C. Mendenhall, Superin tendent of United States Coast Survey, General A.W. Greely, J. W. Powell, Director of the United State Geological Survey, Baron Adolf Eric Nordenskjold of the Royal A cadem y of Science, Sweden, Baron von Baurmajeltsch, J. A. W. Grip, Envoy Extraordinary from Germany to Norway and Sweden. These per sons are sent out to explore the coast of Elsemere's Land and also to discover traces of the ancestors of the Greenlanders, who, it is thought, came from that place. Professor Hite, of the University of Pennsyl vania, is the originator of the expedition.

An Exhibition at Innsbruck.

Arrangements are now being perfected for the Inter national Exposition for Physical Education, Hygiene and Sport, which will be held in the town of Innsbruck, Austria, from May to October, 1896. The exposition will include exhibits from all the trades and industries pertaining to the physical education of the growing child and to the sports of the adult as well. In the first group will be shown objects which relate to the nutrition, care, and physical training of children from their birth to the age when schooling begins. The second group will be devoted to gymnastics, swimming, fencing, boats, sporting costumes, etc. In the third group are all kinds of outdoor and indoor games, and the fourth group will be devoted to skating and children's games, showing skates, sleighs, snowshoes, roller skates, and toboggans. In group fifth wil be found exhibits which pertain to riding and driving, and besides models, plans, and representations of stables, all kinds of stable equipments will be shown and models for racecourses will also be exhibited. Th sixth group is of particular interest, as it is devoted to cycling, and it is reported that there will be an interna tional contest bet ween the manufacturers in all part of the world. The commission appointed for the United States includes many well known men who are interested in sporting affairs.

The Care of the Aged.

When a man or woman passes seventy years of age, great care should be given to the conditions surrou nding him or her for the prolonging of life. The vital forces are greatly enfeebled at that period of life, and the powers of resistance in consequence of age are the weakest. A man of threescore years and ten, and over, is like an old machine that by proper care given to its condition has been kept running many years, and is still able to do work, but its wheels and axles and pinions are much worn and are rickety, and if it should be pushed, even to a small extent, in excess of its diminished powers, it breaks down and cannot be repaired, for every part of it is shattered. But if repaired, for every part of it is shattered. But if
worked carefully and intelligently by a person who worked carefully and intelligently by a person who
understands its condition and knows its capabilities, understands its condition and knows its capabilities,
it can be kept in action a much longer timethan would be possible it a careless engineer controlled it. In these fast times, however, it is generally not profitable to husband the resources of an old machine. But this is not true as regards our old men and women. It is desirable to hold on to them as long as possible and if we can succeed in prolonging their lives five or ten years, or more, it will greatly enhance our happiness.-Medical Review.

Why and How Thread is Nu
The question, "Why is spool cotton numbered as it is, and why are the figures not used in regular order? is often asked, says the Boston Journal of Commerce. The explanation is this: The numbers on the spools express the number of "hanks" which are required to wind a pound. The very finest spinning rarely exceeds 300 hanks to the pound, while in the very coarsest there is about a half pound in each hank. The more common qualities, however, those from which sewing thread is usually made, run from ten to fifty hanks to the pound, and the spools on which it is wound are numbered from 10 to 50 in accordance.

Prof. Raoult, of Grenoble, has received the biennial prize of $\$ 4,000$ from the Académie des Sciences for his discovery of the numerical ratio between the molecular weight of a substance and the difference produced on the freezing point of the liquid that dis solves it, as well as on the expansion of the vapors o the liquid.

Science Notes.
Botanic Gardens.-The Berlin paper Kuhlow's says: "Of botanic gardens France has 22, Germany 35, Great Britain and Ireland 11, the Indian empire 9, Italy 22 Russia 14, New Zealand 3, the United States 5. I is said that the finest botanical gardens in the world Portugal was at its prime in the the Azores. When Portugal was at its prime in the great office of discov ering the world, a rage for botanical specimens was
current among all interested in the maritime advencurrent among all interested in the maritime adven
tures of those interesting days. The ciimate of the Azores lends itself particularly to the growth of the products of almost every land. The result is a series of magnificent botanical gardens in those summer islands, where may be seen nearly every tree and plan known to the early navigators."
The latent life of seeds has been investigated by M C. De Candolle, and he has come to the conclusion that in their latent life seeds pass through a period of suspended animation (vie ralentie) in which all the functions of the protoplasm are quiescent, but from which they revive when again placed in conditions suitable for germination. This period of suspended animation may extend over an indefinite time. prob ably through a long series of years, and the seeds may during this period be subjected to a very low temper ature without losing their vitality. In the case of wheat, oat, and fennel, the temperature was reduced as low as minus 30 degrees C., and the experiment was repeated as many as one hundred and eighteen times on the same seeds without injurious effects; the greater number of the seeds of the sensitive plant, however, succumbed to this temperature, and nearly all those of Lobelia crinus. The immunity frominjury appears to depend on the protoplasm of the seed passing into a completely inert state, incapable of eithe respiring or assimilating before it is placed under the unfavorable conditions.-Gardeners' Magazine.
Prof. Mark W. Harrington, late Chief of the United States Weather Bureau, and who is now president of the University of Washington, intends to establish a department of terrestrial physics and geography in the university.
Prof. Sollas, F.R.S., will leave England shortly for Sydney, Australia, to take charge of an expedition to make deep borings in a coral atoll. The Royai Society contributes about $\$ 4,000$ to the expense fund and the British government has placed a gunboat at the dis posal of the party. The scene of operations will be Funifuti, in the Central Pacific.
Dr. Kruegger, of Charlottenburg, Germany, finds that the combustion of acetylene is impro ved by being mixed with an equal volume of carbon dioxide. The consumption is about 0.053 cubic foot of each gas pe
amyl-acetate unit, or say 0.06 cubic foot per candle. amyl-acetate unit, or say 0.06 cubic foo t per candle.
A writer in the Popular Scie nce Monthly has noter that on the basis of an average salinity of $3 / 2$ per cen the oceans there are $90,000,000,010,000,000$ tons of salt equivalent to $10,173,000$ cubic miles of salt. This is sufficient to covar the land of the earth to a depth of 1,000 feet.
mM. Troost and Ouvrard, in the Comptes Rendus, state that if an electric current be passed through a mixture of nitrogen, argon and helium in which there is a sufficient quantity of fine magnesium wire in a Plücker's tube, the following phenomenon is noticed When the temperature rises and the magnesium be gins to volatilize, the argon and helium are absorbed and a nearly complete vacuum results.
Prof. Roentgen,of Würzburg, after a lecture which he had delivered on his new \mathbf{X} ray photography, was invested with the Order of the Crown (Kronen Orden) econd class.
Austria has decided to combine with Germany in an expedition to the South Pole. and Julius von Payer, the explorer of Franz Josef Land, has been asked to give up his expedition to northeast Greenland in order to take the command of it.
The air is clear at Arequipa, Peru. From the observatory at that place, 8,050 feet above the sea, black spot, one inch in diameter, placed on a white disk, has been seen on Mount Charchani, a distanc
eleven miles, through a thirteen inch telescope.
It is amnounced that no fewer than four small planet were discovered on the night of January 7, two by M. Charlois, of Nice, and two by Dr. Max Wolf, of Heidel berg. If all four are duly verified, the total number will be raised to 413 . Perrine's comet may be seen no in the morning, but its brightness as compared with unity on November 18 is greatly reduced. Dr. Lamp's phemeris for Berlin mignight on February 1 read R. A. 19 h .40 m .50 s ., S. Dec. $4^{\circ} 41^{\cdot} 6^{\prime}$, brightness $0 \cdot 29$ The comet does not appear to have been observed in the southern hemisphere.
Aluminum for Cooking Utensils.-A scientific investigation was recently undertaken by the Imperial German Health Bureau to inquire into the suitability of the use of aluminum for cooking utensils. They proved that aluminum is entirely free from communcating to food any poisonous salt. such as is given
off by copper, tin, or lead. To make sure that no injurious effects need be feared if aluminum be taken
into the system, two physicians, aged respectively twenty-six and thirty-five, volunteered to act as subjects. To each of these was administered daily with their lunch about fifteen grains of aluminum tartrate, for the period of one month. By the end of that time neither had lost flesh or appetite, nor felt the slightest discouffort. For cooking purposes, this metal seems to be peculiarly adapted, as it is a splendid conductor of heat, while it has also the advantage of being non poisonous and non-corroding.
In addition to his other achievements in the domain of chemistry, Dr. Deninger, of Dresden, is now report ed to have prepared carbon monosulphide, CS, pure or the first time, and finds that, instead of being, as described in the text books, an amorphous red solid, it is really a colorless gas. He prepared it by heating dry sulphide of sodium with chlorotorm, or, preferably, odoform, in sealed tubes, to $180^{\circ} \mathrm{C}$. the gaseous products being made to bubble th rough aquevus caustic potash, which absorbed the sulphureted hydrogen and the carbon monosulphide passed through unab sorbed. By acting upon carbon disulphide with sodium, in the presence of some aniline, the new gas was also obtained. It is colorless and easily condensable to a clear liquid, which evaporates rapidly, and is extremely explosive.
Sir John Lubbock describes an ant which can support a weight three thousand times heavier than itself, or equal in proportion to a man holding 210 tons by his teeth.

Motor Carriages in Great Britain,
A recent conviction for the illegal use of a horse less carriage has been obtained in England. The owners of the carriage were summoned for not carry ing a flag in front of it. The defense contended that the prosecution was an absurdity. A fine of one shilling and costs was imposed.
At a very early date an "International Horse and Horseless Carriage and Roads Loco motion Exhibition will be held within the great Crystal Palace building at Sydenham, London. From the present condition of things, automobile carriages cannot be run in Eng and on public highways, and in order that no delay hould occur from this fact, the extensive grounds of the Crystal Palace, which is situated within five miles of the center of the metropolis, are to be utilized for trials and races of self-propelled vehicles. The exhibi tion will be comprehensive in its scope and will be of great scientific interest. It will be divided into two sections. In the first will be things appertaining to nimal locomotion, such, for example, as the primitiv modes of transportation employed in former times, the ancient sledges, litters, palanquins, and other wheel less conveyances which will gradually lead up to an interesting display of antique and mediæval coache nd carriages. Modern coaching as well will not be neglected. Turning to the engineering section, many of the interesting steam-driven carriages which ran upon English roads some sixty years ago are tobeshown in connection with the steam, electric, and petroleum driven carriages of to-day. Accessories of various inds for horseless carriages will also be exhibited Mr. A. R. Sennett, A.M I.C.E., has accepted the post of honorary executive commissioner.

Gas from Sawaust.

There are several large lumber mills in Deseronto, Canada, and the town is partially lighted by gas ob ained from sawdust from them. The sawdust is charged in retorts which are heated by a wood fire The gas from these retorts passes into a series of coils and thence into the purifiers, which are similar to those used for coal gas. Lime is used as a purifying agent The plant is not a very large one, and it only turn out 540 cubic meters of gas per day, for which about wo tons of sawdust are required. A man and boy furnish all the labor needed at the works. The best quality of gas comes from resinous woods. One hundred kilogrammes of sawdust leave a residue of t wenty kilogrammes of charcoal, and the gas in an ordinary burner, says the Engineering and Mining Journal gi ves an illumination of about eighteen candle power

To Make Aluminum in Norway.-The estate of Hafslund, near the great waterfall known as the Sarpsfos, between here and Goteborg, has been ac quired by a syndicate. chiefly consisting of German and American capitalists. The purchasers intend to orm a large company with a large capital in order to utilize the water power of the falls for electrical force, and establishing aluminum works on the same princi le as those now being constructed at the Falls Foyers, in Scotland. The Sarpsfos is one of the finest falls in southeastern Norway, being 74 feet in heigh and 116 feet in width

A monument to Francois Garnier, the explorer whose murder at Hanoi ultimately brought about the Tonkin expedition and the French policy of colonial expansion, is to be set up midway between the Ob svatoire and the Luxembourg Palace in Paris. Th sculptor is M. Puech.

AN IMPROVED ELECTRIC SWITCH

The illustration represents a simple and effective switch which may be used as an ordinary switch and also as a cut-out for preventing the passage of an excessive current to a particular portion of the circuit. The improvement has been patented by Henry B. Whitehead, of No. 57 Madison Street, Memphis, Tenn

WHITEHEAD'S ELECTRIC SWITCH.

Fig. 1 represents a vertical and Fig. 2 a horizontal section of the switch, whose base is of insulating material, recessed at the back to receive the electrical connections, while a cover fits o ver the working parts. On a stud projecting from the base is fulcrumed a spring-actuated switch arm adapted to be engaged by a detent lever, while a spring tends to disengage the detent lever from the arm. An expansion wire, used as a conductor, is arranged to normally hold the detent lever in engagement with the switch arm, but releases the lever when the wire is expanded by heat due to exces sive current. A key, having a fork loosely embracing the lever, has a thumbpiece outside the co ver, whereby the switch arm may be released from the detent lever and turned by hand.

Keep Your Mouth Shut.

The Family Doctor says that this is the secret of avoiding colds. The man or woman who comes out of an overheated room especially late at night, and breathes through the mouth, will either catch a bad cold or irritate the lungs sufficiently to cause annoyance and unpleasantness. If people would just keep their mouths shut and keep their mouths shut and difficulty and danger would be avoided. Chills are often the result of people talking freely while out of doors just after leaving a room full of hot air, and theatergoers who discuss and laugh over the play on their way home are in. viting illness. It is, in fact, during youth that the greater number of mankind contract habits or inflammation which make their whole life a tissue of fisorders.

IT is stated that a "Fine Arts and Indus trial Exhibition" will le held at Barcelona, beginning on the 23d of April next. An internat:onal exhibition will exhibition will Brussels in 1897.

a PORTABLE DISINFECTING PLANT
tine. For instance, a box car on one of the railroads was hastily transformed into a steam chamber, steam being provided by the locomotive, and infected articles carried long distances to and from the car. It is greatly to the doctors' credit that with such means they were able to check the ravages of the fever
The portable plant comprises two machines:
First, the steam disinfector, consisting (as seen by

RIERA'S INSULATOR.
examining the upper cut) of a jacketed chamber, car, boiler, and vacuum pump, mounted upon a suitable running gear. Its operation is as follows:
The steam generated in the boiler at high pressure is reduced by proper valve, circulating in the jacket at low pressure during the entire operation. The in fected clothes are placed upon screens, or hung on hooks in the car, which is sup ported by a portable track, ad justable for irregularities of roadway, the car then being pushed into chamber, and the door, swinging on crane, closed and bolted, made steamtight by a rubber gasket. A thermome ter.records the temperature, and when the cłothes have reached that of the low pressure steam the vacuum pump is started, re moving the air (the object of which is twofold, to prevent possibility of life to the microbe and to give steam greater pene trating effect), after which the steam is admitted to the cham ber from the jacket, insuring circulation. The incoming steam strikes upon a three-leaf hood, to prevent being forced directly upon the clothes, and any con densation is carried down the sides of the chamber, preventing wetting and consequent shrink age of woolens. The exposure is continued for varying time according to the character of the infected articles, after which the steam in the chamber is discharged through a valve, the door opened, and the car withdrawn.
The car is ar ranged with re movable tray and is open-sided so as to hold eith er single or dou ble mattresses. wooden guards of cypress being in troduced to pre vent them frou projecting he yond the sides of the car.
Second, the sul phur fumigator consisting of a fur nace, koiler, engine, and fan, mounted on wheels, as seen in the lower cut The sulphur fur nace is double with a firebox a
one end, the sulphur being held in a cast iron pan, under slow combustion, to produce the dioxide; and to continue the operation without opening the doors and causing rapid combustion, a double-winged stoker is provided by which additional roll sulphur can be introduced to the pan. The fumes travel through the double furnace to a reservoir on top, provided with baffle plates, and are then sucked by exhaust fan (driven direct by a rapid-speed engine), thence through hose into the building being fumigated, the quantity being regulated by a sliding gate valve. Both these machines embody the same principles described in previous paper, and are intended, in case of infection appearing in a certain quarter, to be driven to the infected house, and after the patient's removal, all bedding, clothing, etc., be disinfected in the steam disinfector, after which the house itself be thoroughly disinfected by the sulphur fumigator.
These machines were designed for the United States Marine Hospital Service by Dr. Walter Wyman, Super vising Surgeon-General, in association with Dr. J. J. Kinyoun, one of the able bacteriologists in the bureau.

AN IMPROVED CAR COUPLING.

The engraving represents a coupler adapted to automatically couple cars as they come together, the uncour ling being readily effected by means of a releasing attachment from the side of the car. Fig. 1 is an end view of a car body on which the improvement is applied, Fig. 2 being a sectional side view of two of the couplings in coupled connection. The drawhead and drawbar are formed in two hinged portions, and the lower or main section has centrally at its forward end a latch hook, there being at each side of the hook a level portion or seat on which the coupling link rests. The upper section of the coupling fits in an open recess

in the lower section, and has at its front end parallel depending flanges embracing the side walls of the drawhead portion of the lower section. In the bottom of the latch hook recess is a groove in which is a lifter bar whose ends are secured in the flanges of the upper section, the latter being held normally depressed
passes over the coupling hook, lifts the upper section against the tension of the spring, which holds the inserted link in level position, with the lifter bar below its inner end. To release the link in uncoupling, a its inner end. To release the link in uncoupling, a
curved lever is pivoted in a longitudinal slot in the upper section, the toe of the lever having a bearing on the lower section, while its other end is connected by a chain with a transverse shaft on the end of the car. The shaft has a crank handle at the side of the car, and by moving the crank the upper section and the lifter bar are raised to release the link from engagement with the coupling hook. To hold the upper section and lifter bar in raised position, the transverse shaft is formed with a squared portion adapted to interlock with a square locking box, on pushing the shaft end wise, the link being then held in uncoupled adjustment for withdrawal. This improvement has been paterited by John F. Smith, of Burbank, Ohio. It will be observed that, in cars equipped therewith, the coupling link may be easily placed to couple automatically with an approachingcar, and that the trainmen do not have to go between the cars in uncoupling them.

A NEW RECORDING THERMOMETER FOR ATMO-

 SPHERIC RANGES OF TEMPERATURE.The novel and especially valuable feature of the recording thermometer herein described is that the recording portion may be located at a distance of twentyfive or thirty feet from the point at which the temperature is to be measured.
This makes it possible to obtain a continuous record of the outside temperature while the recorder is located at a convenient point within doors where it may be readily observed and its mechanism is not exposed to the detrimental influences of inclement weather. For cold storage plants where closed rooms are to be maintained. at a constant temperature for the preservation of meats, fruits, and vegetables, an instrument of this kind is of great value, as the temperature may be observed without opening the doors.
The recording part (Fig. 1) is an application of one of Bristol's recording pressure gages. Fig. 3 shows an interior view of the recorder, which consists of a pen arm directly attacied to the free end of a tube of flattened cross section bent into helical form.
The bulb portion (Fig. 2) is placed at the point where temperature is to be measured. It consists of a series of helical tubes constructed on the same principle as that in the recorder. The helical coils are suspended in a vertical position with their lower ends free, the upper ends opening into the capillary tube connecting them with the recorder.
The system of helical tubes forming the bulb portion, the pressure tube of the recorder and the capillary connecting tube are completely filled with alcohol under pressure and permanently sealed. As the temperature rises and falls where the buib is located, there is a corresponding expansion or contraction of the alcohol which is communicated to the recorder and registered on a seven day chart graduated to read in degrees Fahrenheit.

Excessive pressures due to increased volume of the non-compressible liquid are provided against by the expansible form of the system of helical tubes of which the bulb is constructed. The total volume of the bulb portion is very large as compared with that in bulb portion is very large as compared with that in
the pressure recorder, thus avoiding the necessity of
the room where the recorder is located. No correc tion is required for barometric changes, as only high ranges of pressure are employed.
This thermometer is being manufactured by the Bristol Company, of Waterbury, Conn. One of the

FORWARD'S MECHANISM FOR PROPELLING BOATS.
instruments may be seen in operation recording the outside temperature at their New York branch office at 121 Liberty Street. The recorder is placed in the show window, where it may be observed from the sidewalk.

MECHANISM FOR PROPELLING SMALL BOATS.

A means of propelling small boats which enables the boatman to sit facing the bow, instead of looking rearward, as in rowing, is illustrated in the engraving, and has been patented by Walter Forward, of San Diego, Cal. The short propeller shaft in the rear of the boat has a wide pulley connected by two belts with three pulleys on a driving shaft, one of the belts being a crossed belt and the other a straight belt, and the center pulley being an idler. The driving shaft carries a fly wheel on the hub of which is a sprocket wheel, or a grooved wheel with pins in its groove, and an apertured belt engaging this wheel passes under a double pulley in the bottom of the boat, and forward, under the seat, around a similar wheel upon a shaft journaled in front of the boatman's seat. In front of the seat are parallel slideways, in each of which slides a block having a foot rest, and the blocks are each connected by a pitman with a crank on the driving wheel. By means of a belt shifter connected by a rod with a hand lever in convenient reach of the boatman, the belts connecting the drive shaft with the propeller shaft may be shifted so that the latter will be operated by either the straight or the crossed belt, to propel the boat forward or to back it, the driving shaft being continuously revolved in one direction by the alternate forward movement of the feet of the boatman pressing against the foot rests or pedais on the slide blocks. To facilitate adjusting the seat in the most convenient position forward or rearward, it is mounted on a racked or toothed support, the seat having a corresponding toothed portion for engage-

ment therewith. There are no ratchets or other mechanism to make a noise, and the boat is especially adapted for hunting purposes, enabling the boatman to quietly approach a desired point.

The Modified Milk Question.*

I have lately had opportunity for studying the remarkable work that has been done in Dresden in preparing a perfect substitute for breast milk.
The superiority of the Dresden modification rests mainly upon the recognition of an essential difference between casein and lactalbumen. Professor Lehnann's analyses of breast milk and cow's milk show that while cow's milk is more than twice as rich in casein, it is much poorer than human milk in lactalbumen, as may be seen in the following tables :

Casein.	Cow's milk. 3.0 per cent.		Human milk. 12 per cent.	
Albumen.	0.3	,	0.5	"
Fat.	3.5	"	$3 \cdot 8$	"
Sugar.	45	"	6.0	"
Ash.	0.7	"	$0 \cdot 2$	"
Water	88.0	"	$88 \cdot 3$	"
	1000		1000	

If, therefore, cow's milk be diluted with water suffici ently to reduce the casein of the mixture to the amount found in human milk, the mixture will contain only one-third enough lactalbumen.
Furthermore, if the milk be sterilized, still further loss is occasioned, as the coagulated albumen is wasted in the scum and by clinging to the sides of the bottle.
We know the disadvantages of too much casein. We rightly dread the cheese curds in the dejections, for such undigested lumps not only show that the infant has not received the needed albuminous nourishment, but has had its intestine irritated by these foreign masses. But if we dilute the cow's milk sufficiently to avoid these cheese curds, we shall be starring the baby, unless we add some soluble albumen.
Three forms of soluble albumen are available : peptonized grain albumen, meat juice, and the white of eog. The last is undoubtedly the best, because of closest resemblance to lactalbumen and of easiest attainment.

THE DRESDEN METHOD.
To the white of one fresh egg slowly add 13 drachms (52 grammes) of milk sugar and vigorous'y stir, taking care not to beat air into the mixture, for egg foam will not mix well with water. To this paste slowly add a pint and a half of water, stirring constantly. This emulsion is then strained through fine linen into a pint of milk. Slight stirring or shaking completes the mixture.

The wilk should be $91 / 2$ per cent richness in fat. The cheap lactometer gives a fairly accurate measurement. When the source of supply is not known to be unquestionable, it is probably better to sterilize the milk. The fresh egg partly compensates for the deadness of sterilized milk. Scurvy is becoming more prevalent in children fed wholly on sterilized milk. The milk suga ought also to be sterilized in a seal jar if we wish the mixture to keep good for mon
and cover cloths also sterilized.
It is a common mistake to add lime water or soda to modified cow's milk. Although to litmus cow's milk appears to be acid, it really is not so. The litmus test is deceptive in estimating the acidity or alkalinity of phosphate solutions. Lime water added to an infant's food overtaxes the stomach by wasting just so much gastric juice as is needed to offset the alkali. When the infant's digestion is weak, dilute hydro chloric acid added to the milk mixture is right in theory and of marvelous advantage in actual practice
Again, as regards the custom of increasing the rich ness of the infant's food or of prescribing different ness of the infant's food or of prescribing different
qualities for different ages, it needsonly to be said that it is as nonsensical as to prescribe increasingly richer beef and bread and potatoes for children as their years increase. A mother's breast milk increases in quantity as her baby's stomach grows larger, but there is certainly no such change in its quality as the intric

How to Walk Upstairs.

Usually a person will tread on the ball of his foot in taking each step, springing himself up the next step. This is very tiresome and wearing on the muscles, says Public Opinion, as it throws the entire suspended weight of the body on the muscles of the legs and feet. You should, in walking or climbing stairs, seek for the most equal distribution of
the hody's weight possible. In walking upstairs the hody's weight possible. In walking upstairs
your feet should be placed squarely down on the step, heel and all, and then the work should be per formed slowly and deliberately. In this way there is no strain upon any particular muscle, but each one is doing its duty in a natural manner. The man who goes upstairs with a springing step you may be sure i no philosopher, or, at least, his reasoning has not been directed to that subject.
*By A. Worcester, A.M., M.D., Waltham, Mass, in Boston Med. and

Sorrespondence.

Roentgen Photography

To the Editor of the Scientific American :
In repeating the experiments of Mr. Crumbie, decribed in the Electrical W orld, I obtained a negative with
Feeling satisfied that the objects could not have moved while under the influence of the current, I exposed a plate to the action of several keys and coins, but without use of the induction coil or any exterior current whatever.
Now while I have seen numerous accounts of the results obtained by use of metallic objects inside the closed dry plate holder, with the aid of the electric current, I have failed to note any account of the same current, I have failed to note any account of the same
effect being obtained without the current, or a Crookes tube, or electric lamp, or something external. Crookes tube, or electric lamp, or something external.
Is it possible that the effect of metals on the dry plate has not been noted?
This effect, let it well be understood, is similar to the Roentgen effect, not a reduction under the metal, but the reverse. the reduction taking place around the objects, the film under the objects remaining unchanged and washing out in the hypo, giving the "shadows."
A coin and a piece of cardboard when placed together on the dry plate both gave shadows. Great care was taken to prevent access of light, and the plate and holder remained in the dark room during the whole experiment, thoroughly shielded from light. If this matter has not been brought to the attention of the public. I would be glad if you will use the data I have sent you. F. W. Traphagen. Montana College of Agriculture and Mechanic Arts, Bozeman, Mont., February 22, 1896.
[The images of the keys and coins in the photographs received from Prof. Traphagen are as clear and distinct as those in any of the radiographs we have published.-ED.]

The Recent Acetylene Explosion.

To the Editor of the Scientific American
The recent explosion at a factory in Connecticut, in which it is said experiments were being made with acetylene, reminds me of an acetylene experiment which I once made unexpectedly. It was in 1880 . I was cutting off a small piece from a ball of metallic potassium (under naphtha as usual), when a violent explosion followed. The thick glass bottle was blown to pieces and thirty of the pieces penetrated my hand, some going almost through it. The potassium was soft as usual, and there was only a gentle pressure of the knife. The knife was dry and there was no water in
or near the bottle. If there was a flash accompany or near the bottle. If there was a flash accompany
ing the explosion it could not have been very bright The lecture room was instantly filled with a dense smoke, consisting in part of potassium oxide or hydrate, but mostly of dark fumes from the naphtha which appeared to have been all vaporized or decomposed ; at least it all disappeared from the place of explosion and there was no flame following. The ex plosion was very sharp and sudden, after the order of the fuiminates, and shook a large building. That the explosion was confined to one of the potassium balls was proved by the fact that the other potassium balls that
had been in the bottle were much flattened, but were still so far distinguishable they could be counted.
I immediately made incuiries from a number of chemists, but none of them had ever heard of an ex plosion of dry metallic potassium. At length Prof. Henry Carmichael, of Bowdoin College, Brunswick, Maine, informed me that he had heard of two simila explosions in Germany, and that German chemistshad found that it wasdue to an acetylene compound formed while the potassium was in prosess of manufacture under hydrocarbons. In general, the chemists suc but if they did not it was liable to explode under moderate pressure.
May not the recent explosion in Connecticut have been due to the same compound or a similar class of compounds?
Obviously if there are acetylene compounds that will fulminate by means of a jar or friction, or from any other cause, it is important to know under what conditions they are formed, in order that proper precautions may be taken. I therefore send you this for publication, in order to call attention to the sabjec and as a warning to those experimenting with acetyl ene. Georado Springs, Col., February 15, 1896.

Spentrum of Mars.

To the Editor of the Scientific American
There is a paragraph in a recent number of the ScI entific American which refers to my observations of the spectrum of Mars, and concludes with the
statement, "Now it turns out that M. Janssen has re statement, "Now it turns out that M. Janssen has re-
cently informed the French Academy of Sciences that he has determined the existence of water vapor in the

I fear your note has been very misleading to many of your readers. M. Janssen's observations, to the re sults of which you refer, were made on Mount Etna in the year 1867, about twenty-nine years ago, and he communicated his results to the French Academy o Sciences in the year 1867, as follows:

I believe I can announce to you the presence of aqueous vapo in the atmospheres of Mars and Saturn." (See Comptes Rendus for 1867, vol. lxiv, p. 1304
Further, in my original paper on "The Spectrum of Mars," I called attention to M. Janssen's observations, quoting his results in full. I reviewed all the observa tions of Mars' spectrum, including M. Janssen's, in the Astrophysical Journal for June, 1895 ; and in that article I requested that we be given the details of his 1867 observations. In response, M. Jaussen published some of the details of his 1867 observations in the Comptes Rendus for July 29, 1895, evidently the publication to which your note refers.
M. Janssen stated that his observations were made May 12 to 15,1867 . Perhaps we may say that at that time the diameter of Mars was less than 6 seconds of arc ; that is, about one-fourth the diameter of the planet at a favorable opposition. We are not informed as to the apparatus which was carried up Mount Etna for making the observations, but the telescope was probably comparable with a 6 -inch refractor. In brightness and width the spectrum would not be very unlike that of a bright star.
The question of Mars' atmosphere and its constitu ents has an intensely popular side and an intensely unpopular side. It happens that my observations led me to a middle ground conclusion; but since they did not prove the existence of an atmosphere a nd water on Mars, they are generally misunderstood to favor the absolute non-existence of those elements. Such, however is not the case. So far as I know, every astronomer has always held that the pianet has some atmosphere. The polar caps are satisfactory evidence on that point. My conclusion was that the Martian atmosphere is not sufficiently extensive to have been detected by the spectroscopic observations thus far made. It may be detected at some future time-I hope it will. If it is, I am confident that it will prove to be not more than I am confident that it will prove to be not more than
one-fourth as extensive as our terrestrial atmosphere one-fourth as extensive as our terrestrial atmosphere :
that is, its density at the surface of the planet will not be nore than about half the density of the atmosphere at the summit of the Himalaya Mountains. At least such is the conclusion which I drew from my observations when they were made.
At the opposition of Mars next winter I trust that valuable results will be obtained by a photographic study of the spectrum. It is quite possible that photo graphic methods will reveal traces of aqueous bands in the spectrum which visual observations could not in the s
detect.
W. W. Campbell

Lick Observatory, Mount Hamilton, CaI.

Photographing Window Displays

One of the greatest difficulties attached to photo graphing a window display is the reflection in the plate glass front of the huildings on the opposite side of the street and of the passing throng. Many trim mers will thank us for indicating a successful way in which their efforts may be taken by the camera with out this annoying feature. If the artist will provide himself with a black curtain, mounted at each end on wooden poles, nothing more will be needed. It must be of sufficient size to screen the largest window, and a center aperture must be cut in order to insert the camera. This curtain, when held in place by assistants, will cut off the undesirable reflection and still admit light sufficient for all purposes from the top and sides. An additional advantage will be that the sensitized plate may be given as long an exposure as desired. When not in usethecurtain can be rolled on the stand ards and thus be easily carried about from place to place.-Chicago Apparel Gazette.

Swiss wood Preserving.

According to an English contemporary, a simple, ef fective and cheap way of preserving wood from decay is practiced in Switzerland in the preparation of post for the telegraph service. A square tank, having a capacity of some 200 gallons, is supported at a height of 20 or 25 feet above the ground by means of a light skeleton tower built of wood. A pipe drops from the bottom of the tank to within 30 inches of the ground, where it is connected with a cluster of flexible branches, each ending with a cap having an orifice in the center Each cap is clamped on to the larger end of a pole in such a manner that no liquid can escape from the pipe except by passing into the wood. The poles are ar ranged parallel with one another, sloping downward, and troughs run under both ends to catch drippings. When all is ready, a solution of copper sulphate, which has been prepared in the tank, is allowed to descend the pipe. The pressure produced by the fall is sufficient to drive the solution, gradually, of course right through the poles from end to end. When th operation is ended and the posts dried, all the fiber of the wood is permeated with the preserving chemical.

THE MANUFACTURE OF THE HAMMOND TYPEWRITER. (Continued from first page.)
through, and slides freely within, a horizontal slot, which is cut through the anvil and provides an accurate horizontal guide for the shuttle.
A shuttle arm, B, is provided, which is pivoted upon the same central shaft as the anvil, and by means of a vertically projecting pin at its outer end engages the above mentioned shuttle web. The inner end of the shuttle arm extends beyondthe anvil wheel and slides freely upon a circular frame, which is perforated with as many holes as there are vertical lines of type in the shuttle; the relative distance between these holes corresponding, with the very greatest accuracy, with the horizontal distance between the separate type on the type shuttle. Working vertically in these holes are a series of index pins, \mathbf{C}, which are held down upon the keybars, D, by spiral springs. Returning to the shuttle arm, B, it will be seen that, just to the rear of the pin upon which it rotates, it is provided with two slots, one on each side, which are engaged by two vertical arms which receive their motion frow the key bar, D, through the arm, F. The action of the machine is as follows
The depression of the bar, D , raises the corresponding index pin, C, and also lifts the arm, F, which drives the above mentioned vertical arm forward and thereby turns the shuttle arm, B , round until it is arrested by said pin, C. The proper letter on the shuttle is now in position for the impression, and the further depression of the bar, D, raises the lever, E. The further end of this lever depresses the piece, G, which actuates a pawl and ratchet arrangement for releasing the impression hammer. The hammer is impelled by a coiled spring against a rubber impression strip, which presses the paper against the type on the shuttle. The tension of this spring, and, consequently, the force of the blow, is regulated by a suitable screw. Upon releasing the key bar, D, all the parts return automatically to their normal positions.
It will be seen that the perfect alignment of this machine is dependent upon the absolute level of the horizontal slot, which serves to guide the shuttle web-upon the exact location of the hole in the web which is engaged by the shuttle arm-and upon the true relation of the letters on the type shuttle to the index pins which serve to arrest the shuttle at the proper place for impression.
The peculiar type of the Hammond machine, and the great accuracy aimed at, have necessitated the establishment of a special plant, which possesses features of great interest. The desired type (which is of great variety, including many of the foreign alphabets) is first engraved upon a steel wheel (Fig. 5). As the location of the type on the wheel is a matter of the great est nicety, a special tool, shown in Fig. 1, has been de signed for the purpose.
This consists of a circular plate (Fig. 1) upon which is arranged a central raised disk, provided with an arm which reaches to the outer periphery of the plate, the disk with its arm rotating concentrically upon the plate (Fig. 1) at its periphery. The pla ${ }^{+}$e is perforated with holes corresponding to the index holes in the typewriter, and the arm is provided with a pin, by which it can be held in a position corresponding to the letter whose place on the steel wheel is to be marked. The wheel is placed on the center disk, and as the proje sting arm is shifted to the successive holes, the opers tor marks with a scriber the position of the type on the wheel. The accuracy of this machine is said to be gaged to $\frac{1}{1000}$ of an inch.
A type metal matrix is then formed from the en graved wheel. The segments of this matrix are ar ranged around the inner circumference of a circular mould, and strips of a special composition of rubber are forced into them. The thin strip of steel, which forms the shuttle web, is pressed into the rubber and the moulds are then clamped up and placed in the vulcanizers (Fig. 3), where they are subjected to a heat equivalent to a pressure of 100 pounds to the square inch. The vulcanizer consists of a steamtight drum, provided with a detachable cover. Water is placed in the drum, together with the articles to be vulcanized, and the desired heat is obtained by a Bunsen burner as shown. When this process is complete the vulcanite shuttle, with its thin steel web in place is taken ont and placed in the same machine (Fig. 1) in which the steel wheel was engraved, for the purpos of stamping out the hole, shown in Fig. 6, by which it is engaged by the shuttle arm, B. This, again, is a matter of the greatest nicety, as the slightest variation of this hole to the right or left of its proper position relative to the type would throw every letter out of truth. This relative position is found by means of a die and plunger. The plunger is a permanent fixture upon the bottom plate, and points to the center of the plate. The shuttle is placed on the raised disk upon which the steel wheel was previously cut, and turned around until the plunger is opposite the letter I of the type. This brings the steel web into its proper position bcneath a punch, which cuis the desired hole. It will thus be seen that the all-important matter of the location of this hole is rendered very exact.

This great accuracy of manufacture, combined with the fact that the type is successively presented for impression at a common point and from a common cen ter, and that the impression blow is delivered by one and the same hammer and with a constant momen tum, secures that perfect aignment and evenness o print for which this machine is justly celebrated.
To change one type shuttle for another, the anvil is raised uutil the type shuttle web clears the end of the shuttle arm, when the web of the shuttle can be drawn forward out of the groove in the anvil and another shuttle put in place. As each shuttle contains a complete alphabet, the variations that are possible are very numerous. The Hammond Company show a specimen of work in thirty-seven styles of type and in fourteen languages.
An interesting feature of the machine is the fact that if a customer should require some letter on the shuttle changed, a shuttle is cast with a raised blank in place of the particular letter, and the new characte is engraved thereon.
The Hammond machine is furnished with either the "Ideal Keyboard," which is the type recommended by the makers, or, if preferred, with the "Universal Keyboard," in which the keys are arranged as in other well known machines. In the Ideal Keyboard, as shown in the attached cut, the keys are arranged in circular form, in two banks, the letters most fre quently in use being arranged under the right hand and near the center of the board.
To enable the operator to see his work the circular frame surrounding the anvil, which holds the type shield, J, and the ribbon, is arranged so that it can be temporarily depressed, rerurning to position again on being released. In this way the work is kept in sight and the lifting of the body of the machine is avoided
In cut No. 5 is shown another form of shuttle. It is in two segments, and each segment carries one-half of the type. The two right and left vertical lever arms each engage one of the segments. This was the earlie form, the single shuttle being a later development The total weight of the machine with its traveling case is nineteen pounds.

AN IMPROVED MUSIC LEAF TURNER.

According to the invention illustrated in the engrav ing, the box or casing containing the mechan

ADAMS' MUSIC LEAF TURNER.
ism by which the leaves of music may be zeadily turned is adapted to be placed upon a piano or other instrument, the leaf-turning arms before commencing to play being adjusted between the sheets, as shown in Fig. 1, when the leaves may be turned in succession by touching the lever at one side. The improvement has been patented by P. H. Adams, of Osorno, Chile. The casing has a cover at one end only, and the leaf-turning arms are fulcrumed side by side on a cross rod, $r \in s t i n g$, when not in use, upon the open end of the casing. Attached to each arm above its pivot is a cord which passes over a pulley at the end of the casing and is then connected to a spring, the springs normally
holding the arms in their lower or horizontal position In the covered end of the casing is a shaft which car ries a drum or cylinder, and on the end of the shaft is a pointer which moves over a dial plate, to indicate the number of leaves that have been turned over Arranged spirally upon the cylinder, as shown in Fig. , is a series of pins, and in each end of the cylinder are openings corresponding in number and position with the pins, the right hand end of each opening be ing straight and its left hand end inclined or tapering. A lever mounted loosely on the shaft has an angular pring catch adapted to enter the openings, the catch s the lever is pressed downward, engaging the houlder of an opening and turning the cylinder the distance bet ween two teeth, the lever, when released being returned by a spring to its normal position, and carrying the catch backward to engage with the next hole. Locking arms or latch bars, adapted to be en gaged by the pins of the cylinder, are fulcrumed in such relative position to the music leaf-turning arms that when the latter are elevated they press down the inner ends of the locking arms, maintaining the leaf urning arms in vertical position, but as the cylinder is turned, on touching the lever, a pin lifts the rea end of a locking arm to release the leaf-turning arm which is then, under its spring tension, carried to one ide with the leaf of music, passing across the face of the sheet, smoothing it out and holding itin its turned position. Each time that the cylinder is turned to turn a sheet it is indicated on the dial, the shaft rotat ing with a step-by-step movement corresponding to the distance apart of the pins.

Emery.

Emery is one of the few valuable rocks not yet pro duced in important quantities in America. Large amounts are yearly brought from Turkey and the Greek Islands, where it has been quarried since history began. Its wonderful properties were no secret to the ancients, who used it for cutting and polishing; but their methods of working are not certainly known Curiously, modern methods of mining this substance have made no progress, and to this day ledges of emery have been heated by huge fires and the hot rock cracked by douches of cold water.
During the middle ages, and for many years afterward, the properties of emery, while not forgotten could not be utilized. The old art of working wa lost, and ingenuity was unable to give useful forms to this intractable substance. It long defied every effort. Slowly, however, emery again came into use, first as a polishing and cutting powder, and later, in the form of small grains, was attached to fabrics like a sandpaper. Means were afterward found to cement and mould it small particles into wheels. Emery wheels soon came into use, their remarkable cutting properties proving at once the great industrial importance of the inven tion.
Years elapsed, however, before the emery millstone could be made; but, at length, this too was accomplished, and a practical emery stone was brought out in England. Later, Yankee ingenuity improved upon this and produced the present successful rock emery millstone, which is built up of large blocks of emery set in strong metal.
These millstones grind fast because the emery face is always sharp, and as they are not damaged by heat they can be run at high speed.
Many new uses will doubtless be found for emer: ; but probably it can take no more important place than that of the emery wheel and the emery millstone, the one cutting and polishing in the shops the hardest sur faces and the other grinding the surface to any degre of ficeness.

Lealher Belt Cross Section Needed.

This useful table shows what area of cross section of leather belt is needed to give various horse powers, with various ares of contact on cast iron pulleys, at a belt speed of 3,000 feet per minute, the fastenings being single leather lacings.
From it, having decided on the thickness, the width may be determined, or vice versa, by simple division.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Авc.} \& \multicolumn{10}{|c|}{нorse powers.} \\
\hline \& 5 \& 10 \& 15 \& 20 \& 25 \& 30 \& \({ }^{35}\) \& \({ }^{40}\) \& 45 \& 50 \\
\hline \({ }^{\text {Degrees. }}\) \& Sq. in in. \& \({ }_{\text {Sq }}^{\text {Sq }} 1 . \mathrm{ing}\). \& Sq. \& \& \& \& \& sq.in. \& Sq. in. \& sq. P .a. \\
\hline 45
45
60 \& - 0 O630 \& \& \& \& \& \({ }_{3}^{5.37}\) \& \& \& \({ }^{8.065}\) \& - \({ }^{8: 925}\) \\
\hline 60
75 \& \begin{tabular}{l}
0.49 \\
0.41 \\
\hline 109
\end{tabular} \& - 0.998 \& 1.48
1.24
1.24 \& +1988 \& \({ }_{2,07}^{2.97}\) \& - \& - \& 3.95
3.88
3.8 \& \& \({ }_{4}^{4.94} 4\) \\
\hline 90
105
105 \& 0.36
0.33

0.38 \& cote 0.75 \& \& - 1 1.45 \& 年1:82 \& ci:17 \& 2.55
2.29
2.8 \& - ${ }_{\text {2 }}^{2 \cdot 91}$ \& \&

\hline 105
135
135 \& (0.30 \& coivien \& - \& (1.11 \& - \& \& \& - 2.40 \& \&

\hline 135
150
150
10 \& \& - \& \& (1.04 \& (1.39 \& +1.56 \& -182 \& - \& ${ }_{2} 35$ \& -

\hline 165 \& 0.25
0.24
0 \& - 0.50 \& ${ }_{\substack{0 \\ 0.71 \\ 0.75 \\ \hline}}$ \& $\underset{\substack{0.99 \\ 0.95}}{0.9}$ \& (1.44 \& 149 \& 174
1.62

1.6 \& +1990 \& | 2.4 |
| :--- |
| 2.13 |
| 1 | \& 2:49

\hline ${ }_{210}^{195}$ \& - \& coin 0.44 \& ${ }_{\substack{0.68 \\ 0.66}}^{0.68}$ \& ${ }^{0.91}$ \& (1.14 \& - 1.37 \& (1.60 \& (1\%83 \& - \& - $2 \cdot 28$

\hline 240
270 \& (0.21 \& - $\begin{aligned} & 0.42 \\ & 0.41 \\ & 0\end{aligned}$ \& co. 0.68 \& coist $0: 80$ \& \& (1.25 \& (1.46 \& (1.68 \& 1.87 \& 2:09

\hline 300 \& - 0.20 \& ${ }_{0}^{0.491}$ \& - | 0.60 |
| :---: |
| 0.58 | \& 0:80 \& $\stackrel{\text { 0.99 }}{0.97}$ \& 1.20

1.16 \& $1 / 49$
$1+35$ \& 1.60
1.54 \& ${ }_{1}^{1.74}$ \& 1.99
1.93

\hline
\end{tabular}

THE CABARET DU NEANT.
A most interesting performance, based upon the principles of the well known "Pepper's ghost," is now on exhibition in this city, with sundry somewhat fantastic accessories and dこvelopments justifying the title of
"The Cabaret du Neant," or "Tavern of the Dead " ("non-existing"). which has been given to it by its proprietors. It is a recent importation from Paris. While the principal interest of the exhibit:on centers in the ghost effects, which exhibit:on centers in the ghost effects, which
we illustrate, a word or two may be said of the we illustrate, a w
sequence of acts.
The spectators pass through a long hall hung with black and find themselves in a spectral restaurant. Along the walls coffins are placed for tables, and on the end of each coffin is a burning candle. From the center of the ceiling hangs a what is termed "Robert Macaire's chandelier," made to all appearances of bones and skulls. The spectators are here at liberty to seat themselves at the tables and are served with what they desire by a mournful waiter dressed like a mute with long crape hanging from his hat. Around the walls of the room are placed pictures to which the spectator's attention is called by the lecturer. Seen by the light of the room these pictures are ordinary scenes, but a new aspect is given to each when lights directly behind it are turned on; the figures in it appear as skeletons, each picture being in fact a transparency giving a different effect as it is lighted from the rear or as seen simply by reflected light. The second chamber is now entered; it is hung with black throughout. On the walls tears are painted, and in close juxtaposition are two somewhat incongruous inscriptions, "Requiescat in pace," and "No smoking." The reason for the latter admonition, which is also given by the lecturer, is that for the success of the or the success of the i!lusion an absolutely clear atmosphere is essential. At the end of this second chamber, at the back of a stage, is seen a coffin standing upright, in which one of the audience is requested to place himself. Entering the stage by the side door, he is conducted by an at tendant to the coffin and placed in it. Blocks of wood are placed for him to stand on in quan tity sufficient to bring his head to the right height so that the top of it just presses against the top of the coffin, and the attendant with great care adjusts his height according to the predetermined position. Two rows of Argand burners illuminate his figure, which is then wrapped in a white sheet. Now, as the spec tators watch him, he appears a skeleton in the coffin. Again at the word of command the skeleton in its turn slowly disappears, and the draped figure of the spectator appears again. and the draped figure of the spectator appears again. The illusion is perfect
in the coffin sees absoin the coffin sees abso-
lutely nothing out of lutely nothing out of
the common. His interest, if he knows what is going on, is centered in watching the chang ing expression of the spectators, being increased by the fact that at their period of great est astonishment he is absolutely invisible, al though directly before them and seeing them more plainly than ever After the restoration to life one or more auditors are put through the same performance, so that therecentoccupant of the coffin cansee what he has gone through.
The third chambe is now entered, some what similar to the
gradually dissolves or fades away and in his place the nature of the drama in which he has been an un- with the sheet, presumably the enveloping in a shroud,

AN X RAY ILLUSION UPON THE STAGE-CONVERSION OF A LIVING MAN INTO A SKELETON.

When exhorted to help himself to the liquid, the per forming spectator's idle gestures show that he certainly does not see the glass, through which his hand passes unobstructed. Or perhaps it is a woman who appears and makes the most alluring gestures toward him who never sees her. This concludes the exhibition which as accessory has the strains of a funeral march, the ringing of deep sounding bells as room after room is entered, and the appear ance of a brown robed Charon to introduce the spectator. to his place in the coffin. In one of our illustrations we show, side by side, the coffin with its living occupant draped in a sheet and in the other the skeleton which appears in his place. Two other cuts show the scenes between the spectator at the table and the specters, illustrating how active a part the specters take, they being no mere painted appearances, but evidently living moving things. Our large illustration shows precisely how it is done and so clearly that an explanation is hardly needed. The floor of the stage is represented. To the left are seen the spectators and the performer at the piano discoursing his lugubrious melodies. To the right is seen Charon, and directly in front of him the coffin with its living occupant. When lighted up by the burners shown near him, the other burners being turned down, the coffin with its occupant is all that is seen by the spec tator. Directly in front of the coffin, crossing the stage obliquely, is a large sheet of the comments of the audience tell him that something clearest plate glass, which offers no impediment to the very interesting is goingon, the remarks will probably | view of the coffin with its occupant, when the latter disclose to him the fact that this time at least he is is fully illuminated. At one side of the stage, in the never out of their sight. He leaves the stage and his back of the picture, is a painting of a skeleton in a place is taken by another, and then he understands coffin with its own set of Argand burners. It is screened from view When strongly illuminated, and when the lights of the real coffin are turned down, the spectators see reflected from the glass a bril liant image of the pic tured coffin and skele ton. By turning up one set of burners as the others are turned down a perfect dissolv ing effect is obtained skeleton replacing spec tator and vice versa at the will of the exhi bitor.
The magic lantern operator always realizes that to secure a good dissolving effect perfec registration is essential In the securing of this lies the secret of the liesfin exhibit of the Cabaret du Neant. By the blocks on which the occupant of the coffin stands, and by the adjustment of his head by the attendant, the head is brought into perfect registration with the reflected head of the skeleton. The wrappin:conscious participator. He sees the other spectator is done with a purpose. It covers the body from the seated alone at the table. Suddenly a spirit, perhaps shoulders down and extends to the very bottom of the of an old man, appears at the other side of the table, coffin, covering the blocks also, thus doing away with while a bottle and glass, are seen upon the table. all defects of registration which would be incurred in the persons of specta tors of different heights.

THE SHEETED GHOST. In other words, the exhibition fits out everybody with a skeleton of precisely the same height, however tall or short he may be, the draping of the sheet and accurate position of the head concealing from the spectators this inaccuracy, the skull occupying precisely the place of the head, the rest taking care of itself.
Still referring to the large cut, it will be seen that it servesto explain the exhibition in the other chamber. Instead of the coffin there is the table and chair, and in place of the pictured
skeleton a live performer is placed. In this act there is no dissolving effect; by turning up the lights at the side of the stage any object desired and performers dressed as spirits are made to appear upon the stage, being reflected from the glass plate. The spectators simultaneously see their companion sitting at the table ard the reflections of the ghosts apparently executing their movements about him.
From the scientific as well as scenic aspect, the exhibition is most interesting, and to one who knows how it is performed, the interest is vastly enhanced. To properly enjoy it, the stage position should be taken during one or both performances.
The Roentgen rays are utilized in the advertising matter also, although John Henry Pepper, of the old London Polytechnic, may lay some claim to discovering he full utilization of the rays actually used in the Cabaret du Neant.

A MINER'S TOOL AND CANDLESTICK

For holding a miner's candle in place on his cap, or or attaching the candle to the walls of a mine, the device shown in the accompanying illustration has been devised, the same implement being also adapted to cut fuse, crimp cartridges and tamp blasts. The improvement has been patented by Adolph O. Sjoholm, of Negaunee, Mich. The device has a nearly circular handle, on a screw-threaded projection of which is mounted the cartridge crimper and fuse cutter, the rotative member of which lies clamped in folded position when not required for use. A sharpened point projects from one side adapted to be inserted in a crevice of the wall or in a timber to hold the candle, a thumb nut then locking the device in the desired position. A screw-theaded sleeve on the body of the device supports a hook adapted to be inserted in the miner's cap or hat, and the hook is held in position by engagement with a bent spring metal band which forms a socket to receive the candle. In the opposite end of the handle is a socket piece adapted to receive and hold a pin or peg of wood or other soft material to be used for tamping charges, the peg being swung back into the handle when not required for use. The whole device may be folded to take up but little space, when it may be conveniently carried in the pocket.

PRACTICAL EXPERIMENTS FOR THE DEVELOPMENT

 OF HUMAN FLIGHT.by otto lilienthal.
Whoever has followed with attention the technical
treatises on flying will have become convinced that human flight cannot be brought about by one single invention, but is proceeding toward its perfection by a gradual development; for only those trials have met with success which correspond with such a develop ment. Formerly men sought to construct flying ma chines in a complete form, at once capable of solving

SJOHOLM'S MINER'S TOOL AND CANDLESTICK.

the problem, but gradually the conviction came that our physical and technical knowledge and our practi cal experiences were by far insufficient to overcome a mechanical task of such magnitude without more preliminaries.
Those proceeding on this basis therefore applied themselves, not to the problem of flying as a whole, but rather divided it into its elements, and sought first to bring a clear understanding into said elements which should form the basis of final success. For ex ample, take the laws of atmospheric resistance, upon which all flying depends, and regarding which, until very recent years, the greatest uncertainty has exist ed; these have now been defined to such an extent that the different phases of flight can be treated mathematically. Besides which, the physical pro-
cesses of natural flight of the creatures have become
the subject of minute investigation, and have in most cases been satisfactorily explained. The nature of the wind, also, and its influence on flying bodies, have been carefully studied, thus enabling us to understand several peculiarities of the birds' flight hitherto unexplainable, so that one can apply the results thus obtained in perfecting human flight
The theoretical apparatus needed for the technics of flying has been enriched so much by all these studie within the last few years that the elements of flyin, apparatus can now be calculated and constructed with sufficient accuracy. By means of this theoretical know ledge one is enabled to form and construct wing and sailing surfaces according as the intended effect ren ders it desirable
But, with all this, we are not yet capable of con structing and using complete flying machines which answer all requirements. Being desirous of furthering with all speed the solution of the problem of flight men have repeatedly formed projects in these last few years which represent complete air ships moved by dynamos: but the constructors are not aware of the difficulties which await us as soon as we approach the realizing of any ideas in flving.
From a raised starting point, particularly from the top of a flat hill, one can, after some practice, soar through the air, reaching the earth only after having rone a great distance.
For this purpose I have hitherto employed a sailing apparatus very like the outspread pinions of a soaring bird. It consists of a wooden frame covered with shirting (cotton twill). The frame is taken hold of by the hands, the arms resting between cushions, thus supporting the body. The legs rewain free for runuing and jumping. The steering in the air is brought about by changing the center of gravity. This apparatus I had constructed with supporting surfaces of te: to twenty square meters. The larger sailing surface move in an incline of one to eight, so that one is enabled to fly eight times as far as the starting hill is high. The teering is facilitated by the rudder, which is firmly astened behind in a horizontal and vertical position. The machines weigh, according to their size, from ifteen to twenty-five kilogrammes (thirty-three to fifty-five lbs.) In order to practice flying with these sailing surfaces one first takes short jumps on a somewhat inclined surface till he has accustomed himsel o be borne by the air. Finally he is able to sail over nclined surfaces as far as he wishes. The supporting capacity of the air is felt, particularly if there is

Fig. 1.

Fig. 2.

breeze. A sudden increase in the wind causes a longer stoppage in the air, or one is raised to a still higher point. The charm of such flight is indescribable, citing sport in the open air.
The apparatus which I now employ for my flying exercises contains a great many improvements as compared with the tirst sailing surfaces with which I com menced this kind of experiment five years ago. The first attempts in windy weather taught me that suitable steering surfaces would be needed to enable me to keep my course better against the wind. Repeated changes in the construction led to a kind of apparatus with which one can throw himself without danger from any height, reaching the earth safely after a long distance. The construction of the machine is such that it resembles in all its parts a strut frame, the joints of which are calculated to stand pull and pres sure in order to combine the greatest strength with the least weight.
An important improvement was to arrange the ap paratus for folding. All of my recent machines are so arranged that they can be taken through a door two meters high. The unfolding and putting together of the flying implements takes about two minutes. A single grip of the hands is sufficient to attach the ap paratus safely to the body, and one gets out of the apparatus just as quickly on landing. In case of a storm the flying sail is foldod up in half a minute and can be laid by anywhere. If one should not care to fold the apparatus, he may await the end of the storm under cover of the wings, which are capable of protecting twenty persons. Even the heaviest rain will not damage the apparatus. The flying apparatus, even if completely drenched, is soon dried by a few sailing flights after the rain stops, as the air passe through the same with great speed. The latest im provements of the flying apparatus which I use for practical experiments refer to gaining of greater stability in windy weather.
My experiments tend particularly in two directions. On the one side I endeavor to carry my experiments in sailing through the air with immovable wings to thi extent: I practice the overcoming of the wind in order to penetrate, if possible, into the secret of continued soaring flight. On the other hand, I try to attain the dynamic flight by means of flapping the wings, which are introduced as a simple addition to my sailing flights. The mechanical contrivances necessary for the latter, which can reach a certain perfection only by gradual development, do not allow yet of my making known any definite results. But I may state that, since my sailing flights of last summer, I am on much more intimate terms with the wind.
What has prevented me till now from using winds of any strength for my sailing experiments has been the danger of a violent fall through the air, if I should not succeed in retaining the apparatus in those positions by which one insures a gentle landing. The wildly rushing wind tries to dash about the free float ing body, and if the apparatus take up a position, if only for a short time, in which the wind strikes the flying surfaces from above, the flying body shoots downward like an arrow, and can be smashed to pieces before one succeeds in attaining a more favorable po sition in which the wind exercises a supporting effect The stronger the wind blows, the easier this danger occurs, as the gusts of wind are so much the more irregular and violent.
As long as the commotion of the air is but slight one does not require much practice to go quite long distances without danger. But the practice with strong winds is interesting and instructive, because one is at times supported quite by the wind alone. The size of the apparatus, however, unhappily limits us. We may not span the sailing surfaces beyond a certain measure, if we do not wish to make it impossible to
manage them in gusty weather. If the surfaces of 14 square meters (about 150 square feet) do not measure more than 7 meters (about 23 feet) from point to point, we can eventually overcome moderate winds of about 7 meters (about 22 miles per hour) velocity, provided one is well practiced. With an apparatus of this size it has happened to me that a sudden increase in the wind has taken me way up out of the usual course of flying, and has sometimes kept me for several seconds at one point of the air. It has happened in such a case that I have been lifted vertically by a gust of wind from the top of the hill, floating for a time above the same at a height of about 5 meters, whence I then continued my flight against the wind.
The means by which I sought to facilitate the management of the machines and to increase their use in wind consisted in the first place in different arrangements for changing the shape of the wings at will. I will, however, pass over the results here ob tained, as a other principle gave surprisingly favorable results. My experiments in sailing flight have accus tomed me to bring about the steering by simply changing the center of gravity.
The smaller the surface extension of the apparatus is, the better control I have over it, and yet if I em ploy smaller bearing surfaces in stronger winds, the
results are not more favorable. The idea therefore occurred to me to apply two smaller surfaces, one
above the other, which both have a lifting effect when sailing through the air. Thus the same result must follow which would be gained by a single surface of twice the bearing capacity, but on account of its small dimensions this apparatus obe
Before I proceeded to construct these double sailing machines, I made small models in paper after that system, in order to study the free movements in the air of such flying bodies and then to construct my ap paratus on a large scale, depending on the results thu obtained.
I need only recall the extensive and expensive ex periments made by Messrs. Riedinger, Von Sigsfeld, and Von Parsefal, of Augsburg, which showed the difficulty of constructing models that would automat ically take up a course of stable flight. I mysel doubted formerly very much that an inanimate body sailing quickly forward could be well balanced in the air, and was all the better pleased in succeeding in this with my little double surfaces. Relying on thi experience I constructed first a double apparatus in which each surface contains 9 square neters (about 97 square feet). I thus produced a comparatively large bearing surface of 18 square meters with but $51 /$ meters (about 18 feet) span. The upper surface is sep arated from the lower by a distance equal to three quarters of the breadth of the lower surface, and it has no disturbing influence whatever, but creates only a vertically acting lifting force. One must consider that with such an apparatus one always cuts the air quickly, so that both surfaces are met by the ai current, and therefore both act as lifters.
The whole management of such an apparatus is just the same as that of a single sailing surface. I could, therefore, use at once the skill I had already obtained. I had to change the center of gravity, and particularly the position of the legs, to the left, in order to press down the left wing, which is a little raised. In Fig. 1 the opposite movement to the right is shown I retain the middle position whenever the apparatus loats horizontally
The flights undertaken with such double sailing sur aces are distinguished by their great height, as i shown in Fig. 2, which gives a side view of the appa ratus.
The landing with this apparatus is brought about aising the way as with the single sailig sand by less ening the speed, as shown in Fig. 3.
Fig. 4 shows an exact picture of the construction of the apparatus, as well as of the management of the ame.
The energetic effect of the change of the center of gravity and the safe starting of the apparatus obtained by it gave me courage to trust myself to a wind which at times exceeded a velocity of 10 meter about 24 miles an hoar).
This gave the most interesting results of all my practical flying experiments hitherto. Six or seven meters velocity of wind sufficed to enable the sailing urface of 18 square meters to carry me almost horizontally against the wind from the top of my hil without any starting jump. If the wind is stronger I allow myself to be simply lifted from the point o the hill and to sail slowly toward the wind. The di rection of the flight has, with a strong wind, a strong upward tendency. I often reach positions in the air which are much higher than my starting point. At
he climax of such a line of flight I sometimes come to a standstill for some time, so that I am enabled while floating to speak with the gentlemen who wish o photograph me, regarding the best position for the photographing.*
At such times I feel plainly that I would remain loating if I leaned a little toward one side, described a circle and proceeded with the wind. The wind itself tends to bring this motion about, for my chief occupation in air consists in preventing a turn either
to right or the left, and I know that the hill from to right or the left, and I know that the hill from which I started lies behind and underneath me, and tempted circling. My endeavors tend, therefore, to remove myself farther from the hill either by inreased wind or by flapping with the wings, so that can follow the strongly lifting air current in a circle and so that I can have a sufficient space of air under and beside me to succeed in describing with safety a circling flight and to land finally steering against the wind
As soon as I or any other experimenter succeeds in describing the first circling flight, one may regard this event as one of the most important conquests on the oad to perfect flight. From this moment only, one is enabled to make a thorough use of the vis viva of he wind, so that when the wind increases one is able to steer against it, and when it decreases one can fly with it, getting beyond the same. One will feel her a similar effect, as already described by Prof. Lang
*The photographs were made by Drs. Neuhaus and Fulleborn, wh
ley in his celebrated treatise entitled "The Internal Work of the Wind." It is no easy step from the the oretical conviction to the practical execution. The dexterity required to allow oue's self to be borne by the wind alone, by describing well directed circles, is only understood by those who are well acquainted with the difficulties one encounters with the wind. And yet all that may be acquired by practice. When the time comes that athletic associations emulate each other such results will not be long in following.
Moreover, experimenters will proceed from simple floating and sailing, which in any case form the foun dation for practical flight, by degrees to flying with movable implements. As one is enabled to balanc himself for some time in the air, the foundations for more extended dynamic effects are easily and safely attained. The different projects may be easily tried by adding the motor work to the simple sailing flight taken as a basis. In this manner one will soon find out the best methods; for practical experience in the air is far better than figuring on paper.
The only thing which may cause difficulties is the procuring of a suitable place for practicing. Just a the starting from the earth is rather difficult for large birds, the human body, being still heavier, meets with peculiar difficulties at the first flight upward. The arger birds take a running start against the wind o throw themselves into the air from elevated points, in order to obtain free use of their pinions. As soon however, as they float in the air, their flight, which was begun under special difficulties, is easily continued. The case is similar in human flight. The principa difficulty is the launching into the air, and that will always necessitate special preparations. A man will also have to take a running start against the wind with his flying apparatus, but on a horizontal surface even that will not be sufficient to free himself from the earth. But on taking a running start from a cor respondingly inclined surface, it is easy to begin one's flight, even if there is no wind. According to the example of birds, man will have to start against the wind; but as an inclined surface is necessary for this, he needs a hill having the shape of a flat cone, from the top of which he may take starts against the wind in any direction. Such a place is absolutely neces sary, if one wishes to make flying experiments in a convenient way without being dependent on the direction of the wind. For this purpose I have had an artifica hill, fifteen meters high, erected near my house in Gros Lichterfelde, near Berlin, and so have been enabled to make numerous experiments. The drawings show this hill or part of the same, from the outside
If the atuosphere is undisturbed, the experimenter sails with uniform speed; as soon, however, as even a slight breeze springs up, the course of the flight becomes irregular. The apparatus' inclines now to the ight, now to the left
The person flying ascends from the usual line of fight, and, borne by the wind. suddenly remain floating at a point high in the air; the onlookers hold their breath; all at once cheers are heard, the sailer proceeds and glides amid the joyful exclama ions of the multitude in a graceful curve back again o the earth.
Can any sport be more exciting than flying? Strength and adroitness, courage and decision, can nowhere gain such triumphs as in these gigantic bounds into the air, when the gymnast safely steer his soaring machine house high over the heads of the pectators.
That the danger here is easily avoided when one practices in a reasonable way, I have sufficiently proved, as I myself have made thousands of experiments within the last five years, and have had no ac cidents whatever, a few scratches excepted. But al this is only a means to the end ; our aim remains-the developing of human flight to as high a standard a ossible. For the cuts and copy we are indebted to the Aeronautical Annual for 1896.

nternational Exhibition of Agricultural Machinery

The Department of State has been officially notified that an international exhibition of agricultural ma chinery will be held at Vienna, Austria, from the 9th to the 14th of May, 1896. American manufacturers ar nvited to participate in the exhibition. Exhibits sent from the United States will be readmitted duty fre under the provisions of the tariff act now in force.

Some friends of ours from Fairhaven, Mass., refer ring to the article on the Tack Industry, published in he issue of February 22 state that whereas the ma chine we described in one of our cuts turned out 270 tacks per minute, the machines in use in that citr. some 200 being in use in one factory, turn out over 380 per minute.

The arrival in London is noted of a large consign ment of frozen salmon from British Columbia, in good condition and of excellent flavor, notwithstanding the fact that they were taken months ago and were sent o London via Australia, a distance of something like 22,000 miles.

Preparations of Large Crystals.

 R. Van Melckebeke (Pharm. Jour., lv, p. 535) prepares large crystals by a method of systematic culture. He first obtains, says Merc̊k's Market Report, very regular detached small crystals by immersing linen threads in a saturated solution of the substance, which is then allowed to cool threads are examined with a lens, and all imperfect ones removed. The threads are then again immersed in a saturated solution of the salt, the vessel being covered with a bell glass, which also incloses a dish containing sulphuric acid. When the edges of the crystals measure 4 or 5 mm ., another saturated solution of the salt is prepared at a temperature much above that of the surrounding atmosphere, filtered, and allowed to stand all night, some small crystalline particles being added so as to avoid oversaturation. The volume of this solution should be proportionate to the size of crystals desired; thus, for a crystal of 1 kg ., 1 liter of solution should be prepared. The next day the solution is decanted into a confectioner's glass jar, and toward evening the crystals are immersed in it.A convenient apparatus for this purpose is made like a scale pan. Two circular pieces of glass are supported by means of three copper wires, which are joined at the top, where a hook is formed, and wire triangles, midway and at the bottow, support the two plates. The apparatus is first moistened with the solution, the selected crystals are then placed on the glass plates, and the whole is then immersed and left until next morning, when the crystals are removed and carefully dried with a fine linen cloth. The strength of the so lution must next be made up by dissolving in a smal quantity of it the equivalent of the salt deposited during the night. The amount to be added will vary with the temperature and the size of the cristals, and must be found by experiment. If the solution be oversaturated, there will be an excessive deposit upon the crys tals and plates, and if too weak the crystals will be eroded. When the resaturated solution is again of the temperature of the surrounding air, the crystals should be once more imwersed over night, and the whole process must be repeated daily until the crystals are large enough. To insure the transparency of the crystals they may be moistened with alcohol before immersion in the solution, the surface layers of air being thus removed.

A perfect octahedron of potash alum, weighing 2 kg ., and the edge measuring $131 / 2 \mathrm{~cm}$., was obtained by this process in about seven months.

The American Institute Fair.
After a lapse of four years, the American Institute Fair is to be held this year in the Madison Square Garden, New York City. The fair will open on September 28 and will close October 29. It will be on the same lines as those held in the past. All of the departments will be on the main floor, with the exception of the machinery, which will be placed in the basement. Medals and diplomas will be given. The first exhibition of the institute was held in Masonic Hall, on Broadway, near Pearl Street, soon after it was organized in 1829, and successive fairs were held in Niblo's Garden, Castle Garden, and in the Crystal Palace, which was destroyed by fire in 1858 during the fair. The next year the fair was held in Palace Garden, in Fourteenth Street. In 1863 it was held in the Academy of Music and in 1864 in the Fourteenth Street Armory. In 1869 the Empire Rink, on Third Avenue, was first used for exhibition purposes, and in it the fairs were held until 1892. It was intended to hold the next fair in a new building to be erected on the same lot at an expense of $\$ 200,000$, but as no agreement could be reached with the owners of the land, it was not built, and the exhibitions were suspended for four years. The "Fair of the American Institute" was quite an institution in New York and will doubtless be as well attended in the future as in the past.

ONE pound of cork is said to be amply sufficient to
support a man of ordinary size in the water.

AN X RAY PHOTOGRAPH, SHOWING THE VEINS OF THE HAND OF A DEAD PERSON.
them, giving the rays a much greater intensity outside of the tubes and thus doing away with the long and tiresome exposures now required. An improvement of this nature will be of the greatest importance in the application of the rays to diagnoses in medical practice.
Our second illustration is the photograph of the hand of a corpse, taken by means of the Roentgen rays, by Mr. Haschek and Dr. Lindenthal, in Prof. Franz Exner's physico-chemical institute, in Vienna. To them belongs the honor of being the first to apply the wonderful discovery of the Wurzburg investigator to a new branch of research. The veins, etc., in the hand-which was the hand of an old woman--are shown by the injection of Teichmann's mixture, which consists of lime, cinnabar and petroleum.
Turning now to other sources of information, we find that comparatively little that is new has been developed lately. Very good results have been obtained by Prof. Pupin, of Columbia College, using a six plate Holtz machine for exciting the Crookes tubes. This is an advance in the simplification of the process at least. Prof. McKay, of the Packer Institute, Brooklyn, exposes a number of plates at once to the rays emitted by a so-called perfect vacuum tube. He finds that it makes no difference in what position the plates are placed with reference to the tube. From Harvard University comes a new X ray lamp, with aluminum walls of conical shape. F. L. Lawrence, its originator, has obtained excellent \mathbf{X} ray photographs with it on five seconds exposure, with 25,000 to 30,000 estimated potential difference. With higher voltage it is hoped that the exposure may be further shortened. In the German Reichstag, the Parliament Chamber was employed for a lecture on the subject by Prof. Speiss who spoke of the probability in the near future of let ters being read while in the mail boxes. Lead boxes would, he said, be a preventive. In Berlin, Prof. Bergmann performed the first suryical operation using X rays as yet executed there, extracting shot. He seemed apprehensive that their use misht induce sur geons to extract missiles better left undisturbed.
Another interesting development is the production of direct optical shadow effects on a disk charged of cirect optical shadow effects on a disk charged
with barium platino-cyanide. This is the fluorescent salt used by Roentgen in his first experiments. A disk coated with a preparation of this salt is fastened over the end of a tube, phosphorescent surface inward. It is obvious that if X rays are allowed to fall upon the outside of the disk, it will appear luminous to an eye applied to the other and open end. On it Roentgen or X ray shadows can be produced by simply interposing a body opaque to the rays between the Crookes tube and the disk.

The Life of the steel Rail

Mr. J. F. Wallace, writing in the Engineering Magazine for December, states that while it is true that there has been a steady and uniform decrease in the price of steel during the last quarter of a century the average standard weight of rail for main lines has at the same time increased from 60 lb . to 99 lb . per yard, and the quality has materially depreciated. As an example of the deterioration that has taken place in quality he states that during the past year he has relieved from a main track on tangents rails that weigh ed 75 lb . to the yard which had been in the track only five years; whereas, on the same district, and un der precisely the same traffic conditions, there still remain in the track 60 lb. rails that have been in service for over fifteen years, which it was not considered necessary to re new this season. While this may be an exception al case, he considers the steel rail which was furn ished by the manufactur ers fifteen to twenty years ago about 50 per cent bet ter than the rail now manufactured. This is no intended to apply to spe
aper, instead of putting it in a plate holder. and fas tening the bird to it. The sharpness of the photograph increases, of course, as the distance of the ob-
ject from the plate is decreased. Dr. Giesel ject from the plate is decreased. Dr. Giesel exposed this plate for about twenty minutes.
It is to be hoped that the vacuum tubes may be improved so that the Roentgen rays can pass through
cial high class rails, which
by few cial high cails, which may be furnished by a few rolling rills under superio pecifications, but to the ordinary rail supplied to and
purchased by the majority of railroads. purchased by the majority of railroads.
Once every year the Emperor of China, amid great pomp and ceremony, plows a furrow in order to dignify agriculture in the eyes of his people.

RECENTLY PATENTED INVENTIONS．

Railsuay Appliances．

Train Marker and Signal Lamp．－ Marion P．Cook，Denison，Texas．This inventor has de－ vised a lamp in which the light may be differently col－
ored，and the change of color quickly and conveniently made without opening the lamp．A guard or slide is provided for the passage of the adjusting device to pre
vent wind interfering with the flame．The lamp has two vent wind interfering with the flame．The lamp has two
or more lenses or bull＇s eyes，for showing lights of differ or more lenses or bull＇s eyes，for showing lights of differ－
ent colors from the front and rear of the lamp，and from one side，the change of lights being instantane ous．

Car Door．－Heinrich W．F．Jaeger， Sandusky，Ohio．According to this improvement tracks
are mounted above and below the door opening，and a roller at one edge of the door engages one track，while within a slotted stationary housing at the opposite edge
of the doorlis a muvable housing engaged by a spring，a of the doorlis a muvable housing engaged by a spring，a
roller mounted in the movable housing having its trun－ roller mounted in the movable houssng having its trun－
nions slidable in the slots of the stationary housing．Ow－ nions sidable in the slots of the stationary housing．OW
ing to the peculiar construction of the rollers or casters vented，and the door rides easily on its bearings with minimum of friction．
Track Bed Shaper and Ditcher．－ James E．McCormick，Port Jervis，N．Y．To properly
shape the earth and stone filling on the sides of the shape the earth and stone filling on the sides of the
track bed，cutting the weeds and facilitating drainage， track bed，cutting the weeds and facilitating drainage
this inventor has devised a frame adapted for pivota this inventor has devised a frame adapted for pivota，
connection with the side of a car，and normally standing at an angle to the car，a knife carrier at whose lower end is a knife being held vertically adjustable on the frame，
and the bottom edge of the knife being of a shape corre－ and the bottom edge of the knife being of a shape corre
sponding to the cross section of the side of the track．As sponding to the cross section of the side of the track．As
tne machine is pulled or pushed along the knife cuts directing it to one side，and giving the desired and proper directin
shape．

Mining，Etc．

Jre Concentrator．－Joseph O．Dim mick and Edward K．Woods，Denver，Col．This inven
tion confists in electric means for arresting and separat ing the metallic portions of granulated or pulverize pulp as it is forced by water over the concentrator bed clined metal tables，and rows of metallic pins extend from the metal bed through the bed of insulating material，
while an electro－magnet has one pole connected to the metal bed plate of one table and the other pole to the metal bed plate of the other table．One table of a pair
may be in concentrating operation while the other is be－ may be in concentrating operation while
ing washed to clear it of concentrates．

Condensing Lead Fumes．－Oliver R． Moffet，Joplin，Mo．To readily ecndense and collect th valuable particles in the fumes arising from the lead
smelting process，this invention provides an apparatus con prising a mixing chamber connected with the smelt fan drawing the mixed fumes from the mixing chamber fan drawing the mixed fumes from the mixing chamber
to a settling chamber，where a strainer is movably held， each of the strainers being made of a perforated sheep－ skin，with the wool facing the inlet of the chamber．The occasional shaking of the strainers causes the
ter adhering to the wool to drop into hoppers．

Mechanical．

Wrench－LLewis P．Davidson，Den－ ver，Col．This is a tool in which the movable jaw may be
locked or released at any point in its travel on the shank locked or released at any point in its travel on the shank
by a slight movement of the thumb while the wrench is by a slight movement of the hand．The invention is particularly applica ble to that class of wrenches in which the handees are has a bearing．The wrench has but few parts，and very simple，strong and inexpensive．
Stovepipe Tool．－Albert B．Claflin， Staples，Minn．For those who have to set up stoves and cutting the pipes and crimping their edges where neces－ sary to facilitate fitting their ends one within the other． At one end of the body or handle portion of the tool is a
projecting knife，forming a novel and efficient pipe cut projecting knife，forming a novel and efficient pipe cut
ter，while at the other end intermeshing crimping wheel are journaled in forked arms，the edges of the pipe being
crimped by being passed between the wheels． crimped by being passed between the wheels．

Agricultural．

Plow．－Melvin M．Mullins，Monticello Miss．This is a shovel plow，designed for use whereve turning plow is ordinarily employed，and has a de tachable point so fitted to the wing of the plow that the two will be virtually integral．Means are also provided hereby the wing and point nay be adjusted to or fro ried downward and held in its adjusted position，ena bling a point to be used until it is practically worn away the wing and other portions of the plow being intact． guided adjustment of the handles connected with the plow beam is also provided for

Miscellaneous．

Adding Machine．－George W．Dud ley，Charleston，West Va．In this machine the addition
may be quickly effected in the column of any denomina－ may be quickly effected in the column of any denomina－
tion without reference to the usual order of progression of units to tens，tens to hundreds，etc．，the addition be ing performed by beginning at the left hand column or at the right hand．The machine has numbered rotating disks for the units，tens，hundreds，etc．．each moving it neighbor of higher denomination at every tenth space，
the disks being operated by levers and keys，and there being an internal sliding adjusting device by which all

the keys may be m sired denomination．

Adding and Printing Machine． wo further patents have been granted the same invent for an adding machine which，by the same manipu in the order in which they are added，thus forming a proof sheet，the machine by special adjustments printing the bottom of the column the sum total，doing th ork by vertically ascending or descending progression，
or in a horizontal order．With these features are com－ bined，in the last patent，an improved mechanism for bined，in the last patent，an improved mechanism for
causing the keys to impart a variable uhrow to the add－ ing wheels and type carrier，and for dispensing with the
strain of turning at one time a number of the adding heels．A novel organization of devices is also provide or spacing，adding and printing，or spacing withou printing and printing without adding．
Protector for Pneumatic Tires．－ ebulon Foster，Chicago，Ill．To prevent the punctur and damage of tires，this inventor provides a protective around the sides of the tire，being arranged one within the other and having their flat sides snugly engaged wit each other．Each side of each end has an inwardly ex tending ear，the ears being longitudinally aligned，and cause the rim to bind on the tire．
Process of Obtaining Phenols．－ Leonhard Lederer，Munich，Germany．To obtain pure resols，xylenols，thymol，carvakrol，eugenol，guajakol， ng in subjecting the substances to the action of chlor－ he alkaline salts produced with suite lye，then treating to produce separate phenoxacetic acids，which are also

Furnace．－－Thomas H．Lucas，Minne polis，Minn．This is a furnace which ma， boilers or for cooking or heating，and has anmary com gases from the fire pot，while a second combustion cham ber covers or surrounds the primary chamber and com unicates with it at the top through a restricted opening here beng means of supplying air to the primary cham－ oinsure complete combustion and utilize the fuel to the est advantage．
Boiler．－George H．Hersey，Clifton， ．J．This boiler and its casing are made in section
which may be assembled to form a boiler of any size b using a greater or smaller number of sections，and is de signed to afford simple and efficient means for heating
buildings by hot water or steam．The boiler is formed ne or more series of hollow oblong metal formed on one or more series of hollow oblong metal loops，con－
nected at the ends and connected with steam or water distributing pipes，and the sectional inclosing case has a
grate，ash pit，smoke bonnet，perforated baffie plate，and draught chamber

Thread Cabinet．－William K．Shelton and Perry H．Stewart，Hopkins，Mo．This is a revolu－ dapted to display a number of shades of the same colo of silk or thread，the cabinet also having a central and commodious storage compartment in which to keep sur plus stock．Novel distributing devices are also provide whereby a particular spool may be easily withdraw rom any cell in the cabinet or from any of its column

Folding Leg for Furniture．－Dan E．Carter，Traverse City，Mich．Brackets secured to the under face of a table or other article of furniture，ac pivoted the legs，which carry clamping rods，adapted t draw the brackets together and lock the legs in position The construction is especially adapted for benches，ta olded position or position for support，and the lockin device being simple and inexpensive．
Dental Forceps．－Sheldon A．Stien arger，Augusta，Ill．Pivoted to these forceps is a fu－ rum plate on which a rotary cam is mounted to turn forceps are designed to facilitate drawing a tooth di ectly out without moving it laterally，rendering the work less difficult for the dentist and less painful to the patient．

Box Hinge．－Charles L．Feinberg Brooklyn，N．Y．This is an inexpensive and durable ange，particularly adapted to mounting the lids of ciga nd other light boxes，and the hinge may be applie pivotally connected sections，one of which is applied to the box by pinching a projection in position after pass ing it through a slot in the box，the other section having of the lid．

Designs．

Cuff Holder．－Louis P．Kleiderer Henderson．Ky．In this design the body of the cu holder has parallel wavy lines，at one end of which are
loops presenting a leaf－like figure，while at the opposite
Game Board．－Volney K．Coffill， Brooklyn，N．Y．This board has disk－like figure printed about centrally on its four straight edges，while by four groups of salient points，those of one set differ gin in color from those of the other sets

Note．－Copies of any of the above patents will be send name of the patentee，for 25 cents each．Please
invention，and date of this paper

③usiness and Personal． The charge for Insertion under this head io one Dolar a line
for each insertion ：aioour eiont woras to a line．Aaver for each insertion：aboout eiont worais to a iine．Adiver
tisements must be receivea at puobication office as eariv as
Thursion minn

Marine Iron Works．Chicago．Catalogue free．
＂C．S．＂metal polisb．Indianapolis．Samples free．
Presses \＆Dies．Ferracute Mach．Co．，Bridgeton．N． Handle \＆Spoke Mchy．Ober Latbe Co．，Cbagrin Falls， 0 Want Mach＇y to manuf．on royalty．Box 56 ，Troy，N．Y For Sale－Patent No．554．C75，extending window sasb
For particulars address C．E．M．，Box 773．New York．
Screw machines，milling macnines，and drill presses
Use the Hough Securits Casb Recorder．Entirely di ferent from a Cash Register．Hough Casb Recorder C pringfield，Mass．
The best book for electriclans and beginners in elec gy mail． 44 ；Munn \＆Co．．publishers， 361 Broad way，N． There are otbers，but they are not in it with the Rome
ickel copper tea kettle．It leads them all．We want chel copper tea kettle．It leads them all．We wan
an opportunity to convince you．Circulars and prices
（T）－Send for new and complete catalogue or Scientific nd other Books for sale by Munn \＆Co．． 361 Broadway

HINTS TO CORRESPONDENTS

 Na mes and Address must accompany all letters，or no attention will be paid thereto．This is for our
information and not for pubication．
References to information and not or publication．
Refere nces to former articles or answers should
give date of paper and page or number of question
Inquilition not ansered In reasonable time should
 or in this department．each must take his turn．
Byers wishing to purchase any article not advertised
in our columno will be furnighed with addresses of
houses manufacturing or carrying the same．
 expected without remuneration．
eientitic Alnerican Supp pents referred
to may be had at the office．Price 10 cents each．
Books referred to promptly supplied on receipt of Winice．
marked sent for labeled．
（6743）S．A．E．asks how to mount drawings on linen．A．The linen or calico is first
tretched by tacking it tightly on a frame or stretcher It is then thoroughly cogted with a rrange oize，and lett ntil nearly dry．The sheet of paper to be mounted re quires to be well covered with paste；this will be best i
done twice，leaving the first coat about ten minutes to oak into the paper．After applying the second coat place the paper on the linen and dab it all over with lean cloth．Cut off when thoroughly dry．
（6744）A．J．H．asks ：1．If you have a his circuit，what would be the voltage of current afte passing through resistance，or in other words how many volts would the 100 ohms resistance reduce the 100 volts？ A．Voltage in the case named is treated not as something absolute，but as expressing a difference of potential．
100 volts were expended in producing a current through最 voits were expended in producing a current through the terminals being 100 ，the potential＇difference for in termediate points would vary directly with the resistance between them．Thus between either end and the center Suppose you take a common telephone magneto and hange it into a dynamo by putting in a commutato ake the fine wire off shuttle，now what number wie possible results and what size small lamp could you be able to light with it？A．For a small magneto we refer you to our SUPPLEMENT，No．161，and for a drum arma－
ture for the same our SUPPLEMENT，No．599．The wind ing of a magneto must be calculated for voltage and am perage desired，for＂best results＂is too indefinite．The
armature of the magneto you allude to is not of good type for your purpose．
（6745）G．A D．asks：1．What is the mallest number of hydro－electric batteries of say 1 vol
each that will cause a spark to pass over an air gap in ach that will cause a spark to pass over an air gap in
conductor，said air gap being one twenty－fifth of an inch wide，and the spark to play continuously（or as near to that as possible）between the two ends of the conductor A．For sparking distance between ball electrodes the
sual allowance is 10,000 volts for one－tenth inch．You usual allowance is 10,000 volts for one－tenth inch．Yo
will have to use a spark coil，as the battery on the abover will have to use a spark coil，as the battery on the above
basis would be too large．$\quad 2$ ．If same air gap were in a basis would be too large．2．If same air gap were in
Geissler tube when it is at its best conducting condition how many of the same cells would be required to cause ler tube．A small one would show a one twenty．fifth nch spark．3．How can I cause carbon（which has been made by carbonizing sugar）to dissolve in molten iron or rises to the top and burns away there，before it can be mixed enough to allow any of the carbon to dissolve in
the molten metal．A．Try graphite or electric light carbons．You will not succeed in dissolving more than a trace，if that much，in silver．If you will have iron cast very hot in an iron mould，the piece cast being
very thin，it will retain＂dissolved＂or combined carbon． ．What is the greatest pressure we can exert on any sub stance，in pounds per square inch，and by what means
that are available in practical application？A．It de－ ends on the power of the press；－－there is no limit as Please name a substance or two which I can practical introduce in a Geissler tube，to absorb they oxygen，so
that，when I have exhausted the tube of air and the ab－ that，when I have exhausted the tube of air and the ab－
sorbent has got tarough absorbing the oxygen，there will
be only nitrogen gas left in said tube．A．Metallic so－
dium carefully freed from naphtha．It is dangerous to dium carefully freed from naphtha．It is dangerous to
handle． （6746）B．E．R．asks ：1．How could the simple electric motor described in Supplement，No．641，
be modified so as to develop（full）one－sixth or one－fifth be modified so as to develop（full）one－sixth or one－fifth
horse power？Would it be sufficient to increase the thick－ ness of the magnet core two or three layers，put one or wo extra layers of wire on magnet，and use a current of twenty volts；or would it be necessary to make all
parts of larger size ？ core to give it good residual magnetism，so as to make it self－starting．We strongly advise you to go on other lines and make such a dynamo as is shown in our Sup－ PLEment，No．600．2．Why will not the above motor operate as a dynamo，especially if the field is excited by a
battery？A．It has too long and thin a core；it will enerate current if you use it as descreed will a Daniell＇s
tion．3．How many amperes of current cell generate，the porous cnp of which is a common drain tile（with one end stopped），the copper and copper sul－ phate solution being in this，and surrounded to full height by the zinc and solution of salt？A．About $1 / 3$ ampere through a low external resistance： 4 ．How many
volts is the Edison－Lalande battery？A． 0.5 to 0.75 volt． olts is the Edison－Lalande battery？A． 0.5 to 0 ， votery
5．How long should a chromic acid porous cup battery operate with one charge？A．It depends on how much current is taken from it．6．Is the energy of the battery wasted when the circuit is left open for a month or two ？ A．Yes．The zincs are rapidly attacked，the solution hus becoming spoiled． 7 ．How many square inches of zinc must be exposed in the above battery to produce one ampere of current？A．Three or four squareinches． By dipping in a mixture of a little strong nitric acid and strong sulphuric acid for articles of brass，copper，or Ger－
man silver．For zinc，iron，tin，lead，Britannia metal or pewter，use a 10 per cent solution of potassium cyanide
and make the article the anode，with and make the article the anode，with a platinum，copper， or brass cathode．Both processes require watching，es－
pecially the first．
9．Will you please give directions for pecially the first．9．Will you please give directions for
making an inexpensive compound for coating wooden battery cells，to render them acid proof？A．Melt to－ gether 4 parts resin， 1 part gutta percha and a little boiled oil．Apply hot，using a hot iron to work it into the corners and cracks．
（6747）A．J．C．asks how to lace belts． A correspondent in the Scientific American says：
send you a sample of belt lacing which I am using in my factory．It is far superior to any other way of
lacing．It runs smoother on small pulleys，as it bends to

fit them．To lace it，commence in middle or either side If in middle，divide the string into equal lengths；if o across and back．You will readily see its advantages． uggest it so others may be benefited．
（6748）D．M．H．says：Please let me know through Notes and Queries how to make a mould to cast one－half sphere plaster figures in．A．A good gelatine mould may be made in the following manner：
Soak the best white glue in cold water for 24 hours，then Soak he best white glue in cold water for 24 hours，that
drain off all the water．Melt the soaked glue in a water jacketed kettle，then pour the glue upon the object，the atter being incased in a lead or pasteboard box．Let it If the object be a statuette，a thread should be attached to the back，and extended out of the mould at both ends， so that it may be used for cutting open the mould after it is cooled，to permit of taking out the statuette． good material for a mould is made in thefollowing way： Dissolve 20 parts of fine gelatine in 100 parts of hot water， candy．It is said that a mould made of gelatine or glue alone may be made more durable by pouring over it a so－ lution of bichromate of potash in water， 1 part of bichro－
ate to 10 parts of water，and afterward exposing it to mate to 10 parts of water，and afterward exposing it to
sunlight．Most objects require oiling slightly before being covered with glue or gelatine．
（6749）A Subscriber writes：I wish to build an air motor to run small electric light plant． 1 ． cent lights？A．A typical cell gives 35 amperes at 2 volts．By using 20 volt lamps you can get on with ten such cells and have still an excess．Allow 20 volts and A．See our Suplemment，No．600，for full description． ．About how large a wheel？Winds here in mountains are strong．A．A one horse power wheel would be ample． 4．Will kerosene at 80 cents per gallon be economical or not？A．If you can handle the plant，it might be eco－ nomical；the chance of its proving so will be greater as
its size is greater．For size given the personal attention its size is greater．For size given．
required would miltate against it．
（6750）I．W．T．writes：I am making a coil for demagnetizing watches，using a 120 volt alternat－ of wire for same．A Use three or four pounds No． 20 wire．Wind around a core of the section suited for the largest size watch．There is no harm in giving plenty
（6751）L．W．G．says：Would you kindly give me a recipe for coloring incandescent lamps red and glass by thoroughly washing in soap and water and dry－ ing．Then dip in bath made by beating up the whites of
hang up to dry. Dissolve the aniline color in photographer's common collodion. 2. Red or blue aniline will
form clear solutions, while the green solution will require filtering. 3. Yellow aniline forms a handsome color, but the surface of the glass presents a frosted appearanc after the application. 4 Violet and purple colors may be obtained by combining red and blue in different quanti ties. When the solution is ready, dip the prepared glass through the bulb for half an hour, that the heat thu generated may harden the coating of the collodion, or ace in a current of air. 5. The preparation can easily be removed with alcohol or sulphuric ether, but is no affected by water. Experience has shown that the best
results are obtained by not using too much aniline Make the color light rather than deep, and apply two o three coats.
(6752) N. S. C. says: Can you send me a recipe for a tonic whieh will cause a growth of hair on the head or face? A. Salicylic Hair Tonic

Salicylic acid.
Borax ..
Tincture of
Bay rum .
50 grn.
Rase water.
Boiling water-enough to mak
$\begin{array}{rl}6 & \mathrm{fll} \text { oz. } \\ 18 & \mathrm{fl.oz} .\end{array}$
(6753) L. A. M. asks how to mix lime to whitewash brick walls, inside and outside walls, so that
the lime will adhere. A. A good durable whitewash is made as follows: Take $1 / 2$ bushel of freshly burnt lime, slake it with boiling water, cover it during the process and add to it 7 lb . of salt previously well dissolved in warm water; 3 lb . of ground rice boiled to a thin paste and ing: 1 lb . of clean glue, which has been previously dis solved by soaking it well, and then hangng it over ow are in a small kettle, within a large one filled with well. and let it 5 gall. of hot water to the mixture, stir must be put on quite hot few days covered from dirt. kept in a kettle on a portable furnace. About $1 \mathrm{pt}$. . this mixture will cover a square yard.
(6754) E. L. F. asks, How fast will a one half horse power steam engine run a 12 foot boat and what size propeller wive be needed. A. A 多 horse foot boat with good lines, with a 12 inch propeller
(6755) D. D. asks for the size of boile to work slide valve engine $11 / 2$ inch stroke, 1 inch bore, a boiler rated at $1 / 3$ horse power, or having 6 square feet of heating surface. See Scientific american Supplement, No. 702, for illustrations of small safe boilers. 10 cents mailed.
(6756) J. A. H. asks : Can you give me the proportions of wooden patterns to make the following sizes of cast iron dumb bells : 25 lb ., 50 lb . and 100 ib.? A. Make an accurate drawing of a longitudinal sec tion of the dumb bell of the pattern that you desire to make, and as near the size as your judgment will allow,
then compute the contents in cubic inches and multiply by 0.24 for pounds in the casting.
(6757) J. P. asks : 1. How can I muffle the exhaust of my gas engine so it will not make so much noise? (use the engine to run my buggy. A with an iron box or cylinder of three or four gallons capacity, with several diaphragms of $1 / 8$ inch mesh wir cloth. 2. What causes the sharp snapping sound in gas engine cylinders which occurs every little while? A.
The sharp snap is probably due to a miss fire by whin The sharp snap is probably due to a miss fire, by which explosion, making the engine jump. 3. What is meant
ene by "machine sparking"? You used this term in speak ing of the Benz motocycle. A. The term sparking probably refers to the
explosive mixture.

TO INVENTORS.

An experience of nearly ffty years, and the preparation f more than one nundred thousand applications for danits at home and abroad, enable us to understand th qualed facilities for procuring patents everywhere. A oreign countries may be bad on application, and person ontemplating the securing of patents, either at home o broad. are invited to write to this office for prices ensive facilities for conducting the business. Addre way. New York.

INDEX OF INVENTIONS

Untted Staters Patent of th

February 25, 1896,
ND EACH BEARING THATT DATE

ee note at end of list about copies of these patents.]
Nichols. Alarm. See Fire and burglar alarm. Thermostat-
Annunciator, electric, J. Kips.................... 555.101
Bankers, etc, tomancial instrument for use of, c.
, fording,
Bicycle gearing, s . A. White
Bicycle lamp holder, F. Rhind........................ 555,18 Bicycle lock, keyless, J. A. Folsom..... 555.477

Mrupentionorze brate. w. Waluce

 Cbimney ventiator or cowl, J.Cider prese Cline 8 Ecker....
Cigarette, B Baron.

an, motor driven., \mathbf{N}. o. Tuerk.

 Fence, wire, A. J. U.päan.
Fender. See Car fender.
Fertilizer distributer and

 Game apparatus, , , W. Featherstone... Game apparatus, J. F. Morris....
Gas burner. L. Denayrouze....:
Gas bunner, E. MVesott.
Gas enie. Agerell \& Williams.

TRADE MARKS.

	rations, Patent Borax Compang. Bicycles. Jenkins Cycle Company Bicycles, F. A. Lapham. Bicycles, F. A. Lap ham. Bicycles. H. Olson. Boots and shoes, Litte, Max weili © Company Cigars, Hoover Mercantile Con Cigars. Hoover Mercantile Company.: Fl annels, unshrinkable, William Hollins \& Com- Gas heater. Blount \& Otto. Malto-peptone yeast food and mait extract prepa- Medicinal food, E.P. Tane Com pany. Medicine, blood, F. Hobart Mineral spring water. Tallawanda Mineral Spring Morocco. patent ieather................................ and cbaracter, P. Rielly \& Son....................... lar articles, Harrison Brothers \& Company. Paper and envelopes, Agawam Paper co cosmetics, bair restoratives.'and soap, Photographic cameras, Eastman Kodak Company. Pins, safety, Oakville Co mpany York Asbestos Manufacturing Company, New Plows, cultivators, and their rarts and attaci- ments, southern Apricult ural Works. Polish for wood. Wewell. Pulleys, D. E. Newell Remedies for diphtheria, sore throat, quinsy, croup coughs, and catarrb, R. M. Thompson... Remedy for snuff, tobacco, and allied habits, D. \mathbf{E}. Ming machines and attachenents, exepo. needies, Standard Sewing Machine Company. Steam traps, Holden \& Brooke... Tea, Bronson, Brown \& Company Tea, G. Me Lane. 8 Tires, elastic or pneumatic, Boston Wo........... Toothwash, F.S. C̈hurchiii Toy frrearms, ives \& Williams Company Wrappers and tea gowns, 1deal Man rappers and tea gowns, Ideal Manufacturing

DESIGNS.

 Canadian patents may now be obtained by the in-
ventors for any of tue inventions named in the fore-

ordinary rates. Inside Page, ench insertion - - $\boldsymbol{y} \boldsymbol{5}$ cents a line Bacis Page. each insertion...-81.00 a lin Higher rates are required. The above are cnarges per agase line-about eight woris per line. This notice shows the widt of tbe giver- and is sel in agate ype. Fincravings may head ad tisements at the same rate per agate line, bv measurereceived at Puolication office as earlv, as Thursda morning to appear in the roitowing week's issut.

 \section*{
 \section*{
 $$
\bar{P}
$$}

HELLO, CENTRAL!

-

BUY
 TELEPHONES

The Opportunity for Live Men with or without Technical Knowledge. CONCRETE ${ }^{\text {min mini }}$ RETE Concrete and Twisted Iron construction ahead of all other systems in effect-

RANSOME \& SMITH CO., $\quad 622$ Boyleston Building, CHICAGO

 THE B. F. CUMMINS CO.
232 Clinton Street, $\}$ pept. $\left.\begin{array}{l}\text { CHICAGO. } \\ { }^{83} \text { Nassan Stret } \\ \text { NEW YORE. }\end{array}\right\}$ Dept. b. BALL BEARING AXLES AND RUB-

Brazing

 Repair Shoo
puroses.
CLUTCH PULLEYS
CUT-OFF COUPLINGS
bility, and Economy or Space.
GIFORO
IROTHERS, FOUNOERS AND MACHINISTS,
723-737 Columbia St., Hudson, N.
Chicaco
CHECK
PEEL Price Reduced to $\$ 10$

LITTLE GIANT BOLT CUTTERS
 and NUT TAPPERS.

 returrl
cena for fully ilustrated
catome. ARMSTRONG'S * PIPE * THREADING
 CUTTING-AFF MACHINES
Both Hand and Power.

How to Build a Home

\longrightarrow

Those intending to build will find the very best practical sug-
estions and examples of Modern Architecture in the handsomest

"The Scientific American Building Edition.
Hach number is illustrated with a Colored plate and numerous
handsome enuravings made direct from photographs of buildings, handsome envravings made direct from photographs of buillingss,
together with interior views, tioor plans, description, cost, location, together with interior riews, thoor plans, description, cost, location,
owneris' and architects' names and addresses. The illustrations include seashore, southern, colonial and city residences, churches, schools. public builidings, stables. aarriage houses, etc.
All who oontemplate bullalng, or improving homes or structures of ank kind, have in this handsome work an almost endless series of

Pipe threading and Cutting-off Ma. chines with Opening Dies. or datalogue. WILEY \& RUSSELL MFG. Co., Greenfield, Mass., it. s. A.

[^0]Combined Bolt Cutting, Nut Tapping

For sale at alineo Monthly.
For sale at ayl news stands

HOMESTUDV

FOR TECHNICAL STUDENTS

Address, HOME STUD Y, Scranton, Pu

- Magnerobelis

ELECTRICAL SUPPLIES

BINDERS ••

THE =

(9) CIENMPTC MARICAN

ESTABLISHED 1845 The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year, Including Postad
This widely circulated and splendidy illustrate paper is published weekly. Every number contains six-
teen pages of useful information and a large number of teen pages of useful information and a large number of
original engravings of new inventions and discoveries,
representing Engineerng Works, Stam Machinery, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, New Inventions, Novelties in Mechanics, Manufactures, Cecture, Agriculture, Horticulture, Natural History, Termis of subscription.-One copy of the ScIENTific American will be sent for one year - 52 numbers-
postage prepaid, to any subscriber in the United States, postage prepaid, to any subscriber in the United States,
Canada, or Mexico, on receipt of Three Dollars by the publishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.- Special rates for several names, and to Post Express Money Order. Money carefully placed inside of envelopes, securely sealed, and conrectly addressed,
seldom goes astray, but is at the sender's risk seldom goes astray, but is at the sender's risk Address

Sixutitic American Supptement Thisis a separate and distinct publication from The
SCIENTIFIC AMERICA^, but is uniform therewith in size, every number containing sixteen large pages full
of engravings, many of wnich are taken from foreign papers and accompanied with translated descriptions.
THE SCIENTIFIC AMERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It
preserts the most recent papers by eminent writers in all the principal departments of Science and the Useful
Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Enfineering, Mining, Ship Building, Marine Engineering, Photography, Technology, Manu facturing Ind ustries, Sanitary Engineering, Agriculture Horticulture, Domestic Economy, Biography. Medicine, etc. A vast amount of fresh and valuable information
obtainable in no other publication. The most important Engineering Works, Mecbanisms, and described in the SUPPlement.
Price for the SUPPLEMENT
Price for the SUPPLEment. for the United States,
Canada, and Mexico. $\$ 5.00$ a year; or one copy of the Scientipic American and one copy of the Supple MENT, both mailed for one year to one address for $\$ 7.00$. Single copies, 10 cents. Address and remit by postal MUNN \& CO., 361 Broadivay, New York.
Thuilding IElition.
issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Thirty.two large quarto pages. forming a large and
splendid Maazine of Architecture. richly adorned with splendid Magazine of Archit ecture. richly adorned with
elegant plates and other fine engravings: illustrating the most interesting examples ot modern Architectural A special feature is the presentation in each number a aariety of the latest and best plans for private resierate cost as well as the more expensive. Drawings in
perspective and in color are given, together with Floor Plans. Descriptions, Locations, Estimated Cost, etc. The elegance and cheapness of this magnificent work
have won for it the Larzest Cirulation of any
Architectural publication in the world. Sold by all newsdealers. \$2.50 y year. Remit to
MUNN $\mathbb{C N O}$ Co., $\mathbf{3 6 1}$ Broadway, New Yor

Export Edition
of the Scientific american, with which is incor-
porated "La America Cientifica e industrial," or Spanish edition of the Scientific American is pubor spaniso edtly, and is uniform in size and typography
lished monthe with the Scientific American. Every number con-
tains about 50 pages, profusely illustrated. It is the finest scientific, industrial export paper published. It circu lates throughout Cuba, the West Indies, Mexico, Central and South America, Spain and Spanish possessions - wherever the Spanish language is spoken. The sci-
ENTIFIC AMERICAN Export EDition bas a large out the world. $\$ 3.00$ a year, postpaid, to any part of the world. Single copies, 25 cents.
Tr Manufacturers and others who desire to secure
foreign trade may have large and handscmely foreign trade may bave large and hands:mely displayed
announcements publisted in this edition at a very moderate cost. Rates upon application.

MUNN \& CO., Publishers.

HENRY CAREY BAIRD \＆CO． and Circulars，the whole coverng every branch of Sci－ ence applied to the Arts．sent free and frae of postai－ to any one in any part of the world who will furnish bis
 che Pbilosophy of Science

STATISTICS OF THE UNITED STATES．

 T．Automatic Circular Rib M4 Knitting Machinery
 fPI SNYDER \＆FISHER，

ENGINES．

\＆Gasoline Engine
simpest gas had gasoine

W．F．\＆JOHN BARNES CO．

Reagan Feed Water Heating，Water Circulating and Shaking Grates

for stationary，Marine，and Locom tive Boilers．AG ANTS WANTE
in all parts of the United States．
manufacture our grate on rovalty．
Water Send for Catalogue． Water Circulating Grate Co．

MODERN ICE YACHT．－BY eot．W．Polki：A．new and valuaile paper，containing

 ＂THE HT RUNNING＂ DENSMORE $\begin{gathered}\text {＂the worlo’s } \\ \text { greatest typew }\end{gathered}$ The Densmore has the most convenient system if cales Thiter． no guesswork in using them．TThey do not go up in the air．Then you
turn the platen to inspect the work and need them most．With work in full sight，you can move the carriage with ease and certainty to SUMMARY Of SUPERiorities EStablished：Lightest Key Touch，
Greatest Speed
 DENSMORE TYPEWIRITER CO．， 316 Broadway，New York

The Success of the AMERICAN $\$ 8$
TYPEWRITER s due to its capacity for doing the best work，and lo
7500 of of the New Model No． 2 sold sincelast July．
 THE AMERICAN TYPEWRITER CO．，
267 Broadway，New York，N．Y．
Ther have a tone that＇s ACETYLENE GAS AND CARBIDE OF

 one may quickly ascertain，free，
Whether an invention probably is
patentable by writing to Munn \＆Co． Communicati
tial
how to obtaind

WWIER NOOOTB
GAS ENGINES \＆VENTILATING FANS

Eclipse
Cream Separators
 market．
c．L．CHAPMAN Aqents Wanted．
SEPARATOR WORKS， USE GRINDSTONES

U USE GRINDSTONES

 2a Floor．Wilshirra Cleveland． 0 ．

R．E．DIETZ CO．， 60 Laight Street，New York． R．E．DIEIZ Co．， 60 Laight Street，New York．
Mention this paper and get special discount．

Chain BELTING of Various Styles，ELEVATORS，CONVEYORS， The JEFFREY MANUFAC
Send for late Catalogue＂C．＂

）DEAFNESS and head noises relieved by using
Wilson＇s Common Sense Ear Drums． New scientiffc invention，entirely different

SMALL Motoons for All Purrosess．

 MANUFACTURE OF BICYCLES．－A

STUDTY A UO ME Electricity，Mechanics Ry our unequaled Corespondence Method．EItED

 ArEs Ts．＂rio Fot brush＂sure eler．Send ad．

 MANY BOATS OF MANY KINDS FOR
 Logue．Black Cor．school．Biatimore，Mal

 Engineers and Firemen fend 2．⿰亻⿱丶⿻工二十⿴⿱冂一⿰丨丨丁心

 Incubators Brooders

volney w．mason \＆co PRICTION POLLLEYS，CLDTCGESS，and ELEVETORS

 FIRE BRIGK FOR ALL

BROOKLYN FIRE BRICK WORKS．
GS Van Dyke street，BROOKIVN，N．

The Gelebrated
"HORNSBY-AKROYD

The

American

Bell Telephone
Company,
125 Milk Street,
Boston, Mass.

This Company owns LettersPatent No. 463,569 , granted to Emile Berliner November 17, 1891, for a combined Telegraph and Telephnne, covering all forms of
Microphone Transmitters or contact Telephones.

ENGINES. Boilers and Nactine Tooivo New "Machinery \& Suppliess." W. W. P. Davis. Rochester, W. Y.

D0ES ANYTHING PH0T0GRAPHICthe Pocket Kodak.
 EASTMAN KODAK CO. Sample fhoto and booklet ROCHESTER, N. Y
for tuwo $2-$ cent stam ps.

 Of All Refractory Substances
 Is the "Criffin Mill," whose first cost, wear, and operating ex pense is much less than stamp mills, and which yields a larger product at less cost than any other mill, with perfect success in every instance. It will work by either the wet or dry process, and deliver a uniformly sized finished product of from 30 to 350 Mesh, with equal facility. Its capacity is 3 to 4 tons per hour on Phosphate Rock, $11 / 2$ to 2 tons per hour on Portland Cement, Quartz Ores, etc.
 Bradley Pulverizer Co., No. 92 state Street, Boston. S

A [JENTS WAIIEOR WANED For FINE TOOLS in EvERYSHOP

THE BICYCLE: ITS INFLUENCE IN

[^1]
[^0]: ELECTRO-PLATING

 ## NICKEL

 ectro-plating

[^1]: There is hardly a USE OF POẆER A N "CHARTER"
 CHARTER GAS ENGINE oline. PO Bor

 PRINTING INKS,

