
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

$\mathrm{Vol}_{\mathrm{E}}$

JEW FOUR TRACK RAILROAD DRAWBRIDGE FOR NEW YORE CITY.

THE DRAF SPAN OF THE FOUR TRACK HARLEE RIVER BRIDGE, STONE ABUTMENT, AND ELEVATED ROADBED.
NEW HARLEM RIVER BRIDGE AND PARK AVENOE IMPROVEMENT, NEW YORK CITY.-[See page 88.]

Srientific ${ }_{\text {Sh}}^{8}$ merican.

ESTABLISHED 1845

MUNN \& CO.. Editors and Proprietors PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.

Export Edition of the Scientifc American

Readers are specially requested to notify the
any failure. delay, or irregularity in receipt of papers.
NEW YORK, SATURDAY, FEBRUARY 8, 1896.

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT No. 1049

For the Week Ending Nebruary 8, 1896

Price 10 cents. For sale by all newedenter

PROF. ROENTGEN'S DISCOVERY

The now famous Roentgen's disçovery has been still further described, the accounts have assumed bet ter shape, and his experiments have been repeated in this country by some of our leading physicists. It was on January 4, at the celebration of the sewi centennial of the founding of the Berlin Physical Society, that Prof. Roentgen described his discovery, which had been accomplished only a few days before, detailing his results and presenting proofs of his photographs. The paper covered substantially the ground gone over by us in our last issue. The rays emanating from the cathode of a Crookes tube were used, and in their new role were named " X Strah len," or "X rays." Prof. Roentgen advanced the theory that the rays are due to the propagation of longitudinal ether waves, analogous in type to sound waves, only differing in their medium or material

Prof. Philip Lenard, of the University of Bonn, had published two papers in Wiederuann's Annalen, one in January, 1894, and oue in October, 1895, showing how the cathode rays could readily pass through aluminum. While the course of the rays passing through aluminum was investigated by him, principally with the aid of fluorescence, he used also sensitized photo graphic plates. He obtained results closely approxi mating those of Prof. Roentgen.
Prof. A. W. Wright, of Yale University, occupying the chair of experimental physics and director of the Sloan Physical Laboratory, tried the cathode ray photography with much success. He got prints o various objects through opaque screens. One point brought out is, that while it is distinctly shadow pho tography, it is so with a difference-it is not merely silhouettes that are imprinted. The effect of the rays upon the photographic plate varies with the nature and thickness of the object through which they pass, so that some representation of its contour and inner structure can be obtained.
One of Prof. Roentgen's exhibits was the photo graph of the skeleton of a hand taken from the living hand, the point being that the bones produced a denser "shadow" than did the flesh. This differential action has enabled an aluminum medal to give an image showing its lettering and design. An attemp to take the skeleton of the hand at Yale resulted, it is said, less favorably than with Prof. Roentgen Prof. Wright's other results were most satisfactory. He found that glass was more opaque to these rays He found that giass was more opaque to these rays
than was ebonite, that aluminum was more trans thas was ebonite, that aluminum was more trans-
parent than otber metals, and his photographs were very interesting and quite numerous.
At Harvard University, Prof. Trowbridge, di rector of the Jefferson Pbysical Laboratory, also obtained cathode ray photagraphs. He is said to have used an exceedingly powerful excitation, enough to give a six inch spark through air; probably a lesser fower would answer.

The effects of the new discovery upon medicine and surgery in the diagnosing of disease have been much insisted on, and a recent dispatch from Vienna states that Dr. Neusser, of the Vierna University, has suc ceeded in detecting calcareous deposits in the interna organs of a patient by the cathode rays.
The rays have been proved incapable of refraction or polarization, and their nature and constitution af ford a most difficult problem to deal with-one whose solution may greatly modify our views of radian energy and of the luminiferous ether and hence of cosmic questions of the utmost magnitude

THE PROPORTIONS OF HIGH SPEED PTGINES.

|resulting values for the constant \mathbf{C} give the following formulas:

Crank Shaft.—d = diameter of shaft.
$\mathrm{d}=7 \cdot 56 \sqrt[8]{\mathbf{H P} \div \mathbf{N}}$
(the value of C ranging between 8.76 and 5.98)
where 7.56 is the mean value of constant. The dia gram gave a maximum of 8.76 and a minimum of 5.98 s the value of C.
Example: If a high speed engine develops 100 horse power at 250 revolutions per minute, we get by using mean value of C :
d (dia. of crankshaft) $=7.56 \sqrt[8]{100 \div 250}=5.57$ inches. Piston Rod.-

$$
\begin{aligned}
\mathrm{d} & =\mathrm{C} \sqrt[{\sqrt{\mathrm{D}^{2} \mathrm{~L}^{2}}}]{ } \\
& =0.145 \sqrt{\mathrm{D} \mathrm{~L}} \\
\mathrm{C} & =0.145 \text { mean value. } \\
& =0.177 \text { max. "، } \\
& =0.119 \mathrm{~min} .
\end{aligned}
$$

Connecting Rods.-In designing these they are calculated as long struts; and then an allowance is made for the flexure stresses due to inertia. The mean constant resulting from this examination is 0.0545 , which gives as formula for breadth of rod (b)

$$
\mathrm{b}=0.0545 \sqrt{\mathrm{D}} \mathrm{~L}^{1}
$$

L^{1} being the length of rod. The height will be made twice the breadth, plus an excess to provide for stresse due to inertia
The investigation for this ratio of height to breadth of rod gave the mean value $h=2 \cdot 73 \mathrm{~b}$.
Main Journals.-For the projected area of each main bearing, the formula is
$\mathrm{dl}=\mathrm{CA}$ (d being diameter: l, length of journal)
C ranges from 0.367 to 0.739 , the mean being 0.489 then $\mathrm{d} \mathrm{l}=0489 \mathrm{~A}$
Crank Pin.-Working upon the formula
$1=\mathrm{C}$
the constant was found to vary between
$0 \cdot 192$ and $0 \cdot 417$. The mean value gave the following equation:

$$
1=0.333\left(\frac{\mathrm{HP}}{\mathrm{~L}}\right)+2.2 \text { inches. }
$$

In noting that these expressions vary in form from the fundamental formula, the author explains that "the two extreme lines of the diagram have been determined upon the proportions of only two wak ers." The diagram shows a wide variety of practice.
For projected area of crank pin, $\mathrm{d} 1=0.22 \mathrm{~A}$.
Face of Piston. - The ratio of diameter to face of piston shows a wide variation.
f (width of face) $=0.437 \mathrm{D}$ mean.
$=0.300 \mathrm{D}$ minimum.
Crosshead Pin. - The projected area of crosshead pin :
$\mathrm{d} 1=0.105 \mathrm{~A}$ mean. $=0.066 \mathrm{~A}$ minimum.

$$
=0.346 \mathrm{~A} \text { maximum. }
$$

The mean length of crosshead pin is $1=1.33 \mathrm{~d}$.
Fly Wheel.-The weight of the rim is found from the formula $W=\frac{H P}{D_{1}{ }^{2} N^{2}}$ (in which D_{1} equals diameter of wheel in inches).
The investigation gave
W (weight of rim) $=833,000,000 \frac{\mathrm{HP}}{\mathrm{D}^{2} \mathrm{~N}^{2}}$ for the neaa

$$
=34 i, 000,000 \frac{\mathrm{HP}}{\mathrm{D}^{2} \mathrm{~N}^{2}} \text { for the minimum }
$$

$$
=2,780,000,000 \frac{\mathrm{HP}}{\mathrm{D}^{2} \mathrm{~N}^{2}} \text { for the maximum }
$$

The average linear velocity of the rim of wheels was found to be 4,200 feet per minute.
Weight of Reciprocating Parts.-For smoothness of running, the weight (W) should be proportional $\frac{D^{2}}{L N^{2}}$ The result obtained was $W=1,850,000 \frac{D^{2}}{L^{2}}$
Weight of Entire Engine per Horse Power.-The average weight of high speed engines per horse powe (W) is given by formula $W=117$ (HP) -820 pounds. The value of, and the necessity for, such an investigation as this is proved by the wide divergence shown by the various engines from the mean dimensions as ascertained. That two makers of high speed engines of the same H.P. shonld use two fly wheels with a difference in the weight of rim of 1 to 8 (see above) is one of those anomalies that are continually to be met with when designing is carried out on the "rule of thumb" basis.
Antwerp is becoming a rival of London for the ivory trade of the world. A report from the British consul general at Antwerp shows the large extent to which ivory is brought to Belgium from the Congo The ivory industry has of late sprung into new life at Antwerp.

World's Shipping in 1895.

The annual summary of shipbuilding prepared by Lloyd's Register of British and Foreign Shipbuilding has just been issued. It shows, says the New York Sun, that the total output of the world in 1895, not including warships, was about $1,218,000$ tons, 104,000 of that being about the total sail tonnage for the year. As far as has been officially recorded, the amount of sea going tonnage totally lost in the twelve months was 700,000 tons, 290,000 steam and 410,000 sail.
From these figures it can be seen that the world's sailing tonnage has been reduced 306,000 tons during the year, and the steam tonnage has increased about 824,000 tons.
Of the new tonnage launched, England has acquired 62.5 per cent. There were launched in England last year 579 vessels, a total of 950,967 tons. Of that number 526 were steam and 53 sailing vessels. In the same period fifty-nine warships were launched in England, including the output from both government and private yards. The total sutput for the year from British shipyards is about 95,000 tons less than for 1894, but the proportion of steam tonnage to sail has materially increased.
In 1892 sailing tonnage formed about 24 per cent of the output; in 1895 it formed about 5 per cent. These comparisons show the remarkable decline in the sailing tonnage of the world.
The summary also says that 98 per cent of the steam tonnage and 97 per cent of the sailing tonnage was built of steel. The largést steamers launched in the year were the Georgıc, 10,077 tons; Victorian, 8.767 tons; and Armenian, 8,765 tons. The largest sailing vessel was the Iranian, 2,958 gross tonnage.
The table which follows shows the number of vessels, merchant and warships, and their tonnage, built in the United States and other countries ou ${ }^{+}$side of England. It includes every vessel above 100 tons, and is considered the most complete record ever compiled. It is as follows:

Countries.	Warships. No. Tons dis.		Total merchant and warships built in No. country.	
United States....		12,034	64	96,911
Austria-Hungary	2	11,100	12	18,471
Belginm.		-	1	1,270
British colonies.	-	-	30	10,381
Denmark.	-	-	14	10,982
France..	7	42,071	34	70,922
Germany	3	6,340	78	94,126
Holland.	2	1,155	27	9,447
Italy..	. 2	18,340	12	18,943
Japan		2,800	4	5,096
Norway.		-	21	12,873
Russia.	2	2,774	12	5,669
Spain	1	9,000	2	9,910
Sweden.	-	-	13	2,767
Total	23	100,614	324	367,807

While the total output from American shipyards for the year is placed at 96,411 tons, the output from yards in the United Kingdom was about 950,000 tons. About 20 per cent of the vessels launched in England were for foreign countries, and of the vessels built 60 per cent were launched in the Greenock district. It is estimated that England sold 386,000 tons to foreign owners, and of this amount more than one-fourth went under the Japanese flag, which shows how the Japs are building up their naval and merchant marine.
The records shows that the largest vessels launched outside of England were the German bark Potosi, 4,027 tons, and the French bark Wulfrau Puget, 3,062 tons. These vessels were built under the supervision of Lloyd's Register.

Torpedo Boat Ericsson

Secretary Herbert recently decided that he would direci the preliminary acceptance of the torpedo boat Ericsson, subject to another dock trial, the sum of $\$ 16,000$ to be deducted, however, from the contract price, for failure to complete the vessel within the required time. The Ericsson is now at New London, Connecticut, and the trial will take place there. It is not unlikely that, owing to the unfortunate accidents which caused the delay in completio authorize the remission of the $\$ 16,000$.
The Ericsson has had a uumber of trying experiences. Accidents to her machinery caused great delay, and on her last attempt at an official trial several men were killed by an explosion and the trial was abandoned. The department is now satisfied that the machinery of the little vessel is in perfect order, and that she can make twenty-flve knots an hour, which is a half knot more than required by the contract. The Ericsson was built by the Iowa Iron Works, Dabuque, Iowa.

Kilauea Volcano in Eruption.

After thirteen months of quiescence an eruption of this volcano commenced on January 3, the liquid lava rising the next day to the top of the wide shaft at the bottom of the pit and forming a burning lake 200 feet long by 150 feet wide. The upper rim of the pit is more than 450 feet higher, and the surface of the burning lake, should it reach the top, will then be much greater.

A mile is not a thing requiring such an extraordinary time to cover, provided the coverer of it is properly equipped with a sufficiency of speed-producing powers. Below is given a partial list of some exceedingly speedy milers and their performances, and some slow but sure travelers as well:
Light-0.000005102 of a second, or 196,000 miles in one second.
Electricity-0.00000347 of a second, or 288,000 miles per second.
Earthquake $-1 / 2 \mathrm{~s}$., as calculated by delicate instru ments, or around the world in $31 / 2$ hours.
Sound in Water-1s., or 4,900 feet in one second.
Cannon Ball--1 6-10s., if it traveled at the muzzle velocity of 3,300 feet per second obtained by some guns.
Sound in Air-5s., or 1,090 feet in one second.
Birds-18s. It is said the frigate bird flies 200 miles an hour ; a mile in 24s. by the kestril, or sparrowhawk, which is said to fly 150 miles an hour; in 1 m . 9 s . by a pigeon, when flying 200 miles in an actual race; in $1 \mathrm{~m} .151 / 2$ s. by a pigeon when flying 400 miles in an actual race.
Railway Train-32s., in May, 1893, the Empire State Express, of the New York Central and Hudson River Road, drawn by engine " 999 ," with Engineer Hogan, near Crittenden, N. Y., or a rate of $1121 / 2$ miles in an hour.

Duck-40s. or 90 miles an hour.
Electric Railway-59s., on the Baltimore and Ohio Railway, at the Baltimore Tunnel in September, 1895. Ice Boat-1m., at Newburg Bay, Hudson River.
Tandem Bicycle on Straightaway Road-1m. 171-5s., on December 16, 1895, on a straightaway road built for the purpose at Cheynne, Wyo., with a wind blowing 30 miles an hour, by two riders, John Green and Charles S. Erswell.
Bicycle Straightaway-1m. 25s., John Green, Cheyenne.
Horse Running-1m. 351/2s., by Salvator, at Mon mouth Park, August 28, 1890.
Bicycle on Track-1m. 40 3-5s., by P. J. Berlo, New Orleans.
Dog. $-1 \mathrm{~m} .431-5 \mathrm{~s}$., if the greyhound coursed one wile, the usual distance of 200 yards having been run in $111 / 4 \mathrm{~s}$.
Boat-1m. 45s., torpedo boat Sokol, made by Messrs. Yarrow, of England, for Russia, and which developed in October, 1895, a speed of 34 miles an hour. Steam in October, 1895, a speed of
ship Lucania in 2 m .134 -5s.
Bicycle Quadruplet-1ru. 474 -5s., on October 17, 1895, at Denver, Col., unpaced, flying start, Connibear, Dickson, Stone, and Swanbrough.
Bicycle Tandem on Track-1m. $523 / 4 \mathrm{~s}$., on October 27 , 1894, at Waltham, Mass, flying start, paced, Haggerty and Williams; on August 17, 1894, at Denver, Col., flying start, unpaced, Titus and Cabanne, in $1 \mathrm{~m} .553 / 4 \mathrm{~s}$. Horse Pacing-2m. 11/2s., by Robert J., at Terre Haute, Ind., on September 14, 1894, against time.
Bicycle Triplet-2m. 145 s ., un paced, standing start, Kennedy, Murphy and Saunders.
Horse Trotting-2m. $33 / 4 \mathrm{~s}$., by Alix, at Galesburg, III., September 13, 1894.

Horse Team Trotting-2m. 121/4s., by Belle Hamlin and Honest George, driven by E. F. Geers, at Provi dence, R. I., September 23, 1892.
Man Skating-2m. 12 3-5s., by J. F. Donoghue.
Horse Under Saddle-2m. 13s., by Johnson, pacing at Cleveland, O., August 3, 1883, against time; in 2m. $153 / 4 \mathrm{~s}$., by Great Eastern, trotting at Fleetwood Park, September 22, 1877

Crow-2m. 40s., or 25 wiles an hour.
Horseless|Carriage- 4 m ., a carriage running 750 miles from Paris to Bordeaux, in the international race of 1895 , or 15 miles an hour throughout.
Man Kunning- $4 \mathrm{~m} .123 / 4 \mathrm{~s}$, professional, W. G. George in 4m. 174.5 s ., amateur, T. P. Conneff.
Man Rowing-5m. 1s., by Ellis Ward, on the Savannah River, Florida, April 1, 18%.
Man Walking-6m. 23s., professional, W. Perkins, of England; in 6in. 29 3-5s., amateur, F. P. Murray, of the England; in 6 m
United States.

Canoe-6m. 40s., July, 1894, by C. E. Archibald, at the ffteenth annual meet of the A. C. A., held at Croton Point, L. I.
Man Swimming-27m. $212-5 \mathrm{~s} .$, J. H. Tyers, Englishman; in $28 \mathrm{~m} .552-5 \mathrm{~s} .$, G. Whitaker, American ; both amateurs; both with seven turns.
Man in Tub-1h. 10m., by Gus Frates, in Oregon, in 1895, paddling in a tub 6 miles in 7 hours.
As will be seen by a study of the above list, in the case where figures are given of speed production wherein man is a factor, the bicycle is beaten only by the railway train, the electric railway, and the ice boat, and its nearest competitor is the running horse, and he is 18 seconds slower. Relatively, it seems as though it were impossible for the bicycle to attain a higher position in the speed world, $171 / 2$ seconds separating it from its nearest leader, the ice boat, a lead
which looks almost impossible to overcome, if the idea is accepted that anything in the speed line is a cycling impossibility.-The Wheel.

Photography and Chronographic Measu
The British Journal of Photography says
"A note on this subject, from a lecture by Mr. Frederick J. Smith, appears in a recent number of Nature. In order to a void the error of 'time-lag,' introduced by the use of magnetic and solenoidal arrangements, he has devised a method based entirely on the use of light. Two sources of light at a suitable distance apart throw two beams of light on to a sensitive plate, apart throw two beams of light on to a sensitive plate,
carried in the carriage of a tram chronograph. By carried in the carriage of a tram chronograph. By
means of lenses the beams of light are caused to form two sharp images on the plate in a vertical line, one above the other, a tuning fork trace is also made on the plate; if the plate traverses when the beams of light are not interrupted, on development two black parallel lines appear on the plate; but if during the passage of the plate the beams of light are cut by any solid object which shuts off the light, then, on development, two gaps are seen to exist. The distance beopment, two gaps are seen to exist. The distance be-
tween these markings, when interpreted in terms of the fork trace, gives the velocity of the object which cuts through the beam of light.
"In another method, the projectile cut during its flight through two thin screens, placed in the paths of the beams, and so opened a passage for the light. Two parallel lines are then formed on the plate, one longer than the other; the difference in their lengths duly interpreted gives the velocity of the projectile. This new mode of registering velocities would seem to be very valuable, as the most pxact determination of the rapidity of the flight of projectiles at various stages is of great importance in artillery investigations."

Diminution of Risks with Electric Lighting.

The following suggestions are offered by the American National Board of Fire Underwriters to people who are about to employ electric lighting :

1. Have your wiring done by responsible parties, and make contract subject to underwriters' rules. Cheap work and dangerous work usually go hand in hand.
2. Switch bases and cut-out blocks should be non combustible (procelain or glass).
3. Incandescent lamps get hot ; therefore all inflammable material should be kept away from them. Many fires have been caused by inflammable goods being placed in contact with incandescent lamp globes and sockets.
4. The use of flexible cord should be restricted to straight pendent drops and should not be used in show windows.
5. Wires should be supported on glass or porcelain, and never on wooded cleats; or else run in approved conduits.
6. Wires should not approach each other nearer than 8 inches in arc and $21 / 2$ inches in incandescent lighting 7. Wires shouid not come into contact with metal pipes.
7. Metal staples to fasten wires should not be used.
8. Wires should not come into contact with other substances than their designed insulating supports.
9. All joints and splices should be thoroughly sold ered and carefully wrapped with tape.
10. Wires should always be protected with tubes of glass or porcelain where passing through walls, parti tions, timbers, etc. Soft rubber tube is especially dan gerous.
11. All combination flxtures, such as gas fixtures and electric lamps attached, should have approved insulat ing joints. The use of soft rubber or any material in such joints that will shrink or crack by variation of such joints is dangerous.
12. Electric gas lighting and electric lights on the same fixture always increase the hazard of fire and should accordingly be avoided.
13. An electric arc light gives off sparks and embers All are lamps in vicinity of inflammable material should have wire nets surrounding the globe, and such spark arresters reaching from globe to body of lamp as will prevent the escape of sparks, melted copper and particles of carbon.
14. Arc light wires should never be concealed
15. Current from street railway wires should never be used for lighting or power in any building, as it is extremely dangerous.
16. When possible, the current should be shut off by a switch where the wires enter the building when the lights or power are not in use.
17. Remember that "resistance boxes," "regulators," "controllers, "rheostats," "reducers" and all such things are sources of heat and should be treated like stoves. Any resistance introduced in an electric cir cuit transforms electric energy into heat. Electric heaters are constructed on this principle. Do not use wooden cases for these stoves, nor mount them on woodwork.

Locomotive Building, 1895.
All of the thirteen locomotive building companies in the United States, except one, says the Railroad Gazette, turned out more locomotives in the past than in the previous year, the total number having been 1,109 , as acainst 695 in 1894. The freight cars built in 1895 were 31,803, as compared with 17,029 in 1894.

AN IMPROVED PROPELLING MECHANISM

The accompanying illustrations represent improved means for the propulsion of bicycles, railway velocipedes, and hand cars, showing also the position and appearance of the mechanism when adapted to the bicycle and velocipede car. The improvement forms the subject of a patent recently issued to James J. 'Thompson, of Jacksonville, Fla., of which the object is to increase of which the object is to increase
the power of propulsion of either the power of propulsion of either
class of cars or bicycle, by utilizclass of cars or bicycle, by utiliz-
ing power generated through ing power generated through
the instrumentality of a flywheel, and at the same time proportionately lessen the muscular exertion on the part of the operator. The sectional view represents the mechanism and its working, the device being attached to the frame bar for use tached to the frame bar for use on either style of car, or to the tubular frame of the bicycle. The hubs of the cranks, secured
to the crank shaft, are journaled in ball bearings adjustable in hangers, and a large gear secured to the crank shaft meshes with

BICYCLE WITH THOMPSON'S PROPELLING MECHANISM. the smaller gear of a compound gear revolving on ball bearings. The larger of the compound gears meshes with a small gear on the hub of the fly wheel, revolving freely on ball bearings on the crank shaft. A sprocket wheel on the crank shaft connects in the usual way by an endless chain with a sprocket on the driven wheel.
By rotating the crank shaft, as in driving the ordinary bicycle, the gears are made to also revolve the flywheel, and power is thus accumulated. For hand cars, motion is obtained by the use of the ordinary lever and rodscon. necting it with the cranks, which, by nectin it with the cranks, which, by their simultaneous action, convert the reciprocal motion of the lever into the rotary motion of the cranks. The flywheel is made to revolve many times oftener than the crank shaft through the medium of the compound gears, and, when once the power is properly adjusted, it is a simple matter to gear the speed of the bicycle to any pitch desired, and of either class of cars sufficiently to maintain the same upon the track with safety. At no period in the revolution of the cranks is there a diminution of power applied to the crank shaft through the lack of leverage :orce, as the increased momentum gained in the flywheel de-
freely. From the bottom of the headlight two chains \mid Paul, the newest representative of the American Line, run to the ends of an arm which is connected by a rod has been made known far and wide tbrough the col that runs to the pilot wheels' truck. When the pilot umns of the daily press. Starting from Southampton, wheels strike a curve, the outside wheel forges slightly England, on January 15, for America, the ship was ahead, and this moves the rod and chain enough to making a fast passage across. When partly across,
 ene, and for many hours the two ships were in com pany with each other. The claim made for the St. Paul and for her sister ship, the St. Louis, is that they are remarkably fast in a seaway, it being generally conceded that the larger Cam pania is faster in smooth water. For some reason both ships got far south of theirfreckoning, and approaching the American coast in a dense fog, headed straight for the New Jersey coast at Long Branch, fifteen or twenty miles south of their proper posi tion. The lead was kept going on both ships, but in spite of the frequent soundings, the St. Paul, at 1:47 A. M., January 25 ran aground on the beach at Long Branch, near the Iron Pier, while the Campania, some three miles to the south, barely es caped a like fate.

The wreckers were at once notified of the disaster and have made strenu ous efforts to pull the ship off, but the want of sufficiently high tide has mili tated against their efforts.

We present our readers with a view of the stranded ship. as she lay al most broadside on to the beach. Long Branch is one of the great summer resorts of New Yorkers and is within easy reach of the city. The trains running there have done a heavy business in the transportation to Long Branch of people desirous of seeing the stranded vessel. Thousands have gone there, and the place, ordinarily deserted at this season, has presented a scene of life and animation very foreign to the seashore in the month of January.
A telephone station was established on the ship, so as to keep her in con stant communication with the oute world. As she lay on the beach, the wire of the telephone line, running from a pole on shore to the ship rail, has been her only connection with the land. It seemed a curious illustration of fin-de-siecle advancement, the es tablishment of a telephone station on a wrecked ship. There was no loss of the effects of lost motion and drives the cranks on |road accidents in 1895, about 875 were due to derail- life or property. The ship struck so gently that the over dead centers, thus perpetuating the constant ments, usually on curves. There is no doubt that a passengers were not awakened.
speed or progress of the car or bicycle, that would certain percentage of these accidents could have been We have already fully described and illustrated the otherwise be retarded by sacrificing a sufficient amount of the speed power in rotating the cranks to the initia point of leverage.
Velocipede and-hand cars equipped with this mechanism are also provided with patent roller bearing axle boxes, in the chamber of which the wheel axle of the car is made to revolve freely with out friction. One of our views is a repro duction from a photo graph taken of a velocipede car upon the track in actual service equip ped with this wechan ism, and another is a side view representing the mechanism in place on a bicycle.

A Novel Headight.

An Englishman has invented an automatic headlight. In going around curves head lights on locomotives being stationary, throw the light straigh ahead, instead o throwing it so that it covers the track, where of course, the light should be all the time The automatic 'head The autonatic head light is suspended on two pivois, one on top
and one on the bottow, so that it can swing
 St. Paul. She appeared to be on her way to naking some fine transatlantic records and may do so in the coming season. She is fitted throughout with the most elaborate improvements for comfort and safety. He staterooms in their arrancement and size are distine advance on those advance on those of other ships. One excellent feature is the ar rangement of rooms opening into each other, so that friends or mem bers of the same party occupying rooms opening on adjoining corridors can open the door between them and have thorough ventilation all day
Our illustrations show some of the most in teresting features of a cabin on the St. Paul and St. Louis, the wost novel being the air mat tresses. If there is any place where a person requires every appliance for comfort it is in a ship's stateroom, and in supplying their new vessels with air mattresses the American Line has made a distinct advance over the old time practices. The air mattress presents the features of being al ways in condition, never wearing into hills and
hollows; it is always cool and is the most cleanly type of bed that has ever been devised. All these qualities go to make it the acme of luxury in the sleeping way. By inflating to different degrees of softness any one's "personal coefficient" is met.
The mattress consists of a sack of air-tight rubber cloth with the back and front stayed together in a number of places corresponding to the tufting of ordinary mattresses. The outer covering is of strong cotton duck heavily coated with rubber and vulcanized. To inflate it a foot bellows is supplied. Our cut shows the operation of inflating as in progress in one of the American Line staterooms. The bellows is connected to the valve of the mattress by a long India rubber tube; a few strokes of the bellows inflates it, the tube is removed, the valve screwed down, and the mattress is ready for use. It may not need another pumping ior a year or more. Sometimes a mattress is pumped up hard, and the occupant lying on it has the

One important feature about air mattresses is that they do not require making over. With hair mattresses this is a periodical necessity. For household use this feature is of value, and on ships using them by the hundred the stateroom ste wards are saved much work by being exempted from the necessity of working over and beating into condition mattresses which get worn down and out of shape.

Trolley Road in Rome.

The new electric tram way which connects the main railway station of Rome with the center of the city is proving a great success as a means of rapid communication between the high and the low parts of the city, although it has had many difficulties to contend with. The local authorities wisely refused to allow their principal streets to be desecrated by the poles and wires of an overhead system of traction; so the route chosen was very difficult on account of the steep gradi
going quickly down hill. The principle of it consists in short-circuiting the motors, which are then driven as dynamos by the momentum of the car, which is thus rapidly stopped. The cars weigh seven tons when empty, and when loaded their carrying capacity is stated as forty; but there are often more than fifty passengers on them. Their weight is about ten tons. They start every five minutes and take thirteen or fourteen minutes to perform the whole journey, the maximum speed allowed being nine miles an hour. The cars are well lit, and an elaborate system of elec tric bells enables each passenger from his seat to communicate with the motorman.
The motors are worked by current brought from the Electric Lighting Company, who possess the famous Tivoli-Rome transmission plant. At Tivoli, on the slope of the Sabine Hills, the power developed in large turbines is converted into electric energy by alternators, and is conveyed at high pressure by four cables

THE CABIN OF THE ST. PAUL-PERFECTION AIR MATTRESSES AND LIFE PRESERVERS.
air withdrawn until the exact pressure to suit his or her ideas is reached.
For marine use the mattresses are fitted with life lines, a single mattress being a life preserver, capable of sustaining as many people as can find room to grasp the lines. The same company supplies a neck collar, which is simply sprung around the neck, and which makes drowning an impossibility for the wearer. This collar goes on without any tying, its elasticity holding it in place.
One of our cuts shows this collar, and next to it mattresses designed for camp use, one with and one without a pillow attached. Other cuts show double mattresses and pillows, hassocks, chair seats, and cushions, and give an idea only of the variety of goods of this kind supplied by the Mechanical Manufacturing Company. Their address is 146 Franklin Street, Boston, Mass. One of their recentachievements is the providing of an entire church with air pew. cushions, making devotion in the old Puritan town more luxurious than would ever have accorded with the ideas of the Pilgrim fathers.
very sharp corners. It starts from the Piazza S. Silvestro and goes up the Via di Capo le Case and then through the Ludovisian Quarter to the Piazza di Termini. It consists of a double track nearly two miles long, and the general arrangements are the same as on the Havre tramways. Where telegraph and telophone wires cross the tramway, guard wires of steel are suspended to stop their fall and prevent them touching the trolley wire, if by any chance they broke. They are certainly not beautiful, but they are essential to the public safety. The trolley wire is supported by double bracket standards; where the track makes sharp bends cables attached to the walls are necessary to pull it out into the required curve, the wire coinciding really with the sides of the inscribed polygon. In some places the incline is over eight per cent, so special brakes are necessary. Both hand and foot brakes are used, one acting on the wheels directly and the otber on the rails.
In addition there is an electric emergency brake, which will stop the car in a few yards, even when
across the Campagna, a distance of eighteen miles, to a transformer house just outside the Porta Pia, where the pressure is reduced before it is distributed to various subcenters in the city. As the current is alter nating, it is transformed into continuous by means of high speed dynamo motors. It is then used to charge accumulators and give a constant 550 volt supply to the trolley wire
The General Electric Company, of the United States, did the overhead work and the equipment of the cars -The Builder, London.

Evergreen privet (Ligustrum ovalifolium) thrives in most climates. This is one of the plants so useful for making a rapid growing hedge, and for cover for ame, as well as for ornament in the mixed shrubbery as bush plants. It has all but completely shut out the ordinary deciduous small-leaved forms, and to a cer tain extent, adds the Garden, the oblong evergreen forms. In some localities it loses its leaves only par tially during winter. In ordinary winters it remains evergreen in most localities.

Science Notes.

Tea-Leaf Smoking.-According to Cassell's Saturday Magazine, it has become a fashionable distraction in England to smoke green tea in the form of cigarettes. A large number of the adepts of this new pastime, says the English journal, are highly educated women. A physician who has had occasion to treat patients for extreme nervousness and insomnia due to this practice states that among them there is a well known female writer whose novels are widely read and who habitually smokes from twenty to thirty tea cigarettes while working

At the home of a well known lady whom I am attending," says he, "tea cigarettes are always passed around after dinner, and I know three celebrated actresses who give tea smoking parties twice a week. A number of literary ladies at Kensington have formed a small club for the same purpose. One of my patients spends nearly two pounds a week to satisfy her mania. This habit, moreover, is spreading to such an extent that certain tobacco dealers are now offering packages of tea cigarettes to the public."
Psychophotography.-That real images of objects are formed upon the human retina and persist temporarily seems to be proved by a series of experiments made by Mr. W. Ingles Rogers and described by him in the Amateur Photographer for November 22, 1895. Mr. Rogers took a shilling and looked at it intently in ordinary daylight for fully a minute, with the idea of fixing the inage of it distinctly upon the retina. He then drew a yellow screen over the window of the room in which he sat, so as to exclude all actinic light, and, placing a photographic plate in a certain position, fixed his eyes upon the center of it, at the same time allowing nothing but the image of the coin to occupy his mind. He remained looking at the plate for forty-three minutes and afterward developed it, with the result that an outline of the coin was clearly shown upon it. The second experiment, made in the presence of three trustworthy witnesses whose testimony accompanies Mr. Rogers' communication, was still more remarkable in its result. In this case a postage stamp was substituted for the shilling. This was gazed at in a strong light for one minute. It was then removed and a plate put in its place and looked at for twenty minutes. The resulting "psychogram," which is reproduced in the Amateur Photographer, lacked detail, but sufficient was shown to prove that the picture of an object impressed upon the retina can send out vibrations that will result in the production of an image upon a sensitized plate.
The Power of Guns.-One might be accused of roion horse power, and yet nothing is of several mil shall demonstrate. The Italian 100 ton gun (model of 1879), with a 550 pound charge of powder, throws a projectile weighing 2,020 pounds at an initial velocity of 1,715 feet per second. It communicates to it, therefore, a live power or kinetic force of $92,597,000$ foot pounds. The thrust exerted by the gases due to the ignition of the powder lasts less than a hundredth of a second. The result is that during the active period of the work of the powder in the gun, the mean power is greater than 87 million foot pounds per hundredth of a second, $\operatorname{ssay} 8,700$ million foot pounds per second. This represents a power of 12 million kilowatts or 17 million horse power.
There is unfortunately another side to this picture. Although large guns are extraordinarily powerful, their active life is essentially ephemeral, since, after a hundred shots, they are generally out of service. They have then worked actively one second!
The same calculation applied to modern guns that throw 2,200 pound projectiles, and communicate thereto an initial velocity of 1,970 feet a second, demonstrates, further, that such guns, during less than a hundredth of a second each time, develop a formidable power of $13,050,000,000$ foot pounds per second, say $24,000,000$ horse power.
Taking Impressions of Plants.-The following simple method of taking impressions of plants is due to sheet of paper is first lightly oiled on one side, and then folded in four, so that the oil may filter through the pores, and the plant may not come into direct contact with the liquid. The plant is placed between the leaves of the second folding, and in this position is pressed, through other paper, all over with the hand, so as to cause a small quantity of oil to adhere to the surface. Thenlit is taken out and placed carefully upon white paper, another sheet is placed above (as two impressions can be taken out at once) and the plant is pressed as before. Upon now removing it, an sprinkled powdered black lead, which causes the image to appear. With an assortment of pigments, the natural colors of plants may be reproduced. To obtain fixity, resin is mixed with the color in small quantity. The impression becomes fixed when it is exposed to a heat sufficient to melt the resin.
Prevention of the Freezing of Gas Pipes.-It has gas pipes in winter is due solely to the aqueous vapor
carried along, and which, under the influence of the cold, is tirst condensed and then congealed, so as to
obstruct the pipes. An attempt has been made to overcome this inconvenience by drying the gas through the action of concentrated sulphuric acid. But dur ing the course of last winter it was found that, despite such precaution, there occurred numerous cases of freezing that had to be attributed to the congelation of the benzole. It, therefore, became necessary to seek another process which should prove efficacious in both cases at once. A process of this kind, recently patented
by the Deutsche Continental Gas Gesellschaft, of Dessau, consists in injecting into the gas upon its exit from the gasometer a determinate quantity of vapor of alcohol. If, under the action of cold, the aqueous alcohol, the introduction of which into the mixture will lower the point of congelation, and hence prevent the obstruction of the conduits.
The experiments made last winter demonstrated that the influence of the alcoholic vapor makes itself felt at a distance of two and a half miles from the gasometer. On the contrary, it disappears as soon as the gas passes through a wet meter. So the inventors advise the installation of a small injector alongside of the meter in factories, railway stations, etc., in order to permit of adding alcoholic vapor anew to the gas. The proportion of alcohol necessary is 5 grammes of impure 95° alcohol to the cubic meter of gas. In extremely cold weather the proportion of alcohol may be raised to 6 or 7 grammes. The addition of this small quantity of alcohol has no influence upon the calorific or illuminating power of the gas.

an mproved bicycle lamp braceet

The illustration represents a simple and durable

the united states detach-
ABLE LAMP BRACEET.
lamp bracket patented by James E. Bean, readily attached to and removed from a bicycle without disconnecting the lamp and the bracket. The improve-
ment is being introment is being intro-
duced by United States Manufacturing Com pany, Fond du Lac, Wis. In the illustration, B represents the bracket, which is held in place by a strong spring catch at its lower end, but may be readils removed, leaving only
the small clip, A, attached under the axle nut. The catch is very strong and may be made as tight as the user desires, so that it will never shake off or get loose.

Treasure Houses in New York.

"If the New York dry goods district should be destroyed to-night," said a business man to a representative of the Sun, "every great insurance company in the world would fail." Doubtless there is some exag geration in such an opinion, but there are $\$ 900,000,000$ worth of insurable goods in the comparatively small down-town area known as the dry goods district, to say nothing of buildings, furniture, and fixtures. London and perhaps Paris are the only other cities in the world that equal New York as treasure houses of manufactured goods.
A single wholesale and retail house in the fashionable shopping district of Broadway contains $\$ 11,000,000$ worth of goods. Another house in Twenty-third Street contains $\$ 6,000,000$ worth. There must be scores of busi ness houses containing from $\$ 1,000,000$ to $\$ 5,000,000$ worth of goods. The goods stored in three or four business districts would more than pay the national debt. The goods in the great clothing district run up into the hundreds of millions. The little jewelry district down town is one of the richest urban areas in the world. Silverware, gold, and jewels valued at hundreds of millions are stored in the district centered ahout Union Square. The samples of a single hat house brought a uction in a recent year $\$ 70,000$. Some of the most precious articles in proportion to bulk are stored in the drug and chemical and perfumery houses in the region south of Fulton Street and east of Willian. The book publishing district, now stringing itself along from As
tor Place to Twenty-fifth Street, is stocked with many tor Place to Twenty-fifth Street, is stocked with many million dollars' worth of books. Single buildings with more than the assessed value of many a rural county in this State.

New York Section of the American Chemical societs.
The regular monthly meeting of the Chemical So ciety will be held on Friday, February 7, at 8:30 P. M. in the chemical lecture room of the College of the City of New York. The usual informal dinner will precede he meeting and will be at the Hotel Bartholdi, Broad way and Twenty-third Street, at 6:30 o'clock.

If any appreciable increase in the imports from the Onited States into Venezuela is perceptible, it is simply due to recent and better facilities for the distribution of merchandise, and is confined to such articles as heretofore imported-flour, lard, hams, kerosene "blended" butter, lumber, some kinds of hardware ommon glassware, etc.; but the essential feature of our trade-the general introduction of our manufac ured goods-is still wanting.
The stereotyped complaints about the independence of our manufacturers at first impels the belief that they do not want thic Latin-American trade, but I am beginning nodouht the sincerity and validity of this criticism, invariably advanced by foreign merchants having their chief houses in Europe, and controlling nearly all branches of trade. If my suspicions are well founded, these statements are made to deceive the small native merchant and compel the purchase of such goods as it way be to the interest of the foreigner of further, whicu almost invariably means European. His present control of the market enables him to dictate both the place whence and the kind of goods he will import and sell, without regard to native taste, which, thus far, he has cultivated in one direction Until some purely American houses are established in Venezuela, aided by a friendly native sympathy and sentiment, we cannot hope to make great inroads in the sale of manufactured goods.
An important item of importation is fine table butter, which is now almost wholly supplied by Denmark, and costs, delivered at Hamburg, about 30 cents, put up in tin cans of one-half pound and upward, her metically sealed. I am convinced if some dairy near New York were to make an effort to secure part of this trade, it would prove successful and profitable. American butter as at present packed-with no view to its preservation in this climate-is justly in bad odor. To obtain the trade of an article of such universal consumption, is at least a good subject for investigation.
Until within three or four years, comparatively little cutlery was imported from the United States. Since then some improvement is visible, and it is within the power of our manufacturers to increase their sales in this line.
The largest native dealer in cutlery and hardware showed me through his warehouse. explaining the needs of the trade and wherein Germans, English, and Americans excelled, and expressed an earnest desire to make closer connections with American manufacturers, and his willingness to send them samples of various goods, believing that when once thoroughly acquainted goods, believing that when once thoroughly acquainted share than they have at present secured. This opinion I fully share.
In brief, we have made a beginning in the sale o knives, forks, hatchets, axes, hammers, and files (the latter preferred to all others), while crowbars, shovels, spades, hoes, scissors, etc., are almost exclusively pur chased in England and Germany, in addition to everything bought in the United States.
The machete, of which tens of thousands are sold annually, are all bought in England. The machete is simply a very large and broad knife, slightly varying in size, but usually about 18 to 22 inches long and 2 to 3 inches broad, with which the Latin-American caunot dispense, and which he applies to more uses than one can conceive.

VENEZUELAN MANUFACTURES.
Venezuela is solely an agricultural countrs. Its fac tories are few, of ten of the crudest kind and devoted to the manufacture of the most pressing native wants such as sole leather, soap, candles, matches, cigarettes rum, native shoes (alpargatas), hats, and sugar.
The manufacture of sole leather seems to have ac quired an impetus and support, for which its large consumption and the high duty thereon seems responsible. Puerto Cabello supports two tanneries, one electric, the other employing the usual improved methods. The output of the latter is about 27.800 pounds per week, with the prospect of the plant being enlarged and the output increased. French and Eng lish machinery is employed. I am not aware of any tannery in the country manufacturing uppers. As Venezuela exports large quantities of goat and dee skins and hides, suitable for uppers, the suggestion is made that it might prove profitable if some large tan nery in the United States would establish a branch in this country for this purpose, with American machin ery and conducted on American principles. The duty on manufactured leather being $\$ 4$ per kilogramme ($2 \cdot 2$ pounds), and on the unmanufactured 50 cents per kilo gramme, the poor people are practically debarred from its general use, and confine themselves, for ordinary wear, to the native alpargata, a modified scriptural sandal composed of a solid piece of sole leather, shaped for the foot, with a woven cotton upper, having an outlet for the big toe, a piece of similar material se cured to the leather heel, and then passed over and fastened to the upper part of the heel of the foot.
The importation of sugar being prohibited, all large cane plantations have their sugar mills, with more or less advanced processes for placing the product on the
market, but no refinery exists in Venezuela, and all forest, coffee, cocoa, and copper districts in the repubsugar sold ranges from a very dark to a light brown.
Soap is made from native cocoanut oil, and candles from stearin imported from Europe. Both industries are not only among the most profitable, but also of the greatest magnitude in Venezuela, the high duty giving them a monopoly in the common grade of these arti cles. Fancy and fine perfumed soap is not manufactured.
Rum and cigarettes are made from native products Tobacco of excellent quality is grown and employed in the manufacture of the latter, together with consider able Cuban tobacco. Both industries seem to have reached a profitable base.
The alpargata (shoe) is manufactured, or rather put together, by numerous small factories, the woven cotton being usually purchased from the large factory in Valencia which makes a specialty of this article.

TARIFF.

The tariff of the country is divided into nine classes. Duty is charged on the gross weight. A package of merchandise containing any article belonging to a higher class pays duty on the whole as of that class.

banking facilities.

The want of banking facilities is often keenly felt. The two banks of Caracas and that of Maracaibo are the only institutions of the kind in the country, and with agencies limited as to the places and transactions, have, under prudent management, proved rery profitable and beneficial to the business interests of the country. The want of such institutions in agricultural districts is generally recognized and deplored, and I can suggest no more protitable undertaking than one of this character, based on large capital and commer cial standing. Large planters of ten require ready money to carry on their operations, and are compelled to resort either to the large merchant or usurer. In
either case, he pays a rate of interest seldom less than either case, he pays a rate of interest seldom less than
12 per cent, and not unusually 18 per cent per annum. If he deals with the former, he may be expected to purchase his supplies from him, paying a large profit on the sale. The planter's paper and collateral are unquestioned.
Often strangers with the best bills of credit find themselves remote from these legitimate institutions and are forced to submit to such a rate of exchange as the merchant may exact.
Attempts have, at various times, been made to obtain banking concessions, but always accompanied with such conditions as to make their denial necessary and imperative.
American capital invested in banks would be as safe and secure as at home. An American bank and American business houses are the only factors that will loosen the grip of European exporters.

FINANCE AND CURRENCY.

All values in this country are based on gold-gold of all nations being current as a commodity. Silver of other countries is forbidden circulation, but that of
Venezuela is on a parity with its gold and is accepted in payment of all dues, public and private, without loss. This is due to the fact that, at present, no silver is coined and never has been, in excess of the govern ment's ability to redeem it in gold. It is generally understood that were this limit of ability passed, the same conditions would exist here that prevail in all other South American republics, namely, silver would be at a large discount, and the poorer classes would suffer in the payment of their dues. Venezuela is,
therefore, proud of the standing its silver coin has therefore, proud of the standin
among the nations of the world.
The last Congress prohibited the emission of paper money by the government. The paper money in circulation is that of the banks at Caracas and Maracaibo, the only institutions authorized to issue paper money. For this money the government is in no wise responsible its acceptance not being compulsory, and it cir culates only on the credit and integrity of the bank and in their own vicinity. Its issue is very limited.

INLAND TRANSPORTATION.

Until some few years ago, Venezuela was without a railroad. Now, not only are the ports of La Guayra and Puerto Cabello connected with Caracas by rail, but Barquisimeto and other places with the coast in like manner, while many railroad "concessions" for the development of the remote interior seem to have acquired new life. If any of the many rumors are to be believed, Venezuela must soon enter upon a rapid development of its best, but heretofore neglected, territory.
San Felipe will, at an early date, be connected with Puerto Cabello by a line of small steamers and a substantial "tramway," affording unprecedented facilities for exporting the products of that section of the country and distributing the imports, with a certainty, safety, and rapidity heretofore unattained.
The Yaracuy Navigation Company, chartered in the State of New Jersey, with its main business office in the city of New York, has secured control of a Vene-
zuelan concession to colonize and navlyate the Yaracuy River, a waterway running through one of the richest
lic. The mouth of the river is 12 miles from this port, and will be navigated for a distance of about 30 wiles and then connected with San Felipe (the storehouse and distributing point of that district) by a substantial tram way of about 25 miles. Being the only distinctive American enterprise in this district, other than the electric plant, I am happy to report that I believe this electric plant, I am happy to report that I believe this
is an actuality and not a syndicate myth. The comis an actuality and not a syndicate myth. The com-
pany has now three small steamers, with apparatus, pany has now three small steamers, with apparatus,
at work clearing the river of obstructious. It is backed by well known New York capitalists.

MINERALS AND WOODS.

Tradition is that many rich gold and silver mines, worked both by the old Indians and Spaniards, exist in this consular district, not over 50 miles from Puerto Cabello. Fine and valuable specimens of both metals are constantly found, but no systematic efforts have heretofore been made to explore the country. Within the past three months, some of the American capitalists connected with the Yaracuy Navigation Company have sent out a number of New York mining engineers, who are at present prospecting the country. As they have not yet returned and no reports have been re ceived, I am unable at this time to inform the depart ment what success, if any, has attended their search. This section of the country is noted for its produc tive copper mines. The Quebrada Company (English) operating those at Aroa have recently shut down mines and smelter owing to the great depression in the copper market. The quality of the ore produced is equaled by few mines in the world.
The Quebrada Railroad, built by the same company, or the purpose of transporting their product to the coast, is still in operation in conjunction with its leased lines-the Great Southwestern Railroad-connecting the large town of Barquisimeto with the coast of Tucacas (105 miles of road in all).
Phosphates, almost pure, are found near the coast, not far from this port, and only await a higher mar ket and capital to develop.
The forests throughout the interior in this consula district consist mainly of hard, fancy cabinet woods, such as mahogany, ebony, lignum vitæ, cedar, green heart, etc., and will no doubt soon become an important itein of export, in consequence of the operations of the Yaracuy Navigation Company.
pUERTO CABELLO.
The population of Puerto Cabello is now about 12,000 , but as this is the largest port of entry in the country, next to La Guayra, the magnitude of its business cannot be measured by its population. On the other hand, it is one of the most metropolitan towns in the country and is an attractive place, comparatively speaking, containing four pretty parks and a theater, excellent water and waterworks, clean treets for a place without sewerage, pleasant dwellings, and handsome storehouses. Tracks are now
being laid for a street tramway, with the object of transporting freight only from the warehouses of the merchants to the wharf, and not intended for passenger service.
The heat here is greatly tempered by the pleasant sea breezes that prevail during the day and evening and the mountain breezes at night, making the mornings and nights pleasant as a general thing broughout the rear
Puerto Cabello has the reputation of being an un healthy place, and is so indicated in all encyclopedias This possibly originated in an epidemic of yellow fever confined to some ships in the harbor about the year 1876, during which most of the ships lost nearly all he town, and was brought net, however, spread these ships. Since then no epidemic or even an approach to one has ap peared, either in town or harbor, and the uncorrected statement does gross injustice to the town. My own residence here enables me to contradict this generally ccepted foreign opinion

COST OF LIVING, wages, ETC
The poorer classes of Venezuelans live mainly on fish and fruits. The few articles of manufactured goods used by them are confined to the most pressing wants and of the commonest grades.
Rent is exceedingly high. An ordinary pleasant dwelling costs from $\$ 60$ to $\$ 80$ per month, and what is termed a handsome house rents for from $\$ 100$ to $\$ 120$ per month. A house renting for $\$ 30$ per month would be located in an undesirable, of ten in an unenviable, quarter of the town, and shabby both in exterior and interior appearance. The luxury our poor ?enjoy in the way of small, neat, and cheap houses or apart ments is unknown in this country.
Table board, with which a foreigner must be content and to which the better class native is accustomed costs $\$ 35$ (United States gold) per month. Flour that sells for $\$ 2.50$ and $\$ 3$ per barrel at home costs $\$ 10$ to $\$ 11$ gold at the ports and often twice as much and more in the interior towns. Eggs are 40 to 60 cents per
dozen; potatoes, 8 cents per pound; meat, 15 to 30 cents per pound; sugar, 16 to 20 cents per pound; and all other imported and native products in proportion.

Though this is an agricultural country, the nativie eems devoted to raising coffee, cocoa, and like pro ducts to the almost total neglect of good vegetables Hence, we often see the peculiar spectacle of imported regetables in a country that could with proper mangement export them.
Incandescent light is furnished at very cheap rates. Samuel Proskauer, Consul.
Puerto Cabello, September, 1895.

Train Detentions

At the December meeting of the New York Rail road Club the subject of the cause of train detentions was discussed. The discussion was opened by Mr C. M. Mendenhall, of the Pennsylvania Railroad, who had compiled the following table :

CAUSES OF PASSENGER TRAIN DETENTION.
$89 \cdot 3$ per cent................... $\left\{\begin{array}{l}\text { Arbitrary. } \\ \text { Traffic. } \\ \text { Operation. }\end{array}\right.$

This, it will be observed, refers to passenger trains only, and Mr. Mendenhall explained that it does not epresent all causes of detention, although we suppose it represents all cases of which he had records available. For example, under the head of Miscellaneous is a considerable group of detentions which could not well be classified, there being so few of then. He assumes one winute as the minimum delay; that is, he means by "late" within one minute of schedule time, and he believes that, if the records are carefully examined, it will be found that 34 percent of passenger trains will arrive late at their destination. This, of course, will vary in different months of the year. The passenger schedules are generally so slow that more or less time lost can be made up, more in summer and less in winter. He was not able to give the relative number of detentions under the headings Arbitrary, Traffic and Operation, but the total of these three Traffic and Operation, but the total of these three
classes he has found to be about $89 \cdot 3$ per cent of all classes he has found to be about $89 \cdot 3$ per cent of all
detentions. This leaves 10.7 per cent due to equip. detentions. This leaves 10.7 per cent due to equip-
ment, and of the equipment failures 55 per cent is due to engines and 45 per cent to cars. The further analysis of the causes is shown in the table.-Railroad Gazette.

Typewriter Inks.
Take petrolatum of high boiling point, melt it on a water bath or slow fire, and incorporate by constant stirring as much lampblack or powdered dropblack as it will take up without becoming granular. If the fat remains in excess, the print is liable to hare a greasy outline; if the color is in excess, the print will not be clear. Remove the mixture from the fire, and while it is cooling mix equal parts of petroleum, benzine, and rectified oil of turpentine, in which dissolve the fatty ink, introduced in small portions by constant agitation. The volatile solvents should be in such quantity that the fluid ink is of the consistence of fresh oil paint. Apply the ink, after agitation, by means of a soft brush, and rub it well into the interstices of the ribbon with a toothbrush. Hardly any ink should remain visible on the surface. For colored inks use Prussian blue, red lead, etc., and especially the aniline colors. For black try the following :

Dissolve the aniline black in the alcohol, and add the glycerine. Ink as before.

Dissolve the soap in the water and glycerine, with the aid of beat; dissolve the aniline in the alcohol, and mix the two solutions. If the ink is too soft, add more soap.-T. L. L.

Gets a Medal for Speed.

Engineer William Tunkey, who pulled the Lake Shore's record-breaking train from Erie to Buffalo last October, has just been given an elaborate silver medal by W. K. Vanderbilt and W. Seward Webb. Mr. Tunkey's ability as an engineer saved this trial of
speed from being a failure, for when the train reached Erie it seemed irretrievably behind the scheduled time, and Mr. Tunkey's quick work saved the day. The medal given to Mr. Tunkey is of solid silver, weighs searly two pounds, and is a work of art.

THE HARLEK RIVER DRAWBRIDGE AND THE PARK AVENUE IMPROVEMENT IN NEW YORE CITY.
New York City possesses within its limits, on Manhattan Island, a single large railroad station, known as the Grand Central Depot. Into this depot the cars of practically three lines of railroad run down from the Harlem River to Forty-second Street, a distance of nearly five miles. This distance has for a long time been traversed partly through cuts, partly rsed partly through cuts, partl hrough a tunnel and partly on a ma sonry viaduct. The upper part o Park A venue, from 106th Street to
the river, which is really a continuation of Fourth Avenue, is now being improved by the removal of the via duct and cuts, and the substitution therefor of an elevated steel struc ture, on which four tracks will be car ried. The effect of this will be to throw open the street below to the public, leaving a width of 140 feet un obstructed except by the three row of columns of the overhead structure We have already illustrated the oper ation of the construction of this ele vated way, which is now rapidly approaching completion.
A high level bridge is now almos completed over the river, which bridge is practically the largest railway drawbridge in the world and one of the very few four track structures in existence. Our illustrations show the present aspect of the improvements and of the bridge itself.
The viaduct is a steel structure car-

THE DRUMS ROLLERS AND GIRDERS UNDER DRAW SPAN HARLEM BRIDGE.
representing the bridge, especially in the one showing the center bearing. Of course, only the outer drum can be seen. The drums are stayed together by six teen radial lattice struts, and the rollers, although journaled, so that they appear to be wheels, really act as true rollers in the operation of the bridge. On top of the drums is a series of eight stee beams, parallel and of varying length eamsenting chords of the circle epresenting chords of the circle of he drum, and on these beams th raw span, when open, is carried, so that there are provided thirty-two bearing points on the two drums, for this set of girders and for the draw span. All this is clearly shown in the view of the bridge and in the small view of the bearing. The drums are 6 feet high.
Merely to keep the bridge bearing in position, a center pivot casting is supplied, but the entire weight of the draw span, when open, comes upon the rollers. The center casting will have absolutely no work to do in car rying weight. The bridge is turned by steam, the engine house being sit uated above the tracks within the central tower of the structure. Her are installed two oscillating, double cylinder engines made by Edwards \& Company, of New York. The cylin lers are 10 inches in diameter and have 7 inches stroke.
The weight of the draw span is only partly taken up by the centra bearings when it is closed. For each end there are levers arranged somewhat like toggle joints, which ied on three rows of columns, each inches deep, $3 / 8$ inch steel being used for the side and sid flom $\frac{9}{16}$ for the center girders, the theory of construction being, of course, that the center girder sustains double the weight of the lateral ones. The space between the girders is bridged over by New York Cential solid floor system of cross trussing, which consists practically in a series of three-sided box girders covering the entire space, the longitudinal axis running across the struc ture. These act at once as roof, floor, truss and sleepers, and on them the rails will be laid. Drainage and leader pipes carry of the water, so that the street beneath the elevated way will be practically roofed over This portion of the work is supplied by the Elmira Bridge Company, of Elmira, New York.

The small cut shows the full construction adopted on the viaduct. The high leve bridge is the most impressive part of the improvements, and has the following gen eral dimensions and features: Onthe north there are two bridge spans, the one farthest north being 131 feet $41 / 4$ inches and the next 185 feet $41 / 2$ inches, these trusses being re spectively 26 feet $31 / 4$ inches and 30 feet $103 / 4$ inches high. The draw span, measured from center to center, has a length of 389 feet, its length over all being about 400 feet. Its breadth is 58 feet $\mathbf{6}$ inches from center to center of the outside trusses, being carried by three trusses, one central and two lateral ones, th center one being the heaviest. These trusses provide two clea ways across the bridge, each 26 feet wide, and in each of the track ways are two tracks. At the center the draw span is 64 feet high and at the ends 25 feet, all meas urements being taken from center to center.

The 121 foot span weighs 475 tons and the 185 foot span 850 tons, while the great draw span weighs 2,500 tons. It is of the pinned truss construction, and some idea of its dimensions may be obtained from the fact that the principal top pin of the hip, next to the tower, is 11 inches in diameter, while the bottom pin of the center truss next the tower is 12 inches in diameter. These pins are all steam forgings, turned up to shape. Other dimenions are worth citation.
The bottom chord of the bridge, which chord has a double role to fill-acting at once as a truss member when the bridge is open and also as a girder between the successive panel points, to support the weight of passing trains-is 48 inches deep. The tension members, extending from the top of the tower to the hips of the girders,

NEW ELEVATED ROADWAY ON PARK AVENUE AND PRESENT TEMPORARY TRACK. are operated from the center tower by steam power When closed the levers are drawn together so as to take part of the weight of the ends, so that when the draw span is closed and the bridge is ready fo the passage of trains the draw span acts partly as the passagh trusses and partly as
rectly on this floor
'The draw span of the bridge is carried on two con entric drums 4 feet apart the outer one being 54 feet in diameter the apart, the outer one bern Under two

the construction of the elevated way.

each of these drums is a circle of seventy-two cas steel rollers turned to a perfectly true conical align went, the outer rollers being 24 inches in diameter the inner ones $20 \frac{7}{16}$ inches in diameter, and both being $101 / 2$ inches face. The entire weight of thedraw span when open rests upon these 144 rollers. The outer circle when open rests upon these 144 rollers. The outer circle
of rollers can be seen very clearly in the different cuts

Waterproofing Brick and Sandstone
A number of experiments were recently made to as certain the length of time that brick and sandstone are rendered waterproof or protected by oil. The three oils used were linseed oil boiled linseed, and crude mineral oil. The amount of oil and water taken up by the sandstone was very much less than that absorbed by the brick, although the area of the sandstone cube was much greater Equal amounts of the raw and boiled oil were absorbed. The mineral oil, however, was taken up in much greater quantities by both brick and sandstone. By the end of twelve months the-mineral oil evaporated from the bricks, but such was not the case when the other oils were used. After an exposure of four years the bricks practically retained all their oil, inasmuch as they had not lost any of their weight, and were also nearly impervious to moisture. It was noticeable that the sandstone cubes treated with linseed oil returned to their original weights, but do not appear to have lost the beneficial effect of the oils, being also practically waterproof.-Mining and Scientific Press.

As speaking tubes do not work on the English war ships owing to the rattling of the machinery, the Ad. miralty will try telephones.

A Costly Patent.

Oue of the Paige typesetting machine patents, re cently issued, "breaks the record" in the history of the patent business for the great bulk and complexity of the patent itself and the intricacy of the machine it covers. It is said that over a million dollars was expended on the machine before the construction of the first one was completed. It has no less than 18,000 separate parts, and does the setting, justifying, and dis tributing of type in a way which would be satisfactory were it not for the cost and complexity of the machine In the development of this invention Mark Twain is reported to have invested nearly $\$ 250,000$
The first application filed for a patent on it contained 204 sheets of drawings, having over 1,000 separate views. During the eight years the case was pending in the office before allowance, the number of sheets was re duced to 163 . When it is remembered that the majority of patents have only a single sheet of drawings, and that to require as many as ten sheets is an exception. the magnitude of the invention can be understood. The fees charged by the Patent Office are uniform for all cases, no matter how complex or how simple- $\$ 15$ on filing the case and $\$ 20$ additional on allowance of the patent.

When this case was filed it was turned over to an examiner who received a salary of $\$ 1,800$, and he spent six weeks in studying the case before being able to take the first action. The entire specification was twice rewritten, each time by a different attorney. How much this cost the inventor is not known, but it is saf to say that the Patent Office lost heavily. It is esti mated that it consumed about $\$ 1.000$ worth of the time of the various Patent Office officials before maturing into a patent, and when issued the usual rulehad to be followed of preparing copies for sale at the regu lation price.

The large number of sheets of drawings had to be photo-lithographed and the entire body of the specifications and claims set up in type, costing for the first edition, as estimated by the ordinary rules, a few cents over $\$ 6$ a copy. Tinese copies were sold to the public at the usual price until the firstedition was exhausted, when the Patent Office stopped the issue. A grea wany people ordered copies of this patent out of curi osity.

A TRANSPORTED CALIFORNIA "GREAT TREF."
The accompanying illustration shows the great tree General Noble (named after General Noble, late Secretary of the Interior) as it now stands in the mal at Washington, D. C., between the Agricultural De partment building and the Swithsonian Institution, which is shown in the distance. Among the multi tudinous marvels of nature, none surpass in majesty and grandeur the great trees of California; no such trees are found in any other part of the world; they were first discovered in 1852 by a hunter, Mr. A. T. Boyd, and at once attracted general attention, and attained the widest celebrity. The genus, a species of redwood (Sequoia gigantea), was named in honor of Sequoia (pronounced Sequoyal), a Cherokee Indian of mixed blood. This specimen was 26 feet in diameter at base, 81 feet 6 inches in circumference and 300 feet in height, the section being taken about 20 feet from the ground; although considerably smaller than some others, it was found to be comparatively well preserved and symmetrical. It had to be hauled by teams of sixteen mules each, on heavs trucks built for the purpose, a distance of sixty miles on a rough mountaiu road; price paid for cutting, hauling and delivering on cars was $\$ 7,500$; section was divided into forty-six smaller sections, some of t hese pieces weighing over four tons; it took eleven cars to transport it to Chicago, where it was exhibited at the Exposition ; total cost of hauling and installing at the Exposition was $\$ 10,475.87$; the additional expense of placing it in its present position would probably make a grand total of over $\$ 12,000$. As will be seen by plan, the interior diameter is about 13 feet, and average thickness about 20 inches; a circular iron staircase leads to platform about 18 feet above; it has been roofed over and shingled with round butt shingles painted red; four dormer windows light the interior. Our engraving was made from a photograph taken specially for the Scientific American.

a California "Great tree" in washington.
the other, a series of boards, of the same size as the box, resting upon ledges and covered with cloth. In the center of each of these there is a wide square aperture. Other and smaller boards, likewise covered with cloth, but supported by cords attached to the sides of the box, are interposed between the first. This obstructive arrangement gives the air a wide circulation, and, as proved by experience, completely anuul vibrations. In order to assure himself of this latte condition, Mr. Menier installed one of these appara tus over an aperture formed in a wall separating two rooms, and found that two persons standing at the distance of three feet on each side could not converse even in a loud voice.
This arrangement therefore completely solves, at slight expense, the double problem of ventilation and the smothering of sound.
We are indebted to La Nature for the illustration and article.

Discoveries in South Russia

Our Odessa correspondent tells us that the curator of the St. Petersburg Imperial Archæological Comwittee, Mr. Goshkevitch, has made some archæologi cal discoveries along the banks of the Dnieper (Borys thenes) and the Bug (Hypanis). Opposite the village of Kisliakovka are the ruins of the ancient town of Olbia, described by Herodotus as surrounded by a wall with many towers, and distinguished for its extensive trade and its civilization. The ramparts and inner parts are well preserved, and terra cotta figures with subjects from domestic life, pottery, and small vessels are continually being discovered by the villagers. The number of ancient sites discovered by Mr. Goshkevitch is 15. Each is situated on the steep bank of the river, which forms a natural defense against surprise attacks, and the other three sides are surrounded by ramparts in a good state of preservation, with the ruins of dwelling places within the walls. At Propastnoe, on the edge of the ravine of the same name, many ancient Greek vessels were found, and both here and on the banks of the Bug were found pieces of mones on the banks of the Bug were found pieces of money
of the time of Emperor Theodosius the Great, who of the time of Emperor Theodosius the Great, who
reigned near the end of the fourth century. In the village of Kisliakovka evident traces were discovered of an ancient Greek settlement, and the curator discovered a head of a statue. The peasants a short time ago unearthed a splendid Greek statue, but, being ignorant of its value, they destroyed it, although they sell to the first buyer the coins they find at the ancient ite of Olbia, and many private persons in those parts have splendid numismatic collections of the Scythian have other periods.
In a tumulus
In a tumulus near the well-known Borysthenian with oak blocks, and a floor made white with cement or lime. A skeleton was lying on a stone slab with extended arm bones and on the wrist a bracelet of pure gold. Around the neck were four finely worked gold and amber necklaces, and at the hip bone was a kind of knife or sword. Thirty bone arrows in a quiver, as well as a corytos or bow case, were near the skull, but the quiver crumbled away on exposure to the air. The skeleton crumbled to dust on being tonched. Mr. Goshkevitch thinks it belongs to the Scythian period. In a ravine opening up into the valley of the Borysthenes (Dnieper) a considerable number of mammoth bones were discovered.
The curator has brought away to the Kherson Museum a massive piece of statuary having on its two sides crosses and cypress lea ves, as well as a bunch of "prisob." This work is believed to belong to the period when the Genoese colonies were flourishing on the shores of the Black Sea.-London Times.

Elvind Aatrup.

Elvind Astrup, who was Lieut. Peary's companion on his first trip across the inland ice, and who was with Mr. Peary on his second and third expeditions, started a few days before Christmas for the purpose of making a ski excursion in the mountains of Norway. Three weeks having elapsed, his friends became alarmed and sent a party to search for him. Astrup was found frozen to death in the Lille Elvedal Valley, in the Dovrefjeld Mountains. He did excellent work when with Mr. Peary and gave reat promise of being an independent Arctic explorer of note.

Experiments on the Poisonous Action of

Thanks to the extreme kindness of M. Moissan, who has given me a sufficient amount of calcium carbide to prepare several hundred liters of acetylene, I have been able to make a series of comparative experiments, which I have the honor of presenting to the academy
I caused to be introduced into a mercury test glass, well dried, 400 grammes of carbide of calcium. A rub ber cork pierced with two holes received a glass funne with a cock in it and the other end a conducting tube, which carried the gas obtained by the flowing of water through the glass retort, which allowed the regulation of the outflow ; when all the air had been forced out, and when the gas obtained burned without explosion, the acetylene was received in a gasometer (model of Dr. Saint-Martin).

I successively titrated mixtures of acetylene, of air, and of oxygen, adding always 20.8 of oxygen as in the atmospheric air.
Mixture of 20 to 100 . - I caused a dog to breathe a mixture composed of 20 to 100 of acetylene; the animal remained quiet; the respiratory movements lecame larger in extent. At the end of 35 minutes, 44 c . c. of arterial blood was injected into the empty receiver of the mercury pump, and I extracted the gas which had been collected over the mercury, in a little bell with a glass cock; after the absorption of the carbonic acid by potash, the gaseous residue was introduced into the fire damp indicator, whose receptacle had been filled with three quarts of air, and the gaseous mixture was contained in the receptacle and in the entire length of the graduated tube. At the first passage of the cur rent, we saw a very clear blue flame and a detonation was produced with a sharp sound; the reduction was equal to $82 \cdot 4$ divisions and indicated a considerable volume of acetylene, which had been absorbed by the blood; 1 c. c. of acetylene giving a reduction three times as large as that of carbonic oxide gives; that is to say, $\mathbf{3 \times 6 . 6 = 1 9 . 8}$ degrees in my fire damp indicator; 100 c. c. of blood contained 10 c. c. of acetylene.

Mixture of 40 to 100 .-The oxygen of Passy contain 90 to 100 of the pure oxygen. In order to obtain a mixture of acetylene of 40 to 100 , the calculation indi cated that it was necessary to add 55 liters of this gas, 66 liters of air, and 16.5 liters of oxygen, in order to prepare a mixture containing 79 of acetylene and $20 \cdot 8$ of oxygen. A dog who breathed this mixture, afte having presented a long period of agitation, circulated in its lungs 112 liters of the mixture. Suddenly, 51 minutes after the commencement of the experiment, the animal extended its paws and died; the heart had stopped; we drew off the blood into the lower vena cava; it revealed in the fire damp indicator the pres ence of 20 c . c. of acetylene in 100 c . c. of blood
Mixture of 79 to 100.-I made a mixture of acetylene and oxygen in which combinstible gas replaced the nitrogen of the air. At the end, a dog caused to breathe this mixture presented a continual agitation and very ample respiratory movements. Eleven min utes afterward, we observed general convulsions; 27 minutes after the commencement, he extended hi paws, and there were some painful respiratory move ments, which preceded death

This mixture of 79 to 100 was conducted into a bel formed glass jar in which there was a guinea pig. In 6 minutes the animal fell upon its flank; had convul sions, fluttering movements of the limbs and of the head. At the end of 39 minutes, we drew out the ani mal, which rested flat on its flank. Some minute later the guinea pig raised itself and revived, but it died during the night.

I concluded from my experiments that the acetylene is poisonous when one employs a strong dose, if ad ministered in large doses between 40 to 100 and 79 to 100. The employment of the fire damp indicator easily allowed the discovery of this gas in the blood.
I endea vored also to compare the poisonous quality of acetylene with that of illuminating gas. Starting from the fact often proved by analysis that coal gas (illuminating gas) contains 7 to 100 of carbonic oxide I made a mixture of 150 liters of air, 5.3 of oxygen, and 20 liters of coal gas, which should contain 1 to 100 of carbonic oxide and 20.8 of oxygen. A dog forced to breathe this mixture presented at the end of 3 minutes a lively agitation, and at the end of 6 minutes very violent movements of agitation. We took, 10 minutes after the cominencement of the experiment, blood from the carotid artery, and from 100 c. c. we could with draw 27 c. c. of carbonic oxide. The dog when released remained lying on the floor-was very sick; and if the experiment had lasted some minutes more, it would have died. Illuminating gas is, therefore, much mor poisoncus than acetylene.

Exposition at Montreal.
The British Empire Exposition and International Display of All Nations will be held in Montreal, Can ada. from May 24 to October 12, 1896. The plans of the exposition include an electrical display, and the suc cessful exhibitors will receive handsome awards.
*By M. N. Grehant, in Comptca Rendus.

©orrespondence.

electric igniters for gas engines

o the bditor of the Scceninic American?

Allow me to call your attention to the fact that the otary spark arrangement, Figs. 3 and 4, in an article on "Electric Igniters for Gas Engines," by George M Hopkins, in your issue of January 11, is covered by my patent No. 546,238, of September 10, 1895, which par ticularly describes and claims the eccentrically bored pindle.

Frank S. Mead.
Montreal, Canada.
[The several devices illustrated in the article referred to are based on the principle of the ordinary electric igniter used in connection with burners for illuminat ing gas. These illustrations were given merely as sug gestions, leaving it to the reader to make the practical application. When this article was published the writer did not know that there was in existence patent for a device similar to one shown in the article As Mr. Mead has called our attention to the simi arity existing between his device and that of one of the illustrations, we reproduce some of the figures shown in his patent. This igniter is arranged to give a strong spark from a current derived from a battery, which insures the ignition of the explosive mixture at the proper time, and although no spark coil is shown in the circuit of the battery, we presume it was the atention to use a coil.
As shown in Fig. 1, the cylinder of a gas or oil engine s provided with the usual jacket, the end of the ylinder being closed by a cylinder head. In the ylinder wall is mounted a rock shaft connected at its outer end with a crank arm, as shown, or the shaft may be provided with a wheel receiving rotary motion from some revolving part of the engine. In the shaft is mounted eccentrically an electrode provided at it outer end with a cross bar on which presses the head

MEAD'S ELECTRIC IGNITER FOR GAS ENGINES.

on the end of the spring-pressed rod carried by the rank arm. On the end of the electrode within the cylinder is secured a pointed arm, as indicated in Fig. 3 , adapted to engage the pointed end of a fixed elec trode inserted in a sleeve held in the insulating bushngs in the cylinder head. On the upper end of the electrode is secured a hand wheel to facilitate setting the point in proper position relative to the point of the arm of the movable electrode. A wire. from an elec tric generator is connected with the adjustable elec rode, and another wire from the generator is attach ed to some part of the cylinder.
It will be seen that when a rocking motion is given o the shaft by the crank arm, the spring-pressed head ngages the cross bar, causing the movable electrode to move in line with the crank arm, and the oscillating elec trode is moved into contact with the point of the fixed electrode, and by turning in its bearings in the shaf it finally passes the fixed electrode and produces th park which ignites the explosive mixture in the cylin der. A similar result is obtained when a complet rotary motion is given to the shaft.
In the article to which reference has been made it was suggested that a small dynamo bad been used successfully for producing the ignition. A correspondent has inquired as to the method of using a dynamo or igniting the explosive mixture. The dynamo is riven by the engine, and its terminals are connected with the movable and fixed contact points. When the points are separated, a spark is produced by the extr or self-induced current of the dynamo. No coil is needed.-Ed.]

Call for a Motor Driven Sleigh.
To the Editor of the Scientific American
We hear a good deal said about the horseless carriage. Why not take the sleigh in hand and move that with a similar motor? Such a sleigh would require the addition of a driving wheel back of the seat and midway between the two runners. This wheel would ave a semi-free vertical movement and would be by spring or springs above it. It would need to be light,
should have a polished surface, and should be rimless at edge, thus offering little, if any, chance for snow to adhere to it. At points around the margin of the wheel, two or three inches apart, little project ing spurs would give it the required hold upon the road to insure a forward movement to the vehicle This wheel would get its motion from a crank or band connected with the oil or other motor, under the seat s in the horseless carriage
To guide our sleigh, a rudder-like fixture would be attached to the rear end of each runner, and the two would be moved, in concert, by the sleigh's occu pant.
A long brake, following the side of each runner would have a roughened or lower surface, which would be brought to bear lengthwise upon the snow coating of the road by a bar, in the usual place, at the side of he carriage seat.
It seems to me the successful horseless sleigh is an easier problem to solve than that of the horseless

As to its rapidity of movement, it might easily out trip the ordinary railroad train, if the road traveled would admit of it, or the occupant could bear the lively stirring up.
B. F. Leeds.

San Diego, Cal., December 6, 1895.

Care of Books.

Even to those who are most careful and particula with their loved and treasured libraries accidents will happen, and the human bookworm is at his or her wits' end to remove the difficulty, which threaten perhaps to ruin forever one or more of the choicest volumes.
An English magazine lately published the following items, which will probably be found useful by any librarian :
To remove ink stains from books-A small quantity of oxalic acid, diluted with water, applied with a camel's hair pencil and blotted with blotting paper, will, with two applications, remove all traces of the will,

To remove grease spots-Lay powdered pipeclay each side of the spot and press with an iron as hot a the paper will bear without scorching.
To remove iron mould-Apply first a solution of sul phuret of potash and afterward one of oxalic acid The sulphuret acts on the iron
To kill and prevent bookworms-Take one-half ounce of camphor, powdered like salt, one-half ounce bitter apple, mix well, and spread on the book shelves. Renew every six months
To polish old bindings-Thoroughly clean the leath er by rubbing with a piece of flannel; if the leather is broken, fill up the holes with a little paste; beat up the yelk of an egg and rub it well over the covers with a piece of sponge; polish it by passing a hot iron D
Do not alrow books to he very long in ton warm a place; gas affects them very much, Russia leather in particular.
Do not let books get damp or thes will soon mildew, nd it is almost impossible to remove it.
Books with clasps or raised sides damage those near them on the shelves. -Inland Printer.

Calcic Garbide as Motor Fuel.

The Gas World quotes some interesting figures given by Dr. Adolph Frank, of Charlottenburg, in a paper communicated by him to a foreign contemporary, and ecommending the direct use of calcium carbide in motors, the gas being liberated as required by means of water, and not carried about in a compressed state in cylinders. According to the authority quoted, both the Bitterfeld and the Neuhausen works have improved their products up to 90 per cent yields, and, it is added, a price of 90s. a ton does not now look at all unlikely. The theoretical yield of acetylene is 26 pounds per 64 pounds of carbide, and the extra weight, that of the calcium, is a small matter in comparison with the expense and risk of fifty-a tmosphere cylinders. Curiously enough, the liquefied acetylene obtainable from a given quantity of carbide occupies, as nearly as possible, twice the volume of the carbide itself.
The data arrived at are, for a 1,000 horse power marine encine, worked for 600 hours : Coal, at 1.54 pound per horse power per hour, 420 tons, occupying a space of 420 to 430 cubic meters; liquid acetylene, at 0.396 pound per horse power per hour, 108 tons, filling cylinders of an aggregate capacity of from 270 to 300 cubic $\dot{m} e t e r s$, and of sufficient strength to withstand a pressure of 50 atmospheres ; carbide of calcium, 90 per cent, or 36.56 per cent of acetylene by weight, total required, 300 tons, occupying 131 cubic meters only. In the last case the whole, which required protection from damp. etc., would not bring the space occupied up to 150 cu bic meters. This (our contemporary remarks) is a very remarkable comparison in view of cases where storage apacity is all important, for the whole of the steam boilers would at the same time disappear; but, of course, in the meantime the price of carbide stands in the way of the practical adoption of acetylene for motor purposes.

Wampum.
This is the English name for the shell beads used for ornament and as currency among the northern tribes of Indians previous to the settlement of the country They were made chiefly on Long Island and around New York Bay, and were of two kinds, one made of conch or periwinkle shells and the other of hard clam shells. The making of wampum, to be sold for ornaments, has been carried on for nearly a hundred years by the Campbell family at Pascack, N. J., and they are now said to be the only persons who know how to bleach and soften the conch shells used in making white wampum or to drill holes through the still harder clam shells that are made into the more valuable black or deep purple wampum. The conch shells are brought from West Indian ports by schooners. The clam shells are of the largest size obtainable, the smaller ones being too thin for the purpose.

The white wampum and hair pipes are, according to the New York Sun, made from the lip of the shell which is cut into suitable sizes after being detached from the body and put through a softening process that also bleaches it white. The hair pipes are some what thicker than a clay pipe stem, tapering from the center to both ends, and are graduated in length by half inches, from one to six inches. They have hole through the center length wise. They were used to ornament the long hair of the chiefs, which was ru through the holes and secured with gaudy colored strings
Black or dark purple wampum has always been more costly than the white because it was worn only by the chiefs and medicine men and because of the difficulty of drilling the holes. But a small portion of a clam shel yields material of the proper hue, and when it is cut in sections there is so much waste by breakage that only the most expert workman can be intrusted with the task. The dark shell is cut in lengths like the white A number of sections having been drilled, they were, according to the old process, strung on a wire and placed in alternating grooves running around a fine grindstone. As the stone revolved Rocka way sand and water were dropped on it and a piece of hard board was rubbed back and forth across the face, thus moving the wampum and rounding its outer surface. Then it was washed, dried, dipped in olive oil to give a gloss, and afterward made into strings for market. The clan shell could not be softened without ruining its color.

NEW ARMY BICYCLES.

The new army tandem and the model 40 , mounted with a Colt's automatic machine gun, which have been made by the Pope Manufacturing Company, were exhibited at the Madison Square Garden Cycle Show and attracted great attention.
The tandem is one of the Pope Company's regular wodel 43s taken directly from stock and finished plainly in enamel and nickel. On the front handle bars are tightly strapped two army overcoats, and on the rear bars a pair of blankets. Resting safely in brackets on either side of the machine is a twelve shot repeating rifle, and hanging on each seat post a Colt quick action revolver of the latest pattern. In addition to this there is a case of signal flags extending almost the whole length of the machine, but not interfering with the riders in the least; and this is the case with all the equipments, being as well and safely placed, ready for use in a moment, and yet causing not the slightest interference
The Colt automatic gun mounted on the model 40 is the one recently adopted by the government for our navy This gun weighs between thirty-nine and forty pounds, shoots two hundred and fifty or five bundred times-being automatically fed-and is remarkably accurate. It is fastened securely to the head of the machine, can be easily directed at any angle, and does not interfere with the rider or affect the steering of the machine.
These two wheels are as perfectly equipped with the necessary accouter ments of war as would seem possible, and the interest which army people and civilians alike have shown in them leads one to believe that it will not be long before the wheel will form a very effective adjunct to regular army service.

IT is proposed to construct a railroad from the city of Mexico to the harbor of Acapulco, on the Pacific coast. Acapulco has one of the finest lock harbors to be found anywhere, with 25 feet of water, and capable of floating all the navies in the world.

NEW ARMY BICYCLE MOUNTED WITH A COLT MACHINE GUN.

NEW ARMY TANDEM BICYCLE.
tery is not in operation, dissolves the layer of oxide of zinc, and thus permits of a new attack of the positive electrode over its entire surface.
At rest, the element, however, remains perfectly dry, and so no reaction occurs, and it loses neither its electromotive force nor the force of its current. Thus is explained the longer duration of this new battery.La Vie Scientifique.

Egypt's History Traced from its Plants

Dr. Schweinfurth made recently before the Egypt ian Geographical Society, of Cairo, an address on the origin, or, more exactly, on the history, of cultivated plants in Egypt. He spoke in the Girst place on the route of the Hamitic race to the Nile valley, and con cluded that they first lived in Northern Abyssinia and Southern Nubia as cattle breeders. From this point a nation of herdsmen could easily spread, and they certainly brought the ass with them from Somaliland and Nubia-an animal that had been used by man in Africa from prehistoric ages. The agriculture, litera ture, and religion of the ancient Egyptians were con nected in the widest sense with the cultivation of plants. If all means of historical research are directed toward this subject, we find that of the 1.320 existing plant species of Egypt, of which 150 are useful plants, cultivated in great quantity, only 50 species of the latier were known before the Christian era, of which 40 are pictured on the monuments and the remaining 10 are mentioned in the inscriptions. If we would have a conception of the agriculture of the ancient Egyptians, we must exclude fully two-thirds of the plants cultivated in Egypt to-day. Dr. Schweinfurth distinguishes six epochs, according to the kinds of plants that were introduced into the country, as folplant

Epocb I.-Egypt is covered with grassy plains and forests, inhabited by the primitive African race, now extinct. Part of the cultivated plants belonged to the primitive flora of the Nile valley, whose representa tives yet flourish over about 15° of latitude
Epoch II.-Colonization of Egypt by the Hamitic race. Disappearance of the forests, spread of the pas tures, beginning of agriculture.
Epoch III.-Beginning of civilization; developmen of religion and art. Introduction of frankincense; acclimatization of the sacred trees of Arabia.
Toward the end of this epoch the cereals were brought in from the Euphrates valley. Beginning of the cultivation of corn, barley, flax, and the vine
Epoch IV.-Epoch par excellence of Egyptian agriculture. The three kingdoms and the Lybian-Ethiopian domination.
Epoch V.-Egyptian agriculture spreads to foreign lands and the land receives in return many usefu plants from abroad. This epoch includes the Persian Greek, Roman, Byzantine, and Arabian periods.

Epoch VI.—Decay of Egyptian agriculture, about A. D. 1517. In the latter half of this epoch a regeneration followed and a return to civilization. By means of the Venetians the land received useful plants from America, such as maize, tomatoes, sweet potatoes, pimento, and tobacco. Tropical Africa gave it sesame, rice, sugar cane, and sorghum; Arabia, the sycamore, the fig, the pomegranate; Babylonia, cereals, speltz, corn, barley, etc. . . . and America again the most valuable of all her plants, namely, cotton.-Gaea, Leipsic.

Poisoning by Stale Eggs,
Dr. Cameron has reported the occurrence of vomiting and purging in seventy-four nuns and girl pupils in the boarding school attached to a convent in Limerick, following a dinner at which mutton and a custard composed of eggs, milk, corn flour, and sugar were eaten. The corn flour was suswere eaten. The corn hour was sontain arsenic, but analysis pected to contain arsenic, but analysis
showed it to be free from poison of showed it to be free from poison of
any kind, and to be of good quality. The sugar also proved to be pure. No other constituents of the meal could be obtained. The vomit and the stools were intensely green from the presence of biliary matter, but careful analysis failed to disclose the presence of ordinary poisou. The viscera of two patients who had succumbed were also examined, but no poison was found. Ptomaines were found present, but in small quantity. The milk used had been boiled, and the meat was above suspicion. The eggs, however, were not fresh, and one presented a reddish-brown color and was thought to be bad. Some of the custard given to pigs induced severe diarrhoa. Dublin Medical Journal.

The excavations at Ponipeii are a continual source of interest. The new system of conservation inaugurated this year makes them doubly important. The last mansion unearthed in the buried city, whose history every one now knows so well (or ought to know), has been made the test of these improved methods institut
e.d by the able and excellent directors. Instead of hiding away the statues. pictures, and other movable objects in the Naples Museum, as has previously been the custom, everything has been left in situ, and many objects sufficiently restored togive an idea of their origi-
nal appearance. The excavation may be said to have nal appearance. The excavation may be said to have
begun in August of 1894; but the weather and lack of funds retarded the work. In November the atrium was reached; but during the winter the work pro gressed slowly, and the last rooms were not unearthed till June, 1895, the labors of restoration, cleaning, and preservation not being completed till August, exactly a year from the date when the first layer of earth was removed. The main entrance of the house leads into a street still blocked up with rapilli; it consists of an ostium, or passage, on one side of which sat the janitor, his little division being separated by a partition of wood that has disappeared. Facing his seat is a semi"religious" picture, only suitable to that barbarous period of Europe's history, and which has now very properly been covered over. 'There were two great doors in this passage. On the outer wall of the house can be seen the remains of the iron hinge and staple that held the bar across the outer door when the house was locked up and the family had deserted it
The room on the left of the ostium contains t wo small and ordinary pictures of the stereotyped kind one represents Leander swimming across the Hellespont to Hero: the other Perseus in his ship deserting Ariadne. . . . On the opposite wall is a picture of Cephalus and his devoted wife Procris, in the form of a wounded deer, the latter being probably also represented by the woman high in the left of the same painting gazing earnestly at her husband. These pictures are let into the wall, and the prepared stucco on which they were painted was probably tirst laid on a board, to afford greater facility to the artist, and then, when it had dried, was inserted in the space prepared for it in the stucco on the wall's surface; the brown, yellow, or sometimes black band of paint that usually borders them hides the joining line. In the frieze is seen Leda and the swan, a bacchant with a thyrsus and a bacchante with a tamboureen, while two
centaurs appear on the tops of this delicate painting. The garlands painted on the white wall, the architec-
tural studies capped with winged sphinxes, and the cornices of red white, and blue mouldings above and below the frieze, and separating it from the curve of the arched ceiling, add immensely to the appearance of the colors; and this elaborately painted apartment is the more attractive by the amount of brilliant red cinnabar that has been used in its decoration, and that adds considerably to the plendor of the effect
Beyond this room, at the side of the atrium, is a side passage leading through the kitchen into the little street named by Fiorelli the Vicolo di Mercurio ; in it is a staircase. Near its entrance in the atrium are the tion of heary stones buitr and rive original, but the case of wood on which they are fastened is modern. Near this safe were found a bronze ring and two seals, both of iron, which are preserved in the house of the Administration of Pompeii preparatory to going to the Naples or the local museum. On one of the latter i "A. vettir res. v.," and from this the house is to be called the "Casa di Yetti." On the opposite side o the atrium is another and larger safe, likewiss restor ed. Both safes bear evidence of having been broken to pieces either by those who had dug their way down into the house, or perhaps by thieves under cover of darkness on the very night itself of the destruction of the city, when the mountain's a wakened "voice a intervals" was heard roaring "through those roofles halls," and

Temple and tower went down and left a site : Chaos of ruins!

A delicate little gold chain, with pearls and a few coins, besides a bronze seal with the name "P. CRVSTI. FAVSTI," were found in the highest level of earth over the roo:ns on the right of the atrium ; but these objects may have belonged to the owner of another house, and not to the proprietor of the safes. Close to the larger of these latter is the entrance to an irregular shaped room, that contains a lararium, or altar. It stands out from the wall about eight inches, and on its sides rise two columns; between them, painted on the back of the niche sunk in the wall, is the usual picture of the two Fenates or genii, and a female between them who represents either the Lar or, as some suppose, Vesta; at their feet is the tutelary genius in the form of a serpent, which is the symbol of regener ation, or of new life, accepting the offering of fruit
placed before him on a small altar. The colors are wonderfully fresh, the tints are principally red, brown and yellow.
When the garden in the marble-decked peristylium is again green with shrubs, and its beds continually stocked with gay and sweet-scented flowers, the man ion will assume (except in its protecting roofs) an as pect as if the inhabitants had only just deserted it and the earthquake had only lately taken place.-H P. Fritzgerald Marriott, in the English Illustrated Mayazine

Lighthouse at Cape Hatteras

Work on the Diamond Shoal lighthouse, off Cape Hatteras, is to be begun next spring. The new plans ontemplate an inmense structure, built on the screw pile order, with the foundation of the light practically 100 feet beneath the wave surface and protected on all sides by hundreds of tons of riprap to preven damage from shifting sands. Iron piles will be driven down by hydraulic pressure until a sound footing is ecured, and the actual structure for the lightkeeper and materials to maintain the light will be built on the interior of the skeleton to a height of 165 feet above the water. The cost of the structure when com pleted is estimated at $\$ 1,200,000$, and of this sum there is now available $\$ 400,000$. Diamond Shoal project nto the sea seven miles off Hatteras, and is covered with from 6 to 20 feet of water. It is marked now only by Hatteras light, standing on shore seven miles from the outer edge, and not discernible in hazy or foggy weather. The proposed light will be on the extreme edge, seven miles from the nearest shore, and visible twenty-three nautical miles. The latest fog apparatus will be provided, and there will be accommodation for three keepers. It will probably take two years to complete the project from the date the work begins. When completed it will be the most notable lighthouse in the world.-Army and Navy Journal.

The Lancet announces that a subscription has been opened in Bristol to provide for the purchase and reention in that city of the celebrated collection of relics belonging to Jenner in connection with his in troduction of vaccination. The collection is at pres ent the property of Mr. Frederick Nockler, of Wotton ander-Edge, and was exhibited by him at the Bristol exhibition in 1893, and since then in London, at each of which places it attracted a considerable amoun of attention.

RECENTLY PATENTED INVENTIONS

Railway Appliances.

Car Fender.-Charles A. L. du Ques nay, New Orleans, La. A frame secured to the front end of a car carries an inclined pivoted netted fender, the fender being curved upward at its rear end to form a proender is adapted to vield inwardly, when and of the ender is the path of the moving car, and when one falls on the fender it is tilted and its front end raised to lift the feet from the grou
protected by the pillow.
Car Brake. - George E. Wheeler, Minneapolis, Minn. This is a brake more especially on the part of the motorman or requing but ittle effort fering with the ordinary brake, which may be left on the car for use in case of accident. The improvement
comprises a fixed and a loosely mounted bevel faced comprises a fixed and a loosely mounted bevel faced
wheel on the axle in proximity to each other, and both adapted to be engaged by a conical friction wheel on a shaft connected with a
Car or Vehicle Draught Device.James H. Turbush, New York City. This improvement provides conveniently attachable supports for the inward
and outward thrust of the drawbars, the supports being and outward thrust of the drawbars, the supports being
rigid and constituting travelers upon which the followers may have movement, while relieving the confining strap
or rie for the springs from the strain they ordinarily susor tain.
tain.
Car Door.-Thomas W. Bradman and Harrison Hines, Beardstown, Ill. This is a sliding exterior freight car door, on the upper part of which are adapted to be locked in closed position by means of three bolts actuated from a central disk, tthe bolts top and two sides of the door by a crank, when a seal finger may be conveniently applied. The door is easily opened and closed, and is designed to afford effective protection to property in cars on which it is employed.
Railway Rail Nut Lock. - Gieen Smith, Montgomery, West Va. This device has a base plate that may be extended or adjusted longitudinally to
bring its bolt apertures into alignment with the rail and fis'. plate aperture, a ratchet washer having a recessed outer face receiving the adjacent face of the nut to be
locked. The ratchet washers having nut receiving recesses, the improvement may be applied to any volts and nuts now in use on railroads, or the ratchet teeth may be formed directly on the nuts where they are to be sup-
pitied with the other parts.

Miscellaneous.

Bicycle.-S:amuel A. Donnelly, Chicago, Ill. This is an improvement on a formerly patented invention of the same inventor, and the box or casing for
the bearings consists of two parts, each having a radial
lug and opposite inturned lip receiving and engaging the
lip of the other part. An improved diamond frame also has upper and lower bifurcated truss members, each formed of a single rod doobled at its middle, the head
having arms with sockets to receive the doubled ends of havingarms with sockets to receive the doubled ends of the members, while the saddle block, at the angle of the
upper member, has angular grooves to receive the memapper member, has angular grooves to receive the member, there being straight transverse stay rods whose upclamps the block to the parts in contact with it.
Propulsion of Vessels.-James H Meacham, Petersburg, Va. An endless band propeller, some distance apart on each side of the vessel, the sprocket chains or bands of steel, copper, or other metal or paddles. To avoid undue strain upon the bands, the wheels are polygonal, but are rounded instead of presenting true angles, and the paddles may be feathered.
VENDING MACHINE. - Charles W. Goldsmith, New York City. This is a coin-controlled aparatus especially adapted for delivering bulky packmovable toward and from each other; and capable of supporting alternately crossed elongated packages, each pair of supports alternately dropping a single package for de-
ivery. The coinway is of the usual construction, and oins cannot be inserted when the merchandise has been Dhausted.
DENT
Dental Fillings.-James W. Dennis, Cincinnati, Ohio. An absorbent of mercury during the
process of filling teeth with amalgam has been provided by this inventor, consisting of rubber saturated with comminuted metal having an affinity for amalgam, the material thus formed being apertured, whereby a maxi mum of metallic surface will be presented to the amalgam filling. The material may be made into pads or plugs of a size or shape to enter a tooth cavity, and thus facilitate making non-shrinkable metallic fillings by abLock. - Lewis O Wilam.
Lock. - Lewis O. Wilson, Charleston, West Va. This is an improvement in knob locks, providing a lock more easily applied to doors by simply bor-
ing a hole instead of mortising in its edge, the lock being capable of being unlocked only from the inside. The lock has a slotted cylindrical barrel in which is a spring-acting bolt with a hole, in which is arranged a retracting bar whose end extends into a slot in a frame plate on the outside of the door. A knob shaft with crank also reРнотоя of the retracting bar.
Photograph Printing Frames. Alen E. Willis, Oxford, N. C. An automatic register has been devised by this inventor, the improvement permitting the examining of prints without disturbing the register and the proper setting of the register in case a print is spaciled. A toothed bar is monnted to slide in the bar, while a spring-pressed cam arm connected with Hame Fastener.-Joel P. McAhee,
one of the hame sections, according to this improvement has a latch extension and head, while a keeper pivotally ceive the latch extension and a locking device. The improvement is especially adapted for hames having iron bands, the fastening device facilitating the connecting of the two members of the hames at the bottom around the coll
size of collar.
Sleigh Brake. - Adelbert Mecham, Edinburg, North Dakota. This is an improvement on a formerly patented invention of the same inventor, pro-
viding means whereby the brakes may be strengthened and the drag bar readily lifted from the ground when it is necessary to back the sleigh. A brake bar is employed for each runner, terminating in a shoe as wide and strong as desired, and the brakes are automatically applied when the team backs, as in going down hill, the braking engagement being removed when the team puls face when the team stops.
Hose Nozzle.-John M. and Albert W. Dosch, Kittanning, Pa. This nozzle is forked, one of the members carrying an adjustable yoke in which is junction of its members, the nozzle being adapted for either garden or fire purposes, and providing for bringing into actiou instantly either a solid or a spray stream. The spray is thrown out in conical form, covering a large fine.
Pocket Knife.-William Schmachtenberg. New York City. This is a knife in which the blades may be opened without using the finger nails, a lever fulcrumed inside the handle engaging the knitg
blade near its fulcrum end to swing the blade to partly blade near its fulcrum end to swing the blade to partion, and this lever being moved by the shank of a button on the outside of the handle. There is a similar lever for each blade in opposite sides of the handle, a spring in the back of the knife holding the blade open or closed as usual.
Self-Closing Lacing Hook. -La Roy Upton, Governor's Island. N. Y. This is an artict adapted especially for use on shoes or gloves, and the hook is composed of two parts, a fixed base seated in the leather and having at one side a vertical arm or hook, another movable part being a lower swinging arm
pivoted to the base arm and normally closing the open pivoted to the base arm and normally closing the open
side of the hook. By drawing the string outwardly side of the hook. By drawing the string outwardy or
laterally against the movable arm it is opened and the string disengaged, while by passing the string laterally between the open arms and drawing it taut, its re-engagement is automatically effected.

Designs

Scarf Rack.-Homer E. Eyman, Lanaster, Ohio. This rack has convergent ornamental olders adapted to retain a number of scarfs, rising ff Table Cloth Fastener.-Theodore
R. Desjardins, Attleborough, Mass. This is a corner

piece with scalloped shell-like top portion and two spring sosition on a table.

Inscription Plate.-Edward K. Jones, Portland, Oregon. This is a plate to be applied to sidewalks at street corners, to receive street. names, ad-
verisements, etc., the plate having a straight back edge and a wave-like curved front edge.
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS. Elements of Modern Chemistry. By Charles Adolphe Wurtz. Fifth
American edition. Revised and enAmerican edition. Revised and en-
larged by Win. H. Greene, M.D, and
Harry F. Keller, Ph.S. (Strasburg). With portrait of the aus merous illustrations. Philadelphia and London: J. B. Lippincott Com
pany. 1895. Pp. 808 . Price $\$ 2.50$.
Wurta's modern chemistry is so well known and enjoys हo wide a popularity that it really requires no review. Sixteen yearsago the first translation was given to the American puhic by one of the editors of the present work. The book is now thoroughly re-edited and presents are glad to see, both argon and helium.
Practical Proofs of Chemical Laws. Combining Proportions of the Chemical Elements. By Vaughan Cornish. London and New York: Longmans,
Green \& Company. 1895. Pp. xii, Green \& Company. $1895 . \quad \mathrm{P}$
92 . Price 75 cents. No index.

It is an open question how far the study of chemistry can be treated inductively. It certainly seems that the student has a right to accept the work of the world of
chemists, and that he should not be obliged to obtain for chemists, and that he should not be obiged ws But this himself proof of many known chemical laws. But this
little manual really gives an inductive treatment of a small portion of chemistry. only enough to show how the laws can be and have been proved. We note in the preface that the work has been done by pupils from twelve to eighteen years of age, spending one and a half hours at a time in the laboratory, with two weekly attendances. We certainly think the amount of inductive tageously be performed by all chemical students. The work is destitute of an index.
American Anneal of Photography AND Photographic TIMES AL-
MANAC FOR 1896. Edited by Walter
E. Woodhury. New York: Scovill
\& Adams Company. Pp. 370. Price \& Adams Company. Pp. 370 .
75 cents. 75 cents.
There can be no question but that this annual has come to occupy a leading position among publications of
is replete with two hundred illustrations, many of which are reproductions of the best work by prominent amateu
and professional photographers. There are articles o the applications of photography to science, such as a pho tographic record of sound analysis by Professor William Hallock, astronomical photography and photogrammetry and teleplotography by Albert Gleaves of the U.S. A., and descriptions, with illustrations, of many useful pieces of for developers and lenses It is of the latest formula to the photographer desirous of keeping much value times.
he Wonders of Modern Mechanism A Resume of Recent Progress in Me chanical, Physical and Engineering
rane. Philadelphia: J. B. Lippin $\$ 2$. No index.
In this work we fiud presented in popular form the achievements of engineers in the many departments of
science, such as building, manufacture of steel, elec tricity, artificial refrigerating and similar topics. Natural ly, the subject is treated somewhat superficially, and per haps forthat reason is all the better adapted for the trated and in many ways is really notable as being tho oughly up to date. Whatever serious value it has would have been immensely enhanced by an index.

The Scientific African.-The Scientific African is the name of a new journal, the first copy of which has just been received. Phonetically it might easil confounded with the SCIENTIFIC AMERICAN, but th promise of a very useful existence as an exponent o South African science and technology. It is publishe monthly at Cape Town, Africa. The industries of South Africa are daily increasing in number and importance and the new journal is pleaged to foster these industrie by illustrating and describing the various methods now in use, so as to increase the number and improve th pure science is not to be neglected, as is seen by the notes on natural history, geology, anthropology, medi cine and chemistry which appear in the first number We welcome it to the brotherhood of scientific jour nalism.

SLIENTIFIC AM ERICAN

BUILDINGEDITION
JANUARY, 1896.-(No. 123.)
table of contents.

1. A residence at Orange, N. J. Two perspective eleva tions and floor plans. also an interior view. Ap proximate cost $\$ 12,000$. Mr. Frank W. Beall ne appropriate to the location.
A Colonial residence, at Springfield, Mass., recently elevations and floor plans. Cost $\$ 6,000$ complete artistic design.
A residence recently erected for Rev. S. E. Smith, Corcoran Manor, Mount Vernon, N. Y. Perspec tive elevation and floor plans. Cost $\$ 7,500$ com
lete. Mr. A. M. Jenks, Mount Vernon, N. Y plete. Mr. A. M. Jenks, Mount
A dwelling at Hasbrouck Heights, N. J. Perspec ive elevation and floor plans. Cost comple A modern and attractive design.
2. Two perspective elevations and floor plans of N. Y., recently erected at a cost of $\$ 10,000$ com plete. Mr. Wm. A. Bates, New York City, archi tect. One of the most artistic and
3. Public school No. 9, of Erie, Pa., recently erected at cost of $\$ 38,000$ complete. Mr. Joseph Frank Erie, Pa., architect. The design combines a strik ing exterior ap
arrangement.
4. A half-timbered cottage of moderate cost recently Tilton, New York City. A pleasing design.
5. A view of the Washington Arch, New York City Designed by Mr. Stanford White, of the archiNectural firm or City
6. View of the new Surety Building, New York City Total height from curbstone to coping, 314 feet,
being the loftiest inhabited building in the world.

Miscellaneous Contents: A great bell.-CalvertVaux -The world's tallest structures.-Powerful dredge or the Mississippi River.-The centenary of the nstitute of France.-A new corner grate, illus rated,-The "American Trackless" sliding doo hanger.-The Handco "straight flush" closet, il Staining wood-Artificial fuel-Ancient glas makers -House numbering.-Fires in "eky scrapers."-Non-heat conducting coverings, illue trated.

The scientific American Building Edition is issue monthly. $\$ 2.50$ a year. Single copies, 25 cents. Thirtywo large quarto pages, forming a large and splendia Magazine of Architectire. richly adorned with elegant plates and fine engravings, illustrating the most ion and allied subjects.
The Fullness. Richne
fhis work have won for it the Larages Convenience of any Architectural Publication in the world. Sold by
all newsdealers. MUN \& CO., Publishers,

Đusiness and Personal.

 The charge for Insertion under this head is one Dolar a lin Thursiay mornino to appear in tine followino weei's issuc.

Marine Iron Works. Chicago. Catalogue free Pres. metal poisb. Indianapolis. Samples free. Screm \& Dies. Ferracute Mach. Co., Bridgeton, N. Screw machines, milling macnnes, and drill presse
be Garvin Mach. Co., Laikht and Canal Sts.. New Yor Use the Houpb Security Cash Recorder. Entirely dif pringfleld, Mass. prisela,
engine, $16^{\prime} \times 30^{\prime}$, automatic cut-o Address A. P. W. Paper Company, Albany, N. Y.

History of Cripple Creek."
We bave just issued in book form the only authentic and reliable history of Cripple Creek gold camp, the
marvel of the mining world. The book contains numer us full page illustrations of gold mines true to life With the sole object of introducing ourbig 8 page 56 col mn illustrated weekly paper (established 1890) we wil enda copy of the above interesting buok free to all wh rial subscription to our big weekly, which contains the latest mining news and illustrations of Rocky Mountain scenery. Club of 5 and 5 books, 81. Mention the SClEN ific Americ
The best book for electricians and beginners in elec By mail. 94 ; Munn \& Co., publishers, 361 Broadway, N. Y Whereas, the copartnership heretofore existing in the
City and State of New York between Orson D. Mun and Alfred F Beach, under the copartnership name of at No. 361 Broadway, in the City and State of New York as been dissolved by the death oi Alfred E. Beach Whereas, the and
ions with foreigu countries coparship bad business rela the state of New York for a period of five years and up ward;
Whereas
Whereas, \mathbf{I}, Orson \mathbf{D}. Munn, the surviving copartner,
m desirous to continue the business conducted or Munn \& Co.
Now, I. Orson D. Munn, do hereby certify and declar
 econd Street, City of New York, and that my principal place of business is at No. 361 Broadway, in the city and tate of New York. (Signed) Orson D. Munn. [L.S.]
A. A. Hopkins.

City and County of New York, ss : On this 6 th day of January, in the year 1896. before me ersonally came Orson D. Munn, to me known to be the
ndividual described in and who executed the foregoing nstrument and acknowledged to me that he execute the same for the purposes therein mentioned.
[L.S.]
(Signed) A. A. Hopkins,
Certifcate flled in New Sork County.
m-send for n ow
nd other Books for sale by Munn \& Co., 361 Broadway New York. Free on application.

HINTS TO CORRESPONDENTS.
Names and Ad dress must accompany all letters,
or no antention will be paid thereto. This is for our
information ond information and not for publication.
is eferences. to former articles or answers should
give date of paper and page or number of question
 some answers require not a little research, and,
though we endeavor to reply to all either by letter
or in this department. each must take his turn. Buyers wishing to purchase any article not advettised
in our columns will be furmished with addresses of
 personal rather than general interest cannot be
expected without remuneration.
cinnitic An Pemen
to mit cientice Anderican Supplements referred
to may be had at the ofice. Price 10 cents each.
price.
Minerals sent for exsmination should be distinctly
marked or labeled
(6711) F. XW. B. asks for directions for making an ever-ready pad for rubber stamps : A. The following to said to be a cushion that will give color per manentry. It consists of a box fllled with an elastic in fulfllls its purpose for years without being renese ways contains sufficient moisture, which is drawn from che atmosphere, and cantises to act as a color stamp remains in the box or receptacle. This cushion or pad is oo soft to be self-supporting, but should be held in a low, flat pan, and have a permanent cloth cover. 'The water, 6 pats sitable black color can be made from the following ma erials: 1 part gelatine glue, 3 parta lampblack, anilin black, or a suitable quantity of logwood extract, 10 part of glycerine, part absolute alcohol. 2 parts water, 1 part Venetian soap, $1-5$ part salicylic acid. For red, blue or iolet, 1 part gelatine glue, 2 parts aniline of desire Tenetion soap and 1-5 part salicylic gly enetian soap, and 1-5 part salicylic acid. The follo . Nix and dissolve 2 to 4 drm. anlline violet, 15 oz, cohor, 15 oz . glycerine. The solution is poured on the cushion and rubbed in with a brush. The generalmethod of preparing the pad is to swell the gelatine with cold
(612) W. W.
(6712) F. W. writes: I would like to arranged on the principle of the one described on page 8 of the Scientific American of January 4, 1896.

How large would generator bottle and receiver have to be
to supply two jets that have been used for coal gas (on to supuly two jets that have been used for coal gas (or-
dinary dwelling house size). Can acetylene gas be used in such fixtures? A. You cannot use ordinary burners or acetylene. Use $1 / 8 /$ foot burners. A 1 cubic foot gasholder and a 2 quart generating jar will supply them vicely. It is well to have separate inlet and outlet pipes or the holder. 2. Are the chemicals employed very cor osive? Can iron or brass connections and stopcocks be ased where flexibility is not essential? A. Use ordinary cium carbide be obtined that is. where . Where can cat small amount of it)? A. Address Eimer \& Amend, 305 Third Avenue, New York, N. Y. 4. Is there any more anger of explosion in acetylene gas than in coal gas? .
(6713) G. H. DeL. asks: 1. On a 500 rolt street railway circuit, how much cirrent does an ne car take at full load ? A. At 50 horse power 75 am peres could be taken. 2. I have a small bipolar shuttle armature motor, capable of driving a twelve inch fa with six small cells of plunge battery. Is there any pos mall generator producing enough current to light act as more miniature incandescent lights of $1,2,3$, etc., candle power. Could youirefer me to some SUPPLEMENT describng a small dynamo? A. You will have probably very litle satisfaction in making the change, unless the field is of cast iron, so as to possess residual magnetism. For small ynamos we refer you to our SUPPLEMENe, Nos. 161, 599 he baet for No 161.3 Having the voltage and perage Iven, how can the resistance be found? The am perage and resistance to find the voltages And the re sistance and voltage to find the amperage? A. Let C mperes, $E=$ volts and $R=o h m s$. Then $C=\frac{E}{R}$
$\mathbf{L}=\mathrm{CR} ; \mathrm{R}=\frac{\mathrm{E}}{\mathrm{C}} \quad$ 4. What is fastest rate of speed eve
 Nef you for items on recent railway speeds to the Sci
NTERICAN, vol. 68, No. 20; vol. 72, No. 22; vol 4; No.
(6714) R. N. T. says: Will you give me

Let $\mathbf{W}=$ the weight. distance be
in inches.
et $w=$ weight of lever in pounds.
Let $\mathrm{g}=$ distance between center of gravity of lever and
fulcrum in inches. in inches.
et $\mathrm{V}=$ weight of valve and spindle.
Let $A=$ area of valve in square inches.
Cet $P=$ pressure at which the valve is to blow off, pe square inch.
Then the weight required to balance a given pressure at any

$$
\mathbf{W}=\left\{(\mathbf{P} \times \mathbf{A})-\left(\mathbf{v}+\frac{(\mathbf{w} \times \mathrm{g})}{1}\right)\right\} \times \frac{1}{\mathrm{~L}}
$$

When the weight is at hand and known, and the dis$\mathbf{L}=\left\{(\mathbf{P} \times \mathbf{A})-\left(\mathrm{v}+\frac{(\mathrm{w} \times \mathrm{g})}{1}\right)\right\} \times \frac{1}{\mathbf{W}}$
The elements between the brackets to be computed irst. To obtain the area of the valve, multiply the square the diame
(6715) D. P. D. says: Please let me put a $1 / 4 \mathrm{in}$. hole throucientific American, how be done with a hard drill and spirits of tarpentine-a tedious and uncertain process, and only for small holes. many holes to drill. If large holes are wanted from 1 n. to 1 in , or larger, prepare a piece of thin tubing of rass or copper, of the reqnired size of hole, of 1 or 2 in. in length, with small spindle and grooved pulley atached, something after the style of the watch maker's oow drill. Fasten upon the plate of glass, at the point to be drillea, a ring of metal or wood for a guide to keep iently to steady the cutter. Lay the glass plate horiko ally, and work the drill perpendicularly with the bow, sing one hand to steady the upper end of the drill stock Feed emery (about No. 90) and water into the open end of the tube as fast as required. In a very short time you will cat a disk out of the plate. Another plan is to hea the drill to a low cherry red and plunge in a solution of chloride of zinc (soldering tluid). This gives the dril an ion. Therefore, the drill must behardened after grinding (6716) C. J. M. asks how to make leaf photographs. A. Pass the paper first through a solution
of gelatin, 1 part in 20 parts of hot water, and use a trong solution of potassium bichromate ; or the gelatin nd bichromate may be used together. Wash with hot water. A strong blue blackground may be produced as ollows : Dissolve in 2 oz . of pure water 120 grn . of red prussiate of potash (potassium ferrocyanide), and separately 140 grn . double citrate of iron and ammonium in oz. of water; mix the solutions, filter, float the pape paper as before and wash thoroughly in water ding a little phosphoric acid to the bichromate solution and exposing the print before washing to the vapor of a hot solution of amline in alcohol, a blackish-green or red positive is obtained. Or, prepare the paper with solation of iron sesquichloride, and develop after exposure with a very dilute solution of silver nitrate. Use plain
(6717) G. D. H. says : Can you give me

The diameter of the driven being given, t, find its num ber of revolutions.
Rule.-Multiply er red nameter of the driver by its num ter of the driven ; the quotient will be the number of evolutions of the driven.
Ex. - Twenty-four in. diameter of driver $\times 150$, num300 .
The diameter and revolutions of the driver being iven, to find the diameter of the driven, that shall make any given number of revolutions in the same time. ber of revolutions, and divide the product by the number of required revolutions of the driven; the quotient wiil be its diameter
Ex.-Diameter of driver (as before) $24 \mathrm{in} . \times$ revolu-
 quired $=300$. Then $3,600 \div 300=12 \mathrm{in}$.
The rules following are but changes of the same, and To ascertain the size of the driver.
Rule.-Multiply the diameter of the driven by the nu ber of revolutions you wish to make, and divide the product by the required revolutions of the driver; the quotient倍
To ascertain the size of pulleys for given speed
Rule.-Multiply all the diameters of the drivers to-
gether and all the diameters of the driven together divide the drivers by the driven; the answer multiply by the known revolutions of the main shaft.

TO INVENTORS

An experience of nearly fifty years, and the preparation
of more than one nundred toussand applications for on-
tencs at home and abroad enable us to understand the

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted January 28, 1896,

AND EACH BEARING THAT DATE.

DESIGNS.

Buckle, suspender, J. Forsbeim. Buttons, box plate for cuifi, \mathfrak{E}. \mathbf{D}. Guild Casket plate, M. Bremer... İes.

\qquad

TRADE MARKS

Bakinn powder, Chapman \& \&mith Company.

pary , cucturr parts. Hamilton cycie co

Wปvertisements. each iller hates.

YOOD OI DIIETRL WORXERS Footand Hand Power Mlachineriy A- Wood-working Machinery.
 AMERICAN PATENTS.-AN INTER-

THE CURTIS
Steam \& Grease SEPARATOR

F.VANDUZEN STEAM PUMP

 THE E. W. VANDUZEN CO, FRE RXMY FOR ALL BROOKLYN FIRE BRICK WORKS.
88 Van Dyke street. BROOK LYN, N.

MANUFACTURE OF STARCY FROM

ARCHITECTURE

ECTRO MOTOR SIMPLE HOW TO

BUY

TELEPHONES

 Or
WESTERN TELEPHONE CONSTRUCTION CO

Do you wish to extend your trade to abo mentioned countries? If so, write BUENS or call upon
\qquad
Pyrometers, Barometers, Thermo-
meters, Hydrometers,

THE OBER LATHES

Sledge, Hatchet, Hammer, Au-
ger, File, Knife and Chisel Han-
 Chegular work Legs and other

Ror Sen or Oircular 4 . | The Ober Lathe Co., Chagrin Falls, O., U.s |
| :--- |
| Hig |
| NICKEL |

 ELECTRO-PLATING Apparatus and Material.

The Scientific American Reference Book.

A most useful little bound book of 150 pages, comprising, probably, the most extensive variety of stand,
ard, practical, condensed information ever furnished to the public for so small a price, only 25 cents.
Among its contents are: The Last Census of the Among its contents are: The LLast Census of the
United States 18900 , by States, Territories, and C C unn tles: Tabie of Cities having, over 8,8000, innabitants;
Map of the United States-miniature outline; The
Man Patent Laws full text); The Trade Mark Law (fuli
text); The Copright text); The Copyright Law (full text). Tre Principal
Mechanical Movements-illustrated by 150 small dia-krams-of value to inventors and designers of mechan-
sma; Medallion Portraits of Distinguisled amer ism; Medallion Portraits of Distinguished American
Inventors; Valuable Tables relating to Steam, Flec nventors; Valuable Tables. relating to steam, Elec-
tricity, Heat, Metals, Weights, and Measures. RT Sent by mail ta any address on refeipt of price, MUNN \& CO., Publishers,

36ı Broadway, New York.

ARMSTRONG'S * PIPE * THREADING

The Bartley Direct Running Saw Mill

 A.$-\cos$

Scientific Book Catalogue RECENTIIY PUBIIISHED
 MUNN \&E CO., Publishers SCIENTIFIC AMERTCAN 361 Broadway, New York

RIDE THE OYTER YCKES MUNTER ARMS CO

The

American
 Bell Telephone Company,

125 Milk Street, Boston, Mass.

This Company owns LettersPatent No. 463,569, granted to Emile Berliner Nover ber 17, 1891, for a combined Telegraph and Telephnne, covering all forms of Microphone Transmitters or contact Telephones.

lon fiew

ARE THE CHOICE OF EXPERIENCED RIDERS,
Is simply claimed to be. Others may be good, but the Waverley is the Highest of alt High Grades.
 stolen whel, but is not payable to more than one person in any case.
ART CATALOGUE FREE BY MAIL.
INDIANA BICYCLE CO., INDIANAPOLIS, IND.

Three New Model
Smith Premier Typewriters
Nos. 2, 3 and 4
AVE YOU EXAMINED THEM ?
Many Improvements Heretofore Overlooked by Other Manufacturers.
Address THE SMITH PREMIER TYPEWRITER COMPANY, Syracuse, N. Y., U. S. A.

ENGINES, Biopernath Manchine toanfor New PRIESTMAN SAFETY OIL ENGINE
 There is hardly a USE OF POWER

Chatter gas Engine co., p. 0. Box 148, Stering, III.

CHAHIATMECM

E ESTABIISHED 1845
The Most Popular Scientific Paper in the World Only s3.00 a Year, Including Postage Weekly--Es Numbers a Year
This widely ciroolated and splendidy illustrated papen pubished weekly. Every number contains sixteen pages of usefal information and a large number of representing Engineering Works, Steam Machinery, New Inventions, Novelt ies in Mechanics, Manufacturea Chemistry, Flectricity. Telegrapby, Photograpby, Architect. Complete list of Porticulture, Nat Terme of Subscription.-One copy tific ammerican will be sent for one year - 52 numberspostage prepaid, to any subscriber in the United States,
Canada, or Mexico, on receipt of Three Dollary by the publishers; six months, 81.50; threemonths, 81.00 . Club s. - Special rates for several names, and to Postmasters. Write.for particulars.
The safest way
The sarest way of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to
MUNN \& CO., $\mathbf{3 6 1}$ Brondway, Newv York.
 This is a separate and distinct publication from THE
SCIENTIIIC AMERICA, but is uniform therewith in size. every number containing sixteen large pages full of engravings, many of with are taken from foreign papers anc sccompanied with transiated descriptions. weekly, and includes a very wide range of contents it preserts the most recent papers by eminent writers in all the prinoipal departmonts of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Eneineering, Mining, Ship Building, Marine Engineering, Photography, Technology, Manu-
racturing Industries, Sanitary Engineering, Horticulture, Domestic Ecconomy, Blography. Medicine etc. A vast amount of fresb and valuable information obtainable in no other publication.
The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and Manufactures at home and abroad are illustrated
and described in the SUPPLEMENT.
Price for the SUPLEMENT Canada, and Mexico. \$5.00 a year; or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLE-
MENT, both mailed for one jear to one address for 87.00
 order, express money order, or check,
MUN \& CO., 361 Brondway, New York.
Thuidturg Tilition.
 issued monthly. 82.50 a year. Single copies, 25 cents. splendid Maeazine of Architecture; richly adorned with elegant plates and other fine engravings; Illustrating the most interesting examples of modern Architectural Construction anduried subects. of a variety of the latest and best dences. city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in colorare given, together with Floor perspective and in color are given, together with Floo
Plans. Descriptions, Locations, Estimated Cost, etc. The elegance and cheapness of this magnificent work have won for it the largest Circulation of any
Architectural publication in the world Architectural publication in the world. Sold by all
newedeaiers. 82.50 a year MUNN SECO.. 361 Brondw

Export Edition

of the ScIENTIFIC AMERICAN, with whlch is incor-, porated "LA America Cientifica e industrial,"
or Spanish edition of the Scientific american is publisbed monthly, and is uniform in size and typography
with the Scientiric Amerions. Every, number conWith the SCIE NTIFIC AMERIOAN. Every, number con
tains about 50 pages, profusely illustrated. It is the finest sclentifle, industrial export paper pubilished. It circulates thronghout Cuba, the West Indies, Mexico, Central and South America, Spaln and Spanish possessions
-wherever the Spanish language is spoken. TTE ScI--whtific American Export Edition bas a large guaranteed circulation in all cummercial places through world. Single copies, 25 cents. forelgn Manufacturers and others who desire to secur announcements published in this edition at a very moderate cost. Rates upon application.
MUN $\&$ CO. Publisher

MUNN \& CO., Publishers,

PRINTING INKS.

