

A WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACIURES.
Vol. LXXIIII.- Vo. 22.]
NEW YORK. NOVEMBER 30, 1895
$[\underset{\text { WEEKLY. }}{\$ 3.00 \text { AR } .}$
THE ATLANTA EXPOSITION.

Abstract

companying illustrations, is located in one of the least hall of the Fine Arts building. There are three halls rusive parts of the exposition grounds, near the $\left\lvert\, \begin{aligned} & \text { hall of the Fine Arts building. There are three halls } \\ & \text { for exhibiting works of art in this building, the one }\end{aligned}\right.$ obtrusive parts of the exposition grounds, near the Plaza. The architectural features, as will be seen, are national in their outline, the main building being sur- hibits include work in marble, bronze, staff, etc., from rounded by a broad, sun protecting piazza, the long heroic to miniature in size. The walls are also hung lines of whose roof are broken by successive arches and with drawings, photographs, paintings, etc. An ensupporting columns. In addition to national exhibits, trance door to one of the other halls, devoted to paintmany of the dishes and beverages of that country are ings, is seen in the background. served. In an

One of the finest views of the Electricity building is (Continued on page 344.)

Among the successful means emploved to draw visitors to all the great expositions have been the naming of special days for different cities and States, thus inciting local enthusiasm in the bringing together of people from such localities. "Manhattan Day," or the day specially set apart at the Atlanta Exposition for citizens of New York, occurred on Monday, November 25.
The Costa Rica building, shown in one of the ac-

COSTA RICA BUILDING.

STATUARY HALL-FINE ARTS BUILDING.

THE ATLANTA EXPOSITION-ELECTRICITY BUILDING, LOOKING ACROSS CLARA MEER.

Srientifir smmerian.

ESDABLISHED 1845
MUNN \& CO.. Editors and Proprietors. PUBLISHEI WEKKLY A'
No. :3氏1 BROADWAY, NEW YORK.
O. D. MUNX. A. E. BEACH.

TERME FOR THE SCIENTIFIG
eopy, one vear, for the

The safest way to remit is by postal order, express money order,
t or bank check. Make all remittances payable to order of MUNN Readers are specially requ nsted to notify the
failure, delay, or irregularitv in receipt of papers.

NEW YORK. SATURDAY, NOVEMBER 30, 1895.

table of CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 1039

ror the week Ending November 30, 1895.

 ANew Rubber industry in Lagos, Africa.Benta. Culture An Interesting Experiment. -This ariticie. by ${ }^{\text {Co }}$.
T. DAVA, gives details of some interesting experiments carled

II. CHEMISTRY.-The Synthesis of Proteids

v. GEOLOGY.-The Volcanoes of Ha waii-By EDWARD EVERETT. the present condition of the crater
setting arrangement devised by a brazilian.- simplilustration....... VII. MECHANI'OA LENGINEERING.-Hydraulic Ejector.-AA......
seripition of the hew draulic ejector or water jet pump. -1 illus
tration. Improved shaping Machine.-A io inch shaping machine fo MiL MEEICINE AND SURGERY-CThe Treatment of Fevers
Without Food, Antipyretics or Aicohol-With Records of Vari-

 X. NATURAL HISTORY.-Luminous Animals.-By Thomas R. R. XI. PHOTUGRAPHHY-The Phot ographic Decoration of Glass and
Porcelain- Full directions for producing a hard waterproof
enameled picture on nlass or porcelain
enameled picture on glass or porcelai
XII. SCIENCE.-The Sun's Heat.-
 XIII. TECH NOLOGY-A. Tisit to the Holyoke Paper Mills. - De
scribes a visit made to the mills by the members of the American
Chemical Societ
XIV. T RA VEL AND EXPLOR ATION. 5 The Massacres in Armenia

- description of Trebizond, where 500 Armenians were recently
massacred. -1 illustration..

the bottle that cannot be refilled

We published not long ago a quotation from one of
 illers arge reward had been offered by wealthy dis ion and brewers for the production of a new int which, after the above mentioned, namely, a bottle be again refilled. The article we alluded to stated be again refilled. The article we alluded to stated
that distillers suffer great losses from the refilling of that distillers suffer great losses from the refiling of
their bottles by unauthorized persons, who imitate both bottles and trade marks of standard makers with out detection
We have been unabie to trace up the alleged offer of reward to any reliable source and think it doubtful it was ever positively made. But there is no doubt the invention is needed and would command a hand some figure, if all the conditions could be realized and a non-refillable bottle could be produced adapted to the general wants of the trade. As an evidence of thi we give an extract of a letter recently received by us from the proprietors of one of the largest whisky establishments in the country. This letter reached us during the progress of our search to find the offerers of the alleged great reward :
'In reply to your favor, we beg to state that we have been in the market for years for a bottle that could not absolutely be refilled; but we have come to the conclusion that we cannot obtain such a bottle or if a bottle was made so perfect that you could not refill same through the neck of the bottle, the bot the could be drilled or cut, and then refilled and closed so as to avoid detection.

LATITUDE NOT FIXED, BUT VARIABLE

It will now and again happen to the seeker after knowledge that he will have to unlearn as well as to earn; but it will be a rare experience for him to have to call in question such a supposedly funda mental
If there is one fragment more than another of our childhood's "geography lesson" that abides ever with us, it is this : that "the earth turns upon its axis." And now we are told that it does not, and that, as a consequence, it is literally true that the parallels of latitude are perpetually shifting-not much, it is true; but sufficiently to make it comically possible, as was once suggested, that certain dwellers in the proximity of the Canadian border line never know for more than six months together in which country they live.
The axis of the earth, or, to speak more accurately the axis of the earth's figure, is an imaginary line, passing through the center of the earth, and terminating at its two flattest points, known as the North and South Poles. Up to the year 1888, it was supposed that the earth rotated about this axis. If this had been true, the latitude of any given spot, as determined by observation, should have been invariable. As a matter of fact, it had been noticed, even as far back as the last century, that there was a slight, but perceptible, variation. The latitude of a given spot, as shown by two observations taken at differ ent times, would be found to vary.
Between the years 1884 and 1888, Dr. S. C. Chandler gathered together all the observations that had from time to time been made, and, after a careful analysis, was able to prove that these variations are accounted for by the fact that the earth does not about another axis, which he alled the axis of rota tion. This axis of rotation bisects the axis of figure at its center, and always preserves the same direction in space; but its poles slowly describe a circle about the poles of the axis of figure. From this consideration it is evident that the parallels of latitude do not preserve the same planes relative to space; b
have an oscillatory motion. Hence the variation.
The motion is fairly well illustrated by a spinning top, whose center of gravity remains in the same vertical line, while the peg and the head describe two circles about this vertical line. The motion of any parallel lines on the top will roughly approximate to the motion of the lines of parallels of latitude on the earth's surface. The above illustration will only approximately show this motion of the earth, for the reason that the latter is complex, being made up of two superposed motions. The pole of rotation moves in a small circle which is itself moving around the pole of the earth's figure
The period of the smaller circle is between 423 and 434 da
$3691 / 2$ days
he radius of the smaller circle is 14 feet. The center of the circle itself travels in an ellipse, the major axis of which is about 25 feet, and the minor about 8 feet
A remarkable verification of Dr. Chandler's discovery was afforded by a series of tidal observations extending over 35 years, two of which were taken on the Pacific Coast and one on the Atlantic. These show a mean time of oscillation of the sea's level of
with the period of revolution as mentioned above. Newcomb had pointed out that if the theory of the revolution of the axis of rotation were true, low tide at any spot should occur when the pole of rotation lay earest that spot-a suggestion with which the abov tidal observations fully agree

THE TEMPERATURE OF LAKES

According to Desmond Fitz Gerald, M. Am. Soc. C. E., in a paper recently read at the annual convention of the society, the observation of the temperature of the water in lakes and reservoirs is attended with nore difficulty than is generally supposed. Hitherto the taking of readings at any considerable depth has been rendered difficult and tedious on account of the unsuitability of the ordinary mercurial thermometer for such work. The invention of the thermaphone by Messrs. H. E. Warren and O. C. Whipple enables the observer to take in a few minutes a morc accuate reading than was formerly possible after an our's careful work.
The thermaphone is based upon the principle of the Wheatstone bridge, and it enables the temperature to be read at the surface of the water, the two metals which form the circuit being suspended at the deired depth. The two arms which complete the circuit at the surface are connected with a telephone which takes the place of the customary galvanometer. The theory of this very sensitive and accurate instrument is based upon the fact that different metals have different electrical temperature coefficients. A circu. lar slide wire is connected to the two coils of dissimilar metal, which are lowered to the desired depth by means of two leading wires. This slide wire is wound around the edge of a disk, which carries a dial, graduated in degrees of temperature. A leading wire connected with the junction of the two metal coils connects with a telephone receiver and terminates in a radial contact arm, which travels upon the above mentioned disk. The ends of the slide wire are put in circuit with a battery. In reading the temperature, the radial contact arm is moved back and forth over the dial, and the telephone is held to the ear.
The buzzing sound in the telephone increases or decreases as the hand passes a certain point on the dial. By continually moving the hand, a point will be found at which the sonnd ceases altogether. The reading at this point indicates the temperature of the distant coil.
" This instrument is so accurate that its results can be depended upon to much less than $0 \cdot 1^{\circ} \mathrm{F}$., and a series of temperatures throughout the vertical can be taken with an allowance of about a minute for each point observed."
Surface Temperatures.-During the winter, from the latter part of December to the breaking up of the ice in the spring, the temperature of the water under the ice is 32 F . The water then warms at a uniform rate to $72^{\circ} \mathrm{F}$. in the middle of June. From that time to the middle of August it varies between 73° and 78°, and then falls regularly to 37° in the middle of December. Bottom Temperature. - In a pond less than 25 feet deep the bottom temperature varies very little from that at the surface. In the deeper lakes very interest ing phenomena occur, which have an important bear ing upon the question of domestic water supply. The observations were taken in connection with the Boston water works at Lake Cochituate
The point of maximum density of fresh water is $39 \cdot 2^{\circ} \mathrm{F}$. This is about the temperature of the bottom of the lake when the surface freezes. "The several strata lie in their order of density, decreasing gradually until within a few feet of the surface, when they suddenly fall to the freezing point adjoining the ice.' The body of water remains unchanged throughout the winter. At the breaking up of the ice, the surface water warms up to the temperature of the bottom layers; the whole body is thrown into "unstable equi librium," and circulation takes place from top to bottom. As soon as the surface is $5^{\circ} \mathrm{F}$. warmer than the bottom, circulation ceases. Although the temperature of the surface continues to rise, " the bottom remain at exactly the same temperature throughout the long period of stagnation," covering about seven months, during which time it varies only a few tenths of a degree. From this it is evident (1) that the agitation set up by the winds at the surface does not penetrate very deep (experience shows fifteen feet to be about the limit); (2) that there are no convectional current at work to effect a change of temperature; and (3) that water is such a poor conductor of heat that the hottest sun's rays are not perceptible at the depth of sixty-five feet.
Weekly observations of temperature in Lake Cochituate for a period of four years show that the surface agitation by the wind keeps the water at an even temperature for the first ten feet of depth, and that below fifteen feet the effect is very slight
The Effects of Stagnation.-The deeper, quiescent layers of water gather the organic matter from the waters above, and "decay goes on until the oxygen is used up." The water becomes dark in color and ac quires a disagreeable smell
Commenting upon these facts, Mr. F. P. Stearns
stated that these lower strata of water, which are unable to get any fresh supply of oxygen from the air, accumulate free ammonia and other solid and gaseous products of decomposition. Hence it is desirable that the domestic supply should be taken from near the surface and waste water drawn off from the bottom. In this way the evil effects of summer stagnation may be partly overcome and the whole body of water improved at the autumnal overturning.
It is possible in the summer to sink a bottle to the bottom of Lake Cochituate and bring up ice-cold water, and, at the same time, fill a nother bottle with water from the surface that is 80° in temperature. In view of this great difference in temperature and the purity of the surface water, the author of the paper suggests that any one living near a deep lake could obtain very pure ice-cold water during the summer months by taking it from the surface and leading it through a coil of pipe placed in the cold stratum of water at the bottom.
Observations of Lake Superior, taken in August show a bottom temperature of $38.8^{\circ} \mathrm{F}$. in 158 fathoms, the surface temperature being 50° to $53^{\circ} \mathrm{F}$.
Prof. Le Cente, in August, 1873, found Lake Tahoe, in Cali ornia, to be 392° at 1,506 feet; 41° at 772 feet, and 67° at the surface.
Nine soundings, taken in Lake Thun, in 1848, to a depth of 550 Swiss feet, show a mean temperature of $40^{\circ} 7^{3}$.

The Lake of Geneva, which is 1,000 feet deep, shows a mean temperature of $41 \cdot 2^{\circ}$, as the result of seven years of observation.
As the result of his own and other observations, the author arrives at the conclusion that "in a lake of the first order, like that of Geneva, the winds produce a mechanical mixture of the layers to a considerable depth below the surface;" "the smaller the lake the less these mechanical effectsare felt," "but that this heating is not due to conduction seems to be proved by the fact that, at 65 feet depth, conduction has no effect in seven months' time on the bottom temperature of Lake Cochituate."

THE HEAVENS IN DECEMBER.

The first hours of a December night witness a visible brishtening of the eastern heavens upon the entry of Orion and his splendid neighbors Taurus, Auriga, Gemini and Canis Major. One of the finest pageants that Nature affords to the contemplative observer is the vast procession of these starry magnificoes of the sky. Whenever they are visible there is nothing on the earth or in the dome that can take precedence before them. I should be very sorry if my memory couid ever lose the impression that they made upon my eye and mind one morning before sunrise on the peak of Etna, last September. Even the great crater on whose broken edge I stood, with its strange fires glowing and moving mysteriously in the depths, and the immense circle of the horizon sweeping 800 miles across sea and land, were spectacles less commanding than that of Orion and his company sentineling the purple-black heavens.
This is a good time, before the heavy snows of mid winter have rendered the out-of-door use of a telescope inconvenient and uncomfortable, to study the
starry treasures that cluster in the constellations starry treasures that cluster in the constellations
just named. The Pleiades in Taurus and the Hyjust named. The Pleiades in Taurus and the Hy_{y}
ades, forming the V -shaped figure in the same constellation, are superbly beautiful objects for the opera glass. Is Aldebaran, the chief star in the Hyades, and one of the most beautiful anywhere in the sky, rose red or orange red? That is a question about which observers differ, and every amateur not color blind is entitled to have an opinion of his own concerning the color of that great sun in Taurus, a sun far grander than our own.
Look with a three-inch telescope at the bright white star Rigel in the foot of Orion and enjoy the sight of its little blue comrade. Try ζ, the left hand star in the Belt of Orion, with a little larger telescope. It has a companion whose color is one of the curiosities of the sky, but just what that color is nobody, apparently, knows. The distance between the two stars is about $2 \cdot 5^{\prime \prime}$, and their magnitudes are 3 and 6.5 And do not neglect the Orion nebula hanging below the belt, an object whose interest for astronomer, or
wayfarer anong the stars, never becomes less. Auriga, too, has many telescopic beauties which lack of space prevents my describing, but to which such a book as Webb's "Celestial Objects" gives a clew, and Gemini presents to us the wonderful twin Castor, yielding its duplicate charm to the smallest telescope.
Jupiter is still the only planet conveniently situated for observation. It is in Cancer, a few degrees southeast of the cluster of stars called the Beehive,
and, about midnight, will be found half way up the and, about midnight, will be found half way up the eastern slope of the Zodiac. Not much that is new concerning Jupiter has been learned of late, but the unceasing and evidently violent changes that its surface undergoes lend value and interest to all careful observations of its appearance in the telescope.

Venus continues to adorn the morning sky, but, hav-
ing attained her greatest western elongation at the end of November, she is now approaching the sun again. On the 1st she is about five degrees from Spica, or α Virgin is, and at the end of the month she will be in Libra, near the borders of Scorpio. She will be near Saturn in Libra on the 22d, and for a few mornings before and after that date, and the conjunction should be a sight worth getting up before sunris to see.

Mercury is in the eastern edge of Libra at the be ginning of the month, moving sunward, and on the 20th the planet will pass behind the sun.
Mars is also in the eastern part of Libra and too near the sun for satisfactory observation. At the close of December it will be among the star clusters of southern Ophiuchus.
Saturn, on the 1 st , is about 2° north of α Libræ, ris ing near 5 o'clock in the morning. At the end of the month it will rise soon after $3 \mathrm{~A} . \mathrm{M}$.
Uranus is near Mars at the beginning of the month and will remain in Libra, being in conjunction with Venus on the 28th

Neptune is still between the starry horns of Taurus, rising in the afternoon and crossing the meridian in the middle of the night.
December opens with a full moon, the phase occurring early on the morning of the 2 d , when the moon is in Taurus. Last quarter occurs on the morning of the 9 th in the constellation Virgo. December's new moon falls on the 16th, about 1:30 A. M., first quarter following in Pisces on the morning of the 24th, and the second full moon of the month occurring on the evening of the 31st in Gemini.
The moon passes the planets on the following dates: Neptune on the 2d; Jupiter on the 6th; Venus on the 12th; Saturn on the 13th; Uranus on the 13th; Mars on the 14th; Mercury on the 15 th. This rapid series of conjuṇtions of the moon with Venus, Saturn, Uranus, Mars and Mercury shows, in a striking manner, how those five planets are just now strung along the zodiac in the morning sky.
The sun enters Capricorn and the astronomical winter begins about 8 P . M. ou the 21st. It is noticeable that the astronomical seasons accord better with the character of the weather than do those of the civi
almanac.
Garrett P. SERVISs.

Calvert Vaux, the eminent landscape architect, died in Brooklyn, N. Y., November 21.
He was born in London, December 20, 1824, and was educated at the Merchant Tailors' School, afterward tudying architecture under Lewis N. Cottingham. At the suggestion of Andrew J. Downing he came to this country in 1848, became Mr. Downing's partner, and was engaged with him in landscape gardening and architecture, the firm having laid out the ground surrounding the Capitol and the Smithsonian Institution t Washington.
Afterward Mr. Vaux became associated with Frederick Law Olmsted and with him presented a plan for the laying out of Central Park in this city, their design having been accepted after competitive examination, which had been suggested by Mr. Vaux. During the work upon Central Park Mr. Vaux was the consulting landscape architect of the Department of Public Parks. His reputation as a landscape archi tect was then firmly established, and when Prospect Park was laid out in Brooklyn, in 1865, it was fter designs made by his firm. Subsequent to this the firm designed the public parks at Chicago Falls. Mr Vuffalo and the State Reservation at Niagar cape architect in the Park Department in this city, and with Mr. Olmsted prepared the plans for Riverside and Morningside Parks, as well as for the many small parks which were authorized by the Legislature, and are now in process of preparation. He was probably the best known landscape architect in this country, and was consulted as an expert in matters of that kind by architects all over the country. In addition to his landscape work, Mr. Vaux designed many country residences in Newport and elsewhere, as well as public buildings in this city; the Belvedere, the graystone tower which stands at the ower end of the reservoir in Central Park, being a specimen of his work. He also published an architectural book entitled "Villas and Cottages."

Great Bell.

At a few minutes past nine o'clock, October 30, the casting of the great bell for the tower of St. Francis de Sales Church, Cincinnati, began, and the flow of metal was continued for about two hours before the work was completed. It is the largest bell in the United States, and fifteen tons of bell metal were used in the casting. In addition to this, the clapper, which is already cast, weighs 640 pounds. The main
dimensions of the bell are: Diameter of the ring, 9 feet: diameter of crown, 5 feet. It is 7 feet high. Swung in the tower, the bell is to cost $\$ 10,000$. For SCientific American of September 7, 1895.

Cycle Notes.

Bicycle Law.-Summing up the law pertaining to bicycles in a general way, it may be said :

1. Municipal corporations or cities are liable to a bicyclist for injuries incurred by reason of defective roads (namely, unguarded embankment, a deep rut, a large stone), provided he is not guilty of contributory negligence. A city is under no special obligation to wheelmen, and the defect must be such as to cause in jury to vehicles in general. A bicyclist injured while riding on Sunday for pleasure or business cannot re cover in States where "Sunday laws" are in force.
2. A wheelman has a right of action arainst the driver or owner of a vehicle who willfully or negligent ly causes a collision or damages his wheel while left standing by the street curb or roadside. It is the duty of a wheelman, however, to avert collision if possible, and he cannot recover damages if his own negligence is the proximate cause of the injury com plained of.
3. A traveler riding on the left hand side of the road probably assumes all risk, and is prima facie guilty of negligence.
4. Vehicles going in the same direction, the hindermost may pass on either side.
5. Sidewalks are exclusively for foot passengers, but foot passenger has a right to walk in the highway, and is entitled to cross the street where he may elect, but is guilty of negligence if he attempts to cross ahead of a vehicle. And the fact that a vehicle is on the wrong side of the road is no evidence of negligence in an action for injury to a pedestrian.
6. A bicyclist employing an immoderate rate of peed on a highway or street may be liable civilly or criminally in case of accident. If he recklessly runs his wheel against a pedestrian, he is liable for assaul and battery. Recklessness will sometimes supply the place of criminal intent. and if a bicyclist kills a human being while going at a dangerous rate of speed he may be convicted of manslaughter.
The term "immoderate rate of speed" cannot be accurately defined. It depends upon time, place and circumstances.-Detroit Free Press.
The list of royal cyclists is now so lengthy as to rep resent every European court, and with the exception of the Princess of Wales and the King of the Belgians, each of whom rides a tricycle, the word "bicyclists" may be substituted for "cyclists."
In the British royal family the iist includes the Duke and Duchess of Connaught and their daughters, the Princess Louise (Marchioness of Lorne), the Princess Beatrice, who has only recently learned to ride; the Princess of Wales, the Duchess of Fife, the Princesse Victoria and Maud of Wales, the Duke of York and Princess Victoria of Schlesweig-Holstein, eldest daugh er of Prince and Princess Christian.
On the Continent there is no better friend to cycling than the King of the Belgians, who takes the mos paternal interest in the wheelmen of his dominion.
The Emperor of Germany has just betaken himself to the pastime, and other crowned bicyclists are the King of Portugal, the King of Spain, that daring huntress the Empress of Austria, the King and Queen of Itaiy, the King of Greece, and last, but not least, the Czar and Czarina, for whom two tandem bicycles have been made in Nottingham, England.
Of Continental princes and princesses devoted to the bicycle, the list would savor of the Almanach de Gotha.
The bicycle craze has invaded the precincts of the Supreme Court of the United States. A member of this august tribunal may be seen almost daily spinning down the asphalt streets of Washington.
The foremen of the New York Department of Street Cieaning have been mounted on bicycles to facilitate their inspection of the streets.
In Brookline, Mass., a sign reading as follows greets the weary rider: "Wheelmen will find drinking water at the right of the church."
Out in the fields of a suburb of Brooklyn, a land improvement company has erected a comfortably covered shed with racks for wheels and a large ice water cooler. The new Hudson County Boulevard, in New Jersey, opposite the great city, is accessible to New Yorkers, and affords a fine fourteen mile run.
Commercial travelers who do not require to carry many samples are using the bicycle in Texas, as they do not have to wait for trains between towns.
Australia imported $\$ 400,000$ worth of bicycles from England last year.
A correspondent in the L. A. W. Bulletin presents the following formula as a proper mixture of oil for lamps : Take a bottle which will hold a pint, fill it twothirds full of the best lard oil, and the balance with headlight oil, also add a piece of gum campior about the size of a small egg, which, being broken in small pieces, easily dissolves. This preparation gives a nice white light, does not char the wick, and will not jolt out.
Folding wooden or wicker crates for bicycie transportation can be purchased in Paris for one franc.
The tenth anniversary of the safety bicycle was celebrated by a banquet in London, a short time aga

A FRENCH RAILWAY ACCIDENT

 An extraordinary railway accident occurred at the Gare Montparnasse, Paris. at 4 P. M. on the afternoon of Tuesday, October $\because 2$. The train from Granville en. tered the station at a speed of 30 to 35 miles an hour and was not able to stop. The station has two stories, the train house being in the upper story. 'Ihe engine and tender crashed through the wall at the end of the station and fell to the street (Place de Rennes) below, a distance of 30 feet. Thanks to the Westinghouse brakes, which were applied by the conductor, all of the railway carriages were saved from being precipitated into the street. The one hundred and twenty-three passengers were considerably shaken up, but were not otherwise injured. The ergineer and fireman were thrown from the engine andThe only fatality was th. The ofly fatality was th was killed by a piece of was killed by a piece o stone from the wall. Th engine narrowly escaped a horse car and three load ed omnibuses. Crowds lingered in front of the station for hours.
Inquiry was made into the cause of the disaster The master machinists at tributed it to the failure of the brakes to work. En gineers were forbidden to use the Westinghouse brake when entering ter minal stations or stations provided with a bumpe at the end of the rails, hand brakes being used for all ordinary purposes, the Westinghouse brake being reserved for emergencies. For our engraving, which was taken from a photo wash, we are indebted to L'Illustration.

New York Cut Flowe Company.

After entering the wide hall of the spacious build ing at 119 West Twenty third Street, New York, the visitor is carried by the elevator to the second floor and ushered into the commodious rooms of the New York Cut Flower Company. The first glimpse of the main salesronm, even at a quiet hour of the day, suggests a large and multiform business; in a busy time the visitor finds himself suddenly among the largest collection of cut flowers on collection of cut flowers on this continent. A moment
is needed to collect himself is needed to collect himself after the burst of color and gale of fragrance which greet him, and then he will see substantial broad white tables ranged along the sides of the room and set in parallel rows between them, with generous floor spaces reserved for salesmen and buyers Every day of the week this room presents an animated scene, for, even on Sunday, in the early morning, exceptionally ener getic Christian buyers are on hand for the freshest and most fashionable flowers for decorating houses of worship. On the continuous broad tabling along the walls stand large boxes of roses as they come packed by the growers. The contents of others are deftly arranged in great heaps on the tables in front, which serve as counters. Other parts of the salesroom are used for carnations, violets, lilies, mignonette, smilax, lily of the valley, with its poetical nams here, as elsewhere, in the flower trade, cruelly abbreviated to "valley," with other flowers in season.

Passing into a middle room, which at this season is reserved exclusively for chrysanthemums, a new effect is witnessed. On side tables masses of immense flowers are grouped in deep mahogany-colored vases made of "Fibrotta," a preparation of woud pulp with a hardened shell and glazed surface. These tumbler shaped vessels are eighteen inches deep and nine inches across at the top, but their ample size is needed for the tall
stout stems and the weighty flower heads they support.
In the middle of the room the floor is closely covered with open boxes, each containing twenty-five chrysanthemums-the long stems and their dark luxuriant foliage nearly filling the boxes, which are four feet or more long, half the blooms being at each end of the box, and especially choice and tender flowers separately wrapped in tissue paper. Last week in a collection whose quality suggested an exhibition for effect and for premiums, choice specimens of the new white Mayflower were, perhaps, the most sensational flowers. This variety and Nemesis, resembling the Daybreak carnation in its delicate pink color, commanded the highest prices of all. Flowers of Major Bonnaffon were also conspicuous among the

a RECENT RAILWAY ACCIDENT IN PARIS.
standards, and a credit slip made out in the shipper's name, with memoranda of the kind of flowers, the number received, and whether of the first, second or third grade. The flowers are then passed into the salesroom or stored in great refrigerators, which are ranged along one side of the receiving room in unbroken lines and have altogether a capacity of nearly five thousand cubic feet.
The New York Cut Flower Cumpany, of which this is the home and business center, is an organization new to this industry. It is not a trust, and does not attempt to regulate business of its members, but it is a combination of some fifty commercial cultivators, who joined together to sell their products to wholesale buyers direct, instead of shipping, as heretofore, to commission houses. It has been estimated that the flowers sold on commission in this city in a year have a total value of one million dollars. If this is double the real sum, the fifteen per cent charged by com mission merchants would even then amount to $\$ 75,000$, and the combined growers thought they could get their flowers to the retailers for less money. At all events, they can now know defi nitely about the sales of their stock, and if report come back to the effect that it is unsalable for some reason they can in vestigate the matter, as they could not do when the flowers had been sold on the old plan. The company includes members from this State, New Jer sey, Pennsylvania, Connecticut, and R hode Island. More than ninety per cent of the member use above twenty thou sand square feet of glass and some have glass houses which cover a hundred thousand feet Many members are stock holders, and those who are not sign certain co-opera tive contracts, in which they agree to sell all thei flowers through the com pany.-Garden and Forest

Power Required for Electric

In an article in the Sib ley Journal of Engineer ing, Mr. James Lyman gives the results of a num ber of tests made in dif ferent cities of the power required for electric trac tion. At Rochester, where the first of Mr. Lyman's records were obtained, there are about 20 miles of track which was in rood condition at the time of the test The numbe of cars on the road was 40, each weighing about 8 tons, and provided with a 15 horse power geared motor. In general the road was level, but in the heart of the town there were some gradients of from 3 to 47 per cent Moving on the level, the necessary tractive powe
best stock, and so were those of Philadelphia, the favorite new seedling of 1894
The third room of this immense floor, which, in its length of two hundred feet, reaches entirely through to the Twenty-fourth Street front, is in a way even more interesting than the others. This apartment, which is not open to the public, is the receiving depot. A powerful elevator lifts the boxes after they are deposited on the first floor at this end of the building, where they are brought by immense vans direct from the growers' establishments or by express wagons from railroad stations. The boxes measure about five feet in length and six inches in depth. Many are made of wood, the corners protected by zinc strips, and other metallic-looking ones, two feet deep, are of heavy glazed papier maché, iron bound and securely strapped. The boxes are at once opened, the flower examined and graded according to established
averaged 38 lb . per ton of car, and for the whole run
over the four principal routes at 6.5 niles per hour over the four principal routes at 6.5 miles per hour,
the average horse power was 1.4 per car, and the maximum 6 horse power, this latter only being used momentarily.

At Buffalo the same a verage power was required, but the maximum was $6 \cdot 6$ horse power. In a large Western city a car with the axles coupled direct to the motor, without the intervention of gearing, took 0.92 horse power per ton on the average, with a maximum of $4 \cdot \%$ horse power. In wet weather the tractive power re quired is reduced, the rain acting as a lubricant. Wet ting of the rails round curves is particularly effective, the requisite traction power being thereby reduced by one third. Comparative experiments made at Ithaca N. Y., showed that on gradients the tractive force re quired exceeds that on the level by more than the theoretical amount.

A STEAM ENGINE INDICATOR STOP MOTION. To readily stop the motion of the paper drum of an indicator, to change the cards or for other purposes, without disconnecting the operating cord the improvement shown in the accompanying illustration has been patented by Henry J. Parchman, of Cedar Falls, Wis. A frame is secured to the engine or other support, near the cord connecting the pantograph with the indicator, and on the frame are studs carrying pulleys around which the cord passes, one of the studs being mounted on a slide moving in a slot in the frame, the slide being locked in adjusted position by stops, one of which has a handle to facilitate moving the stop in the slot. The cord, after leaving the pan tograph, not shown, passes under a pulley and around the pullevs on the frame, and thence over another pulley to the indicator, so that the several pulleys are rotated on the forward and backward movement of the cord. On one of the studs on the frame are

PARCHMAN'S STEAM EN GINE INDICATOR STO MOTION. fulcrumed levers pivotally connected with other levers fulcrumed on the other stud, a spring connecting the central pivots of the levers, and having a tendency to draw them together against the pull of the operating cord. While the cord is to positively connect the pantograph with the indicator, the slide is locked in place on the frame, but when the card is to be changed or the indicator stopped, a stop is loosened, permitting the slide carrying a stud and one of the pulless to slide in the slot in the frame, the pull of the operating cord then drawing the levers toward each other in the opposite direction, against the tension of the spring. A yielding connection is
thus introduced to compensate for the movement of the cord without affecting the indicator, the device working with indicators of any make, at any speed and in any postion.

AN IMPROVED WINDMILL.

The windmill shown in the accompanying illustration is designed to utilize the force of the wind to the greatest advantage, and to automatically shut off the wind from the wheels should its velocity become too great. The improvement has been patented by Hubert Schon, of Allegheny, Pa. On a vertical shaft set on a ball bearing is a bevel gear connection with the driving shaft, and on the upper end of the vertical shaft is the ball bearing of a frame supported by the shaft, there being journaled in the frame a horizontal wheel shaft carrying front and rear wind wheels. Each wheel has an inner and an outer rim, between which are the wings or blades, and each inner rim is closed at its front end by a cone, while a hood is attached to the front of the outer rim, to gather the wind and direct it to the blades. The vertical shaft is connected by beveled gears with the horizontal shaft, and

SCHON'S WINDMILL.
from the rear end of the latter extends a vane to hold the wheels to the wind. To regulate the speed of the wheels, a curtain or apron is mounted as a roll below the bottom of the hood of the front wheel, the pulling up of the apron cutting off the wind from the wheels. Attached to the upper edge of the apron is a rope which extends upward over a pulley and is connected with a governor that slides longitudinally on guide rods on a skeleton frame, the governor being in the
form of a box adapted to be driven rearward by the force of the wind, thus lifting the curtain or apron. Weighted racks acting on toothed trunnions on the curtain shaft counterbalance the governor and draw the curtain down when the wind decreases. To shut off the wind from the wheels at any time, a second rope is connected with the curtain, enabling the operator to raise it when desired.

A TUBE OR PIPE CUTTER.

For cutting boiler tubes or pipes, the device being firmly held in place while the work is being done, and the cutters having an automatic and positive feed, the improvement shown in the accompanying illustration has been patented by Patrick H. Benade, of Punxsutawney, Pa. The device comprises two aligned cylinders connected with each other at their ends by rods on which are journaled frames each carrying a cutter wheel. A cone with a longitudinal feather engages a keyway in one of the cylinders, the cone having a threaded shank engaged by an internally threaded sleeve which has on its outside a right and a left hand thread, on which screw nuts, levers carried on one of the nuts engaging inclined grooves on the other nut. When the tool is placed in a pipe, and a wrench is applied to the head, causing the cylinders to revolve, the nuts on the sleeve screw toward each other, causing the levers on one of the nuts to travel up the incline of the other nut, as shown at the left in the illustration, the free ends of the levers thus moving into firm contact with the inner surface of the pipe or tube. The continued turning of the cylinders then causes the shank of the cone to screw in the sleeve and feed the cone forward in engagement with the frames carrying the cutting wheels, which are carried around and fed outwardly as the turning continues. The turning of the tool in an opposite direction causes a withdrawal of the cutters and return movement of the cone, with a final release of the clamping levers from the inner surface of the pipe. On the outer cylinder is a gage with gage fingers adapted to set the cutters to the proper point at which the tube or pipe is to be cut off, the fingers resting against the end of the boiler, and being adapted to open and close, that they may be kept as close to the tube as possible loosely, the tool being adapted to cut several sizes.

What All Boys Should Know.

Don't be satisfied with your boy's education or allow him to handle a Latin or Greek book until you are sure that he can-
Write a good legible hand.
Spell all the words he knows how to use.
Speak and write good English.
Write a good social letter.
Add a column of figures rapidly
Make out an ordinary account.
Deduct $161 / 2$ per cent from the face of it.
Receipt it when paid.
Write an ordinary receipt.
Write an advertisement.for the local paper
Write an ordinary promissory note.
Reckon the interest or discount on it for days, months, or years.
Draw an ordinary bank check.
Take it to the proper place in a bank to get the cash.
Make neat and correct entries in day-book and ledger.
Tell the number of yards of carpet required for your parlor.
Measure a pile of lumber in your shed.
Tell the number of bushels of wheat in your largest bin, and the value at current rates.
Tell something about the great authors and statesmen of the present day.
If he can do all this, and more, it is likely he has sufficient education to make his own way in the world If you have more time and money to spend upon him, all well and good-give bim higher English, give him literature, give him mathematics, give him science, and if he is very anxious about it give him Latin and Greek, or whatever the course he intends pursuing in life de-mands.-School Supplement.

```
Engineers' Licenses.
```

Under a new law. all engineers in charge of power or heating plants in Massachusetts must be licensed, and in order to be licensed, they must pass an examination, arranged by the State authorities. Although enacted last winter, the law only went into operation in August, and the examinations are now open to candidates, who, if the daily papers are to be believed, do not take much satisfaction in them. It will be remembered that the supervising architect of the Treasury Department once wanted some assistants, who, either nder the civil service laws or some special provision were to be selected by competitive examination. The
examination was held, but, if we remember rightly, not one of the applicants could pass it, and it was necessary to fill the positions in another way. So with the Massachusetts engineers, as we are told. The examination is a long one, some fifty or sixty questions being proposed, to which written answers must be given; and it appears that the questions are mainly theoretical, involving principles which can be learned from books, but which working engineers have little occasion or opportunity for studying. The consequence is, as we are told, that the first-class licenses will go to youths fresh from the technical schools, who

BENADE'S TUBE OR PIPE CUTTER

know all about heat units and calorimeters, but would have considerable difficulty, on starting the engine under their care, in finding the valve for draining the water out of the cylinders, even if the propriety of this operation should occur to them ; while the men who have handled engines intelligently and successfully for twenty or thirty years are, as we are informed, in danger of being deprived of their livelihood because they cannot solve a mathematical problem involving the solution of a quadratic equation. How much foundation there may be for these complaints, we cannot say, but it would certainly be a mistake to undervalue experience in such examinations. Of course a man who has greased a locomotive successfully for twenty years might blow up a heating boiler at the first trial ; but on the other hand, algebraic formulas cannot teach the light hand and quick eve of a good mechanic ; so that such examinations should be arranged to test both the theoretical knowledge and the practical intelligence of the candidate, and great skill on the part of the examiner is necessary for this.-Amer. Architect.

AN IMPROVED RAILWAY CAR JACK
A device especially designed to facilitate removing and replacing worn-out brasses in the journal boxes of

car axles, or for raising the box without disturbing the position of the wheel on the track, is shown here with, and has been patented by Daniel A. Keller, of Rincon, New Mexico. The jack is shown in perspec tive in full lines in the illustration, its position on the car wheel relative to the journal box, when in use, being indicated by dotted lines. Transverse hooks, adapted to engage the top of a car wheel, are formed integral with a threaded cross bar, in which screws a screw rod, on which is hung a cross bar with dependng angular arms, adapted to engage the under side of journal box. The device affords a square lift, preventing cramping of the journal brass at any point. The power is applied at a point about fourteen inche above where it is applied on the ordinary pony jack and the device can be set and used at ordinary pas senger platforms. The inventor claims to be able, with this jack, to raise a journal box in one-fourth the time taken with the usual appliances, doing the work with less labor.

THE NEW PORT OF COPENHAGEN.

Copenhagen has so old a history as regards maritime commerce that it seems strange to hear a new port of this city spoken of, and yet it is really the case that it has just been provided with an entirely new one complete in every part. It is a question of a free port which has been excavated in order to permit Danish commerce to vie with the influence of the maritime canal that the Germans are now givino up to exploita tion between the Baltic and North Seas. We have already spoken of this latter enterprise, and have shown not only the military, but the commercial purpose that it is to satisfy. It is a question of diverting the trade that has hitherto been carried on through Cape Skagen, and of putting the German ports of the Baltic in direct relation with the ocean, or at least of making Hamburg the great entrepot of the consumers and dealers of the Baltic. It is therefore desired to take from Copenhagen the brilliant role that it has hitherto played.
Established in part upon the island of Seeland and in part upon that of Amagar, commanding the Sund, and, on each side, even, of one of the arms of this strait, this city has very naturally, for ages, been acquiring a very great importance. As may be seen from a simple glance at a map of Northern Europe, it has a preponderant situation. It is the natural metropolis of the Baltic and the center of the transactions of the north. This port is upon one of the most frequented maritime routes in the world. The fact is that Copenhagen, or, to use the true Danish word, Kjobehavn, has developed in an extraordinary manner. In 1870 its population was but 181,000 inhabitants, while at present it reaches and even doubtless exceeds 400,000 souls. As regards the traffic properly so called, while in 1857 there were but 10,045 sail vessels on the iist of entries and 9,905 on the list of clearances (vessels which at that epoch were but of small individual tonnage), the sole movement with exterior ports comprised, among the list of entries, 6,151 sailing vessels, gaging 233,394 tons and carrying 219,290 tons, and 6,449 steamers, gaging 1,763,133 tons and carrying r81,590 tons. The clearances were 6,045 sailing vessels, gaging 229,024 tons and carrying 40,433 tons, and 6,527 steamers of a gage of $1,858,000$ tons and carrying 231,037 tons. In truth, the port was no longer, with the new conditions of maritime navigation, adequate for such a movement. Not only were the mechanical installations defective therein, and the entrance channels of little depth, but the utilizable surfaces were very limited. In reality, this port was formed only of a narrow passage between the islands of Seeland and Amagar, as may be seen in any plan of Copenhagen. There were indeed, under the protection of the fortifications, many basins for smal boats, and canals ramifying throughout the city, but for large ships there were but a few docks in inade quate basins in the northern part of this passage. It was in the Oresund, between the coast of Seeland on the one hand and the fort of Three Crowns and that of Lunette on the other.
It is true that about ten years ago the "Limekiln Basin" had been dredged, with a small annex basin wholly to the north of the Oresund, but this had im proved nothing, since this basin was very isolated, without ways of communication, and presented at a maximum an inadequate depth of 7.53 meters.

A reform was necessary, and became obligatory when the Kiel Canal was begun, since, if something was no done quickly and energetically, the situation of Co penhagen would be lost forever. In March, 1891, there was decided upon the construction of a free port presenting all the advantages of such establishments and designed to become a place of entrepot under the best conditions possible. This work was rapidly brought to a happy termination, and the port was opened at the end of 1894. It cost at least $\$ 3,500,000$, three of which were furnished by the Port Commission, which constructed the basins, wharves, platforms, railways, and buildings, and the rest by a commercial company especially organized for the exploitation of the port. The latter is established upon ground entirely sub merged between the glacis of the citadel and the Lime kiln Basin, with which it even unites in part under th name of the Southern Basin. We shall say nothing of the old port of Oresund, which was, however dredged to 8 meters. The new port opens opposite the fort of Three Crowns through a channel of 106 meters, 9 meters deep, protected by a great breakwater of 400 meters, and bordered to the south by a jetty which, like the break water, is of blocks of concrete. Upon entering, we meet with the southern basin, which i

471 meters in length and 188 in width, but only the southern and eastern banks of which form part of the free port. At the side is situated the central dock, which has a depth of $7 \cdot 53$ meters. The point of the wharf that separates it from the southern basin pre sents two indentations in the form of careening docks in which land the ferryboats of Malmo. At this point we perceive a railway station that permits passenger to pass directly from the cars to the ferryboats or vice versa.
The southern basin skirted by the large eastern mole (the one that is seen in the foreground of our engraving and that separates it from the Oresund) is divided into t wo docks by a terreplein 314 meters in length by 5 in width. The western one of these is but $8 \cdot 22$ meter in depth, while the rest of the basin is $9 \cdot 14$ meters. The large eastern mole, which is 940 meters in length up to the jetty, does not belong wholly to the free port, being divided length wise nearly in the center by the grillage that completely surrounds and isolates the grounds of the port. The method of executing the work was quite interesting, everything having been reclaimed from water, and the terrepleins rising from depths as great as 4 meters. A portion of the wharves are of granite, and certain of them of piles faced with metallic plates
Railways intersect all the wharves, which possess a superficies of 36 hectares and a length of 3,660 meters. They connect with the Danish system. The sheds and stores are numerous, are provided with elevators and are constructed of fireproof materials. At the southwestern corner of the great southern basin there is a central station of electricity that distributes power to the elevators, cranes, etc., installed upon all the wharves, and that afford a profusion of light every where. We must not forget a vast grain elevator 38 meters in height and 50 in length provided with carry ${ }_{i n}$ ng belts, the offices for the brokers, the dormitories

When all theolive oil has been incorporated, add the ose water freely, then the spirit of rosemary, and inally the remaining portion of the ammonia. It will be found that the amount of liquor ammonix ort. necessary in the first instance will not exceed 4 fluid drachms. The cream color of the lotion is pro duced on adding the remaining portion of the am monia, and the ewulsion so made will keep perma nently without a sign of decomposition or separation. Twenty minutes should be the time occupied in manipulation.

Scientific Teaching as to Alcoh
Evidence as to the action of alcohol upon the human body has been collected, not by hysterica prohibitionists, but gathered from the laboratory, the autopsy room and the bedside. One series of facts open ng a decidedly new field has been obtained through the works of the experimental psychologists. Through the efforts of some of these gentlemen-and we may men tion particularly work done at the Heidelberg Uni versity-it seems to be established that alcohol has an effect in dulling simple mental processes, such, for ex mple, as learning by rote, simple arithmetical calcu ations, and the simpler association of ideas. An other series of facts which tend to show the evident effects of alcohol is that which have been collected by students of heredity, particularly the relation of heredity to degeneration in families. The French alienists, in particular. have shown that one of the most prominent of the factors in leading to the devel opment of mental and physical degeneration is the ase of alcohol, and it is further urged by these inves tigators that alcohol has more than an individual or family effect, that it produces serious deterioration of he human race.
Of course, the effects thus claimed are all due to the abuse and excess of alcohol. Whether a furthe and more careful investiga tion would show that moderate use of alcohol leads, ventually, to somewhat imiliar results, we cannot ay. As regards the ay. As regar the evi nished by clinicians and pathologists, there has reall been nothing particularl new added in late years. Bu if one take an unbiased sur vey of the position of medical knowledge and of medica men toward alcohol, and compare it with that held by them fifteen years ago we feel sure that he will see that the feeling against the use o t is much stronger. This i because there has been gradual accumulation of fact carefully ascertained and horoughly proved, demon strating the ill effects of the
or the laborers, and the storage warehouses for the hips. The Port Society has the rig nts upon the merchandise deposited
What will doubtless permit of the great develop ment of the new port is that the charges are reduced to a minimum. A ship of 1,000 tons will have to pay but 252 crowns, while the ? charges formerly amounted to 1,843 . It must be taken into consideration, too, that Copenhagen is but very rarely frozen in, and that the entrance to it is always possible, the tide being almost null. Some German companies have already installed regular services between America and this port as the head of the line, and the Danes flatter themsel ves that they will see their magnificent maritime establish nent become for Northern Europe the general entrepot f the products of America and Western Europe.-L Nature.

A Famous Hair Lotion

The Pharmaceutical Journal states that the origina cormula for the so-called Dr. Locock's hair lotion is Expressed oil of mace, 4 ounces; ol. olivæ, 16 fluid unces ; liquor ammoniæ fort., 16 fluid ounces; spirit osmarini, 32 fluid ounces; aquæ rosæ, to 2 gallons (imperial). The lotion was first prescribed by Mr Alexander, the celebrated oculist, for his wife, and it proved successful. Dr. (afterward Sir Charles) Locock, being an intimate friend. introduced it first in his own family, and afterward recommended it extensively among his numerous lady patients-hence the name. The art of dispensing the lotion consists in thoroughly beating up the expressed oil of mace with a wooden pestle, adding the olive oil in fairly large quantities at a time, and very small quantities of trong ammonia to saponify each such addition Toward the middle of the process the oil of mace assumes a granular appearance of a reddish color. Should it not do so, or should the mace be converte nto a gelatinous mass, further manipulation may be

BIRD'S EYE VIEW OF THE NEW PORT OF COPENHAGEN. drug. It is for the reason that the position of medical men regarding the use of alcohol has been always conservative and never fanatical that the present slight shifting of the front deserves the at tention of our law makers and of all of those citizen who are interested in good government and in the social problems of the day.

Ancient Glass Maker

The glass blowers of ancient Thebes are known to have been as proficient in that particular art as the most scientific craftsman of the same trade of the resent day, after a lapse of forty centuries of so-called "progress." They were well acquainted with the art of staining glass. and are known to have produced that commodity in great profusion and perfection Rossellini gives an illustration of a piece of stained glass known to be four thousand years old, which dis played artistic taste of high order, both in tint and design. In this case the color is struck through the vitrified structure, and he mentions designs struck en irely in pieces from one-half inch to three-quarter inch thick, the color being perfectly incorporated with the structure of the piece, and exactly the same on both the obverse and the reverse sides. The priests of Ptah at Memphis were adepts in the glass maker's art, and not only did they have factories for manu acturing the common crystal variety, but they had earned the vitrifying of the different colors, and the mitating of precious stones to perfection. Their imi tations of the amethyst and of the various othe colored gems were so true to nature that even now after they have lain in the desert sands from two thousand to four thousand years, it takes an expert to dis tinguish the genuine articles from the spurious. It has been shown that they used the diamond in cutting and engraving glass. In the British Museum there is a beautiful piece of stained glass, with an en raved emblazonment of the monarch Thothmes III who lived 3,400 years ago.

Sand and Cement.

As a contribution to the literature upon the subject of strength of mortar as influenced by the size of the particles of sand used in mixing, Mr. A. S. Cooper, United States assistant engineer, recently published a description of tests made by him to compare fine beach sand with the coarser varieties in the Journal of Franklin Institute, from which the following extracts are taken.
During the construction of a mining casemate at Fort Pulaski last year, the question arose as to the advisability of using fine beach sand instead of coarse river sand, on account of the greater cost in obtaining the latter. The writer took the position that the fine sand would be nearly as good, in fact good enough, and as its employment was estimated save at least $\$ 1,000$ in the total cost of the work, a short series of experiments was made, which, to the astonishment of all connected with the work, proved the fine sand to be slightly stronger than the coarse. These results were spoken of as being opposed to those obtained by all previous experimenters, and this fact induced the author to investigate the question in a more thorough and scientific manner.
The first matter to be settled was the method of working in order to eliminate as many uncertainties as possible. Where close figures are to be expected, a slipht inaccuracy in the work might lead to erroneous conciusions. After looking over all of the different methods, the following were finally adopted as being the most suitable for this work.
The sand was first graded by means of thirteen sieves, ranging from 8 to 140 wires to the lineal inch, and the grades indicated by the two sieves used. The grade 812 , for example, means that the sand in this grade passed a sieve with eight wires to the inch, and was held by one with twelve wires. It was concluded to mix the mortar rather dry, about the consistency of moist snow, so as to be able to handle the briquettes immediately after moulding them. It was also believed that a dry mortar would give more even results under uniform pressure than a wet one. The sand and cement were first carefully weighed, then they were mixed dry by means of a square box with a rod run through the corners, after the manner of General Q. A. Gillmore's concrete mixer. The water was measured with a graduated glass, and mixed into the cement and sand on a stone table with a
trowel. If the mortar appeared too dry, more water was added, and if too wet, note was made of the fact, and the set proceeded with. In nearly all cases enough mortar was made at one mixing to make eight briquettes. Four of these were broken at the end of a week, and the remainder in eight weeks. As a difference of one per cent of water in the finished mortar could not, in all cases, be detected, a series of tests was made to determine the effect of such variations. The results proved conclusively that slight variations in the amount of water might cause considerable differences
It should also be borne in mind that some cements and some sands of the same size require more water than others to vield a mortar of the same consistency. Generally speaking, fine sand requires more water than coarse, and natural cements more than Port lands. The briquettes were moulded in brass moulds of the form recommended by the committee of the American Society of Civil Engineers in 1885, but were not pressed in by hand as recommended by this committee. The method used by Professor Charles D. Jameson was adopted. Professor Jameson put his mortar into the moulds under a uniform pressure of 150 pounds per square inch, while in this work 200 pounds was used. The press consisted of a simple lever arranged in such a manner that when pressure was applied nothing but vertical pressure would be transmitted to the briquette.
Generally speaking, the coarser the sand, the stronger the mortar made from it; but the difference between the grades below $30-40$ are so slight that, as far as sizes are concerned, they might be considered
in one class. There seemed to be a tendency toward in one class. There seemed to be a tendency toward
an increase in strength with grades below $100-120$, but so few samples of these grades were obtained that this slight increase may be put down as accidental. There is an unmistakable indication of weak ness in the upper grade, 8-12.
It is apparent that the specific gravity of all of the various kinds and grades of sand tried are not materially different, and that, therefore, the difference found between the weights of equal volumes are principally due to the different percentages of voids. It is further apparent that the smaller the grade, the greater the percentage of voids in loose sand, and vice versa while in well packed sand there is practically no difference in percentage of voids. These results indicate that uniformity of mortar briquettes for tests can be obtained only by either measuring the sand while well packed or by weighing.
Conclusions.-(1) Other things being equal, coarse sands are better than fine sands for cement mortar up to the grade $12-16$, or about $\frac{1}{12}$ of an inch in diameter.
2) Below the grade $40-50$, or about $\frac{1}{80}$ of an inch in
diameter, there is no practical difference in the value of the different sands, as far as the size is concerned. (3) The shape and condition of the surfaces of the grains of different sands has as much to do with their value for cement mortar as the size.

Power Plant of the Niagara Falls Hyd Power and Nanufacturing Company.

In view of the efforts being made to utilize the ra pids of the St. Lawrence and the Ottawa along the shores of the island of Montreal, for the purposes of supplying power and electric lighting to manufacturers and others, the following description of the powe plant now being constructed by the Niagara Falls Hydraulic Power and Manufacturing Company will be of interest to the public.
The hydraulic basin from which water is now taken for furnishing power to the various mills supplied with power by this company is located parallel to and about 300 feet back from the edge of the high bank of the Niagara River on the Canadian side. For this new plant the water will be taken in an open canal from this hydraulic basin to a forebay 30 feet wide and 22 feet deep, which is now being built near to the edge of the high bank. From this forebay, penstock pipes built of flange steel, eight feet in diameter, conduct the water down over the high bank 210 feet to the site of the power house on the sloping bank at the edge of the water in the river below the falls.
The site for the power house is now being cleared broken and disintegrated rock mixed with huge bowlders which have fallen over the bank in past ages covered the site in places to a depth of 75 feet. The work of clearing this material from the site of the power house, which is now nearing completion, has been largely done by means of a giant or monitor. This is the machine so extensively used in the gold mines of the West for excavating by means of a stream of water. The machine in use at this point is the first used in the East. Below this debris is a stratum of Medina sandstone, on which the power house will stand.
The building will be 60×100 feet, the intention being to add to the length of the building (60 feet) and place other wheels, fed by separate penstocks, from the same forebay as above as demand arises. There are four turbine wheels of the horizontal type, furnishing about 8,000 horse power to be located in the first floo of the power house. These wheels will work under a head of 210 feet, the highest head under which water has ever been used for power in the quantity proposed in this plant. The pressures exerted by water under this head are enormous, and every detail of the penstock and waterwheels must be designed with the reatest care to hold it
The penstock leads from the forebay vertically about 135 feet to the top of the sloping bank, thence down the slope to the side of the station next to the bank making the total length of the eight foot pipe about 240 feet. Into the building the pipe, 10 feet in diameter, runs horizontally suspended over the tailrace. The thickness of the steel is fifteen-sixteenths of an inch All horizontal joints are butt strapped, held with three rows of rivets on each side. The cross seams are all double riveted. The necessity for strong work in his pipe will be seen when it is remembered that the otal pressure on the end of the pipe exceeds a million pounds. From this horizontal portion of the penstock the water is taken directly up through 60 inch valves on to the waterwheels, which are supported upon iron beams stiffened by braces into the side of the tail
are The four wheels for this plant are being buil by James Leffel \& Company, of Springfield, Ohio under general plans and specifications made by the engineer of the Niagara Falls Hydraulic Power and Manufacturing Company. Three of these turbines are specified to generate each seventeen hundred horse
power under a head of 205 feet, which is the ninimum head estimated as obtainable, and to run at a speed of 250 revolutions perminute. As the ordinary head will
be from 210 to 215 feet. the power of these wheels will be from 210 to 215 feet, the power of these wheels will
be from 1,800 to 2,000 horse power each.-Canadian Journal of Commerce.

Queer Kinds of spectacles.

Spectacles, to enable the user to see objects near at hand or at a distance, are made in a variety of forms. In a common form the glasses are in two parts, joined at the center, the upper halves being of a power suited to distance and the lower halves to reading. Some times a piece is cut out of the glass and a piece of a
different power is put in its place. Sometimes the variation is made by cementing a wafer of glass over a part of the spectacle glasses, and sometimes by prinding away a part of the spectacle glasses. There are made also spectacles with crescent-shaped glasses, the upper part of the glass being cut out entirely; the wearer reads distance the glasses and looks over them to see at a that are like glasses with the upper halves cut off ; the wearer looks down through the glasses to read, alid If an see over them without effort when he looks at the congregation.

Poisons of Putrid Fish.

In a short article, incorporated in the Bull. U. S. Fish Commission recently issued, Dr. J. Lawrence Hamilton points out the connection between foul fish and filth diseases. Beginning with cholera, he notes the out break of this disease in 1893, in the fishing ports of Grimsey and Hull, and instances cases of deaths which occurred from mussels, cockles and oysters from those infected ports.
It is well known that fishing populations, from their slovenly and dirty habits, are more prone to endemic as well as epidemic affections. The author refers to Astrakan, the seat of the sturgeon and caviare indus tries, as a case in point. Statistics show that the population of this place would become extinct were it not recruited from external sources. Daring the win ter of 187879 , the plague devastated the place, and the worst and most fatal cases were among the laborers employed in fish salting; who live under very miserable conditions. The price of bread being beyond their reach, they subsist chiefly on the leavings of the inferior parts of the prepared fish. Formerly, government rules enforced that the unused remains of the prepared fish should be thrown directly into he water, but now these, collected and accumulated in masses, are left to rot in and about the banks of the rivers under the heat of sometimes an almost tropica sun. The local atmosphere is further vitiared by many fat boiling, fish oil, isinglass, etc., works. Dur ing the five years preceding the outbreak of placue in 1878, enteric fevers, measles and smallpox were epidemic, while scarlet fever raged in 1876-77. Previous to 1878, the town of Astrakan, during 22 years, had suf fered from rine epidemic attacks of cholera and thre of enteric fever.
Such skin diseases as elephantiasis, ichthyosis, and beri-beri are suspected of being produced by a com bination of fish, filth and poverty.
Wounds caused by the handling of decomposed fish are often very serious. The author gives a list of such cases. The Norwegian whalers take advantage of this fact by using prepared putrefactive poisoned harpoons The whales are driven toward shore, surrounded by a net to prevent escape, and then struck with the poisoned harpoons. After twenty-four hours they show signs of exhaustion, probably through septic poisoning, and are readily captured. The harpoons are recovered and carefully preserved, without wiping. for future use

The importance of the question of putrid food cannot be overestimated; hence the author's strong lan
guage in urging a better supervision of the fish guage in urging a better supervision of the fish markets. Especially does he condemn the practices of leaving fish ungutted and unbled until sold, and of keeping fish soaked and sodden with water to make the skin look bright.
The foul condition of the boats, and of the boxes in which the fish are shipped to market, and the unsani tary condition of Billingsgate Market, are described in disgusting detail, and suggestions are given for, a least, mitigating these evils.
The infection of fish by impure preservatives, such as ice made from impure water and dirty salt, and also bacterial infection, are referred to. In this connec tion the author remarks that "the cleanliness in the United States caviare factories is unknown in southern Russia, the home of astounding dirt and disease, augmented by the most hideous poverty and ignorance."
It has been supposed that prolonged soaking would ender diseased animal food innocuous, but it would seem, from the experiments conducted by Prof. Pamem and again by Dr. Bremiton, that the vitality of poisons derived from putrid and other animal matter, though weakened, is not destroyed by boiling. Accordingly, to avoid all possible danger of the use of condemned food, the author recommends that it be burnt in pro perly constructed local furnaces, and he includes, unde this head, particularly "fish, its offal and refuse.
Another important suggestion as to public welfare is for all fish to be blea, gutted, cleaned, and dry ai rozen at the place of capture. This would do away with many of the evils complained of, and is, moreover, a feasible business project. The author's inves tigations on this point warrant him in stating that every day in the year, two pounds of bled, gutted, cleaned, dry air frozen (imperishable) fresh herring about six fish) could be profitably retailed by coster mongers for one penny, or two pounds of sprats for one halfpenny.
A sharp arraignment of the "Billingsgate Ring," which Dr. Hamilton accuses of diminishing the marke upply of fish, in order to keep up the price, by getting he fish destroyed at various places along the coast and a brief description of the "koshering" process for preserving animal food, closes this interesting paper. The idea embodied in the article is, that foul fish is one of the most unwholesome, disease producing facfors in existence, but the conditions that result in such food being put upon the market are not necessary, but we due to ignorance, carelessness and greed, and can e remedied at no preat expense (Bull. U. S. Fish Commission, vol. xiii, pp. 311-334.)-Aner. Naturalist.

the atlanta exposition.

(Continued from first page.)
obtained by looking eastward across the lake, or Clara Meer. Our engraving, the view of which was taken from this point, shows the design of the architect, Mr. Bradford L. Gilbert, to great advantage. The total length of this building is 262 feet, with a widih of 85 feet. Exhibits of the latest electrical novelties are shown here, including a large contribution from the Bell Telephone Company's works.
In one of the corners of the Government building exhibit of the United State Fish Comin which forms the subject of the lare view thi page. Tanks of fresh water on one side of the walk the Navy Department designs were not to be departed nd salt解 being lighted from the outside, are filled with rare and ington State. The price to be paid Messrs. Moran is beantiful varieties of fish and turtle, affording a novel $\$ 160,000$. The displacement is 130 tons, and the enand interesting comparison, of which the ightseers seem neve to tire.

A Mountain Railroad in India A mountain rail road of great strategic value has just been completed by the British gov ernment in the In dian frontier. It runs through the famous Bolan Pas amous Bolan Pas -in which so many perished-to the important post of Quetta. Ten years ago a railroad was opened from Sibi to Quetta, but this has proved a complete failure in consequence of rrequent andslides, Thenew ad runs over old one at the start and finish, but the sixty miles in the middle, which traverse the pass, constitute a short cut, and have been constructed in the face of extraordinary en gineering difficulties. The highest point of the line is at Kolpur, 5,463 feet above Sibi, and seventeen tunnels, varying from 100 to 1,000 yards, have been cut through rock or clay where the foundation seemed surest Of these tunnels. that through Panir Hill was the most difficultand important. It is 1,000 yards in length. If the tunnels on this line are important, the bridges are not less so, the main object to be achieved being the defeat of the Bolan River, which when flooded becomes a torrent, sweeping all ewbaukments and bridges before it. There are many
bridges of only a few yards in length, but the two most |gines, triple expansion, are to develop 2,000 horse important are those called the Hanar and the Ocepur. These are each more than 150 yards in length, and they are 65 feet above the river when in torrent, and are practically secure against the worst floods. To give an idea of the difficulty of the route it may be mentioned that in the most difficult section of all-between Hirok and Kolpur-the Bolan ravine is crossed nine times in four miles.
> c Funeral Trains.
> Managers of Chicago electric street railways are preparing to cater to funeral parties. Somber colored cars will take the place of hearses and the mourners will follow in trailers instead of carriages. The Calumet Railway Company will have a funeral car running in about a month. The car above the trucks will be black, and the trolley pole will be wound with crape. power at 412 revolutions. They are to be four cylinder, 12 inch, $191 / 2$ inch, and two of 22 inch diameter by 1 foot 4 inch stroke. The boilers are of the water tube type, the grate area being 95 square feet and the total heating surface 5.120 square feet. The total of machinery, including everything, is restricted to 60 tons. The engines, although vertical, are not to be placed opposite each other, as is the universal practice, but in separate compartments, the one abaft the other, as with the old horizontal engines. The correspondent referred to adds that we have recently added to our navy ten first-class torpedo boats of 144 tons displacement, with twin screw triple expansion engines, giving a speed of $231 / 2$ knots. The average price paid was $\$ 72,455$, so that for the price being paid for the three,
the United States could get from British builders, the United States could get from British builders, even allowing for the difference in speed, five boats.

Inside the car, just back of the motorman, a bier will occupy one side. Opposite this are to be seats for the minister and pallbearers. The mourners will sit along the sides of the car. The motorman and conductor will be uniformed in black.

The Cost of the New American Torpedo Boats.
The contracts for the $241 / 2$ knot torpedo boats for the American navy have, according to a correspondent of he Glasgow Herald, been given out Two of the the Glasgow Herala, been given out. Two of them are to be built by the Herreshoffs according , cials, the owner receives a certificate of ownership, a copy of which is placed upon the public records. Thereafter this piece of property can be transferred with as little trouble or expense as personalty. It is not necessary again and again to employ lawyers to search the title, and the purchaser or mortgagee is absolutely certain that his property will not be swept Next in importance-next greater, perhaps-to these arty contests in so many States was the vote in Cook County, Ill., in favor of the introduction into the United States of the Australian system of land registration. This system, which for years has been advo cated by all disinterested men familiar with its work ings, provides for the public registration of titles and ublic quarantee of their validity. When the title public guarantee of their validity. a piece of property is once searched by public offi-.
 from him or become the subject of litigation. When the property is sold or mortgaged, the fact is entered upon the certificate and also upon the county records, and it may change hands until the certificate is can celed and a new one issued, without fur ther cost or danger to the possessor. When the system was first introduced into Australia, a moderate fee was re quired for the guar antee of titles, but the number of public losses was so much smaller than ex pected, and the guarantee fund grew so rapidly, that the fee was reduced to a few shillings. In Chic ago the registration fee will be two dol lars, and the fee for guaranteeing the title will be one dollar for each thousand dollars' worth of property. The guar antee fees being proportioned to the value, small holding can be acquired al most as cheaply as large. A strong effort was made to intro duce the system into England in 1889, bu was defeated by the solicitors, who open ly resisted the meas ure as "an attack upon their interest and privileges." When this intellect ual labor union to prevent the use of labor-saving machinery was successful, the London Economist served notice upon the legal fra ternity that its vic tory was only tem porary, and that the agitation would not stop until real estate had been made as easily transferable as personalty. In Eng ines, triple expansion, are land this prediction is as yet unfulfilled, and in merica, where as yet unfulilled, and in America, where a similar agitation has been rewas the law passed in Illinois last winter permitting counties to introduce the system if a majority of the voters so ordered. In Chicago the Real Estat Exchange had been demanding the introduction of the system for several years, and was a powerful nough body to secure the reference of the question to the people. The result indicates that the Austraian land registration system may rapidly attain a popularity equal to that of the Australian ballot sys The vote stood."For 82 50\%." "Apainst, 5.308 " Conservatives as well as Liberals, and rich as well as poor, were practically unanimous in support of a measure to remove the legal barriers to the wider distribution of real property and make its possession more valuable and more secure.-The Outlook.

THE STEAMER ST. PAUL

We give an engraving from a photograph of this new and splendid steamer which lately has taken her place on the American line of steamers plying between New Xork and Southampton.
The St. Paul is a sister ship of the St. Louis, launched in November last, and both are, in the words of Mr. Charles H. Cramp, "American from truck to keelson. No foreign materials enter into their construction. Thes are of American model and design, American material and built by American skill and muscle."
They are the largest vessels ever constructed in America, their principal dimensions being: Length over all. 554 feet ; length on load water line, 536 feet; extreme breadth. 63 feet ; moulded depth, 42 feet ; tonnage, gross register, 11,000 tons. The hull has a double bottom constructed on the cellular principle, subdivided by athwartship bulkheads and a longitudinal division arranged for heeling purposes, the whole available for water ballast. It is so subdivided by transverse bulkheads that even in the event of a collision and injury to a bulkhead, whereby two compartments might fill with water, the ship would still float in perfect safety. It has a straight stem and elliptical stern, topgallant forecastle and poop, with close bulwarks fore and aft, and promenade, saloon, upper, main and orlop decks, the three first named to be plated from end to end. The main deck will be plated for the length of the machinery spaces, and will have stringers and tie plates beyond. Wood planking will be laid on all decks. The promenade deck will remain unbroken the whole length of the vessel. The vessel will carry about 320 first-class and 200 second-class passengers and 900 emigrants.
The engines are quadruple expansion, designed to develop 10.000 I. H. P. each. The cylinders are 36, 50, 71, and 100 inches respectively in diameter, with a piston stroke of 60 inches, two sets of engines turning twin screws, which will be sectional, with three blades. Steam for the working of the main engines will be furnished at about 200 pounds pressure by six steel double-ended builers,-each 20 feet long and 15 feet $71 / 2$ inches diameter. When working under ordinary seagoing conditions, the vessel is easily capable of maintaining a speed of 20 knots per hour at sea.
The St. Paul has been especially arranged to be readily and quickly convertible into an armed cruiser of the United States government, in which capacity she will carry a number of six-inch rapid fire guns.

House Numbering.

Berlin is preparing to fete the hundredth birthday of the house number. In the London and Paris of a century ago ciphered houses did not exist. The coat of arms, the house name or the sign board were the only indications to guide our ancestors' wandering feet by day or dark. "Watchman, what of the night, and where the deuce am I ?" must often have been the cry of these bewildered minds. Berlin began to number houses in 1795. Starting from the Brandenburg gate, the Prussian ediles counted straight on to infinity, neither beginning afresh with fresh streets
nor numbering the houses by odds and evens. Vienna adopted the latter reform in 1803 and Paris followed in 1805.

A SCHOOL ROOM GYMNASIUM.

Educators seeking means by which to promote, with convenience and economy, the physical as well as the mental training of those in their charge, will be interested in the school room arrangeinent of gymnastic appliances shown in the accompanying illustration.

A SCHOOL ROOM GYMNASIUM.
The improvement forms the subject of a patent issued to Mr. Theodore Bessing, the manufacturers and owners being the School Gymnasium Company, of No. 226 South Spring Street, Los Angeles, Cal. The appliances comprise ring, wand, dumb bell, bar bell, and horizontal and parallel bars, the latter being very simply adjusted and dropped out of the way altogether, as indicated by dotted lines in one of the small figures. Another view is a section representing the attachment of the bar bracket and combination rack to a desk. The whole arrangement is compact and does not pro ject into the aisle when not in use. The improvement has received the warm commendation of numerous teachers and school superintendents.

A Great Sailing Ship.

The Seaboard relates a curious incident with re gard to the iron vessel May Flint, said to be the largest sailing ship that ever entered the port of San Francisco. She is 361 ft . long, 43 ft . beam, 25 ft . in depth, has a registered tonnage of 3,287 tons, and was carrying at the time of the occurrence referred to 4,320 tons of coal, which brought her down in the water 23 ft . Her commander, Captain E. D. P. Nickels, reports that during a recent voyage his ship
encountered head winds and the usual rough weather near Cape Horn, losing her three to pgallant masts, three topsail yards and a number of sails, which were blown away. The passage from the equator was quite uneventful until the ship arrived off the port of San Francisco. The wind failing, the vessel drifted north close to Bodega Heads. Captain Nickels tried to work her round the point into Bodega Bay, but was unable to manage the great becalmed ship. So he let go the starboard anchor about half a mile from the beach. The wind was so light that the anchor held the ship, though she had only about nine fathoms of water under her stern. At this point the steamer Alice Blanchard came along, and seeing the great ship in such a dangerous position, offered to tow her off for $\$ 12,000$! Such a sum for throwing a hawser to the bow of a drifting ship on a calm day was a modest demand, to say the least of it. The demand then fell suddenly to $\$ 5,000$. Captain Nickels offered $\$ 160$ for the end of a tow rope, but the steam er, blowing her whistle as a salute, passed on, and her captain now passes as the meanest man on the coast.

Liquefaction of Gases.

Olszewski recentlysucceeded in producing a momentary liquefaction of hydrogen by allowing it to expand suddenly from 140 atmospheres' pressure, when cooled to about $-210^{\circ} \mathrm{C}$. with liquid air or oxygen boiling under a pressure of less than 20 mm . Its boiling point under atmospheric pressure was found to be- $2435^{\circ} \mathrm{C}$., only 30° above absolute zero. In a letter to Ramsay (Nature, October 3) he now announces that under the same conditions helium shows no sign of liquefaction. Its boiling point is therefore still lower than that of hydrogen, and it is the most volatile substance known. In view of the great difficulty in reaching still lower temperatures, it would seem that the present methods will have to be considerably improved before helium can be liquefied.

Staining wood Black.

A process that is much employed for the above pur pose consists in painting the wood consecutively with copper sulphate solution (1 per cent) and alcoholic aniline acetate (equal parts of alcohol and acetate). A very durable black-and the nearest approach to real ebony-is readily obtained by moistening the surface of the wood with dilute sulphuric acid (1:20), and subsequently applying heat. A temperature of $60^{\circ}-90^{\circ} \mathrm{C}$. suffices in a very few minutes to produce the desired result. An excellent black was obtained in this way on beech, bass, and boxwood; while a second treat ment with acid was necessary in the case of cherry, walnut, and birch. With oak and ash the results were not so good; and apple, and different varieties of pine, were still less amenable to the process, pine especially being unevenly stained. In order to afterward re move the acid from the wood, it might be well to thoroughly wash the latter with dilute soda solution, followed by clean water. It is unlikely that this method can be applied to any but small articles, be cause of the risk of possible fractures during the neces cause of the risk of possible fractures during the neces-
sary heating of the wood.-Badische Gewerbe-Zeitiung.

Who Has the Largest Bible?

The Evening Telegram puts the above query, and then proceeds to state that that of the Buddhists is in 325 volumes and weighs 1,625 pounds.
These sacred boolss are perfectly appalling in their
bulk. They are called the Tripitaka, the Three Baskets, and were originally written in Pali, a vernacular form of Sanskrit. They have been translated into many languages, such as Chinese, Thibetan and Manmany languages, such as Chinese, Thibetan and Man-
dshu. They have also been written and published in dshu. They have also been written and published in
various alphabets, not only in Devauagarie, but in Singhalese, Burmese and Siamese letters.
The copy in nineteen volumes lately presented to
the University of Oxford by the King of Siam contains the University of Oxford by the King of Siam contains
the Pali texi written in Siamese letters, but the lanthe Pali texi written in Siamese letters, but the lan-
guage is always the same; it is the Pali or vulgar tongue, as it was supposed to have been spoken by Buddha himself about 500 B . C. After having been preserved for centuries by oral tradition. it was reduced for the first time to writing under King Vattagaed for the first time to writing under King Vattaga-
mani, in $88-76$ B. C., the time when the truly literary mani, in $88-76 \mathrm{~B} . \mathrm{C}$. , the time when the truly literary
period of India may be said to begin. But besides period of India may be said to begin. But besides are books in the Sanskrit Canon which are not to be found in the Pali Canon, and vice versa.
According to a tradition current among the Southern as well as the Northern Buddhists, the original Canon consisted of 84,000 books, 82,000 being ascribed to Buddha himself and 2,000 to his disciples, writes Max
Muller in the Nineteenth Century. Book, however, Muller in the Nineteenth Century. Book, however,
seems to have meant here no more than treatise or seems
topic.

But, as a matter of fact, the Pali Canon consists, according to the Rev. R. Spence Hardy, of 275,250 stanzas, and its commentary of 361,550 stanzas, each stanza reckoned at thirty-two syllables. This would give us $8.802,000$ syllables for the text and $11,569,600$ syllables for the commentary. This is, of course, an enormous amount: the question is only whether the Rev. Spence Hardy and his assistants, who are responsible for these statements, counted rightly. Professor Rhys Davis, by taking the average of words in ten leaves, words for the Pali Canon, which in an English trans. lation, as he says, would amount to about twice that number, or $3,505,600$ words. Even this would be ample for a Bible; it would make the Buddhist Bible nearly five times as large as our own; but it seems to me that Spence Hardy's account is more likely to be correct. Professor Rhys Davis, by adopting the same plan of
reckoning, brings the number of words in the Bible to about 900,000 . We found it given as 773,692 . But who shall decide?
What the bulk of such a work would be we may gather from what we know of the bulk of the transla tions. There is a complete copy of the Chinese translation at the India Office, in London, also in the Bodle ian, and a catalogue of it, made by a Japanese pupil o mine, the Rev. Bunyiu Nanjio, brings the number of separate works in it to 1,632 . The Thibetan translation, which dates from the eighth century, consists of two collections, commonly called the Kanjur and Tan jur.

The Kanjur consists of 100 volumes in folio, the Tan jur of 225 volumes, each volume weighing four or five pounds. This collection, published by coummand of the Emperor of China, sells for $£ 630$. A copy of it is found at the India Office. The Buriates, a Mongolian tribe converted to Buddhism, bartered 7,000 oxen for one
copy of the Kanjur, and the same tribe paid 12,000 silcopy of the Kanjur, and the same tribe paid 12,000 sil-
ver rubles for a complete copy of both Kanjur and Tanjur. What must it be to believe in 325 volumes, each weighing five pounds-nay, even to read thro'gh such a Bible!

The Formation of Coal.

Carbon is the principal element in the composition of coal. A good specimen of hard dry anthracite would show from 91 to 98 per cent of carbon. The average anthracite of commerce, known technically
as semi anthracite, would show from 85 to 90 per cent, and the bituminous and semi-bituminous varieties would range all the way from 50 to 85 per cent. The amount of volatile matter contained increases from three per cent in the anthracites to 38 per cent in the kinds of coal in combustion gives practical emphasis kinds of coal in combustion gives practical emphasis
to the difference in composition. The anthracites burn to the difference in composition. The anthracites burn ly ignited, give off no smoke, and leave a comparatively small percentage of ashes. The bituminous classes, on
the other hand, burn with a continuous yellowish the other hand, burn with a continuous yellowish
flame, give off considerable smoke, and leave a large percentage of ashes.
That coal is a vegetable product may be specifically proved. Indeed. ocular demonstration may be had of that fact. For while to the naked eye the structure of a fragment of mineral coal is purely amorphous, yet if
that fragment be made so thin that it will transmit light, and if it be then examined through a powerfu microscope, its vegetable structure will be readily distinguished. Heat, pressure and confinement have
produced the transformation. It is simply a process
of smothered combustion. The operation may be watched in any peat bog. A peat bed is simply an accumulation of the remains of plants which have giown and decayed, and have been year by year buried more deeply under succeeding growths. Remove the upper layer, and you find peat with its 52 to 66 per cent of carbon. The deeper you go, that is, the older and longer buried the product, the better will beits quality for fuel. If this process of deposition should continue through many geologic ages, the result would doubt less be true coal
It is known that during the carboniferous age the area now covered by the Middle, Southern and Western States was little more than a vast marsh bur dened with the most luxuriant vegetation. The conditions were all favorable for the rapid and enormous growth of plants. The soil was rich and moist. The heat was greater than exists to-day at the torrid zone. The humidity of the atmosphere was great and constant. The air was laden with carbon. Plants luxuriated in it. They grew to enormous sizes Plants which in our day are mere stems, a fraction of an inch in diameter, were in that time represented by trees from one to three feet in diameter and from 40 to 100 feet in height. This mass of vegetation, including more than 500 different species, was constantly growing, falling and decaying, each succeeding growth forming a still richer bed for the vegetation to follow.
If the theory propounded by Laplace is correct, our earth was at one time a ball of liquid fire. Cooling and condensation progressed from the surface toward the center. Contraction of the earth's crust necessa-
rily followed, and vast areas of land sank and were covered by the waters. This process was still going on during the carboniferous age. The submergence of a bed of this incipient coal meant the cessation, for a
time, of regetable growth from its surface. That sur time, of vegetable growth from its surface. That sur face was covered instead by the sand, mud and gravel washed over it by the waves, by the drift from higher levels, and by the limestone deposits swept up to it from the sea. When contraction ceased for a time and the earth's crust again became stable, the waters be gan to recede, leaving behind them great wastes of mud and sand. And, following this slow recession to the sea, vegetation crept once more over the surface of
the land, the soil grew rich with the products of decay, and plant life reigned and rioted anew. But cooling and contraction of the earth's body were going continuously on, and submergence followed again and again, each bed of vegetable matter, thick or shallow being covered in turn by its layers of sand and silt.
In this submergence and burial of the deposits of th coal era we find all the conditions necessary for the transformation of vegetable matter into coal. Only from ene-ninth to one-sixteenth of the mass of vege-
table matter subjected to this heat and pressure was retained in the form of coal. This was largely carbon, the hydrogen and oxygen having been expelled. As we have already seen, the anthracite coal contains a much larger percentage of carbon than does the bituminous, and a much less quantity of volatile matter Of the immense coal areas in the United States only an extremely small percentage are of the anthracit variety, and these all lie in the State of Pennsylvania of a small Allegheny Mountains, with the exception of a small field in Rhode Island. It is not thought
that the vegetable life which entered into one class differed in any material respect from that which enered into the other.
The presumption is natural, if not conclusive, that prior to the close of the carboniferous age all the coa deposits had been bituminous in character, but that the violent movement of the earth's crust at the time of the Appalachian revolution, the enormous pressure and intense heat, were sufficient to expel a large portion of the volatile matter from the bituminous coa beds, and otherwise change their character into what we now class as anthracite. In the slate strata imme diately overlying each coal seam, it is common to find the impressions of twigs, nuts, seeds, leaves, the most
delicate fern tracery, and the trunks of great tre delicate fern tracery, and the trunks of great trees mashed flat between the layers; while in the softer roots, trunks, branches. leaves, seeds, and all trans formed into like material with that by which they were surrounded. One of the results of the violen disturbances of the earth's crust already noted was to leave great rents in it across the lines of strata. These rents are known geologically as fissures They have faces which are either parallel or inclose a wedge
haped cavity. Sometimes igneous rock from the shaped cavity. Sometimes igneous rock from the molten mass below was forced up into these openings
sometimes the cavities were filled with drift and rock fragments from the surface. In either case the mass became hard and compact, but with a character materially different from the rock on either side, the formation of which was contemporaneous with that of the coal.
The mind must exert itself to the utmost in orde fully to realize throngh what vast periods of time the processes were continued by which the coal of to-day
was formed. Still more difficult of comprehension is
the fact of the enormous amount of vegetable matter which entered into the composition of these beds of coal. In the Pottsville regions in Pennsylvania the average thickness of the combined anthracite coal seams is 120 feet. In order to make up this quantity of resultant coal, there must have been an average thickness of vegetable deposit amounting to at least 1,200 feet.New Science Review.

Graduating Glass Measures.

Graduations on glass bottles, measures, etc., may be easily engraved with the aid of a few small files, a set of six of which, of various shapes, can be bought at most tool shops for about one shilling. A small bot tle of turpentine in which some camphor has been dissolved is also very useful as a lubricant, although it is not absolutely necessary.
Suppose it is wished to graduate a bottle which will hold about ten ounces or half a pint of water. First fix a strip of gummed paper, about three-quarters of an inch wide, vertically on the outside of the glass, taking care that it is long enough to come slightly above the place where the ten ounce mark will be When the gum is dry and the paper slip firmly secured to the glass, pour exactly ten ounces of water into the bottle, place the latter on a flat table, and when the surface of the water has become level and perfectly steady mark the height in pencil on the paper strip. Now take a dry graduated two-ounce measure, pour two ounces of water from the bottle and mark the level of the eight ounces remaining; in the same way register the position of the six, four and two ounce marks Then empty the bottle and proceed to refill it at one ounce at a time, marking the level of the water at each ddition ; every second ounce ought to agree with the marks made at first, and in this way the correctness o he measurements will be checked.
When satisfied with the accuracy of the graduations, file with one edge of a fine triangular file through the paper where each mark occurs, until you feel that the tool is cutting into the glass. The marks can be made any length you please; the file caunot slip, as the pa per will keep it in the proper place. When all the line have been well cut in, the paper can be removed and the marks deepened or made wider by using a differ ently shaped file; the angle of a square or the edge o a very thin flat one dipped in the turpentine and cam phor will make good broad lines that can easily be seen. If it is wished to number the graduations, Roman numerals are the easiest to make, hut they should all be penciled on the paper and cut through, as before described. It will generally be found on trial that two or three of the sinall files will easily cut the surface of the glass when used at the point like pencils and in this case any sort of numerals or letters can easily be engraved, provided that they are first started hrough the paper.
The turpentine should not be used until the paper has been remored, as it is important to keep the latter dry, but afterward the files will work much more easily and quickly with the aid of the lubricant. If thick, bold lettering is required, it should be drawn on the paper and the thick lines removed with a sharp pointed penknife. In most cases it is better to cut through all pencil lines with a sharp knife before filing, as this prevents the files from becoming clogged.
If very broad lines are required, it is as well to commence them by making two thinner lines the proper distance apart; the surface of glass between the lines can then be easily chipped away with the end of a file.
There is not the slightest difficulty with any part of the operation excepting when elaborate writing is attempted, and even this can be easily mastered by any one who is accustomed to use the pencil. The precautions to be observed are: First mark upon the paper very line that is required to appear upon the glass, and do not remove the paper until every line has been ut, or rather scratched, on the surface of the glass. Special care must be taken to insure this in the case of lettering, as it is very difficult to remedy omissions in the absence of the paper.
Numbers or lettering will always look neater if placed between two parallel lines, which need only be lightly scratched on the glass. These will, in a great measure, prevent the tool from overshooting the mark when deepening and picking out the body of the letters, and will also insure that the latter will all be of the same height.
If these instructions are carefully carried out, with very little practice measures and bottles can be easily graduated in such a manner as to give no evidence of the work of an amateur engraver.-Photo Notes.

Tobacco Boxes.

Formerly the plugs were pressed into the boxes by powerful leverage, which necessitated great strength in the box. Most of the manufacturers now have iron or steel moulds, into which the freshly made plugs are pressed into a body just large enough to exactly and
evenly fill the wooden boxes in which they are marketed. This allows the use of lighter boxes without cleats or corner pieces.

A Tree bridge.

To the Editor of the Scientific American
I send a copy of a photograph of a novel bridge, which may interest your many readers.
The bridge is one Douglas fir log, 4 feet in diameter and 54 feet between supports, and is used by prospectors to cross a stream on the western slope of the Cascade Mountains.
The view shows the Washington State Road Commission crossing the structure. This photograph is one of a number of kodak
views I took during the past summer while exploring a route for State wagon road across the Cascade Mountains.
B. W. Huntoon

Engineer State Road Commission. Fairhaven, Wash., October 22, 1895.

Dalmatian Insect Flowers. According to De Boisse, the active principle of Pyrethrum cinerariæfolium is a yellow resin soluble in ether, insoluble in water and very slightly soluble in alcohol, carbon bisulphide, or fatty bodies. It is readily decomposed by alkalies. To extract the active principle the author exhausts the flowering tops of the plant with ether. The principle thus extracted is described as being of the color and consistence of virgin wax, with color and consistence of virgin wax, with
an apple-like odor. From the fresh plants an apple-like odor. From the fresh plants
the active principle may also be extracted the active principle may also be extracted
by macerating the finely chopped flowering tops with half their weight of ether, vaselin oil, colza, or petroleum, according as the product is intended for medicinal or agricultural use. The mixture, after trituration, is allowed to macerate for seven or eight bours. It is then strongly pressed, the resulting liquid allowed to stand, and the supernatant yellow oily liquid separated \mid effect of the solar atmosphere. From the character and from the watery portion, which is rejected. When prepared with vaselin oil, the oily solution is useful for human medicine, being a powerful insecticide. The solutions in colza or petroleum have a wide application in agriculture to destroy insect parasites, being applied direct to trees or shrubs. Emulsified with forty times their volume of soot water, they may be used for spraying the twigs and leaves.-Rev. de Scient. Natur.

STREET CAR HOOKS FOR BICYCLES

One of the obstacles in the way of cycling in New York City, and in other cities, is the lack of facilities for the transportation of wheels on the street cars. Hundreds of wheelers, anxious to take a morning or an afternoon spin, are deterred on account of the long and dangerous trip required over stone pavements and car tracks before the open country roads can be reached.
The street car people make no provision for the cyclers, and will not permit their wheels to be carried on the platforms. They do things differently at Butte, Montana. There the street cars are provided with exterior hooks on which cyclers may hang their wheels, as shown in our photograph. The plan But with the invisible heat rays the problem was mor is a great success and is an accommodation greatly appreciated by all lovers of the wheel. It might be adopted very easily by all street car companies and would add considerably to their revenues.
In Brooklyn, N. Y., on Sundays and holidays the elevated steam railways have become so far liberalized that they admit wheelers and their wheels to the smoking cars, a charge of two extra fares being made for the wheel. Hundreds of cyclers avail themselves of the privilege.

We are indebted to the Street Railway Review for the photograph from which our plate was made.

Hollis W. Moore.
Hollis W. Moore died lat Olean. N. Y., on November 14. He was born at North Leverett, Mass., in 1832. Mr. Moore was well known as an inventor and patentee He was the manager of the International Steam Power Company, which manufactured his high pressure water tube safety boiler. He also invented the Black Giant shear punch and upset, the Ram's Horn spring for carriages, a patent circle for carriages, and other devices in the line of carriage work.

STREET CAR WITH HOOKS FOR BICYCLES.

A TREE BRIDGE.

 position of these lines the spectroscopic chemist is able to say what chemical elements in the gaseous atmo sphere of the sun are causing this absorption. But this visible portion of the spectrum com passes but a fraction of the total rays that are speeding to us from the great fountain of energy upon which the life of the earth and its fellow planets depends. Beyond the violet end of which moting chemical end of the visible scale-the deep red - there is other of invisible or dark rays which are only perceived by heir heating effects.Some idea of the importance of the "ultra red" may be gathered from the fact that it has been traced to a distance nearly ten times as long as the whole range of the visible or light-giving region of the spectrum. To learn the character of these mysterious dark rays, then, it is clearly necessary for science to fit itself with some new sort of eyes that can see what ordinary eves cannot -namely, heat rays and chemical rays. The photo graphic plate has answered admirably as an eye for th chemical rays, and brought out some wonderful facts difficult. Something in the nature of an extremely
delicate thermometer is here required, which will pick out all the fine absorption lines as colder spots in the spectrum. The beautiful instrument known as the bolometer has recently been used by Professor Langley in feeling for these absorption lines, which, being re gions from which the rays are stopped out, are, of course, colder than the remainder of the spectrum.

This bolometer, like all the finest applications of science, is an extremely simple thing. It is a strip of fine wire through which a feeble current of electricity is always flowing. This wire is slowly passed along the invisible gamut of the spectrum, and as soon as it comes to one of the absorption lines the spot is shown by a minute fall of temperature in the wire. This has an instantaneous effect on the flow of the electrical current. More current will pass through a cool wire than a warmer one, and the alteration is promptly shown by a delicate mirror gal vanometer, which flashes its mimic signals onto a slowly revolving photographic ribbon. In this way Professor Langley has been able to pick out and locate hundreds of dark absorption lines in the great invisible spectrum which lies beyond the red.
Not only is the absorption of rays by the solar atmosphere shown by the method, but the absorption lines of the earth's atmosphere are equally apparent. Dr. Huggins anticipates that the meteorologist will soon be applying the system to weather forecasts. Some final remark of the lecturer in regard to the photo graphy of the corona of the sun are of interest as indicating the enormous energy which is at work in the solar fur naces. He stated that fiery spurts of cal cium vapor (calcium is the metal of which quicklime is the oxide) have been photo graphed, extending in fantastic shapes to a distance of 280,000 miles from the sun's surface, and traveling outward at a speed of something like 20,000 to 40,000 miles an hour.

The Worlds Tallest structures.

The tallest chimney was built at Port Dundas, Glascow, Scotland, 1857 to 1859, for F. Towns end. It is the highest chimney in the world (454 feet) and one of the loftiest masonry structures in existence It is, independent of its size, one of the best specimen of substantial, well made brickwork in existence. In Europe there are only two church steeples that exceed this structure in height-namely, that of the Cologne Cathedral (510 feet) and that of the Strassburg Cathe ral (468 feet). The great Pyramid of (fizeh was origin ally 480 feet, although not so high at present. The United States outtops them all with its Washington Monument, 550 feet high, and the tower of the Phila delphia Public Buildings, which is 537 feet high.
The Eiffel Tower, at Paris, France, surpasses all ther terrestrial metal structures with its altitude of nearly one thousand feet. The "Great Tower," for London, England, in course of construction from de signs of Mr. Heury Davey, C.E., will outtop all metal tructures, being built of steel, and its extreme heigh will be 1,250 feet when finished.
The highest and most remarkable metal chimney in the world is erected at the imperial foundry at Hals brucke, near Freiberg, in Saxony. The height of this structure is 452.6 feet and 15.74 feet in internal dia neter, and is situated on the right bank of the Mulde meter, and is situated on the right bank of the Mulde,
at an elevation of 219 feet above that of the foundry works, so that its tota height above the sea is no less than 71175 feet. Th works are situated on the left bank of the river, and the furnace gases are con veyed across the river to the chimney on a bridge through a pipe $3,2271 / 2$ feet in length.
The highest artificia structure in America is the water works tower at Eden Park, Cincinnati, O. The floor of the tower, reach ed by elevators, is 522 fee above the Ohio River. The base is 404 feet above the stream. If the height of the elevator shaft be added to the observation floor the grand total height i 589 feet.
The highest office build ing in the world is th Manhattan Life Insurance Company, of New York City. Its height above the sidewalk is 347 feet, and its foundations go down 53 feet below the same, being 20 feet below tidewate level, making a total of 400 feet. The foundation consist of fifteen masonry piers, and are carrie by the same number of steel caissons. The latter were sunk to bedrock by the pneumatic process. The cantilever system was used for the foundation. Machinery.

RECENTLY PATENTED INVENTIONS. Engineering.
Traction Engine.-Edward Ingleton, Pottstown. Pa. This improvement provides an endless tread for the traction wheels, of such a character that
the tread of a wheel will be much enlarged over its circumference, the tread being adapted to be raised in such a manner that the traction wheel will turn practically on its own center when the engine is being steered. The ele-
vation and depression of the tread is accomplished autovation and depression of the tread is accomplished auto-
matically with the operation of the steering apparatus.
Flrnace Grate. - Edward P. East wick, Jr., New Orleans, La. This improvement relates to traveling grates or stokers which automatically receive their fuel and discharge their refuse, and provides means
for separating the unburned fuel from the ashes. At the or separating the unburned fuel from the ashes. At he discharge side or end of the grate is a hopper to receive
and retain ashes or refuse, and at its bottom is a valved opening and traveling converor, the opening being kept
sufticiently closed to prevent a too free admission of air sufficiently clos

Water Elevator. - J॰hn M. Treett, Casper, wyoming. This invention comprises a water wheel with elongated peripheral buckets having side and end openings, th latter closed by a spring-pressed
valve actuated by automatic mechanism. The wheel is valve actuated by automatic mechanism. The wheel is
designed to be mounted on floats to raise water from streams for irrigating and other purposes, the construc-
tion of the apparatus being simple throughout, and it tion of the apparatus being simple throughout, and
being adapted to run continuously without needing at

Device for Raising Ships.-John D. Cooper, Chebovgan, Mich. Submersible pontons are, according to this invention, lowered for attachment to a
vessel and emptied of their contents, the mechanism for vessel and emptied of their contents, the mechanism for cally controlled from a neighboring vessel. Floats on the floats may be connected with and controlled by the current from a dynamo on the vessel.

Railway Appliances.

Car Seat.-James M. Osgood, Beston, Mass. This is a chair with reversible and reclining backs, to serve as backs and leg rests, while the backs are so divided that each chair may be formed into a tete-
a-tete, with a half back facing in one direction and the a-tete, with a half back facing in one direction and the
other back in the opposite direction, both backs being ther back in the opposite direction, both backs being
simultaneously moved to a safety position. The backs and rests are also so arranged as to be readily adjustable and convertible into a couch or berth, the alternate chairs being raised to form upper berths, forming practically a
series of staterooms with a seat in the lower part, thus giving to each berth a separate dressing compart ment.

Electrical.

Telephone Transmitter.-Ignatius Lucas, Passaic, N. J. Two patents have been granted
his inventor, according to one of which the contact disks are embedded in a filling of loose material, preferably sliver or wool as it leaves the carding machine and pre-
vious to being felted, the filling being also in contact vious to being felted, the filling being also in contact
with the diaphragm and greatly softening the sounds for with the diaphragm and greatly softening the sounds for
transmission. According to the other improvement, a material composed of a base having granulated carbon tons of telephones and similar instruments, with the carbon in contact with the buttons, to insure a uniform and perfect transmission of sonnd, even if the transmitter be in a building subjected to unusual noise and jar

Mining, Etc.
SEparator and Amalgamator. Frank L. Fisher, Granger, Oregon. Upon a screw-
threaded standard, according to this invention, is a series of wheels with threaded hubs carrying troughs of progressively increasing diameters adapted to deliver from
one to the other from the top to the bottorn, a spreader plate on the top of the stanclard delivering into the upper trough. The troughs are filled with mercury, and the tailings flow over the edges of the upper troughs into the
lower ones, the sand being easily washed and the gold amalgamated.

Subaqueous Mining Machine. Henry W. and William W. Smith, Portland, Oregon. According to this improvement fluke wheels are arranged upon a vertical shaft within a tubular body, the power to
operate the shaft being supplied by any suitable motor, and the machine acting on the suction principle to carry upward by a strong current of water gold and other val-
uable minerals found in the beds of streams. The tubular body may be swung freely to place it in position for lar body may be swung freely to place it in position for wheel shaft may be lengthened as desired.

Agricultural

Thrashing Machine. - Franklin P. Mercer, Conway Springs, Kansas. In this machine the
grain is delivered to an elevator which conveys it to a grain is delivered to an elevator which conveys it to a
riddle, through which it is passed while being subjected riddle, through which it is passed while being subjected
to an air blast to an exit at either side of the machine, as desired, the straw being passed out at one end of the or exit for the grain. The machine has virtually two
thrashing cylinders, a lower one breaking the bundles and scattering the straw, while an upper cylinder acts in conjunction therewith to thoroughly thrash out the grain.
Bolter.-Niels Nielsen, Copenhagen Denmark. This invention relates to bolters having agy-
ratory motion in a horizontal frame, and is designed to reduce or prevent irreguler and injurious vibrations of the bolter frame. Automatic compensation is provided
for variations in the weight of material fed to the bolter, for variations in the weight of material fed to the bolter,
to maintain the bulter frame in equilibrium, and upward
and downward vibrations are provided against by a a vertical direction.

Miscellaneous.

Wagon Road Snow Plow.-Albert C. Plumley, Sherburne, Vt. A sled with long runners has of the runners, on each side, are pivoted rearwardl sloped cutter blades and wings, which may be readily raised and lowered, to cause them to engage with snow at different heights from the ground, so that the removal of a great depth of snow may be effected by degrees. Where the road is narrow, the wing and cutter blade on e side may be removed
Hose Clamp and Patch. - Aaron H. Forst, Louisville, Ky. For temporarily repairing burst clamp and patch cast metal parts, connected by a hinge, each of the parts lined with rubber, the parts being adapted to be brought together around a hose by acam-locking device and lever. The device is very simple and readily appliea, and
use on steam or hot water pipes the packing or lining is preferably made of material other than rubber-pref erably asbestos.
Metal Sash Rail Protector. Thomas B. Fultz and Rufus Huff, Sullivan, Ill. This is show windows move particularly applicable to shop or the protector being designed to cover the lower rail and furnish a seat for the pane. It is provided with a gutter for receiving the water or drip from condensing vapor on
the inner surface of the pane, the water being prevented he inner surface of the pane, the water being prevented
from contact with the sash rail proper and conducted of from contact with th
outside the building.

Table and Rack -J. Emil Dryfoos, New York City. This is a combination device adapted for arrangement as an ordinary table, or which may be
conveniently converted into a display rack on which conveniently converted into a display rack on which
goods may be advantageously displayed. The rack is goods may be advantageously displayed. The rack is
raised and lowered by hand pulls, and the top of the rack may be adjusted to different inclinations.
Line or Hammock Holder.-John Bohlen, Big Rapids, Mich. To effectively support and clamp clothes lines in a taut position and for holding line holder, consisting of but three pieces, very inexpensively made and put together. The holder consists of a device has a free lateral movement, accommodating it self to a line stretched diagonally.
Rain Water Conduit.-Walter Van Benthuysen, New Orleans, La. This is an automatically from a roof into a vessel other than the tank or cistern,
find but when the roof has been thus washed off, as at the commencement of a rain, a portion of the conductor, which is pivoted, is moved to a position to deliver the
remaining portion of the rainfall into the tank or cisremaini
tern.
Blackboard and Desk.-Louis Doll, Danbury, Conn. This invention consists of a black-
board supporting on its under side a game apparatus, afboard supporting on its under side a game apparatus, afording an educational appliance for children designed
to combine study with pleasure. The board is pivotally to combine study with pleasure. The board is pivotally
connected at its sides with braces pivoted on a fixed support, either face of the board being readily brought into ermost position.
Music Leaf Turner. - Frederick Leeds, New York City. This is a simple and inexpen-
sive construction for use with a piano, organ or other insive construction for use with a piano, organ or other in-
strument, or on a music stand, and in which sheet or bound music may be placed, the performer being then able to readily turn the leaves without interfering with bis or her playing. Any desired number of leaf-turning arms may be employed, the arms being so placed in en-
gagement with the laves that different leaves cannot gagement with the laves that different leaves cannot
follow each other from suction when one of them is rapfollow each o
idly turned.
Office Directrory.-Daniel Waide, San Francisco, Cal. This is a mechanical directory for
business buildings, comprising a casing with hinged glazed cover, there being hinged in the case a carrier frame which may be drawn out and supported at an
angle. A head block is designed to receive the words, angle. A head block is designed to receive the words,
"floor," "room," etc., and the case is adapted to receive indicator strips of wood to receive the names, one strip being readily substituted for another as desired.
Prism Pointer for Typewriters. Walter B. Dyer, Pottsville, Pa. This device has a body the typewriter basket and terminates at its forward end in a yoke, from the center of which an indicator leads to the forward portion of the typewriter basket. With this
improvement no disagreeable clinking sound is give improvement no disagreeable clinking sound is given
out with each stroke of the type keys, and the pointer out with each stroke of the type keys, and the pointer
adjusts itself automatically. The device also serves as a rest or support for and assists in preventing the curling

Printing Photographs in Colors -Edward R. Hewitt, New York City. This invento has devised a method of forming many-colored photographic prints by applying to a suitable backing a series of superposed films bearing different colors, correspond-
ing approximately with the colors of the object photofilms of different insoluble by exposure to light through a negative, and finally developing the picture by washing with an appro-

Dental Plugger.-Joseph R. Jones, Dtonagon, Mich. The holder frame of this plugger is especially adapted to receive and grasp any of the usual
forms of plagging instruments, and improved mechan ism is provided for supporting and manipulating the mallet, so that its operation may be more readily effected
and controlled by the operator. The blow given by the
mallet is a sharp welding blow, differing from a spring blow, the spring being used simply to retract the mallet without changes or adjustments.

Blouse or Jacket. - Henry Shrier New York City. This is a garment more especially de signed for boys' wear, and is arranged to permit of re versing the parts, to turn the soiled portions under and
bring into view a fresh, clean surface, also changing the appearance of the garment by different trimming the colors. The neck opening is cut low and has a detacha ble reversible collar, there being a reversible and detach able front piece.
Checkrein Swivel.-Julius C. Clausen, Hensall, Canada. This is a simple device readily atto turn in any direction, there being no danger of the trap separating from the swivel.
Horseshoe Pad.-Michael Hallanan, New York City. This pad has a yielding block at the heel provided with side extensions which terminate rear wardly of the nail holes, the extensions and the shoe lap each other. The pads are designed for use with shoes of different sizes and shapes, to prevent balling of snow, picking up nails or pebbles, etc
Note.--Copies of any of the above patents will be
furnished by Munn \& Co., for 25 cents each. Please send name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS
Modern Examinations of Steam EnGineers; or, Practical Theory EXPLAINED AND ILLUSTRATED. By
W. H. Wakeman. Bridgeport, Conn. American Industrial Publishing Com
pany. $1895 . \quad$ Pp. $\quad 272 . \quad 12 \mathrm{mo}$. Dia$\begin{array}{ll}\text { pany. } & \text { 1895. Pp. } \\ \text { graws. } & \text { Price } \$ 2 .\end{array}$
This work comprises full and complete answers to 300 questions for the use of eugineers and firemen, when pre paring to make application for examination for United
States government and State license and for the inStates government and State license and for the
formation of engine builders, boiler makers, etc. Although there are already books on the same subject, a work of this kind. when it is as practical as the present
one, cannot fail to have a large number of readers. The rules and formulas are simple and are accompanied with examples. The value of the work would have been en hanced by the insertion of illustrations. The author, being a practical steam engineer himself, well knows the
wants of the working engineer, and has put into this work such knowledge and information as is best adapted to their use, making it altogether one of the most complete and comprehensive guides for the busy workers in
the engine room, boiler works, and machine shops that the engine room, boiler works, and machine shops that

Elements of the Mathematical Theory of Electricity and Mag-
netism. By J. J. Themson, M. A., F.R.S.i Cambridge. New, York:
Macmillan \& Company.
1895.
Pp. Macmilian \& Company, 1895. Pp
504.12 mo . 133 figures. Price $\$ 2.60$.
The author is Cavendish professor of experimental
physics in the University of Cambridge, the stronghold of physics in the University of Cambridge, the stronghold of the mathematical sciences in England. With the excep-
tion of a few paragraphs, no more advanced mathematition of a few paragraphs, no more advanced mathemati-
cal knowledge is required from the reader than an accal knowledge is required from the reader than an ac-
quaintance with the elementary principles of the differquaintance with the elementary principles of the differ-
ental calcuius. It is not necessary to make use of adentan calcuius. It is not necessary to make use of and most important electromagnetic phenomena. The
study of these simple cases will in the estimation of the study of these simple cases will in the estimation of the
author be of advantage even to students whose matheauthor be of advantage even to students whose mathe-
matical attainments are sufficient to enable them to fol matical attainments are sufficient to enable them to for-
low the solution of the more general cases. The work low the solution of the more general cases. The work
will undoubtedly fulfilla useful purpose in our more adwill undoubtedly fulfilla useful
vanced institutions of learning.

Notes on Descriptive Geometry, WITH ExERCISES. By W. L. Ames.
Terre Haute, Ind. $1895 . \mathrm{Pp} .88$. 18mo. 86 figures. Price 50 cents. It is evident to all who have taken note of the trend of
the practice of mechanical drawing in the best draughtthe practice of mechanical drawing in the best draught-
ing offices that the use of the third quadrant in projecting will become universal. In the study of descriptive geometry, however, with few exceptions, the first angle projection is taught. The writer, realizing that the
methods taun methods taught should harmonize with the practical ap
plication in mechanical drawing as practiced, has for some time used the third angle in teaching descriptive geometry. There being no text books so arranged, notes
were prepared for the student's use. These notes revised were prepared for th
are now published.

The Art Ornamenter And Modern Sign Wrirer New York: Excel-
sior Publishing House. Small 4to. Price $\$ 2.50$
This work comprises over thirty good sized plates, giving alphabets, raised scrolls and other ornaments which
are useful to the sign writer. The scrolls are particularly are useful to the sign writer. The scrolls are particularly
fine. The alphabets include block, old English, Egypfine. The alphabets include block, old English,
tian, Roman script, German text, antique, etc.

The Practical Application of the Slide Valve and Link Motion to
Stationary, Portable, LocomoTIVE and Marine Engines, with
New and Simple Methods of ProNew and simple Methods of ProAuchinloss, 138. 8vo. 52 illustrations and plates.
Price $\$ 2$.

In the past twenty-five years this book has had a phe-
omenal sale, the present being the thirteenth (revised) nomenal sale, the present beng the thirteenth (revised)
edition. It has proved itself both a standard authority
with with mechanical engineers and dranghtsmen and a valued
text book with colleges and technical schools. In the
present edition the author has carefully eliminated all abstruse formulx, as he does not consider it advisable to
use the higher mathematics for the solution of everyday use the higher mathematics for the solution of everyday
problems in link and valve motion. The component parts of such motions are always compact and the dis tances small, consequently they do not involve suc delicate angles, etc., as in astronomy and should not be so treated, but all dimensions should be computed eithe arithmetically or graphically by the most simple and di rect processes. The fundamental principles are deal
with to the exclusion of patented devices. with to the e
Organic Chemistris. The Fatty ComThe Fatty Com-
pounds. By R. R. Lloyd Whiteley.
London and New York: Longmans,
Green \& Company. 1895. Pp. 291.
12mo. Illustrated. Price $\$ 1$.
Green \& Company. 1895.
12 mo . Illustrated. Price $\$ 1$. An excellent work on this branch of organic chemistry.
It has been the aim of the author not only to give It has been the aim of the author not only to give
students an intelligible and connected account of the theory of the subject, but also to provide them with such information as shall enable them to gain a practical acquaintance with it. The work has a good index- a point on which English scientific books are so often at fault.
The very sensible plan is adopted of printing the figures The very sensible plan is adopted of printing the figures
which indicate the principal reference in heavy-faced which in
type.
Yellow Beauty.
Chicage: Laird $\underset{\text { Marion Martin }}{\text { Ma }}$ Mee. 1895. Price 50 cents.
A book for children, with six full page half tones, re-
produced from paintings by Mme. Heuriette Ronner, the famous painter of cats.
The 1895-96 catalogue of the Parsons Horological Institute, or School for Watchmakers, at
Peoria, Ill., is a most interesting addition to the series of annual catalogues issued by colleges and technica schools. The Scientific American has heretofore
fully illustrated and described this union fully illustrated and described this uniqueschool, and the
just issued catalogue affords new evidences of the wisdom just issued catalogue affords new evidences of the wisdom
of its management and the thoroughness of its course o of its manag
instruction.

SCIENTIFLC AMERICAN

buILDING EDITION

NOVEMBER, 1895 .-(No. 121.)

TABLE OF CONTENTS

An elegant residence at Wakefield, N. Y. Two perspective elevations, also an interior view and floor
plans. Mr. Ralph N. Cranford, architect, Wakeplans. Mr. Raliph N. Cranford,
field, N. Y. An excellent design.
Plate in colors of a cottage in the Colonial style re cently erected at Mount Vernon, N. Y. at a cost of
$\$ 4,750$. Two perspective elevations and A picturesque design. Mr. H. J. Robinson, archiA picturesque design. M. Y .
3. A double house at Marietta, Ohio, recently erected at a cost of $\$ 2,163$. Three perspective elevations and
floor plans. William Foreman, architect, Marietta, Ohio.
4. A residence at Germantown, Philadelphia, recently erected at a cost of $\$ 25,000$ complete, including
stable. Perspective elevation and floo plans stable. Perspective elevation and floor plans.
Architcects, Messrs. Hazlehurst \& Huckel, PhilaArchitcets, Messrs. Hazlehurst \&
delphia, Pa. An ornate residence in the Spanish
Renaissance style. Renaissance style.
tive elevations and floor plans. An attractive de sign.
6. A Reformed Dutch Church at Warwick, N. Y Three perspective elevations and floor plans. Cost
$\$ 30,000$. Architect, Mr. E. G. W. Dietrich, New York. A design successfully treated in the B\%\%an tine style.
A cottage at Mount Veruon, N. Y., wentry ereced at a cost of $\$ 2.500$. Two perspective He tions
and floor plans. Architect, Mr. A. M. Jenh Mount Vernon, N. Y
Perspective elevations of two 1 ow cost houses heated
at Hasbrouck Heights, N. J. Perspective tions and floor plans. Cost, $\$ 1,850$. Mr. S. A Dennis, architect, Arlington, N. J.
9. Views and floor plans of two windmills, at Mount Vernon and Wakefield, N. Y. Cost complete,
$\$ 1,800$. Architect, Mr. Frank M. Wright, Mount $\$ 1,800$. Archite
Vernon, N. Y.
10. A stable at Wakefield, N. Y. Perspective eleva tion and floor plans. Architect, Mr. Ralph N. Cran ford, Wakefield, N. Y. An original design.
Miscellaneous Contents: Hints to readers--The edu-
cation of customers.-The echo organ at Westcation of customers.-The echo organ at West-
minster Abbey.-The Mascot heater, iliustrated.minster Abbey. -The Mascot heater, iliustrated.-
Carlisle's burglar proof window sash tock, illusCarlisle's burglar proof window sash tock, illus-
trated.-Steam pipe and boiler covering, "ilus-trated.-Steam pipe and boilic covering, susing a masonry house. -An improved window screen and awning, illustrated.-An mproved steam heating boiler, illustrated.-Improved wood-
working machinery, illustrated.--Painting iron work.-A new and powerful elevator, illustrated -Cheap flour or middlings in paint
The Scientific American Building Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Thirty two large quarto pages, forming a large and splendid Magazine of Architectrre. richly adorned with
elegant plates and fine engravings, illustrating the most elegant plates and fine engravings, illustrating the most
interesting examples of Modern Architectural Construc tion and allied subjects.
The Fullness. Richness, Cheapness, and Convenience of this work have won for it the Labgest Circulation any Architectural Publication in the world. Sold by

Business and Personal.

The cinarge for insertion under this head is cone Doilar a line
for eaci insertuon : aoout eignt woras to a line. tisements must De receivea at puolication oftice as eariva Thursiay morning to appea in the foilowing ween's issue. Marine Iron Works. Chicago. Catalogue free. "C. s." metal polish. Indianapoiis. Samples free. Handle \& Spoke Mchy Ober Lat he Co, Chagrin Falls, O. Screw machines, milling macnines, ano drill presses, Use the Hough Security Casb Recorder. Entirely dif ferent from a Cash Register. Hough Cash Recorder Co Wanted-Engine lathe, new or second hand; 42 incl lars, addressing C.H. S., P. O. Bux 1822 , N. Y. City. The best book for electricians ana beginners in elec
ricity is " Experimental Science," by Geo. M1. Hopkins By mal. $\$ 4$; Miunn \& Co.., publishers, 361 Broadway, N. Y.
Wanted-First class draughtsman and machinist to chine being put upon the market. Only a first class man need apply for the position. Address W. W. Ewell, Send for new and complete catalogue of Screntifc
and other Books for sale by Munn \& Co.. 361 Broadway,

HINTS TO CORRESPONDENTS.
Names and Addyess must accompany all leters,
or no attention will be pald thereto. This is for our Cererences to former articles or answers shou give date of paper and page or number of question be repeated; correspondents will bear in mind tha ome answers require not a little research, and
thought we endeavor to reply to all either by lette or in this department. each must take his turn.
ouy in our columns will be furnished with aldresses of pecial waritten lircornination on matters of
personal rather than general interest cannot be cepacted without remuneration. Scientitic American Supplements referr
to may be had at the oftice. Price 10 cents each.
Booli-s referred to promptly supplied on receipt
mince.
in sent for examination should be distinctly
marked or labeled.
(6663) J. W. D. asks: In a tug of war en men of equal strength are pulling upon each eud of the pulling the rope? A. One of the laws of mechanics, is that ntagonstic forces balance each other in proportion to heir value. They are therefore not cumulative and canthan is due to the greater of the forces.
(6664) E. J. T. writes: The walls of our church are built of brick, thirteen inches thick, rough cast with mortar on outside and plastered on inside. The
inside walls are frescoed. When we have several days' rain the dampness goes through the walls, and thus ruins the frescotng. Can you give us any receept for a preparation to go on the outside of the walls to prevent your church walls is to give it a thorough coat of bolled linseed oil, brushed on, and left-for a few days to dry Then if the color is objectionable, paint with any desired color.
(6665) W. M. B. says: Please inform me through your columns the necessary area of a parachute to support a man who weighs 200 pounds. A. depends upon the velocity at which a person can land with safety. For 200 pounds at the rate of 5 miles per hour an area of 1,000 square feet, or about 45 feet diame ter, will be required for the necessary resistance to the
air at that speed. If a landing can be safely made at a velocity of 8 milles, or about 11 feet per second,an area of 615 square feet, or only 28 feet diameter, will be required. Parachutes should be umbrella shaped, as that shape ffords the greatest resistance
(6606) J. W. W., Manheim, Pa., asks : What is the present greatest elongation, east and west, of the north star? Its declination and azimuth compared with true meridian and variation of the compass,
wilhether east or west? And, also, whether this variation is increasing or decreasing? A. The elongation of Polaris for the present year for the fortieth parallel is minute. Polaris a yearly decrease of four-tentizar the second star from the end in the handle of the Dipper, is vertical with it, and is above the pole whenthe Dipper is below. or Polaris is on the farther side of the true pole from Nizar. The variation of the magnetic needle at your place for thlss year is about $5^{\circ} 30^{\prime \prime}$ west. increasing
about four minites per year.

TO INVENTORS

An experience of nearly tift y years, and the preparation
of more than une nundred thousand applications for natonts at home and abroad, enable us to understand the
laws and practice on both continents, laws and practice on both continents, and to possess un-
equaled factities for procuring patents everywhere. A equaled facclities for procuring patents everywhere. A
synopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at homeor abroad. are invited to write to this office for prices,
which are low, in accordance with the times and our extensive factitites for conducting the business. Address muNN \& CO., office Scientific American, 361 Broadway, New York

INDEX OF INVENTIONS For which Letters Patent of the United States were Granted November 19, 1895

and EACH BEARING THAT DATE

 Animal shaars. B. Oa
Anim trat
Aritmometer, B . We

tery.
Battery plate and making same, storage, F. J

Belt ing for transmossion of power, R. I Brown.:
Beverages apparatus for cooling and drawing,
W. Wagner.

 nnkt. See Bedstead bracket. Stade brackët,
Bractarin\& bracket.
trat Brake. See Aratomattc brake. Car brake. Vehi
Brake bapparatus, automatic fluid pressure, Brake apparatus, automatic fuic
Brararke furnace. A. W. Straignt.
Brick machine, R. Noss

Case. See Paper case.
Casting bullow ingots.

Chimey and smokestack cow, stationary, w. D.
Cratc
chre cream freezer, and press.

Dental engine, handplece, sibiès $\&$ stockiton.
Dental flask, C. Waller

Engine. See Dental engine. Oii engine.....
Engne indieator, steam, Hountang...
Engine process and apparatus, step series.

an, H. Longauer.

Filler, A. A. Pindìöto...:

$= \pm=$

Fuse box or cit-out, A. C. Carey....

Gas mains, apparatus for
otressure
Gat, Martz

550,160 $5+961$

50.165

\section*{| 549,94 |
| :--- |
| 549,891 |}

\section*{} | |
| :--- |
| |
| |
| |
| |

550,173 550.179 550.67 50.192 59999 549,973 5

 Reservoirs, cisterns, etc., apparatus for cleaning,
Rheostat forieut. in eiectric moutor circuits, R .
Eickemever.

Founded by Mathew Carey, 1885.
HENRY CAREY BAIRD \& HENRTRIAL PUBLISHERS, BOUKSELLERS \& IMPORT Owr Xeut St.. Philadelphia, Pa., U.S.A.
 and Circuars, the whote toverne every oranch or sent free and free of postage
ence applied to the
to any one in any part of the world who will furnish his

10 Dollars tor 3.50

Until December 24th, 1895

A Ten-Dollar set of Shakspeare for $\$ 3.50$. We mean exactly what we say. This set is worth 810 to any reader, no matter how many other editions he may haye. We shall sell it direct for a short time only at 83.50 , and any one who is dissatisfied may have
his money back.
These books can never be bought any cheaper. Never as cheap his money back. These books can never
again. (The regular price of the set is $\$ 10$.
again ${ }_{\text {Whis }}$ (The regular price of the shet is is $\left.{ }^{*} 10.\right)$.) It is strongly bound in good serviceable cloth binding, in eight handsome volumes of
 easiy handleable size. Pa-
per specially made with a
dead surface, restful to the ey es. There are copious notes on the text by J. Payne Collier, F.S.A., the celebrated Shakspearian critic, with
variorum readings. We honestly believe it to be the best edition ever printed for
actual use. We published it actual use. We published it
to retail at $\$ 10$. That allowed for the retailer's and the jobber's profit. The readhave both of these profits The object of this special test of whether the discrimi nating readers of this paper who will appreciate a larg clear type, scholarly edition
of Shakspeare, complete, are ready to buy direct from the manufacturers at a saving of more than half the cost, If you are, the middle-to-day and be sure of getting the books in time for ChristWhat Could Be Nicer For a Christmas Present? mas. Size of each volume More than four thousand pages. This Special Offer positively limited to Dec. 24th.

THE "ROUND BOX" TYPEWRITER RIBBONS Give nei. canbon papers.

 Cor. Park $\&$ B. A A A ers fort he Trade
TANGYE \& PINKNEY'S GAS ENGINE U. S. A. PATENTS.
 GEO. TANGYE, Cornwall Wks.. Birmingham, Eng.
A Valuable Book

12,500 Receipts. 70 \& Pages. Price $\$ 5$.
The most useful Receipts and Replies siven in the Notes andivueries of correspondents as published in the -ci-

Oer worive Tinonaind selected Receipts are here collected. neariy every branch of the useful arts
being represente. It is by tar the most compretensive
volume of the kind ever placed betore The work nay be regarded as the product of the stud-
les and practical experience of the ablest chemists and coing of the thighest vaiue. arrananed and condensed in
concise form convenient for ready use. Aimost every inquiry that can be thought of. relating
to formulx used in the various manufacturing indus-
tries, will here be found answered. ries, will here be found answered.
Instructions for working many different processes in
the arts are given.
Those who are engaged in any branch of industry
probably will frn in this bool maych that is of practical
vaiue in their respective callings. Those who are in seareh of independent business or or
empioyment, reiatine to the bome manufacture of samempiorment, reiating to the bome manufacture of sam-
pla articles.,
suggestions. MUNN \& CO., Publishers,
CIENTIFIC AMELICAN OFFICE
, . . , TWO OPINIONS, HUNDREDS MORE LIKE THEM

Remember, the regular $\$ 10$ set in eight handsome volumes (only large type edition) for $\$ 3.50$; with the distinct understanding that the money will be returned immediately if you are not satisfied. We refer to Dun and Bradstreet and to every bank in Philadelphia.

KEYSTONE PUBLISHING CO., 806 Locust St., Philadelphia.

S $\overline{\text { eientific Book Calatosule }}$
ew Catalogue contaaning over 100 pages, includ-
s on more than fifty different subjects. Will ing works on more than fifty different subjects.
be mailed free to any address on application. MUNN \& CO., Publishers Scientipic American,

THE SUBMERGED PIPE LINE ACROSS

reagan feed water heating, water circulating and

 SHAKING GRATES, For TTATINGAY, MARESE, and WATER our orates on roaty. Electrical and Mechanical Model Work.

 FORSMR Ma= .Critceell's sons, cincinaat, ohio.
\qquad

NEWSPAPER FIL
convenient flie made openslike a book. Simple, durably Also desire estimates on cost of manufacture, Samples
furnished. G. H. WRIGHT, Livingston, Montana. VOLNEY W. MASUN \& CO. PRIC'IUN POLLEES, CLDTCBES, and ELEVATORS

SCIENTIFIC amERICAN SUPPLE-

WANTED by large oneminal imantatururin com. to introduce in its works.
Prof. PETER ${ }^{\text {P. }}$. AUSTEN,
Polytechnic Institute, Brooklyn, N. Y.

CABBORUNDUNO

LADIES Sate four time ilfe and hame by bising the

 The Electric Candle

 The Scientific American Reference Book.

A most useful little bound book of 150 pages, com-
prising, probably, the most extensive variety of standprising, probably, the most extensive variety of standard, practical, condensed information ever furnish
to the public for so small a price, only 25 cents. Among its contents are: The Last Census of the
United States (1890), by States, Territories, and CounUnited States (1890), by States, Territories, and Coun-
ties; Tabie of Cities having over 8,000 inhabitants; ties; Tabie of Cities having over 8,000 inhabitants;
Map of the United States-miniature outline; The Patent Laws full text), The Trade Mark Law (full Pext); The Copyright Law (full text): The Principal
ter
Mechanical Movements ill Mechanical Movements-illustrated by 150 small dia-
grams-of value to inventors and designers of mechan-grams-of value to inventors and designers of mectan-
ism; Medallion Portraits of Distinguished American Inventors; Valuable Tables relating to Steam, ElecSent by mail to any address on receipt of price. MUNN \& CO., Publishers,

with a "Trump" Watch and Holder is thoroughly equipped for pleasure riding or scorching. Cost $\$ 3.00$, complete. For sale by all jewelers. Send for catalogue No. $\mathbf{6 0}$. the waterbury watch co. waterbury, conn.
The Bartley Direct Running Saw Mil

MAGIC KNIFE
It works like a charm, and will tickle a boy to death.
Every man, woman, and child should carry one. OUR 3oc. MAGIC KNIFE

 THE MACIC KNIFE CO.

SPECIAL OFFER

The

American

Bell Telephone

Company,

125 Milk Street,
Boston, Mass.
This Company owns LettersPatent No. 463,569 , granted to Emile Berliner November 17 , 189 r, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.

DAIMLER MOTOR COMPANY, Highest Grade Single and Twin Screw Launches.

Sarest, cleanest and speediest power boat built No smoke or smokestack, no boiler, no elec-
tricity. No steam or naphtha under pressure Run on one pint of gasoline per horse power per hour, and are under way in less than one minute. No licensed engineer or pilot. Also Stationary Motors.
OFFICE AND WORKS, "STEINWAY," LONG ISLAND CITY, N. Y.
 the Pocket Kodak.
 EASTMAN KODAK CO.

New Patented Dripless Tea Strainer

 F8B. 㢆

NEW York OFFICE,
FOSTER \& BAILEY, Jewelers and Silversmiths,
PROVIDENCE, R.

There is hardly a USE OF POWER
 The Celebrated
"HORNSBY-AKROYD" The De La Vergne Refrigerating Machine Co.
Foot E. 138th STREET, NEW YORK.

Is there Anything Better for Him?

 $\underset{\text { Advertising Dept., } 88 \text { to } 110 \text { Bates St., Detroit, Mich. }}{\text { Cit }}$

PRIESTMAN SAFETY OIL ENGINE

 ing, Pumping, Elicitrine Lete.
PRIESTMAN α company

Three New Model
Smith Premier Typewriters

Many Improvements Hed THEM?
Address The Smith premier typewriter company, Syracuse, n. Y., U. S. A.

ENGINES, Boilers and Machine Thol for Now THE ORNAMENTAL IRON INDUS-

BINDERS

 THE =

The Most Popular Scientific Paper in the World Only \$3.00 a Year, tucluding Postage.
This widely circulated and splendidy illustrated paper is published weekly. Every number contains sixteen pages of usefulu information and a a large number of
original engravings of new invention sumd original engravings of new inventions and discoveries,
representing Engineering Works, steam Machinery New Inventions, Novelties in Mech anics, Manufactures, Chemistry, Fleetricity.Teleegraphy, Photogra phy, Architecture, Agriculture, Horticulture, Natural History,
etc. Complete list of Patents each weat.
 Tcrins or smuscriptioni- One copy of the SCIENpostage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of Thiree Dollars by
the publishers; six months, 81.50 ; three months the pubishers; six months, 81.50 ; three months, 1.00 .
Cllins Special rates for several names, and to Postmasters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or
Express Monev Order Mones corn Express Money Order. Money carefully placed inside
of envelopes, securely sealed and correctly addressed of envelopes, securely sealed, and enrrectiy adaressea,
seldom goos astray, but is at the sender's risk. Address all letters and make all orders. drafts, etc., payable to
MUN $\mathbb{C N O} \mathbf{C O}, \mathbf{3 6 1}$ Broadway. New Yorks.

Sourtitic American Sumulenent This is a separate and distinct pubicication from THe size.every number containing sixteen large pages full of engravings, many of wnich are taken from foreien
papers anc accompanied with translated deseriptions. apers anc accompanied with translated descriptions.
THE SCIENTIFIC AMERICAN SUPPLEMENT is published Weeklv, and includes a very wide erange of contents. It
preserts the most reeent papers by eminent writers in presents the most recent papers by eminent writers in
all the principal departments of science and the Useful Arts, embracing Biology, Geology, Mineralogy, Vatural
History, Geography
Archmoology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Eneineering, Mining, Ship Building,
Marine Engineering, Photograchy , Marine Engineering, Photography, Technology. Manu-
facturing Industries, Sanitary Engineering, Acriculture, Horticulture, Domestic Economy, Biography. Medicine, etc. A vast amount of fresh and valuable information obtainabae in no other publication.
The most t important Engineering Works, Mechanisms, and Manufactures at home and abroad are illustrated and deseribed in the SUPPLEMENT.
Price for the SUPPLLEMENT, for the United States.
(anada, and Mexico, 85.0 a year; ho Canada, and Mexico. 85.00 a year; or one copy of the
Scrientific American and one copy of the SuppleMENT, both mailed for one year to one address for 87.00 .
Single copies, 10 cents Single copies, 10 cents. Aditess and remit by postal
order, express money order, or check,

Gibilding Fellition.
The Scientific american Building Edition is Thirty-two large quarto pages, forming a large and splendid Mapazine of Architecture. riehly adorned with elegant plates and other fine encravings; illustrating the
most interesting examples of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private resi-
dences. city and country, including those of very erate cost as well as the more expensive. Drawings in perspective and in color are given, together with Floor Plans. Descriptions, Locations, Estimated Cost, etc.
The elegance and cheapness of this magnifcent The elegance and cheapness or civcuationt worb have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all newsdeaiers. $\$ 2.50$ a year. Remit to

TExport Gdition
of the ""La America cievtirica m ivicuis incor or Spanish edition of the Scientific american is published monthly, and is uniform in size and typography
with the SCIENTIFIC AMERICAN. Every number contains about 50 pages, profusely illustrated It is the finest
scientific. industrial export paper published it circulates througnout Cuba, the west Indies, Mexico, Central and South America, Spain and Spanish possessions -wherever the Spanish language is spoken. The Sci-
entieic American Export Edition has a large guaranteed circulation in all commercial places throughout t.e world. $\$ 3.00$ a year, postpaid, to any part of the WiP. Manufacturers and others who desire to secure foreign trade may have large and handssmely displayed
announcements published in this edition at a very moderate cost. Rates upon application.

MUNN \& CO., Publishers

PRINTING INKS,

