(1)

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

phesent appearance of the new york terminal.

NEW YORK AND BROOKLYN BRIDGE-INTERIOR OF THE NEW YORK TERMINAL STATION AS IT WILL APPEAR -[See pagc 246.]

§riuntific ©

HSTABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TEIRDS FOR THE SCIENTIFIC AMERICAN.

With wbich is incorporated "LA AMERICA CIENT IfICA American.

NEW YORK, SATURDAY, OCTOBER 19, 1895.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 1033.
For the Week Ending October 19, 1895. I. ARCHITECTURE.-Church Frected to the Memory of Emperor
 11. BOTANY AND HORTICULTURE. The Cultivation of Pampas

 Mi. CHEMISTRY,-A Short List of Boiks on Chemistry- Selected

V. MARINEARCHTECTURE-A Latre Rail way Ferry Steamer.

 VII. MISCELLANEOUS.-The Time in China by Sun, Water an

 from the unpubished autsoinopaphy of Mr. Spenceer................:

x. ZooLot Gardons The Zoo Herorry-The heronry is at the Zoological 165

the paris exhibition of 1900.

The magnitude of the labor involved in the prepara tion for a first-class international exhibition may be judged from the fact that already the French people are actively engaged in the preliminary work of organ ization, although the opening day of their great enterprise is nearly five years distant. It is estimated that the preparation of the grounds, erection of buildings and general maintenance of this exhibition will absorb a round sum of $\$ 20,000,000$
How to raise this vast sum is a serious problem, and this is how the directors propose to do it: The Ville de Paris has granted a subvention of $\$ 4.000,000$. A like sum will probably be obtained in the form of a state subvention, which two sums together will amount to two-difths of the required amount.
For the remaining $\$ 12,000,000$ an appeal will be made to the public, and bonds will be offered on some such conditions as attached to the issue of bonds in connec tion with the Exposition of 1889. In the present iustance the exhibition bonds will have a face value of $\$ 5$, and to each bond will be attached twenty admis sion coupons.
Each bond, moreover, will entitle the holder to cer tain lottery privileges, and it will guarantee hiul a re duction in railroad fare between his place of residence and the Exhibition grounds. This privilege will be graduated according to the distance at which the bond holder may reside from Paris.
From a distance of 200 kilometers from Paris he will be entitled to three special trips; from 200 to 400 kilometers he can claim two such trips : and if he resid more than 400 kilometers away, he will be entitled to one special trip.
To meet the case of those who live in Paris, the bond holder will be given a reduced rate on the adwission fee to what are known as the "side shows" and to the theaters and concerts.
It does not seem at first glance as though these inci dental and rather questionable benefits would have a very laxative effect on the congested savings of the thrifty Gaul. The response may be slow at first though it is certain that when it is seen that the suc cess of the Exhibition and the prestige of France is at stake, the French people will respond with that patri otic generosity for which, among the nations of the earth, they stand pre-eminent.

THE ECONOMY OF HYDRAULIC POWER SUPPLY.
In the course of a paper read at the recent summe meeting of the Institution of Mechanical Engineers, at Glasyow, the author, Mr. E. B. Ellington, gave some very significant figures regarding the cost of running the London Hydraulic Power Supply. This is by far the largest municipal supply in the country. It in eludes 75 miles of mains, carrying a pressure of 750 pounds to the square inch, which deliver $9,500,000$ gal lons of water at this pressure per week. This serves to operate 2,300 machines. This plant has now been in enue of $\$ 250,000$.
In active competition with this scheme is the Westminster Electric Supply Corporation, and a comparative table, drawn up from the records of the running expenses of these two systems, shows a remarkable economy in favor of the hydraulic plant. It appears that the cost of the hydraulic power was 1034 cents per 1,000 gallons at 750 pounds to the square inch; whereas the cost of an equal amount of electric power measured: by the same standard was 18.03 cents per 1,000 gallons.
This economy of the hydraulic system was indorsed by Mr. R. C. Parsons, the engineer who had planned the hydraulic power supply for the drainage of the city of Buenos Ayres; a scheme that cost altogether city of Buenos Ayres; a scheme that cost altogether
$\$ 30,000,000$. The use of electric and of pneumatic power was carefully considered in the preliminary estimates. The electric system was rejected, on the ground that they would have to reduce the speed in order to work the pumps; and, as compact machinery was a necessity, it was seen that in this respect the hy draulic system was greatly superior. It was proved that the compressed air system gave a very low efficiency; and furthermore. owing to the fact that the various lifts, in pumping the drainage, were not of the same height, it was necessary for efficiency that they should have varying pressures. This was not obtainable under the compressed air system. The hydraulic plant, as put in, consists of several small automati pumping stations supplied frow a central station.
As in part explaining the large difference in cost that a electric supply station was situated at a distance from the river and the expense of cartage increased the cost of coal some ten per cent. Another loss of possibly 10 per cent was due to the fact that a large part of the engine power at the electric station was 006 non-condensing. A nother source of loss lay in the fact 'that though they frequently were running with only 55 to 70 per cent of their full load, the speed of the engines was not reduced. At the hydraulic station the spe

A large part of the difference was due to the dif erence in "wages and salaries." In the hydraulic installation this item amounted to $\$ 43,135$ and in the electric to $\$ 74,465$. This wide difference is probably due to the fact that the electric machinery requires a more skilled class of mechanics than the hydraulic for its operation and maintenance.
After making the above allowances, there yet re mains a large amount of leakage that is unexplained.
It should be mentioned that in the table of com parison of these two systems the boiler installations showed a remarkable efficiency, burning only 2 pounds of cual per horse power per hour.
The facts brought out in Mr. Ellingtou's paper make out an excellent case for hydraulic power supply at high pressures. The installation recently opened in Glasgow, to which we referred in a recent issue, has not been long enough in operation for any accurate estimate of its re venue earning capacity to be made but the London hydraulic company last year paid the handsome dividend of $6 \frac{1}{2}$ per cent.

THE CHICAGO TIMES-HERALD MOTOCYCLE CONTEST

Less than four months ago the enterprising proprie tors of the Chicago Times-Herald newspaper an nounced that a contest of automobile conveyances, or motocycles, would take place on November 2, and that they would give $\$ 5,000$ in prizes to the winners of the race.
The only thing which now menaces the success of the contest is the large number of contestants, for though it is expected that a considerable number of those who have entered will fail to put in an appear nce on November 2, still the number of contestant will probably be quite large.
The course to be traveled is from Chicago to Wau kegan and return. The official route has been an nounced and comprises almost exactly 100 miles of the best road way in the West. There are some stretches of ordinary country road, but any practical motocycle will have no trouble in making good time for the en tire distance. Signboards will be placed at the inter ection of the various roads for the guidance of those who wish to familiarize themselves with the route in advance of the day of the contest. An officer of the ontest will be placed at all points where a turn is made, to direct the carriages.
The official list of the contestants who have made ntries for the race is as follows
Arnold, B. J., 1541 Marquette Building, Chicago.
Andrews, A. B., Center Point, Iowa
Ames, D. J., Owatonna, Minn.
Ames, A. C., 8630 Essex A renue, South Chicago.
Bradley, Wheeler \& Co., Kansas City, Mo.
Bowman, E. Wirt, Evanston, Ill. Mr. Bowman in tends to enter four types of vehicles.
Barrows, C. H., Willimantic, Connecticut. Mr Barrows enters two vehicles.
Barcus. N., 550 East Tawes Street, Columbus, Ohio
Brown, W. H., Postoffice Box 108, Cleveland, Ohio
Beck, C. W., 2572 Lakewood A venue, Chicago.
Chicago Fireproof Covering Co. H. C. Todd, 48 Franklin Street, Chicago.
Chicago Carriage Motor Company. C. O. Hansen 342 Center Street, Chicago.
Cook \& Gowdey, 6324 Madison Avenue, Chicago. Conklin, Oliver F., Dayton, Ohio.
Carpenter, H. H., 1037 Monadnock Building, Chi ago.
Cross, E. D., M.D., 8149 Indiana Avenue, Chicago Cronholm \& Stenwall. 319 Le Moyne Street, Chicago Clapp, Henry W., Sheridan Avenue, Springfield, Mass.
Davis Gasoline Engine Company, Waterloo, Iowa Dalev, M. H.. Charles City, Iowa.
De Freet, Thomas M., Adjutant-General's office ndianapolis.
Duryea, Charles E., Springfield, Mass., or Peoria, Ill. Mr. Duryea will enter two and possibly three vehiMr.
cles.
De
De la Vergne Refrigerating Machine Company George Richmond. Foot of East 138th Street, New York. This firm enters four machines.
Elrick, George, 904 Irving Street, Joliet.
Elston, R. W., Charlevoix, Mich.
Feerrar, J. C. W., Lock Haven, Pa
Gawley, T. R., Aurora, Neb.
Guilford, R W., Auburn, Ind.
Hildebrand, J. A.. 308 State Street, Chicago.
Hartley Power Supply Company, 21 Monadnock Building, Chicago.
Hertel, Max, 454 Lincoln Avenue, Chicago.
Hill \& Cummings. 232 South Clinton Street, Chicago Hall. John W. \& Sons, per Harry Lee, Jackson ille, Ill.
Haynes \& Apperson-Indiana Natural Gas Com pany, 23 Buckeye Street, Kokomo, Ind.
Hagaman, J. D., 52 Riverside Avenue, Adrian, Mich
Holmes, Lyman S.. Gloversville, N. Y
Haviland, Frank W., 210 West 123d Street, N. Y.
Holton, Milton E., 375 Drayton Street, Chicago.
Kappe, W. J. H., Quincy, III.
Lewis, George W., 32 Willis Court, Chicago

Lasher, R. E., 2732 South Third Street, St. Louis, Mo.
Leppo Brothers, Belleville, Ohio.
Laporte Carriage Company, Laporte, Ind.
Lowery, V. L. D., Eaton, Ill.
L'Donald, P. E., and Brennan, W. F., Kedzie Avenue and Thirty-fifth Street, Chicago.
Macleod, Walter, 137 East Seventy-third Street, New York.
Moelin, J. U., 1810 Fond du Lac A venue, Milwaukee.
Meredith, Edwin, Batavia, Ill.
Mills, M. B., 125 LaSalle Street, Chicago.
Morris \& Salvin, 926 Dresel Building, Philadelphia.
This firm enters two electric motocycles.
M'Arthur, A. W., Rockford, IIl.
Mueller, H., Decatur, Ill.
Mills \& Searls, Chicago.
Maguire Power Generating Co., the, 709 Masonic Temple, Chicago.
Norton, Fred G., 436 Julian Street, Waukegan, Ill.
Praul, John E., 262 North Broad Street, Philadelphia.
Pierce Engine Company, Racine, Wis. Parks, W. J. (Ellingen \& Parks), La Salle, Ill. Paterson, William, 302 South Morgan Street, Chicago.
Pierce-Crouch Engine Company, New Brighton, Pa .
Pierce, W. A., Sistersville, W. Va.
Roberts, S. W., 80 Dearborn Street, Chicago.
Riel Inport Co. (Benz Motor), 51 Dearborn Street,
Chicago. This firm enters two motocycles.
Reid, C. G. (Columbia Perambulator Co.), 98 Market Street, Chicago.
Robertson, G. W., Moụnt Vernon, Ind.
Radford, W. J., 50 Union Street, Oshkosh, Wis.
Strong \& Gibbons, 181 West Madison Street, Chicago.
Smith, Ira D., 6004 Ellsworth Avenue, Pittsburg, Pa .
Stone \& Maynard. Avonia, Pa.
Smith, Otis E., Hartford, Conn., box 38 .
Shaver, Joseph, Walnut and Nineteenth Streets, Milwaukee.
Sturges Electric Motocycle, 1137 Marquette Building, Chicago.
Schoening, C. J., Oak Park, Ill.
Sintz Gas Engine Co., Grand Rapids, Mich.
Schindler, A. J., 441 West Twenty-first Street, Chicago.
Teepleton, John, 1616 Masonic Temple, Chicago.
Thomas Kane Co., 137 Wabash Avenue, Chicago.
This firm enters six motocycles.
Taylor, Elwood E., Fitchburg, Mass.
Vanall, Frank, 1031 Gurney Street, Vincennes, Ind. Verret, U. J., 313 Cherry Street, Pine Bluff, Ark.
Woolverton, G. C., 327 Washington Street, Buffalo, N . \mathbf{Y}.

Wayne Sulkeyette and Road Cart Co., Decatur, 111. Wilkins, Vernon H., 2249 Ridge Avenue, Evanston, III.

For the benefit of those who have entered in the race and those who have not closely followed the details of this great contest, the original offer made by the Times-Herald is reprinted, with the rules as they will stand until announced more in detail by the judges, who will be named in a short time.
With a desire to promote, encourage, and stimulate the invention, development, perfection and general adoption of motor vehicles or motocycles, the Times-Herald offers the following prizes, amounting to $\$ 5,000$, divided as stated :
First prize $-\$ 2,000$ and a gold medal, the same being open to competition to the world.
Second prize- $\$ 1,500$, with a stipulation that in the event the first prize is awarded to a vehicle of foreign invention or manufacture, this prize shall go to the most successful American competitor.

Third prize- $\$ 1.000$.

Fourth prize- $\$ 500$
The third and fourth prizes are open to all competitors, foreign and American.
It must not be supposed that in this contest the question of speed is the only requisite to be considered. It would be possible for an ingenious mechanic to construct a machine with which he could easily outstrip all others in this contest, and yet that device would be of no utility and the outcome of no value to the world from a practical point of view.
It is the earnest desire of this paper that this contest shall add to the sum of our mechanical knowledge in this, the new branch of the science of transportation. In this spirit the following rules are laid down for the guidance of all who may desire to ente into the competition.

1. The date of the contest will be on Saturday, November 2, 1895. The judges may postpone the contest if in their judgment the state of the weather or the condition of the roads will not permit a fair trial.

course of the contest.

2. The contestants will start at the junction of Mid way Plaisance and Jackson Park, and at the signal
from the judges will take up the following course West on Midway Plaisance to Washington Park north west through Washington Park past the refectory Garfield boulevard to Western avenue, which is also a Garfield boulevard to Western avenue, which is also a Thirty-fourth street, at which point the boulevard is left and a short turn is made to the west, and the route continues north on Western avenue proper to Twenty-sisth street, thence west to the boulevard; north and west on the boulevard to California avenue; north on California avenue to Ogden avenue and Douglas Park; north west through Douglas Park to the Fourteenth street boulevard, which turns and leads north to Garfield Park; through Garfield and Humboldt Parks by the connecting boulevards to the intersection of Humboldt boulevard and Milwaukee avenue; northwest on Milwaukee avenue to Jefferson Park, and thence north west and north on the Chicago and Milwaukee gravel road, which is a continuation of Milwaukee avenue, through Niles, Wheeling, Half Day and Libertyville to Gurnee, where the route turns directly east on Grand avenue to Waukegan. From Waukegan the route proceeds south on an easily followed road through South Waukegan, Lake Bluff, Lake Forest, Fort Sheridan, Highland Park, Ravinia, Glencoe, Winnetka and Wilmette to Evanston. From Evanston south on Chicago avenue to Grand avenue; east on Grand avenue to Kenmore avenue ; south on Kenmore avenue to Lawrence avenue; east on Lawrence avenue to the Sheridan road: south on the Sheridan road to Grace street ; east on Grace street to Pine Grove avenue; south on Pine Grove avenue to Cornelia street; east on Cornelia to the Lake Shore boulevard, and thence south to Lincoln Park, and along the Lake Shore drive to the Grant monument, where the finish will be made.

Style of vehicles allowed to enter.
3. The contest is limited to motocycles, or, as they are more commonly known, "horseless carriages." There will be eligible to competition any and all vehicles having three or more running wheels, and which derive all their motive power from within themselves. No vehicle shall be admitted to competition which depends in any way upon muscular exertion except for purposes of guidance. Competing vehicles which derive their power from petroleum, gasolene, electricity or steam, and which are provided with receptacles for storing or holding the same, will be permitted to replenish their motive power at Jeffer son Park, Half Day, Waukegan and Winnetka, and at no other points. Each contestant must make his own arrangements for taking advantage of these relay points.
4. No vehicle shall be admitted to competition unless it shall comfortably carry not less than two persons for the entire distance, one of whom may have charge of the vehicle and the manipulation of the same.
5. No vehicle shall be admitted to competition ex cept that it be free from danger, not only to its occupants but to spectators and the public users of the highway. The judges at their discretion may deba any vehicle which from its construction gives evidence
of defects which would render the adoption of its type of defects which would r
an evident impossibility.
6. For the purpose of limiting the contest to vehi cles of practical utility a preliminary test of all vehi cles entered for competition shall be held by the judges on October 29, 30 and 31 , under such rules as the judge may determine on, and for such a distance as they may decide. At this test the judges may debar such constructions as in their opinion do not possess feat ures entitling them to further consideration. It is stipulated, however, that all motor vehicles which won prizes or honorable mention in the Paris-Rouen
contest in 1894, or in the recent race between Paris and Bordeaux, shall not be compelled to compete in the preliminary test, but shall be admitted upon proper application to the final competition on No vember 2.
7. In making a wards the judges will carefully consider the various points of excellence as displayed by he respective vehicles, and so far as possible select as orize winuers those constructions which combine in the highest degree the following features and requisites rating them of value in the order named :
A. General utility, ease of control and adaptability to the various forms of work which may be demanded of a vehicle motor. In other words, the construction which is in every way the nost practical.
B. Speed.
C. Cost, which includes the original expense of the motor and its connecting mechanism and the probable annual item of repairs.
D. Economy of operation, in which shall be taken into consideration the average cost per mile of the power required at the various speeds which may be developed.
E. General appearance and excellence of design. While it is desired that competing vehicles present as neat and elegant an appearance as possible, it should be assumed that any skilled carriage maker can sur-
round a practical motor with a beautiful and even hxurious frame.
The date of the contest will not be changed from Saturday, November 2, except for extremely bad weather or condition of the roads. In answer to many inquiries as to how the carriages will be started, it may be assumed that the judges will start them one or two at a time, keeping accurate record of the exact time each carriage passes the starting poirt, the same as is the rule in a yacht race. The various vehicles will be designated by numbers, conspicuously displayed, and a record will be kept of the time at which they pass various points along the road.

Some Medico-Legal Points in Regard to

Malpractice.
The following points with regard to a physician's liability in suits for malpractice are given in the Genral Practitioner:

1. A physician is guilty of criminal malpractice when serious injury results on account of his gross ignorance or gross neglect.
2. A physician is guilty of criminal malpractice when he administers drugs, or employs any surgical procedure, in the attempt to commit any crime forbidden by statute.
3. A physician is guilty of criminal malpractice when he willfully or intentionally employs any medical or surgical procedure calculated to endanger the life or health of his patient, or when he willfully or intentionally neglects to adopt such medical or surgical means as may be necessary to insure the safety of his pa tient.
4. A physician is civilly responsible for any injury that may result to a patient under his care, directly raceable to his ignorance or his negligence
5. A physician is expected by the lav to exhibit in the treatment of all his cases an average amount of skill and care for the locality in which he resides and practices, further than this he is not responsible for results, in the absence of an express contract to cure.
6. A physician is not relieved of his responsibility to render skillful and proper treatment or reasonable care and attention by the fact that his services are gratuitous.
7. A physician is not obliged to undertake the treat ment of any case against his will, but having once taken charge, be cannot withdraw without sufficient notice to allow his patient to procure other medical assistance.
8. A physician having brought suit and obtained judgment for services rendered, no action for malpractice can be thereafter brought against him on account of said services.
9. A physician is relieved of all responsibility for bad results in connection with the treatment of a case when there can be proved contributory negligence on the part of the patient.

199 Miles in 175 Minutes.

The record-breaking train on the Lackawanna road, which left East Buffalo at 8:47 A. M., arrived in Corning, 130 miles distant, at 10:49, October 5. From Corning to Big Flats, a distance of $61 / 2$ miles, the run was in exactly 4 minutes, or at the rate of $991 / 2$ miles pe hour. The distance from Corning to Elmira, 16 miles, was made in 11 minutes. The 199 miles from Buffalo to Binghamton were covered in 175 minutes. Thi train, which consisted only of the engine, a hotel car and a common coach, arrived in Hoboken at 4:19 o'clock, October 5, making the run of 407 miles from East Buf falo in 452 minutes, including all stops and slow-ups. The only passengers were Joseph Walker, the Wall Street broker, who is a son-in-law of Sam Sloan, presi dent of the D., L. \& W., and the members of Mr. Walker's family. The distance between Elmira and Binghamton, 57 miles, was made in 54 minutes. The run of 67 miles between Washington, N. J., and Hoboken was made in 66 minutes.
This is considered remarkable speed, on account of the bad grades, the numerous drawbridges, and the many railroads which the Lackawanna road crosses. The train stopped at Elmira, Binghamton, Scranton and Washington, N. J. At each of these places the engine was changed.

Calculated Power of Lightning.

It is no doubt interesting to express the force of a stroke of lightning in horse power. During a recent storm which passed over Klausthal. Germany, a bolt struck a wooden column in a dwelling and in the top f this column were two wire nails $\frac{6}{82}$ inch diameter The electric fluid melted the two nails instantly. To melt iron in this short time would be impossible in the argest furnace now in existence and it could only be accomplished with the aid of electricity, but a curren of 200 amperes and a potential of 20,000 volts would be necessary. This electric force for one second repre sents 5.000 horse power, but as the lightning accomplished the melting in considerably less time, say $\frac{1}{10}$ of a second, it follows thet the bolt was of 50,000 horse power.-Dr. C. Grottewitz, Barmer Zeitung.

MANUFACTURE OF SASH WEIGHTS FROM OLD TIN CANS. | of moulding sand, which prevents the molten metal A great number of the sash weights used for windows, dumb waiters, etc., are made from old tin cans and scrap tin. The cans are gathered up by the weight manufacturers from the public dumps at very little expense. New scrap tin from stamping manufactories costs $\$ 2$ to $\$ 4$ per ton. The tin cans before melting have the solder extracted by heating them over a brick furnace. The cans are placed on a screen made of heavy wire, which rests on top of the oven. A quantity of crude oil, enough to wet them thoroughly, is thrown on them, and the oil set on fire, the heat of which melts off the tops and bottoms of the cans. The solder drops down on a pan below the screen and runs off into a receptacle to be moulded into bars
from burning out the iron bottom. In starting the fire in the cupola, about one ton of hard coal is used, on which, thrown in from above, is about 6 feet of tin material. A layer of hard Pittsburg coke is then placed on top of the tin to the depth of about a foot, being repeated until the cupola is filled to the door above. From 400 to 500 lb . of black or petroleum coke is thrown in occasionally to keep up the required heat. Steel forks are used for handling the tin material, it requiring the constant labor of three or four men to keep up the supply in the cupola. The black wase used is made of a mixture of soft coal dust and
pattern is removed, leaving the impression of the weight in the sand. The upper flask is then replaced and the two flasks clamped securely together ready for the cast. The pattern board is about 4 feet in length, about $21 / 2$ feet in width, and about 1 inch in thickness. From 12 to 36 weights are cast in each mould, the quantity of metal required weighing from 150 to 200 lb. The ladles used for carrying the molten metal to the moulds have to be lined with sand and burned. This is performed by covering the interior of ladle with wet sand to the depth of an inch, and baking it hard by means of a wood fire for about one hour, the object of lining being to prevent the hot metal from burning through the ladle. When the moulds are all ready, the molten material is run out of the mouth of

MANUFACTURE OF SASH WEIGHTS FROM OLD TIN CAÑS.

again for the market. As soon as the bottoms of the ovens and broken up into small chunks. The sash the cupola through a two inch hole into a large ladle cans are loose, the attendants beat them with clubs, causing the parts to separate. They are then dumped out on the floor by means of a pulley which lifts up one side of the screen, and then taken to the cupola to be melted. The cupola, in which the cans are melted, is about 75 feet in height and about 6 feet in diameter, and made of 4 foot sections of boiler iron the interior lined with 8 inches of fire brick. The cupola stands on four iron pillars which rest on a concrete foundation. The air blast passes up through the bottom of the cupola by means of a blower, the air first passing through a 12 inch pipe and into a wind box about 19 inches in height and 10 inches in width, which encircles the lower part of the cupola. From the wind box the air passes into the furnace by means properly filled with sand and leveled off, a gate runof 19 tuyere holes 4×4 inches square. The bottom of ning into the mould below is formed in the top the cupola on the interior is coated with about a foot flask. By lifting off the top flask the cardboard o
the cupola through a two inch hole into a large ladle
holding about $1,500 \mathrm{lb}$.. from which the small ladles holding about 1,500 lb. from which the small ladles
are filled. Each small ladle holds about 200 lb . of the hot material, which is taken away as soon as it is filled by two hands and poured into a mould, the operation taking about one minute. After cooling, the casting are turned up on end, and each weight tapped of the gate, which holds them together, with a hammer. They are then placed within an iron tumbler or cyl inder about 5 feet in length and about 3 feet in diame ter, for about one-half to three-quarters of an hour. About 2 tons of the weights are placed in the tumbles at a time, the revolving of which, at the rate of 60 revolutions per minute, rubs off the sand and smooth the rough edges. About $1,600 \mathrm{lb}$. of iron is secured out of every ton of tin. The sketches were taken from the plant of the United States Foundry Company, Jersey City, N. J.

The Remora or Sucking Fish.

A striped remora, or sucking fish, was found recently attached to the bottom of one of the steam launches which run around Glen Island, says the New York Sun. It was transferred to one of the large tanks of the Glen Island aquarium. The fish, though not rare, is a deep sea fish, and is hard to capture. It grows to the length of twelve to eighteen inches. The flat top of its head is surmounted by a large sucking disk extending from near the tip of the upper jaw to the ends of the pectoral fins, or about one-third of the total length of the fish. The disk is made up of seventeen or eighteen pairs of bony laminæ, the edges of which are furnished with rows of minute tooth-like projections. With this disk the fish attaches itself to a shark, a turtle, or some other larger fish, and is in this manner drawn through the water without the exertion of swimming。 Occasionally it will release its hold long onough to swim off and get something to eat, but immediately returns to refasten itself.
The South American Indians make use of this instinct oî the fish tc catch sea turtles. They fasten a ring around the remora's tail to which they attach a long line. The fish is then taken to sea, and when a large turtle is sighted the remora is thrown overboard. It unerringly swims to the turtle and makes fast. The line is then drawn in, and soon both turtle and remora are in the boat. It is necessary, however, to wait until the fish feels inclined to let go, for it is im possible to detach it from the object by force without injury.

THE CARTER PRESSURE WATER FILTER.

This filter, patented in 1890, represents many years labor and experience of its inventor, Mr. James Carter, and its successful introduction, within the past five years, in so many places where large quantities of filtered water are needed, affords the best possible attestation of its merit. Our illustration represents two of these filters built especially for the new aquarium at Castle Garden, New York, and said to be the only Tobin bronze filters in the world. They are non-cor rosive by the action of salt sea water, and have a daily capacity of one hundred thousand gallons each. Two other Carter pressure filters, made of sheet steel, and having a daily capacity of fifty-five thousand gallons each, are used for purifying the fresh water in the aquarium and throughout the building.
These filters are built by the Field Force Pump Company, of Lockport, N. Y. The filter comprises a smaller inner and a large outer cylinder, the latter being nearly filled with a good filtering sand, and the water is taken in at the bottom and forced upward through the central cylinder, at the top of which it passes in a thin sheet over into the top of the larger surrounding cylinder, where it is evenly distributed over the filtering material without channeling and without diminishing the pressure. In the top of the filter is a chamber in which is held a coagulant, such as alum crystals, and at the bottom of the chamber, inmediately over the cen tral cylinder, is a corrugated cup adapted to deliver a small amount of the coagulant, or a larger amount may be delivered when the water is quite roily the effect being to precipitate the impurities, so that they will be effectually arrested by the tiltering materials. The water, after passing down under pres sure through the filtering bed issues through strainers into a delivery pipe, clear and sparkling, and freed from all impur ties. To clean the filter, which should be done about once every twenty-four hours when water is being constantly passed throngh, is but a matter of a few minutes, and requires only the shutting off of two cocks and the opening of two other cocks. By this means the flow is reversed, and ail the impurities that have been arrested by the filter bed are carried backward through the central cylinder and discharged into a sewer or waste pipe. The filter may be located in the basement or cellar, and connected with the street wat water passing through the house mains, when all the purified. These filters are particularly adapted for use in hotels, laundries and large buildings.

It has been ascertained that ammonia in the air is the main cause of flowers losing their tints and colors In order to preserve them in their natural state, as nearly as possible, they should be preserved between paper that has been previously saturated in water having one per cent of oxalic acid.

AN IMPROVED PIPE JOINT.

The illustration represents improved means of uniting pipes without threads cut on their ends, and without solder, calking or flanges. The improvement has been patented by Michael Sexton, of No. 1112 Third Avenue, New York City. As shown in Fig. 1, a sleeve, whose central portion is cut out to show its application, is placed over the abutting pipe ends, and into the internally threaded ends of the sleeve screw the

SEXTON'S PIPE JOINT

exterior threads of collars fitting over the end of each pipe, as shown in Fig. 2. These collars are beveled at their inner edges, and engage beveled split rings, as shown in Fig. 3, the base or inner ends of the rings abutting on washers resting against packing rings seated on the beveled sides of an annular depression near the middle of the sleeve. When the collars are screwed up in the ends of the sleeve, their inner beveled ends move the rings inward against the washers and at the same time compress and fasten the rings upon the pipe surfaces, forming a friction joint, and providing a very good fluid-tight connection inside the coupling.

Mosquitoes that Overcome Man.
Gold in plenty may be found in the sands of the Volador River-a stream of moderate volume that falls from the snow line of the Sierra de St. Martha in South America; but though the lowland region and the river bed where the precious metal abounds in fabuous quantities are easily accessible. the mosquitoes are so thick and terrible there that all attempts to
rifle the sands of their gold have so far failed. Elisee Reclus, the celebrated French geographer, was the
of large dimensions. For two days he tried to live under its shelter and watch the operations of his work men, who toiled in the stifling heat, clothed in thick garments, and protected by heavy boots, gloves and veils. At the end of the second day both employer and employes gave up the struggle and retreated. The next who tried to wring fortune from these auriferous sands was an Italian, who obtained permission from the vice-consul. The 1 talian laughed at the idea of mosquitoes driving any one away from a place where gold could be picked up almost by the handful. H started out with a party of six who shared with him his belief, and so they took along no special protection against the insects. They endured for less than half an hour the awful torture, and then left. They found their way back to Rio Hacha with difficulty, for the eyes of five were so badly swollen that they were blind. Yet there are human beings who can venture with impunity into this gold mine whose guardian demons are mosquitoes, and these are some of the savage natives of the mountains from whose rocky steeps the river falls. These savages, who are mosquito proof, are rendered so by their bodies being covered with the scales of leprosy. Strange to say, the mosquitoes will not touch them. But neither gold nor the fascination of civilization will tempt them to labor. It is an old and true saying that one might as well try to get along without furs in the Arctic regions as without mosquito nets in the tropics.

Gold Production.

The summing up of 1894 showed a total production in round figures of $\$ 180,000,000$, an increase of $\$ 23,000$, 000 over 1893. This yield was about $\$ 30,000,000$ greater han the product of any year when the placer mines of California and Australia were at their maximum The indications now point to a yield of $\$ 200,000,000$ for the calendar year 1895, another increase of $\$ 20,000,000$ and an increase of $\$ 43,000.000$ in the annual output in two years, and of $\$ 54,000,000$ in three years. As the nuual supply of gold is not used in the year, but is mostly added to the pre-existing sum, it follows that he world's stock has been increased in the three years named by the enormous sum of $\$ 537,000,000$.
The consumption of gold in the arts is undoubtedly increasing generally, although there was a marked diminution of such use in the year 1894, owing to the hard times. The use of gold for purposes of adorn ment, which is almost its only use except as money rises and falls according to the prosperity of the na ions. It is an article of luxury. These uses in the United States, according to the calculations of the mint, were about $\$ 19,000,000$ in 1893 , but fell to $\$ 13$, 500,000 in 1894. Very likely the consumption of the present year will equal or exceed that of 1893 . On the other hand, the product of the gold mines of the United States, according to the estimate for 1895, will be $\$ 46,000,000$, against $\$ 39,500,000$ in 1894 . The South African product is estimated at the same figure as that of the United States, $\$ 46.000,000$; that of Australia at $\$ 43.000,000$, and that of Russia at $\$ 29,000,000$ These four countries producer three-fourths of the world's at nual yield.

The Spider Plant.

Travelers who visited or passed the Cape Negro country of Africa often heard from the natives of a plant that was part spider, and that threw its legs about in coutinual struggles to escape. It was the good fortune of Dr. Welwitsch to discover the origin of the legend. Strolling along through a wind swept tableland country, he came upon a plant that rested low upon the ground, but had two enormous leaves that blew and twisted about in the wind like serpents; in fact it looked, as the natives had said, like a gigantic spider. Its stem was 4 feet across and but a foot high. It had but two leaves in reality, that were 6 feet or 8 feet long, and split up by the wind so that they resembled ribbons. This is probably the most extraordingrows for nearly if not quite a
first to explore the plain about the Volador's mouth. He had thought of establishing an agricultural colony in the fertile lowlands, but found the plague of insects so unbearable that he was forced to beat a retreat and abandon his project. He was the discoverer of this wonderful stream, whose waters sweep over sands which are literally golden. He told the news to the French vice-consul at Rio Hacha, and this official obtained the concession of this Eldorado. The dangers he was to encounter he knew perfectly well. He took with him when he set out an ingeniously constructed gauze tent struggling to escape

THE NEW TERMINALS OF THE BROOKLYN BRIDGE. Nothing shows more impressively the rapid growth of the metropolis than the continual and imperative demands for means of transportation for the hundreds of thousands of people whose business is located in New York and whose homes are in the adjacent towns. Brooklyn is the greatest of these cities of residence, and, although means have been multiplied for transporting the people, still the demand for greater facilities increases.
Since the opening of the Bridge Railway on September 24. 1883. the railway has had a carrying capacity of over 200,000 passengers per day, the largest number for one day being 223,625, which was October 12, 1892. Since the opening of the railway there have been numerous alterations and improvements to facilitate the handling of passengers to the fullest extent under the existing system. In ten years the facilities proved totally inadequate. and greater capacity being imperatively demanded, the present new system of operation was devised and the construction of the terminal stations, which are now partly finished, was begun.
The Brooklyn station, although still incomplete, is farther advanced than that at the New York end.
We give an engraving of the interior of the New York terminal station as it will be when finished, the view being taken from the City Hall or western end of the building. The structures at the opposite ends of the bridge are practically alike, except that the Brooklyn station is constructed to accommodate elevated railroads at either end and at the side and is provided with galleries to permit of passing over the cars and tracks, giving access to the passages which lead to the elevated railroad platforms. The bridge station of the Brooklyn Elevated Railroad is integral with the bridge station, and is built by the bridge and leased by the elevated railroad. The Kings County Elevated Railroad is provided with structures of its own outside of the bridge station.
The system of tracks, by means of which the capacity of the bridge railway is to be practically doubled, is illustrated in the view of the New York station. The tracks on opposite sides of the bridge are double, each being composed of two pairs of rails, one pair of rails on one side of the bridge leading to the right of one platform, the other pair of rails leading to the right of the other platform. The rails of the track on the other side of the bridge are arranged in a similar way, one pair leading to the left of one platform, the other leading to the left of the other platform. Arranged in this way, each train comes in on a track which is contiguous to the platform, there being no switching.

It will thus be seen that the movements of the train are positive and that there can be no mishap due to misplaced switches. The only switches used are those employed for shifting the empty trains from the incoming tracks to the outgoing tracks. These switches are to be operated by a man in the elevated gallery shown in the left of the illustration. At present steam incomotives are employed in the switching, but an experiment looking to the application of electric loco motives for this purpose is soon to be tried, it being desirous to abolish the smoke and noise of the steam. At present the trains are operated under a headway of one and a half minutes; under the new system the headway is to be cut down to forty-five seconds. It has been observed that the platform is cleared of passengers in thirty seconds on an average, and it is believed that when the new system is in complete working order, with the number of trains doubled, the congestion at the stations will be completely obviated and the capacity of the stations will be ample for many years to come.

The City Hall station at the New York end will cover the site of the old station and extend beyond it, the railway having been changed already so far as possible, to adapt it to the new system. This station is rectangular, 521 feet long and 87 feet 6 inches wide. There will be two floors. On the upper floor will be the tracks and two elevated platforms, as shown in the illustration, and there will be an intermediate floor on which will be located the toilet rooms and the ticket sellers' boxes. There will be six stairways from the first floor to the platforms, and communication with Rose and William Streets by means of stairways and elevators.
The Brooklyn terminal station, which is already well along toward'completion, is 357 feet in length and 90 feet wide. The arrangement of platforins and stairways is substantiaily the same as that of the New York station.
In the construction of the Brooklyn station 420,000 pounds of cast iron have been used and $3,400,000$ pounds of steel. The work of erecting these structures at the ends of the bridge has been carried on without serious interruption of traffic, the old build ings having been torn down and the new ones built up while the thousands of passengers have surged back and forth as usual.

The highest chimney in the world is at Glasgow. Height, 474 feet.

His Dream Was Worth Millions.

Elias Howe almost beggared himself before he dis overed where the eve of the needle of a sewing ma chine should be located. His original idea was to fol low the model of the eye at the heel. It never accurred to him that it should be placed near the point, and he might have failed altogether if he had not dreamed he was building a sewing machine for a savage king in a strange country. Just as in his actual working experience, he was rather perplexed about the needle's eye. He thought the king gave him twenty-four hours to complete a machine and make it sew. If not finished in that time, death was to be the punishment. Howe worked and worked and puzzled and puzzled, and finally gave it up. Then he thought he was taken out to be executed. He noticed that the warriors carried spears that were pierced near the head. Instantly came a solution of the difficulty, and while the inventor was begging for time he awoke. It was four o'clock in the morning. He jumped out of bed, ran to his workshop, and by nine o'clock a needle with an eye at the point had been rudely modeled.
[The Philadelphia Times, we believe, is responsible for the above story. It is so well told we give it place, but we have doubts about the eye-pointed needle being invented in just the way the article states it to have been.-Ed.]

A SCARF PIN LOCKING DEVICE.

To securely lock a scarf pin in place, preventing it being lost or stolen, the device shown in the accompanying illustration has been devised and patented by Robert E. Lutters, Tenth Street, between Fourth and Fifth Avenues, College Point, L. I., N. Y. It consists of a sleeve adapted to engage and form a spring clamp upon the shank of the pin near its point, after the pin has been inserted in the scarf, as shown in the larger view. The sleeve, as better shown in the small view is longitudinally slotted, and the insertion therein of

lutters' scarf pin locking device

the shank of the pin spreads the body of the sleeve and causes it to take a sufficiently firm frictional hold upon the pin to secure the latter from removal or dis placement. The safety locking device is preferably made of hard rubber.

Three Good Business Hints.

Lloyds Commercial Guide gives the following advice to its readers. Never sign a paper without reading it and if, after reading, you do not understand it, have it thoronghly explained before you put a signature toit. It is best to get some third person, who is not interest-
ed in the matter at all, to explain the meaning of what ed in the matter at all, to explain the meaning of what
is not clear, or to point out words that may have two meanings in the document.
Always make a memorandum in your little book of any contract you undertake for money or any agree ment to work. It saves much trouble to keep a memorandum book and put down the dates when you either pay or receive money. Whenever money
passes on account, set it down. If any money or thing of value goes through your hands, give a receipt for it and make a memorandum. Your receipt settles the amount that passes, and that cannot be disputed. When you pass it to a third party, get a receipt and keep it. This form is as important in the transfer of income, trust money, or val
family as with other persons.
Never allow a person to do any service for you with out first agreeing upon the cost to you. This rule strictly adhered to, will save you many annoyances.

That Mammoth Potato.

The photo. picture of the mammoth potato we pub lished on page 199 proves to be a gross fraud, being a contrivance of the photographer who imposed upon us as well as others. An artist who lends himself to such bred knave, to be shunned by ranked as
bethods of deception may be

Average Wages of British Workmen.

There has been issued from the Board of Trade an elaborate report dealing with the average wages paid in several trades throughout the United Kingdom. The report has been prepared by Sir Richard Giffen, and accuracy is thus abundantly established. It is, says Engineering, a monument of great labor, for there are 500 closely printed pages of figures.
The average wage, according to the returns made, is 24 s . 7d. per week, equal to $£ 64$ (or $\$ 320$) per annum, quite a satisfactory figure, especially when it is remembered that the summation includes several industries which are not highly skilled, and includes also in al trades the helpers and laborers engaged in each. The average wage for women is 12 s .8 d ., which again is satisfactory, for many dressmakers, milliners, etc., are included, who only receive a nominal wage while learning their art. Lads and boys get 9s. 2d., and girls, where also the "improver" tends to reduce the average result, 6s. 5d. These average results are arrived at by an analysis of returns of wages actually paid for 1885 , and of the wage paid for a stipulated day or week in 1886, with the maxima and minima paid in one week. Nearly a million workers were brought under this census, aifter all doubtful cases had been eliminated. As the trades were representative of all classes and districts, the return may not err on the side of the maximum. As reflecting on the minimum wage question again, the fact that only 2.5 per cent of men are paid less than 15 s . is significant, while only one-fourth of all less than 15 s . is significant, while only one-fourth of all
men workers have less than $£ 1$ a week. One-third of men workers have less than 21 a week. One-third of
the men engaged have 20 s . to 25 s .; and 24.2 per cent between 25 s . and 30 s . This is what one would expect -that 58 per cent of workmen come within the class of 20s. to 30 s . a week-limits which certainly afford a fair competency. Between 30s. and 35s. there are 11.6 per cent, and only 4.2 per cent between the latter figure and 40 s., while this rate is exceeded by 2.4 per cent. Only one in a thousand gets less than 10s., and be it remembered the classification includes helpers in all the trades. As to women, 26 per cent have less than 10 s ., 50 per cent between 10 s . and 15 s ., and 18.5 per cent between 15 s . and 20 s ., while 5.5 per cent have more.
Another interesting point is the relation of the aver age wages in England. Scotland, and Ireland. It is not altogether surprising to learn that wages are lower in Scotland than in England by about 10 per cent, and that in Ireland they are still lower, the difference, as compared with England, being from 16 to 20 per cent, and more in those trades where the proportion of unskilled to skilled workers is greatest, for the report shows that skilled labor is paid about the same as in England, while mere muscular labor is very cheap. That is a condition which is easily understood. Some of the figures from the report may be quoted :
average annual wage.

Trades.	England.	Scotland.	Ireland.	United Kingdom
Engineering	${ }^{58} 14$	${ }^{54} 9$	4518	${ }_{5}^{56} 19$
Metal wor	- 5912	54 54 54 15	${ }_{49}^{51}{ }_{4}{ }_{13}^{2}$	[1989
Coachbuilding..............,	578	534	5218	56
Breweries.		${ }_{54}^{54} 17$	${ }_{50}^{50} 13$	${ }^{60} 15$
Distilleries..	64 58 58	$\begin{array}{ll}52 & 5 \\ 50\end{array}$	47	52 55 5
Chemical works. Pri...		${ }_{47} 0$	44	[5818
Printing-large works...		${ }_{41}^{48} 19$	$\begin{array}{ll}46 & 3 \\ 36\end{array}$	${ }_{43} 8$
Building trades..........	720	630	$61 \quad 0$	

These figures are based on the assumption that the men work full time.

Moving a Large Factory

In the work of track elevation on the Providence division of the New York, New Haven and Hartford, it became necessary to move one of the largest factory buildings of the Sturtevant Blower Works at Jamaica Plain. This building is 50×350 feet, about half the length of which has three and the other half two stories. The three-story portion was moved about 50 feet east and 300 feet south, and the other portion was moved 50 feet east from its former location. The work in the three-story section, except upon the lower floor was carried on all of the time during the removal power being supplied by a 20 horse power electric mo tor belted from the second floor of the building to the main line of shafting. Provision was made for mov ing the motor away from the generator, which was situated in the engine room, by placing a reel containing the conducting wire upon the floor of the moving building, which allowed the wire to unwind and made it possible to keep the motor running while the building was upon the rollers. The moving was carried out in the usual way by means of capstans worked by horse power, which were connected to the building by ropes and blocks. The building was thoroughly tied in both directions by heavy iron rods before the mov ing was commenced, and though the walls of the first story are 20 inches thick, and of the second story 16 inches thick, the work was done without injury to the structure, in spite of the fact that the latter part of Herald.

The Cotton States Exposition.
The Cotton States Exposition has now been open to the public 15 days and yet the visitor finds much still to be done to make a tour of the grounds with comfort. The roads and walks are very far from the condition of roadway "that leads down to destruction," spoken of in Scripture. The poor sinner who foots his way from the entrance to the exit takes on a goodly load of dust, besides going over acres of corn-racking broken stone. The management cannot be wholly blamed for this, as labor in this section is not only less abundant, but also less to be depended upon than in northern localities.
The exhibits in the various buildings are assuming shape, and are certainly very creditable, though much is still to be done in this respect. The most complete of all is the United States exhibit, including the Fisheries Commission, in the same building.
The display of varieties of living fish in glass tanks is tasteful in arrangement, and very instructive in conception. The building set apart for and filled with the efforts of Negro genius and skill is also very near completion and worthily attracts much attention; not necessarily for its great perfection in finish of exhibits, or new fields of progress, but that the emancipated race has been able to "climb up the stair" of ability in so short a period of freedom.
The observer sees, necessarily, plagiarism in all their works of art and mechanics, while yet feeling a hearty sympathy in their laborious education.

That the "expert" will never fear the efforts of the novice is so plainly written in this and-I dread to say it-the woman's building, he who runs nay read. As the plot of the exposition develops itself, 1 will write, be it tragedy or comedy. Whether the experiment of a successful exhibition, with ear muffs and chilblains as companions, will be possible, remains as the deciding side of the result.
October 9 was a "banner day" at the fair; the attendance was very great: cause-arrival of the old Independence Bell" from Philadelphia.
I was much pleased with the exhibit of acetylene gas (made from the union of lime and coal by heat). It is compressed into liquid form in steel cylinders about 4 inches in diameter by 4 feet long. Each cylinder, which can be taken to any household and attached to the pipes, it is claimed, contains enough liquid gas to run six burners three hours in the evening for month. In this form there is, of course, no residue.
They attract much attention, as the white flames they burn constantly show the beauty of the light and the absolute simplicity of operation. The exhibitors say that experiments in manufacture so far justify the statement that $\$ 10$ per ton will be a maximum cost of the compound, but others say the cost is far greater.

MEAD.

The Rubber Stamp Industry. by gustav heinsoun.

While a single rubber stamp may appear insignificant, and it costs a trifle, the trade in goods of this class has reached a very large aggregate and become a source of profit to a great number of persons. It is the most widely distributed of all the branches of rubber manufacture, geographically speaking. One must
consider that when the business man of Nagpur or Melbourne or Rio de Janeiro or Bankipore uses a rubber stamp it is not due to that article having reached him by accident from a distant country; the letters have been moulded and the stamp vulcanized in a shop in his own city. The United States is the home of the rubber stamp, and the largest production of such goods is still to be found here, but there is no ex port business to speak of. The most that can be done in the direction of foreign trade is to operate through
foreign branches, or to arrange for the collection of royalties from manufacturers abroad under American patents. But rubber stamps are made and used already far beyond the limits of patent protectionthat is, in countries without patent laws.
How many rubber stamps are made or used is past finding out. It is safe to say that few up-to-date business men have not sometimes a use for a rubber stamp, while in a single office hundreds of different stamps may be used. One needs only to look at the bank checks which pass through any large business house every day, with their stamped indorsements, and often with stamped signatures, to gain an idea that an enormous number of stamps must be in use. By the way, the banks are among the most valuable custowers of the rubber stamp manufacturer. Two years age the Cbemical National Bank of New York, it is said, gave one order for 7,000 rubber stamps, though of course this was exceptiongl, the occasion
being a monetary panic when clearing house certificates were issued and very much unusual work was necessary in conducting the banking business. Insurance and other companies having a great number of agents, patent medicine manufacturers whose compounds are sold through thousands of dealers, and
many other concerns have rubber stamps made for many other concerns have rubber stamps made for tising matter which is pouring ceaselessly through the
presses. Printing the names of agents on circulars, cards, etc., with type. which would have to be changed for every name, would be much more expensive.
Like most things which have any value at all, the rubber stamp has been improved from time to time until it is now capable of many more uses than at the beginning. On account of a new feature which will be described further on, the rubber stamp is coming into use for lettering boxes and packages, instead of the old-fashioned stencil plate, with the result of saving a great deal of time, besides securing a better label in many cases. Where a merchant ships goods
frequently to the same customer, a rubber stamp can be obtained for marking packages with the customer's name and address, with far greater satisfaction than from the use of marking pot and brush. As rubber stamps are now manufactured, there is a steady increase in practicable sizes. "Hand stamps" 10×14 inches are now advertised, and they have proved as satisfactory in use as the one-line stamp with which the name of a corporation is affixed to a bank check ver the treasurer's signature. Nor are these stamps confined to the printing of letters or figures. One of the big typewriter companies recently had a 10×12 inch rubber starup made, embracing a good representation of their machine, make from a photograph, and this is stamped on the boxes in which the machines are sent out to the trade.
The trade in rubber stamps has been not a little stimulated by the invention of the pneumatic feature, by which the stamp is rendered flexible. The advantage of the improved stamp is that it will print on any surface, whether flat, uneven, concave, convex, or yielding, such as pasteboard boxes, packages prepared for the mails, etc. It is due to the flexible feature, indeed, that the large sized rubber stamps above referred to have come into existence, since the stamps formerly made could be satisfactorily used only on urfaces that were exactly level and uniformly smooth.
In the manufacture of rubber stamps a form of printing type is set up, st vles of letter being selected uch as it is desired to reproduce in the rubber, and a cast of the type faces taken to serve as a matrix or
model for the rubber. When the mould has hardened model for the rubber. When the mould has hardened
sufficiently, a sheet of unvulcanized rubber is forced into it by hydraulic or other pressure, with the result that, when the rubber is removed, it presents a facsimile of the type metal letters. By vulcanizing the rubber its quality becomes fixed, and the letters retain their form permanently. The cementing of the rubber letters to the handle or "mount" is done with some preparation the nature of which is usually guarded as a secret. The manufacture of the air cushion mount involves an interesting feature. There is first secured a rubber sheet or cushion, on one side of which is a series of cells, similar in appearance to a piece of honeycomb, except that the cells are square or oblong instead of hexagonal. These are the air cells, and they will be probably one-fourth inch deep and as large square, though various sizes are used for different kinds of work. The printing surface, or rubber die, is first securely cementer upon the back or closed side of a sheet of the cells. The opposite or open side is then hermetically sealed by cementing it to another flat piece of rubber, or direct upon the stamp handle base thus forming airtight compartments, which, under pressure, give flexibility to the printing surface and allow it to conform to any surface on which it is desir-
ed to print. The advantage of having a number of ed to print. The advantage of having a number of assist in supporting the rubber printing surface and giving it the necessary firmness. Besides, if a few cells should in time become broken, the stamp will not thereby lose its form. Unlike the pneumatic bicycle ire, the pneumatic rubber stamp is not rendered use tess by a puncture, since the inflation or distension of the cells is not necessary to render the stamp effect ive.
Closely related to the rubber stamp trade is the manufacture of solid rubber type. There are many matter were it is desirable to change frequently the demand has grown up for rubber letters which can be rearranged as often as desired. Formerly the frames or mounts into which were inserted the feet of the rubber type-so to speak-were provided with thumbscrews for holding them in place. Too frequently, however. such screws were apt to be tiohtened so far as to compress the types, resulting in bad work in printing. An improvement was devised to overcome this, by means of which each letter, as it is put in place, is compressed with a pair of pincers, the base of the letter expanding and filling the socket completely as the pressure of the tool is removed. Thus the letters are prevented from falling out of the handle. But the chief improvement in connection with rubber type work has been in the adaptation to it of the pneumatic mount, so that a form of rubber type is now used precisely as a flexible hand stamp would be.-India Rub ber World.

The largest library is in Paris, the National, con taining 2,200,000 volumes.

Gilded Fabrics.-For some time past gilded or sil vered tulles have been in the market. According to Mr . Villon, the following is the process of preparing these fabrics: The tulle is immersed in a one per cent solution of nitrate of silver. After a quarter of an hour it is dried and then plunged into a solution of Raschig alt. This latter is a salt of potassium of sulphonated ydroxyiamine. The nitrate is immediately reduced and the silver deposits upon the fibers in impermea bilizing them. It then only remains to dry the tulle, wash it, and dry it anew. This done, it is covered with gold or silver in a galvanic bath formed of double cyanide of potassium and gold or silver. The same pro ess may be used for silvering or gilding other fabrics. A New Tannin Plant.-Mr. H. Trimble calls atten tion in Garden and Forest to a tree that is yet little known, but which seems capable of rendering great services as a source of tannin. This is the Castanopsis, a tree intermediate bet ween the oak and the chestnut. A species of this tree, C. chrysophylla, is found in Cali ornia and Oregon. Its bark is very rich in tannin, as may be seen from a comparison of the following analyses

Although this tree does not form forests in California, it is nevertheless of comparative frequency and grows to a great height. It would seem advantageous to develop the culture of it for the industrial preparation of tannin.
Lighting by Luminescence.-In a paper read by Mr A. Witz, before the Academy of Sciences, the author gives the results of his attempts to measure the quantity of energy necessary to illuminate Geissler tubes. The figures that he has obtained show that, in lighting by uminescence, the proportion of calorific energy as compared with the total energy is more feeble than in any other luminous source.
The author thinks that by reducing the losses of electricity to a minimum, by concentrating the light in a confined space, by utilizing the fluorescence of certain substances, and, finally, by devising certain special arrangements, one may hope to obtain luminous sources whose photogenic rendering will be superior to the best now known.

Cycle Notes.

In the smaller towns in France, when a fire breaks out, a messenger has to make the rounds of the town summoning the firemen from their work. These messengers are now mounted on bicycles, and are able to summon the firemen in a much shorter time than fornerly.
A New York magistrate has decided that the repairing of a punctured tire is a necessity. Wheelmen have long held this idea, but it was not until a man was arrested for violating the Sunday law by repairing a puncture that the court finally rendered judgment on this important question.
An English cycle insurance company has a reference department, which should be of great value to the intending purchaser of a second-hand wheel. If the machine has been insured in the company, the would-be buyer, upon the payment of a fee of twenty-five cents, will be given all particulars of the age, make, and original price of the machine, and whether any or what accidents the company has been called upon to pay upon it while it was insured with them. By this means the purchaser is in a large measure protected against buying a stolen or misrepresented wheel.
Responses from the leading manufacturers of the country place the output of wheels for 1895 anywhere from 400,000 to 750,000 , and that of 1896 from 600,000 to $1,000,000$. A fair average of those opinions would bring the prophecy for 1896 to near 750,000 wheels. The general opinion is that prices will remain about the same as 1895.
The Board of Education of Montclair, N. J., has taken formal recornition of bicycles as a means of going to and from school. At a recent meeting the fact that between seventy five and one hundred children rode to school every morning on bicycles and that some accommodation should be provided for the wheels was considered. The board then ordered that racks for the wheels be put in the different schools.
Complaint has been made that cycling is keeping the young and old away from church. In the suburbs of London a minister of the Gospel preaches a special sermon in his church for the benefit of cyclists. Every Sunday the wheelmen ride out to the church frou the city, and the minister is said to have close and attentive audiences. The same plan has also been tried in his country with success.
The Jersey City Board of Aldermen, on October 8, passed Alderman McCarthy's ordinance, which provides for the imposition of a $\$ 25$ fine on any person who throws tacks, pieces of glass or other like material in the public highways. The object of the ordinance is to prevent the puncturing of bicycle tires.

Eleusian Remains.

The Standard states that the excavations that are being carried out by the Greek Archæological Society on the sive of ancient Eleusis, a few miles from Athens, have just yielded some results of exceptional importance. In a very ancient and well preserved tomb there have been found, in addition to the skeleton of a woman, a number of articles, including ear rings of fine gold, silver and bronze, several finger rings, sixty-eight small vases of various shapes in terra cotta, two tripods, three Egyptian scarabæi and a small statuette of the goddess Isis in porcelain. These discoveries leave no doubt of the fact that the cele brated mysteries of Eleusis were of Egyptian origin and were borrowed from the religious rites of the ancient Egyptians. These important relics have been deposited in the National Museum.

IMPROVED "LONG RUN" PERFECTING• PRINTING PRESS.
For some time past there'has been quietly running in the city of Boston a press which printers who have seen it say is destined to revolutionize the printing of such jobs as are known generically in the trade as "long runs" of book and cut work.
To describe the machine in the fewest words, it is a web perfecting press with patent offset mechanism. It is manufactured by C. B. Cottrell \& Sons Company and is the invention of the former senior member of that house, now deceased.
As shown in our engraving, the new machine in ap pearance is strong, symmetrical, evenly proportioned, ideal in shape and design. There is no important part of the press which is not easily accessible, the location of parts being well-nigh perfect in arrangement.
It is a press for printing fine work by automatic feed ing from a continuous roll of paper; prints both sides of the sheet at one operation; and is so constructed that there is no offset in the printing of the second side.
This last consideration is one of the most important features of the new press, for it adds the virtue of quality to that of speed.
The surface of the second impression cylinder is in four sections and is covered by four tympans supplied from rolls of paper within the cylinder. These tympans are set to shift automatically at stated intervals. The movement is not slow, partial and continuous, but quick, complete and instantaneous. The entire tympan covering of the cylinder shifts in one revolution, moving the full length of the printed surface. This is done with no diminution in the speed of the press and no cessation of its printing.
Furthermore, this shifting of the tympan can be adjusted to suit the special needs of each job. Thus, the surface may be changed automatically after every eighty impressions, if heavy cuts are in the form, or it may be set to wind off on 160 impressions or on 240 if the work is ordinary book or pamphlet printing.
The paper, after printing, is cut into sheets and delivered (accurately jogged both ways) on the table. There are no tapes and no fly. The delivery is posi

GYROGRAPH OR ARTISTIC TOP.

Our engraving shows a novelty in tops recently ad ded to the long list of interesting modifications of this old-time toy.
The novelty in the present case consists in making the point upon which the top spins produce a record of its movements.
The top consists of a heavy disk of iron secured to a spool on which to wind the string. The spool is bored axially to receive a pencil which forms the point on

THE GYROGRAPH.
which the top spins. The handle is swiveled so that the top may be spun while the handle is hel i in the hand. After the top is set in motion, it is placed on a paper in the position shown in the engraving. The pencil point then traces the intricate curves as shown. If desired, a slate pencil can be substituted for the lead pencil. The manufacturers state that a well centered hard pencil with the lead cut square across gives the most accurate curves, though not necessarily the most beautiful.

Breeding Habits of Toads.

It was stated that a correspondent of Meehan's Monthly inquired how it was possible to find toads no larger than peas if the tadpole is the first stage of toad life. The reply of the Monthly was to the effect that toads are oviparous or viviparous, according as water is or is not accessible. This is not quite true.
Every toad passes through the tadpole stage, howver far he may be from the water, and no case is known of a toad bearing young alive, but all toads and frogs lay eggs. It is true that some forms pass throurh the tadpole stage while still in the egg, and others carry their young in various ways, until the tadpole period is passed, but none of them ever bear young period is passed, but none of them ever bear youn
alive, as viviparous in its true sense would imply.
It may be interesting to note some of the curious
istence. Pouches filled with eggs, to the number of one hundred and fourteen, have been observed on the back of a single female. This is the only case among the Batrachia in which the young are nourished at the expense of the parent, but even this toad could not be called viviparous.
Another interesting form is the obstetrical toad of middle Europe. The eggs are laid by the female in a long albuminous string which is taken by the male and wound about his body and thighs. The albumen dries and the eggs become fastened to his body and there remain until hatched.
'The species Nototrema and Opisthodelphys, of Peru, carry their eggs in a pocket formed by the unfolding of the skin of the back; the young of the former leave the egg while tadpoles, those of the latter pass through their entire metamorphoses while in the pouch.
Our own toads deposit their eggs in long albuminous strings having the appearance of a necklace of black beads. The eggs of the frogs and salamanders are deposited in more or less globular masses of the albuminous substance. We may distinguish the eggs of the salamanders from those of the frogs, for the former have a circular outer envelope which surrounds each egg.
The tadpoles of the toad, unlike those of the frog and salamander, retain their early black color throughout their larval state. They also undergo their metamorphoses while much smaller than the frog. The toad tadpoles take on the adult form when they are literally not larger than peas. At this stage they leave the water in great numbers and make long journeys in every direction, traveling mostly at night, but often emerging from their hiding places after a rain, thus giving rise to the suspicion that they have fallen with the rain.
The hylidæ or tree toads lay their eggs in the water, in small pockets, and not in strings as do the other toads. They also undergo their metamorphoses while small. One of the Mexican tree toads is said to deposit its eggs in the water which accumulates in the axils of leaves and to undergo its changes high above the ground.
In the spring of the year nearly every pond and pool will be found on careful search to contain numerous masses of albuminous jelly filled with eggs in various stages of development. Nothing is more interesting than to bring home these eggs and watch them develop from day to day. Whether they be the eggs of frogs or salamanders, or the strings of toads' eggs, we shall see them all hatch into lively little tadpoles. We can scarcely hope to keep the frog or salamander tadpoles until their legs bud forth and they become ready to live on land, for it requires too long a time, but we may keep the toad tadpoles and watch the limbs gradually appear and the tail disappear until the adult form is reached. The little tadpoles will devour the slime which gathers on the sides of the aquarium, and they will also suck the juices of raw meat. They grow rapidly and in a short time acquire legs and lose their
tails, and though still no larger than peas, they are

IMPROVED "LONG RUN" PERFECTING PRINTING PRESS.

tive and in its operation the sheet has no printed surface contact.
The cutter is rotary, makes a sheer cut and leaves the edges perfectly square and smooth.
The press prints a 33×46 sheet, running at a conservative speed of 3.500 completed sheets per hourequal to 7.000 impressions on one side.
Altogether, the Cottrell web perfecting press, with offset mechanism, may fairly be ranked among the great achievements in printing machinery of the present day.

South America, Pipa americana, is the most extraordinary. The eggs are laid by the female, and are immediately transferred by the male to the back of the female, to which they adhere and where they are impregnated. The skin of the back is excited into increased activity by the presence of the eggs, and gradually grows up around each egg, until it is inclosed in a pouch.
Here the eggs develop, passing through the tadpole titte, and when the form of the adult is reached the little fellows emerge and take up an independent ex-
perfectly formed toads ready to take up a terrestrial life-F. P. G., in Outdoor World.

A ReUTTER's telegram of September 11, from Berne reported the fall of a huge mass of ice from the Altel Glacier upon the hamlet of Spitalmatte, in the Upper Gemmi Pass, causing the death of at least ten persons and the loss of, it is estimated, two hundred head of cattle. A stretch of land nearly two miles in length blocked.

NEW FLYING MACHINE.

Our readers will recollect that we devoted some at tention in the past to Herr Lilienthal, of Berlin, and his experiments in soaring. Now it is Mr. Percy S . Pilcher, Lecturer on Marine Engineering at Glasgow University, who, basing his inventions upon that of Herr Lilienthal, has produced two winged creations and by their aid has taken sundry flights in midair. At times he has risen to an altitude of twenty feet, occasionally hovered kite-like for a space and then descended on the spot he left; while, upon other trials he has hastened before the breeze for considerable distances ere regaining his feet. Mr. Pilcher's machine are light structures of wood and steel supporting a vast spread of wing and braced with piano wire. The wings themselves, which are made of nainsook-a sort of muslin originally manufactured in India-have an area of 150 square feet; and each machine, as our pictures indicate, possesses a vertical and horizontal rudder of circular shape, the one cutting the other at right angles. The former, which is rigid, serves to keep the

Luminescence

What has generally been called phosphorescence i well known to be the effect of oxidation in the case of phosphorus itself, and in that of decaying wood or other organic matter which under certain conditions shines in the dark. Wiedemann has shown that the shining of Balmain's luminous paint, and generally of the sulphides of the alkaline earths, is accompanied with chemical action. A long period of luminosity after the removal of the source renders highly probable the existence of what he now calls chemi-lumines cence. A large number of substances, both inorganic and organic, have been examined both by direct action of light and by the action of cathode rays in a controlable vacuum tube through which sparks from a pow erful electrical influence machine were passed. Care ful examination with appropriate reagents before and after exposure was sufficient to determine whether any chemical change had been produced. Thus the neutral chlorides of sodium and potassium, after being rendered luminous by action of cathode rays, were
stances is accompanied by the manifestation of light if they have been previously subjected to luminous radiation, but not otherwise ; that alteration of color is brought about by such exposure ; and that friction or crushing may cause nomentary shining in such bodies as sugar. There is no conclusive direct evidence thus far that such luminescence as vanishes instantly upon the withdrawal of light is accompanied by chemi cal action. But Becquerel demonstrated long ago with his phosphoroscope that there is a measurable duration of luminous effect when to the unaided eye the disap pearance seems instantaneous.* Wiedemann now shows that when this duration is considerable there is generally chemical change. Since duration is only a relative term, it seems highly probable that even cases of instantaneous luminescence, commonly called fluo rescence, are accompanied with chemical action on a very minute scale, and that all luminescence is there fore jointly physical and chemical in character. We have thus color evoked by the direct action of light which disturbs the atomic equilibrium that existed be

THE PILCHER FLYING MACHINE.

THE LATEST FORM OF FLYING MACHINE,
machine's head to the wind, while the latter arrests an inclination to pitch sideways-a common vice in all like inventions.
The great difficulty with winged aeronauts is the uncertain quality of the wind, for a steady, unvarying breeze is never to be calculated upon. Indeed, the sudden, unexpected side puff often brought disaster in its train to Mr. Pilcher until he hit upon a means of circumventing it. He now draws his wing tips in with a bend, which renders a flying machine safer and more stable. Speaking generally, these experiments in flying or soaring are being made with a view to master the art of aerial balance and safe landing. Then, when the goiden era dawns, when a screw propeller or flapping wings are introduced, and a power discovered to work them, gentlemen like Messrs. Lilienthal and Pilcher will spring gayly aloft to emulate the carrier or tumbler pigeon, and put a girdle round the earth in a morning.- May the necessary discovery of a new power be speedily made! Meantime Mr. Pilcher, on a fresh pair of wings with a sail area of no less than 300 feet, pursues his plucky experiments at Cardross, in Dumbartonshire, before numerous admirers.-From Black and White.
thereby reduced to the condition of subchloride, so as
to give a distinctly alkaline reaction. Many subto give a distinctly alkaline reaction. Many sub-
stances, moreover, which manifest no luminescence at ordinary temperatures after exposure, or which do so for only a short time, become distinctly luminescent when warmed. This striking phenomenon is sufficient to warrant the use of a special name, thermo-lumines cence. Awong such substances may be named the well known sulphides of the alkaline earths, the haloid salts of the alkali metals, a series of salts of the zinc and alkaline earth groups, various compounds with aluminum, and various kinds of glass. Some of these after exposure give intense colors when heated, even after the lapse of days or weeks. That the vibratory motion corresponding to the absorption of luminus energy should maintain itself for so long a time as a mere physical process is highly improbable, if not unparalleled. That it should become locked up, to be subsequently evoked by warming, certainly indicates the storing of chemical energy, just as the storage batery constitutes a chemical accumulator of electrical energy. Other indications that luminescence is as much a chemical as a physical phenomenon are found in the fact that the sudden solution of certain sub-
fore exposure, and the manifestation of such color contiuues only until the cessation of the chemical ac ion thus brought into play.
The influence of very low temperature upon lumi nescence and photographic action has been studied by Dewar. \dagger The effect of light upon a photographic plate at the temperature of liquid air-180 C. is reduced to only a fifth of what it is at ordinary tempera ure ; and at -200° the reduction is still greater, while all other kinds of chemical action cease. In like manner, at -80° calcium sulphide ceases to be luminescent but, if illuminated at this low temperature and then warmed, it gives out light. At the temperature of liquid air many substances manifest luminescence which ordinarily seem almost incapable of it ; such are elatine, iyory, and even pure water.-W. Le Conte Stevens. \qquad
Australia has a population of less than $5,000,000$, but economists declare it could support $100,000,000$ with ease.

[^0]Horseless Carriages in France.
The time seems approaching when automatic road carriages, propelled by steam, electricity, or petroleum, will come into general use and take away from the patient horse the worst part of his daily toil. The odds, at present, seem to be rather in favor of petroleum. A most interesting competition has recently taken place in France between varied specimens o motor carriages. The course prescribed was from Paris to Bordeaux-a distance of 358 miles-and back again, any vehicle to stand disqualified if it consumed more than one hundred hours on the road. The big prize of the day-40,000 francs ($\$ 7,720$)-was for four-seated carriages, which was won by Les Fils de Peugeot Frères, while Messrs. Panhard \& Levassor secured second place with a two-seated carriage, making th round trip in twenty-four hours and fifty-three minutes.

The winning convevances were propelled by gaso line. and the rate of speed was about 15 miles an hour which is regarded as an extremely creditable perform ance, the long lines of hills being taken into account These hills appear to have proved too much for the carriages propelled by electricity, of which only one got through, the others having abandoned the contest. One of the steam carriages was brought to a standstil at Versailles early in the race, owing to an accident. and the others lost time by frequent stoppages of five and ten minutes, made for the purpose of taking in coal and water. The electrical conveyances had also to stop, from time to time, to renew their dynamic charges, but the petroleum machines carried enough force for a twenty-four hours' run, and on the retur journey the run was made without a single stop. In comparing the merits of the different propelling agents, the palm must, so far, be awarded to petro leum, which is clean and can be easily carried. The ordinary feeder used for short distances contains les than 4 quarts of oil, which will last over a journey of 20 miles, or two and one-half bours. For long dis tances, a receptacle capable of holding enough petroleum for a run of at least twenty or twenty-four hours is provided.
We hear also of bicycles propelled by petroleum, in which great interest has been exhibited, and half dozen of such machines started in the race to Bor deaux, one, at least, holding its own among the larger vehicles. It is believed that light petroleum bicycles, tricycles and even four-wheelers, will soon come int general use, which will tend to relieve lady cyclist from the necessity of wearing short skirts. Altogether, it seems that petroleum is destined to become the popular agent for solving the problem of traffic and conveyances without horses in the streets of great cities and on smooth country roads.
It has already made astonishing headway in the uses and industries of the world. In Japan it has become almost the sole illuminant, and on the Caspian Sea the Russian steamers burn nothing else for their engines.
In commenting on the success of the horseless vehi cles propelled by petroleum, in the race between Paris and Bordeaux, a leading English journal says:
"Why is it that we are so slow in this country to take up improvements of such immense social import ance? Ours is the land of machines and machinery, of skilled inventors and colossal enterprises, yet in many respects England lags behind the whole civilized world in availing herself of the discoveries of science. There is not as much use made in the whole of London of the telephone as in one single quarter of Washington City, and there are prairie towns in the west of the United States more magnificently lighted by electricity than the best street of London. Electric tram cars and tram cables may be seen in many and many a city abroad, while here they are still novelties. Years ago the tourist might have watched a detached electric o petroleum phaeton quickly threading the thickest crowd of carriages in the Place de l'Opera, at Paris; and now we have Frenchmen again, instead of the countrymen of Watt and of Stephenson, acting as piodeliverance of great cities from horse traffic, and of the horses themselves from a cruel and destructive use of their strength.
"It is a circumstance which has been frequently commented on, that there are no horseless conveyance other than cycles and a few cable tram cars in Lon don. The reason is said to be that the law restrict the adoption of horseless vehicles in England to a very great extent. They are all subject to conditions upon which alone locomotives of primitive construction, steam rollers, etc., are suffered to go through the streets. A man must go before with a red flag, and the speed must be under four miles in the country or two in the town. The restriction was probably very wel before the days of rapid transit, and it may be very
well yet in its application to heavs locomotives. It well yet in its application to heavs locomotives. It
was no doubt intended to guard against accidents due to the frightening of horses. But horses, like human beings, soon become accustomed to new and strange sights, and are nowadays seldom frightened even by
light carriage with a road locomotive or steam roller because its motive power is steam, gas, petroleum, or
electricity. But since the successful experiments re. cently made in France, London seems to have caugh the gleam of a ray of hope that horseless cabs and omnibuses may soon be seen in her streets. Mr. ShawLefevre, president of the local government board, has introduced into the House of Commons a bill intended to permit such carriages to be used, and they will no doubt soon become a common sight in the streets o London, as they are now in the streets of Paris, Havre and other French cities.'
C. W. Chancellor, Consul.

Havre, June 24, 1895.
SIR dOUGLAS GALTON, PRESIDENT OF tHE BRITISH association.
Captain Sir Douglas Galton occupies the honorable post of president of the British Association in succes sion to the Marquis of Salisbury. He has justified his selection for this compliment by long and valuable services in various fields. Son of the late Mr. J. H Galton, of Worcester, he was born in 1823. He was ducated at Rugby and at the Royal Military Academy, Woolwich. Having joined the Royal Engineers, Douglas Galton soon showed his abilities. He had to do with the removal of the wrecked Roval George be ore he was twenty ; then he served in the Mediterra nean and on the Ordnance Survey. The first of a long eries of secretariats began in 1848, when he acted in this capacity on a royal commission relating to the

ir dojglas galton, president of the british association
use of iron in railways. He next was appointed In spector of Railways; in 1857 Chairman of the Commis sion dealing with submarine cables; and in 1862 As sistant Under-Secretary for War. But merely to recount all Captain Galton's services would be weari some. He has had connection with commissions and congresses innumerable, while for twenty years he has been General Secretary of the British Association, over which he will soon be presiding at Ipswich. He was created C.B. 1865, and knighted in the Jubilee year Sir Douglas has managed, by genial suavity allied to wide knowledge, to accomplish excellent work, as wel as to make many friends.-Illustrated London News.

Teaching of English in College

Disgraceful is a strong word, but. in the opinion of Professor Goodwin, of Harvard, it is a proper word to apply to conditions in his own and other similar institutions. "The college," he says. "must do something to redeem herself from disgrace," the disgrace being the paltry knowledge of the English language possessed by many of the students. Equally severe criticism is made, on the same point, of Uncle Sam's Militar Academy at West Point, by the Board of Visitors for the year 1894. While highly commending the work of his institution in many respects, the Board's report laments the "lack of facility of expression" on the part of many of the cadets. The Comuittee on Dis cipline and Instruction were "painfully impressed by the English examination, and recommended tha more time be given to this language and its literature only two hundred and ten hours being allotted to such study during the four years' course. The Visiting
Committee on Composition and Rhetoric of Harvard

University made similar criticism with respect to that institution in 1892 and again in 1894. Commenting on these facts, the Public Ledger, Philadelphia, says editorially :

The responsibility for this regrettabls state of affairs rests partly upon the colleges and universities, and partly upon the preparatory schools. The West Point Visiting Board recommend a more stringent English entrance examination, and if all the universiies would insist upon this, the preparatory schools would give more atteution to the subject. As long as it is assumed that the student has been well taught in English before he enters college, the preparatory schools will exploit foreign languages and the higher mathematics at the expense of English. The universi ties cannot be expected to instruct students in the fundamental principles of the mother tongue; but they can, and should, insist upon a searching exmination in English when the student applies fo admission.

It has been said with great force that nobody can be thoroughly grounded in his native tongue unless he has some.knowledge of a foreign one; but the firs duty of the academies is to teach our youth how to use the language of Milton and Shakespeare with pro priety, if not with elegance. That there is great need for better English instruction in all our schools is quite evident. The ordinary vernacular of the street shows that plainly enough, and the youth who can write a flawless English letter of any length is an exception Our tongue does not come to all of us in its purity like an inspiration. If we would learn its peculiarities and show its pitfalls, we must make it the study of a life time and must lay a good foundation at a very early age."

[From Nature.]

Alteration in the Colors of Flowers by Cyanide Fumes.
It is well known that the yellows of some insects are turued to red by the fumes from potassium cyanide; but I have not, after some inquiry, been able to obtain any literature describing the effects of such fumes upon the colors of flowers. The reactions I have observed are very curious, and while it seems improbable that they are hitherto wholly unknown, it may not be amiss to direct attention to them.
A few lumps of the cyanide are placed in a corked tube covered with a little cotton, and the flowers are placed on the cotton. It is probably necessary that the day should be hot or the tuhe slightly warmed. The pink flowers of Cleome integrifolia and Monarda fistulosa turn to a brilliant green-blue and finally become pale yellow. A purple-red verhena becomes bright blue, then pale yellow. The purple flowers of Solanum sloagnifolium go green-blue and then yellow. The white petals of Argemone platyceras turn yellow, the natural color of A. mexicana. The pale yellowish flowers of Mentzelia nuda turn a deeper yellow. Flowers of Lupinus argenteus, var., turn pale sellow. White elder (Sambucus) flowers turn yellow. The scarlet flowers of Sphæralcea angustifolia turn pale, dull pink, resembling somewhat a natural variety of the same. Any of your readers will doubtless obtain the same. Any of your readers will doubtless obtain
similar results with the flowers growing in their vicinity.
Las Cruces, New Mexico.
T. D. A. Cockerell.

Painting Iron Work.

In a recent communication to the American Society of Civil Engineers, Mr. E. Gerber gives the results of a careful investigation into the present state of a number of bridges which had been painted with one of several classes of paint. In all cases rust was found to a greater or less estent, occurring always in spots in the center of clean metal. Most of this, however, was thin, and was asbad in new structures as in old. It was, however, found that the iron oxide paints adhered more firmly to the metal than the lead paints, only one case being found in which the latter adhered well and was tough. It is, however, suggested that much of this brittleness was due to adulteration of the oil by turpentine, benzine, or other petroleum products. There is more likelihood of such adulteration with lead paints than with iron, as they are more difficult to spread, and there is thus more temptation to dilute the oil. In some cases bridges coated with iron oxide eleven or twelve years ago were still in good condition, without having been repainted. Only two of the bridges examined had been painted with carbon or asphaltum paints, but the condition of things in these two cases was found to be not altogether satisfactory, as in neither case was the coating tough and adherent. The metal had, however, been protected by them. Mr. Gerber considers that too little attention has, in the past, been paid to thoroughly cleaning the metal before the first coat of paint is applied. Most of the rust spots found had apparently been there from the outset, and had done no harm so long as not too far advanced. The best plan of securing clean surfaces, in Mr. Gerber's opinion, would be to coat the metal with linseed oil as it left the rolls.
tortles in the zoological garden at HAMBURG.
When the keeper goes early in the morning to the large new turtle cage of the reptile gallery of the Zoological Garden at Hamburg with a basket filled with green vegetables, when he fills the long crib, which, with its crossbars, resembles a cattle rack, then there is life and movement among the amphibians. Some remain quiet even then, with their heads drawn in, perhaps enjoying a sweet morning nap, and others crawl slowly along, paying little attention to their surroundings. One would scarcely imagine that these creatures would so quickly notice the presence of the keeper with the food. One after another hastens to the rack, but a few, like the immense sea turtle, with the fin-like front legs, turn in disgust from the plant food, and the long-tailed alligator turtle, a real beast of prey, simply watches the others at their food. It need scarcely be explained that later meat and fish will be provided for them.
There are now 102 turtles in the Hamburg Garden, which represent 32 different species.-Illustrirte Zeitung.

The size of the Solar System.

by J. e. gore, f.r.t.s.

from the earth as the standard of measurement for the solar system and the distance of the stars.
The relative distances of the planets from the sun have been determined by astronomical observations, figures, the earth's mean distance from the sun being taken as unity: Mercury, 0.387 ; Venus, 0.723 ; the earth $1 \cdot 0$; Mars, $1 \cdot 523$; the minor planets, 2.08 to $4 \cdot 262$; Jupiter, $5 \cdot 203$; Saturn, $9 \cdot 538$; Uranus, $19 \cdot 183$; and Neptune, $30 \cdot 055$; or, taking the earth's mean distance from the sun as 1,000 , the distance of Mercury will be represented by 387; Venus, 723; Mars, 1,523; the minor planets, 2,080 to 4.262; Jupiter, 5.203; Saturn, 9,538; Uranus, 19,183; and Neptune, 30,065. These are the mean or average distances, the orbits not being exact circles but ellipses of various eccentricities, that of Mercuryamong the large planets-being the most eccentric and that of Venus the least so. Among the minor planets the eccentricities vary from 0 ; or a perfect circle, to 0.44 , the value found for a small planet discovered by M. Wolf in November, 1894.
The first scientific attempt to determine the sun's distance from the earth seems to have been made by Aristarchus, of Samos. His method was to note the exact time when the moon is exactly half full, and then to measure the apparent angle between the centers of to measure the apparent angle between the centers of
the planets from the sun are as follows, in round numbers : Mercury, 35,909, 000 miles ; Venus, $67,087,000$; Mars, $141.384,000$; the minor planets, $193,000,000$ to $395,470,000$ miles ; Jupiter, 482,786,000; Saturn, 885, 105,000; Uranus, $1,779,990,000$: and Neptune, $2,788,800,000$. This makes the diameter of the solar system, so far as at present known, about 5,578 millions of miles. Across this vast space light, traveling at the rate of 186,300 miles per second would take eight hours nineteen minutes to pass.
But vast as this diameter really is, compared with the size of our earth, or even with the distance of the moon, it is very small indeed when compared with the distance of even the nearest fixed star, from which light takes over four years to reach us. The most reliable measures of the distance of Alpha. Centauri, the nearest of the fixed stars, places it at 275.000 times the sun's distance from the earth, or about 9,150 times the distance of Neptune from the sun. If we represent the diameter of Neptune's orbit by a circle of two inches in diameter. Alpha Centauri would lie at a distance of 762 feet, or 254 vards, from the center of the small circle. If we make the circle representing Neptune's orbit two feet in diameter, then Alpha Centauri would be distant from the center of this circle 9,150 feet, or about $13 / 4$ miles.
As the volumes of spheres vary as the cubes of their diameters, we have the volume of the sphere which

TURTLES IN THE ZOOLOGICAL GARDEN AT HAMBURG.
of a number of planets revolving round the sun as a is half full the earth and sun, as seen from the moon, center, and of subordinate systems of satellites revolving round the planets, or at least round some of them. Our own earth is one of these planets, the third in order of distance from the central luminary, which forms the common source of light and heat to all the members of the system. In addition to the planets and satellites, there are also some comets which form permanent members of the solar system. Some of these comets revolve round the sun in very elongated orbits, while the planets revolve in nearly circular orbits. A consideration of the absolute size of this planetary system and its relative size compared with that of the universe of stars, or at least the universe visible to us, may prove of interest to the general reader.
To determine the size of the solar system, it is, of course, necessary, in the first place, to ascertain the dimensions of the planetary orbits with reference to some standard, or unit of measurement, as it is termed. The unit of measurement adopted by astronomers is the sun's distance from the earth. As the earth is the third planet in order of distance from the sun, this distance is. of course, an arbitrary unit. We might take the mean distance of Mercury from the sun as the unit, but as we refer all our measurements to terrestrial standards, and the diameter of the earth is used in the measurement of the sun's distance, it is found more convenient to take the sun's distance
is half full the earth and sun, as seen from the moon, must form a right angle with each other, and if we
could then measure the angle between the sun and moon, as seen from the earth, all the angles of the right-angled triangle formed by the sun, moon and earth would be known, and we could deduce at once the relative distances of the sun and moon from the earth. This method is, of course, perfectly correct in theory, but in practice it would be impossible, even with a telescope, to determine the moment when the moon is exactly half full, owing to the irregularities of its surface. Aristarchus had no accurate instruments. and no knowledge of modern trigonometry, but by means of a tedious geometrical method he concluded that the sun is nineteen times further from the earth than the moon. This result we now know to be far too small. the sun's distance from the earth being in reality about three hundred and eighty-eight times the moon's distance.
In modern times the sun's distance has been determined by various methods. The most recent results tend to show that the sun's parallax, as it is termed, cannot differ much from 8.81 seconds of arc. The solar parallax is the angle subtended at the sun by the earth's semi-diameter. A parallax of $8 \cdot 81$ seconds implies that the earth's mean distance from the sun is about $92,790,000$ miles. Multiplying this number by the fig-
ares given above, we find that the mean distances of
extends to Alpha Centauri 766,000 million times the volume of the sphere containing the whole solar sys tem to the orbit of Neptune. If we represent the sphere containing the solar system by a grain of shot one-twentieth of an inch in diameter, the sphere which extends to Alpha Centauri would be represented by a lobe 38 feet in dianneter.
It will thus be seen what a relatively small portion of space the solar system occupies compared with the sphere which extends to even the nearest fixed star. But this latter sphere, vast as this is, is again relatively small compared with the size of the sphere which contains the great majority of the visible stars. Alpha Centauri is an exceptionally near star. Most of the stars are at least ten times as far away, and probably many a hundred times further off. A sphere with a radius 100 times greater than the distance of Alpha Centauri would have a million times the volune, and therefore 766,000 billion times the volume of the sphere which contains the whole solar system!
From these facts it will be seen that enormously large as the solar system absolutely is, compared with the size of our own earth, it is. compared with the size of the visible universe, merely as a drop in the ocean.-Knowledge

The largest landed estate is that of the Czar Nicholas
of Russia, 100,000,000 acres.

How Goodyear Became a Rubber Inventor.
The ruinous failure of the earliest American rubber manufacturers, says a writer in the Boston Commercial Bulletin, arose from the fact that they began their costly operations in ignorance of the qualities of the material which they had to deal with. No one had discovered any process by which India rubber once dissolved could be restored to its original con stituency, and the importance of this item was ove looked until many men had been ruined.
It was in the year 1820, the same writer continues, that a pair of India rubber shoes was seen for the first time in the United States. They were covered with gilding, and resembled in shape the shoes of a
Chinaman. The were handed about in Boston only Chinaman. They were handed about in Boston only as a curiosity. Two or three years after, a ship from South America brought to Boston 500 pairs of shoes, thick, heavy, and ill-shaped, which sold so readily as
to invite further importations. The business increased to invite further importations. The business increased
until the annual importation reached half a million pairs, and lndia rubber shoes had become an article of general use.
The manner in which these shoes were made by the natives of South America was frequently described in the newspapers, and seemed to present no difficulty. They were made much as farmers' wives made candles. The sap being collected from the trees, clay lasts were dipped into the liquid twenty or thirty times, each layer being smoked a little. The shoes were then hung up to harden for a few days; after which the clay was removed, and the shoes were stored for som months to harden them still more.
Nothing was more natural than to suppose that Yankees could do this as well as Indians, if not far better. The raw India rubber could then be bought in Boston for five cents a pound, and a pair of shoes made of it brought from $\$ 3$ to $\$ 5$. Surely here was a promising basis for a new branch of in 1830, that vast New England. It happened, too, in 1830 , that vast
quantities of the raw gum reached the United States. It came covered with hides, in masses, of which no use It came covered with hides, in masses, of which no use
could be made in Anerica; and it remained unsold, or was sent to Europe.
Patent leather suggested the first American attempt to turn India rubber to account. Mr. E. M. Chaffee, foreman of a Boston patent leather factory, conceived
the idea, in 1830, of spreading India rubber upon cloth, hoping to produce an article which should possess the good qualities of patent leather, with the additional one of being waterproof. In the deepest secrecy he one of being waterproof. In the deepest secrecy he
experimented for several months. By dissolving a experimented for several months. By dissolving a
pound of India rubber in three quarts of spirits of tur-
pentine, and adding lampblack enough to give it the desired color, he produced a composition which he supposed would perfectly answer the purpose.
He invented a machine for spreading it, and made some specimens of cloth, which had every appearance of being a very useful article. The surface, after being dried in the sun, was firm and smooth; and Mr Chaffee supposed, and his friends agreed with him that he had made an invention of the utmost value At this point he invited a few solid men of Roxbury, Mass., to look at his specimens and listen to his state ments. He convinced them. The result of the con ference was the Roxbury India Rubber Company, incorporated in February, 1833, with a capital of $\$ 30,000$. The progress of this company was amazing. Within a year its capital was increased to $\$ 240,000$. Before nother year had expired, this was increased to $\$ 300,000$; and in the year following, to $\$ 400,000$. The company manufactured the cloth invented by Mr.
Chaffee, and many articles made of that cloth, such as coats, caps, wayon curtains and coverings. Shoes made without fiber were soon introduced. Nothing could be better than the appearance of these articles
when they were new. They were in the highest favor, when they were new. They were in the highest favor, and were sold more
The astonishing prosperity of the Roxbury company had its natural effect in calling into existence similar establishments in other towns. Manufactories were started at Boston, Framingham, Salem, Lynn, Chelea, Troy, and Staten Island with capitals ranging frow $\$ 100,000$ to $\$ 500,000$; and all of them appeared to prosper. There was an India rubber mania in those
years similar to that of petroleum in 1864. Not to inyears similar to that of petroleum in 1864. Not to in
vest in India rubber stock was regarded by some shrewd men as indicative of inferior business talent and general dullness of comprehension.
The exterior facts were certainly well calculated to lure even the most wary. Here was material worth quickly a cents a pound, out of which shoes wer quickly made, which brought $\$ 2$ a pair ! It was a
plain case. Besides, there were the India rubber companies, all working to their extreme capacity, and selling all they could make. Such were the conditions of the trade when Charles Goodyear visited the New York office of the Roxbury Rubber Company to sugmanufactured by the company. To his surprise the agent took him into his confidence and explained that the prosperity of all the India rubber companies in the United States was only apparent ; that they needed an ingenious inventor to save them all from ruin.

The Roxbury company had manufactured vast quantities of shoes and fabrics in the cool months of 1833 and 1834, which had readily been sold at high prices; but, during the following summer, the greater part of them had melted. Twenty thousand dollars' worth had been returned, reduced to the consistency of common gum, and emitting an odor so offensive hat they had been obliged to bury it. New ingredients had been employed, new machinery applied, but still the articles would dissolve. In some cases, shoes had borne the heat of one summer and melted the next. The wagon covers became sticky in the sun and rigid in the cold.
The directors were at their wits' end ; since it requed two years to test a new process, and meanwhile valuable or worthless. If they stopped manufacturng, that was certain ruin. If they went on, they might find the product of a whole winter dissolving might find the product of a whole winter dissolving
on their hands. The capital of the company was alon their hands. The capital of the company was al-
ready so far exhausted that, unless the true method were speedily discovered, it would be compelled to wind up its affairs.
The agent urged Mr. Goodyear not to waste time upon minor improvements, but to direct all his efforts to finding out the secret of successfully working the material itself. The company could not buy his improved inflator; but let them learn how to make an ndia rubber shoe that would stand the summer's heat, and there was scarcely any price which it would not gladly give for the secret.
The worst apprehensions of the directors of this company were realized. The public soon became tired of buying India rubber shoes that could only be saved during the summer by putting them into a refrigerator. In the third year of the mania, India rubber stock began to decline, and Roxbury itself finally fell to $\$ 2.50$. Before the close of 1836 , all the companies had ceased to exist, their fall involving many hundreds of families in heavy loss. The clumsy, shapeless shoes from South America were the only ones which the people would buy. It was generally supposed that the secret of their resisting heat was that they were smoked with the leaves of a certain tree,
peculiar to South America, and that nothing else in nature would answer the purpose.
The $\$ 2,000,000$ lost by these companies bad one result which has proved to be worth many times that sum : it led Charles Goodyear to undertake the investigation of India rubber. That chance conversation with the agent of the Roxbury company fixed his destiny.

recently patented inventions.

 Engineering.Water Tube Boiler. - Frank Printz, having a steam drum supported on water legs which connect
construction and combination of pripe coils with valve attachments whereby a portion of the apparatus may be isolated, while its duplicate is left intact, to facilitate re pairs, etc. The main portion of the generator proper is inclosed by a metal casing having a hinged top and sides with
box.

Rallway Appliances.

Car Coupling. - Andrew J. Clark, Madison Station, Miss. Upon the front of a coupling bead at the forward end of a spring-pressed draw bar are
hooks projecting from the top and bottom sides of hooks projecting from the top and bottom sides of
draught hook bodies, there being a tripping dog above the coupling head block, and flexible connections between the hooks and tripping dog, and m ing the connections from a car, the locomotive, or the ground. With this improvement the cars are coupled automatically as they come together, the coupling working equally well on a straight track or on curves, and whether the car tracks are of the sa heights.

Air Brake. - John M. Hurst, Salt Lake city, Utah. This invention provides for retaining
the air in the brake cylinders while recharging the auxthe air in the brake cylinders while recharging the aus-
iliary reservoirs, and consists of a pressure-retaing iliary reservoirs, and consists of a pressure-retaining
valve, a pressure-retaining reservoir, a valve interposed valve, a pressure-retaining reservoir, a valve interposed
between the triple valve and the retaining valve, and a retaining pipe connecting the train pipe with the interposed valve. Each car exhausts its own air, and the amount is shown by the gage on the engine, while the
pressure in all the brake cylinders of the train is equalpressure in all the brake cylinders of the train is equal
ized and the air now lost in applying the brakes is ized and
saved.

Car Fender.-Alexander S. Williams, Long Island City, N. Y. This fender consists of rods or bars minged together to form a lazy tongs structure
adapted to be collapsed or distended, rollers adapted to adapted to be collapsed or distended, rollers adapted to
travel on the rails being located on the lower portion of travel on the rails being located on the lower portion of
the fender. These fenders are designed to be placed at each end of a car, and when the car is placed in a shed
the fenders fold up in small compartments beneath the dashboard.
Switch Mechanism.-Sumter B. Battey, New York City. This is an improvement on a provides a mechanism more especially designed for use on street railroads, and enabling the operator incharge of the car to readily set the switch according to the direc tion in which the car should travel.

Electric Motor.-Addison E. Boggs, Allegheny, and Fremont J. Cleaver, Beltzhoover, Pa. This is a motor especially adapted for direct connection
with the machine to be driven or with line shafts or car with the machine to be driven or with line shafts or car
axles, or for use in connection with gearing or pulleys and belts, for diminishing or increasing the speed. A armature is mounted on the axle, while a commutator wheel is mounted on the boss of the armature and has an insulated rim upon which are placed commutator bars, an insulated ring being secured to the pole pieces
of the field magnet. Inwardly extending studs secured of the field magnet. Inwardly extending studs secured
to the insulated ring carry brushes, and metallic rings secured to the
with the studs.

Trolley and Trolley Pole.-Wilbur L. Pepper, Philadelphia, Pa. According to this imcar to run with equal facility in both directions. an automatic device permitting the pole to yield vertically. ac-
cording to the varying distance between the wire and cording to the varying distance between the wire and
car. The trolley wheel is held with an even pressure against the wire, making good contact during all the oscillations of the car and changes in the wire
the good connections prevent excessive sparking.

Mechanical.

Band and Scroll Saw Attachment. -Herman D. Hinternesch. Baltimore, Md. This attach ment comprises a transversely tilting or rocking table
with longitudinally movable guide devices to tilt the table in opgitudinally movable guide devices to tilt the for the rear end of the timber being sawed, and the back
rest and table having recesed and interlapping portions rest and table having recessed and interlapping portions atachment may be conveniently applied to an ordinary band or scroll saw, to facilitate sawing hand rails, mouldbeing conveniently adjustable to saw to any given circle or curve, and any degree of pitch or rise.
Cotton Gin.-John B. Crowder, Tanoah, Ala. This inventor has devised an attachment to trash from cotton as it comes from the saw and for breaking up bunches, curls or condensed portions of the beneath the gin brush, with open places adjacent to the ribs to permit a downward air draught.
Water Motor. - Mifflin W. Baily, Pottstown, Pa. According to this invention, the outlet
valve of a flume discharges the water into a vessel held valve of a flume discharges the water into a vessel held
on the upper end of an inclined hollow working lever forming a connection between the upper vessel and a having valves having connections with fised points and adapted to open and close alternately. The motor is de-
signed to utilize the water to the fullest advantage with out any waste.

Bicycle Coat.-Ansel B. Falk, New York City. This invention provides a brace for the inside of the back of the coat, designed to prevent the often do, the brace being virtually an integral portion of he coat. It consists of a centrally located pad of elastic and top of the pad and attached to the garment at the nd top of the pad and attached to the ga
ide back portions and at the collar portion.
Prescription File.-Albert M. Staney, Springfield, Col. This improvement comprises a casbeing located adjacent to an opening in the casing and rollers journaled at the ends of the table, while a tape
secured to the reels passes over the rollers and table. secured to the reels passes over the rollers and table.
Any prescription filed may be brought to view and a onveniently read as though it were not upon file, and fles stored away may be as conveniently read as those in he file casing
Wheel.-Chilion T. Pelton, Riverside nd mowers, preventing dust and sand from being carried upward to enter the journal boxes or clog up parts of the machine. It has a flat rim with flanges on each
side, cover plates on each side of the rim having latches side, cover plates on each side of the rim having latches
engaging the flanges, the latches having handles outside enzaging the flanges, the latches having handles outside
the cover plates. These cover plates may be fitted to the cover plates.
Thill Support. - Charles A. Rott ouse, Brandywine Hundreã, Del. This device consist bolts for attaching it to the under side of a thill, the re maining portions of the rod being bent to form two spring coils and bearing portions engaging a bolt of the
clip on the axle. The device is designed to securely hold clip on the axle. The device is designed to securely hold
the shaft in raised position, while yielding when the the shaft in raised position, while yielding when the
Heel Plate.-Percy J. Van Valken-
Helt it be sung down. burg, New York City. On the under side of the shoe,
according to this improvement, are two evelets, one with according to this improvement, are two evelets, one with
a closed and the other with an open eye, the eyelets having split shanks which are passed through the heel and clinched on the inner side, in connection with which is used a plate having two ears, each capable of completely removable connection with the eyelets. The plate may be applied where the wear is greatest, and may b Gate.-Franklin R. Winters, Tulsa ndian Territory. This is primarily a farm gate, of the ifting and swinging variety, and may be conveniently opened and closed by one on foot or in a vehicle. A rock
shaft has a double crank hinged to the gate, and a duplex rock arm on the shaft has a locking limb projected riple notched tanex limbs, while a bracket plate with limb in either of the notches of its flange. The working parts are strong, inexpensive, and not liable to derange ment or veed of frequent repair.

Gate.-James Simpson, Veedersburg Ind. This is a gate which may be opened or closed from
either side by drawing dowu on a latch cable or on either side by drawing down on a latch cable or on a lever cable, and it may be opened toward or away from
the person operating it. A rearwardly extending lever fulcrumed on the swing post has a sliding connection with the gate, there being a cable connected with the rea no of the lever, and a second cable also so connected
but having a bearing at the opposite side of the leve the cables thus exerting force in opposite directions on

Intermittent Rotary Motion. Georg F. Haldkjar, Copenhagen, Denmark. A mechan ism for producing intermittent abrupt movements or
"jerks," such as may afford an effective display of fig "jerks," such as may afford an effective display of fig
ures for advertising purposes, etc., has been devised by this inventor. It comprises an arm mounted to swing nd provided with projections, while a disk is mounted to rotate about an axis eccentric to the swinging arm, the disk having alternating notches and solid portions mov-
ing across the path of travel of the projections of the arm.
Cow Milking Machines.- Jerry E. Harvey and Joseph H. Hoover, Hubbard, Iowa. These
inventors have devised an apparatus for maintaining and regulating vacuums in these machines, by which a practcally uniform expansion and tension of the air may be ing the entire milking operation, irrespective of the quantity of milk drawn into the receiver. The apparatus comprises means for automatically expanding the air exhaust chamber as the air tension varies with the inflow of milk, there being a tubular connection between the
W and the receiver
WARDROBE. - Robert H. Rodgers, Nashua, N. H. This is a construction especially adapted
to be stored under a bed in houses deficient in closet room, and has a shallow, box-like body, with rollers on on its top, cleats in the under side of the cover iitting in gin its top, cleats in the under side of
Protective Paper for Checks, etc. -Herman Remke. Newport, Ky. This invention provides
for treating the paper after it has been written upon with certain solutions to change its ink-receiving qualities. Two solutions are successively applied, the first being
composed of three parts of some essential oil, preferably composed of three parts of some essential oil, preferably il of lavender, sixteen parts of tincture of saffron and wenty-one parts of alcohol, and the second being a conate in water. The quality of the paper is thus perma nently changed, so thatit will not readily take ink and he writing is not destroyed or blurred. The solution are applied with a felt pad or stamp.
Stretcher and Ammunition Car-wirR.-Frederic Remington, New Rochelle, N. Y. A mprovement, and telescopic cushioned arms are pivoted on the axle at opposite sides of the wheel, each arm ha
ing a socket and a locking device, the sockets receivin
a stretcher or an ammunition frame. The device is ver light and may be folded to occupy but small space.
Washboard. - Lewis Peterson, Madrid Iowa. A hydraulic attachment for a washboard is pro
vided by this invention, adapted to throw a stream of water from the tub on the clothes being rubbed. The upper end of the board in use is supported by cylindric sections which form substantially a pump by which the
water is lifted from the tub and discharged over the clothes as the operator exerts a downward pressure in rubbing the clothes.

Foot Ball.-Alexander Nisbet, New York City. This ball is made with a concealed lace, pre venting abrasion of the skin of the player and insuring a
truer rebound of the ball, and the leather cover is practically in two pieces only, dispensing with the four con nected seams usually found at the end of the bali. A valve is also provided of such character and so place valve is also provided of such character and
that the ball need not be unlaced to inflate it.

Tag and Tag Driver.-William L. Millar, Charleston, S. C. This is a device for use with
bales and packages as an improvement upon ordinary metallic tags and drivers. The shank of the tag has marginal flanges with a roughened surface, there being an anchor in the shank, and the tag driver, by which the tag is forced into the bale, has a handle at one end, while ite opposite end is widened, terminating in a point. The
driver is easily detached from the tag and removed from the bale.
Continuous Charcoal Kiln.-Erik J. Ljungberg, Falun, Sweden. 'This kiln has several
compartments in which the wood is ignited, the combustion gases being conveyed from one compartment to the other. The connection of the compartments is effected through valves closed by a sheet of water or water seals,
the rising or falling of the surface of the water connectthe rising or falling of the surface of the water connect
ing or disconnecting the compartments. The process of carbonization is regulated by raising or lowering the
water surfaces, whereby the area for the passage of in water surfaces, whereby the a
flammable gases is controlled.

Designs.

Ewer.-Robert L. Johnson, Hanley, England. The mouth of this ewer has a convolute edge in which scroll figures intersect each other, and th
base has also a convoluted appearance matching th margin of the mouth.

Christmas Tree Ornament.-William E. Wagner, Gordon, Pa. Within a circular tufted with upper and lower projections, forming an ornamen for suspension from Christmas trees, etc.
Noтe.-Copies of any of the above patents will be
furnixhed by Munn \& Co furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS.

The Herschels and Modern As
Tronomy. By Agnes M. Clerke
New York : Macmillan \& Company
1895. Pp. 324 . Portrait. Price $\$ 1.25$. his work is a volume of the Century Science serie which is edited by Sir Henry E. Roscoe. It is interest ing to note that there are in preparation the lives of
Michael Faraday, Clerk Maxwell, Sir Charles Lyell, Humphry Davy, Pasteur, Charles Darwin and Herman von Helmholtz. There are already several work on Herschel, but the present work contains the result
obtained from a study of the correspondence of Si William Rowan Hamillon and Herschel, the author hav ing been favored by the late Miss Herschel with the perusal of a considerable number of the manuscript letters of Sir John Herschel as well as Sir William's There are chapters on the "King's Astronomer," the "Explorer of the Heavens," "Herschel's Special Investigations," "Influence of Herschel's Caree ,"
Herschel,", "Writings and Investigations."
Bulleitin of the Uni'Ted States Fish
Commission. Vol. XiV, for 1894. Washinsion. Gol. Washington: Government Printing
Office. 1895.
Pp. 496. 8vo. 25 plates, illustrated.
This volume, like the preceding Bulletins, consists of monographs, and, as usual, contains some important papers, as for example the Salmon Fisheries of the
Columbia River Basin, by the late Marshall MacDonald, Columbia River Basin, by the late Marshall MacDonald
United States Commissioner of Fish and Fisheries. Insect Life: Devoted to the Economy and Life Habits of Insects, Es PECIALLY IN THEIR RELATIONS TO
AGRICULTURE. Edited by L. O. Howard, Entomologist United States Department of Agriculture. Vol.
VII, No. 5. Washington. 1895. 8vo pamphlet.
This journal is published by authority of the Secretary of Agriculture, and is deserving of more attention than it some remarkable experiments and observations. Th division of entomology of the Department of Agricul ture consists of one entomologist, three assistant ento mologists, four in
University Correspondence Col LEGE. The Calendar 1894-1895. Lon Report on the Total Eclipse of the Sun ObSERVED AT MINA BRONCES, Schaeberle, Astronomer in the Lick Observatory. Sacramento. 1895. Pp. Observatory. Slacra
126. 8vo. 10 plates.
This book is printed by the authority of the regents of the contributions from the Lick Observatory. The expedition to observe the total eclipse of the sun of April 16, 1893 , was sent from the Observatory at the cost of
Mrs. Phebe Hearst, a friend of the University of Cali-
fornia. The book gives full details of the observation
made by the astronomers.
Electricity for Students. By Ed
ward Trevert. ward Trevert. Lynn, Mass.: Bubie 16 mo . 38 illustrations. Price $\$ 1$. The object of this little book is to explain briefly the tions of electricity. It is intended only as a popular treatise dealing with the practical applications of the science.
Principles and Practice of Agricul estimation of soils, fertilizers, and agricultural products, for the use of analysts, teachers, and students o Fertilizers. By Harvey W. Wiley
Easton, Pa.: Chemical Publishin Company. 1895. Pp. 332. 8vo. 17 Hlustrations. Price Φ.
A few weeks ago we reviewed Dr. Wiley's "Soils,"
the companion volume. The present work takes up the the companion volume. The present work takes up the
subject of fertilizers. Certainly no one could be more competent to deal with the analysis of fertilizers than the Chemist of the United States Department of Agriculture. In the present volume the general principles of ertilizer manufacture and applcation have been pre sented in so far as they seemed to throw light on the ra ional method of examination and analysis. The standar been presented with sufficient fullness for the guidance o the skilled worker and the information of the student. To those who make use of a book only for routine work o
for preparation for an examination, this volume will b found to have little attraction. This fact, however, wil not be a cause of regret to the author, whose purpose has
been avowedly to present to the busy worker and student a broad view of a great subject which each one does not have the time to search out for himself. The and presswork are excellent.
Any of the above books may be purchased through this office. Send for new book catalogue just pub
lished. MUNN \& Co., 361 Broadway, New York

SCIENTIFIC AMERICAN

BUILDING EDITION CCTOBER, 1895.-(No. 120.)

TABLE OF CONTENTS.
Plate in colors of a handsome cottage at Rochelle Park, New Rochelle, N. Y. Two perspective ele
vations and floor plaus. Cost $\$ 9,000$ complete Mr. H. S. Rapelye, architect, Mount Vernon, N. Y A pleasing design for a suburban residence.
B. S. Thompson, Esq. Perspective elevation and floor plans. A very attractive residence in the Clark, Boston, architect.
3. A cottage at Flatbush, N. Y., recently erected a plans. John J. Petit, architect, Brooklyn, N. Y. An attractive design.
An all shingled cottage at Mount Vernon, N. Y serspective elevation and fioor plans. A neat de
sin the Colonial style. Mr. Louis H. Lucas New York City, architect.
suburban cottage at Flatbush, L. I, recently erected at a cost of $\$ 8,000$ complete. Perspectiv elevation and floor plans. Messrs. Rowe \& Baker New York City, architects. An attractive design
in the Colonial style.
A dwelling at Glenwood, Yonkers, N. Y. Perspect
ive elevation and floor plans. Messrs. Jardine, architects, New York City. A most unique design.
7. Three peropective views and floor plans of a res dence at New Rochelle, N. Y. Architects, Messrs treated design.
8. A Colonial residence at Mountain Station, N.J. Two Pelton, architect, New York City.
9. A house at New Haven, Conn., recently erected at cost of $\$ 3,500$ complete. Two perspective elev ons and hoor plans.. A Mern economical cot tage design. Archit
New Haven, Conn.
. A Colonial cottage at Bronxville, N. Y., recently completed at a cost of $\$ 4,600$. Perspective eleva
tion and floor plan. Mr. W. H. Rahman, architect New York City.

1. Miscellaneous Contents: Buff brick.-Tower tanks for water works, illustrated.-An old Baltimore
firm.-Compo-Board instead of plaster-Translucent fabric, a substitute for glass.-Ventilation and heating of school buildings. - Ornamental glass.-A light and strong lifting jack, illustrated. -An improved circular saw, illustrated.-An im proved wood ceilings, side walls ing, illustrated.-Spring hinges.-Mallory's standard shutter worker and fly screen.-An improved nail set, illustrated.
The Scientific American Building Edition is issued
monthly. $\$ 2.50$ a year. Single copies, 25 cents. Thirtymonthly. $\$ 2.50$ a year. Single copies, 25 cents. Thirty-
two large quarto pages, forming a large and splendid wo large quarto pages, forming a large and splendid
Magazine of Architectrre. richly adorned with elegant plates and fine engravings, illustrating the most tion and allied subjects.
The Fullpess, Richne
of this work have won for it the Lass, and Convenience of any Architectural Publication in the world. Sold by $\begin{array}{ll}\text { all newsdealers. } & \text { MUNN \& CO., Publishers, } \\ 361 \text { Broadway, New York. }\end{array}$

Business and 2ersonal. The charge for Insertion unaier this head is one Dollar a iine
for eaci insertion: ajoout eioǹt woris to a iine. Aavertisements must be received and puobicatation office a a eavive as
Thursaiay morning to appear in in the foilowing week's issue. "c. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Handle \& Spoke Mchy. Ober Latbe Co.,Cbagrin Falls.O. Screw machines, milling macnınes, and drill presses,
be Garvin Mach. Co., Laícht and Canal Sts., New York Use the Hough Security Casb Recorder. Entirely dif-
Usent from a Cash Register. Hough Casb Recorder C ferent from a Cash
Soutb Butler, N.
Pipe Joint described on page 245. Estimates wante Sor manufacturing in all patterns and sizes. Micha
 ricity is " Fixperimental Science," by Geo. M1. Hopkin
By mail. $\$ 4$; Jiunn \& Co., publishers, 361 Broad way, N. Y Large machine shop, baving water power, all new and chanical engineers, skilled workmen, etc., will constru special or patented machinery promptly, satisfactoril and reasonable. Adares N. Y. P. O. box 1,96
A capable mecbanical engineer wishes position as
manager of some electric street railway interest. anager of some electric street railway interest. It
famiiiar with every detail of construction and can de ign and erect nex work. Good references. Addres
Engineer, care of Scientific American office, New York.
-Send for new and complete catalogue or Scientifl nd other Books for sale by Munn \& Co... 361 Broadwa New York. Free on application.

nch wide to slide across another bar of the same width, surfaces the hardest metals with smooth or polished surfaces have the least sliding friction when two surfaces of he same kind of metal are rubbed together. Hardened teel surfaces have the least friction of the metals mos convenient for general use. Antimony on hard steel ha
low per cent. of friction, as has also nickel upon nickel or nickel upon hard steel.
(6640) G. R. R. asks: Will you inform sent out a train, and whether the \mathbf{B}. \& \mathbf{O}. was absolutely the first? A. The first trial of a locomotive in th United States was in August, 1829, with the Stourbridg Lion, built in England for the Delaware \& Hudson Cana Company. It was tried alone without cars, Horatio Allen being the engineer. It was set aside and neve sed again. Peter Cooper buil the firt locomotive that drew a train of passenger cars in the United States. It
was built during the year 1829 and used with a train as buil dung tue year 2830 and use with a trad See Scientific American Supplement, No. 371, for a History of Early American Railroads and Locomotives. (6641) B. H. C. asks how to prepare heepskins for mats A. Make a strong lather with hot
water and let it stand till cold; wash the skin in it, care fully squeezing out all the dirt from the wool; wash it in cold water till all the soap is taken out. Dissolve 1 lb . each of salt and alum in two galls. of hot water, and put he skin into a tub sumcient to cover it; let it soak for well drained stretch it carefully on a hoard to dry and retch several times while drying. Before it is quite dry, sprinkle on the flesh side 1 oz . each of finely pulver ized alum and saltpeter, rubbing it in well. Try if the
wool be firm on the skin; if not, let it remain a day or wo, then rub again with alum; fold the flesh sides to gether and hang in the shade for two or three days, turning them over each day till quite dry. Scrape the flesh side with a blunt knife and rub it with pumice or
rotten stone.

TO INVENTORS.

An experience of nearly fifty years, and the preparation
of more tban one bundred thousand applications for naents at bome and abroad, enable us to understand tbe laws and practice on both continents, and to possess unsynopsis of the patent laws of the United States and all foreign countries may be bad on application, and persons contemplating he securing of patents, etther at home or which are low, in accordance with the times and our extensive facilities for conducting the business. Address
IUNN \& CO., ofice ScIENTIFIC AMERICAN, $\mathbf{3 6 1}$ Broad-

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

October 8, 1895,
(6634) C. M., Bala, Can., asks for a re
eipt for tempering drills for granite rock. A. Drills fo ranite, for best effect, should have their cutting edge a n angle of 75°, and if single blade, should have the poin thrust of the drill gives it a clearance and prevents stickallow the particular brand of steel to harden is desirable Harden in salt water; one quart of salt to a pail of water. Some smiths add a couple of ounces of yellow prussiat of potash to the pail of salt water. The principal aim hould be to work the stell at a low red heat, avoiaburn
(6635) J. M. R. asks: Will a bicycle run easier and cut the bearings less with oil on bearings, or
without oill, or with plumbago on bearings instead of oil? A. The best lubricant for bicycles is cylinder or dynamo oil of the trade, mixed with 10 per cent of finely ground raphite for the bearings. This mixture should fo sould be made into a soft paste with the above oil. We do not recommend dry bearings or dry chain.
(6636) D. W. H. asks which side of ruber belting should be run next to the pulley-the face
ide or the lap side. A. The face side of a rubber belt should be next the pulley; it gives a more perfect contact (667)
(6637) C. H. says: I wish to etch a design on a pair of skates. Will vou please tell me the quickest and easiest way of doing it ? A. For etching on cutlery a ground wax is required, composed of equal parts asphaltum, Burgundy pitch and beeswax, melted use a dabber, or ball of cotton covered with silk. Warm the piece of cutlery so that a stick of the wax will readily melt by touching. Smear a small quantity of the wax on the blade or articles, and dab it evenly all over the surface. When cold, scratch the required design or name on the surface and touch the parts with acid (nr ric acid 1 part, water 4 to 6 parts), using a camel's hair pencil to cover the surface and bring the acid into con done. Dip in hot water to wash off the acid, and the surface may be cleaned by wiping with benzine. Another way is to make a varnish of asphalt and turpentine, with a few drops of linseed oil to make it tacky. Have a rubber stamp made of the required design, with a border, so as to stop off around the design. Stamp the goods, and with some of the varnish thinned down with tur surround the design with a small rim of beeswax, and apply the acid as above.
(6638) H. B. J. says: Will you kindly ell me what preparation is used in stiffening felt hats? A. Mix 18 pounds of shellac with $1 / 2$ pounds carbonate boil gradually until the shellac is dissolved, when the liquid will be as clear as water. When cold dip the hats, and when nearly dry dip in a weak solution of acetic or sulphuric acid, in order
(6639) R. J. asks: What two metals

Scienticic Book Calabogul
 MUNN $\&$ CO., Publiohcrs SCIENTIFIO AMERTCAN,
3.j. Broadway, New York 7 HAVE YOU SEEN New Green River Al Drilling Machine?
 WILEY \& RUSSELL MFG. CO
5WELL DRILLS
F. C. AUSTIN MFG. CO., \quad CHICAGO, ILL.
artesian wells.-by prof. E

New Friction Disk Drill.

 breakse. Sen or catalogue
999 Ruby St., NN. BARNES CO. Rockford, III.
Manufacturers \& Promoters Send samples or drawings for estimates. Wire Bending.
Light Machinery. Sheet Mets Wors.
L. R. HiTCHCOCK, Watertown, Conn.

LITTLE GIANT BOLT CUTTERS

BUY

TELEPHONES

 440 Monadnock Block, CuICAGO.
Largest Manufacturers of Telephones in the United States HELLO, CENTRAL!

 HARLEM RIVER IM PROV EM ENT

12,500 Receipts. 208 Pages. Price \$5. Bound in Sheep, 86. Half-Merocco, $\mathbf{8 6 . 5 0}$.

MUNN \&. Cond.. jur Publishers.

THE "ROUND BOX' TYPEWRITER RIBBONS Give a m. CARBON PAPERS.
 Samples Free upon appolications.

Excursion Rates

To

Atlanta.

On account of the Atlanta Exposition, the B. \&O:RR Season tickets wiil be sold every day until December tickets will be sold every day until December 1 thy ood returning for twenty days from date of sale. Tenweek until December 24th, good returning for ten days 837.25 for season. $\$ 29.25$ for twenty-day, and $\$ 24.00$ for Correspondingly low rates from other points on the

Eclipse
Cream Separators
are Closest Skimmers, Most Durable,
Easiest Runing, and far the sumplest
Eand or Power Separator on the
Hale market. ITTTLE FALIS, \mathbf{N} y. SCIENTIFIC AMERICAN DYNA MO,

NOW READY 8
Seventeenth Edition of
Experimental Science

Just the thing for a holiday present for any man,
 With other new and interesting Optical Mllusions, the
Optical Provection of Opaque Objects. new experiment
in

 tific readers,
80 pages
bound. Price in ine cuth, cut, substantially and beautifully MUNN \& CO., Publishers. Office of the SCIENTIFIC AMERICA
361 HIRUADWAY, NEW YORK.
 VEIOX

 GLOSSY Or MATT. No dull or raing weather to interfere with your work

 Nepera Chemical Co., Sole Manufacturers, Nepera Park, N. Y

ON THE ELECTRIFICATION OF THE
 Sith 1 ilustration. Contained in ticle earth's surface

Reagan Feed Water Heating, Water Circulating and Shaking Grates

DIGESTION IN PLANTS.-BY J. PENT and Smith, M.A., B.SC. An interesting paper discuss-
nn the processes br which foo materialis rendered
natiabe for tour nourishent of the plant orkanism.
With tillustrations. Contuined in SCIENTI

 The Most Natural, Comfortable and
Durable. Over 16,000 in use. New Patents and Important Improve
ment. U. S. Gov't Manufacturer. Illustrated book of 430 pagaes and for
mula for measurig sent free. See illustrated article in Sce. A A. A. MARKS, 701 Broadway, NEW YORK CITY SCIENTIFIC AMERICAN SUPPLE

Pou USE GRINDSTONES If so, we can supply you. All size
 2d Fleveliand STONE (io THE TIN PLATE INDUSTRY IN THE
 his country, and the serious coupetition into which
s now entering with the British industry With 18 illu

Save \$8.00. SUITST and MVERCOATS $\$ 10.00$

AND UPWARDS.

 Far superior to any that other enabled to save you this amounby buyin the entire production
of several woolen millis an

 Dept. 26, KRAMER\& MAHLER,

Useful, Beautiful and Cheap.
 oo examine the latest and best plans for a church, of high or low cost, should procure a complete set of
the ARCHITECTS' AND BOILDEtS' EDItIon of the Scrthe ARCHITECTS' AN
ENTIFIC AMERICAN.
The information these volumes contain renders the
work almost indispensable to the architect and builder and persons about to bulld for themselves will find the work suggestive and most useful. They contain draw-
ings in perspective and in color, together with floor inks in perspecato of residence, etc.
plans, costs, location
Two volumes are published ancual
18, which include all the numbers of this work from
conmencement to conmencement to December, 1894, may now be obtain Price, stitched in paper, 82.00 per volume. These volumes contain all the plates, and all the other interesting
matter pertaining to the work. They are of great per manent value. Forwarded to any address.
MUNN $\&$ CO., Publishers 361 Broadway, New York.
 Great Problem in Education.- By Peter T. Austen, Ph.

ALCO VAPOR LAUNCH.

Marine Vapor Engine Co.. Jersey Cits, N. J. RUSTLESS COATINGS FOR IRON AND
 pood paint. The characters that a paint should possess
for the purpnse of protecting structures from decay or
tor

 Electrical and Mechanceal Model Work. CONTRACTS WANTED.

 Find

VOLNEY W. MASON \& CO. friction pollers, clotcees, nic elevators GNENDTATIN INVENTORS.

 2*: $=3$

foorththes TTOOLS

J. M. WATROUS, Cincinnati, 0.

For aumber of years the fkri Thoms Cook Cor

FIRE BRICK Eifinitss.
 Sond for Prices and cataloo

 BROOKLYN FIRE BRICK WORKS.

THE MANUFACTURE OF MATCHES.

By Richard A. Proctor, F.R.A.S.
A serles of twelve elegantly printed Maps of the Heavens, onf ue in North Δ merica. with deecriptions accompanying each map, giving the names of the principal stars and constellations, showing their relative A most beautifal and convenient work, spe adapted for the use of those who desire to acquire a general knowledge of the starry realms.
To which is added a description of the To which is added a description of the method of
preparing and using artiflial luminous stars as an aid in flxing in the mind the names and places of the
vain various stars and constellations, by Alfred E. Beach. Altogether this is one of the most popular, use and valuable works of tbe kind ever published.
One quarto volume, elegantly bound in cloth, One quarto volume,
8.2. 50 . postpaid.

MUNN \& CO., Publishers,

Columbias sell for $\$ 100$ to everyone alike, and are the finest bicycles the world produces. Other bicycles sell
for less, but they are not Columbias.

STARRETT'S
IMPROVED SPEED INDICATOR.

The L. S. Starrett Co, Manutacturer of Five Trools,

Pocket

 ... Kodak
large enough to be good for contact printing and good enough to enlarge to any reasonable size.
 EASTMAN KODAK 00.,
Sample thoto and booklet
for two 2 -cent stamps. \quad ROCHESTER, N. Y.

The

American
 Bell Telephone
 Company;

125 Milk Street,
Boston, Mass.

This Company owns LettersPatent No. $46_{3,5} 69$, granted to Emile Berliner November 17 , 1891, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.
 Three New Model
SmithPremier Typewriters

E YOU EXAMINED THEM ?
Many Improvements Heretofore Overlooked by Other Manufacturers Address THE SMITH PREMIER TYPEWRITER COMPANY, Syracuse, N. Y., U. S. A.

The De La Vergne Refrigerating Machine Co.

A [JNTS WANTED FOR FINE TOOLS IN EVERY SHOP. The Scientific American Reference Book.

A most useful little bound book of 150 pages, com-
prising, probably, the most extensive variety of standard, practical, condensed information ever furnished to the public for so small a price, only 25 cents.
Among its contente are: The Last Census. of the
United States (1s30), by States, Territories, and Counties; TMbie of Cities baving, over 8,000 inhabitants;
Map of the United States-miniature outline; The
Pat Patent Laws full text); The Trade Mark Law (full
text); The Copyright Law (full text); The Principal Mechanical Movements-illustrated by 150 small dia-
grams-of value to inventors and designers of mechangrams -of value to inventors and designers of mechan-
ism; Medallion Portratts of Distinguished American ism; Medallion Portratas of Distinguished American
Inventors; Valuable Tables relating to Steam, ElecInventors;
tricity, Heat, Metals, Weights, and Measures.
Sent by mail to any address on receipt of price,
25 cents. MUNN \& Co., Publishers,

CAUSE OF LUMINOSITY IN THE Flaneso of the Hydrocarbon Gises.-By Prof. Vivian B.
Lewes. An important paper in which the author en-
dewn

NICKEL
ELECTRO-PLATING Apparatus and Material.

$35 \& 37$ S. CANAL N. ST.,
CHICAGO.
THE AGE OF THE EARTH.-AN INteresting paper by John Perry. In which the Author dis-
cusses he subject very
ing enerall. with a view to clear-

 Paris-Bordeaux- Paris Race of.-Brief account of the
perroromaneeof the velicleses that obatined the prizes in
ihe competition instituted by the Petit Journal. With

"OTTO" GAS and GASOLINE ENGINES.
13 to 100 h . p Can Ce used in
citite
pendent on of gas wirlinde
penent of gas works
or kas machines.
No Boiler, No Danger.

GAS and GASOLINE

 17 N. 17th St., Racine, Wis.
 Van ces in.-By J. W. Richards, A.C. Ph.D. A A Aery ex-
hautive and interesting paper ont progress that has
recently been made in he hep

 Nor Engineer

c.

Towers, Tanks and Tubs

\$26.50. An 8 Light I6 C.P. IIO Volt Dynamo
 Not a tor, but a high grame
substantial machine, which
 above low price in order to
introduce our Dy
Motors om of larger sizes. Motors of larger sizes.
ROTH for circular No. 26 .
ROTH BROS. \& CO.,
30 to 34 Men St., Chicago, Ill., U.S.A.
 Chesterman's, Excelsior,
Lufkin's, Eddd's. Roes,
etc., and supplies of all
Eind etc., and supplies of all
kinds for Architects, En-
kine

Tapess.

men.
Established in 1848 .
$\mathbf{3 9}$ Cornhilill, in 1848.
BOSTON, MASS.

 IEssopersivilisw M1t prod=: = =

EF ESTABLISHED 1845

The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year, Including Postage. Weekly--52 Numbers a Year.
This widely circulated and splendidy illustrated paper is published weekly. Every number contains sixoen pages of useful information and a large number of representing Engineering Works, Steam Machinery, New Inventions, Noveltes in Mechanics, Manufactures, Chemistry, Flectricity.Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. Complete list of Patents each week.

> Terms of subscription- One copy of the ScIENTIFIC AMERICAN will be sent for one year - 52 numbers- postage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of Three Dollars by the publishers; six months, 81.50 ; three months, $\$ 1.00$.
Clubs.masters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address sell letters and make all orders, drafts, etc., payable to
all
 This is a separate and distinct publication from THE size. every number containing sixteen large pages full of engravings, many of winch are taken from foreign papers and accompanied with translated descriptions.
THE SCIENTIFIC AMERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It preserts the most recent papers by eminent writers in Arts, embracing Biolotments of science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineertigg, Steam and Railway Eneineering, Mining, Ship Building, Marine Engineering, Photography, Technology, Manu-
facturing Industries, Sanitary Engineering, Acriculture Horticulture, Domestic Economy, Bicgraphy. Medicine, etc. A vast amount of fresh and valuable information obtainable in no other publication.
The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and described in the SOPPLEMENT.
Price for the SUPPLEMENT, for the United States, Canada, and Mexico. 85.00 a year; or one copy of the SCientific American and one copy of the SUPPLE-
MENT, both mailed for one year to Single copies, 10 cents. Address and remit by postal order, express money order, or check,
MUN $\&$ CO., $\mathbf{3 6 1}$ liroadway, New York.

Thillding Eillition.

The Scientific american building Edition is Thirty-two large quarto pages, forming a large and splendid Mosazine of Architecture. richly adorned with elegant plates and Jther ine engravings; illustrating the most interesting examples of
Construction and allied subjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private residences. city and as as the more expensive. Drawings in
erate cost as perspective and in color are given, together with Floor Plans, Descriptions, Locations. Estimated Cost, etc. The elegance and cheapness of this magnificent work Architectural publication in the world. Sold by all

Export Fidition

of the Scientific American, with which is incorporated LAA AMERIA CIENTIIICA E INDUSTRIAL,
or Spanish edition of the ScIENTIFIC AMERICAN is published monthly, and is uniform in size and typography with the Scientific Amerioan. Every number contains about 50 pages, profusely illustrated. It is the finest
scientifle, industrial export paper published. It circulates throughout Cuba, the West Indies, Mexico, Cen tral and South America, Spain and Spanish possessions -wherever the Spanish language is spoken. The Sci-
ENTIFIC AMERICAN EXPORT EDITION bas a large guaranteed circulation in all commercial places through out the world. 83.00 a year, postpaid, to any part of the world. Single copies, 25 cents.
Pr Manufacturers and others who desire to secure foreign trade may have large and handsomely displayed
announcements moderate cost. Rates upon application.
MUNN $\mathcal{\&}$ CO.. Publishers

PRINTING
 PRTNTMTNTE TNKES

[^0]: * Becquerel, Comptes Rendus, xcvi, 121
 † Chemical News, lxx, p. 252, 1894.

