a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
Vol. LXXXIII.-No. 14.] NEW YORK, OCTOBER 5, 1895

ENGINES OF THE OTIS ELEVATING RAILWAY.

Srientific Ammerian.

HSTABLISHED 184

MUNN \& CO.. Editors and Proprietors.
published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

terme for the soientific american.

The Scientific American supplement

Building Edition of Scientific American.

Export Edition of the scientific American.

Qo. Readers are specially requasted to notify the
ans fallure, delas, or irremularitv in receipt of papers.
NEW YORK, SATURDAY, OCTOBER 5, 1895.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 1031.
For the Week Ending October 5, 1895.

${ }^{112}{ }^{\mathrm{n}}$

 Byt. ${ }^{\text {n illustrations.................... }}$
EDUCATION.-The Florida Infamy..
 II. METEOROLOGY:-The Energy of Rail Storms.
VIII. MISCELLANEOUS.-Tiigers on the Line--An incident on the

 XI. PHYSICS. -Pysyical Theory of the Perception of Colors. GEO XIII TECHNOLOGY.-The Commerce in Vegetable Oils.-By P. L.

THE LOCOMOTIVE OF THE FUTURE.

Is the electric locomotive to supersede the steam locomotive, as the future tractive power on our railroads? It is popularly supposed that it will, and striking developments are being looked for by the public in the trials that are now being made, both in France and America, with electric locomotives of the same weight and power as the standard up-to-date steam locomotive. From the day that electricity wa first used as a tractive force, it has been the fashion to predict the early decline of the steam locomotive, and the substitution of some form of electrical traction in its place. It was confidently predicted that motors of half the bulk and weight of the modern engine would soon be hauling our trains at unprecedented speeds, and with that noiseless energy and cleanly operation that distinguishes electric power.
This swifter and more silent transportation was to b accomplished with less expense than the present method by steam locomotives.
It is now some years since these sweeping prophecies were first made and in the interval electric traction has had an extended trial on trolley and suburban lines. It is to-day being tested on standard gage trunk lines; and it is safe to say that, as the case now stands, there are no indications that the future existence of the steam locomotive is in any way jeopardized.
In judging of the relative efficiency of the steam and electric locomotives there is one ultimate test by which they will be tried and upon which the verdict which they will be tried and upon which the verdict
will be given-the test of economy. Other things will be given-the test of economy. Other things
being equal, the engine which can haul a given trainload a given number of miles on the smallest con sumption of fuel will be the engine of the future.
There is no sentiment in a question such as this. It is judged entirely from the stareholders' point of view. However much we might like to see our lightning expresses sweeping from city to city impelled by the silent force, it is certain we shall never see that sight until the day comes when electric traction can be produced at a consumption of fuel considerably less than the three pounds of coal per horse power per hour that marks the performance of the best locomotiv practice of to-day.
As the case now stands, the economy lies with the steam locomotive, for the reason that the power gener ated in the boiler is transferred as tractive force direct ly to the rails, and it is subject merely to the loss oc casioned by the internal friction of the engine itself.
In the case of the electric locomotive, in addition to this loss by internal friction in the engine at the power house, there is a loss between the engine and the dy namo; there is a loss in the resistance of the wire that transmits the current, and there is another loss in the motor itself. Now this treble loss of power must in some way be compensated for before the two engines stand even on equal terms. What compensation can the electric locomotive offer? It was claimed that it would be lighter, not having to haul a tender loaded with fuel and water. But it is not lighter.
The new Heilman locomotive in France is to weigh over ninety tons: and the Baltimore and Ohio Railway engine weighs ninety-six tons; and these weights for the work they are to accomplish, are rather over than under the weights of steam locomotives constructed for similar service. Nor can it be claimed that there is any saving in first cost. A ninety ton electric locomotive cannot at present be built for very much less than a steam locomotive of equal power ; and what margin there might be in its favor is largely offset by the cost of the expensive installation of boil ers, engines and dynamos, that must be erected at stated intervals along the line; and by the cost of the wiring for transmission of the current.
There remains then the question of maintenance and running expenses. In this respect, for the first time in this comparison, we can see a distinct advantage for the electric locomotive; inasmuch as the purely rotary motion of its moving parts is far less conducive to wear and tear than the combined reciprocating and 7 rotary motion of the moving parts of the steam locomotive. As an offset against this, however, there must be placed the deterioration of the system of wiring, and the wear and tear of the engines and boilers at the power house. It is fair to suppose that the wear and tear at the power house-a part of which is justly chargeable to each of the locomotives that it serveswill fully offset any advantage that the electric may have over the steam locomotive in this respect.
At present there are no statistics a vailable by which a comparison of the cost of labor in the two systems can be made. It is probable, however, that the en gineer of a first-class electric locomotive would require the services of an assistant, in which case the expense of the power house staff would have to be reckone against the electric system in a comparison.
There remains then the question of fuel economs Unless the electric system can show a very marked economy in this respect, it is evident from the forego-
ing considerations that a strong ing considerations that a strong case is made out' in favor of the present system of steam haulage. The
best steam locomotive practice of to-day shows that a best steam locomotive practice of to-day shows that a
modern express locomotive will produce one horse
power per hour on the consumption of three pounds of coal. It is doubtful if the best electric light instal lations can show a better result
Unless a system of stationary boilers and engines can be produced that will furnish the electric locomo tive with its power for one-half the coal consumption that is necessary for the generation of the same powe in the steam locomotive, we may rest assured that George Stephenson's invention will remain among us for years to come as the greatest triumph of the mod ern mechanical world.

THE WORLD'S PRODUCTION OF TIN

We have before us an extract from the sixteenth Annual Report of Mr. Charles D. Walcott, Director of the United States Geological Survey, for the year 1894-95. It consists of a printed report on the produc tion of tin in the various parts of the world by Mr Charles M. Rolker
In the past ten years the total output has risen from 50,299 tons in 1884 to 83,387 tons in 1894. The subjoined table shows that more than one-half of the world's utput for 1894 came from the Straits Settlements in the Malay Peninsula.

ORLD'S OUTPUT OF TIN, 1894

1. The Straits to Europe and America	46,724
2. England.	8,800
3. Australia to Europe and America	5,824
4. Banca sales to Holland.	6,139
5. Billiton sales to Holland and Java	4,764
6. Bolivian imports into England.	3,482
7. Straits to India and China.	4,655
8. Sundry countries	642
9. Germany.	96
10. Austria	

The Straits tin mines are the most prolific, and they re probably the oldest, in the world. Before the Christian era the Ethiopians, and later the Arabians, raded with Iudia and "used the Indian name 'Naak to designate tin, a fact which would point to farther India as the source of the tin industry in those days." There was a Roman coin in use in the year 500 B . C which contained $7 \cdot 66$ per cent of tin ; and this antiquit of the use of tin is shown by a coin of Alexander th Great, 335 B.C., which contains $13 \cdot 14$ per cent of tin Historical records for the past two thousand year speak from time to time of the tin that is brought from the Malay Peninsula. The present tin mines of this istrict are alluvial. The constituent parts of th alluvium vary as does the depth ; but the characteristic covering that has to be removed is of an average depth f ten to eleven feet, and cousisto chiefly of clay seams alternating with sand and gravel. The pay gravel ha an average depth of eight feet. The process of recovery is by washing in boxes; and Chinese labor is largely employed.
The well known tin mines of Cornwall, England, vary very little in their yearly output; the amount running rom 8,000 to 9,000 tons per annuu. The metal is re covered froin the lode ores by crushing and by smelt ing. The Australian mines are rich and full of promise Tasmania alone being in itself the third largest pro ucer of tin in the world, coming next to Cornwall. The United States, though such a large consumer of tin, does not at present figure as a producer of the metal. The report states that "no tin is being pro duced in the United States, and the tin occurrences of this country are so far only of geological or mineralogical interest, with indications of prospective value in a ew instances." The most promising indications ar those found in the Black Hills of Dakota.

Hardening Steel by Gas,

Consul Monaghan, of Chemnitz, reports (June 16) that the Germans are interested in a new process for hardening steel by means of gas. The invention ori ginated with the famous French steel and iron firm Schneider \& Company, of Creusot.
It is a well known fact that gas, under great heat, leposits carb on in solid form. Upon this depends it ight effects, and also the formation of the so-called retort graphites, a thick covering of pure carbon on the walls of the gaslight retort. The gas that strikes the retort walls deposits part of its carbon upon them. This is the fact on which Schneider bases his very use ul invention-a process for cementing together (unit ng) steel armor plates
It is said to be very important in the production of armor plates to have them comparatively soft insid and hard outside. This hardening is obtainable by the application of carbon. Formerly, the process of bardening consisted in covering the plates with layer of coal and heating them till they glowed. Schneider's process puts two plates into a furnace, one on top of the other, with a hollow space between Thi space is made gas tight by means of asbestos packing put on around the edges, and the plates are heated ed hot, while a stream of light gas is poured into the hollow space indicated. The carbon thrown out by he gas is greedily taken up by the glowing plates until they are thickly covered. The depth of this carbon covering can be regulated by the aumount of ga admitted. In order to secure regular and uniform act
ion during the process, and to prevent the pipes that carry the gas to the hollow space from absorbing any of the carbon, they are insulated in other pipes through which water is constantly circulating. It is believed that this simple and rapid carbonizing process will soon be applicable to many other branches of the steel industry.

William o. Grover.

The death of William O. Grover removes from our midst the last of the original inventors and promoters of sewing machines. A man of ingenious mind, genial disposition, kind hearted, liberal, he will be greatly missed by all who knew him.
He died at his summer residence, in Beverly, Mass., September 5, aged 71.
When the business of the Grover \& Baker Sewing Machine Company was sold to the Domestic Sewing Machine Company, in $1876, \mathrm{Mr}$. Grover retired from commercial activity, and has since lived in Boston, enjoying his large fortune realized from the sewing machine business.
He was a native of Mansfield, Mass., his family be ing among the oldest of the State.
The Sewing Machine Times says: "William O. Grover and William E. Baker were the original inventors and patentees of the sewing machine that bore their name and for some years was among the foremost in the market. These patents were issued in 185152 and the machine placed on the market about 1853. It was built in Boston, where the inventorslived. Mr. Grover was a tailor before turning his attention to the sewing machine.
"The gist of the joint invention of Messrs. Grover \& Baker was in making the double loop stitch, which was new, by the circular under-needle and in the so-called 'four-motion' feed. These were two of the most important, in a commercial sense, of all known to the trade, the stitch-forming mechanism being the foundation of the Grover \& Baker busiress. and the feed becoming a necessary element for all successful sewing machines for general purposes, even to this day. After these joint inventions Mr. Grover made many others in the development of the early machines, and from 1856 to 1879 took out seventeen such additional patents. He was not known as an inventor in other lines.
"The four-motion feed patent was one of the most important of those by which the old combination controlled the market, and was the one on which they usually brought suit against infringers. It was reissued to broaden its claims and was extended for seven years, expiring in 1873, after which time the Bachelder patent was the bulwark of the combination.

An interesting fact revealed by the Patent Office records is the simultaneous invention of the four-motion feed by Grover \& Baker and by Allen B. Wilson, of Wheeler \& Wilson. Both had applications before the office claiming the four-motion feed, as we have always known and used it. It had never been used comwercially. Wilson had, in the previous year, 1851, patented the yielding-pressure feeder, but with only two motions. While the four-motion invention was clearly subsidiary to Wilson's patent, the latter needed the four-motion improvement to make it successful. Of course the struggle was a hard one to obtain control of so valuable a feature. The result of the investigation was in favor of Grover \& Baker, who had been able to show that their invention was in patentable shape a few days earlier than Wilson's, and the two patents issued in June. 1852, showed and described the disputed invention, but only one of them claimed it."

The Gum Benjamin Industry in Siam.*
The Gum Benjamin tree is large and tall, and has a heart similar to that of the "teng-rang" (a species of Shorea) and "phayom" (a kind of mahogany). In its general character and in the form of its leaves it resembles the "takieu" tree (a forest tree of hard wood used for making dug-out boats). The Gum Benjamin tree is propagated from the original fruit. This, when fallen and lying upon the ground, takes root and sprouts after the fashion of the "phayom" and "gang" trees. As regards the trunk of the Gum Benjamin tree, there is no one who uses it. Gum Benjamin trees are generally found on elevated ground, and do not like the plains country. They grow in isolated patches like the forests of "teng-rang" and teak. A forest patch of Gum Benjamin usually contains from 50 to 60 trees and upward, and the tree is found generally in large numbers along the high hills in the extensive forest region of Slua Phan, Tangslok and the borders of Muang Theng. in the province of Luang Prabang.
It is rarely met with in other countries, except those It is rarely met with in other countries, except those
outside the provinces immediately contiguous to Siam. outside the provinces immediately contiguous to Sialn.
The Siamese Thai, Annamites and Tongsoos, who have settled in the above-mentioned provinces, have worked out and traded in the Gum Benjamin from an early period for successive generations, and these are scatter ed among the neighboring people, as well as being fre-
quently found in Siam also. The season for working
the Gum Benjamin is from the eighth or ninth flonths the Gum Benjamin is from the eighth or ninth fionths July and August) to the tenth and twelsth mon
(September and November), when the season ends.
Thenceforward is the period during which the Gun Benjamin is bought and sold. The fum Benjamin is worked after the following methods. So many trees are notched so as to form a girdle round the stem. An interval of three months is allowed to elapse between the period of notching and that of picking the Gum Benjamin dammar, which wells out of the trunk and collects in the notches. By means of a sharpened stick or the point of a knife this is picked out, bark and all, and gathered at once in baskets. It is then sorted and divided into different classes, according to choice. Picking cannot commence before the interval of three months has elapsed, as the dammar that has trickled out into the notches would not have had time
to harden. It would still be soft and sticky, and if picked at the time would become dirty, owing to the bark coming off with it; nor would it be of such value either, as, being sticky, it would cling to other things, and the full benefit would not be derived, such as would be the case if it were properly dry. For this reason, the Gum Benjamin must be left for three months after the notching, in order that all the gum possible may well out, and it may become dry and hard.

Among the people above mentioned the picking and sale of Gum Benjamin is generally considered as one way of obtaining a livelihood, for the gum has a value, and is reckoned as a marketable commodity. And even if the people have no other occupation but sell ing Gum Benjamin, that by itself is sufficient as a means of livelihood. The period during winich the Gum Benjamin is sold is not necessarily confined to the eighth or ninth months. The reason for selecting that season is because the people of those parts have many other things to do; for instance, they have to plow the fields and reap their rice harvest. In the eighth and ninth months their work on the paddy fields is finished, and they can therefore turn their at tention to Gum Benjamin. For this reason there is a
special season. Their paddy fields are their first care, and then the Gum Benjamin trade. Those who have no business with plowing paddy fields and planting rice can, if they wisn, work continuously at Gum Ben jamin at all seasons, and during every month of the year.
The Gum Benjamin trade requires no very great outlay of capital. All the implements required are one large ax, a rice basket, and an open woven basket. If a person wishes to work alone without
servants to assist him, he can do so ; for in the first servants to assist him, he can do so; for in the first
stages there is nothing much that requires to be lifted or carried. The only labor necessary would be when the Gum Benjamin is being picked and placed in baskets, and has to be carried to the temporary or permanent home of picker. The profits gained on any one particular occasion or another can hardly be gaged accurately. Those who work out much sell at a large profit, those who work out little sell at smaller profit. One catty ($1331 / 3$ pounds) and upward would Picked Gum large output.
Picked Gum Benjamin is sorted into three classes. The best class, and that which fetches a high price, is called "slua," and is that which is sold in large lumps, and is not dirtied by the presence of bark. The second class is that left over from the first class, and is in somewhat smaller lumps than the latter, and has some, but not much, bark attached to it. This is in ferior in quality to Class I, and is half the value. That is to say if Class I is sold at 75 ticals, Class II would sell at $371 / 2$ ticals. The third class is that left over from Class II. This class has bark attached to it, is soiled with dust and dirt, and is in fine, small pieces. It is called " mun," and is half the value of Class II. The price of Gum Benjamin as sold in the jungle dis tricts where the gum is worked is as follows: Class I. One Chinese catty ($662 / 3$ pounds), 100 or about 75 ticals Class II. Half the price of Class I. Class III. Half th price of Class 1I. The price in Bangkok is: Class I
One Chinese catty, 260 ticals, as it has always been. One Chinese catty, 260 ticals, as it has always been.
The Gum Benjamin trees that grow in the jungle districts referred to are not the subject of disputed wnership by one person more than another. Any one who wishes to work Gum Benjamin has merely to go into the jungle, search for and notch as many trees as he pleases, like people, for example, who go into the jungle to cut posts for their houses. Nor is there any tax or other emolument accruing to the country from ither the trunk or the gum of the Gum Benjamin ree; nor is the Gum Benjamin trade one in the
prosecution of which much thieving or fighting arises, whether it is because there are many people together at a time, or because, being in the jungle where there are fierce tigers, one man cannot steal along alone by himself, but is obliged to travel with parties, and so robbery and theft are rendered impossible, is uncermixing either with medicines or scents of various kinds. For whichever of these purposes it is sold, it always fetches a high price like other valuable com
odities, and for that reason Gum Benjamin is an sold from time immemorial to the present day.

The Reagan Water Circulating and Shaking

 GrateAny one who has had to do with the care of boilers knows that clinkers in the grate and scale in the boilers are two of the worst obstacles to rapid and continuous steam raising. The Reagan water-tube grate is a well-tested and very successful device for meeting this difficulty.
The grate consists essentially of a series of longitudinal two-inch water pipes. between and alternating with which are a series of oscillating rockers or "chop pers." These "choppers" are arranged on bars which un transversely to the waterpipes and beneath them the surface of the "choppers" being level with the axis of the pipes.
The water pipes are fitted at their ends into water boxes; each box taking two pipes, and each box being separate from its neighbor. This arrangement allows the system to expand and contract with the variations of temperature.
The "choppers" keep the bottom of the fire clean and continuously loosen up and carry away the ash and dirt, which, in the ordinary grate, accumulate and necessitate the opening and keeping open of the fire doors during the operation of cleaning. The continuus inrush of cold air during a cleaning cools off the boiler, and rapidly reduces the steam pressure. The water tubes serve a three-fold purpose

1. They heat the feed water
2. In doing so they protect the grate by taking up heat that would otherwise destroy the bars.
3. By the system of circulation through these tubes the boiler is kept clean and free from scale. The makers claim that in cases where these tubes have been in use many years, and using very bad water, they have never been troubled with a tube choking up with sediment or scale.
A series of tests of this grate were made last May by the firm of John Brown \& Company, of Sheffield England. In competition with an ordinary grate this showed an evaporation of no less than 43 per cent more water ; and it also schowed 14.23 per cent more economy. This was certainly a very creditable result. The results in the testing laboratory are borne out in actual working tests. The Bridgeport Traction Company state that their monthly coal bill has been reduced by the use of this grate from $\$ 1,547$ to 9919.65. a saving of $\$ 627.35$. The grate is manufac tured by the Water Circulating Grate Company, 126 to 128 Filbert Street, Philadelphia, Pa.

Another Sea Serpent

A great sea serpent was seen off the Jersey coast at Spring Lake, on Sunday afternoon. September 22, at 1:40 P. M. The testimony concerning the monster is well corroborated. It was seen by Lawyer Willard P Shaw, a resident of Paterson, N. J., with offices in New York City. With him at the time was his wife three children, and Miss Ella B. D. Salter, of Pater son. The serpent was also seen by Mr. Philip N Jackson, another cottager at Spring Lake, who is secretary of the Newark Electric Light Company.
An excellent view was had through binoculars while it was passing directly opposite at a distance of not nore than half a mile. The head was of a peculiar shape, quite unlike that of any creature Mr. Shaw had ever seen, and was as large around as a flour barrel, but longer. The nose and mouth resembled those of an alligator. There were no tentacles to be seen. The body was smooth and round, of dark color and apparently destitute of fins. The monster was making its way to the south and skirting along the shore. Its movements seemed to be effected by a ver tical undulation of the body. In the course of it progress it would throw itself out at full length on the surface and then sink its body beneath the water, while the head would be uplifted several feet above the waves. Many ships and schooners frequently pass on the ocean where the serpent was seen. From a knowledge of the size and speed of these, Mr. Shaw akes a conservative estimate of its length at 100 feet, and says that its speed certainly exceeded that of any vessel, and was in the neighborhood of 40 or 50 mile an hour. The serpent was followed with the glasse or six or seven minutes, when it disappeared in the istance to the south. The head was the last part that remained visible.
Owing to the lateness of the season, all the hotels along the coast are closed, and, as the afternoon was hot and sultry, few of the remaining cottagers were tirring. For these reasons, and owing to the short time that the monster remained in sight, there was no opportunity to call other witnesses.

A GOOD engine in charge of a good man rarely re quires to be stopped in working hours. When one i stopped frequently, adds the Safety Valve, it would be good plan to find out whether it is the engine that is out of order, or the man in charge of it.

ELECTRIC TRAIN "STOPPING" AND "STARTING"

 SIGNAL.The illustration represents a very simple system of signaling to the engineer from auy part of a train, each conductor contributing his part to the closing of the circuit, and the signal being given the moment the last conductor completes the closing of the entire circuit. The improvement is represented as arranged especially for use on elevated railway trains, insuring promptness in leaving stations. A patent has been granted for this invention to Francis C. E. von Sternberg, of No. 933 Lafayette Avenue, Brooklyn, N. Y. In Fig. 1 are indicated three cars of a train and the

VON STERNBERG'S ELECTRIC TRAIN SIGNAL.

engine, there being in the cab two electric bells and a battery, connected up with the train wires to form "starting" and "stopping" circuits. The starting circuit includes two parallel conductors extending the length of the train at each side, each wire being provided with a circuit closer on each car to hold the circuit normally open, such circuit closers being at opposite sides of the platforms at opposite ends of the cars, and the ends of the conductors being connected with a central return conductor at the rear of the train, whereby each branch of the starting circuit is maintained normally open. The stopping circuit includes a central conductor extending along the train and having normally open connections with the return conductor on each car, there being in each car circuit closers to close the stopping circuit and operate the signal. To connect the sections of the several circuit wires, a coupling device, such as shown in Fig. 2, is employed, and on the first and last platform, where no gateman is usually stationed, the circuit closers are made in the form of a push button adapted to be held depressed by a pivoted button, as shown in Fig. 3, the circuit being thus held closed at all times on the first and last platforms. When the passengers have passed off or on the train, each guard, on closing the gates, presses the circuit closer on the side of the train next the platform, and the starting signal in the locomotive is sounded when the last circuit closer or push button has been pressed, the stopping signal being similarly sounded by operating either of the circuit closers in the train in the stopping circuit. The entire system is extremely simple, affording but the minimum of chance of its derangement or getting out of order.

A PAPER AND PASTEBOARD CUTTER
A simple and inexpensive cutter, readily operated by hand, and designed to be well adapted for the use

BYRD'S PAPER AND PASTEBOARD CUTTER.
of country printers, is shown in the accompanying illustration, and has been patented by Charles A. Byrd, of Drain, Oregon. Fig. 1 is a side view of the machine, with the parts adjusted to receive the paper to be cut, Fig. 2 being a partly sectional view of the opposite side of the cutter, showing the paper-clamping device. The presser arm and block are engaged and operated by a lever having a cam-shaped end to firmly clamp any thickness of material, from a single sheet to the greatest thickness within the range of the device; and when the stock has been clamped the movement of the knife lever effects a drawing cut by the blade. As the main portions of the machine may
be made of cast metal at a low cost, a cutter of this description can be afforded at a very moderate price

The Carl Zeiss optical Works.

The Carl Zeiss Optical Works at Jena are probably the most important of their kind in the world and are quite exceptional in their constitution. The firm was established some years ago by a skilled workman whose name it bears. He is no longer living, neither is any member of his family connected with the factory. Jena is a university city in Saxe-Weimar-Eisenach, one of the Thuringian states of the German Empire. When Zeiss began to make his way he found the necessity of the association of some scientific adviser, and was fortunate enough to obtain in that capacity the well known Professor Abbe. In consequence of the rule that only the very best possible work should leave the factory, the business grew with great rapidity.
This institution is now a public trust, with the Duke of Saxe-Weimar as chairman. By public trust it must not be su pposed that a public company in the ordinary sense is meant, for the profits annually earned, which are large, do not benefit individuals in the sense of shareholders. The payment of wages to the ordinary staff is liberal, the scientific staff receiving no less a sum than $\$ 25,000$ annually. In this division is still in cluded Professor Abbe, with whom is associated Dr. Czapski, as advisers in the optical department, and Dr. Pulfrich in a like capacity on instruments for physical research, while Dr. Rudolph advises on photographic objectives; Mr. Fischer being general business manager. To return to the question of the profits, they are divided between old age pensions for the workmen and grants for the encouragement of scientific research. The University of Jena receives a por tion of these latter grants and more than one Eng. lishman has participated, if not actually in money, in the form of scientific instruments. The invested pen sion fund now exceeds $\$ 1,250,000$.
Some idea of the magnitude of the Carl Zeiss Works may be gathered from the fact that it requires three hours to pass through the various wings and depart ments, without leaving much leisure for inspection of details. Upward of 500 workpeople are employed, a curious feature being that there is no difficulty in ob taining skilled workers in metals, but the optical hands have to be trained within the works from boyhood. In consequence of the frequent addition of extra rooms to the factory difficulty in transmitting the power from a central steam engine was from time to time increasing, the loss of power being more than forty per cent. This difllculty has been overcome by making the steam engines drive large electric dynamos, which are connected to separate motors under each workman's bench. The loss has thus been reduced to eighteen per cent. Science Gossip.

The Electrical Production of Carbon

It has been recently shown, says the London Electrician, that at the highest temperature attainable in an electric furnace, all substances other than carbon are dissipated and removed, with the result that the ends of the electrodes are not only graphitic, but are also sensibly pure. It follows that a carbon plate or rod, of dense graphitic structure. good conductivity!and unusual freedom from impurity, should be producible by exposing the ordinary moulded article to the tem perature of the electric furnace. This is precisely the direction in which Messrs. Street and Girard have been working. They claim to have succeeded in producing a form of carbon the conductivity of which is fourfold that of the untreated material, while its resistance to chemical action is also much enhanced. Taking the density of an ordinary carbon before heating as 1.98 , they find that after treatment it has attained a density of $2 \cdot 6$. Should this figure be corroborated, it must be considered remarkable, inasmuch as the density of graphite obtained by ordinary means is not higher than 2.3 , while the same figure has been observed as a maximum for hard gas carbon. Analysis of the carbons thus made indicated that the percentage of carbon transformed into graphite was about 80 to 85 per cent. The method of analysis is, however, by no means bevond criticism, depending, as it does, on the conversion of the graphite into the highly indefinite body known on the lucus a non lucendo principle as graphitic acid, which in no way resembles graphite, or comports itself as an acid. This point, however, may safely be left for future settlement. The precise percentage of graphite is not of moment, provided a product has been obtained possessing many of the properties that would be exhibited by a sound coher
ent block of that form of carbon. When once criticism is allayed by the appearance. in a marketable form, of carbon which is nearly free from other ele ments than C and neither oxidizes easily nor irregu larly, nor breaks up when used as an anode fo aqueous or igneous electrolysis, an ample field of ap plication will at once be open. To take one of the most pressing cases alone; it is notorious that next to the want of a good diaphragm, the most urgent need of those interested in commercial electrolysis has been a reliable, unattackable anode.

GATTI'S PRYING BAR FOR HANDLING LUMBER.
The illustration represents a tool more especially de signed for the use of stevedores in loading vessels with lumber. It has been patented by Tony C. Gatti, of Scranton, Miss. It consists of a bar of steel having at one end a curved point and serrated back, to give a good hold on the lumber and prevent slipping, while at the other end is a stop in the form of a chisel point terminating in a collar, preventing the stop from passing too far into the lumber. The stop is employed to stop the timber passing through the port into the vessel, by placing the op posite point of the tool against one log and engaging with the stop the incoming log, the collar preventing the stop from entering the timber more than about two and a half inches, instead of five or six inches, as is frequently the case with stops without a collar.

Man's Susceptibility to Weather
Who has not felt the difference between a depressing and an exhilarating day Sydney Smith wrote: "Very high and very low temperature establishall human sympathy and relations. It is impossi ble to feel affection above 78 degrees o below 20 degrees." Dr. Farr and Dr Stark almost lead us to think morality is Stark almost lead us to think morality is
registered on the thermometer, so surely registered on the thermometer, so surely
does it measure certain kinds of crimdoes it measure certain kinds of crim-
inality. On suicides the effects of the inality. On suicides the effects of the
weather are well known. Nearly all vocations are affected by weather. Men of science are often as much subject to weather as seamen. Some writers must nave the weather fit the mood, character or scene. If one will read poetry atten tively, he will be surprised to find how many weather marks are scattered through it. Diverse weather states may be one caus of so much diversity and even disagreement in thought processes usually regarded as scientific. Many experi enced teachers think there should be modifications of school work and discipline to correspond with the weather.
The head of a factory employing three thousand workmen has said: "We reckon that a disagreeable day yields about ten per cent less work than a delight ful day, and we thus have to count this as a factor in our profit and loss account." These are some of the ideas put forth in a preliminary statement by J. S Lemon, who proposes to publish more at length upon the subject. "Laboratory investigation of the sub ject," he says, "meets at the outset the difficulty of distinguishing results of weather changes from similar states otherwise caused. This difficulty is no greater than in many other topics of research, and, we believe, will not invalidate our methods and results."-Popular Science Monthly.

AN ELECTRIC TIME CHECK RECEIVER.
The illustration represents an automatic device for receiving the checks or tickets of employes in manu-

JARDINE'S ELECTRIC TIME CHECK RECEIVER.
facturing establishments, offices, etc., for which a patent has been granted to Charles K. Jardine, of Achuaran, Lismore, Oban, Scotland. The lower part of a box, of which a transverse section is shown in Fig. 2, has a drawer divided by a partition into two compartments, one of which has an inclined chute leading to a slot in the lower part of the drawer at the rear. In the top of the box is a time-check-receiving slot, beneath which is pivoted a lever, there being a plate attached to the lower end of the lever, while to its rearwardly curved upper end is pivoted a bar, at whose lower end is a roller, there being also in the bar a rod on which is a counterweight. An electro-magnet
is supported in the box, and its armature lever has rearwardly projecting lugs engaged by a bar con nected with the curved upper portion of the lever beneath the check-receiving slot. Pivoted in the box is a lever carrying a plate with the words "early," "late,"
"closed," the extremity of the lever being slotted to receive a curved wire projecting from the bar carrying a counterweight. Fig. 3 shows the magnet and indicator. A conveniently located clock has a dial in which are holes to receive contact pins, which also pass into corresponding holes in an insulated ring at the back of the dial, one hole being opposite each hour mark and another fif each hour mark and another fifteen minutes beyond the hour mark, and pins inserted through the holes into the ring being touched by the hour hand. The insulated ring and the clock movement are electrically connected with the magnet in the casing and a batters. When the pins are inserted in the dial, a check dropped in the slot before the hour for commencing work is passed from the chute to a receptacle outside the box, the indicator then exhibiting the word "early." When the hour hand arrives at the hour at which work begins, the curved lever beneath the slot is tilted to deflect the check into a compartinent of the drawer, the indicator then showing the word dicator then showing the word late; " but in fifteen minutes after the first contact, when the hour hand reaches the second contact, a check cannot be inserted, and the word "closed" is exhibited by the indicator, the apparatus remaining in this condition until it is reset.

An Old Horse's Memory.

Eleven years ago a horse was purchased for the fire engine Portland No. 2, on Munjoy Hill. 'Thi horse was called Old Tom, and it helped draw the en gine for six years and was then disposed of. It has been drawing an ash cart of late years, and the other day went by the engine house. Engineer Loring, who knew the horse well, since they came to that engine in the same year and were there together for six years, fell into conversation with the driver and told him that he hadn't a doubt that if the old horse was put in his old stall, and the gong was sounded, he would rush for his place in front of the engine just as he used to do. The driver doubted this, and they agreed to try it The old horse, now fifteen years old, was put in his old stall, where he had not been for five years. At the first sound of the gong he started for his old place under the harness in front of the engine. He tried to go quickly, but made only a sorry exhibition of nimbleness compared to his former habit.-Portland Daily Press.

THE AUTOMATIC LIFE SAVING APPARATUS OF DE ROPP.
M. De Ropp has utilized the liquefaction of gases in the manufacture of a life preserver. The apparatus gives the wearer entire liberty of movement until the moment arrives when the life preserver is required. It consists of a belt or sack of rubber which is normally flaccid and pliable, but which receives at the desired moment a quantity of liquid methyl chloride which, on

Fig. 1.-LIfE PRESERVER BEFORE inflating.
expanding, is sufficient to completely inflate the sack. The liquefied gas is contained in a small flask terminating in a fine point which is introduced into the sack A knife is held in place by a spring which is kept in position by a ring of filter paper which is destroyed on coming in contact with the water. The knife ac-
tuated by the spring, on being released by the band

AN ARCHIMEDEAN SCREW CONSTRUCTED FROM

 SIMPLE MATERIALS.To perform this simple experiment take a long lead pencil, preferably an unvarnished one, and place it through two pierced corks, as shown in the engraving, one cork being placed higher than the other. The
corks are adjusted so that the pencil turns freely. A bent pin, \mathbf{E}, serves as a crank. The pencil is pierced by two other pins at F and G, which limit the motion of the pencil. Pins H and I hold the two corks firmly. A vessel of water, as a goblet, is placed at J , and another at K. The elevation of the glass, J , must be greater than that of the glass, K. On J is placed a bent match whose lower end is split to fasten it to the goblet. It is adjusted to almost touch the pencil. Then take a pen and cut it as shown n Fig. 2. This pen is forced nto the pencil as shown in Figs 1 and 3. Now fill the glass, K, with colored water so that the course of the water will be made more apparent. The colored water in K is now to be transferred to J , by the medium of the pencil, D , which acts as an Archimedean screw after the pencil has been scored spirally with a pair of pliers. The spiral begins at the pen, as shown in ig. Now turn the crank, in the diretion the crank, \mathbf{E}, the direction shown by the arrow. The pen dips in water and on rising carries a drop with it which is at last de-
archimedean screw made from simple materials.
of paper, falls on a glass point, breaking it. The liquid then escapes into the sack, and, assuming the gaseous state, completely inflates it. The device can be dis guised so as not to be noticeable. The inventor has also devised a signal for use by shipwrecked persons. The apparatus of M. De Ropp was experimented upon

Fig. 3.-APPARATUS FOR TESTING THE LIFE PRESERVER.
or the first time in the laboratory of M. Raou Pictet. For our engravings we are indebted to La Nature.

Scientific Enthusiasts.
It is a common error to think of science as opposed to all the poetry of life and scientists as the most cold and matter of fact men. In reality the true scientist is almost always a poet at heart, and the greater he is the more certain is he to be a pure enthusiast and of a deeply reverent spirit. Kepler, exclaiming in the moment of his great discovery, "O God, I think thy thoughts after thee!" is a type of this.
Professor Farrar, who occupied the chair of natural philosophy at Harvard University two-thirds of a century ago, was a man possessed of this enthusiasm for his work, and was beloved by his pupils, whom he inspired with something of his own spirit.
One day the class entered the lecture room and found the professor walking backward and forward with kindled eye and working face, holding a ball in his hand. Presently he stopped and confronted the class and exclaimed, suiting the action to the word :
"I toss this ball into the air; the earth rises up to meet it and the stars bow down to do it reverence!"
Probably no member of the class who heard these words ever forgot their absolutely accurate lessonthat action and reaction are equal; that the apple which falls to the earth at the same time draws the earth to itself in the exact ratio of their relative weight, and disturbs even the course of the planets and stars. Still less could they forget the grandeur and unity so vividly expressed in that brief imagery.Youth's Companion.
posited at the beginning of the spiral. The drop is
forced to follow the spiral until it strikes against the match. It then runs downinto the glass, J. At each turu of the crank a drop is forced upward. If it is desired to render the experiment more comical, a paperor other kind of doll may be secured to the upper crank at N. For our engravings and description we are indebted to La Science en Famille.

A Large Cargo Steamer.
The Hamburg-American Steamship Company has ordered from Messis. Harland and Wolff, of Belfast, a t win-screw steamer of 20,000 tons burden, i. e., only 3,000 tons less than the Great Eastern. The vessel, when completed, will be the largest in the world. It is to be chiefly employed for freight, but will also be able to accommodate 200 cabin and 1,500 steerage passengers. The order has been given to a British yard, as its tender was more moderate than those of the German shipbuilders, and as the former contracted to deliver the vessel in 10 months, while the latter demanded to be allowed 19 months. The chief German dockyards are, it is stated in explanation, overwhelmed with work at the present moment.

Oil stoves and gas stoves should never be kept burning in a sleeping room, for they are burned in the open air of the room, and, having no connection with a chimney flue, they throw the poisonous carbonic oxide of combustion into the air of the apartment and make it unfit for respiration. Even an oil lamp is dangerous if left burning all night, but an oil stove is worse, because stoves generally feed more flame, consume more of the oxygen and give off more poisonous gas.

Fig. 2.-Life preserver after inflating.
a HORSELESS CARRIAGE OF 1827.
In the London Observer of December 9, 1827, appeared a description of a steam carriage invented by a Mr. Gurney, and which is said to have been successfully tried in Regent's Park. As shown in the accompanying views, for which we are indebted to the Engineer, it will be seen that the vehicle was designed to serve the purposes of the horseless carriages on which so many inventors are now at work. The description of this steam carriage, written nearly seventy years ago, embraced the following interesting details and reflections
It has a tubular boiler, constructed upon philosophical principles, and upon a plan totally distinet from anything previously in use. Instead of being, as in ordinary cases, a large vessel closed on all sides with the exception of the valves and steam conductors which a high pressure or accidental defect may burst, and involve in destruction those in its neighborhood, it is composed of a succession of welded iron pipes, perhaps forty in number, screwed together in the man ner of the common gas pipes, at given distances, extending in a direct line and in a row, at equal distances from a suall reservoir of water, to the distance of about a yard and a half, and then curving over in semicircle of about half a yard in diameter, returning in parallel lines to the pipes beneath, to a reservoir above, thus forming a sort of inverted horseshoe.
This horseshoe of pipes, in fact, forms the boiler and the space between is the furnace, the whole being inclosed with sheet iron. The advantage of this ar rangement is obvious, for, while more than a sufficient quantity of steam is generated for the purposes re quired, the only possible accident that could happen would be the bursting of one of these barrels and temporary diminution of the steam power to one-for tieth part. The effects of the accident could, of course, only be ffelt within its own inclosure, and the engineer could, in ten minutes, repair the injury by extracting the wounded barrel and plugging up the holes at each end, for which purpose he would be provided with the proper materials; but the fact is, that such are the proofs to which these barrels are subjected before they are used, by the application of a steam pressure 500 times more than can ever be required, that the accident, trifling as it is, is scarcely possible; and the boiler now in use in Mr. Gurney's premises, on a simi lar construction, has remained as sound as ever afte being at work every day for two years. Having thus described the boiler, we hope intelligibly, and having we trust, removed all prejudice on that head, we shal now endeavor to render the other details cqually clear Ihe boiler, we need hardly tell our readers, is the sea of the vital principle in the steam engine, for withou that steam could not be engendered, and of course th works must stand still-our scientific friends will ex cuse us for being thus diffuse-and it will appear no a little singular that Mr. Gurney, who was educated a medical man, has actually made the construction of the human body and of animals in general the mode of his invention. His reservoirs of steam and water or rather "separators," as they are called, and which are seen at the end of our plate, are, as it were, the heart of his steam apparatus, the lower pipes of the boiler are the arteries and the upper pipe the veins.

The water which is the sub stitute for blood, is first sent from the reservoirs into the pipes, the operation of fire soon produces steam, which ascends through the pipes to the upper part of the reservoir, carrying with it a portion of water into the separators, which, of course, descends to the lower part, and returns to fill the pipes which have been exhausted by the evaporation of the steam-the steam above pressing it down with elastic force, so as to keep the arteries or pipes constantly full, and preserve a regular cir culation. In the center of the separators are perforated stean pipes, which ascend nearly to the tops, these tops being, of course, hermetically closed, so as to prevent the escape of steam. Through these pipes the steam descends with its customary force, and is conducted by one main pipe all along under the carriage to the end of the platform, which is, in point of fact, the water tank, where it turns under till it reaches two large branch pipes which communicate with the cylinders, rom which the pistons move and give motion to the machinery. The cranks of the axle are thus set in action, and the rotary movement is given to the wheels. By the power thus engendered also a pump is worked -which is more clearly explained in our referencesand which, by means of a flexible hose, pumps the water into the boiler, keeping the supply complete. The tank is to be replenished at the end of certain
stages, by a very simple process; but it is calculated that it will hold sufficient-sixty gallons-for one hour's consumption. The furnace, too, within the boiler is also calculated to contain a sufficient supply of coke or charcoal for a similar period, and may be fed with equal facility.
So much for the boiler and its adjuncts, and now to the coach itself. In point of form, this vehicle is similar to the ordinary stage coaches, but rather large and stands higher, the roof being nine feet from the round.
The seats for the outside passengers are as usual; and

Fig. 2.-HORSELESS CARRIAGE of 1827-rear view.
ere it may be asked, whether those who ride in the backseats are not liable to be annoyed by the smoke rom the chimneys of the furnace? To which we sa o; for in the first instance, there is no smoke, coke o charcoal only being used; in the second, the chimney re above the level of the seated passenger; and lastly the motion of the carriage will always disperse the eated rarefied air coming from the flues.
The present carriage would carry conveniently six inside and fifteen outside passengers, independent of the guide, who is also the engineer. In front of the coach is a very capacious boot, while behind, that which assumes the appearance of a boot is the case for he boiler and the furnace, from which, we may add, o inconvenience whatever is experienced by the out ide passencer, although in cold weather a certain de ree of heat may be obtained if required. The length of the vehicie from end to end is 15 feet, and with the pole and pilot wheels 20 feet. The diameter of the hind wheels is 5 feet, of the front wheels 3 feet 9 inches and of the pilot wheels 3 feet. There is a treble perch by which the machinery is supported, and beneath which two propellers in going up a hill may be set in
. Handle which guides the pole and pilot wheels. 3 Pilot wheels. 4. Pole. 5. Fore boot for luggage. 6 "Throttle valve" of the main steam pipe. 7. Tank or water, running from end to end, and the ful breadth of the carriage; it will contain sixty gallon of water. 8. Carriage, capable of holding six inside passengers. 9. Outside passengers, of which the present arriage will carry fifteen. 10. Hind boot, containing he boiler and furnace. The pipes extend from the cylindrical reservoir of water at the bottom to the cylindrical chamber for steam at the top, forming a succession of lines something like a horseshoe turned dgeways. The steam enters the "separators" through arge pipes, which are observable on the plan, and is thence conducted to its proper destination. 11. "Sep arators." 12. Pump. 13. Main steam pipe. 14. Flues of the furnace, four in number. 15. Perches, of which here are three, conjoined, to support the machinery 6. Cylinders; there is one between each perch. 17. Valve motion, admitting steam alternately to each ide of the pistons. 18. Cranks, operating on the axle 19. Propellers, which, as the carriage ascends a hill, are set in motion, and move like the hind legs of a horse, catching the ground and then forcing the ma chine forward, increasing the rapidity of its motion and assisting the steam power. 20. The drag. 21 The clutch, by which the wheel is sent round. 22 Safety valve. 23. Orifice for filling the tank.
Explanation of Fig. 2.-1. The furnace door. 2 Gage cocks. 3. Steam pipes. 4. Blow cock. 5. Cock for emptying the water tank. 6. Flues of the furnace 7. Pipes through which the water is propelled from the separators into the boiler. 8. Steam separators.

Advertising in the Drug Business.

Mr. M. W. Ryerson contributes to the Bulletin of Pharmacy a paper on judicious advertising for the re tail druggist, giving the following examples of what an ffort of this kind has accomplished
"J. C. Ayer began life as a drug clerk and advertis ng his Cherry Pectoral in a small way, but when he died he left a fortune estimated at $\$ 15,000,000$. C. I Hood began 'that tired feeling' in a small way in 1870 and is now rated as a millionaire. A. B. Scott of Scot \& Bowne, was working at a moderate salary twenty years ago; to-day his firm is spending $\$ 1,000,000$ a yea or advertising. Brent Good, proprietor of Carter' Little Liver Pills, started on a cash capital of $\$ 8.40$, and now cannot spend the money he is making; and many others the same way. Judicious advertising has mad it possible for Seabury \& Johnson to spend annually 50,000 on popuiarizing their products W. T. Hanson Company $\$ 500,000$ on Pink Pills for Pale People, and Wells, Richardson \& Company $\$ 600,000$ on Paine's Cel ry Compound. Dr. A. L. Helmbold was at one time a retail druggist in Pniladelphia. He finally began the manufacture of his Buchu Compound, and put his en tire surplus capital of $\$ 2,000$ into a contract for on month's advertising, and in a shorttime, comparatively was enjoying a clear income of $\$ 150,000$ per year, be sides spending as high as $\$ 250,000$ annually in advertis ng. Orange Judd, the publisher, owed his first succes largely to the mistake of his office boy in ordering page ad vertisement instead of a column, as instructed. Mose P. Handy, of the Chicago Times Herald, says: 'When I talk to man who has made a fortune by advertising, I wonder that any body who has anything to sel does not go and do likewise. One man told me a day or two ago that his concern, with a nominal capital of $\$ 160000$, only $\$ 30,000$ of which was paid in, has divided in a single year among thre partners profits to the amount of $\$ 750,000$, and that exclusive of salaries of $\$ 50,000$ and $\$ 25,000$ drawn by two members of the firm. Ten or twelve years ago this man was a drug clerk on small salary in a Western tow [I wonder if it wasin Nebraska] and is now one of the millionaire of New York. Without advertis ing I might have made a living, he said, 'but it was advertising
Fig. 1.-AN ENGLISH HORSELESS CARRIAGE OF 1827. legs under similar circumstances, which assist the that made me rich, and advertising a very simple com power of the engine in forcing the carriage to the summit, in case of snow, etc.
The total weight of the carriage and all its apparatus is estimated at one and a half tons, and its wear and tear of the road, as compared with a carriage drawn by four horses, is as 1 is to 6 ; the mischief done by the four horses, the feet of which act as picks, being five times greater. When the carriage is in progress the machinery is not heard, nor is there so much vibration as in an ordinary vehicle, from the superio solidity of the structure. The engine has a 12 horse power, but may be increased to 16 ; while the actua power in use, except in ascending a hill, is 8 horse.
Explanation of Fig. 1.-1. The guide and enginee
modity at that.' Another man, who bears similar testi mony, tells me that his concern, which began by invest ing $\$ 10,000$ a year in advertising, increased the amount every year according to the increase of business, and this year expects to spend $\$ 1,000,000$. Still anotber, who confined himself entirely to the newspaper and magazine in the exploitation of his specialty, never having touched a dead wall, a fence, or the broad side of a barn with poster or paint brush, and never em ploying a salesman, has a cool miliion salted down in real estate, keeps a yacht, and spends mostof the year abroad in luxurious living."

the otis elevating railway

The eastern end of the Catskill range has been a favorite mountain resort for many years. Until within a short time the hotels on the top of the mountain were accessible only by a tedious stage ride up the face of the mountain, or by the rather circuitous route of the Stony Clove Railway, Irunning from Phoenicia, on the Ulster and Delaware Railway, to the top of the mountain.
Recently an inclined railway has been built up the side of the mountain lying toward the valley of the Hudson, and extending from Otis station, on the Catskill Mountain Railway, nearly to the top of the mountain. This railway is known as the Otis Elevating Railway, having received its name from the firm of Otis Brothers, the well known manufacturers of elevator machinery.
The road is 7,200 feet long, with a rise of 1,600 feet It runs in a straight course down the mountain without any lateral deviation, but it is not a true inclined plane. It is made up of four curves, two of which are circular while two are parabolic. This plan has been worked out by the engineer, Thomas E. Brown, to secure, as far as possible, the balance of the two cables used in moving the cars, the cables alone weighing ten tons each.
The engines which operate the cables are located at the upper terminus of the railway, within about three hundred feet of the old Catskill Mountain House, which is seen in the general view. The engines are of the Corliss type, built by the Hamilton Corliss Engine Works. They are seventy-five horse power each at one-fourth cut-off, the diameter of the cylinders being twelve inches, the length of the stroke being thirty inches. The shaft, which is common to both engines, is provided with two brake wheels, which are each encircled by a brake strap. The shaft also carries a pinion which engages a spur wheel on the shaft of one of the cable drums. The driving cable drum has a loose rim pro vided with a grooved periphery which receives the cables, the rim being carried by friction. The other cable drum simply supports the cables. The cables, which are connected up parallel, are attached to one car, and passing twice around the drums extend out of the engine house around a sheave, thence to the other car.

The track, as will be seen by reference to the general view, has three rails, the center one being common to both cars, there being a separate outer rail for each car, except at the turn-out, shown in the general view, about half-way up the mountain. Here for a very short distance the tracks separate into separate and distinct two-rail tracks. With this arrangement, it will be seen that when one car goes up the other must necessarily go down, and, so far as the cars them selves are concerned, they balance each other.

The cars have a seating capacity of ninety passengers, a caboose being provided for a proportionate amount of baggage. The seats are like those used in the elevators of the Eiffel tower, being constructed on a curve which enables the passengers to easily adjust themselves to the different inclinations of the rail way.
To the ties on each side of the central rail are secured heavy timbers which extend from one end of the railway to the other, and upon each car is firmly attached a clutch capable of gripping this timber upon the top and sides. The clutch is under the control of a governor which rolls on the top of the timber. Ans considerable increase in the speed of the governor releases the clutch and causes it to be thrown forcioly into the timber, thus instantly arresting the downward motion of the car. The two cables are also attached to a swivel plate upon each car, which is connected with the clutch mechanism, so that should one of the cables fail, the other will turn the swivel plate and cause the clutch to engage the timber. The clutch can also be operated by hand at the will of the con ductor.
Upon the cable-driving drum is placed a strap brake which, together with the brakes on the engine shaft is operated by air pressure. The engines are provided with link motion, and the shifting of the engine may be effected by means of an air cylinder in the tower above the engine room. Infact, all the controlling me chanism may oe operated by simply turning air valve connected with the air brake system, and to insure the stopping of the cars at the ends of the road a lever is provided, which is moved by the car so as to throw into action the engine-controlling levers and brakes, to immediately stop the engine and to hold the cable se curely in the position in which it is stopped.
In the tower in front of the controller is a governor driven by the engines below, which indicates the maximum speed by closing an electric circuit and ringing a bell. A wire extends from one end of the

Ontrolling mechanism of the otis elevating railway.
on methods of ventilation proper. That problem has well known limitations which we do not care to dis turb at this time. The present question is, Assuming that we must admit to the cars in summer a large supply of outdoor air, not too much when the train is running rapidly, and yet all that we possibly can when it is standing at a station, how can we avoid dirt and objectionable draughts?
The Buffalo man must have seen, without being old, that suitable rules cannot be formulated, much less enforced. The assignment of back seats would be harder to mapage even than the car seat hog question Windows not to be opened would have to be locked, and that would make trouble, for our complainer him self would want his window open some of the time The brakeman, even if he be ar accomplished hotel clerk, cannot attend to forty windows all at once Theoretically, he might lock all the windows simul taneously by time locks electrically controlled, soon after leaving the heating chamber, commonly termed after leaving the heating chamber, commonly termed
a head house, and open them before the next stop; a head house, and open them before the next stop
but practically, even if this mechanical suggestion were reasonable, he could not suit the passengers by such a method. The temperature of a weil-filled ca rises so rapidly when the openings are closed, and the draughts so easily become violent when windows and doors are opened, that no one person could think of pleasing a carfull. Even with windows bolted down and the patent crank's ideal ventilating apparatus in full operation, our troubles would not be half cured.
Probably we shall always have to have openable ca windows. That much must be conceded to the tra ditional spirit of American independence. With 40 windows and 40 sovereigns in a car, what shall we do Any observant traveler will often have noticed that i each passenger could control the window opposite the seat in front of him he would be much better off than now, even with the control of his own window taken out of his hands. But this is out of the question, for a large share of the people who travel are much like the English woman who would hold no intercourse with one to whom she had not been introduced, even when she wa drowning. We are inclined to think that the Tribune correspondents have the germ of the most practicable idea. A folded newspaper is not available in the majority of cases, and not every one could adjust it in good shape with "three stout, ordinary pins," even if he had them; shields outside the window woul not probably prove a practicable an satisfactory solution, for they could no be attended to without additional por ters, and the passengers would break or lose them rapidly if left to themselves But a shield inside the car, Fanny Kel logg's newspaper changed into a wooden or metallic shield, shaped scientifically and attached to the car so as to be conveniently opened or closed, ought to be a very satisfactory contrivance. There must be an ample supply of ingenuity in the car shops to make the right thing It would be desirable to have such
window open during the entire journey. I was thu forced to ride for eleven hours in a hurricane of smoke and cinders that nearly put my eyes out, and left me with a cold, from the effects of which I have not yet recovered. It was useless to appeal to the conductor he having no authority over the action of passenger in such cases, and equally useless to try a change o place. The fresh air fiend seems to have a devilish in stinct for establishing himself on the front seats whence the cyclone of dust and dirt in which he re vels may sweep through the entire car, to the discom ort of the greatest number of victims.
" Now, I would respectfully suggest that the rail road authorities themselves take this matter in hand and remedy the abuse, as they can easily do, with per fect equity to all parties, by setting aside a certain number of seats in the rear of each passenger coach or those who enjoy the current of 'fresh air' that fol lows in the wake of a locomotive, and absolutely pro hibiting the opening of windows in the forward part.
Other correspondents followed, suggesting various remedies. One wants at every window a screen, such as is used in Pullman cars, to be removed only by the conductor or brakeman. A New Jersey woman say that she raises her umbrella in front of her and thu causes the cinders to fall upon the vicious person who is the cause of the trouble, and these cinders, even though they are cold, have the well-known moral re suits of coals of fire when they fall upon the malefac or's head, A more businesslike woman, Fanny Kel $\log g$, says that she pins a stout newspaper up in front of her, fastening it to the side of the car and to th back of the seat by three stout. ordinary pins.
The rexder will have noted by this time that our title, which had to be short, does not precisely define our subject; that this is not intended to be an essa
hield normally in position, so that a passenger would have to take action only when he desired to have th breeze from his neigbbor's window, and to accouplish this, while not obstructing the ligat or impairing the cheerfulness of the car, might be somewhat difficult, but not impossible.-Railroad Gazette

A Remedy Against Fleas.

All persons who have lived in a house which has become infested with fleas in summer will know how these creatures inhabit the floor by preference, and how they will jump upon the legs and ankles of every one who passes near them. Taking advantage of this fact. some years ago, when the lower floor of McGraw Hall of Cornell University was badly infested by fleas, which had come frcm animals temporarily ept there in confinement, Professor S. H. Gage in vented the following ingenious plan. He had thc nero janitor put on a pair of rubber boots, and then ied sheets of fly paper. with the sticky side outward around the legs of the boots. The janitor was then around the legs of the boots. The janitor was then
iold to patrol the lower floor for several hours a day. The result was gratifying and rather surprising The sheets of fly paper soon became black with fleas and had to be changed at intervals, but by this means the building was almost completely rid of the pest, with it minimum of trouble to every one except to the ianitor.-Insect Life.
E. Burinsky's method of restoring by photographic means the writing faded to invisibility of old docu ments is as follows: He obtains a number of pellicula negatives, superposes them exactly on one another and thus, under a suitably regulated light, renders them visible.

MANUFACTURE OF WAGON SPRINGS.

Wagon, coach and truck springs are manufactured from 1 to $31 / 2$ inches in width and from $1 / 8$ to $3 / 8$ of an inch in thickness and are about 25 feet in length
The material is first cut up into plates or leaves then heated and passed through a number of processes called forging, ribbing, slotting, heading, eyeing, etc., after which they are tempered and polished and then bolted together. The bars of steel are cut up cold, the shears of the machine with a pressure of $21 / 2$ tons making about 70 clean cuts per minute. The plates or leaves are then placed into a blast furnace and heated. The furnaces are about 2 feet in length, $11 / 2$ feet in width, 2 feet in height and lined inside with firebrick. The plates are taken out of the furnace when at a white heat and squeezed by the furnace when at a white heat and squeezed by
a ram connected to the forging machine, it being
the end of the heated plate is placed into the machine, the blade presses the material into the slot, the plate when taken out having a rib formed into it about 6 inches in length, about $\frac{3}{16}$ of an inch in depth and about $1 / 4$ inch in width. The depth of the ribs varies according to the thickness of the plate. The rolls travel at the rate of about 100 revolutions per minute. The operation of beading and slotting a spring is done by means of a punch and a circular saw. The plate is first brought up to a white heat in the furnace, the attendant then placing the material in position in the machine, then by means of a lever the saw is set in motion, which cuts out a slot in the hot plate about $\frac{3}{16}$ of an inch in depth, about 2 inches in length and about $1 / 4$ inch in width. The saw is about 6 inches in diameter, $1 / 4$ of an inch in thickness, with teeth about $3 / 4$ of an inch in length, and travels at the rate of 3,500 revolutions per minute.
heads is about 4 tons. The machine makes about 75 trokes per hour.
The eyes are formed by means of dies, it taking five movements to perform the operation. The plate is heated as before and placed into the machine, the dies being formed in such a manner that with every stroke of the machine a part of the eye is formed. The attendant, as soon as each stroke is made, lifts out the plate and places it in position for another, the shifting of the plate being continued until the eye is completed, the whole operation taking about one minute. The plates are then tempered.
This operation requires an experienced person, who must understand thoroughly about the expansion and contraction of steel, and be able to tell at a glance whether the plates are straight.

The plates are first heated to a bright cherry color, the attendants then placing them on a sort of frame

THE WAGON SPRING INDUSTRY.
necessary to thicken and narrow the ends of the plates so that when they pass between the forging rolls of the machine they are pressed back into just the proper width. Connected to each forging roll is a cam about 1 foot in length and about 8 iuches in wiath. They are fastened securely one above the other in the cen ter of the roll, each projecting out from the surface about $1 / 2$ of an inch. The ends of the hot plate after being squeezed are placed between the cams, which, revolving at the rate of 100 revolutions per minute, presses or flattens out the material to the length of about 6 inches, the operation thinning and giving spring to the ends. About 100 double ends or leaves can be forged per hour.
If the spring is to be ribbed the plate or leaf is passed to another machine which presses or forms a rib into the material, so that in placing one plate over another the projecting side fits into the other, making it impossible to shift. The upper roll of the ribbing machine is slotted in the center. Connected to the under roll is a steel blade or gouge, which when in motion passes into the slot of the upper roll. When

The burr is then milled off and the plate beaded. The orces the hot metal into a die. The hole is forced partly through, leaving a circular projection on the under side. The punch forms a hole about $\frac{3}{16}$ of an inch in depth. The machine beads and slots about 100 double ends per hour. The ends are then trimmed off in different shapes, such as oval, round, diamond and square. The plates are trimmed cold, the knives making about 100 strokes per minute.
The plates are then punched through the center, the oles ranging from $3 / 8$ to $1 / 2$ inch in diameter. The the ends of the plate at one blow. The attendead to fits the pieces,' which are slotted on the sides, to the end of the plate. They are then put into the furnace and brought up to a white heat. The hot steel head is then placed in position on the bottom die in the machine. By means of a lever the attendant drops an upper die, which welds the material together, forming and punched. The pressure required for welding th
and pinching them one on top of the other into the proper shape with instruments made for that purpose. Water is then poured on as soon as the plates turn a dull cherry color, the attendant pouring on just enough to properly temper them. Two men temper about 40 springs per day.
The spring plates are then taken to a 6 foot grind stone, where the scale is taken off and the plates pol ished. This stone travels at the rate of 250 revolu tions per minute, and is 14 inches in width and 3 tons in weight. After the grinding operation, the heads are rounded off on an emery wheel. They are then put together and bolted. The springs range from 32 inches to 48 inches in length, and from $1 / 1 / 8$ inches to $31 / 2$ inches in width. The plates on each spring range in number from 2 to 30 . Fifteen hands turn out about 80 ordinary springs per day. The sketches were taken from Merrill's Spring Works, Jersey City, N. J.

THE brain of a woman is smaller than that of a man, but it is stated to be somewhat larger in proportion to the weight of the body.

IMPROVED STEEL FRAME STAMP BATTERY.

The illustration is taken from a photograph of a twenty-head stamp battery recently supplied for the Gold Coast of Africa, in a district where it is impossible to have wood, owing to the climate and ravages of insects. In this battery all joints are planed and fitted, with the holes drilled in position. The battery was first erected complete at the works, and all the parts carefully marked and photographed, rendering the reerection at the mine a simple matter. It is built up in sections of 250 lb . where transport is difficult and in sections of 250 lb . where transport is difficult and
costly, or in sections of 30 cwt., as desired. All the costly, or in sections of 30 cwt ., as desired. All the
parts are so constructed that they are not easily damaged in transport. All the bolts are fitted with lock nuts, and rivets are supplied for riveting up at the mine when required. The battery is arranged in sections of two of ten heads each, having five heads in one motor box, each five heads being driven by an independent steel pulley, so that any section can be stopped without the others.
The belt from the countershaft to the stamp is of leather, of ample width and section, and an improved belt-tightening gear is fitted to each belt. The countershaft is of steel, turned and polished all over, fitted with bearings, having gun metal steps of large surface, lubricators, pulleys for driving the stamps, couplings,
box is fitted with five dies of Messrs. Robey's special chrome steel, fitted with hexagons on the lower edge to prevent turning in the box. If desired, the top part of the motor box can be made of steel plates, having an internal lining, and fitted complete with water-distributing pipes, and arranged to receive amalgamated copper plates when required. The grate frames are of an improved design, fitted with chock blocks and thick amalgamated copper plate, whereby the depth of discharge can be altered at will. Hose pipes and cocks are supplied for washing out and cleaning the launders. The launders are supplied complete with arrangements for altering the angle of the launders, and each set of five heads has an independent amalgamated copper plate surface of large area, and fitted with a frame for supporting the launders clear of the battery framing.
Australian mercury wells are fitted at the end of each launder, and the outlets arranged to convey the tailings over blankets or settlers as may be required. The automatic feeders can be constructed of wood or wrought iron frawing. A runner and hook with framing are provided to lift the stamps, etc. The sizes of battery usually supplied are $650,760,850,900$, and 1.000 pounds, having a maximum fall of twelve and 1,000 pounds, having a maxim
inches at ninety blows per minute.
the opinion of your commission that there is not any fender that is always sure to save life. A good, intelligent motorman is the best preventive of accidents on street railways, and to that fact, perhaps, is largely due the immunity we have had in Providence from frequent accidents during the three years the electric cars have been in operation.
"The managers of the railroad company have afforded the commission every assistance in the consideration of this subject, and have provided cars at all times upon which to test the various fenders submitted for trial. They have agreed to equip their cars with suitable wheel guards and with one of the fenders selected by your commission just as rapidly as it is possible to build them."

A New Photographic Paper.

Within recent years the large consumption of ready prepared printing-out papers has demonstrated their superiority in cheapness and convenience to the regular albumen paper, which has to be freshly prepared every time prints are to be made. Thus there are prepared papers made of varying degrees of sensitiveness. The gelatino-bromide paper has the highest, and one time was used extensively in the camera for the making of paper negatives.

IMPROVED STEEL FRAME STAMP BATTERY.
and loose collars fitted with steel set screws, and main driving pulley for receiving power from the engine or turbine, constructed of steel, turned up and bored perfectly true and fitted with key and keyway. The cam shafts are constructed of the best mild steel, turned and polished all over, and each fitted with five steel cams of massive design, bored and trimmed up true on the outer face, and having lifts from 6 inches to 12 inches as required. The cam shaft bearings are of massive design, and fitted with oil catchers, gun metal steps and improved lubricators. The stems are of tough wrought iron, turned all over, and each tapered to enable them to be reversed. Each stem is fitted with a hard chrome steel tappet fitted with three keys. They are faced on the top and bottom sides, so as to be reversed when worn. The shoes are of chrome steel, with heads of wrought mild steel bored out so that either end will fit the stem and the shank of the shoe, suitable slot holes being provided so that the stem and shoe can be removed; the whole design gives a falling weight of 850 lb . Each head of stamps is fitted with fingers for propping up.

The motor boxes are of the Homestake pattern, of massive design and construction, and are either uade whole or in two parts, or in sections of 250 lb . as required. The boxes shown in the illustration are in two parts, the lower parts being of castiron and the upper part of wrought steel, fitted together with planed joints, and through bolt holes and lock nuts. Each

We are indebted to the Engineer, London, for our illustration and the foregoing particulars.

The Perfect Fender.

The commission appointed by the city of Provi dence, R. I., to examine and report on the fender ques tion, reported in part as follows :
"Having examined the reports of the various commissions appointed in Baltimore, New York, Brooklyn and Philadelphia, your commission proceeded to examine into the merits of various patented and other devices, some with and some without working models, that were exhibited before them by various persons. Of these contrivances, only four were regarded with favor by your commission. But your commission do not consider that these fenders are perfect. No fender should be adopted without a wheel guard, which, in the opinion of the commission, should extend entirely around the car.
"Your commission are convinced that the most successful device for saving life on street railways is a light projecting fender which shan readily pass ove without iniuring the human form which it mar fail to rip and catch, or which may be already prostrate; and which is supplemented by a wheel guard close as possible to the wheel, to be brought into action auto matically, rather than bv the foot of the motorman and provided with powerful springs to bring the guard into contact with the rail and street surface, but it is

Lately a new paper called "Velox," prepared by the Nepera Chemical Company, has been introduced which appears to be a combination of a chloride and bromide. When exposed to the same light, it print 500 times as quick as albumen paper. In diffused daylight an exposure of a few seconds only is required prints also may be made quickly if it is exposed to the Welsbach gas light or the electric arc light.
After exposure, the paper is placed in a developing solution, the image coming out slowly and certainly. It is then toned and fixed in a combined hypo and alum solution, and washed in the usual way
The photographer is able to make prints with this paper independent of the condition of the weather, and thus fill orders promptly; a case in point being cited of 2,500 prints being finished in two days, from one negative.
The prints are permanent and resist humidity and heat to a remarkable degree, making the paper well adapted for use in warm climates.
Another valuable feature of the paper is that the nanipulations can be carried on under a bright yellow light, lamplight, or weak diffused davlight. We have tried the paper, obtaining very satisfactory results.

France has furnished fewer immigrants to the United States than any other nation in Europe During the ten years preceding 1890 only about 50,000 persons left France for America.

Stains and Their Removal.
It is, perhaps, hardly necessary to say that stains should be treated as speedily as possible after their first appearance. When once dry they are more difficult to remove, requiring both time and perseverance. Paint should be instantly wiped off; grease on wood, tone or carpet should be congealed before it has time to penetrate, by throwing cold water over it. Tea, coffee, ink, wine and fruit stains will disappear in a cofferter of the time if they can be attended to while quarter of Spots on colored material must not be rubbed, but dabbed over and over again until they disappear. Rubbing rougbens the surface and often leaves a whitened circle almost as unsightly as the original stain. The dabbing is best done by covering a finger with an old handkerchief frequently changed, and great care should be taken to confine the operation to the area of the stain itself, and not to extend the damage by damping and dabbing the surrounding materiai. In the treatment of stains, to know what you mean to do, and to do it quickly and neatly, is more than half the battle. We will take stains on white washing materials first.
For acids, tie up a bit of washing soda in the stained part, make a lather of soap and cold soft water, immerse the linen, and boil until the spot disappears.
For anilines, wet with acetic acid, apply diluted chloride of lime, and wash out carefully.
Apple and pear stains may be removed by soaking in paraffine for a few hours before washing.
Blood, if fresh, is removed by soaking for twelve hours in cold water, then washing in tepid water. If the mark still remains, cover it with a paste made of cold water and starch, and expose to the sun for a day or two. Old stains require iodide of potassium diluted with four times its weight of water.
For coffee and chocolate, pour soft boiling water through the stains, and while wet hold in the fumes of burning sulphur.
Fruit stains can be treated in the same way if fresh, but if old rub them on both sides with yellow soap, cover thickly with cold water starch, well rub in, and expose to sun and air for three or four days. Then rub off the mixture and repeat the process if necessary.

Grass stains are removed by alcohol.
Ink requires milk for its removal; the spotshould be soaked and gently rubbed. A fresh stain will disappear quickly, but an old one may need soaking in milk for twelve hours
For iron mould, spread the stained part on a pewter plate set over a basin of boiling water, and rub the spots with bruised sorrel leaves, then wash the article in soft warm suds. Or, cover the spots with a paste made of lemon juice, salt, powdered starch, and sof soap. and expose to the sunlight.

Mildew can be removed by the above paste, or by simply wetting the spots, covering them with powdered chalk, and bleaching on the grass.
Paints must disappear before turpentine and perse verance.
Scorched linen can be restored if the threadsare not injured. Peel, slice and extract the juice from two onions, add half a pint of vinegar, half an ounce of curd soap, two ounces of fuller's earth, boil these well, and, when cool, spread over the scorch, let it dry on, and then wash out the garment.
Tar can be taken off with petroleum
Tea stains yield to the action of boiling water poured through them from a height, or to glycerine.
Wine stains, if old, treat like old fruit stains; if fresh table salt spread over the spots while wet will neutralize the damage.
Stains of which the cause is unknown will frequently disappear if held in a pan of milk boiling on the fire, or by dipping them in sour buttermilk and drying them in the sun. The articles should then be washed in cold water, dried, and the process repeated several times in the day. The following bleaching liquid will effectually rewove any trace that may still remain after the
garments have been through the laundry. It may be called an instantaneous ink and stain extractor, but requires to be used with care lest the fabric suffer. Put a quarter of a pound of chloride of lime and a quart of soft water in a wide-mouthed bottle and shake it well. Cork tightly for twenty-four hours, then strain through cotton and add one teaspoonful of acetic acid to every ounce of the mixture. Damp the stain, apply the extractor, and wash well in clear, soft water.
For the removal of stains and spots from colored materials and carpets, ammonia takes the first place. Almost any mark, new or old, will yield to its perse vering use, and if dabbed on (not rubbed) it will itself leave no trace of its use. It can be applied to woolens, cottons, and silks. It will remove ink spots from marble, paper, and wood. Grease flies before its application; and when. diluted with water, spots caused by orange or lemon juice or vinegar are removed by it from the most delicate materials. For very nice fab rics some people like to use the old-fashioned javelle water, to be obtained from the chemist, but ammonia, delicately applied, does quite as well. From carpets, curtains, and suits of clothing it will remove almost
every stain, including that caused by whitewash. Ink spots are always the most difficult toefface. Take up as much of the ink as possible with a spoon and blotting paper, and then use milk or clear water until it disappears, being careful not to extend the area of damage done by rubbing the ink into the adjacent material. Benzine will remove paint from delicate fab rics; if it fails, turpentine must be used, and the mark which it leaves effaced by alcohol. If in the process of emoving stains the color departs from the material, it can generally be restored

Sorrespondence.

THE BALL NOZZLE.

To the Editor of the ScIentific American
Not being entirely satisfied with your explanation of the phenomenon of the ball nozzle, we procured one, and find that the vacuum is located at A, Fig. 1, instead of at the point where the water is tangent to the ball. The following experiments, we think, will prove it: We drilled a hole in the ball, Fig. 2, about $1 / 8$ inch in diameter, and half way through the ball from that we drilled three others to the point where the water is tangent to the ball. In the larger hole we inserted a stiff tube and passed it through a hole in the cross piece above the nozzle; that held the ball in the position shown in the figure, but left it free to be thrown out. If the vacuum was at the point of tangency, the air passing down the tube and out at the side would fill it and the ball would be blown out but the ball remained in the nozzle.
We then cut the ball down, Fig. 3, until there was

THE BALL NOZZLE.
but a small disk or button left, $\frac{9}{16}$ of an inch in diameter and $\frac{3}{16}$ thick; this was supported by a wire as shown in the figure; the pressure was not great enough to carry it out.
The only place then remaining that a vacuum could be formed was below the water above the shoulder of the nozzle. To prove that the vacuum was at that point, we drilled a ball as shown in Fig. 4, and in the ower opening inserted a tube $\frac{1}{16}$ of an inch in diamter, letting it project beyond the ball about $1 / 8$ of an inch, just enough to carry it below the water; the upper tube was passed up through a cross piece a hown in the figure.
We found that the air passed down the tube, filled the vacuum; and the ball was thrown out.
The opening in the tube at A, Fig. 4, was then closed so that the air could not pass down the tube to the vacuum ; the ball would then remain in the nozzle. We think that the above experiments prove that the vacuum is at A, Fig. 1, and not at the point where the water is tangent to the ball. N. W. Green. Albert Lea, Minn., September 6, 1895.
[We think the experiments of our correspondent fai to prove anything derogatory to our explanation to which reference is made; on the contrary, they seem to prove our theory correct. We admit a vacuum is ormed at A in Fig. 1, as pointed out in the above let ter; but this would be insufficient of itself to cause the retention of the ball in the nozzle. The admission of air at three or more points in the vacuum zone in the manner shown in Fig. 2 would oniy destroy the vac uum at those points. The vacuum would still be suf ficient to retain the ball.
When air is admitted through the tube A to the
vacuum at the surface of the ball and elsewhere in the nozzle, so that the ball is thrown out by the water jet. In Fig. 5, which we have added, is shown an experiment in which air is admitted to the smaller part of the nozzle. This is distributed through the water, preventing the formation of a vacuum anywhere in the nozzle, consequently the ball will not be retained in the nozzle. Air mingled in any way with the water will cause the ball to be thrown out.-ED.]

Destructive Collision of Tandem Bicycle and
 Carriage.

To the Editor of the Scientific American :
In your issue of August 3 you speak of the striking force of a wheelman at ten feet per second. I will give you something to think about. Three young men left here on the evening of September 7, to ride to Aurora, about twenty miles distant. Two rode a Rambler tandem, one a Fowler wheel; all three are expert long distance riders. When nearing Aurora, they reached the top of a sharp decline, and the temptation to race was too strong, and away they went. Coming from the other direction was a light wagon, containing a woman and two men, the wagon drawn by one horse; all reached the bottom of this hill at the same time -the horse at a slow trot, the boys at thirty miles per hour (and all the argument you could make will not make them come down a single mile)
The tandem struck the wagon somewhere about the left front wheel, nonecan tell how. Result, wagon wheel turned inside out, axle bent, shafts torn off and one man thrown out on his face. William Hill, first rider, thrown straigbt ahead about 30 feet, badly bruised and left leg injured, though able to be about on the 12th. Clare Phelps, second rider, thrown about the same distance as Hill, but at an angle of about 70°, using a right angle to the road as a base, bruised about the head and face, otherwise $O K$ the next day. The wheel or tandem about 30° and in the ditch, the front wheel smashed, fork bent short back against the frame and the frame bent between the rear handle post and the front seat post in such a way as to force the front seat over the top of the rear handles; the seat was raised ashigh as it would go, for Hill is tal and the handle bars were low.
Hill's weight, 150 pounds; Phelps', 137 pounds; tan dem, 48 pounds. These young men are used to the cyclometer and timing. Mr. Jarred, the other wheel man, has made his $21 / 2$ minutes time on country roads very often, and declares he never rode so fast in his life and I believe him.
A. A. Wilson.

Sand wich, Ill.

Note on Helium and Argon
 By prof. h. KAYser, of bonn

Hitherto helium has been found only in a few minerals, and we do not know as yet in what state it exists there. It may therefore be interesting that I have found it in. a free state in nature. Some time ago I received information that in the springs of Wildbad, in the Black Forest, bubbles of gas rise which -according to an old analysis of Fehling-contain about 96 per cent of nitrogen. As in all such cases it is possible that considerable quantities of argon may is possible, that considerable quantities of
be found, I submitted the gas to analysis.
be found, I submitted the gas to analysis.
About 430 c . c. were mixed with oxygen
About 430 c . c. were mixed with oxygen, and sparks were caused to strike through it in presence of potassa lye. The excess of oxygen was then removed by means of potassium pyrogallate. After desiccation there remained $9 \mathrm{c} . \mathrm{c}$., which were filled into Geissler tubes for a spectroscopic examination of the gas. It showed the lines of argon and helium, the latter not in a small quantity, as its lines appeared very bright and could be readily photographed. Runge and Paschen have found that the gas evolved from cleveit and broggerite is a mixture of two substances, one of which, helium, is most hignly represented in the visible spectrum by the yellow line, D_{3}, while the other not as yet named, is represented by the green line,
$\lambda=501 \cdot 6 \mu \mu$. Both these elements are also represented $\lambda=501 \cdot 6 \mu \mu$. Both these elements are also represented in the Wildbad gas, though it seems to me that the second element is here in a smaller proportion tha
In this result it seems to me especially interesting that thus for the first time a place has been discovered where the two gases included under the name "helium" are liberated and stream out into the atmo phere. Hence free helium must be found in the air along with argon. In fact, I bave found in Geissler tubes which I had personally filled with the purest argon possible-and that at a time when I had not yet worked with helium, so that no admixture with it could have occurred in my laboratory-on direct comparison with helium tubes the presence of D_{3} in the argon spectrum; and I have obtained photographically the strong lines at $388.9 \mu \mu$. The lines are certainly very faint, but I consider the presence of helium in the air of Bonn as beyond any doubt. Whether this presence of gases in the springs of Wildbad has any connection with their hygienic efficacy, and whether the gases occur in similar springs, the future must show.-Chem. News.

Students as Conductors in Philadelphia.
The Electric Engineer says that "during the past summer between 30 and 40 students of Jefferson Medical College, the Philadelphia College of Dentistry, the University of Pennsylvania and other colleges in this city obtained employment as conductors on the cars of the People's Traction System of Philadelphia. All of the young men came from outside the city, and were working their way through college. The last of them handed in their resignations last week, which the company accepted with regret, for the young men had proved to be the best conductors in its employ. An official of the company said the students were thoroughly honest, intelligent and polite, and as their desire was to earn as much money during the summer as possible, they were always willing to work extra hours and take out special cars. They lived economically and have probably saved something like $\$ 130$ each, which will go a good way toward paying their college expenses next winter. One of the students has almost concluded not to go back to college, he likes railroading so well, and is still in the employ of the company."

THE M.AGNETIC BICYCLE.

In some parts of the country there are malicious per sons who throw tacks in the road way to annoy bicycle riders by perforating the pneumatic tires. To meet this difficulty it has been proposed to attach a magnet in front of the forward wheel, with the object of pick ing up the tacks as the machine rolls along.
A caricaturist in one of the comic papers has made use of this idea in the accompanying sketch. Here the cyclist is represented as carrying such a powerful magnet that it not only picks up tacks, but even draws out the nails from the shoes of passers-by.

Obstinate Thumping.
Sometimes an engine which usually runs well develops an obstinate pound or thump, which persists in spite of all the doctoring that can be done to the machine. In vain the engineer will go from the wrist pin to the crosshead, and from eccentric to bearing. Even the flywheel and the manner in which it is keyed upon the shaft will be investigated, to see if the thump is located therein. After all these things have been tried in vain, just give the tried in vain, just give the engine a trifle more com pression and note the result. Probably it will cure
or make it worse. In the or make it worse. In the
latter case change the valve again and give a litthe less compression than there was before. In nine-
thoroughly fit a boy for the battle before him than natural talent developed by a college education, and backed up by frugal habits."
One of the most conspicuous disbelievers in the university for the training of a boy for a business life is the well known banker, Henry Clews, who is reported as saying:
"Think of a man going into business with threefourths of his brain cells filled with classical knowledge, dead languages, and high sounding but unpractical ideas!
"I have been severely criticised for saying that I would not have a college-bred man in my office. Her is my reason: To become a successful merchant, banker, or broker, one must begin young. Most college boys, when ready to enter an office, are over twenty years of age. I have a son at college-a six footer, in his twenty-first year. Can I ask him to undergo the training I deem necessary for every business man? Would he be willing to commence at the foot of the ladder, with boys of sixteen, and on a salary of $\$ 150$ per year? Why, that youth not only knows more, in every branch of knowledge, than all the office boys and clerks in this office; he knows more than his father, too.
"A collegian cannot, or perhaps will not, humble himself sufficiently to learn the rudiments of the business man's vocation. He rebels against the discipline necessarily imposed upon a subordinate. He has been used to regard himself as a brilliant young gentleman for several years; can you blame him for objecting to sit on the same bench with errand boys? And has he enough practical knowledge to deserve a place behind the desk? In my opinion the average gradu ate does not even know enough of arithmetic and of caligraphy to earn, upon his arrival in an office, a salary of five dollars a week. My legible hand secured for me the first good position I ever held the average college gradu ate writes a fearful scrawl and is proud of it. I under stand that none of our universities employs a teacher of caligraphy This is a sad defect, o which the collegian does not become aware, as a rule, until it is too late to remedy the evil
'I have practically tested the problem whether a college education is desir able for a business man Years ago I employed sev eral college men, one after another; none of them suc ceeded in benefiting either my business or himself So I got rid of them. O the boys who came to me equirped with nothing beyond a common schoo education, a sound mind says the Safy says the Safety Valve, the change in compression wil this: The compression is too little or too great to allow the engine to run smoothly over the center; and at that point the piston gives a "yank," which causes wrist pin and connection and sometimes the main bearing to vibrate to the extent of the lost motion, forming the thump or pound, which is so objectionable to the good engine runner.

Should Your Boy Go to College

Is a college course the best training for a boy designed for a business career? Upon this important question good judges differ. The editor of Munsey's, believing that those entitled to discuss this question with authority are rather the practical men of action than the theorists of educational science, has collected and presented the views of some of New York's leaders of affairs on this subject. In his introductory remarks the editor says :
"It might perhaps be thought that in the trial of such a cause each juror's verdict would depend upon his own personal history; that the college alumni would support the honor of their alma mater by voting for an academic training, while those who stepped di rectly from the school to the shop or office would ad vise others to seek business success by the pathway they themselves followed. This is, however, by no means invariably the case. There are university gradu-ates-men who made good use of their time in the classrooms, and who went on to honorable places in the world-who question, nevertheless, whether those four formative years might not possibly have been spent to still better advantage. And on the other hand many if
not most of those who have gained success without a col lege course look back upon their early days with a regretful sense of having missed something that would have helped and benefited them all through life; of nothin entered the arena without a weapon which battle with the arms at their command."
Mayor Strong thinks that while a college education is a good thing to have, it is far from being indispens able to the business man. He says that if he had to choose between two applicants for a position, the one a college-bred man and the other a smart young fellow with only a common school education, he should en gage the first, if the post in view would warrant it, and provided the college man displayed an equal capacity for work. If the other applicant was found to be more Strong concludes by saying:
"A college education requires the investment of a small capital and the expenditure of several years of study. The boy of natural talent, who enters busines life when he leaves the public schools, begins to earn money at once; but it does not follow that the college man's time and money have been wasted. His in-
creased broadness of vision, the greater extent of resources at his command, will equip him to contend with the exigences of life, and to grasp the business pro blems that will confront him, with a surer hand, a clearer head, and more ready determination than his brother. The latter's advance in his chosen field will be steady, the result of unceasing labor. The college-bred man will gallop gracefully to the front, while the other's

THE MAGNETIC BICYCLE.

of experience."
Similar ground is taken by Hon. Roswell P. Flower, Similar ground is taken by Hon. Roswell P. Flower,
who says that if he had a dozen boys, he would not send all of them to college, but would carefully select from the number those he judged to be best fitted for higher education, and the rest would have to get along as best they could with elementary knowledge. He had to make his own way thus insufficiently equipped, and while he is quite contented with his fate, he cannot help wishing sometimes that in his youth he had had better opportunity for developing his natural ability. Mr. Fower invites a glance at the careers of some had no college education, such as Clay, Douglas, and Lincoln. He says:
"I think a college education the greatest boon that can fall to the lot of a boy endowed with a clever and active mind and a wholesome thirst for knowledge. However humble a man's station in life, knowledge will enrich him in the long run, one way or another. At the same time a university training is not essential to success in business life. Moreover, I should hesitate to advise a parent to send even the brightest boy to college if was not quite sure that he could withstand the temptations sure to be offered to him there. There is too much luxury about our present-day college life.

Very few of the business men and politicians of the older generation were college-bred; the majority of those who are leaders in the commerce and industry of to-day, too, have achieved success upon a basis of a common school education; but the desirability of a university course is becoming more and more apparent as the strugcle of life sharpens. Nothing will more
business men, while as many hold responsible position with large firms."

A more moderate view is expressed by a member of the famous Seligman fraternity, who says that in his business he prefers men who have received a college education, but does not make employment conditional upon that fact. Although college alumni are com paratively scarce among the business men of the pre sent generation, he believes that the next generation will abound with them, for in every walk of life the necessity of higher education is becoming more and more apparent. He thinksthat while a man of sound mind and good habits will come to the front, whether he is college-bred or not, with equal gifts and with the same application the collegian will outstrip him in the ace.
The article closes with the views of Mr. Chauncey M. Depew, from which we quote :
"While the world gives on its material side such examples of success as Commodore Vanderbilt and such instances of wise statesmanship and service to his country as Abraham Lincoln, we must remember that in the affairs of life no comparisons can be made with the phenomenally gifted who are endowed by the Almighty from their birth with powers far beyond the equipment of their fellows. With the business man who must be more than his rocation, the artisan large than his trade, and the farmer more learned than in the traditions of his fathers, it is the trained intellec disciplined by higher education which alone has any certainty of success.

This is not a modern thought, a new-fangled idea. American independence, and the founding of our
nation upon constitutional lines, embodying the experience and the lessons of the ages, was the work of the graduates of the colonial colleges. Harvard, Yale, and Princeton, Columbia, and William and Mary were the architects of the Declaration of Independence, of the Constitution of the United States, of the union of the States, and of the incomparable system of executive, legislative, and judicial independence and intertive, legislative, and judicial independence and inter-
dependence which have survived so successfully a cendependence which have survived so successfully a cen-
tury of extraordinary trial and unprecedented developtury of extraordinary trial and unprecedented develop-
ment. Samuel Adams, in his commencement thesis at ment. Samuel Adams, in his commencement thesis at
Harvard, struck the keynote of colonial resistance. John Morin Scott brought from Yale to New York the lessons which prepared that rich and prosperous colony for the sacrifices of the Rebellion. Alexander Hamilton, a student at Columbia, though only seventeen years of age, educated the popular mind to the necessity of the struggle; while the pen of Jefferson, of William and Mary, wrote that immortal document which lives and will live forever as the most complete charter of liberty
'The best proof of the value of a college education in all the pursuits of life is to be found in the eminent success of those who have enjoyed it in the higher walks of the professions, of statesmanship, of business." -The Literary Digest.

Power Required for Electric Traction

In an article in the Sibley Journal of Engineering, Mr. James Lyman gives the results of a number of Mr. James Lyman gives the results of a number of
tests made in different American cities of the power required for electric traction. At Rochester, where the first of Mr. Lyman's records were obtained, there are about 20 miles of track which was in good condition at the time of the test. The number of cars on the road was 40 , each weighing about 8 tons and provided with a 15 horse power geared motor. In general the road was level, but in the heart of the town there were some gradients of from 3 to $4^{\circ} 7$ per cent. Moving on the level the necessary tractive power averaged 38 lb . per ton of car, and for the whole run over the four principal routes at 6.5 miles per hour, the average horse power was 1.4 per car, and the maximum 6 horse power, this latter being used only momentarily. At power, this latter being used only momentarily. At
Buffalo the same average power was required, but the
maximum was 6.6 horse power. In a large Western city a car with the axles coupled direct to the motor, with out the intervention of gearing, took 0.92 horse power per ton on the average with a maximum of $4 \cdot 7$ horse power. In wet weather the tractive power required is reduced, the rain acting as a lubricant. Wetting of the rails round curves is particularly effective, the requisite tractive power being thereby reduced by one-third. Comparative experiments made at Ithaca, N. Y., showed that on gradients the tractive force required exceeds that on the level by more than the theoretical amount.

The Dismal Swamp and its occupants
"I have just returned from a visit to the Disma Swamp," said Dr. A. K. Fisher, ornithologist of the Department of Agriculture, in Washington, the other day. "It is a strange region, full of oddities that are not to be found elsewhere. The purpose of my ex pedition was to investigate the fauna of the locality, and of rare mammals and birds I secured quite a number. Snakes are abundant and are alleged by the natives to be venomous, but all that I saw were
harmless. When I picked up a good-sized one from a log and held him by the neck, the negro who was paddling for me shuddered so he nearly upset the boat.

I found about fifty species of birds breeding in the swamp. One of them was Swainson's warbler, which is very rare. I trapped several species of small micerice mice, field mice, golden mice and lemming mice The lemming mouse is hard to catch, because it will not take any sort of bait; the only way to capture it is to set a trap in its runway. I set my traps in dry places out of water. Among other things I got two rare shrews.

There are plenty of cattle in the swamp-small, dark and very wild. They are the progeny of animal stalk have strayed from domesticated hers numerous In the autumn they feed greedily on the fruit of the sour gum. Wildcats, opossums and raccoons are not scarce, while squirrels are remarkably abundant. The squirrels have discovered an easy way to get a living by going along the shores of Lake Drummond and
the water and drifted in windrows. They trot along the logs and fish them out with their paws. Deer are common but hard to get. In the fall hunters run them into the lake and catch them with dogs.

There is fine fishing in Lake Drummond, which con tains plenty of perch, black bass, two kinds of pickerel three species of sunfish and other panfish. There is no dry ground in the swamp, and one sinks at every step to his knees in mud. The cane which forms brakes all through the South is abundant. Together with a varied undergrowth, it is tangled with vine that run up into the trees, so that half a mile an hour is a good rate of progress. One must carry a knife to cut the vines, walking being further impeded by the at brier, whose thorns catch in the clothing and hold like hooks.
The boats used in the Dismal Swamp are all dugouts, made from cypress logs, twelve feet long and very narrow. To shape such a craft properly is a nice iece of work. The novice who steps into one of thes boats is apt to go out on the other side, but the native tands up and paddles with security. The water is darker than amber and excellent to drink; it is said to be a sure cure for malaria. There are no malaria iseases in the swamp. The swamp is full of magnolias, rom the size of bushes to trees sixty feet high.
"When I was there they were full of flowers. The ypress trees are cut for shingles. The best trees for the purpose are those which fell from twenty-five to fifty years ago, and are now covered with moss. The negroes wade in and cut off the moss and rotten bark. Then they cut up the log into shingles on the spot. The next best tree is one that is newly fallen, and the third quality is the tree that has to be felled."-Philadelphia Telegraph

According to Dr. Krüger, of Charlottenburg, Ger many, a mixture of equal volumes of acetylene and car bonic acid gas can be used with all ordinary gas burn ers and gives an excellent light, and which is practi cally entirely without the explosive qualities possessed by the pure acetylene gas. Compressed acetylene and carbonic acid gas can be obtained commercially in Germany, so that gas illumination can be obtained in dependent of gas companies' pipes.

RECENTLY PATENTED INVENTIONS.

 Railway Appliances.Car Fender.-John F. Girtler, Brook lyn, N. Y. This fender is conveniently attachable to any car, and adapted to be folded up when not in use.
The fender frame is detachably connected by hooks with The fender frame is detachably connected by hooks with
the dashboard, and on its lower end is pivoted a forwardy and downwardly extending platform, held in position by chains, and beneath which are track rollers, there being on the front end of the platform a tripping plate onnected by springs with a guard rail, which is swung into position to hold a person in the path of the car Buffer and Draught Device for Cars.-George E. Shuey, Lawtey, Fla. This improvement is designed to relieve car frames from pulling
bhocks or strains, or the impact of one coupling on anshocks or strains, or the impact of one coupling on an-
other. A yoke is transversely secured to each coupling, ther. A yoke is transversely secured to each coupling,
at each side of which, on the car frame, are guide rods carrying springs pressed on by a follower plate, draught ods secured to the yokes passing loosely through the follower plates.

Electrical.

Thermometric Circuit Closer.Richard Pearson, London, England. According to this improvement, a thermometer mounted on a horizontal
axis is so balanced as to be caused to oscillate under the displacement of the center of gravity by the expansion and contraction of the thermometric fluid, thus automatically completing or breaking an electric circuit for
any purpose. A novel form of thermometer is employed, any purpose. A novel form of thermometer is employed,
in which the mercury serves only to render visible the expansion and contraction of a lighter fluid, and also as a means of producing the oscillation of the instrument, the balance of which may be readily adjusted so that it will oscillate at any given temperature.

Mechanical.

Numbering Machine. - Thomas F. Geary and William E. Bracewell, Brooklyn, N. Y. This improvement is more especially designed for use in ro-
tary web-perfecting printing presses and other machines, to be inserted in the type or printing plate cylinder. to to be inserted in the type or printing plate cylinder. to
effect numbering with eaci impression. The numbering wheels, meshing with gear wheeis, are mounted in a frame to be set in the plate, the shafts of the wheels
passing through a slot in a spring-pressed slide carrying passing through a slot in a spring-pressed slide carrying a pawl engaging one of the gear wheels, while a head is
engaged by the impression cylinder to operate the slide.
Engraving Machine.-Jere G. Kingsbury, Bridgeport. Conn. This is a machine for cutting numbers in intaglio, or below the surface, upon a counting wheel, the wheel doing all the work of cutting and
finishing with the service of but a single attendant. It has two shafts, one supporting a master wheel and the other a blank wheel, there being means for imparting rotary movement to one shaft and a compeneating gearng between the two shafts, while a delineating arm having a tracing point engages the master wheel and a cutting tool engages the blank wheel.

Agricultural.
Hay Loader.-Ole and William Swen-
Cresco, Iowa. In this implement
with reciprocating feed arms operated from one of the drive wheels, the mounting of the elevator enabling a person standing upon the load to readily elevate the upper end of the elevator. At the rear of the elevator is a rake, and shields facilitate the grasping of the hay by
hook teeth at the bottom of the elevator arms, two these teeth on each arm delivering the hay from the rake to the elevator.

Miscellaneous.
Bicycle Wheel.-Gustave Le Blanc and Leander Johnson, Mead, Neb. The tire of this a rim of similar outer surface and having side flanges, and the rim is connected to the spokes by means of bow prings, the spokes crossing each other, and each spoke belng connected with the spring by a nipple or nut, by which the springs may be placed under more or less ten-
sion. By this means a maximum degree of resiliency is given to the wheel without employing a pneumatic tire, and the wheel is made very strong.
Blasting Powder. - Benjamin C. ettingell, Victoria, Canada. This is designed to be a cheap powder of great strength, which will emit no
fame when exploded and will make less than half the smoke of the black powder in common use. It is manufactured by first immersing powdered carbon alone in a solution of niter, drying, and afterward adding and mat
chanically mixing therewith sulphur and wood pulp.
Evaporating Liquids.-Leon F. Haubtman, New Orleans, La. An apparatus for evaporating water and saccharine solutions or other liquids has been devised by this inventor, in which superheated air
is caused to absorb the moisture contained in the liquid is caused to absorb the moisture contained in the liquid
to be concentrated by causing the hot air, driven by a blower, to come in direct contact with a flowing liquid, the liquid flowing in an opposite direction to the movement of the air, and a current being created opposite to the current of the liquid.
Filling Chocolate Dippers.-Cyprien Gousset, New York City. This inventor has de-
vised an apparatus to facilitate the manufacture of chocvised an apparatus to facilitate the manufacture of choc-
olate cream drops, consisting of a table provided with olate cream drops, consisting of a table provided with
projections, each adapted to support a cream drop in projections, each adapted to support a cream drop in
position to be passed into a pocket in the chocolate dipposition to be passed into a pocket in the chocolate dip-
per, a perforated guide board causing the cream drops to take position upon the projections.
Affixing Stamps.-William L. Dinsmoor, Portland, Oregon. This inventor has devised a machine, to be operated by one hand, for applying
stamps to envelopes and other packages to be mailed, the machine holding a large number of stamps mailed, are fed out one by one, moistened and applied. The machine has a spring-controlled plunger, beneath which is a sliding table, a stamp-feeding device being operated simultaneously with the upward movement of the plunger, while a moistening device independent of the plunger is operated from the table. It is said that the
machine will stamp 45 letters per minute, and it may also be used for molstening envelopes.
Music Leaf Turner. - -- Daniel T. Fox, Mount Pleasant, Pa. The body of this device supports a series of pivoted swinging sheet-carrying arms, finger-
operated throw devices being arranged when pressed operated throw devices being arranged when pressed
upon to throw the carrying arms. The throw devices in upon to throw the carrying arms. The throw devices in-
clude lever members to impart a speed movement to the
arms, giving them increased speed as they near the end
of their movement. The turning action is effected in a gentle but positive manner, without danger of tearing

Clothes Drier.-William M. Rowley, Cuba, N. Y. A rack of very simple and inexpensive con-
struction has been devised by this inventor, capable of struction has been devised by this inventor, capable of
being attached to any convenient support, and which being attached to any convenient support, and which
when in use will be firmly braced, the arms adapted to support the clothes being held adjustably in a position. When the rack is not in use it may be ond practically out of the way.
Bed Clothes Holder.-Russell T. Joy, Tacoma, Washington. For holding bed clothes on a bed, this inventor has devised a holder, the gripping
jaws of which will not injure the most delicate quilt on other bed covering, a locking device setting the jaws a various distances apart or substantially close together
to effectually hold the thickest or the thinnest bed to effec
clothes.
Lawn Sprinkler. - Russell T. Joy, Tacoma, Washington. This is a sprinkler of inexpensive construction, comprising virtually but two parts,
and arranged for the easy regulation of the spray. The and arranged for the easy regulation of the spray. The
casing has an arched bottom, which will not injure the casing has an arched bottom, which will not injure the
surface of the sod, and has an inlet opening at one side to which the hose is coupled, while the separating or sprinkling cone is screwed adjustably to place, to form

Culinary Utensil.-Edward O. Ra no, Phlladelphia, Pa. A utensil for pouring batter on griddle in making batter cakes has been provided by this inventor. It comprises a vessel with an outlet at its lower part controlled by a valve actuated by a lever adjacent to the handie, whereby the device is operated by a minimum movement of
simple and convenient.
Napkin Holder.-Alexander A. Vernon, Owen Sound, Canada. This holder permits the wearer to readily apply it on a collar or neckband, and
consists principally of a back plate having on its uppe end rearwardly extending hooks, the plate having at its lower ends a doubled up clamping band to securely hold the napkin in position.
Design for Fan Rack.-Alexander H. Davison, Athens, Ga. This device comprises a vertical column or post with circular base, there being o
star-like figures with serrated or toothed edges.
Note.-Copies of any of the above patents will be
furnished by Munn \& Co., for 25 cents each. Please send name of the patentee, title of invention, and date of this paper.

TO INVENTORS

An experience of nearly fifty years, and the preparation of more than one nundred thousand applications for pa-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all
foreign countries may be had onupplication, and persons foreign countries may be had on application, and persons
contemplating the securing of patents, either at bome or
abroad. are invited to write to this office for prices abroad. are invited to write to this office for prices,
which are low, in accordance with the times and our ex tensive facilities for conducting the business. Address
MUNN \& CO, office Scientipic Ambrican, 361 Broad MUNN \& CO, ofl
was, New York.

SLIENTIFLC AMERICAN

BUILDING EDITION.
SEPTEMBER, 1895.-(No. 119.)
TABLE OF CONTENTS.

1. An elegant plate in colors of a residence at Edgewater, Chicago, Il. Three perspective elevations
and floor plans. Mr. J. L. Silbee, architect. A pleasing design, with many good features.
pleasing
2. residence in the Colonial style, recently erected
in Tennis Court, Flatbush, L. I., at a cost of $\$ 7,500$ in Tennis Court, Flatbush, L. I., at a cost of $\$ 7,500$
complete. Perspective elevation and floor plans, complete. Perspective elevation and lion pren,
also an interior view. Messrs. Stevenson \& Greene, also an interior view. Messrs. Stevenson
architects, New York City. An attractive design. ed at a cost of $\$ 6,000$ complete. Two perspective elevations and floor plans. Mr. J. M. Lawrence, architect, Mt. Vernon, N. Y.
A residence at Mt. Vernon, N. Y., recently erected at a cost of $\$ 8,000$ complete. Perspective elevation and floor plans. Mr. Walter F. Stickles, architect,
Mt. Vernon, N. Y . An attractive design in the

Colonial style

a cost of $\$ 4200$ Point, N. J., recently erected a a cost of $\$ 4,200$. Mr. Wesley J. Havell, architect,
New York City. Perspective elevation New York City. Perspective elevation and floor pleasing features.
6. A $\begin{aligned} & \text { pleasing features. } \\ & \text { dwelling at Bedford Park, New York City. Two }\end{aligned}$ perspective elevations and floor plans. Mr. Edga
K. Bourne, architect, New K. Bourne, architect, New York City.
ive design in the English Gothic style.
7. A two-family dwelling recently erected at New Haven, Conn. Two perspective elevations and floor
plans. Cost complete, $\$ 5,080$. Architects, Messrs. plans. Cost complete, $\$ 5,080$. Architects, Messrs Stillson \& Brown, New Haven, Conn.
St. Ann's Episcopal Church, Kennebunkport, Me. Perspective view and ground plans, also an
view. Mr. H. P. Clark, architect, Boston.
view. Mr. H. P. Clark, architect, Boston.
A residence at Williamsport, Pa., recently erected
for J. F. Fredericks. Architect, David K. Dean, Perspective elevation and floor plans. An attractive Perspect
design.
A Colonial house at Far Rockaway, N. Y. Archi tects, Messrs. Child \& De Goll. Perspec
vation and tloor plans. A model design. vation and tloor plans. A model design.
Miscellaneous contents: The Hayes metallic lathing, illustrated.-Neolith as a paint and decorative
medium for relief work, illustrated.-Gas radiators, fire grates, etc., illustrated.-Improved heaters, illustrated.-Improved sash lock, illustrated. American homes and the cabinet or parlor organ,
illustrated.-The Laurie steel lath, illustrated. illustrated.-The Laurie steel lath, illustrated.
-The Austin \& Eddy sash hanging attachment, -The Austin \& Eddy sash hanging attachment,
illustrated. illustrated.
The Scientific American Building Edition is issued
monthly. $\$ 2.50$ a year. Single copies, 25 cents. Thirty monthly. $\$ 2.50$ a year. Single copies, 25 cents. Thirty
two large quarto pages, forming a large and splendid Magazine of Architectrre. richly adorned with elegant plates and fine engravings, illustrating the most interesting examples of Modern Architectural Construc tion and allied subjects.
The Fullness
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation of any Architectural Publication in the world. Sold by
all newsdealers. MUNN \& CO., Publishers, 361 Broadway, New York

Business and Personal. The ciarge for Insertion unier this nead is one Dollar a line
for each insertion : abour eqoint words to a line t tisements must pe reccived eiont woras to a line. Adiver . s.
C.s. metal polish. Indianapolis. Samples free.

Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O .
Handle turning machinery. Trevor Mfg. Co., Lock
Screw machines, milling macnınes, and drill presses,
elan Use the Hough Security Cash Recorder. Entirely difSouth Butler, N. \mathbf{Y}.
The best book for electricians and beginners in elec By mail. क4; Jiunn \& Co.. publishers, 361 Broadway, N. \mathbf{Y} To Manufacturers.-A substantial party connected
with a well known firm in the office specialty line desires to introduce some office device of merit. Splendi utlet. Address full
John St., N. 「. City

Are You Hard of Hearing or Deaf
Call or send stamp for full particulars how to re years. Jour hearing, by one who was deaf for thirt
Jare, Room 18 Hammond Bldg Fourth and Vine. Cincinnati, 0 .
A capable mechanical engineer wishes position as
manager of some electric street railway interest. Is amiliar with every detail of construction and can d sign and erect new work. Good references. Addres
Engineer, care of Scientific American office, New York. send for new and complete catalogue or Scientific New York. Free on aoolication.

hints to Correspondents
a mes and Address must accompany all letters,
or no attention will be paid thereto.
This is for our information and not for publication
 some answers require not a little research and though we endeavor to reply to all either by lett
or in this department. each must take his turn. Buy ers wishingng to purchase anns article not advertise
in our columns will be furnished with addre in our columns will be furnished with add
houses manufacturing or carrying the same.
 cientific American supplements referre to may be had at the office
Books rice 10 cents each.
in price. la sent for examination should be distinctly
marked or labeled.
(6625) R. M. J. says: Can you give the formula for a cement for cloth? A. Use thin sheet gutta percha, which can be purchased of the manufac tissue between the layers of cloth to be cemented and press with a hot iron. This causes the cloth to firmly ad (6626) E. E. R.-The compound lea ent by Mr. E. E. Roberts, of Winthrop Harbor, Illinois, is that of the Kentucky coffee tree (Gymnocladus cana eaves, not uncommon in the We and South and closely elated to the uncommon honey locust. The generic name efers to the stout branches destitute of spray or thorn It belongs to the pulse family and the pod is woody pulpy within, with from 6 to 8 large compressed bon
(6627) C. W. S. asks : 1. In gasoline en ines is gasoline vaporized or atomized when injected into the cylinder ready to be fired? A. Gasoline va rating surface with a pressure of from one to two inches of water, which is sufficient to cause the vapor to flow through a pipe to the cylinder, where it is drawn in with he proper proportion of air by the movement of the pison. 2. Is compressed air used to atomize the gasoline, if that is the form it is injected into the cylinder? A. The gasoline is not atomized by compression. This
method is not reliable 3 . What test gasoline isgenerally sed? A Goolin of 0.65 to $0 . \pi 0$ specific oravity (water used? A Gasoline of 0.65 to $0 \cdot \pi$ encecific gravity (water

1) is used. 4. For 10 hours' work, one horse power actual, how much gasoline is used and its cost per gallon? A. About one pint of gasoline per brake horse power per hour, at a cost of about 15 cents per gallon. 5. What quantity of gasoline is generally forced into the firing chamber at one time for a one horse power? A. One
part gasoline vapor to 10 parts air is the best proportion, part gasoline vapor to 10 parts air is the best proportion, the stroke. 6. How or by what principle is the inflamed gasoline prevented from passing from piston chamber back into the supply pipe? A. By a sliding port valve which controls the inlet and exhaust. 7 . In building a motor to propel a carriage, what would be the weight of two cylinders of two horse power each? This is to in-
clude only the piston rod, etc., and frame of sufficient clude only the piston rod, etc., and frame of sufficient
strength to support them. A. The gasoline motor must have a fly wheel and for 2 horse power should weigh 300 pounds. 8. Would four metal wheels the size of ordinary carriage wheels and constructed similar to bicycle wheels, only of slightly heavier material, be sufficient to sustain combined weight of frame, cylinders, and four to six adults? A. Wheels should be heavier than ordinary carriage wheels. A complete motor carriage for six per-
sons would weigh 1400 pounds. 9. Are pneumatic tires of sufficient strength to withstand such a pressure? A Pneumatic"tires will not stand the pressure. Solid rubber tires are used. 10. What would ve the approximate described? A. The cost of such carriages as made is about $\$ 1,200$. The motive power would cost about $\$ 400$.

11 Would the cylinders become heated to such an extent when vehicle was in motion as to require cooling, and temperature? A. The cylinder requires a water jacket and a self-circulating water-cooling tank arranged on the carriage. See illustrated description of automobile car riages in Scientific American Supplem
and Scientific American, July $20,1895$.
(6628) E. W. C. asks how to etch on teel for tool marking. A. For etching brands and mark on polished steel surfaces, suchas saws, knife blades, an ools, where there are many pieces to be done alike, pro cure a rubber stamp with the required design made so
that the letters and figure that are to be bitten by the aid shall be depressed in the stamp. Have a plain order around the design, large enough to allow little border of common putty to be laid around the edge of the stamped design to receive the acid. For ink, use resin, lard oil, turpentine and lampblack. To 4 pound of resin put 1 teaspoonful lard oil; melt, and stir in a tablespoonful of lampblack; thoroughly ency of printer's ink when cold. Use this one consis in the same manner as when stamping with ink When the plate is stamped, place a little border of common putty around and on the edge of the stamped ground. Then pour within the border enough acid mixture to over the figure, and let it stand a few moments, according to the depth reguired, then pour the acid off. Rinse the surface with clean water; take off the putty border spill the acid over the polished part of the article. For the acid, 1 part nitric acid, 1 part hydrochloric acid, 0 parts water by measure. If the effervescence seem

INDEX OF INVENTIONS

Por which Letters Patent of the United States were Granted September 24, 1895

IND EACH BEARING THAT DATE

[See note at end of list about copies of these patents.]

\qquad
 Bownor box for housebo purpos.
Box. See niter box.. Paper box:....
Box fastener, S. Cary

 clock, A. M. . Lane
Clock winding mech
oth cutting machanism, A.M. Laine.

Compressor., hydrauilic, H. Reisel

Coupling. See Car coupling. Conduit coupiing.

Drier. See Mechanical drier.
Drivin meebbanim, fritional, C. H. Brown
Dust collector cleaner. Stephens \& Parsneau

\section*{| 546,931 |
| :--- |
| 546,706 |} 466,839

$\stackrel{.}{56}$

 Igniting apparatng, P. Groebbels....................Indicator. siee Game indicator.
Insulating support for eiectric wires, J. N. Bulk-
Iev.

Plow $\substack{\text { Plow } \\ \text { Plow } \\ \text { low }}$

	Rotary dik moiothity idice
Sadiel	
a	
(enter	

DESIGNS.

TRADE MARKS.

Dhovertisements.

 WOOD or METTRL WORKERS - Footand HandPowerimachineriy

 AMERICAN PATENTSS-AN INTER-

W. F. \& JOHN BARNES CO. 1999 RUBY STREET, RockFord, ils HARLEM RIVER IMPROVEMENT
 Fouitathesintools
J. M. WATROUS, Cincinnati, 0.

BUY

TELEPHONES

ence in cost is sittue. We guarante our apparatus and
guarantee our customers aaganst
Our guarantee and instruments are lio ty patent suits.
Our guarantee ander
WESTERN TELEPHONE CONSTRUCCTON CO,
440 Monadnock Block, CHICAGO:
A Valuable Book

12,500 Receipts. 70 P Pages. Price $\$ 5$.
Bound in Sheep, S6. Half-Morocco, \$6.50.

Insergutions tor or working many different processes in
thearrs are inven.

MUNN \& Sond jor Pescripite Cir
SCIENTIFIC AMERICACA OPFICER
VELOX

PAPER AReveltito in tho

LiGHT AND ELECTRIFICATION. -BY

THE RARER METALS AND THEIR

HELLO, CENTRAL!

THE SUBMERGED PIPE LINE ACROSS

TOWERS and TANKS

ALL $\stackrel{\text { Patent }}{\text { IRON }}$ TOCTIONAL
 PLAIN, ALL WOOD TOWERS PLAIN, ALL WAED TANSS
for Automatic Fire Sprinkler Plants IRON and STEEL TANKS Louisiana Red Cypress Wood Tanks
W. E. CALDWELL CO.,

219 E. Main Street,

ARMSTRONG'S * PIPE * THREADING
 CUTTING-AFFD- $\begin{aligned} & \text { ACHINES } \\ & \text { Both Hand and Power. }\end{aligned}$.

THE MANUFACTURE OF MATCHES.

STARRETT'S IMPROVED BEVELS

 The L. S. Starretl Co., Manufactror or Fine , Mois HYPNOTISM MH oritinal method \&2. ino pp pam-

"OTTO'

GAS AND GASOLIN
ENGINES.

pendent of gasimind
Bor
Boiler machines.
The Otto Gas Engine Wks., Incorp'd, Philadelphia

\qquad

HAVE YOU SEEN The New Green River AI Drilling Machine?
 WILEY \& RUSSELIL MFG. CO.
Scienticic Book Gataloguie RECENTLY PUBLISHED.
Our New Catalogue contanning over 100 pages, includ
ing works on more than fry diferent subiets. Will
be mailed free to any address on applications.
ond MUNN © CO.. Publishers Scientipic American,
$\mathbf{3 6 1}$ Broadway, New York.

The Gorham Adjustable Bed

IITTLE GIANT BOLT CUTTERS and NUT TAPPERS

THE CARBIDES AND ACETYLENE Commercially Considered. By T. L. Willson and J. J. Jd

They All Like It.
The Ladies Like It. So Do The Men.
Children Enjoy it.

SCIENHC I MERCN

ESTABLISHED 1845 .
The Most Popular Scientific Paper in the World Only \$3.00 a Year, Including Postage. This widely ciry numbers a Yea
This widely circulated and splendidy illustrated teen pages of useful information and a large number of
original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Min New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Flectricity.Telegraphy, Photography, ArchiChemistry, Flectricity.Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. Complete list of Patents each week.
Terms of Subscription.- One copeg of the Scien-
TIFIC AMERICAN will be sent for one year -52 numbers TIFIC AMERICAN win be sent for one year-52 numbersCanada, or Mexico, on receipt of Three Dollars by
the publishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs. - Special rates for sereral names, and to Post-
masters. Write for particular. masters. Write for particulars
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly a addressed,
seldom goes astray, but is at the sender's risk. Addres seldom goes astray, but is at the sender's risk. Address
all letters and make all orders, drafts, etc., payable to
MUNN \& CO.. $\mathbf{3} \mathbf{1 / 1}$ Broadway. New York.

Scientitic Ahmerican §upplement
This is a separate and distinct publication from THE
SCIENTIFIC AMERICA, but is uniform therewitb in
size size, every number containing sixteen large pages full
of engravings, many of wnich are taken from foreign of engravings, many of which are taken rrom forelen
papers and accompanied with translated descriptions.
ThE SCIENTIFIC AMERICAN SUPLEMENT is published weekly, and includes a very wide range of contents. It
preserts the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology, Astronomy, Chemis try, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography, Technology. Manufacturing Industries, Sanitary Engineering, Agriculture Horticulture, Domestic Ecconomy, Biography. Medicine.
etc. A vast amount of fresh and valuable information obtainable in no other publication. Works, Mecbanisms,
The most important Engineering Wher
and Manufactures at home and abroad are illustrated and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT
Price for the SUPPLEMENT. fo
Canada, and Mexico. 85.00 a year; or One cops of the Scientific American and one copy of the SUPPLEMENT, both mailed for one year to one address for 87.00
Single copies, 10 cents. Address and remit by posta der, express money order, or check,
MUNN CO., $\mathbf{3 6 1}$ 13roadlwa

Thuiding Eilition.
The Scientipic American Building Edition is
issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. issued mon large quarto pagee, forming a large and
Thirty-two lane
splendid Magazine of Architecture, richly adorned with splendid Marazine of Architecture, richly a dorned with
elegant plates and other fine engravings; illustratiog the most interesting examples of
Construction and allied subjects.
A special feature is the presentation in each number a variety of the latest and best plans for private resi ences. city and country, including those of very mod
erate cost as well as the more expensive. Drawings in perspective and in color are given, together with Floor Plans. Descriptions, Locations, Estimated Cost, etc. have won for it the Largest Circmatation of any
Architectural publication in the world. Sold by all

Fxpoxt Fation orated "LATIFIC American, with which is incorSpanish edition of the Scientific American is pubwhed monthly, and is uniform in size and typography tains about 50 pages, profusely illustrated. It is the finest
scientifc, industrial export paper published. It circu lates throughout Cuba, the West Indies, Mexico, Cen tral and South America, Spain and Spanish possessions -wherever the Spanish language is spoken. The SCl
ENTIFIC AMERICAN EXPORT EDITION ENTIFIC AMERICAN EXPORT EDITION has a larg out the world. 83.00 a year, postpaid, to any part of the world. Single copies, 25 cents.
Manufacturers and others who desire to secure foreign trade may have large and bis edition at a displaye moderate cost. Rates upon application.
ost. Rates upon application.
MUNN $\&$ co.. Publisher

Some First=class Technical Books. recently published.

 EDWARDS' 900 Examination Questions and Answers

HENRY CAREY BAIRD \& CO. INDUSTRIAL PUblishers, Booksellers \& Importers
\&10 Wainut St., Philadelphia, Pa., U. S. A.

The Cathedrals of England and Wates.

AARBORUNDUNO

Excursion Rates

To
Atlanta.
On account of the Atlanta Exposition, the B.\& O.RR.
Co. will sell excursion tickets at greatly reduced rates. Season tickets will be sold every day until December tickets will be sold every day until December 15th good returning for twenty days from date of sale. Ten-
day tickets will be sold Tuesday and Thurday week until December 24 th, good returning for ten days
from date of sale. The rates from New York will be B73.25 for season.
ten-day tickets.
\qquad

You USE GRINDSTONES

The (LEVELAND STONE CO NOW READY !

Seventeenth Eaition of
Experimental Science

aEvised and enlarged.
120 Pages and 110 Superb Cuts added.

 MUNN \& CO., Publishers, Office of the SCIENTIFIC AMERICAN

HOW DID IT GAIN THE NAME OF
"The Lright Running Densmore"?
Because, in actual operation, owing to the compound leverage, the fingers in striking the keys GRadually, Instead of Suddenly, overcome the inertia of the typebars. Adopted by the U. S. War Department in 1893. Government contract renewed in 1994. Supplied Densmores to
the Government Land Offices throughout the U. in 1895. First Densmore purchased by the Carnegie Steel Co.
in 1892 ; they now own
DENSMORE TYPEWRITER CO., 316 Broadway, New York
 THE TIN PLATE INDUSTRY IN TH United States.-An interesting paper. showing the ex-
troordinary develppment of the tin plate industry in
this countr, and the serious competion into which it
tinountrin

NICKEL

ELECTRO-PLATING Apparatas and Material. Hanson \& TBE
NanWinkle
Nerark,
N. J.

FIRE BRICK
Send for Prices and Catalogie SS Vandyke street, BROOKIYN, N. Y.

Electrical od d Meanateal Model Work.

gas engines \& VENTILATING FaNs

 choppers, etc. In use the world over, and recom mended
by water companis every Where. Address for circular,
Backus Water Motor Co., Ne wark, N.J.,U.S.A,
 and HEAD NOISES relieved by using
Wilson's Common Sense Ear Drums. Wew scientific invention, entirely different

 Chain fat BELTING of Various Styles, ELEVATORS, GONVEYORS, \square The JEFFREY MANUFACTURINQ CO., COLUMBUS, O.

MECHANICALDRAWING

 Autiti

BI-SULPHIDE for tue in thearts Eulligi Insects OF CARBON

ROBERT POOLE \& SON CO. ENCINEERS \& MACHINISTS TRANSMISSION MACHINERY MAGHIME MOULDED GEARIIMG SPECIAL FAGLLTTES FDR THE. HEAVIEST CLASS OF WORK BALTIMORE. MD.

VOLNEY W. MASON \& CO. FRICTION POLLEPS, CLDTCHES, and ELEVATORS OPENING OF THE NORTH SEA CANAL.
 ENTIFIC AMERICAN SUPPLEEENT, Nontained in SCI-
IOcents. To be had at this omice and from ail news-
dealers.

TEA AND ITS EFFECTS.-BY JAMES

Star * Maps

A series of twelve elegantly printed Mars of the Heavens, one for every month in the year. Specially
prepared for use in North America. With descriptions accompanying each map, giving the names of the prinpositions at given hours and days of the month. A most beautiful and convenient work. specialy
dapted for the use of those who desire to acquire To which is added a description of the method of preparing and using artifficial luminous stars as an aid
in flxing in the mind the names and places of the various stars and constellations. bs Alfred E. Beach.
Altogether this is one of the mest Altogether this is one of the most popular, useful
and valuable works of the kind ever published. One quarto volvme, elegantly bound in cloth. Price
S2. 50 , postpaid. MUNN \& CO., Publishers,

HALF A CENTURY OF CYCLES.-AN

 bat at this ofice and from all nemsaceaeres: UNMOUNTED • • •

20020-20

The

American

Bell Telephone
Company,
125 Milk Street,
Boston, Mass.

This Company owns LettersPatent No. 463,569 , granted to Emile Berliner Novem ber 17, 1891, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.

Victor

 Intercollegiate Footballis made of the finest possible materials. It retains its original shape and is superior to any ball on the market.

Price, complete with inflator, $\$ 5.00$.
A full line of football goods, including all kinds of football clothing

Our trade-mark is a guarantee of finest quality.

OVERMAN WHEEL CO.

Makers of Victor Bicycles.
BOSTON. NEW YORK of Victor Bicjcles.
Pacific Coast: SAN fRANCISCO. LOS ANGELES. PORTLAND.

 finuridititull Pocket ... Kodak s5000

∞

Makes
"One Button Does It. large enough to be good for contact printing and good enough to enlarge to any reasonable size.
 EASTMAN KODAK 00.,
Sample foto and booklet
for two 2 cent st onps. ROCHESTER, N.Y.

SCIENTIFIC AMERICAN SUPPLEMENTM AnE desired back number of the SCIENTIFIC
ANERICAN SUPPLEEMNT can be bad at this offer for
io cents Also to be bad of newsdealers ir all parts of
the country

PRIESTMAN safety oll engine The Scientific American 3"m wriv Refernce Book.
 Three New Model

Typewriters
PRINTINGEITS GOLDING \& CO., 179 Ft, Hill Sq. , Boston, Mass. PRINTING INRES

