

FINE HAMMERED IRON WORK-HOW TO FORGE A ROSE.-[See page 183.]

Srientific american．

ESTCABLISHED 1845.
MUNN \＆CO．，Editors and Proprietors． published weekly at

No． 361 BIROADWAY，NEW YORK．
O．D．MUNN．A．E．BEACH．
teris for the scientific american．
 Remit by postal or express mones order，or by bans The scientific American Suppiemens

uilding Edition of scientific America

Export Edition of the scientific American

 Readers are gpecially requusted to notity the
fallure，delas，or irrealuarity in receipt of papers．

NEW YORK，SATURDAY，SEPTEMBER 21， 1895.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No． 1029.
For the Week Ending September 21， 1895.
 II．BLich our belief in the greater an
 1V．CIVIL ENGINEURING．－Irrigation in India．An An account of Mr
Herbert M ．Wilson＇s personal observations during a visit and in

VII．MECHANICAL ENGINEERING．－A Remarkable Water

\qquad
\qquad orth of Seotland known the Coast and Wcotland．known respectively as the Eas tion of service on their through trains．In the active competition that followed，the West Coast companies covered the total distance of 540 miles in the unprece－ dented time of 512 minutes，or at the rate of 63.25 miles per hour．
The sustained speed was remarkable in any case，and especially so when it is considered that it was made by a regular daily train starting on schedule time，and that the latter half of the journey was made through a mountainous country，in which，for a distance of 60 miles，the grades are very severe，varying from 1 per cent to 133 per cent．The engines，moreover，that hauled the train were not the largest on the road，but in some cases were of a type known as the President class，that is now some 25 years old，but which，on ac－ count of its excellent performance，is still in active ervice．
On Thursday，September 12，the New York Central Railroad made up a special train that was a counter－ part of the Empire State Express，drawn by their latest and most powerful engines，and set out with the express
purpose of＂breaking the record＂of their transatlantic breathren．Over a course that is 100 miles shorter and over a line that is remarkably level and free from gradients，this special train，which was considerably heavier than the English train，wade an average speed that was one mile per hour faster than that of the West Coast train，being $64 \cdot 348$ miles per hour，as against $63 \cdot 25$ miles per hour for the English train．These are both very remarkable performances．For purposes of comparison，however，they are useless，until we are in possession of all the conditions that prevailed．The bare question of speed is in itself no test of locomotive performance．This is a fact little understood by the public at large；but well understood by engineers themselves．To judge of two performances it is neces sary to know ：
1．The ratio of the weight of engine to the weight of the train hauled．
2．The ratio of the amount of coal burned，water evaporated，and oil used per mile to the weight of train hauled．
3．The state of the weather，whether wet or dry，and the force and direction of the wind．
4．Most important of all，the amount and extent of the grades and curvature on the two roads on which the record is made
With all these data to hand a very close estimate could be made in each case of the actual units of work per formed in a given unit of time．Only after such a com parison，based on accurate data，as above，could it be even approximately stated which performance was the most satisfactory．

FIRING OF BOILERS WITH MIXED COAL．

A very interesting experiment，and one that ought to revolutionize the firing of steam builers，has been in progress at the flour mill of Urban \＆Company in this city for several months and has now proceeded so far that positive advantages can be claimed with con fidence．
The mill has made 1,200 barrels of flour in 24 hours though the ordinary output is much less．The engine is a Corliss pattern of about 400 horse power，driven by steam generated in two upright tubular boilers with twin furnaces and covered with a composition to retain the heat．
The fuel formerly used was run－of－mine soft coal but last．March Mr．Urban，having long been dissatis fied with the fuel，began to use in connection with it various proportions of screenings of hard coal．The inprovement was marked from the first．The amount used was much less，the cost was reduced，and the smoke and soot practically disappeared．
When the experiment began，the furnaces required fully 1,200 pounds of soft coal per hour to develop on the average 380 horse power．The amount now re quired for the same service is 890 pounds on the aver age．The coal used is one part soft coal culm，or any age．The coal used is one part soft coal culm，or any
of the cheapest product of the mines，and four parts of the cheapest product of the mines，and four parts
hard coal screenings，such as is not considered valua－ hard coal screenings，such as is not considered valua－
ble in the general trade and is sold to whoever will buy it at a mere nominal price．
All possible proportions were tried and hard coa was used entire，but the present proportion of four to one is found to be the best．This affords soft coa enough to cement the fuel into small masses，but is not enough to harden it into large masses，as was the case if a greater proportion of soft coal was used．As the soft coal ignites first，it in a measure cokes the whole， and the slow－burning anthracite assists in producing a and the slow－burning anthracite assists in producing a
very lasting fire，not needing replenishing for a much very lasting fire，not needing replenishing for a much
longer time than is the case with clear soft coal．An longer time than is the case with clear soft coal．An
thracite used alone fills the grates with ashes，but the accepted mixture burns very free．
The cost of hard coal screenings is $\$ 1.45$ per ton and of soft coal slack $\$ 1.50$ ．The difference is so small that either price may be taken，and reckoning the con sumption at 900 pounds an hour，which is slightly more than the reported amount，a 24 hour run would consume 21,360 pounds at a cost of $\$ 16.02$ ，reckoning 1.50 to the ton．The cost of run－of－mine soft coal is $\$ 2.20$ per ton．At an expenditure of 1,200 pounds an hour，which is considered below the average require ment，a 24 hour run on soft coal would cost $\$ 31.68$ ．
The saving appears to be largely in the entire com bustion of the coal．If the test has proved anything，it is that a much greater amount of carbon is blown out of the chimney than any one has supposed．With soft coal there was not only a constant waste in the dense smoke that ruined so many things about the city，but a blower was needed to keep up the draught and that carried the particles of carbon up the flue in constant stream
With soft coal the chimney had to be blown out every twelve hours，but with the present mixture no blower is used．The flue is scraped once a week，jus as it was with soft coal．It is not difficult to see by this that the forcing of draught costs money．
The mixed coal is kept very wet；in fact，fairly satu－ rated．In this condition it does not escape from the chimney at all，either in smoke or in fine particles in－ dependent of the smoke．For the wost part there is no perceptible smoke and it is never more than a
thin jet that does not become darker than a light gray. One requirement is that the boiler capacity shall be ample. It is from having to crowd the boilers quite as much as anything else that so much coal is thrown out of the tops of chimneys unburned. The above results cannot be obtained if the steam-generating apparatus is scant.

A further result is the small cost of repairs, which is due both to the style of fuel and the generous boiler capacity. Last year, with insufficient boiler capacity, the repairs to the boilers cost over $\$ 2,200$. So far thi year, with sufficient capacity, the repairs have cost next to nothing.
With the fuel in the above proportion it is found that the expenditure of 2.6 pounds of coal an hour is, under the most favorabie conditions, sufficient for de veloping one borse power at the Urban mill.
It is believed that the advantages in cost of money and labor and in the ridding of manufacturing centers of smoke and carbon deposits independent of smoke, which are shown by this experiment, ought to lead to the development of a new system of firing steam boilers. With such a system in general use coal now considered practically worthless could be made of prime value and a nuisance would be abated.

John Chamberlin.
90 Johnson Park, Buffalo, August 17.
Gold in Photography.
It is not our purpose to write a treatise on bimetal lism, though the erratic changes in the price of silver of late years have added to the difficulties of the plate maker ; gold being the standard metal in this country, the pound's worth of gold which a sovereign originally contained is still the measure of its value. It is the physical qualities of gold and its salts that we now discuss. lt is not a little remarkable that in the present day we never hear of this metal as a lightsensitive agent. Yet, in the early days of the science, there was considerable promise in the experiment made in this direction. So long ago as 1840, Sir John Herschel investigated its properties at length, and these were still further examined by Hunt. Washing the surface of paper lightly with chloride of barium followed by a wash of chloride of gold, then exposing a few minutes to the sun's rays the portions of the paper acted on by light-first whitened by the light-became a full purple brown when held in the vapor of boiling water or even dipped in cold water. If for the barium salt oxalate of ammonia be substituted, the paper passes rapidly to violet purple; but as the same effect is produced, though more slowly, in the dark, it would be difficult to utilize this property. Again, using acetate of lead instead of barium, we get a paper sensitive to light, the faint image so produced being capable of "development" by steam or cold water. Bichromate of potassium and gold chloride solution give a light-sensitive paper. When the print is placed in cold water, the yellow tint disappears entirely in the whites, while the image, which has passed in printing through deep brown to bluish black. becomes, according to the extent of the solar action, crimson, blue, brown, or deep black. It is evident that here we have a fertile mine of experiment if any one care to work it ; but, in modern photography, the chief interest of gold lies in the toning powers of its salts-mainly its chlorides.

It might be thought that little remained to be said upon this well-thrashed-out subject ; but so far is this from being the case, that we may draw attention to two very interesting papers on the qualities of this salt which have recently been read before the Chemical Society, a brief reference to one of them baving already been given. When treating of "chloride of gold," most writers have in view the acid chloride. Very few people have ever seen the pure gold trichloride, free from aciā. Indeed, Watts says, "the only method of procuring auric chloride perfectly free from arid salt is to dccompose aurous chloride with water." This aurous salt is made by evaporating a solution of the acid chloride to dryness, heating the residue to about the melting point of tin, and constantly stirring it as long as chlorine is evolved. An almost neutral solution of chloride of gold is ob tained by evaporating a solution of the acid chloride till the liquid is dark ruby in color and begins to emit chlorine. When cool, the result is a dark red crystalline mass, very different from the usual yellow crystals. We may say that we have often pointed out, in instructions upon making toning baths, this fact Ordinary solution of commercial crystals of gold chloride, or the double salt, is a pale yellow color, but the neutral salt solution is entirely different, it is a rich brown. If a useful toning solution, uniform in eharacter, is to be made. it is this brown, not the yellow solution that should be employed.
The question of the volatility of gold chloride or chlorine has often been before chemists, and most varied have been the opinions they have given. While one says it is entirels unvolatilizable, another says it
can be driven off by heat at comparatively low temperature. A word of explanation of a table recently quoted by us may be given: The volatility referred to nose atmosphere of chlorine, the words of Mr. T. K that, when gold is heated in chlorine at atmospheric pressure, trichloride of gold is formed and volatilized at all temperatures above $180^{\circ} \mathrm{C}$., up to and probably far beyond $1,100^{\circ} . "$
Lest some of our readers who manufacture, and wise ly, their own chloride of gold may be under the im pression that, during the heating of the capsule in which it is prepared, some of the gold may be lost by volatilization, we will again quote from Mr. Rose: "It may be added that, when gold is heated in atmo spheric air or coal gas, no gold is volatilized below $1,050^{\circ}$, and only about two per cent in thirty minute at $1,100^{\circ}$. There need, therefore, be no trouble antici pated in heating the gold chloride to expel free acid in pated in heating the
Similarly free from danger of decomposition will the heating, if moderate, prove to be, for, again quoting Mr. Rose, we have: "The decomposition of gold tri chloride in air might be expected to become perceptible at 70°, requiring, however, about twenty-five years for its complete conversion into monochloride, AuCl , at this temperature. The observed rate of decomposition at 100° shows that a similar change would requir about 1,000 days at this temperature, while it results from calculation
that at 200°, thirty-six hours and at the melting point, viz., 288°, less than on minute suffices for the complete decouposition of AuCl_{3} in air." These interesting investigations, which have a practical value of their own, besides leading up to other practical aspects of our subject, do not leave us enough space to continue our survey at the present time, and we will therefore resume it at an early date. -Br. Jour.

SPEEDING TRUCK FOR LOCOMOTIVES.
Our engraving shows a device by William J. Hol
man, of Minneapolis, termed a speeding truck, which
same material have been adopted with some success
Even this material, however, has its drawbacks, all o Even this material, however, has its drawbacks, all of wood pulp with the same. Compressed rawhide and wood pulp form the foundation of the new pinions and adjustable cogs.

The Emancipation of Labor by Machinery
One of the interesting proofs of the lightening of toil by the aid of machinery is found in the constantly en larging sphere of labor being opened to self-support ing women, and the prediction is here made that within the next quarter of a century the ranks of the mechanic will be largely augmented by women.
Statistics show that the number of women to whom the sewing machine gives occupation to-day is vastly greater than the number who formerly gained a pre carious livelihood with the needle, or who could obtain similar work under old conditions.
Contrast the "work-a-day" clothes and simply made "Sunday-go-to-meetin'" garments of the people of century ago with the wonderful variety and complexity of finery comprising the holiday attire, and, indeed, the everyday wearing apparel, of those of a similarclass o-day. If it is true, as stated, that one sewing machine operated by one woman will do the work of ten hand sewers, it is no less true that the modern woman possesses ten times as many garments as her sister of a ormer age, and each garment displays ten times as wuch machine-sewed work upon it.
But the sewing machine is a mere suggestion. The wind is fairlystaggered in contemplation of the wealth op oportunity for wage earners that has been created by the steam engine-especially in the form of the steamship and locomotive, which have literally opened new worlds to the old world's poor. And what is true of the steam engine is true only in lesser degree of the telegraph, the telephone, the electric motor, the turbine and the whole range of modern agricult ural machinery The modern bicycle-a theoretically perfect inven tion, and in some respects an almost perfect mechanism -has already produced beneficial effects upon the physical development of the wage-earning class sufficiently marked to attract general notice, and its future influence is incalculable. It is destined, in wy judginent, to emancipate woman from many of the conventiona shackles which have bound her for ages and from some physical disabilities which have bitherto limited her sphere of occupa tion. This is only one of the many strik ing instances in which invention is helping to benefit the masses.
I am convinced that modern mechanical inventions have in all cases proved to be distinctively beneficial to the wage earner He is through their aid better housed, bet ter fed, better clothed, better educated, has more numerous and better amusements, and is thus approaching more nearly the con-
consists of reversely flanged wheels having inwardl xtended bubs running in contact with the treads of the locomotive drivers, and flanged traction wheels having outwardly extended hubs supporting the reads of said reversely flanged wheels, and with the axles of said traction wheels coupled by independent side rods adapted to oscillate about the central axles, whereby the speed of the locomotive may be increased without altering its running gear or increasing the speed of the moving parts and the requisite flexibility secured.
This machine might almost be termed the locomotive ycle. It appears to be intended to do for a locomotive what the bicycle does for a man-increase the velocity of ravel ovcr the surface of the ground without augmen tation of exertion. By means of the bicycle a man can travel a given distance far more rapidly and with less expenditure of power than if he were to walk. It remains to be seen whether mounting a locomotive as here proposed will accomplish any such improved result. We understand an experimental truck is now will be duly not

Wood Pulp Pinions.

The great development of electrical mechanism dur ing the past few years has caused engineers and me chanics to give special attention to anything connected therewith. It has been found that an objection to nearly all electrical power apparatus is the extensive ibration of the gear wheels, which in almost every in tance revolve at a higher rate of speed than in ordinary machinery. The effect of this vibration is detri mental in several ways. The jar tends to loosen bolts and nuts. Besides, the noise created is not pleasant A number of methods for overcoming the trou ble have been adopted, among which has been the use of gears constructed on the combination plan, the spokes and rims being iron and the cogs wood. But the temperature affects wood, causing it to contract and xpand, resulting in needed repairs and alterations in rder to keep the mechanism going
Compressed rawhide pinions and cogs made from
dition of life of the employer; indeed, the wage earner to-day enjoys many advantages of civilization which were unknown to the employer of a generation gone by.
The majority of employers in this country are men who have risen from the ranks, and many of our most important in ventions have been made by wage earners, who have the best opportunity, through experience in their daily work, to learn the necessities of the age. A. E. Outerbridge, Jr., Engineering Magazine

Queer Crankism of Electricity.

The Boston Journal of Commerce says that North Adams continues to be puzzled over a queer crankism of electricity in its vicinity. Although when the great $41 / 2$ mile Hoosac Tunnel was built no ores, magnetic or otherwise, were encountered, there was general expec tation that rich ore pockets would be found; yet, for an unexplained reason, not an electrician has been discovered who can send a telegraphic message on a wire run ning from portal to portal of that tunnel, be such wire run inside of an ocean cable through the huge cavern or out of it. Therefore such messages have to be sent on wires strung on poles over the top of the mountain, fully nine miles, and that is the way in-going and outroing passenger and freight trains are heralded to the keepers of the two tunnel approaches.

Phosphoreacence

M. Raoul Pictet, the French chemist, who has long been experimenting with intense cold, finds that phosphorescence ceases at very low temperatures. Glass tubes filled with sulphides of calcium, strontium, and barium were exposed to the sun and then taken into a dark room where the intensity and duration of the phosphorescence was noted. After being again exposed to the sun the tubes were put into a mixture where by rapidly lowering the pressure their temperature was reduced to -140°; they then showed no sign of phosphorescence, but after a time the upper parts of the tubes which had been least cooled began to glow, and as the temperature rose the light extended, becoming at last as bright as in the first experiment.

THE MANOFACTURE OF HORN COMBS.

A large portion of the combs used for the hair are manufactured from cattle horns, which are bought by the manufacturer at from three to twenty cents each, according to size ; they range from one to three feet in length. The horns are first sawed up into what are called rings, from six to eight inch lengths, each ring being from two to four inches in diameter. From two to three cuts are made from each iorn. The rings are then sawed through lengthwise and passed through a The rings of horn, to the number of 300 , are put into a barrel or cask, which is perforated with about 100 one inch holes and made to revolve in a tank of water for about two hours. After the tumbling process is completed, they are taken out and boiled in hot water for from one to one and a half hours to make them pliable. From the hot water they are then placed in
formed by means of a draw-knife, which is passed
across the surface of the plate, taking off the roughness and evening them up, the plates running in thick ness from about one-eighth to one-half an inch. A good hand can scrape about 400 plates daily. After shaving they are again boiled for five hours to bring them to the right working point. They are then cut into the proper size and the edges trimmed. Scolloped edges are cut by means of dies. The next operation is the cutting of the teeth. This is performed by means of two steel cutters placed closely against each other, back to back, which, when the machine is in motion, move up and down one after the other, passing through the material cutting the teeth of the comb. The cut ting edges of the knives are shaped similar to an elongated S, the curved edges of one end turning in elongated S, the curved edges of one end turning in
and the other out. The strip of horn is held down
them against the wheel, which smooths them and rubs off the grit from the grindstone. This wheel is about eighteen inches in diameter and about eight inches in hickness and travels at the rate of about 2800 revolu ions per minute. About twenty gross of double comb tions per minute. About wenty gross of double combs re buffed daily. The ashes are washed off thoroughly and then they are prepared for staining. This is per-
formed by dipping the combs in a heated solution composed of one-fourth nitric acid to three-fourths water which gives them an amber color and makes then take the stain. They are left about five minutes and hen taken out and washed in clear water, after which they are stained to imitate tortoise shell with a mix ture composed of potash, lime and red lead. The colo is put on thickly in stripes and the combs left to stand or from five to eight minutes. The combs are the washed, leaving a stain on them similar to tortos ashed, leavi

THE MANUFACTURE OF HORN COMBS.
a kettle of hot whale oil for about half an hour, and then put tbrough a pressing machine, which straightens and takes out the curl. The rings are placed separately between a number of heated iron plates, which are pressed tightly together by means of a gearing wheel, the threaded shaft of which connects with the center of one of the end plates. The wheel is turned by means of an iron bar or lever, the end of which passes between the cogs; the operator, by drawing down the bar, forces the wheel and shaft around, which in turn presses the plates together.
Four pieces of horn are pressed out at a time, the operation taking about five minutes. About 500 horn plates are pressed out daily. In the center of each iron pressing plate are two fire boxes about one and a half inches in width and about four and a half inches in ength, runninc through from top to bottom, in which a charcoal fire is made for heating the plates. After pressing, the horn plates are reboiled for five hours in hot water and then shaved. The operation is per-
every stroke of the knives until the whole comb strip
has been cut through, each knife making. a stroke of about half an inch. When one knife makes a cut the other takes it up, making one continuous cut through the entire strip. The guard teeth at each end are made by turning the knives slightly with a lever. The parts are then separated from each other, the cutting of which having formed two combs. About twelve gross of double combs can be cut daily. If the combs are to be curved, they are circled off by means of a circular steel cutter.
The next operation is drying, which is performed by placing a number of the combs on a drying or heating box for from tive to eight minutes. After drying they are dressed up and have their teeth sharpened. This is performed on a grindstone traveling at the rate of about 3,000 revolutions per minute, after which they are put together again tooth to tooth and then buffed on a corn husk wheel. A mixture of fine coal asbes and water is put on the combs, the operator holding
buffer sixteen inches in diameter composed of about 200 circular sheets of cotton flannel. This buffer travels at the rate of about 3,000 revolutions per minute, rotten stone and oil being used for polishing. The euds of the combs are then sof tened in warm sand and the guard teeth are drawn in, a piece of an old comb being used to keep them in place until they become cold. Bent or curved combs are made by tying a number of them down tightly to a circular wooden roller for five or six hours.
Combs are colored black by dipping them for half an hour in a hot solution composed of one-half pint of sugar of lead to four gallons of water. By dipping combs for half a minute in a solution composed of two tablespoons of muriatic acid to one pint of water it will produce a very good imitation of mother-of-pearl. The sketches were taken from the plant of James Wilkinson, New York City.

The word Eskimo means "raw fish eaters."

A STOP FOR ELEVATORS AND MINING SHAFTS. The illustration represents a device adapted to stop the cages in elevator wells, mining shafts, etc., serving as a cushion to receive the descending cage, thus al lowing the engineer to run it with greater speed and

BELL \& WILLIAMS' STOP FOR ELEVATORS AND MINING SHAFTS.
preventing damage to the cage from coming sud denly to the bo'icom. The improvement has been patented by Thomas Bell and John S. Williams, of Krebs, Indian Territors. The top striking platform is supported on springs resting on a suitably supported base plate, the downward movement of the striking plate being also limited by blocks on the base plate. Depending from the under side of the striking plate, and connected therewith by a ball joint, as shown in and connected therewith by a ball joint, as shown in
the sectional view, is a screw which extends through a the sectional view, is a screw which
support and through a ratchet support and through a ratchet
wheel, a key in which engages the wheel, a key in which engages the thread of the screw, so that the vertical movement of the screw turns the wheel, the screw also extending downward through a base plate and wear plate. The ratchet wheel is tapered on its under side to turn with but little friction when the plate and screw are depressed, but it turns with considerable friction when the plate is being lifted. The wheel is prevented from turning by a pawl fulcrumed on its under side, and the outer end of the pawl is pivoted to a connecting rod extending to the lower end of a lever, a springpressed extension of which extends into the path of the cage, whereby, as the cage ascends, the pawl will be automatically released, allowing the ratchet wheel to turn and the striking plate to rise. The locking of the stop device in its depressed condition holds the cage or car stationary while it is being unloaded or loaded.

This very simple form of chair, facilitate carrying invalids in upright position from one place to another, has been patented by Bernard \mathbf{E}. place to another, has been patented by Bernard E.
Jamme (address in care of John Woolley, No. 111 Fifth Avenue, New York City). The invention consists principally of the handles at different heights on opposite sides of the chair, rendering it easier for two persons to carry up and down stairs and elsewhere an invalid seated in the chair. The chair may be placed upon the edge of a bed and the patient moved upon it or from it with the greatest ease, and when not in use can be readily folded into a small, compact bundle.

jamme's folding invalid ceair.

A PORTABLE ELECTRIC PROPELLER FOR BOATS.
Among the multitude of inventions that are offered to the public day by day there are some that commend themselves to the judgment at first sight, and fill offhand a long-felt want. The electric boat propeller, as shown in the accompanying views, is surely one such invention as mentioned above. It has the accumulated advantages of being cheap, portable, compact, and thoroughly safe to the user. Briefly described, it con sists of a movable tube which is hinged at the stern of the boat, much as an oar is used in sculling. The tube contains a flexible shaft formed of three coils of phos phor bronze. This tube extends down and out into the water, where it carries a propeller, and at the in board end an electric motor is attached, which is itself driven by batteries. The rudder and the propeller are thus in one, and the steering properties of a boat so fitted would be very swift and powerful. The tube with its inclosed flexible shaft, is partly filled with oil and these parts are thus automatically and constantly lubricated. The rate of speed is from three to five miles per hour. The combined propeller, motor, and rudder weigh only 35 pounds for a 10 foot to 18 foot boat. The batteries weigh from 100 pounds to 275 pounds, but being in four parts are easily handled.
This very ingenious and effective invention will be gladly welcomed by the sea and river sportsman. Its handiness and noiselessness make it admirably adapted o duck shooting; and it will commend itself at once to the special needs of the fisherman. All sportsmen, at one time or another, when they have been following the windings of some narrow stream, or threading their way through the mazes of a rush-grown marsh, have wished for a means of propulsion of smaller compass than a pair of sculls, or even a canoe paddle. The lectric propeller, working snugly in the wake of the boat, is admirably adapted for such work, or for any

A PORTABLE ELECTRIC PROPELLER FOR BOATS
retaining chamber at its lower end, the perforations or meshes of the second hopper being finer than those of the first. A pipe leading to the bottom of each gold retaining chamber facilitates the introduction of a new supply of mercury when necessary. Any mercury

frisbie's gold saving apparatus.
scaping from the quartz mill is readily caught and retained in this machine.

In a series of interesting experiments made to ascer tain why trees are so frequently struck by lightning was demonstrated that the green wood is in all case a bad conductor of electricity, and so much the worse proportion as the tree is richer in oil. On the conrary, the green wood of such trees as are poor in oil conducts electricity relatively well. Living wood is a much better conductor than dead. The existence of dead branches in trees of both categories, therefore, increases the danger.

A boiler leveling device.

An improvement by means of which portable boilers, traction engines, and similar machines may be conveniently brought to a horizontal position when standing on zontal position when standing on down a hill, is represented in the accompanying illustration, and has been patented by Willie C. Hancock, of Albany, Ky. An upwardly extending screw rod is fastened to the front axle, and on the rod is a revoluble nut in the under side of a block, the nut being held in place by set screws engaging an annular recess in the upper part of the nut. The block has on its sides trunnions journaled in the smoke box of the boiler, shown in the broken away portion of the engraving. The screw rod extends through the top of the block into a tubular extension or casing, to protect it from soot, etc. On the lower end of the revoluble nut is a beveled gear in mesh with a pinion on a short shaft whose other end has
circumstances where a boat has to be handled in a a bevel gear connection with a shaft extending up crowded wakeway. This handy device is manufactured and back at one side of the boiler, the latter shaft havby the Electric Boat Company, of 136 Liberty Street, ing a bevel gear connection with a larger gear wheel New York City. The motor, propeller, and batteries can be purchased for $\$ 150$, and the running expenses amount to only 5 cents per hour.

A GOLD SAVING APPARATUS.
The illustration represents, in sectional side elevation and in perspective, a gold saving apparatus de signed to save nuggets, coarse gold, and flour gold, with but a small expenditure of water and labor. A patent has been granted for the improvement to Dennis G. Frisbie, Dayton, W yoming. The hopper into which discharges the sluice box carrying water and gold-bearing sand from the placer mine or the quartz mill has a false bottom over which large rocks and other coarse tailings pass into a tailing chute, the gold, sand and water passing through the coarse perforations in the false bottom into a transverse channel leading into a nugget box in the upper end of a hop eading in in the sectional view. This hopper hop per, as shown in the sectional view. This hopper has
a perforated bottom through which the gold-bearing sand and water pass to a settling tank with inclined bottom, there being a transverse passage at one end of the hopper into the tailing chute. At the lower end of the settling tank is a gold-retaining chamber, with a perforated false bottom under which is mercury, the bottom being preferably hung on an upwardly extending lever, which the operator shakes several times a day. The dividing partition between the chamber and the settling tank is inclined, and carries a removable copper plate adapted to take upany gold in the flow of the gold-bearing sand, as it passes over to a second hopper with perforated bottom and settling tank, with gold-
with ratchet teeth engaged by a pawl on a lever ful crumed on the shaft of the large gear wheel. By operating this lever, motion is communicated through the gear wheels and shafts to the revoluble nut, to raise the front end of the boiler, and to lower it the pawl is disengaged and the large gear wheel is oppositely turned by means of a handle, the weight of the boiler then assisting in rotating the nut.

The Earliest Transatlantic steamships. Samuel Ward Stanton contributes an interesting paper to Engineering Magazine for September, from which we take the following
On May 29, 1819, while the little schooner Contract, Captain Livingstone, was sailing quietly along on the Atlantic, in latitude $27^{\circ} 30^{\prime}$, longitude 70°, the lookout discovered what he supposed to be a vessel on fire, far off on the horizon. The Contract was headed toward the new comer, but, to the surprise of those on board, she passed along quickly and was soon lost to sight, notwithstanding all sail on the Contract was spread. The conclusion was then reached that the strange vessel was nothing more or less than a "steam packet," bound across the ocean.
The vessel in question was the Savannah, a ship of some 380 odd tons, and was bound to Liverpool from Savannah, having left the latter place on May 26. The Savannah was the first transatlantic steamship. She was built at Corlaer's Hook, on the East River, now part of New York City, by Messrs. Crocker \& Fickett, and was at first intended for a sailing packet, but before she was finished was purchased by William Scarborough and others of Savannah, Ga., and machinery was placed in her. The engine-inclined di-rect-acting-was built by James P. Allaire, and the boilers by Daniel Dodge. The paddle wheels were so constructed that they could be taken apart with little trouble and placed on deck should occasion arise, the shaft having joints for that purpuse. Skeleton frames of iron designed to surround the wheels, and covered with canvas, served for wheel houses. The Savannah's arrival at Liverpool created a small sensation; steaming up the harbor, with sails furled, a full head of steam on, and the American flag floating proudly over her, she no doubt presented an inspiring sight. The trip had occupied 22 days, on 14 of which steam was used. Leaving Liverpool, the Savannah sailed to St. Petersburg, stopping once or twice on the way, and finally returned to Savannah. The machinery was afterward taken out, and she plied as a sailing packet between New York and Savannah. She was finally wrecked on the Long Island coast.
Soonafter the Savannah made her successful ocean trip, a fine large steamer, named Robert Fulton, of 750 tons, was constructed in New York by Henry Eckford, for the route from New York to Cuba and New Orleans. She was a stanch vessel, constructed "entirely of oak, locust, and cedar, and Georgia pine, copper fastened." She had a square, or crosshead, engine, of the type then in use on inland steamers; there were two boilers and two funnels. She left New York for New Orleans on her first trip A pril 25, 1820, stopping en route at Charleston and Havana. She wasan entire success. and covered the 2,225 miles between
New York and New Orleans in an average of 10 dars. New York and New Orleans in an average of 10 dars.
The New York Evening Post of June 15, 1820, contained the following notice of her arrival:
"The beautiful steamship Robert Fulton, Captain John Mott, arrived last evening, 17 days from New Orleans, via Havana and Charleston. At Havana she stopped 2 and at Charleston 4 days. She has aboard between sixty and se at sea only 10 days."
In another notice, on the return of this boat in January, 1821, the Post said :
"Steamship Robert Fulton, Captain Mott, arrived in New York in 8 days from Charleston, having been to New Orleans, . . 54 days' round trip to New Orleans, averaging $141 / 2$ either way. New
The boisterous season, the rough and heavy weather which she has experienced this trip, must convince even the most incredulous of the perfect practicability of navigating the ocean by steam. Captain Mott gives her a decided preference over every vessel he ever commanded, both
gale of wind."
The Robert
The Robert Fulton ran for three years very successfully : she was then sold to the Brazilian government, to be used as a cruiser, her machinery being removed.
Various small coastwise lines were in operation both in the United States and Great Britain between 1825 and 1835. In 1825 the steamship Enterprise made the trip from England to Calcutta, and it is said that her commander, Captain Johnson, received $\$ 50,000$ for tak ing her out. She was of 470 tons burden-smalle than the Robert Fulton, but larger than the Savannah -and sailed from Falmouth August 16, 1825. Like the Savannah, her engine was only worked when the
weather was fine, it being used 64 out of the 103 days required to perform the passage.
A steamer of 350 tons, called the Curacoa, built in England for a company of merchants of Amsterdam and Rotterdam, ran between Amsterdam and the Dutch West Indies for some time in the later twenties. The Meteor, a British steamship, ran between England and the Mediterranean in 1830 ; she carried the mails. Following the Savannah, the next steamer to cros the Atlantic was the Royal William, a 363 ton ship,
constructed in Quebec. She made the run from Quebec to London in something over 40 days, lea ving August 5, 1833, and reaching Gravesend September 16
One of the most famous of the early steamships was
the Sirius, a small, but stanch, vessel that was sent rom Queenstown to New York by the British and North American Steam Navigation Company on a regular line that had just been established. She left on her voyage to New York on April 5, 1838, with fortysix passengers, and reached her destination April 23. Later in the same day the steamship Great Western arrived from England, and the appearance of these vessels in the harbor caused great excitement in New York. The Great Western has left Bristol on April 7, thus making the passage in $151 / 2$ days as against the 17 of the Sirius. The Sirius had originally been built for coastwise service in England, but had been chartered in order to anticipate the Great Western, which was about ready to sail on her first trip. The Sirius made two round trips in the line, and was then placed on the route between Dublin and Cork, where she continued plying until January .16, 1847, when she was wrecked. The British Queen, newly built, took the place of the Sirius when she left the transatlantic ute

an experiment with hydrogen sulphide.
 averave mand, da

Here is a curious experiment, which can be performed with hydrogen sulphide.
If any colored flower is passed quickly through the fame of that gas, it becomes instantly as white as snow in all the parts that were in contact with the flame. The flower is not carbonized and does not fade. The cause of this phenomenon is, of course, that sulphur dioxide is evolved during the combustion of the hydrogen sulphide, but while it takes several minutes to bleach flowers in the ready made gas, its action is absolutely instantaneous when applied as stated above. Moreover, the flame acts merely on the part of the flower which is in immediate contact with it, so that odd figures can be drawn on the petals, as if with brush and white paint.
Made in the flame of sulphur in combustion this experiment gives a negative result. The flowers are carbonized before being bleached. With carbon bisulphide the result is better, but not so good as with hydrogen sulphide. This difference of action may be explained by the fact that the gasevolved during the combustion of hydrogen sulphide is probably, for a moment, sulphurous acid $\mathrm{SO}_{3} \mathrm{H}_{2}$, and not sulphur diozide SO_{2}.
Young readers, willing to repeat this experiment will find in test books of chemistry how to prepare hy drogen sulphide and how to avert the two dangers of
this preparation, viz., the explosion of the flask by this preparation, viz., the explosion of the flask by
premature lighting and the inhalation of the gas while it is not burning.

Women Jewelers.

Whatever may be woman's future in the arts, there is no doubt that the wife or daughter of the jeweler, country jeweler especially, may become, and ought to be, an invaluable assistant to him, not alone in hi capacity as storekeeper, but as mechanic as well. So far, saleswoman duties have satisfied unaroused female ambition, only because it has been unaroused. There is no reason why the jeweler with a family should not is there any reason why, when taught, she should not prove an adept at the art and an acquisition to the store. He could teach her, for instance, the art of en graving, for which her feminine instincts, fineness of fancy, and copiousness of patience peculiarly suit her. He could teach her, in a word, how to perform the numerous tedious tasks in a jeweler's and watch
maker's work in the performance of which application or delicacy of touch, both feminine characteristics may be either a need or an advantage. Did she de velop unusual talent, the transition would be easy to the more remunerative branch of setting precious stones and designing patterns. Curiously enough omen have so far cast no envious eye on this well paid, steady, most interesting, and dignified calling. At a glance one can appreciate that its requirements
are many and severe. A careful course of apprenticeship in order to gain the mechanical skill, an artistic sense to guide, a firm and delicate hand to execute, are some of the elements necessary to success as a worker in precious stones and metals. Yet many jewelers' daughters endowed with just such qualities throw away their cleverness on fancy work, and exhaust their eyesight over a needle, when, as designer of jewel patterns, or as lapidaries, a good fixed salary might be secured.-Keystone.

The mayor of St. Petersburg has ordered the nam f every individual who is found drunk to be poste in specific public places and printed in the Official

(Gorrespondence.

The Proposed Cape Cod Canal

To the Editor of the Scientific American

I am glad to see that the Scientific American is awake to the importance of ship canals, supplementing the generous provision that nature has made for sheltered coastwise navigation almost from Maine to Florida. Thoughtful persons have often execrated the policy that has led our legislators to vote millions of the people's money for the improvement of un-heard-of creeks (see river and harbor bills) when such a peninsula as Cap Cod lay awaiting for a short straight ditch to be digged, separating it from the mainland and cutting off something like 60 miles of dangerous, intricate navigation through Vineyard Sound and around Nantucket Shoals. In point of fact, Charles the Second was King and William of Orange was fighting the French in Flanders when the Cape Cod Canal began to be talked about in Eastern New England, and from that day to this the subject has been periodically agitated only to fall into the hands of speculators and die a succession of natural deaths. Your paper of August 31, so far as it refers to the Cape Cod section of the canal project, favors what is known as the Bass River route. The earlier surveys, including one made in 1776, by an engineer named Machin, under authority of George Washington, contemplated the shorter and more direct line via Buzzard's Bay and the Sandwich Isthmus, and one has only to consult the United States Coast Survey charts, or indeed any map of New England, to perceive at a glance how unanswerable are the arguments in favor of that route. A government survey was made in 1860 and a special chart (No. 3042) was issued by the Coast Survey showing the proposed canal in detail. There are some reasons why the Bass River route is preferable for sailing vessels, but this is the age of steam, and whether for commerce or war, steam is the agent that must be considered. Personally I have little doubt that both canals will eventually be built, but if the decision is left to a competent board of engineers, as no doubt it will be, should the government take the matter up, there is small room for question as to which route will be chosen first.

Sandwich, Mass.
Charles Ledyard Norton.

The Seattle and Lake Washington canal.
The citizens of Seattle, Wash., are jubilant over the beginning of work on a canal which is to connect the Puget Sound with the fresh water lake, Lake Washington. The Gas Light Journal says: "The work, which has been undertaken by the Seattle and Lake Washington Waterway Company, includes the excavation of two waterways, each about 1 mile long and 1,000 feet wide, from deep water through the tide flats of Elliott Bay; two Duwamish waterways connecting the east and west waterways with the mouth of the west channel of the Duwamish River; a canal waterway about 1 mile long and 218 feet wide at low water from the head of the east waterway through the flats eastward to the shore line; a canal through the upland 80 feet wide at the bottom, in a direct line nearly 2 miles to Lake Washington, into which it will open in Wetmore Slough ; and the filling to a level of feet above high tide of 1,525 acres of tide land with the excavated material. The two main waterways and the canal waterway are to beexcavated to a depth of 26 feet at low tide, the canal itself to a depth of 30 feet at dead low water in the lake, and the Duwamish waterways to a depth of 12 feet at low tide. The amount of material to be excavated is $36,000,000$ cubic yards, just about enough to do the filling required.

While the east and west waterways will be 1,000 feet wide, according to the official map of the State Land Commissioners, the space clear for traffic will be only 552 feet between the pier head lines. the remain ing 448 feet being allowed for the extension of wharves and slips to such lengths as to accommodate the largest ocean steamers. The construction of water ways on this plan, which would open wharves and slips instead of docks and tidal basins, is in accordance with the most modern ideas of harbor improvements the revolution in ocean traffic wrought by the use of teamers instead of sailing vessels, the carrying on of land transportation by railroad and the use of ma chinery for loading and unloading ships having com bined to make dispatch in handling cargoes at the same time necessary and possible. Thus the old system of floating a ship into a dock through tidal gates and unloading its cargo on trucks has almost been done away with. Trains are now run right alongside ship at the wharf and the cargo is transferred from one to the other almost without the touch of la man's hand. With the provision made in the tide land plat or railroad tracks on every wharf and for steamers to run into the slips alongside the tracks, Seattle wil have facilities on her waterways for carrying on ocean commerce with speed and economy equal to those of Europe."

FINE HAMMERED IRON WORK

The ability to wield a hammer well, whether it be only to shape a horseshoe or effect a difficult forging, comes only by long practice. That a full blown rose, per fect in its form and detail, may be forged with an ordinary blacksmith's outfit, seeus impossible. Yet the engraving on our first page represents a rose forged from a round piece of iron, without rivets or screws, and we will try and make it clear to the skilled work man how he may do similar work.
A picce of iron, $11 / 4$ inches in diameter, of the tough est class of Swedish iron, is first drawn down on one end to form a spindle about 6 inches long and $1 / 2$ inch in diameter. This is cut off from the bar, leaving a head about 3 inches long (Fig. 1). After heating the head to a low cherry red, "work" the metal by upsetting (Figs. 2 and 3), hammering out, and repeating, thus working the metal, by much kneading, into a thoroughly tough, homogeneous mass--that it will at a later period of the work endure bending and rebending when needed-finishing finally into the shape shown in Fig. 4, the head being left $1 / 2$ inch thick. The next step is shown in Fig. 5, starting the dividing of the $\begin{aligned} & \text { Winslow Brothers Company, art metal workers, Chi } \\ & \text { head into two lavers, the metal being hot, and con- } \\ & \text { cago, Ill. It was by this firm that the large hammered }\end{aligned}$ tinuing the cut as true as possi ble until the two layers are held together by a thickness of meta corresponding to the diamete of the shank, $1 / 2$ inch, as shown in Fig. 6. Reheat and rub piece of lead in the cut (Fig. 7), touching every part of the of course the lead will melt and run off, but its application wil have the effect of keeping the t wo layers separable when ham mered together (Figs. 8 and 9) Carefully heat and flatten these two layers with a heading too upon the anvil until brought to about 316 of an inch thick, and finish by thinning the edges to about 1-16 inch thick. When cool mark with compasses a cir cle that will trim off the irregula edges to about $1 / 8$ inch less than the material will cut (Fig. 10)
The first layer is trimmed to a smaller diameter than the sec ond layer. In separating the two layers with a sharp chise (Fig. 11) it will be found that owing to the use of the lead they will readily come apart Now trim the outer layer round with a cold chisel, and mark into six equal divisions with slate pencil (Fig. 12), cutting ac cordingly in a vise to the separat ing hub, making six leaves (Fig 13). Trim the edges of these leaves, the metal being cold rounding with a cold chisel (Fig 14), and hammer the edges out quite thin to an irregular round avoiding any formal curve in the edge of the leaves. With a round-headed hammer and a swage block, the metal still be ing cold, round out the leaves, and dish them (Fig. 15), and then with a pair of pincers, bend them up out of the way of th second layer (Fig. 16). The sec ond layer is divided into five leaves (Fig. 17). With the meta cold, the edges are rounded and made thin, and then dished wit hammer shown in Fig. 18, being the round-headed (Fig. 19). After heating, the shank is drawn down in irregular diameter for the stem of the rose, leaving sufficient metal at the outer end for break, and, near the rose (Fig. 20), for cutting the bud burrs with chisel (Fig. 21) from the stock, holding the piece in a vise to do this work. Then with a half round fil finish the bottom of the rose and round both it and the bud burrs as shown in Fig. 21.
The other end of the stem should now be forged with a bulb ending in a flattened wedge piece (Fig. 22). With a cold chisel divide the wedge piece into two parts (Fig. 23), which are to represent the wood as torn from the stem, and with a round-ended punch indent the bulb as shown in Fig. 24, forming the natu
stem.
The leaves may be forged and cut into shape with cold chisel and marked with the same, but it is bette to make a die in approximate leaf form and impress into a steel swage block, giving the further character of the leaf by indenting the leaf ribs, as shown in Fig 25. Having such a swage block, it will be necessary only toforge a bulb on the end of a half inch iron, and flatten it out or drop forge it in the swage and forge
down for the stem (Fig. 27), serrating the edges with file (Fig. 28), giving them a dishing, twisted, natural contour. Weld two of them together (Fig. 29). and weld the end to the stem (Fig. 30). As many leaves may be welded (using only a small fire to accomplish this delicate operation) to the stem as will appear natural and graceful. In Fig. 31 are shown the rough bark producing tool, a serrated-headed hammer and block. By placing the stems in the block and striking with the hammer, turning the work in all directions, a good imitation of bark is the result. An iron scratch brush (Fig. 32) removes scale and gives a softening effect Now that the rose is all together in one piece, with pliers bend the rose leaves out, making the six inne leaves to conform to the headed loop of a rose and sur round with the outer layer of five leaves, bending the burrs into a natural downward curve, and with th n ends twisted.
The rose from which our engraving was made is th hand work of Henry Sticht, a pupil of Armbruster cago, Ill. It was by this firm that the large hammere

A HAMMERED IRON GATEWAY ON THE LAKE SHORE DRIVE, CHICAGO.
iron gateway was constructed that formed so striking an American exhibit at the Chicago World's Fair, and which has found so fitting a home at the entrance to Shore drive, in Chicago. The illustration which we present of this gateway will convey but partial idea of ts beauty and richness of detail, as a good sample its beaut, and ichness of detail, as a good example of to the elements, all such work should be subjected to the Bower-Barff process after completion, this giving good protective and lasiting enamel to the surface.

The Horseless Vehicle Contest.

Electricians are studying with a good deal of interes and doubt their chances in the horseless vehicle contest that the Chicago Times-Herald has organized, to take place next November between Chicago and Mil waukee, a distance of about eighty-five miles, with two relay stations, one at Kenosha, W is., and one at Waukegan, Ill., where renewal of power is permitted. Already, says the Evening Post, over seventy-five entries have been made for this race, but it is said that the electrical competitors are comparatively few. The main reason for the lack of prominence of electricity is hat the batteries hitherto in use and on the market have been altogether too heavy and have had too
imited a storage capacity. Hence, with the increas in strength of the frame to bear the burden has come further drain on the insufficient power, and nobody seems able to reconcile these qualities. Yet anothe eason for the absence of electrical carriages is th areness of charging stations, although the condition in this respect is steadily improving all the time. It is believed by electricians that not many years will pas before trolley systems penetrating into rural districts will allow their circuits to be tapped for lines to run ver roads in such a way that any cart can hitch on by its trolley pole and get all the current it needs.

Our Insect Friends and Hoes.

According to Professor Panton, of the Ontario Agri cultural College, there are nearly 100 species of insects hat prey on grain and forage crops; upward of 40 at tack vegetables; no less than 50 menace the grape and 5 threaten the apple. The pine has 125 species as enemies; the oak, 300 ; the elm, 80 ; the hickory 170 ; the maple, 75 ; the beech, 150 ; while the unfor unate willow battles against some 400 species of in ect foes. Some idea of the immense loss that is sus ect foes. Some idea of the immense loss that is sus-
ained by the human race from insect pests may be imagined from the fact that in 1884, in the United States alone, the amount is estimated to hav been $\$ 400,000,000$, but in 1891 it was $\$ 300,000,000$, and, thanks to the investigations of German scientists, it is believed to be annually decreasing. It is not to be supposed, however, that the fullest knowledge available to man will suffice absolutely to prevent these losses; but thes figures are so enormous that th: reduction of them within smalle dimensions becomes a matter o very great importance. All in sects are not our foes; and jus what birds are most fond of beneficial insects it would be ineresting to be informed. But we are somewhat in the dark about this even yet. Professo Panton gives a list of a few in sects which are our friends
Syrphus fly, trachina fly, tige beetles, ground beetles, ladybirds, reduvius, soldier bugs, ace-winged flies, wasps, cucko tlies, and ichneumons.
These insects are said to be of great importance in keeping the mischievous species under, the chneumons being especially good at this business. They prey on certain grubs by depositing ggs on their living bodies When these eggs hatch, the young worms feed upon thei ost till the latter can stand th train no longer and forthwith ies About this time the ich umons are ready to fly as per fect insects. It is no uncommon thing to find upon a tomato or tobacco plant one of the large green worms which infest thes plants, with a dozen or so smal whitish thorns sticking into its hide. These are the ichneumo grs which eventually kill th orm. Ladybirds feed upon lant lice; yround beetles are aid to prey upon the pota
eetle and various kinds of caterpillars; while the
tiger beetle will eat almost anything in the insect line -Public Opinion.

Cycle Notes.

At the shops of the Pittsburg, Cincinnati, Chicago and St Louis in Columbus, \mathbf{O}, there are about 150 employes who come to their work on bicycles, and of course this number of machines standing around in the way all day became quite a nuisance. The master mechanic has therefore built two "stables," one to hold 25 machines and the other to hold 60. These tables consist simply of light posts, with rafters along and against a tight board fence or building, and covered with some cheap form of roof. There is a tie from each post to the fence which forms the partition between the stalls and also serves as a support for the wheels. The stalls are about 2 feet wide and 6 feet deep. Each stable is in charge of some office boy or other emplove, who gives out checks to the owners of the machines, each stall being numbered.

A statue of Siemens and his friend Helmboltz, after the model of that of the brothers Humboldt in front the Berlin University, is to be set up in Charlotten burg before the Technical High School.

THE EVOLUTION OF THE international racing YACHT.-II.
On February 26, 1885, a challenge for the America cup was received by the New York Yachi Club from the Royal Yacht Squadron, on behalf of the cutter Tenesta.
In looking over the list of boats available for the defense of the cup it was at once decided that there was no sloop afloat that could hope successfully to meet the crack English cutter. Accordingly two sloops were built, the Priscilla and the Puritan ; of which the Puritan was selected to meet the challenger.
Strictly speaking, Puritan should be called a cutter sloop. She retained two good features of the national type (see preceding paper), namely, the broad and shallow hull and the centerboard; but she carried the cutter rig in its entirety, and also the cutter outside lead, having some thirty-two tons of this bolted to the bottom of her keel. She had a smaller displacement than the Genesta and showed a larger sail spread.
On the day of the first race Puritan fouled Genesta, carrying away her bowsprit. The cup committee on the Luckenbach there and then ruled Puritan out and told Sir Richard Sutton to sail over the course. Sir Richard's repls from the deck of his yacht was
winner of a magnificent race by the narrow margin of 1 m .38 s . To her credit be it said that before sail ing for home Genesta contested and won three races, in the two last capturing the Brenton's Reef and Cape May cups.
The next competitors, Galatea and Mayflower, were similar to their predecessors, though larger. The Mayflower carried 42 tons in her keel, or 10 tons more than the Puritan. She had an easy victory over the Galatea, beating her in light winds by 12 m . 2 s . and again by 29 m .9 s .
The measurement rule of the British Yacht Racing Association, which put a heavy penalty on beam, but none on draught, was responsible for the absurdly narrow type of English cutter. The hopelessness of winning the America cup under this rule of measurement was largely responsible for the adoption of a new rating rule, based on load water length and sail area This left the English designer free to use all the beam he wished. The effect of this rule was seen in the next challenger, the Thistle. With 5 feet more beam than Galatea, and a much smaller displacement, she carried 2,400 square feet more sail. She had beaten all the English cutters with ease, and her owners came acros the pond with the firm conviction that Thistle would carry back the America cup in her locker. But the
her forefoot; but a glance at the two Valkyries, in the accompanying drawings, shows that their forefoot is ut away far more than Thistle's, and yet they are ex eptionally fine boats in wind ward work.
The next challenger, Valkyrie II, designed by Mr. G. L. Watson, the designer of Thistle, was a further development toward the greater beam and shallower body of the American type. She showed in her pro file or sheer plan the growing tendency among English designers to cut away all useless "deadwood" fore and aft. This was done to reduce the wetted surface of the boat. The researches of Mr. Froude, the English naval expert, had emphasized the fact that the larger part o the resistance of a ship is due to tho friction of the water against her hull, or what is tcchnically known as "skin friction." In the effort tc roduce thic area of wetted surface, the helm was tucked well in under the boat, and the keel forward was cutaway until mothing was left but the body, or hull proper. This reduction f the "lateral plane" also produced an underwater form that would offer the minimum of resistance to turning when the boat was coming about. This latter result was very marked in Valkyrie II, and stood her in good stead when she was maneuvering for the start, or when she had Vigilant placed under her lee. The Vigilant introduced Mr. Herreshoff as a builder of cup

THE EVOLUTION OF THE INTERNATIONAL RACING YACHT.
prompt and characteristic: "We are very much genius of the late Mr. Burgess, designer of Puriobliged to you, but we don't want it in that way." He set a precedent in such contingencies, which, no doubt, all true-blooded sportsmen of each nationality will be quick to follow. The New York Herald of the following day voiced the public sentiment when it said, "The magnanimous decision of the owner of the Genesta is only what might be expected of Sir Richard Sutton and the club which he so admirably represents." The race finally came off on September 14. The wind was very light and "fluky." It suited the shallow, broad hulled boat and she won easily by 16 m .19 s . The next race was sailed twenty ruiles to leeward and return. This, with one exception, was the most exciting race in the annals of the cup. There was a good breeze down to the mark, which the Genesta rounded one-eighth of a mile ahead. Then as they lay for the home mark, close hauled, the wind freshened and afforded a splendid opportunity for judging of the behavior of the two types in that grandest of all tests, a thrash to windward in a strong breeze and rough sea. The cutter kept up her topsail, and heeling until her seventy tons of lead in the keel could get in its steadying effect, she carried this great topsail home through half a gale of wind. The Puritan took in her topsail, housed her topmast, and under snug canvas began steadily to overhaul her rival. Her centerboard brought. her closer to the wind, and she crept up well into the weather berth, coming home
enius of Man late Mr. Burgess, designer of Puri tan and Mayflower, was equal to the occasion. He showing in her a further development along the lines of compromise that he had followed in the two former boats. Compared with them, she had about the same beam, more draught and wore outside lead, having 50 tons in her keel, besides a large amount of inside ballast in addition. Her sail plan was the largest ever seen on a "single sticker," and her career in the trial races was marked by easy victories over her predeces sors, Puritan and Mayflower.
No cup race has aroused greater interest than the Thistle-Volunteer contest. The reputed prowess of the challenger, her wider beam and larger sail spread, had excited grave fears for the safety of the cup. The event, however, proved these fears to be groundless. In the first race, sailed in the usual light breeze, the Volunteer won by $19 \mathrm{~m} .213 / 4 \mathrm{~s}$. The Thistle people then offered copious libations to God Neptune and besought his deity to grant them a strong wind from heaven. He granted the request; and, behold, it availed nothing! for the centerboard cutter lay up so much closer to the wind than her keel opponent that he reached the weather mark 14 m . ahead. The Thistle pulled up somewhat on the run home, reducing the Volunteer's lead to $11 \mathrm{~m} .483 / 4 \mathrm{~s}$. It was claimed that the 'rhistle's sagging away to leeward, when on
a wind or close hauled, was due to the cutting away of
defenders. She was a further development along the sloop cutter lines. She had the unprecedented beam of 26 feet, the great draught for a sloop of 13 feet 6 nches (as great as that of any previous challenger), and the large sail spread of 11,312 square feet or 1,300 feet more than the Valkyrie. She had 55 tons in her keel, besides 29 tons of inside ballest. She carried the characteristic centerboard of the sloop.
The first race was started to wind ward. The wind, ight and fluky, veered around so that the race was a reach both ways. Mr. Watson's later boats have all shown a weakness in reaching, but excellent wind ward qualities. Mr. Herreshoff's boats are all excellent on a reach ; and this change of wind meant sure defeat for Valkyrie. She came in 5 m . 48s. astern. The second race, over a thirty-mile triangular course, was sailed in a strong whole-sail breeze. It consisted chiefly of reaching, and the Vigilant scored a brilliant victory, winning by 10 m .35 s .
The third race, 15 miles to windward and return was sailed in a strong reefing wind and a lumpy sea. It was Valkyrle's weather, and the comparatively narrow, fine lined cutter liked it better than the broad hulled centerboard, for Valkyrie turned the weather mark 1m. 55s. abead of Vigilant. She pointed higher into the wind, and made better weather. It was a truly sensational scene, for here was the traditional centerboard, for the first time in the history of international cup racing, being fairly beaten by its
time honored opponent, the keel boat. In the words of that most charming of all nautical writers, Mr. A. J. Kenealey, "Now came the surprise of the yachting season. The English keel boat seemed to eat her way out to windward in a manner almost magical, while the centerboard craft slowly sagged off to leeward. Conditions were reversed for the nonce, and the ex perts of the New York Yacht Club could scarcely be lieve their eyes." On the run home the 1,300 square feet excess of sail on the Vigilant stood her in good
stead. She gained rapidly, but not rapidly enough barring accident to save her time allowance of 1 m . 33s. It looked as though the English cutter were about to place at least one well earned victory to her credit. But here Dame Fortune, that fickle goddess, stepped in and said it should not be. Valkyrie's spinnaker was slightly torn in setting. A gust of wind tore it from top to bottom. Another was set, and that too was split to shreds. Meanwhile Vigilant swept by and landed across the line, a winner by the close margin of 40s.
While Mr. Herreshoff and Mr. Watson were fighting it out off Sandy Hook, there was a battle royal going on in the English Channel between two other creations of these two designers, namely, the Navahoe and the Britannia. They were practically sister boats to the Vigilant and the Valkyrie. The outcome was strongly in favor of the cutter. When it came to reaching, the
rounded keel, the raking stern post placed well in under the boat; and finally, and most startling of all, he has thrown out the national and time honored centerboard! The midship section of Valkyrie III shows the influence of Vigilant on Mr. Watson. Following along the lines on which he worked in Thistle and Valkyrie 1I, he has greatly increased her beam, and consequently her sail spread; he cut further into the ateral plane both fore and aft, and he increased the draught.
In their performances the two boats show the same strong and weak points of sailing that have ever characterized the work of their designers; though it is scarcely just to speak of weak points in the work of Defender, for she is a most consistent performer all round. Her weakest point is running with spin naker set and the wind dead aft ; and her strongest point is reaching. Strange to say, the conditions ar exactly reversed in Valkyrie. She is superb in windward and leeward work and a miserable failure on a reach, the three year old Britannia easily holding her on this point of sailing.
Judged by their previous performances, Valkyrie's best chance of winning would be on a windward and leeward course, and Defender should always win on a riangular course.
By a strange fatality the same shift of wind occurred in the first of the 1895 races to windward as did in the

That the Defender is a better boat on the average than the Valkyrie, would seem to be proved; but that these two magnificent yachts should never once have pread their spinnakers, and never once have found wind that lay their lee rails awash, is a source of enuine disappointment to all close students of yacht design and performance.
J. B. W.

The Trip Valve Gear on Marine Engines.
It is odd that a form of rapid cut-off valve gear has not been successfully applied to marine engines, as in the case of engines for stationary duty. It is well known that steam machinery has received the greatest amount of attention by engineers with the object of economical fuel consumption, and every source of waste of heat and steam has been most carefully studied. Especially have the efforts been marked for economical operation in the marine plant, where saving in coal is or vital importance. The marine triple and quadruple expansion engines, which are furnished with steam at a tremendous boiler pressure, are far ahead, in point of economy, of the stationary engines, which have very of ten better methods of "cutoff." The writer sees no reason why stationary engines should monopolize the best steam valves. It is clear that a valve of this kind would not be satisfactory on very small high speed screw engines, because of the inertia of the tripping parts, or perhaps on the engines

THE YACHT AMERICA, 1851.

Navahoe could hold her own : but in windward work she was completely outclassed. The next season the American champion crossed the ocean to avenge her twin sister, and met, with a crushing defeat at the hands of the Britannia, a boat that stands to-day with a record of victories that has never been approached. It is true that, when there was any reaching to be done, and particularly when the wind was fresh, Vigilant scored some splendid victories; but the balance of the wins was vastly in favor of the keel boat. It was the same quickness in stays, consequent on her reduced lateral plane, and the same fine windward qualities which her twin sister Valkyrie showed in America, that won for Britannia so many victories over Vigilant. Mr. Herreshoff was aboard Vigilant during the third race of 1893 ; he was aboard her again in 1894 when Britannia so frequently tucked her snugly under her lee; and the lesson of this experience was not lost upon him. Lord Dunraven is quoted as saying on leaving for England at the close of the 1893 contests: "If I come again, I shall find a keel boat built to meet me."
The influence of the racing of $\mathbf{1 8 9 3 - 4}$ on Mr. Herreshoff is seen in a comparison of the midship section and sheer plan of Defender with that of Vigilant and Valkyrie. As compared with Vigilant, he has thrown over the great beam, the moderate draught, the long straight keel, the almost plumb stern post and rudder; and, as compared with Valkyrie II, he has adopted the moderate beam, the deep draught (in Defender's case $51 / 2$ feet more than Vigilant), the cut away and
first windward race of 1893. When both boats were on the starboard tack and Defender to starboard of Valkyrie, the wind shifted several points to the south bringing it further round on the starboard bow and placing Defender well to windward. This also changed the home course from a dead run with spinnakers, Valkyrie's best point of sailing, to a reach, Defender's best point of sailing; and the home boat literally ran away from Valkyrie, and won a splendid victory by between 8 and 9 m .
The next race, over a thirty mile triangular course. was marred by a foul between the two boats, which the committee subsequently decided against the visitor. Defender, though crippled with a sprung topmast, sailed over the course under reduced sail, and actually gained $1 / 4 \mathrm{~m}$. on one leg and 1 m . 17 s . on the last leg of the triangle, losing the race by only 48s. This was a moral victory for Defender, and seems conclusively to establish her superiority over such a course. Before the final race, Lord Dunraven, the principal owner of the Valkyrie, wrote the America Cup Committee, stating that unless they could guarantee a course free from obstruction by excursion boats, he would decline to sail his yacht. The Valkyrie was at the starting point under reduced canvas, and crossed the line in order to make the race count. Then she wheeled around and started for New York, leaving Defender to sail alone and secure the third and decisive race of the series.
Thus ended the most disappointing and unsatisfactory contest in the history of the cup races.
of large ocean steamers, where the gear would have to be very massive, but there seems to be room on engines of medium speed and size for profitable experiments. The compounding of locomotives is comparatively a recent thing, and the improvement was brought about in the face of much opposition.
n. Monroe Hopkins.
[There are some difficulties met in adapting the Corliss movement to large marine compound engines that more than compensate for any possible gain; as, beyond the operation of the high pressure piston, there is no gain in power.
The complication of parts in a valve movement of the Corliss type is not desirable, as it increases the liability to derangement or breakage on shipboard. Simplicity in construction is the first principle in marine machinery.-EdITOR.]

New British Torpedo Boat Destroyer.
The trial trip of the torpedo boat destroyer Salmon was lately run. This vessel has been built and engined by Earle's Shipbuilding and Engineering Company, of Hull, and is one of the larger class of the destroyers, her displacement being 280 tons. Her draught, on trial, was 5 ft . forward and 7 ft .3 in . aft. The mean speed on the six runs on the mile was 27.88 knots, and for the whole three hours $27 \cdot 608$ knots, or at the rate of $313 / 4$ miles per hour. The Snapper is a sister vessel, built by the Earle Shipbuilding Company for the Admiralty. The contract price for each vessel is $\$ 176,960$, exclusive of armament.

El Capitan Meteorite

by e. e. howell.
This handsome meteorite was found by a Mexican sheep herder, Julian Jesu, in July, 1893, on the northern slope of El Capitan range of mountains in New Mexico. Three small pieces were broken from the thin edge, which show beautifully the octahedral structure of the iron. The smallest of these, weighing a few ounces, was sent to the National Museum, and the two larger, weighing respectively 1 pound $121 /$ ounces and 3 pounds $i 4$ ounces, together with the main mass, 55 pounds, came into my possession at different dates in 1894.
The weight of the iron when whole was about 61 pounds. It measured $10 \times 9 \times 5$ inches, thinning at one edge, and had the usual irregular pitted surface.
My information in regard to the history of the meteorite, as well as the meteorite itself, was obtained from Mr. C. R. Biederman, of Bonito, N. M. Mr. Biederman says that he, in company with many miners, was standing in front of a store in Bonito some time in July, 1882, when "they saw a meteorite which looked like a fiery ball moving rapidly toward the north at an angle of 45° and vanish behind the Capitan rance." Mr. Biederman thinks the meteorite found by the Mexican is the one they saw fall, and there is nothing in its ap pearance to disprove his claim. It is entirely free from oxidation and evidently fell at a comparatively recent date.
The Widmanstatten figures are developed very easily and clearly, as is usual with irons containing the percentage of nickel which this has, showing it to belong to the usual type of octahedralirons, with rather broad bands of kamacite some what like those in the Coopers town meteorite.

I am indebted also to the courtesy of Professor Clarke for the following analysis of this iron by Mr. H. N. Stokes, of the United States Geological Survey :

	1
Ni	$8 \cdot 40$
Co.	$0 \cdot 60$
Cu.	0.05
Si.	tr.
P.	0.24
S.	tr.

-Amer. Jour. Science

Argon and Helium in Meteoric Iron
Professor W. Ramsay, extending his researches upon the new element argon, has proved that it exists with helium in meteoric iron. The meteorite investigated was that of Augusta County, Virginia, two ounces of which, heated to redness in a hard glass tube, yielded 45 cc . of gas. This appeared to consist chiefly of hydrogen, but after it had been exploded with oxygen, and the carbon dioxide and excess of oxygen absorbed, a residue of half a cubic centimeter was obtained. Several vacuum tubes having been filled with this after being dried, spectroscopic examination proved it to be for the most part argon, the trace of nitrogen which first appeared rapidly disappearing. All the argon lines were observed and also, faintly, the yellow D_{3} of helium. A comparison of the spectrum with that of the helium from cleveite showed the presence of the red, blue green, blue and violet lines characteristic of it. From quantitative observations with a mixture of argon and helium it is conclucied that the latter element makes up less than 10 per cent of the gases obtained from the meteoric iron. -Nature.

The story of the Paris-Bordeaux Race. One of those who rode in the winning carriage has written for Figaro a spirited account of how the race was run and won. The contestants in the coming race will not be compelled to press on in the night, but there will doubtless be incidents fully as exciting as those described by Edouard de Perrodil, who writes as follows:
I took part in the race of the automobiles from Paris to Bordeaux and back in carriage No. 16, the winner of the first prize. The story is worth telling under the circumstances.

Nothing noteworthy occurred on the way to Bor deaux. The pace was $25,30,40$, and even 50 kilometer [a kilometer is equal to about 0.62 of a mile] an hour on the down grades. After passing Blois night fell, dark as ink. The whole population was on the lookout, and from time to time one passed groups of people waiting along our route. The cyclists were legion. They, too, were massed along the road, and with their bobbing lamps they resembled a gathering of shadows, about which flickered here and there the will-o'-the-wisp How cold it was! A wind which blew steadily full in our faces turned us to ice
As day broke one had plenty of time to catch the efforts which the sun made to break through great banks of gray clouds. Toward 10 o'clock the weather again became superb. After leaving Couhe-Verac the automobiles simply flew. In this way were passed without a stop Ruffec, Angouleme, and Libourne, and we entered Bordeaux in triumph.

I only joined it again at Blois, to which place I traveled by rail. While I waited at Blois a telegram
from Tours brought us the news that the struggle for the first prize had narrowed down to two carriagesNo. 8, which had passed at no
which had passed at 12:30 P. M
At Blois No. 8 arrived at 2:45. She took in petroleum and started once more at 3:05. Everyone was anxiously looking out for No. 16. "Has she gained ground?" Yes; she has gained five minutes. I have resumed my place beside the engineer, with a keen sense of satisfac tion, mingled with excitement, for the fight is going to be a hot one. We are twenty-five minutes behind No. 8.
Our carriage travels splendidly. The road, too, is magnificent. I hold in my hand the ordnance map and I point out to the engineer the various places. We pass rapidly by Mer, Beaugency, Meung-sur-Loire, La Chapelle. Every other minute the engineer, Mr. Koechlin, or the other traveler, inquires: "Are they far ahead ?" "Hurry up; they are half an hour ahead of you!"
At the umpire's station at Orleans an immense crowd. A halt of two seconds. One of the committee tells us "You are twenty-five minutes behind No. 8." Why we are still as far behind as ever.
We bound forward on the Paris road. We pass Saint Lye, Autruy. It is already late, and the day is visibly drawing to a close. "Sapristi! What is going to hap pen," I say to myself, "at such a pace at night, when we descend the hills of Saint-Remy and Buc?"
All at once an emergency arises. One of those that I had most dreaded. The drivers we met always kept a bright lookout, generally on foot at their horses heads. But this time a dray horse at the sight of our automobile backs so violently that the driver cannot hold him. Our engineer does not stop. He describes an enormous elbow on the grassy slope, upon which the automobile leaps and doubles round the back of the dray. We have passed by safely!
Every winute now one inquires: "Where are they?" Every time the same answer: "Go on! Go on! Mak haste! A quarter of an hour ahead!"
Mr. Koechlin, the engineer, loses his nerve badly He is rattled. He no longer stops at anything. Night has now fallen, densely dark, as before. "Where are they ?" yells the engineer to each passer-by. "Quarte of an hour ahead; push on !" "Thunder!" says th ongineer; "shall we never overtake them?"
At the steep hills we get down to lighten the carriage and we run breathlessly behind. Here we are at Etampes. At the entrance of the town some one who was on the lookout for us throws us a bag of ice to cool the cylinders.
Suddenly, in the middle of Etampes, a young fellow calls to us: "They stopped here to take in water. Go ahead; they have three minutes' start !"
The engineer is quite beside himself. We dash forward into the night, and suddenly, on a hill which is before us, we make out a red fire and we recognize the sound of a motor-tuff, tuff, tuff! It is No. 8 .
We attack the hill in turn. We leap from the auto mobile and courage! We are within 200 yards of No 8. Hurrah! But our competitor has reached the top of the hill and is leaving us at full speed. We shall have to make two deep descents in zigzags-here comes the first. No hesitation. We attack it at 25 miles an hour. It is alarming.
Suddenly we come to a fork in the road. "Which was?" cries the engineer. It is terrible. I do not know.

Left !" I cry. "No, right!"
The pace is such that the engineer's hesitation comes very near causing a catastrophe. For he has no time to make the sharp turn from left to right, and we shoot on toward a wall which stands at the angle of the roads. Our automobile was supplied with two air brakes. One can be worked by the teet, while still stee ring; the other, and much the more powerful brake, must be worked by hand. To apply the latter one has to re lease the guiding bar.
In our critical position the engineer showed great presence of mind. He dropped the guiding bar com
pletely and applied both brakes at once. This saved pletely and applied both brakes at once. This saved
us. The front wheels nearly ran up against the slope which was at the foot of the wall. All this took but a second. Here we are rolling along at a mad pace once more.
We pass through Versailles. A halt of two seconds at the umpire's station. No. 8 is still three minutes ahead.

This time the engineer no longer knows the road at all, but, on the other hand, I know it thoroughly, having traveled it an incalculable number of times on bicycle.
Then, standing beside Mr. Koechlin, I find myself in the same position as the young son of King John the Good when, at the battle of Poitiers, standing beside his gigantic father, who was bolding at bay the entire English army, he kept calling out: "Father, strike to the right! Father, strike to the left." I call out to the engineer: "Steady; turn to the right! Steady turn to the left!"
g and bounding along, we pass th

Boulevard Maillot, and we reach our goal at two min utes and thirty seconds past midnight-two minutes later than No. 8, but we were winners! For No. 8 had left Paris fifteen minutes ahead of us. It was, there fore, thirteen minutes late.-Chicago Times-Herald.

A New Theory of sleep.

Since the discoveries made by Golgi, Cajal, Retzius, and others of the peculiar anatomical characteristic of the nerve cells, a number of new theories regarding brain function and brain action have been in the field. The nerve cell, as it is now understood, consist of a very large number of long branched processes, which are called the protoplasmic processes, and a sin gle axis cylinder which extends out, becoming eventu ally the nerve fiber and giving off fine lateral branches. It has also been shown that each nerve cell in the brain is in contiguity with some other nerve cell, o rather with the terminals of the axis cylinder process of that cell, but that no actual union takes place be tween the processes from the one cell and fiber pro cess of the other. When one set of nerve cells, for example, are thrown into activity, impulses are sent out along the axis cylinders and their terminal end brushes and these affect by contact the protoplasmic process of other cells.
Cajal and others look upon the axis cylinder and nerve fiber as conveying impulses out from the nerve cell or body, while the protoplasmic processes receiv impulses brought to them and carry them to the cel body. These latter, therefore, are sometimes called cellulipetal, while the axis cylinder process is called cellulifugal. We are speaking, of course, now of the relations of the different groups of cells in different parts of the brain, rather than of the relations of thes cells to the spinal cord and parts below. Some time ago Professor Duval proposed the theory of sleep based upon the peculiar relations of the brain cells and fibers. According to this theory, the nerve cells in repose re tracted their processes, [which, as he thought, were really pseudopods. The cell processes being thus retracted the contiguity of the cell with other cells was less per fect; hence their functions became lowered, conscious ness was lost, and sleep ensued.
Kolliker objected to this view, on the ground that amœboid movements are never observed in nerve cells at least of the higher animals; Duval having contended that he had seen such movements in the lowe rders of animals. Cajal, siding with Kolliker, state that no matter what way you kill an animal-by shock, strangulation, or anæsthesia-the nerve cell never differ in aspect, and one never can discover any amœboid movements among them, even when they are placed freshly in the field of the microscope. Cajal has, however, suggested another theory of sleep which he believes more rational and more in accordance with facts. While nerve ceils do not have amœboid movements, there are, scattered richly throughout the brain tissues, other cells known as neuroglia cells These are cells with very numerous fine processes, and hey form in a large measure the supporting frame rork of the brain tissue, sending their fine processe in among the nerve cells and blood vessels.
Now Cajal's theory is that these neuroglia cells dur ing repose extend or relax their fine hair-like pro cesses. As the result of this the perfect contact be tween the processes of the nerve cells and the end brushes from the axis cylinders that surround them is interfered with, hence the brain function is slowed up and sleep ensues. During activity these neuroglia cells retract their numberless fine processes, the con act between the nerve cells becomes perfect again and mental functions are resumed. The practica facts upon which Cajal bases this ingenious theory ar that the neuroglia cells are found to be in differen tates. In some their processes are retracted and shriveled and in others they are extended. There is unquestionably an amœboid movement, therefore, in this class of cells.
Furthermore, it is in accordance, he says, with phyiological facts that a cell would retract its processe during activity and relax them during repose. The physical basis of sleep, therefore, according to this view, would be the bristling up of the hair-like pro cesses of the neuroglia cells, a squeezing of them in between the machinery by which the nerve impulse pass, and a sort of a clogging of the psychical me chanism. Such theories are of course as yet only theories, and may be regarded by practical minds with great contempt. Still, there is sometimes an advan age in scientific hypotheses, even if they furnish only an intellectual exercise to the student.-Medical Record.

Aluminum Boats.

A practical test was made of aluminum in the con truction of small boats by Mr. Walter Wellman whohad three constructed to carry his polar expedition last year. These boats, it was said at the Navy Department, had been brought back to Washington, and an examination some time ago showed that the material had so deteriorated that it could be easily material had so deterio
crumbled in one's hand.

Pictet's Gas.-Mr. Pictet, having observed that an addition of carbonic acid to sulphurous acid seemed to materially increase its powers of disinfection, re quested Professor D'Arsonval to investigate the value of this admixture and report thereon. Mr. D'Arsonval has communicated the results of his experiments to the Societe de Biologie. He finds that carbonic acid and sulphurous acid, in the proportion of four of the former to six of the latter, combine chemically to form a gas (which he calls "Pictet's gas") possessing marked antiseptic properties and extraordinary powers of diffusion. Thus, cultures of typhoid and cholera were placed on rags between the leaves of a book which was enveloped in cloth and exposed to the influence of the gas. In the space of an hour the germs were found to be entirely destroyed. Pictet's gas has also proved fatal to microbes that were stil living after treatment with sulphurous acid.
Direct Spectrum Analysis of Minerals.-Among the theses recently presented to the Faculty of Sciences of Paris, may be mentioned an important one by Mr. Arnaude de Gramont upon spectrum analysis. The process employed differs from those used up to the present time. A spark from a condenser is made to pass between two fragments of the mineral to be examined, and the methodical spectrum analysis of the rays that are produced furnishes accurate and quickly obtained data as to the chemical composition of the mineral. By this method Mr. De Gramont has also been able to find in fused salts the rays of the metalloids contained therein. He has given the rays o sulphur and silenium with a closer approximation than has ever before been obtained.
Formation of Drops.-In a paper presented to the Royal Society of Edinburgh, Mr. Hannay gives the following interesting data in regard to the formation of drops.

The drops were studied by allowing water to drop through oils of different density and viscosity and causing drops of oil to ascend through water. The vol ume of a normal drop of distilled water in olive oil was found to be equal to $0 \cdot 4096$ cubic centimeter. When the drops succeed one another at intervals of ten sec onds, the volume is increased to 0.5611 cubic centime ter, while the drops formed from a cylinder of water so arranged as to eliminate the effects of gravity have a volume of but 0.5470 cubic centimeter, which shows that the determining factor in the formation of drops is contractibility. Gravity has a tendency to make the drop lose its spherical form, but the contractile forc of the liquid prevents such distortion, and the result of those two contrary forces is the constriction of th drop and its separation
Mr. Hannay confirms the observation made by Tate as long ago as 1864: "The weight of a drop is sensibly proportional to the diameter of the tube from which it fails. The force that retains the drop is wholly superficial. It is an extremely thin envelope that de termines the size and form of drops."
This fact was proved by causing water at $20^{\circ} \mathrm{C}$. to drop in the vapor of benzine at 37°, so that the latter was suddenly condensed and formed a thin stratum around the drops of water. The volume of the drop of $0 \cdot 1081$ cubic centimeter in the normal state wa found under such circumstances to be reduced to 0.0449 cubic centimeter

Properties of Carbonic Snow.-At a recent session of the Societé d'Encouragement, Mr. P. Villard made known the results of some experiments made by him in conjunction with Mr. R. Jarry upon solid carbonic acid. Crystallized carbonic acid melts at -57° under a pressure of 51 atmospheres. This melting point was determined by means of a toluene thermometer plunged in the melting carbonic acid, which was contained in a glass tube protected against radiation by a metallic jacket. The crystals of carbonic acid have no action upon polarized light. The point of ebullition of carbonic snow at the ordinary pressure, that is to say, the temperature that it takes of itself when it is exposed in an open vessel, was likewise determined with a toluene thermometer carefully protected against radiation. Such point of ebullition is situated a -79°, and at this temperature the vapor emitted pos sesses an elastic force precisely equal to the pressur of the atmosphere, conformably to the laws of ebulli tion. It is, therefore, impossible to admit the temperature of -60° hitherto proposed, to which corre sponds an elastic force of about four atmospheres.
Contrary to the opinion that has been held, ether added to carbonic snow does not lower the temperature of it. In whatever way the mixture is made, the minimum temperature is -79°, and this is not attained unless there is an excess of snow; and the feeble thermic effect due to the dissolving of the snow can not manifest itself under ordinary conditions.
The cold obtained is due to the fact that the snow is cold and tends to maintain itself at its point of ebullition. Consequently, it brings to this point the liquid that surrounds it.
Chloride of methyl acts quite differently. The snow dissolves in this without any gaseous disencagement, starting from -65°, and, at the moment of saturation,
the thermometer marks -85°, a temperature lower than that of the coldest of the bodies employed. We have thus a true freezing mixture comparable to a mixture of nitrate of ammonia and water.
Liquid protoxide of nitrogen was tried without suc cess as a solvent of carbonic snow.
In a vacuum, the temperature of carbonic snow readily falls to -125°, and this degree of cold can be maintained for a very long time with little material. The author concludes from this that it is easy to suc ceed in liquefying oxygen without any other refrigerant than carbonic snow and with the ordinary resources of a laboratory
Arsenic in Steel.-Mr. J. E. Stead has recently pub lished a paper upon assubject to which metallurgist have hitherto paid but little attention-the presence of arsenic in steel. Mr. Stead finds that a proportion of from 0.1 to 0.15 per cent of arsenic can exert no influence upon the resistant properties of the metal employed in constructions. The resistance to breakage is slightly increased by the presence of a feeble proportion of arsenic. The elongation is in nowise

affected, and the contraction of the section of the broken trial bars is practically the same as that of steel that contains no arsenic. But with a proportion of 0.2 per cent of arsenic, the difference become narked in the steel obtained in the open hearth furnace. But even then the resistance to flexion alone is a little reduced. With one per cent of arsenic the reistance to breakage increases, the elongation dimin ishes a little, and the contraction is reduced. When steel contains four per cent of arsenic, the resistance to breakage ever increasing, the elongation and con traction disappear.
Electrification by Rain Drops.-In a paper recently Lord Kelvin the Philosophical Society of Glasgow, that the passage of a drop of water through the air has the effect of slightly electrif ying the latter. The electric action is much more intense if the drop of water meets with a solid body or a liquid surface. He ha also found that if a drop of fresh water strikes a sur face of salt water or a solid body, the air is negatively
electrified, while if salt water is used, the air is positively electrified.
The clash of waves against each other likewise gives rise to a positive electritication of the air, and in a much larger measure than the negative electrification due to the fall of rain.

Theory of the Sensation of Colors.-Mr. George Arzens, struck by the insufficiency of the theory o vision from the view point of the perception of colors has conceived the idea of applying the theory of sta tionary waves to the explanation of this phenomenon He remarks; in the first place, that the nerve fibers after traversing the retina, are so inflected as to pre sent a direction inverse to that of the luminousrays, and that some of them are terminated by cylindrical rods and others by small cones. These nerve fibers receive an excitation from half-wave to half-wave. Mr. Arzens believes that they are differently impressed, according as it is a question of rods or cones. The first gave the sensation of light and the second that of colors. In the case of the conical fibers, there intervene phenomena of interferences that unequally displace the planes of the stationary waves. The planes that correspond to red light are thrust forward with respect to those of the red rays, so that the cone is impressed at different points by the rays of the various colors. In support of this theory, he makes the following re marks: (1) Nocturnal animals have no cones; (2) in the alterations of the retinal pigmentation due to senility or disease (achromatopsy), there is a suppression of the perception of colors; (3) when we consider point of retina remote from the central part, the notion of color diminishes in the same ratio as that of the num ber of cones to the number of rods.
Non-Shrinkable Fabrics. - Messrs. Mathelin, Flo quet and Bonnet have just devised a process which they claim has the property of rendering thread and fabrics absolutely non shrinkable. They combine the old alumina or sulphate of alumina process with a treatment with a solution of carbonate of soda and the use of steam. The latter, in addition to its fixing property, permits of sensibly increasing the degree of solution of the alumina salts, while removing the unctuous, gelatinous or glutinous feeling resulting from the treatment.
Artificial Indigo.-What is known as "indigo salt" is now being introduced as the latest substitute for the genuine article. It is said to possess the property of being converted into indigo by means of caustic soda, and, in dyeing, all that is necessary is to treat the cot ton in a bath of the salt and then pass the treated cotton into a solution of the soda. The value of this method may be estimated from the statement made that, in printing, it suffices to thicken a solution of the salt with dextrine, print this on, and pass the printed fabric through caustic soda.

Paper Pulp for Leaks.

Paper pulp is one of the most useful articles in the reach of mankind.
Mixed with glue and plaster of Paris or Portland cement, it is the best thing to stop cracks and breaks in wood.
Pulp paper and plaster alone should be kept within the reach of every housekeeper.
The pulp must be kept in a close-stoppered bottle, in order that the moisture may not evaporate.
When required for use, make it of the consistency of thin gruel with hot water, add plaster of Paris to make it slightly pasty, and use it at once.
For leakage around pipes, to stop the overflow of water in stationary washstands, where the bowl and the upper slab join, it is invaluable.
Used with care, it will stop leaks in iron pipes, provided the water can be shut off long enough to allow it to set. Around the empty pipe wrap a single thickness or two of cheese cloth just wide enough to cover the break, then apply the compound, pressing it in place and making an oval of it somewhat after the fashion of lead pipe joining, only larger.
The strength of this paste, when once it is thoroughly hardened, is almost beyond belief. The bit of cheese cloth prevents any clogging of the pipe by the paste working through the cracks.
An iron pipe that supplies the household with water had a piece broken out by freezing. The piece was put in place, bound by a strap of muslin, then thoroughly packed with paper pulp and Portland cement, and was to all appearances as good as new.
Paper pulp and fine sawdust boiled together for hours, and mixed with glue dissolved in linseed oil, wakes a perfect filling for cracks in floors. It may be put on and left until partly dry, then covered with paraffine and smoothed with a hot iron.-Rural Mechanic.

An Earthquake on the Atlantic Coast.

A shock of earthquake was felt a few minutes after 6 o'clock on the morning of Sunday, September 1, along the Atlantic coast from Delaware to Long Island. The shock in New York City was very slight, but was sharp in New Jersey and to the east of New York. The vibration was attended by a slight rumbling noise. This makes the fourth shock which has been felt in New York City in the last eleven years. On August 10, 1884, at 2:14 P. M., there were three distinct vibrations, the second being the severest ever recorded in this vicinity. Other slight shocks were felt on August 31, 1886, and on March 8, 1893.

A Test of a War vessel frame and Armor. The Naval Ordnance Board conducted an important test at the Indian Head Proving Ground, near Washington, September 4. Though primarily it was a test of a steel armor plate, it was in reality a trial of the strength of the frame of a modern warship. It has been claimed that the frames of modern warships would not withstand the shock caused by heavy projectiles striking against the armor which covers them It has even been asserted by some authorities that the armor, if not penetrated or shattered by the shock, would be driven through the vessel by the crushing of the frame. Some time ago the English government fired at an old armored vessel for the purpose of observing the effects of the shock, but this test at Indian Head is the first frame test ever made of a distinctly modern warship's frame with armor attached.
The plate tested represented twenty-four others weighing 620 tons. It was made by the Carnegie Company and was what is known as double-forged, being forged both before and after Harveyizing.
The plate was 14 inches in thickness and formed the outer surface of a target which was a representation of a side section of the battleship Iowa. It was 18 feet long by $71 / 2$ feet high, and represented that portion covering the vitals, and extending 5 feet below and $21 / 2$ feet above the water line. Behind the armor was a backing of 5 inches of oak, and then came the "skin" of the vessel-the inner and outer bottoms, each five-eighths of an inch of steel plate. Some four feet further back was a $5 / 8$ inch stee plate, representing the inner shell of the vessel. Between this plate and the "skin" were the frames or braces, also of $5 / 8$ inch plate, alternately two and four feet apart. The whole structure was covered by a $21 / 2$ inch steel plate, representing a protective deck. Against the inner plate were heavy timbers resting on the side of a hill.
The conditions were not exactly the same as on board a ship in the water, because the water would yield, while the solid earth would not, but the difference would be very slight, as the vessel in the water could not yield quickly enough to be of any real benefit. The first shot fired was a 10 inch Carpenter projectile, weighing 500 pounds, which was propelled by 140 pounds of prismatic powder. The velocity was 1,472 feet per second. The shell was completely shattered by the impact, part being lodged in the plate. The backing and frames were found intact. The charge of powder was increased to 216 pounds. The projectile then had a velocity of 1,862 feet per second. Again the shell was shattered, a larger portion being embedded in the plate, which still remained without a crack or bulge. The frame was uninjured, except that one of the armor bolts was driven out. This completed the acceptance test for the lot of twenty-four plates. Then a shot was fired from a 12 inch gun, using a Wheeler-Sterling projectile weighing 850 pounds, which was propelled by 400 pounds of powder at a velocity of 1,800 feet per second. This test was one which was ordinarily used for the 17 inch armor plate. It was, therefore, thought that the projectile would pass entirely through the plate, but it did not. The plate was penetrated almost its entire depth and cracked from top to bottom, but the oak backing was scarcely disturbed and the frame was uninjured. A further test with a 13 inch gun will be made as soon as the gun can be set up.
The test of the new armor bolt designed by the Ordnance Board to replace the bolt now used in fastening armor to the ships was also entirely successful. The bolt is less than half the length of the bolt now in use, and the saving of weight in each ship will be considerable.

The test demonstrates the fact that the frames of our warships are able to meet ordinary demands and that the 14 inch armor for the new battleships will, under ordinary conditions, receive the fire of any vessel without serious damage.

Why the Bicycle is so Popular.

The evolution of the bicycle from the original idea of manumotion down to the present diamond-framed rear driver has been by certain positive steps, each step marking a distinct advance in the grand march of improvement.
In schools are taught something of the revolutions wrought by the steam engine, the telegraph and the loom, but the schools of the future will surely take notice of the wonders wrought by the bicycle, and will teach something about the Draisine or "go-devil," the velocipede, the bicycle and all such inventions of whatever name, by which man is enabled to travel quickly, merely through the application of his own muscular powers.
What makes the bicycle so popular with all classe of people? Cheapness? No; the trolley or cable is cheaper. Speed? No. If one merely wants to travel fast there is the railroad. Luxury? No. The brougham is far ahead of the bicycle on that score. And yet people with all these things at their command have taken to bicycling with great fervor. It must be because o the outdoor exercise, you say. No, again. The term
outdoor comprehends infinite space, and as for forms of exercise-well, they are without limit. There never
was a complaint of the lack of either outdoors or was a complaint of the
methods of exercise in it.
The secret seems to lie in the fact the wheel has re vealed to us that our natural powers of locomotion have been multiplied. "Two blades have been made to grow where but one grew before."
The draught upon our strength necessary to walk a mile is sufficient to enable us on wheel to travel five miles or more. Astride of it "magnificent distances" become insignificant
What a glorious feeling of freedom comes over us when the countryside, smiling and gay, brings to the rider a sort of contagious happiness! What independence! We have not had to be carried there by the horse or the railroad and we are proud to say, "I did it !"

Inventors of auxiliary power appliances for bicycles should take notice of the fact that the secret to-day of the bicycle's popularity is not merely because a per son is enabled to ride fast or far, but because the rid ing was without foreign assistance. Vanity and ego tism cut a considerable figure in the wheel's popularity. To say " I rode on an electric motor bicycle to Albany to-day," would mean the same as to say, "I rode on a railroad train to Albany to-day." But to say, "I rode my wheel to Albany to-day," means something entire ly different. The rider who did this in fast time would be hailed with great applause, and the telegrapl would announce the fact to the world.
In improving the bicycle the main idea is to get the most results out of the least power applied by man to the pedals. Auxiliary power has nothing to do with bicycle improvement. It belongs to a class of inven tions designed to carry or convey, not to those by which man carries himself.-The Wheel.

The Philosophy of Pumping.

The limit of atmospheric pressure being 33 feet, wate will rise from that depth if the air is wholly removed from its surface. This is simply the law of gravitation. The ordinary device for removing the air is the pump As the air to be removed is in weight as the height of the column, it is plain that the same amount of work is required to displace it as to lift or force a column of water an equal height theoretically. Practically the water can be lifted with less labor because of its density and lubricating qualities. This is too often for gotten and lead to a coummon error in placing puins in wells.

It is thought that if we exhaust a cylinder, the ai will rush upward to fill the space thus exhausted. It will, but the air leaves a space, too, that the law o gravitation causes to press downward and produces a load or weight which is increased at every stroke of the piston in the cylinder, and which, when the pressure above and the draught below are more than equal will cause the elastic air above to rush through any existing imperfections of the piston or cylinder to effect an equilibrium below. When this occurs, it is plain to be seen no water will rise
A writer on the subject puts it this way: "To see why a pump will not draw water more than 33 feet verticalıy, suppose the pump cylinder to be 40 feet above the water, commence the process of pumping, the air will be pumped out of the pipe, the pressure of the atmosphere will force the water up the pipe until the pressure inside and outside is equal. It becomes equal when the water has reached the height at which the column of water weighs the same per square inch as the pressure of the atmosphere. When this point is reached the water will be lifted no higher by atmospheric pressure, even though a perfect vacuum be maintained above it. Therefore, if it is desired to lift water further than this distance, it becomes necessary to place the cylinder or working parts of the pump within the limits of atmospheric pressure."
A perfect pump does not long remain so, whether it be used or unused. So as to avoid trouble and annoyance, when making calculations for placing a pump trust nothing to suction, but rather place the cylinder far enough above the bottom to insure a prompt action of the valves, and near enough to the water to avoid the necessity of an absolutely perfect airtight piston, except as the water shall make it so.
A practical rule that experience has taught is for wells of all depths greater than 15 feet to place the cylinder within 12 feet of the bottom and let the pipe extend, with a foot valve on end, to within 6 to 8 inches of the bottom.
This is as near a perfect pumping outfit for wells a can be made. The plunger is made to fit close at all times by water surrounding it, and the valves act promptly, insuring against loss by water running past them. Such a pump is always ready for use. If there is any water in the well, no priming is necessary. Care should be taken to not commit the common error of using pipe that is too small. Too large pipe cannot be used, that is the work is not increased by the use of large pipes; on the contrary, it is much diminished, because the particles of water being globular in form roll over each other with less friction than when
contact with a foreign substance, and the size of the valves being the limit of the moving column the height to which it is raised, plus the quantity, being the only measure of weight, it will be seen the larger the pipes the less labor will be required to raise a given quantity a stated height. This is combined in the old rule o half the diameter of the cylinder for the whole diame ter of the pipe.
The friction in pipes is as the square of velocity; ve locity increases as the squares of the diameters. The deduction from these rules is that the velocity of a given volume of water flowing through a two inch pipe would be increased four times if made to flow through a one inch pipe; the friction by the same law would be increased sixteen times; hence the advantage of using large pipes. Whatever kind of pump is used, place it as near the source of water supply as possible. If this cannot be done, then use as large pipes as possible. It is poor economy to try to make a small pump do the work of a large one by crowding it. It shortens the life and efficiency of the pump without corresponding benefit.-Rural Mechanic.

DECISIONS RELATING TO PATENTS

Michigan, Couit Court-Western District o NITED STATES PRINTING COMPANY Vs. AMERICAN

Sage, J.: PLAYING CARD COMPANY.

Letters
(Samuel J. Murray for an improvement in a machine for printing cards, considered and Held valid and in ringed.
Where it appears that all the elements of the combi nation claimed in the patent are cld, but a new and valuable result has been obtained, the safetyand effici ency of the machine greatly enhanced, and the profits resulting from its operation greatly increased, Held that the combination itself displays invention.
Damages can be collected from the manufacturer of a machine, and further damages from a subsequent purchaser and user of the same machine. The pay ment of damages for making an infringing machine does not give any right to the future use of the ma chine; but this may be restrained by injunction, and when the whole machine is an infringement, it may be ordered to be delivered up and destroyed. (Birdsel vs. Shaliol, 39 O. G., 261; 112 U. S., 485.)
Where a patentee takes a decree for profits agains a manufacturing infringer, he sets the manufactured machine free. The profits of the infringer are full com pensation to the complainant for the wrong done him but a judgment for damages covers only damages in he past and has no relation to the future.
Where it was objected that defendant was not liable because the patented machine was not marked with notice of the patent, Held that such defense to be available must be set up in the answer and established by proof. (Rob. on Pat., sec. 1046 ; Goodyear vs. Allyn, 6 Blatchf., 38.)

The stopping of Steamers.
Mr. William Dixon Weaver, late Assistant Engineer United States Navy, gives, in the London Engineer some interesting calculations as to the length of time and distance required to stop a steam vessel going full speed ahead when the propelling machineryis reversed. Omitting the mathematical formulas, we come to Mr Weaver's conclusions, which are given in the following table for the Cunarder Etruria, the Italian ironclad Lepanto, the United States naval vessels Columbia Yorktown, Bancroft and Cushing, and the Russian torpedo boat Wiborg :

	Displacement.	Horse Power	Speed.	Distance,	Time, Seconds.
Etruria........	9,680	14,321	2018	2,464	167
Lepanto.......	14,680	15,040	18	2,522	192
Columbia.	7,350	17,991	$22 \cdot 8$	2,147	135
Yorktown.......	1,700	3,205	$16 \cdot 14$	989	$83 \cdot 9$
Bancroft........	832	1,170	1452	965	91
Cushing.........	105	1,754	$22 \cdot 48$	301	$18 \cdot 4$
Wiborg.....	138	1,303	$19 \cdot 96$	373	25.6

Twenty-seven Whales Ashore.
discovery was made on the morning of July A lucky discovery was made on the morning of July
4 by two Maoris outside the north head of the Kaipara 4 by two Maoris outside the north head of the Kaipara
Harbor, New Zealand, when no fewer than twentyseven sperm whales were found on the shore, all with in a few miles radius. It being the breeding season for sperm whales, they usually leave the cold latitudes of the Antarctic until the calves are strong enough to return, and it is assumed that in one of these voyages, being confronted by fierce gales, they endeavored to take shelter, but suddenly found themselves in shallow water, where the receding tide soon left them an easy prey for the hands of man. An enterprising firm Messrs. Allison Brothers, of Auckland, have com menced the boiling down process, though their plant is somewhat inadequate for such a gigantic under taking. A horseman who was riding along the beach soon after the discovery was lucky enough to find a large quantity of ambergris, valued at about $£ 3,000$. Many seekers are now on the ground expecting each tide to bring them a fortune.

RECENTLY PATENTED INVENTIONS. Engineering.
Equalizing Loconotives.-John E. Hughes, Pine Bluff, Ark. To keep the engine from cau ing the wheel flanges to be cut by the shifting weight, a to the engine sadde, with its front end secured to the truck cradle, and a transerers bar has apertures in its nds and a projection on its lower surface to hangers secured to the springs is pass down through the apertures of the transverte bar. The equalizing device are readily adjusted to cause the truck to gui
gine from one side to the other as necessary.
Suspension Bridge.-Arthur Sherry Fayette, Miss. This invention provides for such con
struction that the body or floor of the bridge will be self. adjusting that the body or fioor of the briage wil be sen. traction, and a sell-adjusting anchorage is is likewise pro vided. The cables have a spring-controlled end move ment, and a truss support connected with the pins hau
spring cushions, the entire construction being designee to be of a simple, strong, inespensive character.

Railway Appliances.

Car Coupling.-John F. Tiner, Sutherland Springs, Texas. This is a device of the link and coupling and safe uncoupling from the side of the ca. In a vertical slot of the drauthead is pivoted a gravity
block \mathbf{n} which is loosely secured a liftiong plate block on which is loosely secured a lifting plate having
a curved pin on its front, there being simple means to a curved pin on its front, there being simple means to
lift the pin and plate, while an elongated link is insertab
slot.
Car Signaling Apparatus. Charles Harol, New York City. This device comprise ping from the car from attempting to cross other tracks it is sounded by the driver or motorman at the forwa end of the car, on the approach of a car from the oppo site direction to pass the car on which the alarm is rung so that persons crossing the street back of a stational or moving car will be warned not to proceed until the
End Support for Cars. - Seth a. Crone, New York City. 'This is an adjustable support comprises a double truss for each end of the sill the trues ncluding a dion trioe brace and the tru extending from the sill forming an abutment for the lower ends of the knee brace sections. A socket enga ing the forward end of the knee brace is attached to th end sill, and a truss rod engaging the socket extends up.
wardly over a post in the car, to then extend downward wardly over a post in the car, to then extend downward and form at its reaz
Car fender.-William H. H. Diffenbauch, New York City. In this fender a vertical gate having bars of sping track is pivod to the front end of oestension rame forming par the truck frame of the ar, when the gate is struck by a person or obstruction it swings so as to move down upon the track a fender platform, beneath the car platform, in a position to pick up
anything in the path of the car. The device readily

Car Brake.-James H. Core, Etna, Pa. This is a safety or emergency brake for electric or street cars. Each brake consists of a shoe whose lower
portion is adapted to engage the track rails while its op. portion is adapted to engage the track rails while 1 is op.
posite face is concaved to fit the periphery of the car wheel, and each shoe has a link shaft connected with lifting chains and levers. The brakes are hell raise on releasing a lever they fall to the track and the wheels run upon them.

Electrical.

Annunciating Target.-Otto Kauff mann, Sacramento, Cal. According to this improvemen the target 18 made with independent movable rings,
which, as well as the bull's eye, are each adapted to make independent electric contact to actuate an annunciator located close to the marksman, whereby the value of ach shot fired will be immedia dicated, and no scorer is required. The a ower or right or left hand sections, to aid the marks man in taking aim for the next shot.

Mechanical

Portable Hydraulic Punch.-Elijah B. Cornell, Philadelphia, Pa. 'This punch is espe-
cially adapted for making apertures in the webs of railway rails, or in metal beams or plates for architectural, brige and other iron work, and the punch 18 hydraulically withdrawn as well as hydraulically forced through
the metal, both operations being quickly and readily acthe metal, both operations being quickly and readily ac-
complished. All the valve chambers are accessible for making repairs without taking the punch or pump apart.
Water Wheel Governor. - Windeld S. Libbey, Lewiston, Me. According to this improvement provision is made to control the gate-operat-
ing shaft by a mechanism which includes a battery and electro-magnet, the governor being cornected with a centrally ppoveted lever under the ends of which are
spring contacts, there being a fixed contact beneath one spring contacts, there being a fixed contact beneath one
of the spring contacts. The governor may also be conof the spring contacts. The governor may also be con-
nected with a tilting bar to accomplish similar results nected with a tilting bar to accomplish similar results
mechanicall, without the intervention of a magnet, the mechanically, without the intervention of a marnet, the
mechanism \mathbf{y} the motion of the wheel with a minimum of variation
Nut Lock.-Jefferson D. Tynes, Fort Smith, Ark. This is of that class of nut locks made as in a peculiar shape. The bar has its ends curved around to form a bolt hole, one of the ends being bent back outside the body portion with a reversed curve of uniform radius and sprung outwardly and terminating in a beveled end, while the other end forms a flat bearing.

Nut Lock. - Francis W. Coleman Rodney, Miss. Thisgdevice comprises a U-shaped plate on the end of a nut and the other limb polygonally aper ured to it on a polygonal shaped end of the screw boll The improvement is very simple and cheap, and is designed to hold a
on a screw bolt.
Planter.- Cyrus N. Baker, Craw orrsville, Ind. This planter is adapted for potat planting, although it may be used to plant any kind of seed. It is very light and inexpensive, and will plant
eingle or double rows. A seed wheel rotates partially the hopper and partially in a chute connected therewith, spring-controlled shaft being operatively connected onnection with the sprin controlled shaft.

miscellaneous.

Telescope, Microscope and Cam ERA.-Robert L. Stevens, Vineland, N. J. This is having an object glass at one end, a telescope connec
lat ion having an eye or microscope end piece, while an in ermediate section has a fixed focal point and its bod ortion is provided with a plate-receiving pocket of
sit in line with the fixed focal point. In adjustment for se as a camera the sensitized plates or films can be conground or focusing glass,
Gas Pressure Regulator.-Thomas C. McGrath, Bolivar, N. Y. This is an automatic de an which the flow of gas is controlled by a slidab prring-pressed hollow valve or cylinder having one or
nore lateral openings that serve as gas passages, the more ateral openings that serve as gas passages, the
changing position of the sliding valve, according to the Gas Burner. - Charles E. Dressler
Gasesure, govering the pressure automaticalls. New York City. This is an improvement upon a for merly patented invention for a burner for heating pur poses, permitting the user to turn the burner into any
desired position to allow of using the burner in connec on with a blowpipe and for other purposea
Printing Press Perforator. Horace G. Miller, Punxatawney, Pa. This perforato s adapted for attachment to the gripper bar, to be or ing arranged to move upon a slideway, an end portio being held away from the slideway, while a side arm carrying perforating knives has a portion fitting into the space between the supporting bar and the end of the
knife. The device is of simple and inexpensive con snif. The device is on simple and inexpensive conression, and readily adjustable to perforate the pape the exact place desired.
automatic Liquid Measure. - James prises a tank centrally divided to form two compart ments in which are rectangular tank floats, there being and valved outlets at the bottom, the foots being con nected with lever devices by which the valves are alter nately opened and closed. The apparatus is designed to automatically measure heavy or light liquid flowing
throughtit, and is easily set for an operative condition which the friction is reduced to a minimum
Skiff or Canoe Paddle.-Peder K. Yannes, St. Paul, Minn. This paddle has a bent shank ortion from which projectsa a hand grasp, a ring or loop eing pivotally mounted at the bend in the shank. It 1 especially adapted for use by hunters in boats, each are sary to lay down in fring the gun, and enabling quick ward the game
Oil Cake Trimmer.-John S. Ovens Buffalo Center, Iowa. To evenly trim the edges of oil
cake and save the trimmings, this inventor has devised machine in which are three revoluble cutters anda carrier adapted to be moved between them, the cake being pushed sidewise on t the
wise to trim its sides.
Storm Curtain for Buggies. - Ber ard Martin, McPherson, Kansas. This curtain is made in two sections, each shaped to cover one-half of the ve-
hicle front from the top of hood to bottom of body and hicle front from the top of hood to bottom of body, and
also a side portion of the body, each section also having aligo a side portion of the body, each section also having sight openings and one of them a driving flap, and each vehicle body. The entire front and sides of the buggy may be quickly closed by the curtain when desired, and readily opened for exit or entrance, and it may be used

Cigarettr Box.-Andrew L. Ellett, Jr.. Richmond, Va. This box has a sliding holder, with a flexible strip or pull piece attachment, by which one or nore cigarettes may be drawn part tway out of the
older for convenient removal. The strip or pull piece ie attached at its inner end to the body of the holder and its free end projects beyond the outer end of the
Bottle Cutting Apparatus.-Aucust Benson, streator, Ill. This inventor has provided a simple and inexpensive apparatus whereby, with bottles Oif by mechanism controlled by the foot of the blower thus leaving his hadd free to being smoothly cut, leaving the bottle iu good condition for finishing in the "glory hole." The cutter is movable in and out at the neck of the mould, a water supply delivering into the mould near the cutter, there being a mechanism for moving the cutter and a valve controlled
supply.
advertising Device.-George M. Un derwood, Orange, Mass. This device comprises a cara
holder to which are attached supporting arms, terminal rigidly attached clamps being formed of opposing jaws which are adapted to clasp harness saddle terrets, adjusting bolts working in the jaws. It may be conveniently
attached to any ordinary harness for the advantageous
display
horse.
Nore.-Copies of any of the above patents will be farnikhed by Munn \& Co., for 2 cents each. Please of this paper.

NEW BOOKS AND PUBLICATIONS.

The Hunt Air Brake Company In-
The Hunt Book. Pittsburg, Pa.
16mo. Pp. 56 . Illustrated. Company Plates. This instruction book is intended to teach how to
handile the Hunt air brake system. It contains many excellent diagrams and in a pocket some loose folding diagram illustrating the use of the $\begin{aligned} & \text { unt } \\ & \text { ir }\end{aligned}$
How to Make Rubber Stamps For

This book is written by a practical manufacturer of the various methods of stamp making, from the original plaster of Paris method down to the latest and best press
afrial navigation. By Daniel ha
Kins, M.D. Toledo, Ohio. 1895. 8vo
Pp. 90. Plates Pp. 90. Plates.
Outlines the author's views on aerial navigation and
Current History. Second quarter, 1895. Buffalo: Garretson, cox \& Company
1895. $\$ 1.50$ per annum ; single copies 40 cents.
of current history contains ar les on "Argon and its Discovery ; " "The Income Tax Decision;""The Silver Question;" "The Yellow
War;" "The Cuban Revolt," etc. This publication affords reliable i
events of the day.
Elasticity a Mode of Motion. Being a popular description of a new and
Robert Stevenson, C.E., M.E. San 1895 8vo 61 pp Dia grams. Price 50 cents.
An essay on the elasticity of motion, wit
proximate cause of universal gravitation.
(78) Any of the above books may be purchased through this office. Send for new book catalogue just
lished. MUNN \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN

BUILDING EDITION SEPTEMBER, 1895.-(No. 119.)

table of contents.

1. An elegant plate in colors of a residence at Edgewater, Chicago, III. Three perspective elevations
and floor plans. Mr. J. L. Silbee, architect. A pleasing design, with many good features.
2. A residence in the Colonial style, recently in Tennis Court, Flatbush; L. I., at a cost of $\$ 7,500$ complete. Perspective elevation and floor plans,
also an interior view. Messrs. Stevenson \& Greeue, architects, New York City. An attractive design. 3. A dwelling at Bro ed at a cost of $\$ 6,000$ complete. Two perspective elevations and floor plans. Mr. J. M. Lawrence, architect, Mt. Vernon, N. Y.
A residence at Mt. Vernon, N. Y., recently erected at
a cost of $\$ 8,000$ complete. Perspective elevation a cost of $\$ 8,000$ complete. Perspective elevation
and floor plans. Mr. Walter F. Stickles, architect, Mt. Vernon, N. Y. An attractive design in the Colonial style. A cottage at Bergen Point, N. J., recently erected at
a cost of $\$ 4,200$. Mr. Wesley J. Havell, architect, a cost of $\$ 4,200$. Mr. Wesley J. Havell, architect,
New York City. Perspective elevation and floor plans. A neat design, showing some original and pleasing features.
dwelling at Bedford Park, New York City. Two perspective elevations and floor plans. Mr. Edgar ve design iu the English Gothic style.
A two-family dwelling recently erected at New Haven, Conn. Two perspective elevations and floor
plans. Cost complete, $\$ 5,080$. Architects, Messrs. Stillson \& Brown, New Haven, Conn.
3. St. Ann's Episcopal Church, Kennebunkport, Me view. Mr. H. P. Clark, architect, Boston residence at Williamsport, Pa., recently erected
for J. F. Fredericks. Architect, David K. Dean Perspective elevation and floor plans. An attractive design.
Colonial house at Far Rockaway, N. Y. Archi tects, Messrs. Child \& De Goll. Persp
vation and tioor plans. A model design.
Miscellaneous contents: The Hayes metallic lathing, illustrated.-Neolith as a paint and decorative medium for relief work, illustrated.-Gas radiators, fire grates, etc., illustrated.-Improved heaters,
illustrated.-Improved sash lock, illustrated. American homes and the cabinet or parlor organ, ilustrated.-The Laurie steel lath, Mustrated. illustrated.
The Scientific American Building Edition is issued two large quarto pages, forming a large and splendid Magazine of Architectrre, richly adorned with elegant plates and fine engravings, illustrating the most interesing examples of
tion and allied subjects.
The Fullness, Rechness, Cheapness, and Convenience
f this work have won for it the Lakgerst Circulation
of any Architectural Publication in the world. Sold by
all newsdealers. MUNN \& CO., Publisisiers,
361 Broadway, New York.

Wusiness and Personal.

The charge for Insertion under this head is one Doolara line
for eaci insertion a aoout eiont worras to a line. AdverJor each insertion : about eipont word to a line. Adver.
tisements must be rececived at pubbication ofice as eariva 3xal mond
Presses \& Dies. Ferracute Mach. Co . Brideseton . Handle $\&$ Spose Mchy. Ober Lathe Co, Cbagrin Falls. Screw machines, milling macnines, and drill presse The best book for electricians and beginners in elecBy mall. 4 ; Munn \& Co.. publishers, 361 Broadway, N. Y. Expert machinist wanted by a manufacturer of cutlery and hardmare specialties. Must be capabie of making necessary repairs and inventing labor-saving im-
provements. None without bighest references as to provements. None without tiphest references as to
cbaracter and ability need apply. Address Manufacturer bos 773 . New York.
ow -Send for new and compiete catalogue of Scientitc
and other Books for sale by Munn \& Co. 361 Broadmay New York. Free on application.
鲑
HINTS TO CORRESPONDENTS.
Names and Address must accompany all illters,
orno ottention will be paid thereto.
infor

Minerals sent for examination should be distinctly
marked or alabeled.
(6617) J. P. writes : 1. I am making a der is 34 inches. Please answer me the fore tions through Scirstrirc American. 1. How much tions larough scientric Amercan. .1 How much
should I compress the gas in the cylinder? A. The mixed gas and air should be compressed to from 12 to to $1 / 2$.
its volume. 2 How much ppace hould there be betwen piston head and cylinder head at end of inner stroke? A. The cylinder chamber should be $1 / 3$ to $1 / 2$ the stroke. best explosive ? A. One part gasoline vapor to 10 parts air is the best proportion. 4. About what will be the pressure per square inch in cylinder after explosion? A. nch thick, will it be strong enough to stand the pressure? A. Cylinder thickness is correct. 6. About how much power will this give ? I recently took apart a medical
battery and found the galvanic cell to consist of a round (metal tube I think) tube filled with a substance like paste, with resin poured in the end of tube to seal it Can you tell me what this paste-like substance is and how to make this form of battery cell? A. About $3 / 4$ horse power. It will pay you well to consult the latest work on gas engines by Donkin, fully illustrated, $\$ 6.50$ by mail. There are many forms of dry batteries, confrom "Scientific American Cyclopedia of Recelpts, Notes and Queries," $\$ 5$ by mail. Dry.-A good effect can be and Queries," $\$ 5$ by mail. Dry.-A good effect can be
obtained from a paste of plaster of Paris, 1 pound; oxide of zinc, $1 / 4$ pound ; saturated solution of chloride of zinc, enough to make a thick paste. They are very good for
medical coils. Filling for Dry Batteries.-Charcoal, 3 medical coils. Filling for Dry Batteries.-Charcoal, 3 parts ; mineral carbon or graphite, 1 part; perozide of (oxide) 1 , 3 parts, hme hy or starch, 1 part ; all by weight. These are intimately mixed dry and then worked into a paste of proper consistency with a fluid solution composed of equal parts of a saturated solution of chloride of ammonium and chloride of sodium in water, to which is added 1-10 volume of a solution of bichloride mercury and an equa volume of hydrochloric acia. The fluid is added gradu y and the mass well worked up
(6618) C. G. D. asks: 1. Is it possible to superheat water? A. Water cannot be superheated. Superheating means a greater heat than is due to the pressure of evaporation, and is not applied to liquids.
Vapors or steam may be superheated or given a higher temperature than is due to their evaporative presure full boiler may be heated to any reasonable 'degree of temperature above 212°, but is subject to the steam pressure due to the temperature, as well also the enormous pressure of the expansion of the water, which no boiler can resist. 2. If a hoiler is filled absolutely full and heated, will the water be raised to a higher degree
than 212° ? A. In all boilers making steam under pressure the wate is at or very near the temperature of the steam ; at 100 pounds pressure the temperature about $338^{\circ} \mathrm{F}$. Hot water circulating pipes have been in use with a water temperature from 500° to $600^{\circ} \mathrm{F}$., bu the pressure was in proportion to the temperature.

TO INVENTORS

An experience of nearly ffty years, and the preparation of more than one nundred thousand applications for pa-
ents at bome and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A
synopsis of the patent laws of the United States and all foreign countries may be bad on application, and person contemplating the securing of patents, eitber at home or abroad, are invited to write to this office for prices,
which are low, in accordance with the times and our ex Which are low, in accordance with the times and our ex-
tensive facilities for conducting the business Address MUNN \& CO., offce SCIENTIPIC AMERICAN, 361 Broadway, New York.

INDEX OF INVENTIONS
For whict Letere Patent of th September 10， 1895
and each bealing that date

Furace， \mathbf{A} K，Murray Furbace Combiner

Ho$\stackrel{+}{\mathrm{H}}$

L
eaterer martinn machine．W．．Soouie．．．．Lever bracket．urcomanhinine．

Marking kitit．N．Wifodeare cikir cuil
\qquad

56,178
.564 .100

2Hovertisements．

tiv For some clases of tavertisements，Special and Hioner rates are required．

VOOD OI IIETAL WORRKRS
 SEND For CATALOGUES－
－Wood－working Machinery．
Lathe，etc SENECA FALLS MFG．COMPATY，
695 Water St，Seneca Fulls，N．Y． AMERICAN PATENTS．－AN INTER－

THE SHIPMAN ENGIIE MIGG．OU．
engineers．Rochester，N．Y．machinis
May Have Sometbing of Interest to You．

AON NHTATRION INV ENTORS，

 Department of Science and Technology．

\qquad
 THE SANDBLAST PROCESS．－BY J．J．

Hand Forged Blades.

THE MASK AND FALSE NOSE IN-
 Contained in scientiric AMERICAN SUPPEMENT, No.
ill newsealers.
ants. To be had at this otice and from

GASOLINE ENGINES.

11. to 75 borse power. For Propelling Boats of an kinds.
Cheapest Fuel, Absolute Safery, No Licenened Fincineer,
simple Construction. Hindreds in successful Use.

Low Rates to
Chattanooga and Knoxville.
On account of Sons of Veterans Batttlefeld Encamp-
ment. Knoxville, Tenn, and dedication of ment. Knoxville, Tenn., and dedication of Chicka-
mauga National Military Park, the B. \& O. R.R. Co will sell exc sion ticketts from all stations on its lines
east of the Ohio river, to Knoxville, Tenn., for all trains September 12th to 15th, inclusive, and to Chattanooga, tenn,, september for return passage until October 6th, inclusive. The rate from New York to Knozille will be 818.83,
and to Chattanooga 821.35, and correspondingly low rates from other stations.
For f rther information. call on or address nearest
Ticket Agent, B. \& O. R.R.

FARIES TUBE CLEANER SELF-EXPANDINGSCRAPER. NOTHING LIKE IT, BUY THEM OF YOUR DEALER OR OF US. FARIES M'F'G CO 1054 E HERKIMER ST., DECATUR,ILL.

 NOW READY !

Seventeenth Edition of
Experimental Science

hevised and enlarged.

 tific readers, 82 fine cuts, substantially and beautifully
gound. Price in clot t, by mail. $\$ 4$. Half morocco, 85. MUNN \& CO., Publishers, Office of the SCIENTIFIC AMERICA
361 BLOADWAY, NEW YORK.

BUY

TELEPHONES
That are wod-not "chpay things." The difier-
ence incostisitule. We cuarantee our aparatus and
guarantee our customers against loss by patent ence in cost is iittue. We guarantee our apparatus and
guarantee our customers againnt loss by patent suits.
Our guarantee and in struments are isitit ion (i). WESTERN TELEPHONE CONSTRUCTION CO.,
40 Monadnock Block, CEICAGO.

Improve Your You can successfully study at Spare Time . . Frue home, under our direction, Mathematics. Send for ing Piormatective, Lettering, and
Penn Correspondence Institute, Phila., Pa. Box 1234

fowiLATHES TirTOOLS
J. M. WATROUS, Cincinnati, \mathbf{O}.

CONTRACTS WANTED.
 WOOD EN TANKS.

4
2 Horse Power Motor, or 20 Light Dynamo, in paymen of $\$ 5$ per month. Other sizes.
Hobart Electric Mfg. Co., Midd
Wire Bending and Forming

ARMS \& LECS The Most Natural, Comfortable and
Durable. Over 16,000 in use. New Patents and Important Improve-
ment. U. S. Gov't
 See illustrated article int free. AM.
A. A. MARKS, 701 Broadway, NEW YORK CITY
 STATISTICS OF THE UNITED STATES.

THE "ROUND BOX" TYPEWRITER RIBBONS
 Msamples free tupn apphiaction. Manufacturers for the Trade, THE ORNAMENTAL IRON INDUS-
 AUPPLEMENT. No. 1020 . Price 10 cents. T'o
at this omice and from all newsdealers. The Double Acting Rams open the valves as
well as sut then ofr with the power of the

 Wilson's Common Sense Ear Drums. New scientific invention, entirely different
in construction from all orh devicee. Assist the deaf
when all ot ter devices fail, snd where medical skill has

ARCHITECTURE

 ARBORUNDUMOE EWELL DRILLS
F. All latest improvements. Catalogue free.
CHICAGO, ILL.
\$26.50. - An 8 Light I6 C.P. IIO Volt Dynamo

Electrical and natanial Model Work.
 OU USE GRINDSTONES? Hy so, we an supply you. Al. Izves
 The CLEVELAND STONE CO.

The Gorham Adjustable Bed wno

Shingle, Heading, and Stave Mill Machinery
 PRICTION PDLLETS, CLITTCEES, and ELEVATORS providence, b.i.

LITTLE GIANT BOLT CUTTERS

 and NUT TAPPERS,

Phovertisements.

classThere are two classes of bicyclesCOLUMBIAS
and others

Columbiassell for $\$ 100$ to everyone alike, and are the finest bieycles the
world produces. Other bicycles sell for less, but they are not Columbias.

You See Them Everywhere

THE CHICAGO DRAINAGE CANAL-

Pocket

 ... Kodak s5.00envar
Makes
pictures
large enough to be good for contact printing and good enough to enlarge to any reasonable size.
Pexket Koake, loaded for 11 pletares, $1 \% 1 \times 2 \mathrm{~lm}$ n.,
EASTMAN KODAK CO.,
sample fhoto and booblet
for rwo
a cern stamps. ROCHESTER, N. Y.
AFENTS WANTED EOR FINETOOLS INEVERYSHOP.

The

American

Bell Telephone
 Company,

125 Milk Street,
Boston, Mass.

This Company owns LettersPatent No. 463,569, granted to Emile Berliner November 17, 1891, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.

 GLOSSY or MATT. No duul or raing weather to interfere with your work.

Ten years with best results, is the

"OTTO" GAS and GASOLIN
 pendento or gas morks
or gas machines.
No Boiler, No Dange The Otto Gas Engine Wks., Incorp'd, Philadelphia GAS and GASOLINE ENOHEES.
1/to 15 H .

 PIERCY 17 HINE CO.

THE TIN PLATE INDUSTRY IN THE

100\% Profit

No Humbug. New Summer Goods. Agents wanted in every cily and
town in U.S. Catalogues Free. THE BOLGIANO WATER MOTOR CO.
 Many Improvements Heretofor THEM?

Address THE SMITH PREMIER TYPEWRITER COMPANY, Syracuse, N. Y., U. S. A.

ENGINES, Boilers nand Machne Tol fol Now

BINDERS

- THE =-

ESTABIISHED 1845.
The Most Popular Scientific Paper in the World Only $\mathbf{8 3 . 0 0}$ a Year, Including Postage. Weekly--52 Numbers a Year.
This widely circulated and splendidely illustrated
paper is publ shed weekly. Every number contains sixpaper is publ shed weekly. Every number contains six-
teen pages of usefal information and a larke number of teen pages engravings of new inventions and discoveries,
original
representing Engin representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Flectricity.Telegraphy, Photography, Architecture, Agriculture, IIorticulturc, Natural History, ete. Complete list of Patents each wcek.
Terms of Subscription.- - ne copy of the SciEN-
TIPIC AMERICAN will be sent for one jear -62 numberspostage prepaid, to any subscribcr in the United States, Canada, or Mexico, on receipt of Threo Dollars by Clubs. - Spis six months, 81.50; three months, 81.00 . masters. Write for particulare
The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goos astray, but is at the sender's risk. Address
all all letters and make all orders, drafts, etc., payable to
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New York.
 This is a separate and distinct publication from THE
Scientivic Americas, but is uniform therewith in size. every number containing sixteen large pages full
of engravings, many of which are taken from foreign papers ane accompaniod with translated descriptions. The Scientific American Supplement is published weekly, and includes a very wide range of contents. It preserts the most recent papers by eminent writers in
all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural Aistory, Geography, Archeoology, Astronomy, Chemistry, Electricity, Light, Hoat, Mechanical Engineering, Steam and Railway Encineering, Mining, Ship Building,
Marine Engineering, Photography, Technology, ManuMarine Engineerrnng, Photography, Technoloky, Mann-
facturing Industries, Sanitary Engineering, Arriculture, Iactiol ture, Domestic Economy, Blography. Medicine, etc. A vast amount of fresh and valuable information obtainable in no other publication.
The most $i m p o r t a n t ~$
The most important Enoineerin Works, Mecbanisms,
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the
Price for the SUPPLLMENET. for the United States,
Canada, and Mexic Cauada, and Mexico, 85.00 a year; or one copy of the
SCIENTIFIC AMERICAN and one copy of the SUPPLESCRENTFIC AMERICAN and one copy or the SUPPLE-
MENT, both mailed for one year to one address for 87.00 .
Single copies, Single copies, 10 cents. Address and remit by posta order, express money order, or check,
MUNN $\&$ CO., $\mathbf{3 6 1}$ Brondwa

The Scientific American Building Edition is
issued monthly. 82.50 a year. Single copies, 25 cents. Thirty-two large quarto pages, forming a large and splendid Maeazine of Architecture. richly adorned with
elegant plates and elegant plates and other fine engravings; illustrating the
most interesting examples of modern Architectural most interesting examples of
Construction and allied subjects.
A special feature is the presentation in each number
of a variety of the latest and best plans of a variety of the latest and best plans for private resi-
dences. city and country, including those of very dences. city and country, including those of very mod-
erate cost as well as the more expensive. Drawings in perspective and in color are given, together with Floor Plans, Descriptions, Locations, Estimated Cost, etc.
The elegance and cheapness of this magnifcent work The elegance and cheapness of this magnifcent work have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all newsdealers. 82.50 a year. Remit to
MUNN

MUNN \& CO., 361 Broadway, New York.

Expoxt Edition

of the SCIENTIFIC AMERICAN, with which is incor-
porated "LA AMERICA CIENTIFICA E INDUSTRIAL," or Spanish edition of the ScIENTIFIC AMERICAN is pub-
lished monthly, and is uniform in size and typography with the Scientific American. Every number contains about 50 pages, profusely illustrated. It is the finest scientifle, industrial export paper published. It circu
lates throughout Cubs, the lates throughout Cuba, the West Indies, Mexico, Cen
tral and South America, Spain and Spanish possessions -wherever the Spanish language is spoken. The SclENTIPIC AMERICAN EXPORT EDITION has a large
guaranteed circulation in all commercial places guaranteed circulation in all commercial places through-
out the world. $\$ 3.00$ a year, postpaid, to any part of the world. Single copies, 5 cents.
R Manufacturers and others who desire to secure foreign trade may have large and handsomely displayed announcements published in this edition at a very
moderatecost. Ratesupon application. MUNN \& CO., Publisher

