

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

A STEAM SUPPLY FROM COMBINED LOCOMOTIVES. Some time ago the Ohio Steel Company, of Youngstown, O., not being able to generate sufficient steam with the boilers already constructed, and not wishing to wait for the completion of thoserin course of erection, obtained six locomotives from the N.: Y., L. E. \& W. RR. Co.'s round house, and, placing them side by side at the rear of the engine house, connected them up as shown in our illus trations.
Each locomotive supplies steam to the extent of 100 horse power, the agof 100 horse power, the ag-
gregate being 600 horse gregate
power.
Our engravings are from photographs specially taken for the Scientific American by Mr. James J. Dalzell, of Youngstown. In our Supplement of this week we give a num. ber of illustrations of the works of the Ohio Steel Company, which, we beCompany, which, we be-
lieve, is now the second lieve, is now the second
largest establishment of largest establishment
the kind in this country.

Recent Tests of Position Finders.

An interesting series of tests of the position finders of Lieutenant Bradley A. Fiske, U. S. N., and LieuFiske, U. S. N., and Lieutenant I. N. Lewis, Second Artillery, occurred at Fort
Hamilton on Tuesday, Hamilton on Tuesday,
June 25, 1895, before memJune 25, 1895, before mein-
bers of the board appointed by the Ordnance Department. Broadly speaking, the work of the position finder is to plot upon a chàrt the position of ob-| simplification and amplification of the range finder. jects both at rest and in motion, and the test under- It embodies, first, a telescope moving over an arc finder had been set of the tese taken by the board consisted in making estimates by of conducting material and which is pointed upon purpose of comparison was furnished by a set of trithe use of these instruments of the range and direc- the distant object; second, a pivoted pointer moving angulating instruments, one of which was at Fort tion of various objects and comparing them with a over a like arc of conducting material in a Wheat- Wadsworth, on the Staten Island side of the Narrows.
 known standard. The modern fort does not consist of stone bridge circuit with the first named are, the
a single inclosure, but is rather a series of isolated
arrangement being such that when the alidade arm
connected by telephone.
a single inclosure, but is rather a series of isolated
arrangement being such that when the alidade arm
sonnected by telephone.
Observations were made upon a stationary point, are mounted in these forts and hatteries are disappear- \mid pointer on the second are stand at the same angle, the Coney Island lighthouse being used. Other ob. ing and are only raised at the moment of firing ; and in the mortar batteries, as at Sandy Hook, the mortars are entirely concealed, being below the level of the ground, yet with the aid of position finders, aid of position finders,
which may be a mile away, which may be a mile away,
it is possible for both the it is possible for both the
guns and mortars to put guns and mortars to put
45 per cent of hits on the deck of an imaginary ironclad, at ranges of from 3,000 yards to several miles. The object of the position finder is not only to assist in aiming one gun or a set of guns, but is intended to place within the tended to place within the
nower of the commanding nower of the commanding
officer of the fort the con. officer of the fort the con-
trol of all of the variously disposed batteries in the fort. With his own position finder he ascertains the location of a certain group of ships and sees what batteries may be trained upon it. He then telegraphs to the batteries the position and distance the position and distance
he has determined, and he has determined, and
they direct their fire accordingly, following the ships with their own posi-

A STEAM SUPPLY FROM COMBINED LOCOMOTIVES.
servations were taken son Hoffman and Swinburne Islands and other points of known distance with excellent results. Then a series of observations were taken on schooners and other passing craft, and other passing craft, and
afterward compared with ranges taken with a transit. In every case the Fiske position finder showed an error of much less than one per cent for eacin thousand yards of range, which is the standard re quired by both the United States and English gov ernments. A series of test of the Lewis depression position finder was also made with very satisfactory results.
The Electrical Industry. The electrical industry, according to the Elec:trical Review, is about 17 years old and employs over $\$ 1,000,000,000$ of invested capital. The greater part of this immense invest ment has been made since 1888, when the electric motor was proved to be a success.

Frientific smmericam.

ESTAPLISHED 184E.
MUNN \& CO.. Editors and Proprietors. poblished weekly at
NO. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH

Illustrated articies are marked with an asterisk.)	
Armor ptate annealina*............ 9 9 Hook	
Bicycle chain, a	
Books and publications. new: 12	
Brine, a new, for removing snowand inee	
Cornth Canal, the.................. 11	
Cuban insurrection, a relic**.....Orawbridge, the Casseuil8	
Nlectric power from gas engines.: ${ }_{4}$	
Etiectric ${ }_{\text {speed }}$ traction motors, bigh	
Fibers, bast, uncultivated......... 7 Th	
Fires. colored. Fountain, the Geneva* Fruit jar clamp, Dilworth's*	

SCIENIIFIC AMERICAN SUPPLEMENT No. 1018.

recent progress in soll analysis

The usefulness of the chemical analyses of soils in practical agriculture has long been a theme of contencates among agronomists. On the one hand the advo agricultural value of a soil could be easily deduced from the data afforded by analysis. On the other hand, it has been affirmed with equal persistence that hand, it has been affirmed with equal persistence that
the data of a chemical examination afforded no just the data of a chemical examination afforded no just
criterion of the availability of plant foods found in the sample. It is not the intention here to review these discussions, but it will be sufficient to say that there is a certain relationship between the quantities of plant food revealed by chemical analysis and the productiveness of the soil.
It is so evident, however, that this relationship is not constant that it is not necessary to cite any proof. The physical state of a soil, the climatic condition prevailing, the character of the cultivation and the nature of the crop have all to be considered and all have their influence. It has long been known that the supply of water which is furnished to the plant has more influence upon the amount of product than the fertility of the soil itself. A given field which will in one season produce a maximum crop will with prac tically the same amounts of plant food available in the soil in the very next season give a minimum yield. It is therefore evident that, without taking into consideration all the conditions above mentioned, no safe prognostication of yield can be based upon chemical data alone.
The principles of chemical analysis of a soil have been firmly established and especially in this country chiefly through the researches of Hilgard and Peter. While the methods of examination may vary in unimportant particulars, the general principles of procedure have remained the same for many decades. It is not be lieved that there can be any very important amend ment of a useful nature made to the methods already in use.
The digestion of a soil of a given degree of finenes for a given length of time in hydrochloric acid of such a density as to be practically preserved at a given point of saturation throughout the whole course of solution leaves little to be desired in the way of scien. tific accuracy in securing the soluble constituents of a soil. On the other hand the processes of bulk analysis are based upon the well known princip!es of examination of minerals which have been so well established as to have suffered little change during the past few decades, nor is it likely they will suffer any great change in the future.
We must look, therefore, for progress in the line of soil analysis in some other direction than in that which has been so thoroughly investigated in the past. Among the prominent features of recent investiga tion may be mentioned two which are of prime inportance. In the first place attention is invited to the attempts to imitate in the chemical laboratory more nearly the solvent action of bio-chemical activity upon the plant foods present in the soil.
Every chemist has been struck with the fact that the achievements of bio-chemical activity are far more wonderful in their nature than the most brilliant achievements of the chemical laboratory. We find passing into solution in the juices which circulate through plants substances which are obtained only with the greatest difficulty and at the highest tem peratures in the laboratory. We find everywhere in the vegetable world striking instances of metabolism which any chemist, even the most distinguished, would be glad to imitate. We find silicates of the most refractory naturc dissolved and in this state passing to form new combinations in various parts of the plant especially in the bark and the leaves. We find in the same juices the alkalies which only a short time before were united in the most stable chemical com pounds in the mineral fragments of the earth's crust We find compounds of mineral acids broken up, the mineral acids driven out by organic acids which or-
dinarily would not affect them at all and the bases with which they were combined passing in organic forms into the vegetable organism
Evidently, therefore, in attempting to imitate in the laboratory these complicated chemical phenomena we should not lose sight of the fact that it is not possibl for us to measure by our ordinary methorls the power of vegetable metabolism. Nevertheless we are justified in assuming that as a rule boiling concentrated hydro chloric acid will attack mineral fragments in a way different from the organic acids which are brought in contact with them by the rootlets of the plants. Act ing on this idea, it has been suggested, especially by Dyer, to substitute organic acids or their salts for mineral acids in determining the available quantities of potash and phosphoric acid in soil samples. With this idea in view the chemists belonging to the Association of Official Agricultural Chemists have been during the past year engaged in co-operative work with a view to testing the merits of these methods of determining solubility. It is evident, however, that no method of arbitrarily
determining the solubility of plant food in soils can
prove of actual value unless it be tested against the actual capabilities of plants acting upon soil of the same description. It is with this end in view that the Department of Agriculture organized a system of soil analysis in which the chemical results obtained in the laboratory are checked against the actual results obtained by experimental growth in pots. These experiments have now been under way for two years, chiefly, however, with the idea of testing the proper processes to be employed. This having been, with a certain degree of success, accomplished, the work is now considerably extended. A vegetation house has been built capable of accommodating 200 pots. These pots are kept on trucks running on rails. During the day they are run out into the open air and sunshine; during the night and in time of storms they are kept in the vege tation house, which is covered with glass. The soil which is contained in each of the pots is subjected to chemical examination in various ways and with vari ous solvents. In this way it is believed that the actual a vailable plant food which a soil contains, as shown by the character of the crop grown, will be by some of the methods employed indicated with a considerable accuracy by the chemical analysis.

Another most important step forward in the exami nation of soils consists in the methods which are now employed for determining the number and vitality of the nitrifying organisms which they contain. As is well known, the nitrogen which plants use as food can only be assimilated after it has been oxidized by passing through a vegetable organism of a lower nature. The process of changing organic nitrogen, which plant cannot assimilate, into nitric acid, which is a food suited to their needs, is called nitrification.
The process of nitrification consists of three distinct steps. In the first place, organic nitrogen is changed into ammonia. This change is produced by a number of organisms existing in the soil, the most active of which is the bacillus mycoides. The ammonia thus formed is next converted into nitrous acid by the action of a genus of organisms-nitrosomonas. The ni trous acid produced as above described is oxidized to nitric acid by another organism, the nitrobacter. But it is not our purpose here to discuss the processes of nitrification, but rather the methods which are to be employed in examining soils for these organisms. It will not be long before a chemical analysis of a soil will not be considered to be complete until the sample has been examined for the number and vitality of the nitrifying organisms which it contains. In order to make such an examination of practical value, the samples of soil must all be taken under such precaution as to exclude any contamination, and the cultures fo developing the micro-organisms must all be conducted under the same conditions. In order to secure this uni formity, the Department of Agriculture has developed method of taking the samples in sterilized tubes nder precautions which render contamination impos sible, if the directions are carefully followed. Th samples of soil thus obtained are used for seeding cul ture solutions, and the number and vitality of the ni trifying organisms in each sample can be determined by noting the time at which nitrification begins in each of the solutions, and by the seeding of sub-cultures from the original cultures employed. This work is now going on in our laboratory on samples of typical soils and subsoils taken at the agricultural experi ment stations of different States, and representing the ame samples that are employed in the pot culture and for chemical analysis. By proceeding in this way it is seen that a uniform method of chemical and bacte rial examinations of the soil is secured, and the data of these examinations are checked directly against he products of vegetation secured in the experimen tal pots.
Further progress has already been recently made especially in this country, in the physical analyses of sils, chiefly through the researches of Whitnev and King. The separation of a sample of soil into silt par ticles of different degrees of fineness will give data of great value in respect of the capabilities of a soil fo holding moisture and delivering it to the roots of grow ing plants. All the physical data obtained from th examination are of value in the final judgment, and should be considered in connection with the chemical and bacterial data obtained as above described

The Seasoning of Stone

Stone, like lumber, requires seasoning. Stone i ften spoken of as the synonym of solidity-" as solid as a rock." we say, but, as a .matter of fact, stone very far from being solid. A cubic foot of the mos compact granite, for instance, weighs about 164 pounds, while a cubic foot of iron weighs 464 pounds. This plainly shows that in between the atoms which compose the mass of the most enduring stone there exists much space for air, moisture, etc. This seasoning of tone prior to use for building purposes has been well understood by the architects of all ages, but in the modern rush of nineteenth century building too little attention has been paid to it. Now it enters into the calculations of every good architect.

he heavens in joly.

The splendor of the planetary displays in the even ing skies of May and June will never be forgotten by those who. looking out from the shadow of the earth into the realm of sunshine beyond, beheld Jupiter and Mars and Venus and Mercury reflecting the solar glow like a fleet of signaling ships. In exchange for this July has only the spectacle of the continued brightening of Venus. Mercury, in the constellation Gemini, was overtaken by the sun on the last day of June, after which it became a morning star, and Jupiter, also in Gemini, will become a morning star after July 10. Mars, in Cancer, still remains an evening star, but too near the sun and too much diminished in light to attract attention
Venus alone continues to gain in brilliance every night. Viewed with a telescope, she now appears in the shape of a half moon. On the moruing of the 11th she will attain her greatest apparent distance from the sun, and after that time, as, following her orbit, she begins to swing in between the sun and the earth, her form will gradually change to that of a crescent, which will grow longer and more slender as she get nearer and nearer into line with our globe and the so lar orb. Although, as Venus turns her back to us, the proportionate part of her surface which appears from the earth to lie in the sunshine grows smaller, her continued approach more than compensates for this, and so her brightness rapidly increases. At the middle of the month she will be twice as bright as she was on May 1, and between the beginning and the end of July she will gain more than one-third in brightness. Even then she will not have reached her greatest brilliance; that will occur about two weeks later.
As I remarked in a former article it seems to me that of all the planets belonging to the sun, besides the earth, Venus is the most likely to be now in a suitable condition to nurture living creatures resembling the inhabitants of our globe. The fact that she so nearly re sembles the earth in size and mass is one of the strong est a priori reasons for this opinion. There is no planet ary function so important in respect to the question of habitability as the force of gravitation. That governs the density of a planet's atmosphere, the circulation of its fluids, the ratio of the size of its inhabit ants to the strength of their framework, all the mechanical processes and operations occurring upon its surface, etc. Now on Venus the superficial gravity is about 83 per cent of that on the earth. In other words, a weight of 100 pounds here if removed to Venus would weigh 83 pounds there. So slight a difference would probably produce no serious effect upon the conditions of habitaloility of Venus for creatures of terrestrial mould. The case is quite different for Mars, where the force of gravitation is only 38 per cent of its force here, and also for Jupiter, where the superficial gravity is 2.64 times as great as on the earth. It is true that judged by this test alone Mercury and Uranus might also be regarded as probably inhabited planets, since on the former the superficial gravity is five-sixths of the earth's, and on the latter nine-tenths, but in the case of those planets other considerations come to the front. Mercury, for instance, would seem to be too near the sun, to say nothing of the great eccentricity of its orbit, while Uranus is too far from the sun, receiving, as it does, surface for surface, only one
368th part of the solar light and heat that the earth gets. On Saturn, too, the force of gravitation would offer no obstacle to the existence of terrestrial forms of life, since it exceeds the earth's force only one-fifth, but there are many reasons for believing that the physical condition of Saturn is very different from that of our globe.

Moreover, Venus bears a striking resemblance to the earth, not merely in the conditions governing the weight of bodies at her surface, but also in the un doubted possession of an atmosphere containing watery vapor, in the similarity of her mean density, and probably in the practically identical period of her axial rotation. Indeed, there are two particulars in which Venus would seem to possess a possible advantage over the earth; the first being that her axis appears to be nearly or quite perpendicular to the plane of her orbit, from which it results that her seasons are uniform-always summer near the equator, alway spring in middle latitudes, and always winter in the far north and south-and the second that her orbit is so nearly a circle that her distance from the sun is, for all practical effects upon climate, invariable. The intensity of the solar radiation is nearly twice as great on Venus as on the earth (in the inverse ratio of the squares of their mean distances), but inasmuch as the telescopic appearance of the planet suggests that it is deeply shrouded with clouds, the greater degree o light and heat received may, in this case, not be dis advantageous.

Everything considered then, it is to be regretted that our knowledge of the surface appearance of Venus should be so limited as it is. Schiaparelli has indicated one way in which the difficulty arising from the blinding brilliance of Venus may be avoided, namely, by studying the planet telescopically in broad day, and has himself set the example. Our best equipped
observatories ought to be able to tell us something more about that other earth whose distant beauty Saturn is following the other planets in an apparen march sunward, and now crosses the meridian during the evening twilight, but it will remain an evening star until the 1st of November, and during July will be fairly well placed for observation. It is in the constel ation Virgo, about ten degrees east of the bright sta Spica. Its beautiful rings still present a most admirable spectacle for a small telescope.
Uranus remains in Libra, a few degrees in an easterly direction from the star α.
Mercury, which, as already remarked, became morning star at the end of June, will attain its greatest distance west of the sun on th
The month opens with the moon
The mon fulls on the 6th about near first quarter The moon fulls on the 6th, about half past six o'clock n the evening, when it is situated in Sagittarius, near the "Milk Dipper." It reaches last quarter on the night of the 14th, at $10: 30$ oclock, in the eastern part of Pisces, and new moon occurs on the 22d, at 32 min ates after midnight. The moon is in perigee, or near est the earth, on the morning of the 23d and in apogee on the morning of the 11th. The moon will be near Venus on the evening of the 24th and near Saturn on the evening of the 28th.
The earth is in peribelion, or nearest to the sun, on the 1st, about an hour before midnight. Mars is in perihelion less than three days later, but this means more for Mars than it does for the earth, because the former is no less than $13,000,000$ miles nearer the sun a perihelion than at aphelion, while the change of distance for the earth between the corresponding points in its orbit amounts to only $3,000,000$ miles.
Possessors of small telescopes will be interested this month in the following among other beautiful objects:
Beta Cygni, the splendid colored double star-light orange and deep blue-situated in the foot of the Northern Cross in the constellation Cygnus. Epsilon Lyræ, the celebrated quadruple star near the brilliant Vega. A good 3 inch will easily divide both of the pairs composing the quadruple. The Ring Nebula be tween the stars Beta aud Gamma in Lyra. A 3 inch will show it. 61 Cygni, an easily separated pair of small stars, until recently regarded as the nearest in the northern hemisphere of the heavens; and finally, the gorgeous star fields to be found scattered along the Milky Way, which at 9 P. M. about the middle of the month will be seenstarting from Perseus, then jus rising in the northeast, and passing in succession through Cassiopeia, Cepheus, Cygnus, Lyra, Aquila Ophiuchus and Serpens, until, spreading widely as it enters Sagittarius and Scorpio, it disappears behind the horizon in the south. This star-jeweled baldric is the chief adornment of a midsummer's night.

Garrett P. Serviss.

Adansonia Fiber in Paper Making.

Adansonia bark is chiefly used for the preparation of strong wrapping papers, cartridges, and emery paper. In point of strength the fibers obtained from it are only surpassed by those from the mulberry bush Papers made with an addition of adansonia fiber not only possess greater tensile strength, but offer greater resistance to tearing. This is characteristic of such papers in a marked degree, and is due to the long, strong fibers intermingling with the others in the sheet of paper. The fibers under the microscope exhibit so distinctive an appearance that they cannot be easily confounded with other fibers.

To obtain the fiber from the raw bark on the manu facturing scale, the adansonia is first of all cut into small pieces about an inch or an inch and a half long with an ordinary rag chopper, or by hand with strong knives. If it is desired to bleach the fiber after chemi cally treating the cut bark, it is necessary to subject the raw stuff to a system of purification to remove knots, etc. For unbleached papers this purification is not necessary beyond the usual dusting. When the material has been cut and dusted, it is placed in a revolving boiler, and there boiled for ten hours or so, according to what is considered necessary, in a caustic soda lye containing $31 / 2$ per cent of soda in the state of caustic and under a maximum pressure of fifty-fiv pounds above atmosphere. It is usual, in actual prac tice, to soak the bark in the lye within the boiler, and to see that it is covered with liquor before raising the pressure. The object of this is to prevent the fiber becoming discolored, direct steam having the tendency to darken it.
If the fiber is properly boiled, the particles of fibe should easily pass between the fingers when lightly pressed, and feel strong and tough. The pulp should not be allowed to lie long, owing to a species of fer mentation setting in|which destroys the!strength of the fiber. It is usually worked up immediately after being boiled.
The pulp from the boilers is then washed in the breaking and washing engine, a process which takes a long time, owing to the slimy natare of the incrusting
matter surrounding tho fiber stopping up the wire cloth covering the washing drum. This latter is brushed at intervals to keep it open. Pure clean wa er must also be used, and the breaking-in roll should be adjusted to thoroughly open out or brush the fiber only, thus preserving its full length.
The preparation and bleaching of the fiber is very similar to jute and manila and such like raw very similar to jute and manila and such like raw
stuffs. The difficulty of bleaching to a good white olor with a reasonable amount of bleaching power is also apparent in practice, and depends largely on the nature of and the care with which the chemical treat ment has been carried out in the boiling. The loss in weight which the raw adansonia undergoes tarie rom 50 to 60 per cent that is to say 100 parts of adan sonia bark will yield from 40 to 50 parts of paper. Papers made from adansonia fiber alone are not frequent y to be met with, the bulk of the tiber being used in onjunction with others in making compound papers These compound papers possess a strength in propor tion to the quantity of adansonia fiber used in thei manufacture.-Chem. Tr. Jour.

Clectic Distribution of Power from Gas Engines. Captain Lenevue, of France, has recently made a eport upon the power installation at M. Linet's chemi al works at Aubervilliers, near Paris. The power is enerated by gas engines worked with poor gas and ransmitted by electricity throughout the works. The plant is considered a model one of its kind.
The complete generating plant consists of three 80 horse power "Simplex" gas engines, placed side by ide and capable of working separately or together each engine driving a dynamo by a belt through an intermediate shaft, to which is also belted a lighting dyuamo and a pump. The shaft is provided with couplers. There are also two steam engines that were used before the gas plant was put in. Each generator is of 56 kilowatts, as is also the lighting dynamo, and bout twenty motors of from 4 to 15 kilowatts ar placed at convenient points about the works. At pre ent only one of the power generators, the lighting ynamo and six motors are in use. The first two exer useful effect of 91 per cent at 450 amperes, falling to $51 / 2$ per cent at 130 amperes. The efficiency of the 18 orse power motors is 89 per cent; of the 9 horse power 88 per cent ; and of the 5 horse power, 86 per cent
The, results of the test of this plant made by Cap ain L

Circumference of the pulley on which the fric- tion brake was mounted............ 21 feet 9 inches. Diamcter of ditto 6 feet 11 inches. Circumference of brake's action 22 feet. Diameter of ditto................... 7 feet. Diameter of cylinder........................... 23 inches. Piston stroke.......... 30 inches. Net total coal consumed........................ 511 pounds. Duration of trial............ 4 hours 19 minutes. Mean speed (per minute)........................ 120,220 revolutions. Indicated horse power............ $81 \cdot 42$ horse power. Organic yield or useful effect.................... 0.769. Maximum horse power at the brake........... $95 \cdot 81$ horse power. Maximum indicated horse power.............. 124:518 horse power. Indicated horse power of the small motor, esti- mated at 4 horse power. Indicated horse power of the two motors...... 109:81 horse power. Coal consumed per hour....... $118 \cdot 56$ pounds. Coal consumed per brake horse power hour.... $1 \cdot 457$ pounds. Coal consumed per indicated horse power per hour.................................. $1 \cdot 12$ pounds. hour by the two motors. . 1.08 pounds.

The crown used at the coronation of Queen Victoria in 1838, which is sald to be the heaviest and most uncomfortable diadem in Europe, contains 1,273 rose diamonds, 1,363 brilliants, 273 round pearls, four large pendant shaped pearls, one immense ruby, four sinaller rubies, one large sapphire, 26 smaller sapphires and 11 meralds. The large ruby is set in the center of a dia mond Maltese cross at the front of the crown. Thi tone was given to Edward I by Don Pedro the Cruel, and was worn by Henry V at the battle of Agincourt, when it was set in his steel casque. It is peculiarly cut and its center is hollowed out to form a setting for a smaller ruby. Many of the stones were taken from old crowns now unused and others were furnished by the Queen herself. They are placed in ettings of both gold and silver and incase a crimson velvet cap with an ermine border. Four imperial arches spring from the four sides and support the mount, which is composed of 438 diamonds, and the whole is surmounted by a diamond cross whose center is a single rose cut sapphire.

IT is proposed to include an international exhibition of aeronautical apparatus anong the interesting features of the Paris Exposition of 1900 . The sub committee on aerostation in charge of the matter are making preparations for the admission of balloons of all kinds, flying machines and soaring apparatus of every description. The competition for honors will, it is stated, be open to foreigners and Fresch inventors on equal terms. Commandant Renard is at the head of the committee.

an improved frdit jar clamp.

The illustration represents a strong and inexpensive clamp, readily applicable to a fruit jar and cap, and adjustable to make a watertight seal, so that the jar may be held submerged without permitting water to run into it. The clamp has a yielding fastening device which permits any gas or steam that may be gen-

dilworth's froit jar clamp.

erated to escape, but it may be quickly adjusted to bind the cap rigidly in place and make a hermetical seal. The improvement has been patented by Mr. Henry C. Dilworth, of No. 563 Greenwich Street, New York City. The main clamping piece has inturned flanges which fit beneath the rim ordinarily found on fruit jars, the cap resting on the usual gasket, and on the under side of the clamping piece is a flat curved spring, one end of which is fastened to the clamping piece, and there being centrally on the under side of the spring a cushion, to prevent the spring from contacting directly with the cap. In a central slot of the clamping piece is pivoted a locking lever carrying cams adapted to bear centrally upon the spring. In the illustration, Fig. 1 represents the clamp applied to a fruit jar, the cam pressing firmly upon the spring when the locking lever is turned down, and at the same time drawing upon the main clamping piece to firmly lock the cap and make a hermetical seal. In the different positions of the locking lever indicated by the dotted lines and in Figs. 2 and 3, the cams are released from engagement with the spring, and the clamp may be readily slipped on or off the top of the jar. With this adjustment the spring presses down on the cap with sufficient force to prevent water from running into the jar when it is submerged for cooking or other treatment, although the pressure is not so great but that gas or vapor generated may escape without breaking the jar. Patents have also been obtained for this invention in Canada and the principal European countries.

A RIBBON SUBSTITUTE FOR BICYCLE CHAINS.
The advent of the safety bicycle rendered some means of connecting mechanism a necessity; gear wheels, bevel wheels and the chain and sprocket wheel were all tried, and at the present time the latte system appears to be the most popular. The chain, however, has marked disad vantages, such as weight difficulty of properly cleaning and lubricating, and, lastly, on account of the liability to fracture at one of the many joints. The wire cable, in spite of its light

A RIBBON SUBSTITUTE FOR BICYCLE CHAINS.
ness and strength, has not been applied practically to bicycles on account of the imperfection in the means proposed to assure adherence on the pulleys. The metallic ribbon has several advantages to recommend it, as its lightness, flexibility, its strength, and its absence of joints. As with the wire cable, it was found that it was very difficult to secure good adhesion on
the pulleys unless the ribbon was very taut, which, of course, detracted from its strength. These difficulties were obviated by using a special ribbon made from a
steel analogous to that used in piano wire, and at regular intervals orifices are cut. The sprocket whee engages the ribbon with the aid of these holes. The relative size of the wheels is the same as usual. The number of teeth on the sprocket wheel is decreased The ribbon can be cleaned in a moment. For our engraving and the above particulars we are indebted to the Kevue Universelle.

The Electric Railway in Chicago

Electric lines now connecting with the business center of Chicago, either completed or under way give a grand total of 500 miles. The benefit of such transportation facilities to a city can hardly be over estimated, for the speed of travel will average nearly eight miles per hour or twice that of horse car lines Since the opening of some of the new electric lines, a few weeks ago, a great improvement has been noticed and favorably commented upon by nearly every one In the outer portions of the city, or six, seven and eight miles from the business center, the number of new buildings being erected would lead a person to believe that there was a boom in building. Residence as well as business property has increased noticeably in value.
The operation of the trolley lines is almost perfect as the cars run smoothly and without delay, there being very few accidents to persons or machinery About six months from now the city limits in any di rection can be reached from the business center by street car lines in about one hour. The benefit to the city on account of the time thus saved will be inesti mable. The lines already projected will bring every block within the city limits within easy walking dis tance from the car lines.-Stationary Engineer.

AN ASTRONOMICAL LANTERN.

With the simple form of lantern shown in the illus tration, and easily made small maps or charts of the star groups, a great deal of instruction and entertain-

A LANTERN AID TO STAR OBSERVATION.
ment may be realized. The lantern body may be of in or wood, with flues to afford the necessary ventila ion, and in one side has slideways, to facilitate the placing of the diminutive star charts in position in the side of the lantern. The lantern may be readily carried in the hand, and an illuminated chart thus representing any particular group of stars in the heavens great ly facilitates the finding of the group, furnishing most interesting and very simple star lessons. For the charts or maps, a simple blue print is found quite sufficient, where regularly prepared slides are not obtainable, and such prints may be made from originals prepared by the observer, or copied from any of the numerous publications in which star maps are given.

Paste.

J. H. Baldock, in a discussion on the use of starch as a mountant, pointed out that the starch must be brought into a state of disintegration, not solution the usual plan being to make it into a cream with cold water, and then, while constantly stirring, pour on boiling water until thickening takes place. More complete disintegration is obtained, however, by subsequently boiling for a few minutes, while a clearer jelly is obtained, and better keeping properties are secured. The paste should not be too thick, and if not made fresh at the time of using, should be boiled well, and have a little boric or salicylic acid or oil of cloves added as a preservative. Alum is objectionable in starch paste for photographic purposes. H. D. Gower said he prepared a paste that kept well by adding an ounce of starch to half a pint of water and heating, with constant stirring, until thickening occurred. Heat for a few minutes longer, remove
from the source of heat, add half an ounce of glycerin and, when nearly cold, half an ounce of methylated spirit. A few drops of oil of cloves or other essential oil may be added if desired, but this is not necessary.Photography.

A DOUBLE ROTARY TOY WINDMILL

The attractive toy for children represented in the illustration has been patented by Mr. Frederick Beaumont, Jr., of No. 1307 Franklin Street, Kansas City, Mo. It has two wheels, one inside the other, which

BEAUMONT'S TOY WINDMILL.
revolve in opposite directions at the same time. The mall figure is a side view of the device. The wheels and vane may be of wood, tin, paper, celluloid, etc. and in bright colors, and the vane presents obvious advantages for use for advertising purposes.

A BULLETPROOF DOOR AND WINDOW SHIELD FOR MAIL AND EXPRESS CARS
This improvement, for preventing the felonious en trance of train robbers to mail and express cars, has been patented by Mr. Charles G. Ingalls, of Waucedah, Mich. It consists of a two-part shield of plate metal, hown applied and in lowered position over a car door Fix. 1 , while Fig 2 is a sectional view represe - lis f for up on the the shielas The he car. The upper section is strongly hinged to th ide of the car body, the hinges having their joints connected by a single pintle rod around which is coiled spring, to aid the quick descent of the shield when required. The side edges of both sections are flanged and tapered, a flange on the lower edge of the lower section joining the side flanges, and the lower section having an overlapping contact with the adjacent portions of the upper section, there being du plicate spring-jointed connections between the lapped portions of the sections. There are pivotal connections between the lapped portions of the shield sections, which are retained in close contact when the shield is lowered by spring latch hooks. The shields are held in their folded position on the car roof, with the lower section imposed on the upper section, by detent hooks and a locking mechanism arranged to permit the simultaneous release of both sections upon the pulling of a cord or band which hangs pendent in the car, the shields being then instantly thrown into a depending

INGALLS' CAR PROTECTOR
and locked position, as shown in Fig. 1. In each of the shields are perforations through which occupants of the car may shoot at would-be train robbers.

Experiments are being made in the German army with the use of an alnminum pontoon. It can easily be carried by four men.

REDRAWING OF WROUGHT IRON TUBES. Redrawn wrought iron pipes or tubes are old stock that has been collected up, reheated and drawn through circular steel dies which press the tubes into the right diameter. This stock, which consists of old boiler tubing, railings, etc., is first heated red hot in a furnace. The furnace has two ovens or fire boxes each 15 feet in length, about 18 inches in width and about 8 inches in height and lined with fire brick. These fire boxes also heat the boiler, which is incased in the brickwork above. In one of the ovens a number of the old tubes are heated, the attendant, as soon as they become red hot, removing them by means of tongs and placing them in a dipping tank or reservoir containing cold water. This reservoir is about 18 inches in width and 24 inches in depth. As soon as the hot tubes come in contact with the water the dirt

center of the draw bench and between the wheels of the carriage is an endless chain 45 feetin length. This chain is connected to the machinery and travels at the rate of about 80 feet per minute, running over a number of spiked 10 inch pulleys connected to the draw bench underneath. The dies are about 8 inches in diameter on the outside. The inside diameter where the pipe runs through ranges from 1 to 6 inches. The flanges on the dies are about 1 inch in thickness, the center or oval part being about 3 inches thick.
When the heated tube is ready, an attendant places the flat side of the die against the head block. The tube is then drawn out of the furnace with a pair of tongs and the flanged end cooled with water. The end is then run through the die into the jaws on the puiling carriage, which, when drawn taut, grips the
end of the tube firmly. A movable hook attached to end of the carriage is then dropped down into a link of ropped down into a link o the chain and the apparatus set in motion. As the chain moves, the carriage is forced moves, the carriage is forced
forward with it by means of 2) $\begin{aligned} & \text { water. He employs one } \\ & \text { drachm each of the liquid }\end{aligned}$
forward with it by means of produnown fact that alcohol and alcoholic liquid to be examined and of water, both at the same temperature, and mixes them quickly in a cylindrical receptacle; the lat ter should be provided with a cork and should not be touched by the fin gers. The temperature of this mixture is now taken, and by referring to a table showing the temperature obtained by mixing the same quantity of wate with alcoholic liquids of known strength, the percentage of alcohol of the liquid inquestion can rea dily be ascertained. Thi thermometric method would not do where very exact measurements ar wanted, for it is not sensi tive to less than about per cent of alcohol. It
The pipe is placed in the machine and the knife or utter put in position. The machine is then set in motion and the knife forced against the revolving pipe, which makes about from 25 to 40 revolutions pe minute, according to the size of the tube, and is cut hrough in about two minutes. The knives are made of steel about 4 inches in length, about 1 inch in width and about $1 / 8$ of an inch in thickness.
The machine will cut from 25 to 30 pipes per hour During the cutting operation softsoap is applied, which keeps the knife from getting heated and also nakes the material cut easier. The pipes when fin shed are used principally for boilers, green houses hot water purposes, railings, paper rollers, etc.
The sketches were taken from the plant of the Eagle Tube Company, Jersey City, N. J.
for Determining
Alcohol.

THE TUBE REDRAWING INDUSTRY.
and scale instantly drep off, giving the pipe a brand|the hook, drawing with it the red hot pipe through|would, therefore, not answer for testing wines connew appearance. When cool they are shanked by the die. The pipe, as soon as it is passed through the taining 10 per cent or less of alcohol. One point heating one end of the tube red hot in a furnace, then hammering the heated end to a point on an anvil. The object of shanking is to have a good strong end for the jaws on the pulling carriage to catch hold of when the tube is drawn through the die. If the pipe was not shanked, the material would break off. After shanking the tubes are placed in the other fire box of the furnace and heated up to a white heat about $1,500^{\circ} \mathbf{F}$. Running from the mouth of the fure $1,500^{\circ} \mathrm{F}$. Running from the mouth of the furnace a draw bench about 21 feet in length and 10 inches in
width. On this bench, traveling back and forth on a track, is a pulling carriage, connected to the front end of which are two movable steel jaws 8 inches in length and $11 / 2$ inches in width. At the head of the draw bench is an iron head block, against which the circu lar steel dies are held in position. Passing along the the examiner, who then passes them to the cutter. the aurora made the long winter night almost like day
flaws in them. The parts to be cut off are marked by die, is reheated and drawn through another die a little less in diameter. This operation is repeated, using every time a smaller die until the right size tube has been obtained. About 1,500 feet of tubing is redrawn per day, it requiring the labor of three men. After the edrawing operation is finished the red hot tube is placed n the straightening table, over which slightly inclined a movable flat iron frame which moves back and forth when the machine is in motion over the pipe. This rame, which is about 5 feet in length and $21 / 2$ feet in width, makes an 18 inch stroke. The weight of the frame, which is about 1.000 pounds, straightens the pipe in about one minute. After straightening, the tubes are carefully examined to see that there are no the examiner, who then passes them to the cutter.

Usually at this season of the year there are calls for colored fires; the following from Merck's Report, which it says are approved formulas, may be of interest. On account of the poisonous and explosive nature of some of the ingredients, the utmost care in their manipulation is necessary.

The objection to almost all blue fires is that when burned they generate arsenical fumes, and are, there fore, not suitable for indoor use. A blue which can be used in a theater or large hall, though less brilliant than the foregoing, may be made as follows :

	Parts.
3. Sulphur.	15
Potassium sulphate.	15
Ammon. copper sulphate.	15
Potassium nitrate..	27
Potassium chlorate.	28
Crimson. Parts.	
4. Potassium chlorate.	17
Charcoal.	23
Sulphur	90
Strontium nitrate.	280
or :	
	Parts.
5. Charcoal...	18
Antimony sulphide.	22
Potassium chlorate	69
Sulphur.	72
Strontium nitrate.	220
Green.	
6. Potassium chlorate.	
Barium nitrate	66
Sulphur......	21
or:	
7 Metallic arsenicCbarcoal........Potasium chlorSulphurBarium nitrate.	2
	3
	13
	77
or:	
8. Charcoal...	Parts.
	2
Black antimony sulphide.Potassium chlorate.	2
	5
Potassium chlorate..	${ }^{6}$
Barium nitrate.	80
LILAC. Parts.	
9. Black copper oxide	
Chalk (dry)	20
	25
Potassium chlorate.	49
PINK. Parts.	
10. Charcoal.	1
Chalk...	20
Sulphur...	20
Potassium chlorate	27
Potassium nitrate.	32
or :	
11. Sulphur.	Parts.
Calcium chloride, dried.	23
Potassium chloride.	61
PURPLE. Parts.	
12. Lampblack.	1
Realgar...........	. 1
Potassium nitrate	. 1
Sulphur...	. 2
Potassium chlorate.	.. 5
Strontium nitrate, fused..	16
or:	
13. Copper sulphate.	Parts.
	. 39
Sulphur.........	.. 52
Potassium chlorate............... 310	
RED. Parts.	
14. Charcoal...	Parts.
	.
Black antimony sulphide.	. 4
Potassium chlorate 5
Sulphur............	. 13
Strontium nitrate, dried.	40
or :	
	Parts.
15. Sulphur	16
Strontium carbonate.	23
Potassium chlorate.	61
or :	
	Parts.
16. Antimony sulphide..	.. 4
Potassium chlorate.	. 5
Sulphur.......	13
Strontium nitrate, fused..	40

A little charcoal or lampblack makes it burn quicker.

In the preparation of colored fires the ingredients which should be perfectly dry, must be separately powdered and sifted through a hair sieve, and putinto well stoppered, wide mouthed bottles until ready for ruixing. The mortar must be thoroughly cleaned, before and after powdering each ingredient, particularly potassium chlorate. Mix with the hands or with a wooden spatula on sheets of white paper.
Sulphur, and salts of the poisonous metals-antimony, arsenic, mercury, etc.-should not be used in making colored fires for indoor use. The sulphur may advantageously be replaced by shellac, which hardly smokes at all when ignited
For red the following formulas are used :
 or: ${ }^{\mathrm{St}}$ Parts.
24. Strontium nitrate.. 12 . 8
 Stearin.....

For green the following is employed :

25. Potassium chlorate

Barium nitrate.
2
-1
Milk sugar.

High Speed of Electric Motors.

Some interesting trials on the Nantasket branch of the New Yorı, New Haven \& Hartford Railroad occurred June 20 and June 22. The Nantasket Beach branch was chosen for the experiment for the reason that within its limits will be included most of the dif ferent problems which will have to be determined to make electricity a successful substitute for steam. The curves are many and sharp, the grades are steep and trains will be run with great frequency. Seven miles is the distance between the Old Colony station and Pemberton. The tracks are fifteen feet apart from center to center, and between the tracks is a single line of poles on which are supported the cables and trolley wire. Upon the tangents the poles are set with such geometrical precision as to secure absolute ly perfect alignment. The two flexible copper bond seven inches long are under the base of the rail at each joint and riveted to each rail. A power house, No. 1 is situated midway between the terminals and con tains two tandem compound engines; the two generators develop fifteen hundred horse power each. Four motor cars have been built after the style of baggage cars. To secure traction they have been made extra heavy, so that when fully equipped they will weigh about 60.000 pounds each. Two will have four motors each and the other two motors each hung on trucks. The cars are equipped with the Westinghouse air
brake, and in addition to a 15 inch gong, there will be brake, and in addition to a 15 inch gong, there will be a chime whistle worked by compressed air. The test was held in the presence of only a few invited guests. There was none of the gradual increase of speed characteristic of the steam loco n tive. A test was made of a load of 175 tons, equal to a train of seven cars, but the ease of starting and the speed obtained showed that a load of three or four times as great could be easily drawn. A speed of more than 50 miles an hour was obtained, and for a part of the distance it was estimated that the train made at times the enormous speed of 80 miles per hour. A hot box prevented a greater increase of speed. When the train was making 80 miles an hour there were still five notches left in the
"controller" in the motor, so if the additional current
had been applied, it is thought that a speed of 90 miles an hour might have been obtained on the level stretches.

The New Atlantic Steamer St. Louis.

The St. Louis finished her second voyage at New York on June 22, 1895, completing the passage from York on June 22, 1895, completing the passage from
Southampton in seven days, seven hours and eleven Southampton in seven days, seven hours and eleven
minutes. The outward passage was made in seven minutes. The outward passage was made in seven
days, three hours and fifty-three minutes. When tbree days out from Southampton, while proceeding in the face of a heavy wind, the ship would not respond to her rudder. An inspection was quickly made of the machinery, which was found to be working perfectly. The hand steering apparatus had been used, and that was tested, but the St. Louis would not respond; a sailor was sent over the stern to see what was the trouble. He discovered at a glance that the bracing plates of the twenty-seven ton rudder had broken aud that the fracture extended diagonally upward from the pintle of the rudder; there was therefore no leverag for the steering gear and the ship was practically help less as far as her rudder was concerned. The captain and chief engineer decided that the twin screws should be used to guide the vessel, so they shifted the action of the port and starboard engine as the course demand ed and the St. Louis forged ahead with little diminished speed. The accident was due to a hidden flaw in the steel of which the rudder was made. The rudder was taken off when she reached her dock and that of her sister ship, the St. Paul, was substituted, the work be ing quickly done, and the St. Louis sailed on her third voyage on her schedule time, J une 26.

The Strangest Insect in the World

The aweto, as the Maoris or natives of New Zealand call it, or Hipialis virescens, as naturalists term it, is found in New Zealand, and is a vegetable caterpillar of from three to four inches in length, and, so ar, science has not been able to say whether it is a vege table or an insect. It is always found at the foot of large myrtle trees that have beautiful red flowers on their stems, and a beautiful creeping clematis as white as the snow. The Maoris call this tree by the name of rata. The aweto : uries itself among the roots of the rata, a few inches below the ground, and there lives until it is full grown, when it undergoes a most wonderful change. The spore of a vegetable fungus, termed by naturalists Sophœria robertsii, fastens itself to the neck of the caterpillar, just between the head and the first ring, and then grows upward to the height of from six to eight inches. Many people assert that there is never more than one stem, but such is not the case, for some have been found with two stems, although very rarely. The stem shoots up out of the ground, above where the caterpillar is living, about two or three inches; below the earth it grows into the aweto, until it fills up every possible space within the outer skin without changing the form of the insect in the slightest way whatsoever, but sim. ply substituting a vegetable matter for animal matter. As soon as this takes place both the plant and the caterpillar become dry and hard and die, but retain exactly the same form as when alive. The whole has a brown color, and the insect appears a wooden caterpillar, with a huge horn standing up from the back of its neck. How the caterpillar manages to propagate its species no one can tell. Usually the caterpillar becomes a chrysalis, the chrysalis changes into a moth, the moth lays eggs, and these eggs again become caterpillars, and so on without stopping. Many reasons are given why the plant shoots up from the back of the neck of the aweto. One is that the a weto has a slimy substance oozing from its neck, which, while the aweto is boring at the foot of the rata tree for its only food, catches the seed of the fungus and holds it fast there till the latter begins to grow. When it has sucked all the vegetable life out of the aweto it must naturally die, for it finds no further nourishment. The aweto is often found in large numbers.-Public Opinion.

Relative strength of Metal and Timber.
Doctor Robert H. Thurston, in a recent article, discusses various materials in which comparisons of interest are made. At the outset he gives the following generally accepted figures: Castiron weighs 444 pounds to the cubic foot and a 1 inch square bar will sustain a weight of 16.500 pounds; bronze, weight 525 pounds, tenacity 36.000 ; wrought iron, weight 480 , tenacity 50.000; hard "struck" steel, weight 490, tenacity 78,000 ; aluminum, weight 168 , tenacity 26,000 . We are accustomed to think of metals being stronger than wood, and so they are, generally speaking, if only pieces of the same size be tested. But let equal weights of the two materials be compared, and it will then be found that several varieties of wood will prove stouter than ordinary steel. A bar of pine just as heavy as a bar of steel an inch square will hold up 125,000 pounds, the best ash 175,000 and some hemlock 200,000 pounds. Wood is bulky. It occupies 10 or 12 times the space of steel.

Sorrespondence

A Petrified Tree.

To the Editor of the Scientific American :
I thought it might be of interest to inform you of the discovery of a petrified tree 165 feet under ground, at the Stolls City mines, eight miles west of this place. The tree was found under 100 feet of lead and zinc ores and 65 feet of flint rock. The petrifaction is the best I ever saw. The grain seems to be of a fine wood. Some think it mahogany, others walnut.
H. G. Voorhies

Mt. Vernon, Mo., June 17, 1895.

The Uncultivated Bast Fibers of the United

As the indigenous or uncultivated species of plants producing bast fiber in the United States form an interesting group in the fiber series, and are the subject of constant inquiry, a report upon them by Mr. Chas. Richards Dodge has recently been published by authority of the Secretary of Agriculture and distributed by the department.
For the most part, the species considered belong to three large families of plants: the Malvaceæ, of which the cotton plant is a member; the Asclepiadaceæ, and the Leguminosæ. The malvaceous species are the most numerous and possibly the most widely distributed, their fiber possessing fair strength and comparing with jute rather than with flax and hewp though whiter in color than the former. These Mr. Dudge would consider as jute substitutes, while the species belonging to the two other families, and which yield stronger fiber, may be termed hemp substitutes and are therefore more valuable.
That these fibers are not employed commercially is due to several causes, one of the principal of which is the want of a satisfactory decorticating machine.
The first of the malvaceous fiber plants mentioned in the report is the swamp rose mallow (Hibiscus moschentos), one of the commonest of mallows and found in many parts of the temperate United States. Experiments with this plant date back many years, and fifteen years ago it was the subject of renewed experiment in New Jersey, the advent of new machinery for cleaning bast calling attention to the plant and placing its cultivation for fiber among the possibilities. Samples of fiber from the New Jersey experiments were considered not only as good as India jute, but as good as secondary grades of imported hemps.
The plant that furnishes the "rozelle" hemp of the Madras territories belongs to the same genus with the above. It thrives in cultivation in Florida, will grow on quite poor land, but will not stand much frost. Scientifically, it is known as Hibiscus sabdariffa.
Another malvaceous plant, which grows wild all over India, and which is common in Florida, is Urena lobata. The natives of India consider its fiber useful for manufacture into bagging and twine, and it is re garded as a tolerable substitute for hemp. The fiber is described as very fine and strong, white in color, and a meter in length.
Sida is still another genus of malvaceous plants whose bast is rich in fiber, that of S. rhombifolia being known as Queensland hemp. This species, the fiber of which is said to be easy of extraction and fine and strong, abounds in many portions of South America and has been known as a weed throughout South Carolina for many years. Mr. Dodge's conclusions regarding the cultivation of the plant on American soil (based upon the results of limited experiment, however) lead nim to think that the plant is of too slow growth and the stalks too small when grown to mak it of commercial value as a fiber plant
The cotton plant of Southern agriculture (Gossypium herbaceum) also belongs to the Malvaceæ, and it may not be generally known that its stalks contain fiber of good quality. In the collection of fibers sent to the Paris Exposition of 1889 there was a fine example of the fiber of the cotton stalk, from a plant grown in Georgia, prepared by the American Consolidated Fiber Company from a green stalk sixty days from date of planting. In the letter of transmittal it was stated that "the fiber is not only good for thread, but for a thousand other purposes. It is a splendid fiber for paper also, as it will not tear as easily as that made from wood pulp or rags.'
The okra (Abelmoschus esculentus) has long been regarded as a fiber plant of value in India and other countries, though the production of its fiber has never assumed commercial importance. The plant is a native of the West Indies, but has been cultivated from early times in the Southern States for it pods, which form a useful article in the domestic economy. A few years ago okra attracted considerable attention as a possible tiber for Southern cultivation, and a large correspond ence with the department resulted. As is frequently the case, however, the value of the plant and the eas of its cultivation for fiber were very much overstated, and subsequent experiments did not substantiate the claims made for the plant. " From a careful considera tion of the subject in all its details, not only as relates
to our own, but to other countries, and considering the weakness of the fiber compared with jute, I conclude," says Mr. Dodge, " that the cultivation of the okra plant for its fiber cannot be made a paying industry in the United States."

A very common malvaceous plant that has been cul tivated experimentally in the United States, where it is everywhere common as a weed, is the Indian mallow (Abutilon avicennæ). The fiber of this plant is known in South American countries as cañapiña. Its Chines name is ch'ing ma, and it has been exported to Eng land under the common name of jute. It has been called also Abutilon jute, and the name American jute was once applied to it in this country. The plant pro duces an abundance of fiber, which is strong, glossy, and white, and the ligneous body gives more cellulose for paper stock than any other species. The fiber takes dye readily, and an advantage is claimed in this respect over Indian jute, which is antagonistic to cheap bleaching and dyeing. The fiber was once classified in value between Italian and Manila hemp, but it wil not grade so high, it coming nearer to jute, as is proved by its being sold as a variety thereof.
The milk weed family, the Asclepiadaceæ, contains a large number of fiber-producing plants found in various parts of the world. The several species found in the United States all possess a fibrous bark, and bear seed pods filled with silky hairs resembling thistle down.

The most important species, viewed as a fiber plant is Asclepias incarnata, or swamp milkweed, which abounds frou Maine to Minnesota and southward to Louisiana. The fiber of this plant was well known to our Indians, who used it for making bow strings.
Samples of fiber from the plant having been submit ted to the department were found to be light gray in color, much finer than hemp as usually prepared, soft and glossy, and of greater strength than the majority of bast fibers of wild growth in the United States.
Mr. Dodge thinks that the plant promises better re ults than any of the indigenous species above con sidered. If it will thrive upon waste lands where no other crops will grow, as it is said that it will, it has to that extent an advantage over hemp, considering the strength of the fiber to be fully equal to that of the lat ter. As to the value of the fiber in manufacture, Mr Dodge can make no positive statements further than
 be strong and good. As the fiber resembles hemp there is little doubt that it could be employed in a uses to which the latter may be applied.

The commonest and best known species of milkweed is the Asclepias cornuti, which is found in Canada grows over a wide section of the United States, and is well known in portions of South America and the Old World. The culture of the plant is said to be attended with little difficulty, as it generally thrives on poor soil, and, like the former species, is perennial. The only portion of it of which practical use can be made is the bast, which furnishes quite a long, glossy fiber that is strong and durable. Early authorities have given this fiber a place between flax and hemp, and it has been claimed that the yield is about equal to the atter.
Dr. Masters states that "its excellent fiber is woven into muslins, and in some parts of India is made into paper."
The fiber forms a good paper material and, doubt ess, might be cultivated with profit for this purpose if for no other.
A French firm has used the silk-like filaments of the seed vessels by mixing 20 per cent oi the material with 0 per cent of wool, the fabric being called "silve cloth." The substance could not be used alone, as the cells are so smooth that they have no felting property and therefore will not hold together and cannot be pun. They possess little strength, and can be con sidered only as "down," useful for no purpose but wadding or for stuffing pillows.
The family Leguminosæ contains many species of plants that yield a strong bast fiber, some of the foreign species having a known commercial value. In ourown country, the single genius Sesbania of this family has attracted attention as a fiber producer. Specimens of the straight stiff canes of S. macrocarpa, or wild hemp of the Colorado River region, have been sent to the department at different times in the past twenty years. The fiber of the department museum sample is three or our feet long. The filaments as extracted are exceed ingly coarse and resemble flat ribbons of fiber, uncom
monly white and lustrous, and clear and smooth to a remarkable degree. Single filaments are quite strong, but when several are twisted together thes lose part of their strength, a defect sometimes observed in bet ter fibers. The fiber is sufficiently strong for smal cordage for ordinary use, though too coarse for fish line or twine, as roughly prepared. Among the manu factures for which it has been claimed that it is fitted are wrapping, writing, and bond papers, twine and cordage, sacking, overall stuff, and Irish linens. The Indians of the West work it into nets and fish lines.
Having noticed the more important species of uncul-
ivated bast flbers, it remains to mention a few forms
of less importance that have been the subject of occa sional inquiry or of limited experiment.
The Indian hemp (Apocynum cannabinum) has from early times been regarded as a useful tiber plant by certain tribes of our Indians, who manufacture from it bags, mats, baskets, belts, twine, fish lines, and nets. The fiber is easily separated from the stalk, and, when cleaned, is quite fine, long and tenacious. In color it is light cinnamon, though finely prepared specimens re creamy white and remarkably fine and soft. The fiber will rank with that of Asclepias for strength, and is readily obtained, since the stems are long, straight, mooth and slender. Although paper has not been made of it, it could doubtless be used for that purpose.
Urtica gracilis, one of the stinging nettles, aboundng throughout the United States and Canada, pos sesses a good fiber in its bast. A few years ago it at racted attention in Minnesota, and an attempt was made to reduce the fiber, but the experiment was inter rupted before completion and no report could be made.
Another of the nettles, Laportea canadensis, pro duces an average quality of fiber, samples of which were received by the department from Kansas in 1890. Several years ago the stalks of the common burdoc Arctium lappa) were the subject of experiment in Illinois, with the object in view of producing a fiber material suitable for binding twine. The fibers in the samples submitted to the department were found to be barsh and wiry, very brittle, and to possess little trength. Fiber plants of this class have no value in the industrial economy, the fibrous material in their bast being too inferior ever to be used in manufacture where so many other better fibers are obtainable, and possibly at less cost.
Another form of fibrous material that has been em ployed to a certain extent in the coarsest of manufactures are the tree basts, or the fibrous inner bark of such trees as the linden and cypress. The linden trees are familiar in our public parks and gardens, wher they are cultivated for adornment, though as lumber they are known as basswood. Tilia americana is the American species, while T. europœa is that of the Old World. The inner bark of the former is not utilized, as far as Mr. Dodge is aware. although the bast of the latter is much employed in Russia in the manufacture of an exceedingly coarse kind of rope for making the matted shoes worn by the peasants, and also for the manufacture of the mats which are used to a considerable extent by furniture dealers for packing. The American species was the wigobimizh, or "tying bark tree," of the Algonkin Indians, who used the bast for making ropes, thread, and coarse cloth
The Southern cypress, Cupressus th yoicies, has a very enacious inner bark that can be readily peeled in long trips. It is not likely to come into use industrially in his country, although worthy of notice.
The wahoo (Ulmus alata) is an elm that abounds in the hummock lands of middle Georgia. The bark is very tough, and, when stripped from the tree and teeped in water for several weeks, becomes quite phiant and is said to make excellent horse collars.
Finally, the leather wood (Dirca palustris), of rich amp woods from New Brunswick to Minnesota and Missouri and south to the Gulf, has a fibrous bark which is remarkably tough and which was used by the Indians for thongs and by country people for ropes, whence the popular names of leather wood and rope bark.

The Bicycle Hump.

"This protestation against the 'bicycle hump,'" said an old rider to me, "is very funny. As a matter f fact the man who bends over is not 'humped,' but the fellow who undertakes to sit up straight is round shouldered."
"Watch a rider coming head on," he continued "and you will think the one leaning over the bars 'humped,' while the other class appears straight. But when they pass and you get the rear view you find the back of the stooped fellow is straight, the bend being at the hips, the shoulders being pushed back square by the weight resting on the rider's hand, resting on to of the bar.

The rider who tries to sit straight reaches under the grips and by pulling draws his shoulders together crawping his chest."
I looked for myself and found the statement of my friend to be true. Look for yourselves: you will be surprised.-Bicycling World.

On the rail way bridge of the Chicago \& North western Railroad in Milwaukee. Wis., a gas engine has been installed by Mr. E. C. Carter, principal assistant enyineer of the road, to operate the draw bridge. It performs its work in a most satisfactory manner, and it would appear that this kind of power is particularly adapted for such work. It is cleaner than a steam engine and the fuel is obtained by simpls piping city gas to the central pier of the bridge, while with a steam engine coal must be delivered on the bridge and

RELICS OF A CUBAN INSURRECTION

A recent number of La Ilustracion Española y Americana contains a number of engravings of scenes in the vicinity of Manzanillo, which is in the eastern part of the island of Cuba, and the scene of the present hostilities. It was in this part of the island that the former revolution of 1868 took place. During the fighting which then occurred, the Spanish troops burned down the buildings pertaining to a large sugar estate known as the Ingenio de la Demajagua. Among the ruins left upon the ground was a large gear wheel and a fly wheel. These are shown in our engraving as they now appear after a lapse of twentyfive years, during which time a jaguey tree has sprung up between the spokes of the gear whecl and has assumed the large proportions represented in our engraving. The growth of this tree gives some idea of the Cuban flora and the rapidity with which it springs up and spreads over the ground. According to our contemporary, the present uprising of the Cubans is making extensive progress. A large portion of the eastern section of the is land is already in the hands of the revolutionists, and it is doubtful whetber the Spanish gov ernment will be able to bring in troops enough to overcome the patriots.

Hrine for Removin Snow and Ice fron Rails.

The repeated demands by managers for a brine in place of salt resulted in President Fitch, of the Bay City, Mich., trolley Bay City, Mich., trolley road, making a series of
experiments covering experiments covering
many months and which were at last successful in producing cheaply a method of compounding a highly concentrated clear salt liquor with specific gravity greatly in excess of water, and which is absolutely free from deposit solutely free from deposit
or sediment, is no more exor sediment, is no more expensive in first cost than
salt, but can be applied salt, but can be applied
with less trouble and exwith less trouble and ex-
pense, and is very much more economical in use wastage being almost wholly saved. The basis of the triple chlorides, as President Fitch names the liquid, is natural salt water as pumped from his water as pumped from his
salt wells, with a mechansalt wells, with a mechan-
ical and chemical treatical and chemical treat-
ment. It will not freeze even at 20° below zero and has an immediate action when applied, its penetrating effects being very much greater than dry salt or the brine formed from salt melting on track. During the past winter During the past winter the ripile chlorides was
used on several street railused on several street rail-
ways with surprising and ways with surprising and
highly gratif ying success, and these roads are so thoroughly convinced of its superior advantages they have abandoned salt and will use the brine exclusively in future. The method of its application will at once suggest itself to every manager. Fo curves, crossings and switches the brine is applied by
the man whose duty it is to sweep these points, pouring the brine from a common sprinkling can with small spout nose just as he uses water in summer.
If much is used at any special points a barrelful can be set out in any convenient basement or vacant place, as the brine will not evaporate in cold weather.
For main line tracks a small tank or keg can be set on the front platform and the brine fed to the rail by small iron pipes passing through the platform floor and reaching almost to the rails and discharging a stream from the size of a slate pencil up to any amount desirable, the flow being regulated by a cock. For very bad track and long distances, the sprinkling car used during the summer is pressed into service, the sprinkler being removed or changed so as to dischange only upon the rails. The brine has less corroding
effect on iron and copper bonds than salt, and the method will readily commend itself to managers.

Electric Lighted Buoys in New York Bay.
Incandescent electric lamps on spar buoys have been experimentally used in New York Bay for several years, but an installation has now been completed which marks a considerable advance in maritime engineering and renders the entrance to New York Harbor possible for the largest vessels at any hour of the night. Gedney's Channel, which is the course taken by the transatlantic steamers, is only 1,000 feet wide, and while buoyed by day, became an impracticable course at night. It is now lighted by 10 incandescent lights of 100 candle power each, placed on the top of spar buoys on either side of the channel, forming a lighted buoys on elther side of the channel, forming a inghte avenue for the shipping. The lamps are mounted on

relics of a cuban insurrection.

50 foot cedar buoys which are shackled to 5,000 pound mushroom anchors. The cable is constructed of a cop per conductor, insulated with gutta-percha, then bed ded with jute and sheathed with an armor of hard drawn copper wires. This cable carries successfully according to the Engineering Record, a pressure of 1,000 volts alternating current under water for the distance of $61 / 2$ miles. The generating station is located about 2,000 feet back from the beach. The current for lighting the buoys is carried to the submarine cable through a lead-covered conductor laid in a creosoted subway 4 feet underground. The electric plant is in duplicate. The current is generated at 100 volts and is raised by a step-up transformer. All the high-tension lines are either underground or in cables at the bottom of the sea.

ALUMINUM felloes in bicycles are regarded by som makers as an improvement on wood. ordinary, and almost in redible, for a model engine such as is described; yet it indicates a waste, by conduction and radiation, after all, of no less than twenty-five per cent of all heat sent to the machine from its boiler.-Science.

Manufacture of Great Guns.

Seven 12 inch nickel steel tube army rifles have recently been completed at the Watervliet arsenal with a variation in weight between the lightest and the heaviest of only five pounds. The guns are forty feet ong and weigh approximately 115,000 pounds apiece Each has an inner tube over which a series of hoops are shrunk for nearly the entire length. Over these is a single jacket two-thirds the length of the gun, and over this again are shrunk more hoops. Aside from this large number of parts, the guns are turned on enormous lathes during certain stages of their manufacture, and the close agreement of the entire lot is considered a remarkable feat of accurate workmanship.

THE CASSEUIL DRAWBRIDGE.

Drawbridges were in common use in the middle ages, and even the smallest castle was provided with one. The use of them was seemingly falling into desuetude, but for some little time past the exigences of modern communications have been leading engineers to bring them to the front again. In order to render the maneuver easy, an endeavor has been made to balance the flooring in all its positions. In the bridges of the middle ages that we have just alluded to, this condition was rarely fulfilled, and, more correctly speaking,
cases similar bridges will find a practical and economi cal application.-La Nature.

The Draught of Chimneys.

Some chimneys are made swaller at the top than at the base of the flue; others are larger at the top; and still others are of uniform size throughout, according to the fancy of those who designed them, writes W. H. Wakeman in Power and Transwission. Those who advocate the first, claim that it is the most natural way to build a chimney, and as the products of com never was so absolutely.
Poncelet, the celebrated bridge builder, occupied himself with this question. In 1810, Derche another investigator, devised a ligator, devised a inder poise winding around a grooved wheel in spiral form. We may mention, further, a system due to Belidor. All these bridges were of wood. Since iron has entered into the construction of bridges, the system has become developed. In 1856, a drawbridge with a compensating balance frame was establish. ed upon the Haute Marne Canal in order to allow passage to a railway. This work is known as the Marneval drawbridge. More recently, analogous drawbridges have been constructed over the Charleroi Canal, at Brussels.

The drawbridge that we are about to describe is constructed over the lower arm of the Drop, a tributary of the Garonne, near Caudrot (Gironde). The Drop, through its division into two arms, forms a very fertile island, whose various portions belong to persons who do not inhabit it on account of its low position, which renders it very easily inundated. The upperarm of the river, which alone is navigable in ordinary times, flows into the Garonne through a lock that no longer operates when the water reaches a height of 15 feet above low water mark. The boats then take the lower arm, where they consequently navigate only very accident ally and at high water. Under such circumstances the ally and at high water. Under such circumstances the
bridge to be constructed would have had to be very bridge to be constructed wo
high and would have required high and would have required
inclined approaches, whose inclined approaches, whose
cost would have taxed the cost would have taxed the
fund disposable out of all proportion.
Mr. Clavel, government engineer, who has been at the head of the vicinal service of the Gironde for some years, and who, during his administration, has endowed the departinent with several remarkable works, thought that the economical and prac tical solution of the problem resided in the use of a drawbridge.
A project was drawn up in this direction which met with approval on every side. The work is now con structed and is operating to the entire satisfaction of all interested.
After this expose, and with a reproduction of two photographs that show the bridge open and closed (Figs. 1 and 2), a technical description does not appear to us to be necessary. Let us merely add that the bridge has three spans, and that it is the one of the right bank that is mov able.
The boatmen themselves do the maneuvering when they wish to give passage to their vessel. Such maneuvering, bowever, is exceedingly easy, it being possible for one man to lift the flooring by acting upoI a chain attache to the free extremity of the balance frame.
In this way the expenses o sarveillance have been saved Let us repeat that in many

THE ANNEALING OF ARMOR PLATES BY ELECTRICITY.
the desired places by preventing the carbonizing .ma terial from coming in contact with them. The opera tion was not entirely successful, however, as it wa found upon trial that although a number of the place were sufficiently soft to be worked, others immediately alongside were as hard as the unprotected portions. number of attempts were made to locally annea hese hard spots by means of the oxyhydrogen blow pipe and other apparatus, the most successful being

Fig. 2.-THE DRAWBRIDGE OPEN.
that offered by the Thomson Welding Company, of Lynn, Mass. It was found impossible by all other means than electricity to apply sufficient heat in a concentrated form to attain the desired results, as the large mass of metal surrounding conveyed the heat away as fast as it was supplied. One of the electric welding company's annealing equipments has recently been installed at the Union Iron Works, San Francisco, for annealing the armor plates of the battle ship Oregon, and the following is a description of the plant and it operation :
The apparatus in general consists of an alternator with its exciter a regulatiuer rheostar, a transformer annealer, and the engine for driving the same. The engine develops at 450 revolutions per minute 55 horse engine develops at 450 revolutions per minute 55 horse
power. The alternator and exciter are of the well known commercial type; the former, of $40 \mathrm{k} . w$. capacity has six coils on as many pole pieces, the windings being in wo series of three in multiple The armature is of the tooth d type, with six coils, con red in a multiple of thre eries of two. It is wound for an output of 135 amperes at 300 volts, when making 1,000 revolutions per minute. A pulley on the end of the arma ture shaft drives the exciter a D type shunt wound gene rator of 100 volts, at 2,00 revolutions per minute. It erminals are connected to alternator fields through the rerulating rheostat, a cylin drical frame, having German silver coils cut into or out of circuit by a contact arm on top. The coils are protected from mechanical injury by the wire gauze covering which arrangement permits of a constant circulation of air.

The transformer anneale is of the shell type, and con sists of an outer core of lam inated iron surrounding both primary and secondary coils the former being wound on a form, and incased inside the latter, which is a hollow cop per casting made in halves to receive it, and then bolted to gether, after which the re maining space is filled with oil for insulation and as an assistance in conducting a way the heat generated in the primary. The secondary coi has but a single turn, U-shap ed, to the ends of which ar bolted various shaped copper
contact pieces, which are hollowed and connected to a water circulation, thus preventing the heat of annealing from reaching the coils. The yoke from which the transformer is suspended by two trunnions, as well as the afore-mentioned coutact pieces, permit of the transformer being swung into any desired angle, and brought against any part of plates already located.
In the operation of annealing, the contact pieces are brought up against the brightened surface of the plate and wedged into position, straddling the spot to be annealed, after the regular rheostat has been adjusted to a point reducing the primary current to a minimum. The distance between the contact pieces for a hole $7 / 8$ of an inch in diameter is $13 / 4$ inches. When the contact is established between contact pieces and the plate, a slight humming noise notities the operator, and the primary current is gradually raised to its maximum. A bright red spot then appears under each contact piece. The intense local heat at these spots causes the plate to expand outwardly in the direction f least resistance, forming slight mounds, from which circles of a gradually changing color slowly approach the center. The primary is kept up till the plate has become sufficiently heated to char or even ignite a pine stick held against it, and is then gradually decreased, till it has again reached the minimum.
The first or heating period requires about three minutes, duing which the secondary current has reached from 3,500 to 6,000 amperes at four volts. The second or cooling period requires from ten to twelve minutes, in order to perwit the sudden chilling of the spot due to the surrounding mass of metal, and to insure a perfect anneal. The plate at the spot of annealing presents a dark blue color, elliptical in shape, with a major axis of 4 inches and a minor axis of $21 / 2$ inches, and is very readily drilled and tapped.
The cut shows the annealer at work on a 17 inch plate for the Oregon's 13 inch barbette. A portable drill press driven by a direct current motor is shown in the background, ready to drill the holes as fast as the plate is annealed. The regulating rheostat is shown in the lower right hand corner. Four wires are led from alternator and exciter to a convenient spot, and connected to annealer and regulating rheostat through a flexible four-wire cable.
In conclusion, the writer wishes to tender his thanks to Mr. W. S. Garton, of the Thomson Welding Company, for information in regard to the apparatus, and also to Mr . Ratto, photographer of the Union Iron Works, for the photograph herewith presented. Pacific Electrician.

vatural History Notes.

Singular Case of Commensalism.-A singular case of conmensalism, says the Revue Encyclopedique, has just been made known by Mr. Gadeau de Kerville. It concerns the young of the marine fishes called false mackerel, which are almost al ways found in company with the large medusæ known as rhizostomes. These young fishes swim parallel with the long axis of the jelly fish and in the same direction asthe latter. They remain above, beneath, and behind the animal, but never advance beyond its umbel. It frequently happens that some of them introduce themselves into the cavities of the jelly fish, and are then visible from the exterior, owing to the transparency of the host. Sometimes the school of fishes wanders a few yardsa way from the medusa, but, at the least alarm, immediately re turns with great rapidity to occupy its former position.
It is evident that the medusa very efficaciously protects the young fishes by means of its innumerable stinging capsules. This is demonstrated by the fact that when the fishes become larger they no longer protect themselves by accompanying the medusæ.
Preserving Sea Weeds.-The following recipe is recommended by Dr. J. P. Lotsy for preserving examples of Florideæ for microscopic examination: "The specimen is first laid in a 1 per cent solution of chrome alum in sea water and kept there for a period varying from one to twenty-four hours, according to the size and texture of the species. The chrome alum is then completely washed out and the specimen placed in a mixture of 5 ccm . of 96 per cent alcohol in 100 ccm . of water and vigorously stirred. The amount of alcohol is then increased by increments of 5 ccm . every quarter of an hour nntil it amounts to 50 ccm. The specimen
is then removed and placed in a mixture of 25 per cent alcohol in distilled water, and the quantity of alcohol alcohol in distilled water, and the quantity of alcohol
again increased in the same way, till it amounts to 50 ccm. alcohol to 100 ccm . of water. The same process is again repeated with $50,60,70,80$, and 90 per cent solutions of alcohol in distilled water; the specimen being finally preserved in the last."
Resistance of Vertebrates to Thirst. -The camel is the animal that is oftenest mentioned as an example S. M. Gorman, of Cambridge, Mass., writes to Nature that more striking cases of prolonged endurance are found in a number of small rodents that inhabit the arid plains in the vicinity of the Rocky Mountains. These animals live for weeks and months without meet ing with a single drop of water. The sand is torrid,
the entire vegetation is burned up, and yet they resist.

This is not the result of observation solely, for direct experiment has been made. Some common mice were
put apart on the first of last October in cages in which they received nothing but perfectly dry food, such as Indian corn and grass seeds. On the seventeenth of January they were in perfect bealth and seemed as if they would continue thus for a long time, although they had not received a single drop of water or of any other liquid in the interim.

Activity of Animals.-In a recent number of Science Mr. Stewart gives the results of some interesting experiments upon the activity of animals that were made upon rats, mice, and squirrels inclosed in circular cages so arranged that every motion of the occupant caused the cage to revolve. An automatic apparatus permitted of registering the motions of the cage and of consequently ascertaining the periods of rest and activity of the animals. Rats and mice divide their time into twelve hours of rest and twelve of intermittent work during the night. During the period of work, the intervals of activity rarely exceed one hour, and are separated by intervals of rest of a nearly equal duration. In winter the squirrel works almost continuously from twenty minutes to two hours in the morning, and sometimes a little in the evening also, but during the balance of the time it remains at rest.

The food has a marked influence upon the daily ac ivity. As a general thing, the richer this is in protein, the greater is the activity. Fatty substances have a contrary effect. They reduce the activity of mice from six to eight hours to a few minutes of work a day. In order to ascertain the influence of alcohol there was given to four rats fed upon dry grain some of this liquid at proofs varying from 5 to 60 per cent, instead of water. This treatment, kept up for fifty days, showed no uniform effect of the alcohol.
All the animals experimented with did more work when the barometric pressure was high.
Animals in Sterilized Air.-By keeping animals in a specially devised apparatus designed to supply them with air in an absolutely sterilized condition and also feeding them with food as far as possible free from bacteria, Dr. J. Kijanozin, of the University of Kieff, has been able to ascertain that there was a remarkable decrease in their assimilation of nitrogenous matter. The reason suggested is that micro organisms, when present, aid in the decomposition and peptonizing of
the nitrogenous matter in the intestine, and it is thought that were the removal of all the micro-organ isms from the intestine possible, the decrease in the assimilation of nitrogen would be still greater. The animals also lost weight more quiekly than under normal conditions, and excreted more nitrogen and carbon dioxide. In a number of cases the animals died a few minutes, hours or days after the beginning of the experiment, and as yet it has not been possible to assign ny cause for this result.
The Poison of the Ornithorhynchus.-The bind feet of the ornithorhynchus, "the mole with webbed feet and the bill of a duck" that puzzed zoologists so much for a long time, are provided with a solid spur connected with a gland. Have we here a poison gland From some apparently trustwortby accounts that bave reached him, Mr. Stewart thinks we have. This gland is at ieast venomous at a certain season. A dog was wounded by one of these spurs three times, and th symptoms the first time were those of pain and somnolence, but there were no convulsions, titubations or trembling. Upon the two other occasions, the symp toms were less pronounced, and even null, thus indicating habituation. The poison has proved mortal to the dog in four cases, but in man the symptoms dis E ar without causing death.
Evolution among Plants.-At a recent meeting of the Massachusetts Horticultural Society, Prof. L. H. Bailey read a paper upon "Experimental Evolution among Plants." The speaker prefaced his remarks by saying that all thoughtful persous are now evolutionists, whether they know it or not. They believe in some kind of a transformation of species in the same way that they believe in the gradual unfolding and growth of human institutions.
Prof. Bailey then proceeded to consider the ques tion: Do new species originate now? The notion that a species, to be such, must have originated in Nature's garden and not in man's has been left over to us from the last generation-it is the inheritance of an acquired character. Ray appears to have been the first to use the word species in its technical natural history sense, and the inatter of origin was an important factor in his
conception of what a species is. Linnæus said : "We reckon as many species as there were forms created in the beginning." Darwin elaborated the new conception that a species is simply a congregation of individ uals that are more like each other than they are like any other congregation, und declared that one new variety raised by man will be a more important and interesting subject for study than any more species added to the infinitude of already recorded ones. The old naturalists threw the origin of species back beyond known causes, while Darwin endeavored to discove their origin; and it is signiticant that he set out with
out giving any definition of what a speciesis. It is im
portant, when we demand that a new species be created as a proof of evolution, that we are ourselves open to conviction that the thing can be done. The fact is that the practice of systematic or descriptive botany is at variance with the teachings of evolution. Every naturalist now knows that Nature does not set out to make species. She makes a multitude of forms which we, merely for purposes of existing methods of botanical description and nomenclature, call species.
The speaker then proceeded to show that there has been as wide a variation in very many garden plants as there is between accepted botanical species of the same genus.
Species making forever enforces the idea of the distinctuess and immutability of organic forms, but study of organisms themselves forever enforces an opposite conception. The intermediate and variable forms are perplexities to one who attempts to describe species as so many entities which have distinct and personal attributes. So the garden has always been the bugbear of the botanist. Even the lamented Asa Gray declared that the modern garden roses are " too much mixed by crossing and changed by variation to be subjects of botanical study." He meant to say that the roses are too much modified to allow of species making. The despair of systematic botanists is the proof of evolution. If species are not original entities in nature, then it is useless to quarrel over the origination of them by experiment. All we want to know, as a proof of evolution, is whether plants and animals can become profoundly modified under different conditions, and if these modifications tend to persist. Everyone interest ed knows, as a matter of common observation and practice, that this is true of plants. He knows that varieties with the most marked features are passing before him like a moving panorama. He knows that nearly every plant which has been long cultivated has become so profoundly and irrevocably modified that people are disputing as to what wild species it came from. Consider that we cannot certainly identify the original species of the apple, peach, plum, cherry, orange, lemon, wine grape, sweet potato, Indian corn, melon, bean, pumpkin, wheat, chrysanthemum, and nearly or quite a hundred other common cultivated plants. It is immaterial whether they are called species or varieties. They are new forms. Here is the experi ment to prove that evolution is true, worked out upon a scale and with a definiteness of detail which the boldest experimenter could not hope to attain were he to live a thousand years. The horticulturist is the only man in the world whose distinct business and profession is evolution. He of all other men has the ex perimental proof that species come and go.

Formation of Secretions in Plants.-Dr. A. Tschirch announces, in the Botanisches Centralblatt, the re markable discovery that in all normal cases which he has been able to examine the formation of a secretion it is a function, not of the protoplasm, but of the cel wall. In schizogenous passages the secreting cells which clothe the canal contain a resinogenous layer which is of ten vacuolar; in schizo-lysigenous cavities the secretion is formed in peculiar caps of cell wall be longing to the cells whlch inclose the space. In the oil glands of the Labiatæ, Compositæ, etc., it is produced entirely in a subcuticular layer of the cell wall, and this is the case also with the papillæ which project into the intercellular spaces of the rhizome and base of the leaves in Aspidium filix-mas, and in many, if not all, extra-floral nectaries, the secretion lifting the cuticle off from the palisade-like secreting tissue. In all stigmas examined by the author, the secretion is formed in the subcuticular mucilaginous layer of the papillæ, into which the pollen tube makes its way. Similar observations were made on the oil of oil glands and on the resin which is formed in the duramen of trunks. But, although the secretions are formed in the cell wall, they are never produced by metamorpho sis of the substance of the cellulose itself. Dr. Tschirch ascribes to all resins a uniformity in chemical composition, regarding them as compounds of aromatic acids with a peculiar group of alcohols which be call resinols.

Teste of the Maxim Gun.
The light weight, rapid fire Maxim gun, though not new, has been greatly improved of late and in its present form was given a comprehensive series of tests at Sandy Hook on June 8. The gun weighs, packed in its case together with all its extra parts and mechan sm, only 45 pounds, and is easily carried on a soldier's back. When in use it stands upon a tripod. The cartridge contains 28 grains of smokeless powder and
a ball of 0.302 caliber, and a rate of from 600 to 770 hots a minute is claimed at 3,200 yards effectiv ange. A range of only 500 yards was selected for the test. The gun was taken from a man's back, assembled and fired in 58 seconds. About 500 shots a minte were fired and no attempt was made to greatly exeed this rate. In the breakdown test an essential part of the mechanism, supposed to have been broken by a shot, was taken out and replaced by a new one in $26 \frac{2}{8}$ seconds. The barrel was changed in 1 minute
and $12 \frac{8}{g}$ seconds.

THE FOUNTAIN AT GENEVA

Our engraving represents the fountain that the municipality of Geneva has recently established at the entrance of the port of that city, at the extremity of the south jetty. This is certainly the largest fountain that exists upon the surface of the globe, since it is no less than three hundred feet in height. It may be seen from a great distance, in clear weather, detaching itself like a great white sail flapping through the effect of the wind.
The city of Geneva possesses a most complete distribution of water under pressure, the motive power for which is obtained from an artificial fall established upon the Rhone at the point of the lake. The water for domestic purposes and for the running of certain motors is raised to a height of 215 feet above the level of the lake. For the distribution of motive force, it is raised to a height of 460 feet. The reservoir is an open air one, and is situated upon the top of Bessinges, at a distance of three miles from the turbine building. A very ingenious regulator, invented by Mr. Turrettini, assures the uniformity of pressure in the piping.
The length of the first pipe line is about 40 miles, and that of the second about 60 . It is with this latter that the fountain conduit is connected. The latter is set in play only on Sundays. It is sometimes set in operation also on week days, in the evening. Instead of a single jet of great height, several are then utilized that do not rise so high. Powerful electric light projectors, placed in a structure near by, brightly illuminate them with their rays of varied colors, which transform them into a luminous fountain of the most beautiful aspect.-La Nature.

Safer Than Lishtning Rods.

Each day adds some new virtues to the long list of those already credited to the pneumatic. The latest of these is that the wheels of a bicycle being encircled by a band of India rubber and dry air-which is a perfectinsulator - the rider is completely insulated from the earth, and, consequently, is impervious to the attacks of the electric fluid. Thus, day by day it becomes more and more a fact that life without a pneumatic tire is neither safe nor worth having. Any one who suffers from nervousness during a thunder shower has now only to go into a barn or the cellar and seat himself upon the saddle of a pneumatic-tired bicycle to be perfectly safe from lightning stroke. As the chances of a man on a bicycle being struck by lightning have been carefully calculated to be about fully calculated to be about
one in a billion, the Wheel adds, there will, of course, be some pessimists who will deny that this newly discovered virtue of the pneu matic as a lightning insulator amounts to very much.

The glass blowers of ancient Thebes are known to most scientific of the same trade of the the most scientific craftsman of the same trade of the pres "pt day, after a lapse of forty centuries of so-called "progress." They were well acquainted with the art that commodity in great profusion and perfection.

Rossellini gives an illustration of a piece of stained glass known to be 4,000 years old, which displayed artistic taste of high order, both in tint and design. In this case the color is struck through the vitrified structure, and he mentions designs struck entirely in pieces from $1 / 2$ inch to $3 / 4$ inch thick, the color being perfectly incorporated with the structure of the piece, and exactly the same on both the obverse and reverse sides.

The priests of Ptah at Memphis were adepts in the glassmaker's art, and not only did they have factor ies for manufacturing the common crystal variety, but they had learned the vitrifying of the different colors and the imitating of precious stones to perfection. Their imitations of the amethyst and of the various other colored gems were so true to nature that even now, after they have lain in the des ert sands from 2,000 to 4,000 years, it takes an expert to distinguish the genuine articles from the spurious. It has been shown that, besides being experts in glass making and glass coloring, they used the diamond in cutting and engraving glass. In the British Museum there is a beautiful piece of stained glass, with an en graved emblazonment of the monarch Thothmes I!! who lived 3,400 years ago.

THE GENEVA FOUNTAIN.
total quantity of earth and rock removed is estimated at $11,500,000 \mathrm{c} . \mathrm{m}$. Breakwaters and artificial harbor works have been found necessary at both entrances. A high bridge, carrying the Piræus \& Peloponnesus Railway, crosses near the western end. The canal is lighted at night by electricity.
The formal opening of the Corinth Canal, which took place in August, 1893, marked the final achievement of a scheme dating back in one form or another to ancient times. The work as completed follows closely, in some parts at least, the line of a similar undertaking on which much labor was expended in the time of Nero. The modern project dates back to 1881. Work began in 1882 and was prosecuted vigor ously for some years, but in 1889 ceased for a time owing to lack of funds. The enterprise was afterward taken up by a new company, the Societe Hellenique du Canal de Corinthe. Work was resumed in 1890 and carried to a successful conclusion in 1893. The total cost was about $\$ 13,000,000$. The lease held by the present company is to continue in force for 99 years, a the end of which period the canal is to become the property of the Greek government on the payment o $\$ 1,000,000$.
Turning now to a much larger and much wore costly work, the Manchester Ship Canal, special mention should be made of the fact that the main purpose erved by this great artificial waterway is to give deep draught vessels direct access to the important manufac uring city of Manchester. Formerly it was necessary o depend chiefly upon the shipping facilities afforded by Liverpool, and the canal project encountered activ opposition from interests identified with this port and rom the railroads affected. Authority having been finally granted by Parliament, after a prolonged discussion extending over a period of several years, and a
company having been formed, the work of excavation
began late in the autumn of 1887 and was pushed for ward with energy. Unexpected delays occurred later, owing to financial embarrassment and other causes, but all difficulties were overcome and the enterprise was carried t!rough to completion within the space of six years. It was believed at first that four years would be sufficient and that the cost would not exceed $\$ 30,000$, c00. The actual outlay was about $\$ 75,000,000$. Although Manchester is 50 miles from the sea, it was Although Manchester is 0 miles from the sea, it wa not necessary to carry the canal this entire distance,
as the tidal estuary of the Mersey furnished an as the tidal estuary of the Mersey furnished an
approach for about 15 miles from the sea. Throughout the remaining 35 miles existing water courses wer enlarged and utilized wherever practicable, including along one part of the route an old canal of small cros section. As Manchester has an elevation of 60 feet above the sea level, an ascent of this amount was necessary, and was accomplished by a system of locks. The line of the ship canal is crossed by a number o highways and railroads, besides a smaller canal, and numerous engineering problems were encountered In some cases fixed bridges were required; where these occur they have a minimum height above the canal of 75 feet in the clear. The minimum depth of the canal is not less than 26 feet, and the minimum width at the bottom is 120 feet. The sides are protected by masonry, where this seemed advisable, the aim being to permit a speed of about 6 knots, thus enabling a vessel to pass from the entrance up to Manchester in eight or nine hours. By the use of electric lights the canal is made navigable by night as well as by day. The prelimi navigable by night as well as by day. The prelimi-
nary opening took place early in December, 1893, and nary opening took place early in December, 1893, and
the canal was formally opened for general traffic on January 1, 1894 . It may be added that Manchester is the center of a district said to be more thickly populated and o show a greater output o commercial products than any other region of like area in the civilized world. The density of population is 1 times as great as that of Bel cum, which is said to hav more inhabitants to the square mile than any othe country of Europe. The Manchester region contr butes two-thirds of the total value of British exports.
The Baltic and North Sea Canal differs from the other wo, concerning which some details have just been given, in that it owes its construc ion primarily to political and strategic consideration rather than to the commercia advantages which will incidentally result from it. Ger many has two naval yards of great importance, one at Kie on the Baltic and the other t Wilhelmshafen on $t h e$ North Sea, and in order that vessels may be able to pass promptly between them and concentrate in either sea the ship canal has been cut under the auspices of the German government. It extends from Kiel to the River Elbe, entering the latter at a point below which deep water extends to the North Sea. Commercially the canal is important in the saving of time heretofore ost in going around the northern end of Denmark and n making it possible to avoid a stormy and dangerous passare. The distance saved between ports is from 00 to 425 miles, according to their relative position. The canal is practically a sea level one, there being tidal locks at the ends, but none along the course of the waterway. It was necessary to build severa bridges over the canal, but they do not interfere with navigation. The fixed bridges, of which there are two have a height in the clear of 138 feet. The cutting was largely through a low country, following an old cana in part. At the highest point there is a ridge rising 82 feet above the sea. There are several sharp turns, though the general course is a fairly direct one. The canal is 61 miles long. The standard depth is to be $29 \cdot 5$ feet upon final completion in all parts. The width at the bottom is 72 feet. Work on this canal began in 1887. It was then expected that it would be necessary to excavate about $77,000,000 \mathrm{c} . \mathrm{m}$. of material, but this stimate was too small by from $3,000,000$ to $5,000,000$ c m . The total cost of the canal amounts to about $\$ 40$, 000,000 , of which Prussia pays about one-third, the r naining part being paid by the German Empire.-Iron Age.

Twenty-four carat gold is all gold; 22 carat gold has 22 parts of gold, 1 of silver and 1 of copper; 18 has 22 parts of gold, 1 of silver and 1 of copper; 18
carat gold has 18 parts of pure gold and 3 parts each of silver and copper in its composition; 12 carat gold is half gold, the remainder being made up of $31 / 2$ parts of silver and $81 / 2$ parts copper.

RECENTLY PATENTED INVENTIONS

Railway Appliances.

Car Coupling. - Valentine Erbach, Scranton, Pa. This improvement comprises a drawhead having at the esides noses, one below the other, with oppo
sitely inclined upper and lower faces and parallel sides and having vertical perforations, while a gravity link i arranged in the perforation in the upper nose. When
the drawheads come together they are positively guided to coupling position and the coupling is automaticall sired number of steare also provided air pipes mas be simultaneously and automatically coupled.
Carfender.-James L. Canham, South Orange, N. J. This is a device to be readily at such construction as to present a yielding bed to any one falling on the fender. The parts are so arrange that the sagging caused by a body falling on the fender operates a trip and causes an auxiliary bed to be projected, as a furtl.
the path of the car.

Electrical.

Generator.- John D. Hilliard, Jr. nating generator, with improved means of compoundin and regulating the voltage, there being two windings on the field spools of the generator, one of which is furnished with a constant current from a separate exciter,
and the other with a variable current supplied by the generator itself and varied with the variation of the load of the generator. The regulation of the voltage is quick
Galvanic Battery Cell.-Frank A. Glasgow, St. Louis, Mo. This is a small, easily porta-
ble cell, in which a tube or casing closed at the upper end is placed over the zinc or oositive element, displacing th fluid from about the element, and protecting it from be ing destroyed when the cell is not in use, while the air or gas in the tube displaces the flud when the tube is pushed
down over the zinc. In the protrusion upward of the z inc from the bottom of the cell the exposed
the positive element stands free from support,

Insulator.-James M. Patterson, Springtown, Texas. For insulating and supporting tele.
graph and telephone wires, this inventor has devised an insulator comprising two sections of insulating material adapted to fit together and each having on its inner sided inner faces are to be inserted, the insulator being of very simple and inexpensive character, and adapted to clamp the wire securely and prevent its longitudina movement.
Alarm Signal and Indicator. Jacques A. Buisen, tNew Orleans, La. . This is a device
or trolley roads, to be applied cespecilly at crossing curves, tunnels, and otherdangerous places. Combine with the main trolley wire is a short auxiliary wire con nected with the alarm and signal, and a double trolle etablishes electrical connection between the main and tal as the car pases along the portion of the track to protected.

Mechanical.

Paper Making Machine.-Thomas H. Savery, wilimington, Del. Fhis invention relates to the ire part of high speed Foudrinier machines, in which wires over a series of table rolls is directed and caused to low into save-all boxes, and provides table rolls adapte he rolls and extendin denectward to the plane or leve of the lower surfaces of the rolls, to prevent the wat being thrown from one roll to the adjacent roll.

Miscellaneous.

Stenographic Machine.-.Joseph W. and Joseph K. Bailey, New Orleans, La. This is a madevices which penetrate and form a permanent record o strip of paper, the machine being also adapted for printing as well as puncturing. The machine has closely grouped set of horizontal and parallel bars wit converging ends provided;with properly shaped diex, hor zontal rock shafts arranged at right angles connectin ith the die bare and a sences of vertical keys, there be the rock shafts to the die bars
Tire Tightener. - Jasper N. Jennings, Porlland, Oregon. According to this improve
ment, in a foot section adapted to fit on the wheel hub journaled a screw carrying a laterally extending lifting ending a nut threaded on the screw having a laterally ex a evice it strong cheap, and simple and may be readily applied to any wheel to quickly tighten the tire witho removing the wheel from the axle. It also facilitate spreading the wheel for the removal of the spokes if ne ssary, the straigttening of the tires, etc.
Horse Collar fastener. - Jobn H. Emerson, St. Joseph, Mo. This invention relates to aastenings for separably connecting the lower abutting
nds of horse collare, and provides a fastener comprising wo caps to fit over and inclose the collar ends, each cap being divided horizontally and provided with securing longs having bolt holes. The cap sections have overlap. ping portions to prevent slipping and locking lugs and hame strap passes between pairs of registering lugs, an collar securrely when in fastened position.
Disinfecting and Purifying Wa-TER.-Carl Salzberger, Burgsteinfurt, Germany. Thi
nvention is for a process and apparatus for domestic and ndustrial uses, the process consisting in first mixing the
water with lime paste to purify it , then charging the mix ore with carbon dioxide and subjecting it to the actio ate of lime and the carbon dioxide. The electrolytical pparatus comprises a reservoir in which is an agitatin ing one of the electrodes, a metallic perforated cylinder orming the other electrode
Separating Gold and Silver. Frederick Rinder, Chicago, Ill. For separating the gol and silver in a cyanide solution this invention provides process consisting in first subjecting the cyanide solution
to the action of a solution of sulphide of iron, to separate and precipitate the silver, and then subjecting th cyanide solution, in a separate tank, to the action of Chloride of zinc, to separate and precipitate the gol Forrest cyanide process," using but little chloride, an
the process requiring but little attention and labor.
Balance.-Clarence N. Fenner, Pater son, N.J. In this balance the standard has a gradaated
segment over its upper end, and the scale beam has vertial longitudinally aligned set screws, having between
heir inner ends the middle knife edge engaging th pper end of the standard. The beam also las knife dges at its ends from which the pans are suspended, while a weighted inclined arm extends down from th imter of gravity at the middle of the beam, there being orking over the segment. The improvement is de gned for use on all classes of balances, including th most delicate and those for weighing merchandis
Anti-Friction Block. - Gregory M. Mullen, Baltimore, Md. This block is especially designe For use in guiding the tiller ropes of tugs, yachts, etc., re ent of the sheave. There are side rollers between th heave and journal, termmating short of the end of th fournal andididang an annular cavity surrounding rib of the cap jaw entering the cavity. The sheave has its under side channeled and tween the sheave and the main jaw.
Bath or Other Tub. - Charles E. arston, Dover, N. H. This invertion provides mean ture as long as desired, and also for quickly raising wering its temperature. A shower or spraying device also provided to spray from the sides, and the tub may
he utilized to heat the air surrounding the bather and e utilized to heat the air surrounding the bather a naintain the required temperature in the room, the tab undry or kitchen tub.
Churn Power.-John T. Gilbert, Co lumbus, Ga. A turning as well as a reciprocating motion tive manner by this improvement. In a vertical frame held a shaft at whose lower end is the daeser, and whose upper end is revolubly held a head pivotally conected with a pitman, the latter being connected with th crank arm of the drive shaft. In the shaft is a spiral groove
engaged by the tip of a set screw, whereby the shaft engaged by the tip of a se

Clothes Line Fastener.-Charles L Feinberg, brooklyn, N. Y. This is a simple device quickly and firmly uniting the two ends of a pulley line and to facilitate taking up the slack at any time. It con part terminating in an eye to which one end of the line is tied, while the two sections form at the other end a clamping jaw in which the
Window Shade.-Joseph Eckert, Ne York City. A shade is constructed of a series of strip being capable of movement to or from an adjoining sect tion, providing for la ${ }^{2}$ ger or smaller spaces for the admision of light, while the shade sections are adjustable dmit light and air without admitting -the -sun directly The improvement comprises a series of independe
rollers and locking devices, with a bar detachably connected to the lower parts of the shades, and all of the ections may be simultaneously manipulated.
Liquid Cooling Can.-Wolff F. E. milk, cream andother liquids or food thisinventor has deised a vessel having a jacket adapted to contain ice and prevent the waterformed in the ice jacket from coming in
ontact with the inner wall of the jacket until nearly all he ice is melted. There are ice-holding hooks or pro jections in the inner wall of the vertical part of the jacket by thawing, and are thus designed to preserve the continuity of the layer of ice on the inner wall of the jacke.
Illuminated Column.-Charles Sie urg, New York City. In fixtures for offices, bars, etc the ornamental effects. The invention comprises a base material with a capital of opaque material in which held a lighting device, preferably an electric light, adapte to throw its light down into the shaft to illuminate th latter from the inside. The arrangement is such that the haft can he taken down and cleaned, and ready acest
the lamp is provided for.
Bicycle Trousers.-Henry J. Roschi New York City. These are garments adapted to giv body, and they have elastic gores at the waistband and novel leg attachments adapted to relieve strains and
bviate any danger of rupture, while insuring a comfortaobviate any danger of rupture, while insuring a comforta-

Game Apparatus.-Charles H. Buxton, Neenah, Wis. A game similar to that of base bal may, according to this invention, be played by a simple and inexpensive device with which runs may be scored, the player put out, the circuit of the bases made, etc., in manner simulating that of a regular game. The field are holes resesenting the bases, there being ine dians to represent "fouls" and holes to represent "outs," and the came being played by the moven
board which constitutes the field.

Candlestick.-William Varney, New York City. This design comprises a representation of lower and a cup somewhat concealed among the leaves,
logether with a foliage support in which are stems, together with a
leaves and buds.
Rolling Hoop. - Francis C. Bates, Nport, V. in this hoop is a central star-like iggure consisting of a circular disk having a double series of
adial projections, and between the central figure and radial projections, and betwe
he hoop are connecting cords.
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please of this paper.

NEW BOORS AND PUBLICATIONS.
Steam and the Marine Steam En
New. York: Macniillan ${ }^{\text {Lo }}$ Company.
N894. Pp. xiv, 196. Price $\$ 2.50$. No index.
Naval steam engineering is a profesion which is uiring year by year a greater importance. The possi. In of cconomy and the importance of achieving perfect types of boilers and abont some of the most been devised. This is another way of saying that the aval steam engineer stands justly at the head of his pro fession, having to design the most perfect power ap
paratus and to use it properly. The coal consumption is nowhere more closely watched to and in the present days of record trips the chief engineer is as important an officer as the captain. Although
ve regret the absence of an index a yery we regret the absence of an index, a very full table

Report of the Board of General Managers of the Exhibit of the State, of New York at 'the
World's Columbian Exposition Transinitted to the Legislature April
18, 1894. Albany: James R. Lyon, State Printer. 1894. Pp. 647.
We will not attempt to describe this large volume. It senough to say that it is an exhaustive synopsis of what
New York State proper showed at Chicazo, with numer ous illustrations of the exhibits. We notice, among thers, very satisfactory plates of the work shown by the Teichers' College, recently illustrated in our columns, but as every third or fourth page has a full plate, it will
be found a perfect album of the exhibits and of many be found a perfect album of the exhibits and of many
that will have a homelike and familiar aspect to the that will have a homelike and familiar aspect to the
New Yorker. We doubt if any State can produce a nuch more creditable report upon its exhibits. The Lory, and we think that teachers and other professional workers will find the volume one of great value. Numerous portraits are given of the members of the Com-
mission, while general views of the fair proper are no acking.
Elements of Mineralogy, Crystallo Grom a and blowpipe Analysis, ROM A PRACTICAL STANDPONT.
By Alfred J. Moses and Charles
Lathrop Parsons. Ny an Nostrand Company. 1895. Pp. vii, 342. Price $\$ 2$.
The joint authorship of this volume gives it value, as it involves the views of two somewhat separated institutions. The book is rather more a work on crystallo-
graphy and the identifcation of minerals than a blowpipe graphy and the identification of mineralas than a alowpipe
manual of the usual kind, the application of the blowpipe to mineral identification being closely followed in it The work is qualitative in the sense that quantitative
analysis is not given. The liberal illustrations and thor ughly practical treatment make it quite an attractive ad dition to the literature of the science.
The Diseases of Personality. By Court Publishing Company. 1895. Pp. 163.
75 ceuts.
An authorized translation of the work of M Ribot professor of comparative and experimental peschology in
the College of France . He is also the author of ."The Psychology of Attention ", and "Discases of the Will," The present work treats of orranic disorders, affective disorders, disorders of the intellect, dissolution of per
sonality
zoological individuality etc. Catechisme d'Electricit
 By Ernest Saint-Edme. Paris:
Bernard Tignol. Pp. 128. 16mo, 73 illustrations.
Under the attractive catechism or question and answer form tie author has attempted to treat the whole
subject of electricity in 128 pages. The illustrations are subject of electricity in 128 payes. The illustrations are
poor and do not thow the later forms of apparatus. The work is undated and has no indes.
The Mechanical Engineer's Pocket Book. A reference book of rules,
tables, data, and formulæ, for the use of engineers mechanics, and

students. By Wiliam Kent, A.M., | students. By |
| :--- |
| M. E. New |
| Sons. |
| Pork : John Wiley |
| Pocketbook, full gilt, | Sons.

flaps.
1895.
Pp.
1087. Illustrations, tables, th
More than twenty years ago the author began to follow
he advice given by Nystrom : " Every engineer should make his own pocketbook, as he proceeds in study and practice, to suit his particular business." The results of Mr. Kent's judicious gathering of engineering facts and figures are found in the present admirable collection of
rules, tables, and out of the way information. The scope of the work is different from that of Trautwine and Has well and it would be a valuable acquisition to all who been paid to the abstracting of data of experiments from recent literature. The section relating to ice machines is particularly valuable, as the literature on this subject is
limited. The electrical tables are interesting, and the
section devoted to fuels is also noteworthy. The
greatest merit of the book consists in its furnishing in freatest merit of he book consists in its furnishing intechnical journals and the proceedings of professional societies. Even such subjects as jet propulsion are adequately treated. Access to the stores of information is rendered easy by an excellent index
Practical Directions for Electric Gas Lighting and Bell Fitting Lymn. Mass. : The Bubier Publish ng Company. 1895. Pp. 64. 16mo, 18 illustrations. Paper 25 cents
This inexpensive little work contains an excellent all electrical bell fitters.
History of Education in Maryland.
By Bernard C. Steiner, Ph.D. Con tributions to American educational history, No. 19. Washington: Pubished by the United States Bureau
f Education. 1895. Pp. 331. 8vo of Educat.

The present work forms one of the interesting monographs on the history of education by States. The series edited by Dr. Herbert B. Adams, professor of Amer versity. Maryland has not obtained wide renown until recent years for her higher institutions of learning, and yet the number and importance of them has been too great to justify such neglect as they have received. The present work gives a succinct account of education in colonial Maryland, primary and secondary education,
the first university of Maryland, etc. The Johns Iopkins University comes in for a fair share of attention. The value of the work would be enhanced by a index.
The Phonographic Dictionary and Phrase Book. By Benn Pitinan The Phonographic Institute Com$\begin{array}{ll}\text { pany. } \\ \text { phlet. Price } & \text { Pp. } 48 \text {. } 16 \mathrm{mon} \text {, pam- } \\ \text { for the first }\end{array}$ part; no other parts will be sold secost $\$ 2.50$ in cloth.
ne Any of the above books may be purchased through his office. Send for new book catalogue just pub

SCIENTIFIC AMERICAN

BUILDING EDITION.

JUNE, 1895.-(No. 116.

table of contents.

A cottage at Bronxwood Park, Williamsbridge, N. Y., recently erected for Dr. Geo. P. Shirmer, at at
cost of about $\$ 2,500$. Perspective elevation and cost of about $\$ 2.000$. Ferspective elevation and
floor plans. A pleasing design. A. F. Leicht. Esq., architect, New York City.
An elegant plate in colors showing a cottage at
Bronswood Park, williamsbridge, N. Y., recently erected at a cost of $\$ 2,20$. Perspective view and Hiloor plans. Mr. A. F. Leicht, arkect, New York
City. A neat design. City. A neat design.
cotage at Flatbush,
3. A cottage at Flatbush, L. I. I, recently erected for \mathbf{W}.
K. Clarkson, Ess at a
cost of $\$ 5,000$ Perspective elevation and floor plans. Mr. Christopher Myers, architect, New York City. A picturesque design. A modern cottage at Bedford Park, New York City,
recently erected at a cost of $\$ 3,000$. Perspective recently erected at a cost of $\$ 3,000$. Perspective
elevation and floor plans. A picturesque design. Mr. Edgar K. Bourne, architect, New York City. 5. The Bedford Park Congregational Church. Two plans. Cost complete, $\$ 7,000$. Mr. Edgar K. Bourne, architect, New York City.
Colonial cottage recently erected at New Dorp.
S. I., at a cost of $\$ 3,675$, complete. Perspective elevation and floor plans. Messrs. Child \& De Goll, architects, New York City. An attractive design.
residence at Germantown, Pa. Two perspective clevations and floor plans. Cost complete, about
$\$ 10,500$. Messrs. Child \& De Goll, architects, New York City. Architect, Don Jose Noriega.
9. Design for a w indow decoration.
10. The residence of E. P. Sandford, Esq., at Montclair, An elegant design. Architect and builder, Mr. E. P. Sandford, Montclair, N. J.
cottage in the English half-timbered style recently erected for F. E. Kirby, Esq, at Glen Ridge, N. J.
Perspective view and floor plans. E. Rollin Tilton, Perspective view and floor
designer, New York City.
Miscellaneous contents: The Hanging Gardens of Babylon.-Perspective drawings.-Concrete roofs,
-Points of support.-Architects' estimates.-An improved hot water heater, illustrated.-- A new invention for raising water, illustrated.-Improved paving.-The Bommer spring hinge, illustrated.-
A mixing regulator for gas machines, illustrated.A mixing regulator for gas machines, illustrated.-
Adjustable sliding door track and hanger, illusAdjustable sliding door track and hanger, illus-
trated.-Woodworker's improved vise, illustrated. - African mahogany.-A new steam and hot water chimney top, illustrated.-Improved wood working machinery, illustrated.
The Scientitic American Building Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Thirtytwo large quarto pages, forming a large and splendid Magazine of Architectrre. richly adorned with
elegant plates and fine engravings, illustrating the most teresting examples of Modern Architectural Construc on and allied subjects
The Fullness. Richness, Cheapness, and Conventence all newsdealers. MUNN \& CO., Publishers,

$\mathcal{D B u s i n e s s}^{2}$ and $\boldsymbol{P}^{\text {ersonal. }}$

The charge for Insertion unier this head is ome Dollar a line for each insertion: aoonut eijñt woras to a iine. Aavert.sements must de receired at puölication office as eariv as
T'rursaay morning to a ppear in the foilowing weei's issue.

For mining engines. J. S. Mundy, Newark, N. J. "C. S." metal polish. Indianapolis. Samples free. Presses \& Dles. Ferracute Macb. Co., Bridgeton, N. Handle \& Spoke Mcby. Ober Lathe Co.,Cbagrin Falls. O mery Wheel Salesman Wanted. Morgan, care Sci. Am screw machtnes, milling macnines, and drill presse he Garvin Mach. Co., Lalght and Canal Sts., New Yor Emerson. Smith \& Co... Ltd... Beaver Falls, Pa.. will
send Sawyer's Hand Book on Circulars and Band Saws send Sawyer's Hand
free to any address.

The best book for electricians and beginners in elec
 For the original bogardus Universal Eecentric Mill, Foot and Power Presses, Drills, Shears, etc., address
J. S. \& G. F.SImpson, 26 to 36 Rodney St., Brooklyn, N. F. The Toy Windmill, illustrated and described on p. 4 . icense parties to manufacture on royalty. Address red. Beaumont, Jr., 1307 Franklin St., Kansas City, Mo-CF- Send for new and complete catalogue or Scientific New York. Free on appliration.

HINTS TO CORRESPONDENTS. Names and Address must accompany all letters,
or no attention wrill be paid thereto. This is for our
information and not cere rencuce ox former articles or answers should
give date of paper and page or number of question give date of paper and paye or number of question.
In ini ire on ant anered in reasonable time should
be repeated; correspondents will bear in mind that some ansive coll we to to though we endeavor to reply to all either by letter
or in this department. cach must take his turn. Buy ers wishing to purchase any article not advertised
in our columns will be furnished with addresses of
in
 pecial Wialitit rincormation on matters of
personal rather than general interest cannot be
expected without remuneration expected without remuneration.
to may be hadat at the office Supplements referred
Boolise referred to promptly supplied on receipt of
Minera
(6563) J. C. B. says : 1. Will you be kind enough to give formula to make liquid glue similar
to the Le Page glue? A. We have not the Le Page formula. A liquid glue possessing great resisting power, recommended for wood and iron, is prepurel, according to Heaz, as follows: Clear gelatine,
100) parts ; calinet makers' glue, 100 parts : alcohol, 25 parts; alum, 2 parts; the whole mixed with 200 parts of 20 per cent acetic acid, and heated on a water bath for six hours. An ordinary liquid glue, also well adapted for wood and iron, is made by boiling together for several hours 100 parts glue, 260 parts water, and 16 parts nitric actld. 2. Also simple and effective way to remove warts weeks, each day, that is, once a dar; it has not failed in my hands, says a writer in the Therapeutic Gazatte in any case of any size or long standing. The time it takes may try the patience of the user, but, if faithfully used, the'y will get their reward in the removal of the wart without leaving any scar
(6504) J. S. S. : It is impossible to oltain Morse signals with a Thomson siphon recorder. Any book on telegraphy will give you a description of the Atlantic cable
(656is) G. G. M. writes: 1 . I have made my own zinc sticks, aud would like to know the easiest and
best way to amalgamate them ? A. Dip them in dilute best way to amalgamate them? A. Dip them in dilute
sulphuric acid, then sprinkle on a little mercury and rub sulphuric acid, then sprinkle on a little mercury and rub it around, or dip the rods in a solution of nitrate of
mercury. 2 . Would like to know the ratio of the differ ent ingredients for the solution of a bichromate of pot ash battery? A. To a saturated solution of bichromate of potash, slowly add one-fifth its bulk of sulphuric acid. 3. I have some electric light carbon sticks (without copper) $1 / 2$ inch in diameter and $\%$ inches long. How many carloon sticks to \%inc surface is necessary in a bisulphate tery. How many carbon sticks in a bichromate of potbisulphate of mercury in water. 4. Give the best and easiest way of connecting the carbon sticks without soldering? A. Cast lead caps on the carbons. 5. In the answer to query No. 6233 , September 1, 1894, must the solution, when placed in the jar, be a thin paste or
have some water added? A. Thin paste. 6. What is the best battery for induction coils? A. Grenet. 7
Doces it matter whether or not the secondary is wound in Docs it matter whether or not the secondary is wound in
opposite direction to the primary? A. No. 8. Give ratio of quantity of primary to secondary for any number the induced current desired, 500 to 1,000 to 1. 9. What is the best material to use between primary and secondary wire in an induction coil? A. A glass tube, a rubber
tube, or writing paper coated with shellac, varnish, or tube, or writing paper coated with shellac, varnish, or
paraffin.
(6566) H. W. N. says : Wherecan 1 find descriptions of automobile vehicles for use on common
roads? A. See the Scientific American for February 14, 21, 1891; May 21. 1892; February 3, March 31, ${ }_{23}$, April 6, May 4, June 8, 1895; and the Scientific 23, April 6, May 4, June 8, 1895; and the Scientific
American Supplement numbers 993 , 979 , 912,857 ,
and 839 . AMERIC
and 839 .

TO INVENTORS

An experience of nearly ffty years, and the preparation
of more tban one bundred thousand applications for paentsat bome and abroad, enable us to understand the
 synopsis of the patent laws of the United States and all foreign countries may be bad onapplicat ion, a nd persons abroad. are invited to write to this office for prices, which are low, in accordance with the times and our exlensive facilities for conducting the business. Address IUN way, New York

INDEX OF INVENTIONS

For which Letters Patent of the

 United States were GrantedJune 25, 1895,

AND EACH BEAIRING THAT DATE

[See note at end of list about copies of these patents.]

Acia and bo-products. method of and apparatus

Adjustabie bit. A.A. Pears........ Avertising device. J. W. Snoddy.

Bruse eieniaio. A. Haikied

Castings, manufacturing steel, S. P. Hutchinson..
Chair.
See Dental chair.

 counter checks, manifold copybooks, etct., E.
H. Hiborn H. Hiborn
Coset, W.Kres
Cosure, Guile

Cotton chopper, Bïdsoe \& Watson.............
Cotton por or woil burer, G. E.U. Huckaby....

Current motor alternatin, R. Elckemeyer....

Electric conductors. protector casing for under
ground. J. A. Kingdon

Electroiysis of pipes underground, preventing,
P. Brown Electroytucal process and apparatus, c. T.
Elevator,

 Steam enkne enine table, Rotary steam enging: \mathbf{c}. Bruckner.......

Horse Hose Hos Hijec Inse Insul

\qquad ble conductor for transmitting, B. \mathbf{W}. War
wick. War
Motir. See Current motor. Fiectric notor.
Wave notor.

 van \& Mathews. for roll
Propeller sorew, M. Gieason.

Pum Pum Pume

Punching or clamping and cutting metal sbeets,

Rallas switch, A.f. Muliken

 sheet meitial riticices, appararatus for tormng. C. E.

 541,818

DESIGNS.

trate marks

Pfopertisements.

"
 Lathes $\begin{gathered}\text { Automatic } \\ \text { cross Feed }\end{gathered}$
 Sendfor Catalogue B.
SENECA FALLS MFG. COMPANY,
695 Water St., Seneca Falls, N. Y.
LATHES, Shapers, Yaners, Drills, Machine Shop

F00T POWER LATHES

W. F. \& JOHN BARNES CO.
1999 RUBY STREET,
ROCKFORD, ILLs.

AMMERICAN PATENTS. - AN INTER-

 NOW READY:
Seventeenth Edition of
Experimental Science

 MUNN \& CO. Publishers,
Office of the SCIENTIFIC AMERICA MUNN \& COMOM Publishers,
Office of the SCIENTIC AMERIC
3Gi BKOADWAY, NEW YORK.

STARRETT'S
IMPROVED SPEED INDICATOR.

The L. S. Starrett CO., Manutateore or fine Toios,

TO BUSINESS MEN
The value of the SCIENTIFIC AMERICAN as an adver-
tising medium cannot be overestimated. Its circulation
is many times greater tnan that of any similar journal is many times carnoter be overestimated. Its circulation of any similar journal
on published. It ores into all the states and Toerrito now published. Jt zoes into all the States and Territo-
ries, and is read in all the principal libraries and reading rooms of the world. A business man wants something
more than to see his advertisement in a printed newspaper. He wants circulation. This he has when he ad-
vertises in the Scientific American. And do not let vertises in the SCIENTIFIC AMERICAN. And do not let
the advertising apent infuence you to substitute some
other paper for the ScIENTIFIC other paper for be Scientific American when se-
lecting a list of publications in which you decide it is fo your interest to advertise. This is frequently done for
the reason that the agent gets a arger commission from the reason that the agent gets a arger commission from
the papers having a smill circulation than is allowed on
the ScIENTIFIC AM ERICAN. For rates see top of first column of this page or ad-
dress MUNN \& CO... Publishers.
361 Broadway, New York.

ENGINES, sTâ The "Wolverine" is the onl versible Marine Gas Engin gine for its power. Require licensed engineer. A WOLVERINE MOTOR WO CRAND RAPiPIDS, int ALL BEARING AXLES AND RU Tires.-A paper read before the Carriage Buil the advantage to be derived from the use of rings and pneumatic tires in road vehicles. ned in SCIENTIFIC AMERICAN SUPPLEMENT. 2. Price 10 cents. To be had at this office and newsdealers.

 A.W. FABER

LEAD PENCILS, COLORFD PEENCILS, SLATE
PEENCLLS, WRITNG SLATES PTEEEL PENS, GOLD
PENS, NKS, PENCI, CASES IN SILVERANN IN
GOLD, STATIONERS' RUBBER GOODS, RULERS,
COLORS AND ARTISTS' MATERIALS.
78 Reade Street, - - New York, N. Y

BUY

TELEPHONES
 guarantee our customers against loss by patent suits. WESTERN TELEPHONE CONSTRUCTION CO,
440 Monadnock Block, CEICAGO. SINTZ GAS ENGINE CO. GRAND RAPIDS, MICH.,

HELLO, CENTRAL!

ARTESIAN WELLS - BY PROF. E.

Pumping Waiker by Comprassind Air.
 ade with wita fonle, we are enabled
customers withe
POHLE AIR LIFT PLMP,

 ELECTRICITY AND PLANT GROW-

"Pacific" \& "Union" Gas \& Gas
ENGINES. ENGINES.
Marine and Stat
ary. 1 to 7 h.
t.

AMERICAN GAS FURNACE CO. CHEAP AND PERFECT FUEL GAS GAS BLAST FURNACES,
for al kinds of Mechanical Work
HICH PRESS
R Adress, SO NASEAU STREEET. NEW YORK.

ROBERT POOLE \& SON CO.

ENCINEERS \& MACHINISTS. TRANSMISSION MACHINERY maghifie moulded gearina SPECIAL FACILITIES FOR THE HEAVIEST CLASS OF WORK BALTIMORE, MD.

Rotary Upholstery Brush.

rated br ICAL PHENOMENA ILLUS

 Chain BELTING of Various Styles, ELEVATORS, GONVEYOR8,
coal mining and handling machinery. The CEFFREY MANUFA
tot Sond for late catalome "C."

GATES IRON WORKS OPer 650 ELSTONAVE CHICAGO.

How To Make a Dynamo
 They All Like It. So Do The Men.
Children Enjoy It Caymanen Enjoy 1 .

ESTABLISHED 1845

The Most Popular Scientific Paper in the World Only $\boldsymbol{\$ 3 . 0 0}$ a Year, Including Postage.
This widely circulated and splendidy illustrated paper is published weekly. Every number contains sixoriginal engravings of new inventions and discoveries, representing Engineering Works, steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures Chemistry, Flectricity.Telegraphy. Photography. Architecture, Agriculture, Horticulture, Natural History, etc. Complete list of Patents each week.
Terms of Subscription.-One copy
Tific American will be sent for one year- 52 ne Scienpostage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of Whree Dollars by Che publishers; six months, 81.50; three mont hs, 81.00 .
Clubs.- Special rates for several names, and to Post masters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address allletters and make all orders, drafts, etc., payable to
MUNN \& CO., $\mathbf{3 6 1}$ Brondway, New York.
 Thisis a separate and distinct publication from The
SCIENTIFIC Americas., but is uniform therewith in size, every number containing sixteen large pages full papers and accompanied with translated descriptions. The SCIENTIFIC AMERICAN SUPPLEMENT is published
weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in
all the principal departments of Science and the Useful all the principal departments of Science and the Useful
Arts, embracing Biology, Geology, Mineralogy, Natural Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Eneineering, Mining, Ship Building,
Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography. Medicine. etc. A vast amount of fresh and valuable information
obtainable in no other publication. The most important Enoineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEment. for the United States,
Canada, and Mexico. 8500 a year: Canada, and Mexico. 85.00 a year; or one copy of the
SCIENTIFIC AMERICAN and one copy of the SUPPLE-
 Single copies, 10 cents. Address and remit by postal
order, express money order, or check,

MUNN \& CO., 361 Broadway, New York.
ghuiding Ellition.
iskued monthly. 82.50 a year. Single copies, 25 cents. Thirty-two large quarto pages, forming a large and
splendid Maeazine of Architecture, richly adorned with elegant plates and other fine engravings; illustrating the
most interesting examples or modern Architectural Construction and allied subjects.
of a variety of the latest and bestation in each number dences. city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with Floor perspective and in color are given, together with Floor
Plans, Descriptions, Locations, Estimated Cost, etc. Plans, Descriptions, Locations, Estimated Cost, enc.
The elegance and cheapness of this magnifcent work have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all newsdealers.
MUNN
\&2.50 a year., $\mathbf{3 6 1}$
Broadway, New York.

Fexport Edition

of the SCIENTIFIC AMERICAN, with which is incor-
porated "LA AMERICA CIENTIFICA E INDUSTRIAL," lished monthly, and is uniform in size and typography with the Scientific Amerioan. Every number contains about 50 pages, profusely illustrated. It is the flnest scientifce, industrial export paper published. It circulates and South Americe Spain and Spanish posessions
tral and - wherever the Spanish language is spoiken. THE SclENTIFIC AMERICAN EXPORT EDITION bas a large guaranteed circulation in all commercial places through-
out the world. 83.00 a year, postpaid, to any part of the
Manufacturers and others who desire to secure foreign trade may bave large and handsomely displayed
announcemen*s published in this edition at a very announcements publisbed in this edition at a very MUNN \& CO.: Publishers. 361 Broadway, New York.

HENRY CAREY BAIRD \& CO. LNDUSTRLAL PUBLISHERS, BOOKSELL 810 Walnut St.. Philadelphia. Pa.. U. S.A. Scientific Books 90 pages, $8 \mathbf{v o}$, and ourother Catalologu and Circulars, the wbole covering eve y branch of sc ence applied to the Arts, sent free and free of postag to any one in any part of the world who will furnish b address. The Scientific American Reference Book.

prising, probably, the most extensive variety of stand ard, practical. condensed information ever furnished Among its conteyts are The Last Census of the United States (1390). by States, Territores.and Counties: Tabie of Cities having over 8,000 inhabitants
Map of the United States-miniature Patent Laws (full text): The Trade Mark Law (full
text): The Copyright Law (full text): The Frincipa Mechanical Movements-illustrated by 150 sman dia-
grams-of value to inventors and designers of mechan ism; Meäallion Portraits of Distinguished American Inventors. Valuable Tables restating to Steam, Flec cricity. Heat, Metals, Weights, and Measures.
25 cents.
MUNN \& CO, Publishers,

Wairen Moinio

GAS ENGINES \& VENTILATING FANS

 "DIETZ" TUBULAR DRIVING LAMP.

WANTED ${ }^{-}$A dompotent Manager for Bolier Forkst

 ROCK Made of Large Blocks of Emery Set in Metal. Fastest Grinders known. Can grind anything P P P M Made Sharp. Stay. Will Fit any Mill Frame.
 GAS ENGINE CASTINGS

VERY LATEST NOVELTY
THE MICROGRAPH

 TENTS.
We manufacture Tents of every varrety and stre. for ail have beea in the buaitess for nity-four yeara
we and know how to make themproparly. We have male tents Yor thy War D
the U.S/Government formany years We gfo now fuoting the fowesh pricas ever heard

GEO. B. CARPENTER \& CO. 202-208 So. Water St., CHICAGO

Nestimn Dinivesity of Panla.
 For catalogue, address the Cbancellor

 Marine Vapor Engine Co.. Jersey City, N. J. ICE HOUSES--DESCRIPTION OF

MONEY MADE AT HOME

AABBORUNOUND=
 THE NEWSPAPER AND THL ART

TELEPHONES
 Transmitters, Receivers, Magneto Bells, Cords and Parts of Telephones. MIN Send Stamp for Catalogue. MIANUS ELECTRIC CO., MIANUS., CONN. Gepin giocers Fon A Lumc CALENDOLIS T Y PESETTINGGA-
 NORWICH LINE The AIR RLNE LINITED New York and Boston.

Parson's Horological Institute.
School for 7CIatchmakers engravers and Jewelers.

Parson's H
302 bradley A venue,

Engineers and Firemen fene po. stapmpor or

Any person about to erect a dwelling house or sta-
ble, either in the country or city, or any builder wishing ble. either in the country or city, or any builder wishing
to examine the latest and best plans for a church. school house, club house, or any other public buildink of high or low cost. should procure a complete set of
the ARCHITECTS' AND BOILDEIS' EDITION of the Sct entific American.
The information these volumes contain renders the work almost indispensable to the architect and builder.
and persons about to build for themselves will find the
work work suggestive and most useful. They contain draw-
ings in perspective and in a lor, together with floor plans, costs, location of residerice, etc. Two volumes are published invualiy. Volumes 1 to
18, which include all the nu Rers of this work fron
cowmencement to December. 1894. may now be obtained cowmencement to December 1894, may now bo obtained
at this office or from Booksellers and Newsdealers. at this office or from Booksellers and Newsdealers.
Price, stitched in paper $\$ 2.00$ per volume. These volFree, sontain all the plates and all theother interesting
umes cont
matter pertaing matter pertaining to the work. They are of great permanent value. Forwarded to any address.
MUNN \boldsymbol{A} CO. Publisis.

$$
\text { MUNN } \mathcal{E} \text { CO., Publishers, }
$$

THE HYPNOSCOPE for physicians, dentists, in.

ENGINES, Boilerwnind Nactine Thonly Nem

The
American
Bell Telephone Company,

I25 Milk Street,
Boston, Mass.

This Company owns I cttersPatent No. $4^{6} 3,569$, granted to Emile Berliner November 17, iS9r, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters cr contact Telephones.

$\$ 6.00$
to $\$ 100.00$.
The lightest and most practical cameras for hand
or tripho use. An iltus rated manual. free with
every Kodak, tells how to develop and print the Eictures.
Eastman Kodak Company,

Computing Figures mentally is probably the
mardest kind of toil known hardest kind of toil known.
The Comptometer makes it casy, is twice as quick, in-
surres accuracy and relieves
all mental and nervous strain. all mental and nervous strain
Why dont you get one? hy don't you get one?
Weite for Pamphlet. ELT \& TARRANT MFG CO
E2-50 TLINOIS ST., Cmicaco.

EI FCTRO MOTOR SIMPLE HOW TO

Premo Cameras

Are perfect in construction. workmanship and finish, and contain more modern immake several styles and guarantee them ROCHESTER OPTICAL CO. 22 South Street,

Rochester, N. Y.
JESSOP'SO STEELTH1 PTv

Three New Model
Smith Premier Typewriters

-Nos.

YOU EXANINED JHEM? by Other Manufatures.
Address THE SMITH PREMIER TYPEWRITER COMPANY, Syracuse, N. Y., U.S.A

THE M. \& B. TELEPHONE. T". Absolutely Non-infringing.
Absolutely Guaranteed. Absolutely Guaranteed,
Absolucly the Best Exchang ADNITCH BOARDS.
d Catalogue on applica
THE U. S. TELEPHONE CONSTRUCTION CO.
131-133 S. Fourth St., Philadelipila
THE BACHELDER ADJUSTABLE SPRING INDICATOR.
 speed or irresince.
 THOMPSON \& BUSHNELL CO., 112 Liberty St., New York PRIESTMAN SAFETY OIL ENGINE

Towers, Tanks and Tubs

All Iron Towers ALL WOOD TOWERS. ELEVATED TANKS

Louisiana Red Cypress Tanks
W, E. CALDWELL CO, 219 E. Main Street,

PRINTING INKS,

