a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, MARCH 23, 1895

A NEW STEAM TRICYCLE.

We present an illustration of a French device, the team tricycle, built by MM. Hildebrand and Wolfmul ler, in which the mechanism is reduced to its simplest the foot the carriage stops and the momentum which form. The motor consists of two cylinders which are it has acquired may be checked, if desired, by apply arranged to impart motion to the large driving wheels of the tricycle by the me-
dium of a twisted belt and gear wheels. The boiler is placed behind the engine, is spheroidal in shape and is made of steel. It is completely covered with asbestos or other non-inflammable material almost one-half inch thick. This asbestos is soaked with the inflammable material. When the machine is to be operated the combustible liquid is lighted, and at the end of fifteen minutes the pressure of the steam in the boiler is sufficent to actuate the motor. The pressure required is 60 pounds of steam, but the boiler is tested to 180 pounds, so the pressure can be increased when greater speed is desired.

AN ELECTRIC CARRIAGE.

In Supplement 979 we described the race of the automobile carriages which began July 19, 1894. In 1895 a similar regan July 19, 1894 . In 1895 a similar race will be held over a course between
Paris and Bordeaux, and promises some interesting developments in the line of steam, petroleum and electric carriages. M. Charles Jeantaud, the head of an important carriage establishment of Paris, commenced experimenting on an electric carriage in 1881, when the accumulators of Faure first appeared, but at this time the dead weight of the accumulators was so great that M. Jeantaud was forced to stop his experiments; but he was spurred into activity by the recent success of petroleum and steam motors for carriages, and the result of his labors is the electric ing the foot to the brake. The brake is of the ordicarriage which we illustrate herewith. He found it nary variety, a wooden shoe binding on the rear necessary to obtain a source of electricity lighter and wheel; a circuit breaker is placed on the brake pedal, less cumbersome than those in use. He found it in the so that when the brake is applied the current is cut "Fulmen" accumulator. The plates are covered by a off at the same time. On a good level road a speed of perforated celluloid envelope filled with the active 20 kilometers ($121 / 2$ miles) per hour has been obtained material. In the center of this envelope are the lead while in a hilly country the speed is reduced to 12 kilo plates which serve to collect the current. The celluloid is a perfect non-conductor and is not attacked by acids. The plates are carried in wooden receptacles, which are lined with celluloid. They are composed of two parts, the box proper and the cover, which is absolutely watertight and is transparent as well. The accumulator thus constructed presents a small bulk and light weight compared with its great capacity; it resists perfectly the shocks to which it is subjected. The batteries which propel the carriage of M. Jeantaud consist of 21 elements of the type just described, which give a current of 100 amperes of a pressure of 40 volts. In ascending slopes the current is increased.
The general appearance of the new carriage, as shown in our engraving, resembles that of a petroleum - propelled carriage. None of the actuating me None of the actuating me21 elements are inclosed in 21 elements are inclosed in
seven small boxes, e a ch seven small boxes, e ach
containing three accumucontaining three accumulators. These boxes are stowed away onder the seat. The hands are free to steer the carriage and to

THE ELECTRIC CARRIAGE OF M. JEANTAUD.
meters. The weight of the carriage is distributed as follows : Carriage, 490 kilogrammes; accumulators, 420 kilogrammes; motor 110 kilogrammes; two passen kilogr, 150 to 180 kilogrammes; total, 1200 kilo passen gers, 150 to it will be seen that the carriage and contents weigh only about 2,645 pounds The electric carriage has a future, and already in London there is a firm which displays a sign saying that they are pre pared to charge accumulators of all sizes at any hour of the day or night. T'Energie Electrique, from
translated this description of the electric carriage, draws a glowing picture of France when the electric carriage shal have come into more general use, when travel in the vehicles which move without the aid of steam or animal power can be used for extensive trips, the accumu lators being charged at any of the 10,000 establishments in France. which have electrical plants.

The Income Account of American

The "Preliminary Report of the In come Account of Railways in the United States," prepared by Mr. Henry C States," prepared by Mr. Henry C.
Adams, statistician to the Interstate Adams, statistician to the Interstate
Commerce Commission, shows the great Commerce Commission, shows the great
depression in our industries following the panic of 1893 . On the basis of 149,559 miles of railway open for traffic, the passenger earnings for 1894 show a decrease of $\$ 53$ per mile; the decrease in the freight traffic is still more marked, be ing $\$ 774$ per mile. The total decrease per mile was $\$ 840$ under the average earnings of the four preceding years. In 1894 the gross earnings of the 149,559 miles of rail way were $\$ 949,639,075$; the operating expenses in the same period were $\$ 643,428,331$; this lef $\$ 306,210,744$ to be divided among the holders of the stocks and bonds. This may at first sight seem a large sum, but nearly one-quarter of the railways in the United States are in the hands of a receiver. The ope rating expenses for 1894 show a gratifying decrease of $\$ 574$ per mile over the previous year. In 1893 the gross earnings per mile fell to $\$ 7,190$, while the operating expenses increased from $\$ 4809$ to $\$ 4,876$ per mile 4,809 to In 1894 the gross earning sank to $\$ 6,350$ and the operating expenses were \$4,302. This decrease of $\$ 574$ per mile shows that a rigid economy must have prevailed, as many of the expenses of the railway are constant, without re gard to whether business is good or bad.

A METHOD of detecting fire damp by sound has been invented by M. Hardy and approved by the French Academie des Sci ences. It is based on the fact that the sound emitted by an organ pipe varies according to the density of the air supplied. M. Har dy's apparatus consists of two small pipes, the size of a penny whistle, one of which is connected with the air in the mine and the other with the ventilato shaft. The presence of fire damp produces a discord at once between the two at once between the two with with the quantity of ga and can be measured. B this contrivance the pres-
ence of 1 part in 500 of fire ence of 1 part in 500 of fi
damp can be detected.

Srientific Smmerican.

ESTABLISHED 184E
MUNN \& CO.. Editors and Proprietors PUBLISHED WEEKLY AT
NO. 361 BROADWAY, NEW YORK.

table of contents of SCIENTIFIC AMERICAN SUPPLEMENT No. 1003.
For the week Ending Marcli 23, 1895.

The gas engine burns some twenty feet of gas pe horse power hour, which gas represents an illuminat For the production of such gas four pounds of bitu minous coal suffice which give also as side product minous coal sumee, which give also as side product If a gas engine drives a dynamo, we may get from it in incandescent lights as much or more candle powe than from the original gas burned as such, while if we use arc lamps the production would be vastly increased. In the new acetylene process, a similar but more complicated cycle exists. Power is expended in
an electric furnace, where it heats to an almost immeasurably high temperature a mixture of lime and carbon. The lime is reduced and gives calcium car bide. This substance is treated with water, and every pound evolves five cubic feet of acetylene, enough to give 250 to 300 candle power of light for one hour.
Thus if we know how much horse power is expended per hour in producing a definite yield of the calcium carbide, we can compare the economy of the different cycles. As a matter of figures it is enough to say that they come out about the same. But the new product effects other results. It diminishes the minimum size of gas holder required for the usual exigencies of gas supply. A one-foot burner gives perhaps forty candle power, or as much as ten feet of ordinary gas would give. Hence a gas holder of one-tenth the ordinary size could be used. The new gas is made without heat, and without any dangerous agent such as gaso line. Finally, when the gas is made it is a permanent one. The utter simplicity of the apparatus and pro cess is also striking.
One of the curiosities of the carbide is that it wil not burn. It can be drawn out white hot from th electric furnace and cast in moulds. A piece can be held in a Bunsen burner without the least effect. But if a drop of water is put upon the stony substance it effervesces, and the gas can be lighted and will burn like a piece of wood for a tew seconds until the water is exhausted. Then it goes out.
Merely as a matter of scientific interest it is to be hoped that the commercial production will soon be ac complished. The merciless judgment of the balance sheet has wrecked many a most ingenious scientific triumph. It is to be hoped that acetylene will fare better.

The Craig Colony for Epileptics

The managers of the Craig Colony for Epileptics, at Sonyea, N. Y., have recently published an interesting report of the work so far accomplished in fitting ou the home. During the year considerable progress has been made. In 1894, the Legislature of New York ap propriated $\$ 140,000$ for the establishment of the colony, and of this amount $\$ 12,000$ has been expended in pur chasing the farmiwhich is to form the site of the colony and in protecting and improving the property. A gen eral design for the colony has been adopted to which all buildings and improvements will be obliged to con form, and architects and engineers, surveyors and others have been employed to carry out these plans. It is pro posed to construct first an administration group of fin buildings. These are to be plain two-story structures entirely disconnected and devoid of all "institutional" features, the whole resembling a cluster of private dwellings. The chief buildings of this group will con tain the offices of the superintendent and members of his staff, and it will be here that the patients will be first received. Two of the buildings will be hospi tals, one for each sex, and two will be used to accom modate patients before they are distributed in the colony. The idea is to provide the most homelike conditions. The minor offices and wants of the colony will be provided for by the patients themselves
The designs of the respective buildings will vary from each other in detail and in outline. Everything will be done to prevent the colony from having the appearance of an institution. The home life will be further maintained by providing a dining room for each respective building. The patients from the several buildings will not, in any case. be massed together There will also be separate buildings, to be known a ewing cottages, laundry cottages, etc. The farm a Sonyea comprises - nearly 1,000 acres of excellent land and much of this will be cultivated. The place wil also be beautified by a tasteful arrangement of drive ways, lawns, trees, and shrubbery
Such an institution as is being here provided has for a long time been very badly needed. The State now makes provision in separate institutions for the in sane, the blind, the deaf and dumb, and others suffer ing from chronic maladies. It is no less important that provision should also be made for epileptics. It is es provision should also be made for epileptics. It is es-
timated that there are 12,000 epileptics in the State of timated that there are 12,000 epileptics in the State of
New York. Of this number some 400 are confined in New York. Of this number some 400 are confined in
insane asylums and 600 in poor houses. The colony at insane asylums and 600 in poor houses. The colony a
Sonyea will doubtless correct this abuse. Its surround ings will, besides, be unusually healthful, and its atmo phere as far as possible homelike, and, therefore, rest ful and beneficial. The plan of providing an epileptic colony is already in successful operation in England France, and Germany, where much good has been ac complishec.

New Torpedo Catchers.

The Banshee, one of the three torpedo-boat destroyers built by Messrs. Laird Brothers, Birkenhead, recently made a successful trial, attaining a mean speed on six miles of 27.97 knots, and for the three hours running 27.6 knots, being more than half a knot in ex cess of the contract speed. Exhaustive trials of steer ing, both ahead and astern, at full speed were also carried out with satisfactory results.

Annual Report of the Factory Inspector.
The ninth annual report of the Factory Inspector o New York State, which has recently been submitted to the Legislature, contains much important information. The inspections of the past jear have been very thorough, and much good work has been accomplished. During the Jear some 13,866 separate workshops have been visited, which employ in all 465,926 persons. Of these it was found that 150,662 were women and 12,536 were children under sixteen years of age. The inspection has led to the correction of many abuses. of the laws governing the ages of children employed and the proper protection of the lives and morals of employes. In all, 10,425 notifications requiring changes and improvements were issued, many of which were of great importance
It was found that the number of children in the factories, under sixteen years of age, was less than in previous years. About 2.6 per cent, or less than 27 children in each 1,000 of factory workers, were under age, and it is claimed that this is a better record than that of any manufacturing State or country in the world. Many improvements have also been brought about relating to the guarding of machinery and the proper protection of operatives. The inspector has, as far as possible, exercised supervision over the sweating or tenement house system of manufacturing. In this work eight deputy inspectors were at work for ten months on the east side of New York. City alone. As a result of these inspections a great many notifications were served and enforced to better the conditions of these places. Notifications were also served relating to the guarding of elevators and hoistways, the erec tion of fire escapes, the renovation of factories, the provision of proper toilet rooms, to better ventilation, and similar improvements. The report states that in most cases the notifications were promptly and cheerfully obeyed.

Electric Road Between Niagara Falls and Buffalo.

Everybody in Niagara Falls is rejoicing, says the Buffalo Express, over the letting of the contract for the building of the electric road between the Falls and Buffalo. The contract, as W. Caryl Ely announced, was formally signed recently in Buffalo, and it was mainly through Mr. Ely's tireless efforts that this road was secured. According to plans, the road is to be built of 94 pound steel girder rails, with side trolley poles. It is to be double-tracked except for a distance of $21 / 2$ miles, where the highway commissioners of the town of Wheatield refused to grant more than a sin. gle-track line franchise. The best feature of all is that is will give Buffalo and Niagara Falls cheap fares, the rate to be but 50 cents for the round trip at all times. Quick time is to be made, and in order to do this the road is to be made so that heavy cars can be used The running of late cars will keep hundreds of Buffalo people in Niagara Falls until late in the evening, who now are obliged to go home before the really enjoya ble part of the day about the Falls comes. The powe for operating the road will be furnished by the Niagara Falls Power Company, and according to the con tract, the cars will be running by July 1 of this year.
In Niagara Falls the road will be run on the tracks of the local street railway company from Echota, and this line, which is now a single track, will be double tracked this spring and rebuilt entirely.

All the capital for the building of this road has been secured and the moment the weather permits, work on its construction will begin. The first section between Buffalo and Tonawanda will, it is said, cost about $\$ 500,000$, complete.

The "Experimental Farms ${ }^{\prime \prime}$ of Canada.
For several years the provinces and the federal government of Canada have been taking an active interest in the improvement of agricultural methods throughout the provinces, and at present the equipments of their so-called "experimental farms" are very complete and efficient. The central experimental farm, situated near Ottawa, comprises some 500 acres of land and a complete outfit of buildings and the nec-
essary machinery. The buildings are especially fitted essary machinery. The buildings are especially fitted are well stocked. There is also a dairy equipped with the modern appliances for carrying on experimental work. The farm also includes a seed testing and propagating house and a conservatory. Besides this central station, there are eleven experimental farms situated in other parts of Canada, and these carry on experiments in agriculture, horticulture and arboriculture with much profit. The several farms are situated so as to render them as helpful as possible to the most thickly populated districts, and in their equipments and general methodsthey resemble closely the central station. The staff of workers at the central experimental farm includes a director, an agriculturist, a horticulturist, a botanist, an en tomologist and a chemist. There is also a poultry manager, a "foreman of forestry" and several as sistants to assist the members of the staff. The work
is varied in nature and has to do with practically
everything which relates to farming in Canada. The adaptability and merits of various varieties of wheat are, for example, the subject of careful inquiry.
Experiments are also carried on to determine the vitality and purity of various agricultural seeds, and to investigate the nature of the diseases of plants and trees, and the cure for the ravages of insects. Variou varieties of fertilizers are tested to determine their comparative value with different soils and crops. The study of the care of animals is also a very important interest, and the value of different breeds of stock and their adaptability to various climates and other conditions are carefully investigated.

These stations also examine the scientific and eco nomic sides of butter and cheese making. Experiments are also carried on to determine the best meth ods of planting and pruning trees for fruit raising or for shelter or timber. The information gained in al this work is carefully recorded and published for gen eral distribution.

First Aid to the Electrically Shocked.

The French Minister of Public Works, under expert advice, has prepared the following rules in case of shock: The victim is to be, first of all, taken into an airy place; three or four persons should be taken there to assist and no one else allowed to enter. The cloth ing is to be loosened and efforts made to re-establish respiration and circulation as soon as possible. To re establish respiration, recourse can be had to the follow ing two methods, viz., drawing of the tongue and arti ficial respiration. In the former case, the mouth of the victim is opened with the fingers, or, if there be resistance, with a piece of wood, the handle of a knife spoon or fork, or end of a walking stick. The front part of the tongue should then be taken between the thumb and index finger of the right hand, bare o covered with, say, a pocket handkerchief to prevent
slipping. The tongue is then strongly pulled, and allowed to relax, in rhythmical imitation of respiration at least twenty times a minute. These movements must be continued without a break for half an hour or more. For artificial respiration the subject should be laid upon his back, the shoulders slightly raised the mouth open and the tongue free. The arms are taken at the height of the elbows, supporting them strongly on the walls of the chest, next bringing them above the head, describing the arc of a circle. These movements are to be continued at least twenty times a
minute until the re-establishment of natural respiraminute until the re-establishment of natural respira on. It is suitable to commence with the novemine with the adopting of artificial respiration. At the same time, it is desirable to try and restore circulation by rubbing the surface of the body, by beating the body with the hands or with wet towels, throwing cold water on the subject from time to time, and ap plying ammonia or vinegar to the nose.-Boston Transcript.

Iced Bar Base Apparatus.

The United States Coast and Geodetic Survey employ an interesting and ingenious apparatus for determin ing the exact measurement of base lines. Considerable difficulty is experienced usually in this work from the variation of the measuring bars due to changes of temperature. A measuring bar will even be so affected by the heat of the hand holding it as to become more r less inaccurate. The length of a rod of brass or copper a font long will vary from the heat of the hand from 000% inch to 0.01 inch. In order to secure perfect accuracy this expansion must be considered. In out door work such as surveying it is of course impossible to keep the measuring rod at a constant temperature The apparatus used by the survey for avoiding this danger is known as the "Iced Bar Base Apparatus." By this device a single rigid bar is used as the element of length. The bar is carried in a \mathbf{Y}-shaped trough and when in use it is surrounded by melting ice, which will be seen, serves to preserve a uniform tempera ture for the rod. The trough is very rigidly con
structed and especially adapted to resist vertica structed and especially adapted to resist vertica
trains. The trough is completely filled with pulver ized ice, and the slanting sides of the trough serve to keep the ice constantly in contact with the bar. The particles of crushed ice used for this purpose vary in ize from the smallest flakes up to the size of a cubic entimeter. This is found to suit the purpose better than snow or pulverized ice, since it does not pack.
The bar is rectangular in shape and is formed of rolled tire steel. The upper part of the bar is cut away at either end to receive the graduation plugs, which are of platinum-iridium. The trough carrying the iced bar, as described, is attached to two cars, which may be moved along a horizontal track. The measuring may be moved in this way to the positions required in measuring the base lines. Micrometer microscopes are used to mark its successive positions. The trough is covered with a close fitting jacket or blanket of heavy white cotton felt, which serves to protect the ice in a measure from the heat. In actual practice the apparatus is found to work very success fully.

Lieutenant E. F. Qualtrongh, U. S. N., has contributed some interesting notes on the progress of ord nance in the thirteenth number of the General In formation Series issued by the Office of Navy Intelli gence of the Navy Department. The leading authori ties seem now agreed that the naval artillery of the future will be of more moderate dimensions. There are several objections to guns of large size. The endurance of a gun diminishes as the caliber increases. The machinery required for the manipulation of heavy guns is easily disabled by a projectile from a comparatively small gun, and large guns can only be fired at intervals of several minutes, so that often much smaller rapid-fire guns will do more execution. The employment of guns of moderate size paves the way for improvements in reduction of displacement and increase in the coal endurance. For a given outlay the reduction of caliber means an increase of ships and guns, and where a large battery of guns of moderate dimensions are provided, there is less danger of the vessel being crippled by the dismounting of a gun or two. The projectile fired by the latest 12 inch gun is capable of perforating any armor afloat at fighting ranges, so that if the penetrating power is sufficient to sucessfully attack the defensive armor which is liable to be encountered, it is advisable to increase the number of guns and not their size. The manufacturers of rapid-firing guns have been increasing the caliber of their weapons and have recently made important improvements in mounts and ammunition.
An efficient gun mount has such important duties to perform that the new devices in the way of disappearing carriages and means of absorbing the energy of the recoiling gun that the progress made in the las few years is fully as great as that made in the gun itself By arranging for the recoil to take place in the line of fire the "jump" is much reduced, and sudden blows to the deck are obviated, although a severe strain is necessarily brought upon it. Springs have been generally introduced for returning guns to the firing position. They were first used with the mounts for rapid firing guns, and the experience thus obtained has led to their more extended employment. Gun shields have increased in thickness, and nickel steel is being intro duced for use in constructing them. Sights are now usually fitted on the mount, so that the pointing of the gun is in no way interfered with by the loading or firing.

Food Fish of Alaskan Waters.

A careful study of the many varieties of food fish of Alaska has recently been made by one of the govern ment ichthyologists in the interests of the Smithsonian Institution, and the observations made are very valua ble and interesting. In Alaska every native is a fisher man, and the fish of these waters are so abundant and of such variety that the entire native population is able to support itself by this means. The report, it is to be hoped, will lead to some arrangement by which these quantities of food fish may be brought to the markets of the United States.
The great wealth of Alaskan waters lies in their abundance of salmon. The natives catch the salmon by the aid of spears, nets and traps, and dry them at present for their own use exclusively. The large variety known as king salmon often weigh from sixty to ninety pounds apiece, and these are very abundant. The waters also swarm with codfish equal, it is re ported, to those of New England. In the northern rivers several varieties of whitefish take the place of salmon. They grow to a weight of about thirty pounds and have a delicious flavor. The rapid streams are well supplied with grayling; and Dolly Varden trout are very plentiful, and frequently exceed fifteen pounds in weight. Quantities of pike, dogfish and edfish also abound. Probably the most abundant of all fish, however, are the common herring. These are very fat and of an excellent flavor. It is said that vessels often sail for hours at a time through shoals of these herring.

Weather and the Mind.

The psychology of the weather is considered by Dr. T. D. Crothers a
"Very few persons recognize the sources of error that come directly from atmospheric conditions on experimenters and observers and others. In wy own case, I have been amazed at the faulty deductions and misconceptions which were made in dawp, foggy weather, or on days in which the air was charged with elecricity and thunderstorms were impending. What seemed clear to me at these times appeared later to be filled with error. An actuary in a large insurance company is obliged to stop work at such times, finding that he makes so many mistakes which he is only conscious f later that his work is useless. In a large factory from 0 to 20 per cent less work is brought out on damp days and days of threatening storm. The superintendent, in recelving orders to be delivered at a certain time, takes this factor into calculation."

A MOTOR OPRRATED BY THE EXPANBION AND CORTRACTION OF METAL.
In the motor shown in the accompanying illustration, two bands are alternately expanded by the direct application of heat, and the bands are so connected with springs that when one band is expanded it releases its hold on the springs while the other band is receiving the full pressure of the springs. "Pyromo" is the name given this motor by its inventor, Dr. W. W. French, of Fort Branch, Ind. The engraving represents a sectional side elevation of the motor, a loosely rotating wheel having an exterior expanding

and contracting rim preferably made by sets of metallic bands arranged one alongside the other. The bands are subjected to the heat from gas burners which open into a hood on one side of the wheel, and the ends of each band pass over pulleys journaled in suitable bearings in the sides or spiders of the wheel, the two sets of bands passing over corresponding sets of alternately arranged pulleys. The ends of the bands, after passing over the pulleys, connect with links in the middle of the outer leaves of elliptical springs, the springs being attached, at the middle of their inner leares, to rods secured in the sides of the wheel. The several bands are supported intermediate of their pulleys on posts, and the bands are connected at their middle by inwardly extending links, with levers fulcrumed in the sides of the wheel. Each link has a turn buckle, whereby the length of the link may be increased or diminished, and the levers are connected by other links with a disk on a crank arm on the shaft. The bands of each set connect at their ends with the same springs, and they connect by independent links with separate levers opposite each other and connected with opposite sides of the disk on the shaft. As a band is heated from the burners, its expansion releases a set of springs, whose closing power is exerted on the ends of another band, and through the two links and lever a pull is exerted on the disk to cause the wheel to rotate in the direction of the arrow. A similar operation takes place with the other bands. The motor is designed to be selfgoverning, the springs establishing a yielding connection between the bands and levers, to prevent the bands from breaking and take up slack until the running temperature is reached.

A New Cure for Stiff Joints.

At St. Bartholomew's Hospital, London, an ingenious hot air bath is now in use for the treatment of sprains, inflamed joints due to gout or rheumatism, and similar affections. It consists of a copper cylinder about three feet long and eighteen inches in diameter, which will hold an arm up to the shoulder or a
moisture has a scalding effect, which is relieved by opening the further end of the cylinder and letting the moisture evaporate. A sitting usually lasts forty minutes. The immediate effect is a greatly increased circulation in the part treated, profuse local perspira tion, and relief from pain.

BRISTOL'S RECORDING AMPERE METER.

The accompanying engravings illustrate a new recording ampere meter, which is being placed upon the market by the Bristol Company, of Waterbury, Conn. This instrument, in connection with their recording volt and watt meters, which are alreajy well known makes it possible to keep a continuous record, day and night, of the output of an electric lighting or power plant.
The general design of this instrument is clearly shown in Fig. 2, an interior view, from which it will shown in Fig. 2, an interior view, from which it will
be seen to consist of a stationary solenoid, an armature, B, carried by a non-magnetic shaft through the center of the solenoid, the shaft being supported at its oppcsite ends on steel knife edge spring supports, C and D , the same as in Bristol's recording volt meter.
The recording pen arm, E , is secured directly to the steel spring support, D, and partakes of its angular motion as the armature is attracted to the coil or solenoid by a current passing through the solenoid. Al though the actual distance that the armature itself moves is small, it will be observed that it transmits an angular motion to the pen arm, resulting in a wide range on the chart without employment of multiplying devices between the spring and the pen.

A novel feature of this instrument is the form of armature which is used to procure a chart with the divisions nearly uniform throughout its range. It con sists of two parts, a flat and very thin disk of iron and a small sleeve or core of iron on the non-magnetic shaft. The sleeve is completely concealed from view within the solenoid. The disk is stiffened by a plate of non-magnetic metal.
If the armature consisted simply of the flat disk por tion, the magnetic attractive force would increase very rapidly as it approached the solenoid, giving a chart with divisions as in the Bristol's recording volt meter: contracted at lower portion on the scale but very open at upper portion; while if the armature consisted only of the core portion, the attractive force upon it would decrease as it approached the central or neutral position of the solenoid, and the divisions for the lowe portion would be quite open, becoming contracted a upper portion of the scale.
A fter considerable experimenting, a combination disk and core armature has been found which produces the nearly uniformly divided scale as shown in the speci

Fig. 3.
corded, as for example on an electric railroad, a damp ing device will be provided, which consists of a vane o aluminum, secured to the left knife edge spring and mmersed in a vessel of glycerine.
For low ranges the solenoids are designed to carry the entire current, but for high ranges shunts will be provided.

A CHURN WITH VERTICAL AND ROTARY DASHERS, The two dashers with which this churn is provided, one having a vertical and the other a rotary movement, may be operated together or either dasher may be

KELLY AND HAGQUIST'S CHURN.
used independent of the other. It has been patented by Messrs. M. F. Kelly and N. A. Hagquist. The body of the churn has exterior pins on opposite sides, each pin adapted to enter an angular slot in one of the ide standards, and the cover is made in two sections, langed to fit over the upper edge of the body. In the upper ends of the standards is journaled a shaft adapted to be rotated by a belt from a hand wheel, the shaft having a crank arm, and a beveled gear be ng adjustably secured on it, the latter meshing with a similar gear on the upper end of a vertical shaft on whose lower end is secured the hub of a rotary dasher Plates of somewhat diamond shape extend diagonally from the hub, the plates being adapted to agitate the milk at the bottom of the churn body. Sliding upon the vertical shaft is a sleeve upon which are located two apertured disks, constituting the vertical dasher, to which movement is communicated by meaus of a link connecting the upper end of the sleeve with the crank portion of the driving shaft at the top. By sim ply disconnecting the upper end of the link from th crank, the wovement of the vertical dasher ceases, and a slight lateral movement of the driving shaft discon nects the bevel gear through which the rotary shaft is operated, both movements being thus readily controlled by the operator for the use of both dashers together or either one separately, as may be desired. Commu nications relative to this improvement may be ad dressed to Mr. M. F. Kelly Blossburg, Pa.

A Giraffe Ten Feet High.
The Zoological Society, London, has just purchas ed a fine female giraffe which has recently arrive from South Africa. This is believed to be the first example of the large dark blotched race ever seen alive in Europe, the giraffes previously extibited hav ing belonged to the smaller and paler form found in northern tropical Africa As the animal stands more than ten feet high, there may be some delay, owing to the difficulty of passing it under the railway bridges, but it will proba bly be on view in a few days. The society has also leg up to the iniddle of the thigh ; it stands on an iron men section of a chart, Fig. 3, for a range of fifteen am- purchased a pair of sable antelopes (Hippotragus niger frame and is heated by gas burners placed underneath so that the temperature can be raised to 300° or 400° Fah. The patient is placed in an arm chair at one end of the cvlinder, the limb is introduced, and the joint made air-tight by a rubber band. No discomfort is felt up to 250° until perspiration sets in, when the

Fig. 1. BRISTOL'S RECORDING AMPERE METER. Fig. 2.

a COMPACT ELECTRIC SIGNALING DEVICE.

 The illustration represents a signaling outfit contained in a small box or case, for convenient installation in residences, hotels, or other buildings, either during or after the erection of the buildings, without injury to the walls or wood work. The improvement injury to the walls or woodwork. The improvement 452 Madison Avenue, New York City. The case is dust proof, and has an opening in the rear to permit it to be placed over the socket of a bell-pulling outfit, a support over the opening being adapted to receive the center post of the outfit, and a nut screwing upon the center post clamping the box firmly to the wall. The box has a hinged cover, readily thrown open to facilitate making any adjustment which the bell requires, or any desired change in the circuit connections, and the bell is preferably mounted on the cover of the box, which thus serves as a sounding board and intensifies the sound. The circuit wires, also connecting with a suitable battery, are carried in the tubes which extend to the several rooms or a house, after the manner of equipping many large buildings not strictly modern in construction, and a push button or other circuit closer is mounted on the outside of the box. The two binding posts on top are for use when it is desired to ring by means of a flexible cord from different parts of a room, as from a bed, a desk, etc., the cord terminating in a pear-shaped button. By using a buzzer instead of a bell, the case may be made materially small

CONNOLLY'S ELECTRIC SIGNALING DEVICE.
er, or a buzzer may be placed in circuit and mounted in another part of the room, when either one of the devices may be used, as desired.

Peroxide of Hydrogen.
By a process patented in England Dr. Richard Wolffenstein, of Berlin, prepares a more stable and chemically pure peroxide of hydrogen of high percentage. The dilute peroxide solution, which contains perhaps 3 per cent peroxide, is heated at a constant temperature of between 100 deg . and 110 deg . C., with or without the aid of rarefied vessels, until the fluid has a proportion of about 60 per cent peroxide. Then in a vacuum at a moderate temperature the peroxide is distilled over. With gradual rising of the boiling point a watery vapor first passes over until, at 84 deg . C. and a pressure of 24 millimeters, a 99 per cent solution of superoxide distills over. A chemically pare peroxide can be got from this by pouring it into a solvent which does not combine with water, i. e., ether and dissolving again the pure peroxide out of the ether solution. It is claimed that the product is sta ble in concentrated solution, and does not decompose even on long keeping. The dilute solution, to begin with, must be entirely free from foreign substances, even from mechanical impurities such as sand.

History of the Barometer.

In the Meteorologische Zeitschrift for December last Prof. G. Hellmann gives a very interesting account of the invention of the barometer, which has now been in use 250 years. Torricelli, who died at the early age of thirty-nine years, was too busily engaged in mathematical studies to publish an account of his discovery but on June 11, 1644, he wrote a description of it to his friend Ricci. This letter, and Ricci's objections to the experiment, were published in 1663 by C. Dati, a the experiment, were published in 1663 by C. Dati, a friend of Torricelli's, and as this work is now exceed-
ingly scarce, Prof. Hellmann has reprinted the correspondence, in the original Italian, in the above-men tioned journal. Some of the paragraphs, says Nature are noteworthy, especially those in which Torricelli states that it was not merely a question of producing a vacuum, but of making an instrument which would indicate the changes of the atmosphere. The first continuous barometrical observations appear to have been made in France. In England they were first taken by Robert Boyle, about the year 1659, to whom we owe the invention of the word "barometer."

\triangle finger exercising device.

An extremely simple device to facilitate the development of muscular strength in the fingers is represented in the accompanying illustration. It is designed to be of especial benefit to violin players, piano players, etc.,or may be usedby a surgeon to develop a contracted cord or muscle of the fingers, hand, or arm, being also of utility to penmen, telegraph operators, typewriters, and all who require finger dexterity. It has been patented by Mr. Frank E. Osterhout, Oneida Castle, N. Y. It consists of a tube or sleeve with longitudinal side slits at one end to permit the convenient insertion of the finger, while from the other end extends a rod on which a weight is adjustably held at the desired distance by means of a set screw. The sleeve at its split end is fastened on the finger by a clamp consisting of an elongated slotted ring passing around the sleeve, and a clamping plate slidable vertically in the ring, and engaged by a set screw at the top. The exercise is made more or less severe, not only by moving the weight out or in on the rod, but weights of differ ent sizes are employed, as may be deemed most advantageous.

MANUFACTURE OF WHITE VINEGAR.

White vinegar can be manufactured from molasses, corn, etc., or from almost any substance that will fer ment. The material is first passed through a ferment ing and distilling process which turns the liquid into what is called a low wine. This wine is then allowed to trickle slowly into generators filled with beech wood shavings, where it works and becomes sour. The material used principally by the manufacturers is molasses. The casks or hogsheads of molasses are first emptied into an underground reservoir and thinned down with water. It is then pumped up through a rubber hose into a 1,000 gallon fermenting tank, where it is allowed to stand for about two days and ferment. After fermenting it is forced up into another reservoir, from which by nieans of pipes the liquid passes down into a wooden mash tub connected to the top of the still. This mash tub is about 3 feet in height and about 7 feet in diameter, and holds about $\mathbf{6 0 0}$ gallons. The still is circular in shape and is about 20 feet in height, about 6 feet in diameter and made of ash. The interior is divided off into five compartments. The partitions or headings are made of wood about 6 inches in thickness and about 2 feet apart. Running through the center of each heading is a copper pipe or tube about 14 inches in height and about 8 inches in diameter. Directly over the top of each pipe is a circular copper head 18 inches in height, the bottom of which connects to the flooring of the headings by means of a number of arms. Through each heading midway between the copper heads and sides of still is a 3 inch drop pipe which projects above and below the parti-
tion about 6 inches. Attached to the side of mash tub is a small 16/ inch copper pipe which connects with the second compartment in the still. The liquid passes down this pipe on to the floor of this heading. As soon as it reaches to the depth of 6 inches it begins

OSTERHOUT'S FINGER EXERCISING DEVICE.

to run down the drop pipe to the next heading. When the liquid again reaches to the top of the pipe it drops down again in the same manner to the next heading below. The steam is turned on from the bottom of the still and passes up through the center and drop pipes and underneath the copper head of the first head pipe

From the first heading it passes upward through the different compartments in the same manner, heating and steaming up the liquid, which passes off at the top of the still in the form of vapor through a 4 inch pipe to a number of copper vats below. The vats are about 5 feet in height and about $31 / 2$ feet in diameter. Running into each vat within 2 inches of the bottom is a pipe which connects with the still pipe. About 120 callons of water is placed in each vat through which the vapor passes, mixing itself with the water Each vat rests in a wood tub containing about 300 gal. lons of cold water. After about 120 gallons of the vapor has been thoroughly mixed with the 120 gallons of water, it is then allowed to cool. After cooling which takes about 24 hours, the material is drawn off from the bottom and run into a receiving tank. From the receiving tank it is pumped into casks and left to stand for about 12 hours. To make the low wine work aickly in the generators, a quantity of strong vinega is mixed with it, the proportions being about $1 / 2$ gallon

of vinegar to 1 gallon of low wine. After mixing, the liquid is pumped into small 30 gallon casks, where it passes out through a small glass tube. The stream of wine, which is about the size of a thread, runs down through a funnel in the top of the generators.
The generators are made of ash and are about 8 fee in height and about 4 feet in diameter and filled with beech wood shavings, each generator holding about 25 bushels. These shavings are circular in shape and are about $1 / 8$ oî an inch in thickness, about 1 inch in width and about 2 inches in diameter. When stretched out they measure from 13 to 15 inches in length. They cost about from 25 to 30 cents per bushel and will last from 30 to 35 years. As the fine stream of low wine trickles down slowly throuph these shavings the air inside acts on the liquid, causing it to work and turn into vinegar. The thread-like stream runs continuously into the generators. Vinegar to the depth of a foot collects at the bottom of the generators, which are drawn off morning and evening. From the generators the vinegar passes into large tanks and then runs off into small casks holding from 10 to 50 gallons, for the market. The loss of low wine by evaporation amounts to about 1 gallon to the barrel. The molasses used costs about from 8 to 10 cents per gallon. The vinegar is sold by the cask from 8 to 10 cents per gallon. It is used principally by grocers pickle houses, etc.

The sketches were taken from the plant of Edward Reinecke's Sons, Hoboken, N. J., who turn out about 1,000 gallons per day.

Armored Trains for Coast Defense
A few months ago an interesting test of an armored train took place at Newhaven, England. The idea o an armored train is not new, such trains having been used in our civil war, in the Franco-Prussian war and in the Egyptian campaign of 1882 ; but the arrange ment of these trains was such that the guns could shoot only in the direction along the rails, unless the car were propped up to prevent it from being derailed by the recoil. The car was designed by Colonel Boxhall, of the First Regiment of Volunteer Artillery of Sussex, and was constructed at the shops of the South Coast Railway Company. The car is made of steel, with a vertical armored wall all around it to protect the artillerymen. Inside the car is a 40 pounder cannon mounted on a platform so that it can be turned in any direction. It is moved by geared wheels and cranks. Underneath the car are arranged extensibl beams which may be pushed out on one or both sides of the car, and are arranged to abut against the ground by means of vertical screws at their extremities, so that in case of a fire at right angles to the track they transfer the shock of the recoil beyond the rails. Beneath the car are also clamps which grip the rails and prevent the car from being derailed. In the old style of armored train the guns could shoot only in the direction of the rails, unless the car were propped up as already stated. In the new style of train the cars can be anchored in a moment and can shoot in any direction.

The trial of the armored train took place in the presence of a number of military men. Twelve shots with service charges were fired in a direction at right angles to the track at a target moored out at sea Neither the car nor the rails showed any effects of th recoil, which was absorbed by the turning platform and the beams. Some shots were fired without clamping it to the rails. Of course the target offered to the enemy by the sides of the cars is of considerable size and Lord Beresford thinks that the car should be con cealed as much as possible and that thin iron plates would be a sufficient protection for the cannoneer from the light projectiles of the enemy. Lord Beresford considers it preferable to arm the car with a few small rapid-fire guns. The value of such trains for sea coast defense is very great.

Bicycles in State Militia Drill.

The New York Seventh Regiment has organized a bi cycle corps, which had its first drin in the regimenta armory March 13 , superintended by a U. S. Army offi cer expert in the newly adopted bicycle tactics. The men were arranged in fours, six feet between wheels and eighteen feet between sets of four. Stress was laid on preserving the intervals between the bicycles and on the riders assuming a military position on their wheels. The commands, "Stand to cycle!" "Cycles front!" "Cycles rear!" Prepare to mount!" and "Mount!" were explained; and the men went through several in fantry movements on foot, pushing their bicycles. Af terward they mounted and went through the evolu tions on their bicycles. Around the armory the rider wheeled, fours right and fours left in column of fours by twos, in company front, making wide turns and narrow ones, and going through all the movements as would a company of infantry, while the military spec tators looked on approvingly. The members of the corps were in uniform and presented an attractive ap pearance as they wheeled around with soldierly pre cision.

AN ADJUSTABLE STORM AND SUN HOOD FOR CARRIAGES.
The illustration represents the application of a simple form of hood readily fitted to any vehicle top and let down, as shown in one of the figures, as a pro tection during a rain storm or when driving in the fac of the sun. When thrown back, as shown in the keleton cut, it is completely out of the way and out of sight, or it may be without any trouble taken out entirely and left at home or placed under the seat. It is thrown into or out of position for use instantly with one hand. It is manufactured by the Wilbur H. Mur ray Mfg. Co., of Cincinnati, Obio. The frame is mad of spring steel and it is covered with greenback rub

od in une

MURRAY ADJUSTABLE STORM AND SUN HOOD.
ber drill, unlined. Parties ordering this hood for old vehicles should state distance between front bow sock ts at bottom of quarters.

Reflection of Light.

The following table, showing the amount of light re fected from various substances as compared with tha which falls upon their surfaces, is giveu by Dr. Sump er, and will be found of interest

AN IMPROVED OARLOCR.

The extremely simple device represented in the illus ration is intended as an improvement on the swivel oarlocks of boats employed for fishing and hunting purposes on lakes and rivers, and is especially adapted for steering and sculling boats and for use in shells. It has been patented by Mr. L. K. Scudder, No. 181

Broadway, New York City. Fig. 1 represents the oar holder, formed integral with the pintle, and with verti cal slots extending through its opposite curved arms here being also a channel of equa.l depth transversel hrough the shoulder at the top of the pintle. Fig. 2 shows the holder locked on an oar by means of a screw
having one side of its shank beveled, as shown in Fig. 3, the beveled side being turned toward the in board end of the oar. By this means the oar may be moved and turned freely as desired, and is yet securely locked in position. The feathering of the oar is in no way interfered with. The device is designed ordi narily to remain attached to the oar when the latter is removed from the boat, but may readily be detached therefrom by unscrewing the pin.

Sorrespondence.

The Mechanical Color Test.

To the Editor of the Scientific American :
I regret extremely that anything in my recent arti cle under the above caption should have seemed to have done injustice to editor-in-chief of the Standard Dictionary. Certainly that was not my intention or desire. The statment, "Early in 1894, the question of the possibility of analyzing various colors and shades in terms of certain standards having been referred to the present writer," does not conflict with the state ments of the Funk \& Wagnalls Company. At the time mentioned, i. e., 1894, all previous attempts to obtain a satisfactory scheme having failed, the matter was referred to me, and the plan then developed by me and adopted was based on the very able and lucid exposition of the subject entitled "On a Color System," by Professor Ogden N. Rood, that was read before the National Academy of Scieuces on November 12, 1891 That the ideas expressed in this paper in any way in fringed on the original conception of the plan by Dr Isaac K. Funk is news to me, and was certainly neve expressed by him to me in the many conversation that we had on the subject. Moreover, the Milton Bradley Company, of Springfield, Mass., have had a similar plan in active operation for many years, order ing colored papers from their factory by methods ing colored papers from their factory by methods
similar to those described by me. A popular exposi tion of these ideas can in no sense violate the copy right of a dictionary, which from its very nature is compilation of the ideas of others.
In conclusion, if I have written aught that deprive
Dr. Funk of one iota of credit for the plan for a tandard for colors conceived in 1891 by him, then it was done unwittingly.

Marcus Benjamin

A New Armor Test

Tests of armor plates now occur with great fre quency, but the interest of the general public in thes ests remains undiminished. The test of a nickel-steel Harveyized plate eighteen inches thick occurred at the Indian Head proving ground, near Washington, on March 11. This test was the first of a series which will take place between now and June, by which time nearly all the armor contracted for under the Whit ney agreement, amounting in all to about $\$ 11,000,000$ will have been manufactured and delivered to the government. This includes armor for ships now near ing completion and those on the ways. The success o the trial amply demonstrates the wisdom of the Rus sian government in having armor plates made in the United States. The ballistic trials of our government are very severe, as the gun is pointed at right angle to the plate, while in actual battle the elevation of the gun necessarily for accurate aim and allowance for "drop" of the projectile, taken with the angle of the hip's sides, especially when rolling, will prevent ormal impact, so that the government trials are un fair to the plate, as every advantage is given to gun and projectile
The plate weighed thirty-eight tons and cost $\$ 20,000$. it measured 17 by $71 / 2$ feet. A 12 inch rifle was used which was placed 290 feet from the target.
The first shot fired was a Carpenter projectile, pro pelled by 295 pounds of powder. The shell entered about 4 inches, where the point was welded to the plate so as to almost close the aperture. The body of the projectile was shattered, but an examination of the plate failed to show any radial fracture. In the second plate failed to show any radial fracture. In the second
shot the charge was increased to 395 pounds, giving an initial velocity of 1,956 feet per second. The projectil penetrated 7 inches, and the top was welded as before while the base of the projectile was completely shat tered. A long vertical crack was produced; it extend ed from the top to the bottom, but there was no lon gitudinal crack. The crack was so narrow that it wa difficult to see how far it extended. Capt. Sampson head of the Ordnance Bureau, considered the test en tirely successful.
The test showed that nothing short of a 13 inch rifle would pierce this armor at a fighting distance of 2,000 yards, which naval experts consider the probable range of the fleet action when in battle. In the battle of the Yalu River the distance between the opposing fleets was greater and the armor was thinner.

Orizaba in Erupition.

The peak of Orizaba is in a state of eruption. The signs of disturbance began to manifest themselves on the 10th inst., and have increased in force constantly since that time. It is vomiting poisonous gases and hick volumes of smoke are emitted from 100 aper tures. The earth for 100 miles around is shaken period ically with subterranean vibrations.
The Governor of the State of Vera Cruz will shortly name a commission of scientific men to make an in vestigation into the eruption, and to make recommen dations looking to the protection of the inhabitants of the neighboring villages. The present eruption is in the heart of the best improved coffee districts in Mexico, where many Americans live

Abstract from Interesting Decision by the United
States Circuit Court of Appeals-Fourth Circuit. Hulse and Wright v. Bonsack Machine Company. Bonsack Machine Company v. Hulse and Wright.
"A contract between an employer and employe, wherein the employe obtains service with the employer on condition that any improvement he may make on the machines of the employer shall be for the exclusive use of his employer, held valid."
The Bonsack Machine Company is a corporation whose business it is to construct, operate on royalties, lease, and sell machines for the manufacture of cigarettes in this and many other countries. Its principal machine is known as the "Bonsack" machine. By perfecting it and procuring and purchasing patents connected with it the company has acquired and is doing a large business. In the course of its business the company engages many persons to operate its machines. In several instances persons so employed discovered improvements in working them, and, without disclosing the discovery, took out patents, which they used or sold in competition with the company. To avoid this in the future, the company adopted a rule avoid this in the future, the company adopted a rule by which it required all persons entering its employ-
ment to agree to give the company the beuefit of any ment to agree to give the company the benefit of any
improvement made while in the employment of the company or at any time afterward.
Hulse had been working at his trade as a mechanic, realizing between four and five hundred dollars a year .On or about July 19, 1886, he applied for employment in the Bonsack Company. In his interview with the president of the Bonsack Company, at which his application was granted, he entered into a written contract, the provisions of which were explained to him, especially that relating to any improvements which he might wake in cigarette machines. Of that provision he expressed his approval. He served thee company at an increasing salary, beginning at $\$ 50$ per month then $\$ 60$; again $\$ 75$, and afterward $\$ 85$ per month.
The contract between the Bonsack Machine Com pany and Hulse is in these words and figures :
"That the said company has this day employed the said Hulse to set up and operate its cigarette machines at a salary of $\$ 50$ for the first month and $\$ 65$ per month thereafter, with such advance of salary up to not ex-
ceeding $\$ 75$ per month as the services of ${ }^{\text {the }}$ said Hulse ceeding $\$ 75$ per month as the services of the said Hulse
may justify. It is agreed that the said Hulse will serve the company whenever desired, the company to pay his railroad fares whenever traveling at the re quest of the company.
" No abatement will be made for loss of time be cause machines are not kept running, nor any extra payment for extra hours.
"The said Hulse agrees to do all in his power to promote the interests of the said company, and in case he can make any improvement in cigarette machines, whether the same be made while in the employment of the said company or at any time thereafter, the sam shall be for the exclusive use of the said company.
" And it is agreed that in case the said Hulse be
not able to serve the said company efficiently, or shall not able to serve the said company efficiently, or shall
in any way neglect his duty, the company mas stop in any way neglect his duty, the company mas stop
his services at any time, paying up to such time; his services at any time, paying up to such time;
but, in case the said Hulse desires to quit the said company, he shall give sixty days' notice thereof."
In July, 1889, while employed by the company in Montreal, his health failed and he ceased to work with it.

Thereafter, on a salary of $\$ 125$ per month, he entered into employment and partnership of another party named Wright, whose business was to introduce and sell the Bonsack machines in foreign countries. While in this employment Hulse made known to the company that he had devised improvements in their machines. Thereupon he was furnished by the company with a suitable room, power, and materials to continue his experiments and to perfect his idea. While so employed, however, he did not draw any salary from the company. The experiments continued some three or four months.
Hulse then wants the company to pay him one hun dred thousand dollars for the invention, which wa declined, and the company brought suit to compel the delivery of the invention and patent to the company, and obtained an injunction prohibiting Hulse from assigning the patent or invention to others. The referee gave judgment awarding the patent and invention to the company, bu
The parties on both sides were not satisfied with this The parties on both sides were not satisfied with this
award and an appeal was taken to the United States Circuit Court of Appeals. Judge Simonton delivered the opinion of the court Feb. 5, 1895.
The questions made in the assignments of error are these :
First. What was the contract between the company and Hulse? Is it divisible, consisting of independent covenants ;
sideration?
Second. Is it an unconscionable or onreasonable contract?
Third. Is it void as against public policy \&

Fourth. Is the amount reported by the masters a just and reasonable compensation?

1. The Contract.-It is a contract of employment made after an explanation of its terms by one party made after an explanation of its terms by one party
and the approval of them by the other. No question and the approval of them by the other. No question
is made here impugning the bona fides of the contract. The consideration moving from the company is the employment of the services of Hulse at a progressive salary, with no abatement for loss of time and no extra payment for extra hours, all railroad fares of Hulse, when traveling for the company, to be paid.
In consideration of these stipulations, Hulse is to serve the company whenever desired, agrees to do all in his power to promote the interests of the com pany, and in case he can make any improvements in cigarette machines, either while in the employ of the company or at any time thereafter, such improve ments are to be for the exclusive use of the company This last provision was stated to him as a condition precedent to his employment, was approved and con sented to by him. Here we have a contract of hiring at stipulated prices and a contract of service with one detail of the service inserted to prevent any misunderstanding. It would seem to be an indivisible contract. The stipulation claimed to be an independ ent covenant, directed to any improvements made by him in cigarette machines, was the very stipulation which secured the contract on the part of the company to engage and pay Hulse. The consideration on the part of the company moves to all the parts of the contract. The contract was one of employment. The company was to do certain things. In return Hulse ${ }_{i j}$ was to do certain things-set up and operate the cigarette machines and promote the interests of the company, and, to do this, give them the benefit of improvements in cigarette machines in case he made any. Can it be said that if he set up aud operated the machines he had exhausted the consideration of his contract and that he could antagonize the inter ests of the company whenever he pleased, his agree ment to promote its interests being nudum pactum For similar reasons it cannot be said that this agreement, or any part of it, is without consideration. In the absence of fraud, mistake, illegality, or oppression, and where no relations of trust and confidence exist between the parties, courts cannot inquire into the inadequacy of the consideration of a contract or set up their own opinions respecting that which par ties in good faith on both sides have agreed upon.
" If there is one thing more than another that pub lic policy requires, it is that men of full age and competent understanding shall have the utmost liberty of contracting, and that contracts, when entered into fully and voluntarily, shall be held good and shall be enforced in a court of justice. (Jessel, M. R., Printing, etc., Co. v. Sampson, L. R, 19 Eq., 465.)"
Some consideration is requisite to support a contract ; but the sufficiency of the consideration cannot be inquired into. (1 Sedg . on Daw., 455.)
Is this contract unreasonable or unconscionable?
The Bonsack Machine Company owned valuabl patented machines employed in the manufacture of cigarettes. Comparatively, the invention was in its infancy, and the machinery was known to be difficult of operation and open to improvement. Any one entering into the employment of the company had ull opportunity of learning the merits of the ma chines, and by constant and daily use could see where the machine was defective and where improvement was needed. If any improvement suggested itself to his mind, he could, by using the machine and the time and material of the company, experiment upon it and ascertain its value. The improvement would be his own idea; but it owed its suggestion and origin, its progressive development and perfection, to the business, the practical working, the opportunity afforded by the company. When, therefore, the company, taught by costly experience, determined to protect itself from the discovery of improvements by its own servants, it did a natural and reasonable thing, and when it protected itself by a covenant in advance of any employment with those seeking its service it did a fair thing. Nor was that part of the contract which put in the same category improvements made while in
the employment of the company and those made at the employment of the company and those made at
any time thereafter unconscionable or unreasonable. Without this safeguard the contract on this point could be easily evaded and be made valueless.
Is the contract void as against public policy? Does t injure the public?
Here we have the case of an ingenious man, without opportnnity of developing his talent, and struggling under difficulties, enabled by this contract to secure employment in a large and prosperous corporation, where he could give his inventive faculties full play. He in this way was afforded every opportunity of discovering and removing defects in cigarette macontract. He could not have obtained it if it had been understood that this contract had no validity. Then, in all human probability, the public would have lost the benefit of his discovery. In this point of view a
public policy. Sir George Jessel, in discussing the subject, holds that not only is there no rule of public policy against such a contract as this before us, but that public policy is with it. (Printing and Numerical Co. v. Sampson, L. R., 19 Eq., 466 .)
We concur in the conclusion reached by the circuit judge in his opinion in this record :
"The public, in so far as questions relating to pulbic policy are concerned, has no interest in this matter Should the claim of the Bonsack Machine Company fail, the public would have no right to use the improvement. The device would then belong to Hulse, would be his secret, protected by patent aud guarded from the public use by provisions of law. The restraint the public use by provisions of law. The restraint
provided for in the contract does not interfere with provided for in the contract does not interfere with
any interest of the public, and it only gives a fair protection to the party in whose favor it is given, for which proper compensation was stipulated for the party making it."
The last assignment of error is the amount found by the master and allowed by the court.
The question was what compensation should, under the circumstances, be allowed. The Bonsack Company had declared that the compensation would be iberal. The deserving party was Hulse and the compensation was really his. Wright deserved nothing He was only a speculator seeking a share of Hulse's re ward. Hulse voluntarily, or for considerations which he considered adequate, agreed to divide with him. When, therefore, the master awarded the gross sum o $\$ 8,126.36$, this was his finding of what would be a lib eral compensation for Hulse's service in and about the mprovement. We see no error in this of which eithe party can rightly complain.
It is ordered that the decree of the Circuit Court be affirmed in all respects, each party paying its own costs in this court.
```
Snow as an Atmospheric Purifier.
```

When a flocculent solid body falls through a fluid, it drags down in its falling suspended matters contained in the fluid.
We should therefore expect that snow falling through the atmosphere will cleanse it by taking out most of the suspended matters. The present year has afford ed many opportunities of getting a quantitative value or the purifying action of snow.
The first analysis gives figures yielded by snow ool lected in the suburbs of London, where the district is fairly open. This snow fell on January 13, having a depth of 4 inches approximately. One characteristic of this snow was its great porosity, the crystals were also regular; both indicating that the snow was form ed in a caln atmosphere.
The snow was melted and then analyzed as water the impurities being stated in grains per gallon.

Total solid matter	
Mineral matter.	
Carbonaceous matte	
Free ammonia	
Albuminoid ammon	
Oxygen to	

A further analysis was made of snow from the same district after the fall of January 30. The result was almost identical with the above figures; but this fact came out that the first few strata of snow contained the largest amount of impurities. Fifty per cent of the snow's thickness yielded 75 per cent of the impurities.
An analysis of the snow of January 30 was also made upon snow collected in the quadrangle of Somerest House. The following shows the difference in the impurities. Ths physical condition of this fall was favorable to its picking up in its meshes much suspended matter.

The carbonaceous matter in each sample was ordinary soot particles.
These figures point out the value of a fall of snow from a manurial point of view, and also its value from a hygienic point of view. In a city where the air is often saturated with carbon particles, a fall of snow may be regarded as a mechanical contrivance of no mean value.-Chem. News.

Bleaching Straw Braid.

Take 71/4 pounds pure oxalic acid and dissolve in 45 gallons of water, using the latter as soft and as cold as possible; then stir in, in small quantities at a time, $41 / 2$ pounds peroxide of sodium, waiting between each addition until all action hasceased. When fully dissolved test with litmus paper and make the bath feebly alkaline by adding more peroxide, or ammonia, or silicate of soda. Enter the straw braid, which has been previously cleaned, and leave in the bath until it is bleached, or has a faint straw tint, then lift, rinse, and pass into a bath of tartaric acid. By using less water, the into a bath of tartaric acid. By using less water, the
bath may be made stronger and quicker in working. wears a cutaway outfit, and in others again a frock suit. The man himself is transparent as to body, but goods and says : come around and see how I like it." stands forth fully clothed in a wrinkleless suit of that this device works very well. ally trying one in thisrespect. Many vessels have been damaged and
nearly lost by the accumulation of ice, due to the rapid congelation of the spray which beats upon the bows and other exposed parts. An example of these ice difficulties is ice dificulties is seen in our engraving, which is fromu a pho-
tograph of the tograph of the forward deck of steamer Barnstable as it appeared on the arrival of the ship at Boston, Mass., in February last, after a voyage after a voyage
from the tropical from the tropical regions
maica.

The Value of Torpedo Boats in War.

A Blue Book recently published deals with partial mobilization of the British fleet and the maneuvers of 1894, which vers of 1894, which
began on July 18 andcame to an end on August 7. The conclusion of the book may be quoted: "Noship
was put out of action by a torpedo boat. The lightness of the nights seems to have had a twofold effect. No. 80 (Red side) in evading a 'catcher' at first missed the Blue Fleet, but managed to keep up with it and got within range of the rear ship, which was not at tacked because she was supposed to belong to Group 3. a class exempted from torpedo attack by the rules. The light apparently was not sufficient to permic the real character of the ship to be ascertained. On the other hand, it is reported that the nights were never really dark enough to afford concealment to the tor pedo boats. The torpedo lieutenant in command of No. 80 makes the interesting observation that, owing to the speed of the 'hostile' fleet, the boats were un able to regain their position for attack when once it had been lost. From this it seems permissible to infer that high speed will be of itself no unimportant pro tection to ships traversing at night narrow waters in fested by torpedo boats. The torpedo boat operations were upon a too restricted scale to supply much valu able instruction; but, as far as they went, they tend to confirm the view that the most effective employment of the torpedo boat in war will be limited to sending her to attack an enemy's ship in a known position within the boat's range of action, and that the whereabouts of the enemy must be first ascertained and be communicated to the commander of the boat. The necessity of combining with torpedo boats vessels of necessity of combining with torpedo boats vessels of
other and larger classes to scout and discover the

A New Use for mice

A recent device of the tailors is the figure of a man done on mica. This figure is about a foot high, and is set in a square of cardboard. Sometimes it is in the shape of a man wearing a sack suit, while in others k 3 his face is painted on, and he wears a collar and nectrtie of the latest style, in paint. He serves as an illustration, and he is designed to do away with one of the banes of a tailor's life, the man who comes in to look at
"Ah, yes; it looks very nice in the piece, but I'm not sure it would suit me so well made up. I'll wait until you cut a coat for some one else, and then I'll

Now when a customer springs this ancient remark the tailor produces one of his mica manikins, lays hin over the piece of cloth in question, and lo! he pattern. With a cloth of uniform color orsmall pattern

THE ICY COASTS OF NORTH AMERICA.
Among the severest trials of mariners who navigate the northerly coasts of America during the winter sea son is the formation of ice upon the decks and rigging of their vessels. The past winter has been an especi-
enemy-where exact information as to his position can not be obtained by other means-seems to be estab lished, and, if so, it carries with it the obligation to con sider a mere flotilla of toryedo boats by themselves a a belligerent factor of discinctly imperfect efficiency."

of Calcium Carbide.

 In a critical notice of Professor Lewes' Society of Art paper upon carbide of calcium (See Scientific Ame RICAN SUPPLEmENT, No. 998), the Electrical Review discusses the electrical aspects of the proposal to manu facture the compound on the commercial scale, and the prospects of acetylene as ial illuminant. It is con sidered that the commercial success of the calcium carbide industry depends upon cheap water power because of all the heat produced by the coal in a boiler furnace working a steam electric plant, only about 5 per cent is recoverable by an electric furnace Our contemporary is inclined to regard acetylene as a genuine improvement in gas as an illuminant, and one likely to aid gas in competition with the electric light. Apart altogether from its illuminating properties, it is admitted that acetylene has a much more importan commercial aspect, because from it a great many hy drocarbon compounds can be made, such as benzine, hydrocyanic acid, ethylene, alcohol and many other bodies. It is not thought that, at Professor Lewes estimate of their comparative duties in light given for

STEAMSHIP BARNSTABLE-ICE FORMATIONS UPON FORWARD DECK AND BRIDGE
A ruling was recently made by Postmaster Coveney, at Boston, Mass., upon the question as to what con stitutes a letter "in its usual and ordinary form," and it has just been confirmed, according to the Boston ranscript, by a communication from Washington The ruling and its confirmation were the outcome of a complaint recently made to the postmaster by a gentleman who desired to send through the mails a sealed oll properly stamped and directed to the Commis ioner of Patents at Ottawa.
He said that the roll contained plans and drawing relative to a patent. He had offered this roll to the clerk at the foreign window, and following out the rules of the office, the clerk refused to receive it When asked for reasons, he was referred to the post master. Col. Coveney gave a decision to the effec that the term letter is to be construed to mean and embrace sealed packages consisting of an envelope of any size, but flat, as is the usual letter. The objector was correct, and gave his opinion that a letter "was a package containing personal matter of no salable alue." Brooks, the Superintendent of Foreign Mails, says tha the Canada office and this department concur in the opinion that the teriu letter in its usual and ordinary

A "6 Letter 9 Officially Defined.

 did not think that this ruling and definition of a letterIn the communication from Washington, N. I. form is to be con strued to embrace sealed packages consisting of an envelope of an size. but of th usual letter shape and its contents but that rolls or a package not inclosed in an 'en velope,' as the word envelope is generally used cannot be consid ered to be 'a let ter in its usua and ordinary form.' A sealed package in the form of a roll is therefore not en titled to trans mission in the mails exchanged between the United Sta and Canada, your office was correct in declin ing to receive the sealed roll men tioned."
Coinplaints of the kind made by the gentleman who wished to forward the forward the sealed roll have but this is the but this is the first time in the partment that it has been called upon to decide
power consumed, steam-generated carbide of calcium and acetylene can compete with incandescent electric light.
Professor Lewes put the comparison thus: Acety lene, 44 ; electric, 28. But it is held that the difference is not quite so great; for with incandescent lamps at 4 watts per candle it comes out as 40: 50 very nearly. With electric lights working at 3.25 watts per candle, power or power, the two light sources are equal. With arc lamps the superiority is reversed; the figures coming out at 80 for the electric arc, as against 50 for the aceylene light. It is admitted that the question is not altogether one of power, although this consideration is of interest as settling whether carbide of calcium can be profitably made with existing steam power plants. If water power can be obtained at the American estimate of cost, which is 50 cents per hour for 180 horse power, the acetylene will cost as little as its advocate claim, or 6s. $41 / 2 \mathrm{~d}$. per 1,000 cubic feet. Although this is about double the average price of ordinary coal gas in England, acetylene gives 15 times the light or $71 / 2$ times the candle power for the same money. Now, to compare its cost, light for light, with incandescent electric light, $6 \mathrm{~s} .41 / 2 \mathrm{~d}$. will buy 13 units of electricity, which, at 4 watts per candle power, works out to ,250 candles gross; while 1,000 cubic feet of acetylene give 28,000 candle power for the same money. Meanwhile, the inquiry is made as to what is the cost of large water power.
at constituted a letter. By this decision no sealed packages nor rolls will be taken at the Boston Post Office for transportation to Canada, as the regulations of the Postal Convention say that " sealed packages ther than letters in the usual and ordinary form are not allowed to be dispatched to Canada, even if postage has been prepaid in full at letter rates." This is no new law or regulation, as it was enacted about ten years ago, and has always been enforced more or less.

Wood Stains.

A solution of 50 parts of commercial alizarin in 1,000 parts of water, to which a solution of ammonia has been added drop by drop until a perceptible ammonia odor is developed, will give to fir and oak a yellow-brown color and to maple a red-brown. If the wood is then reated with a 1 per cent aqueous barium chloride solution, the first named become brown and the latter a dark brown. If calcium chloride be used instead of barium chloride, the fir becomes brown, the oak redbrown, and the maple a dark brown. If a 2 per cent aqueous solution of magnesium sulphate be used, the fir and oak become dark brown and the maple a dark violet-brown. Alum and aluminum sulphate produce on the fir a high red and on oak and maple a blood red. Chrome alum colors maple and fir reddish brown, and oak Havana brown. Finally, manganese sulphate renders fir and maple a beautiful dark violet-brown and oak a dark walnut-brown.

INVENTOR TESLA'S LOSS.

By a fire which occurred at 33 and 35 South Fifth A venue, New York City, on the morning of March 13, Nikola Tesla, the inventor and scientist, sustained a severe loss in the total destruction of his laboratory, in which were several nearly completed inventions which, it is said, were intended to revolutionize electric lighting. The loss cannot unfortunately be reckoned in dollars, and it is feared may seriously affect Mr. Tesla's health, as for some time he has been in a state of nervousness bordering on exhaustion, on account of orerwork occasioned by the approach to completion of some of his great inventions.
Dr. Tesla was for a time associated with Edison. The attention of the scientific world first centered upon Tesla in 1887 through his invention of the rotating magnetic field for the economic transmission of power. It is believed that Mr. Tesla's experiments were made with a view to saving at least one-third of the energy now wasted in electric lighting. He has been working in his laboratory with a number of assistants, and the results which he has actually obtained have been kept a profound secret. Mr. Tesla has lectured before scientific bodies, both in Europe and America, and he has recently received honorary degrees from Yale and Columbia Colleges. He is at present controlling electrical engineer of the Niagara Falls Power Company. Some of Mr. Tesla's rewarkable experiments have been
annual meeting of scientists in Vienna, but through Prof. Spies, one of the members of the Berliu 'Urania, the experiments were made publicly, and were at tended by the German Emperor's brother, Prince Henry, who, as the cut shows, served as a conductor for the high voitage currents. By reference to the illustration, it will be seen that the connection between two persons is made by Geissler tubes, which show the light produced by the currents. In another experiment a number of connected wires were arranged in the auditorium and connected with the electric current, whereby an electrical wave was produced in the room, and noticed by some of the audience through the lighting of Geissler tubes held in their hands, and without these persons being in direct connection with the wires."

The Lose of the Elbe.

At the recent inquest upon the bodies landed at Lowestoft of the victims of the Elbe disaster, Robert William Greenham, pilot, stated what took place on board the Elbe after the collision. He said he had crossed the North Sea about 400 times, and had been on board the Elbe about one-tenth of the trips. At 12 o'clock midnight on January 29 the atmosphere was clear, but the sky was cloudy. • The Elbe was lighted by electricity, which was kept burning all night. The masthead light and the side lights, however, were oil.

No. 3 boat, and as soon as the covers were sufficiently removed for the crew to get at the boats they used zes to free them, as everything was frozen stiff. The order was then given to every man on deck, "Let all the crew remain at their stations." The women and children were ordered to the starboard side, which was the lee side, in order that they might be got into he boats first. There was no confusion on board, and every order was obeyed punctually. Everything was in total darkness at this time, as the electric light had rone out. The lights had heen turned on to the promenade deck to give light to launch the boats. The third officer informed him that as all the watertight compartments were closed it was impossible for the ship to sink. Both No. 3 and No. 5 boat, which were the next to be got out, were pretty well filled with people. It was too dark to see whether they were passengers or sailors. The ship settled down very quickly, and the witness went up to the bridge and warned the captain that the water was already breaking over the quarterdeck. He returned shortly to No. 3 boat and heard the order given to lower the boats. No. 5 boat was lowered and swamped as soon as she touched the water. He jumped into No. 3 boat and the third officer followed. The boat was immediately owered. He saw a green light about three points abaft the port beam, some three miles away, while he was standing on deck. He also saw a white stern light

RECENT TESLA EXPERIMENTS IN BERLIN.
reproduced lately in Berlin. The Illustrirte Zeitung of recent date gives an engraving, which we copy, together with the following account :
"About twenty years have passed since Edison produced the incandescent lamps under the proud name of the 'light of the future,' and which lamps slightly modified are now the 'light of to-day.'
"A new 'light of the future,' is again promised from the United States, and should it materialize in practical form will have the great advantage over the incandescent and are lamps that for its production no conducting wires are required, and which for this reason alone would be sufficient to produce a complete revolution in the electrical world.
"Nikola ,Tesla, the inventor of the new light, ob tained by his experiments surprising results. In fol lowing up certain discoveries of Prof. Herz, of Bonn, relative to electrical waves, he succeeded in lighting a freely suspended incandescent lamp by the use of high tension and rapidly alternating currents.
"The experiments further demonstrated the remarkable fact that alternating currents of a tension ten times that which is used in electro-execution do not affect or injure the human body when passed through the same; and in fact are hardly perceptible in case the currents alternate 100,000 times in a second that is, change their direction at this almost incompre hensible velocity.
"Several of the experiments were made at the last

He went to his cabin at midnight, undressed and went to sleep. At 5 o'clock he looked at his watch, which showed English time, and about 20 minutes afterward he heard a crash as if a cylinder had burst, and his bunk, put on some clothes and went to the bridge, where the captain and the chief officer were standing. He asked the captain what had occurred and he replied, "A collision has taken place." One of the officers remarked that they had been run into by a steamer on the port side. He observed the ship make a slight list to port, and the captain then ordered that rockets should be fired and blue lights burnt, and that the steam siren should be blown. One of the officers then came up and reported all the watertight doors closed. The ship made a further list to port, and the captain ordered the engines half speed ahead, with the helm put hard to starboard, the engines having been stopped at the time when the witness went on the bridge, and the wind being strong from the east-southeast. By this maneuver it was sometimes possible to give the vessel a list to starboard and bring the damaged portion high out of the water. The engines went for about four minutes and then stopped. The captain then gave the order to get all the boats ready and swing them out, but not to lower them. There were ten boats on board, five on each side. The witness left the bridge in company with the chief officer in order to assist in getting the boats ready. He proceeded to
apparently on the same vessel. At daybreak, which was in about three-quarters of an hour, he observed the hull of the vessel with the two lights aboard her. He could not see her masthead lights. The vessel steamed ahead, burnt two lights, which he took to be blue lights, put her helm hard a-starboard, and, proceeding in a southerly direction, shortly afterward disappeared. He took some paper from his pocket just before the steamer turned her head and burnt it in order to attract her attention. He made the observa tion that he believed it was the steamer which had run nto them. There was also a smack in the vicinity. The steamer was about two points on their starboard bow to windward, and the smack was on the starboard beam. The steamer was from half to three-quarters of a mile away and the smack about one mile. He saw everal smacks' lights in the vicinity, but none close by. He saw the lights quite distinctly, as they could see a light that night directly it came out of the water. The lights of the Elbe were burning when he got on deck. He was positive that the steam siren was con inually sounded and that a quantity of rockets were discharged, in addition to the burning of 20 blue lights in pairs.
The witness gave his opinion that the ship probably sank because two watertight compartments were knocked into one. He could not say whether the Elbe ever had boat drills on board. He had never seen such drills when on the North Sea.

Clay Eating.

Among the extraordinary passions for eating uncommon things must be reckoned that which some peoples exhibit for eating earth or clay. Of this practice, which would appear to have once prevailed all over the world, numerous examples were cited by Captain J. G. Bourke, U. S. A., in the Ninth Annual Re port of the Bureau of Ethnology. In some places, the custom has degenerated into a ceremonial, while in others the eating of this strange food still prevails as a kind of necessity to the lives of those who are addicted to it.
The Mexican devotees picked up a piece of clay in the temple of Tezcatlipoca and ate it with the greatest reverence, and also ate a piece of earth in swearing by the sun and earth. But the use of clay by the Mexicans was not merely a matter of ceremony, for the substance seems to have been an esculent in common use. Edible earth was sold openly in the markets of Mexico, and appears in the list of foods given by Gomara

Cabeza de Vaca says that the Indians of Florida ate clay, and that the natives offered him many mesquite beans, which they ate mixed with earth. Venegas asserts that the Indians of California ate earth. The traditions of the Indians of San Juan Capistrano and vicinity show that they had fed upon a kind of clay, which they often used upon their heads by way of ornament. The Tatu lndians of California, according to Powers, mix red earth into their acorn bread to make the latter sweet and cause it to go further. Sir John Franklin relates that the banks of the Mackenzie River contain layers of a kind of unctuous mud, which the Tinneh Indians use as food during the seasons of famine, and even at other times chew as an amuse ment. It has a milky taste and the flavor is not dis agreeable. The Apache and Navajo branches of the Athabascan family of North American Indians are not unacquainted with the use of clay as a comestible, although anong the former it is now rarely used, and among the latter is employed only as a condiment to relieve the bitterness of the taste of the wild potato. In the same manner it is known to both the Zuni and the Tusayan.
In South America, likewise, the eating of clay pre vails among the Indians on the banks of the Orinoco throughout Brazil, and on the mountains of Bolivia and Peru.

In Western Africa, the negroes of Guinea have long been known to eat a yellowish earth called by them "caouac," and the flavor and taste of which is very agreeable to them and said to cause them no incon venience. Some addict themselves so excessively to the use of it that it becomes to them a real necessity, and no punishment is sufficient to restrain them from the practice of consuming it.
When the Guinea negroes were in former times car ried as slaves to the West India islands, they were ob served to continue the custom of eating clay. But the "caouac" of the American islands, or the sub stance which the poor negroes attempted to substi tute in their new homes for the African earth, was found to injure the health of the slaves who ate it and so the practice was long ago forbidden and has possibly now died out in the West India colonies. In Martinique, a species of red earth or yellowish tufa was formerly secretly sold in the markets, but the use of it has probably ceased in the French colonies also.

In Eastern Asia a similar practice prevails in various places. In the island of Java, between Sourabaya and Samarang, Labillardiere saw small square reddish cakes of earth sold in the villages for the purpose of being eaten. These were found by Ehrenberg to consist for the most part of the remains of microscopic animals and plants which had lived and been deposited in fresh water. Some of the Japanese, too, are addicted to the practice of eating earth. Dr. Love, some time ago, published an analysis of a clay which is eaten to a considerable extent by the Ainos; it occurs in a bed several feet thick in the valley of Tsietonai (eat-earth valley) on the north coast of Yesso. It is light gray in color and of fine structure. The people mix with the clay fragments of the leaf of some plant for the aromatic principle it contains. They eat the earth because they think it contains some beneficial substance, not because it is a necessity with them. They have meat and abundance of vegetabl food. The clay is eaten in the form of a soup. Several pounds are boiled with lily roots in a small quan tity of water, and afterward strained. The Ainos pro nounce the soup very palatable.
In Runjut Valley, in the Sikkim Himalayas, a red clay occurs, which the natives chew, especially as a ure for the goitre
In Smyth's Aborigines of Victoria, it is stated tha a kind of earth, pounded and mixed with the root of t h " mene" (a species of Hæmadorum), is eaten by the natives of West Australia.
In Northern Europe, especially in the remote north ern parts of Sweden, a kind of earth known by the name of "bread meal" is yearly consumed by hundreds of cart loads, it is said. A similar earth is commonl mixed with bread in Finland. In both these cases, the
earth employed consists for the most part of the empty shells of minute infusoria in which there cannot exist any ordinary nourishment.
Some of the Siberian tribes when they travel carry a small bag of their native earth, the taste of which they suppose will preserve them from all the evils of a foreign sky. We, are told that the Tunguses of Siberia eat a clay called " rock marrow," which they use mixed with marrow. Near the Ural Mountains, powdered gypsum, commonly called "rock meal," is sometimes mixed with bread. The Jukabiri of Northeastern Siberia have an earth of a sweetish and rather astringent taste, to which they ascribe a variety of astringent taste, to which they
sanatory properties when eaten.

In North Germany, on various occasions wher amine or necessity has urged it (as in long protracted sieges of fortified places) a substance called "mountain meal," similar to that used in Sweden and Finland, has been employed as a means of staying hunger.
According to Pliny, the Romans had a dish called alica" or "frumenta," made of the grain zea miz with chalk from the hills of Puleoli, near Naples.
According to the myths of the Cingalese, their Brah mins once fed upon earth for the space of 60,000 years.

Chemical Powers of Minute Sea Creatures
All known chemical substances are present in solu ion in sea water. In spite of the precision and delicacy of their analyses, chemists can never determine absolutely the exact proportions in which these ele ments are present; they can merely indicate thei presence as "traces," especially in the case of the very rare elementary substances. Except for the chlorates and sulphates, which are easily obtained by evapora tion, spectrum analysis alone shows us the existence o these elements in sea water
It has been shown that the sheets of copper on ship often become covered with a layer of silver from the water of the sea, deposited there by electro-chemical action; and nevertheless all our minutest methods of analysis have not yet been able to detect this metal in the waters of the ocean. Iodine, found in such abundance in the ashes of marine plants, reveals itself to analysis only in traces. These organisms, then, must have the power to extract and concentrate it from the mass of water in which it exists in such dilute form. Many chemical elements exist in the water in very minute quantities; that at the bottom of the sea, for example, contains carbonate of lime only in the proportion of one to ten thousand. This does not prevent plants and living organisms, such as the Foraminifera the corals, echinoderms, mollusks, etc., from finding in this small proportion what is necessary to their constitution and to their existence. At the death of these organisms, the mineral matter accumulates and ends by,forming great rocky masses. In all parts of the ocean there live, multiply and die myriads of calcareous organisms that fall continually in showers to the bed of the sea. The calcareous rocks, that on the earth at tain often great thickness and cover thousands o square miles, have this origin.
Of all the deposits that form in the depths of the ocean, the most singular and the most curious are the rregular nodules varying from the size of a small pea to that of an orange, and composed of hydrated oxides of manganese and iron. They contain 25 per cent of binoxide of manganese, 15 of peroxide of iron, 30 water, besides divers silicates, and 30 per cent of various substances, among which careful analysis ha hown the existence of thallium, molybdenum, tel urium, vanadium, nickel, lithium, cobalt, barium strontium, tin, copper and lead. The origin of these sssociations of diverse and rare substances has not yet found any plausible explanation. How have such minute quantities of manganese as those that have been shown in the composition of rocks, and that do not exceed the twentieth part of those of iron, come to orm concretions in which this substance predomi nates? The soundings made by Murray and Buchanan on the west coast of Scotland have shown that thes nodules are found especially in the marine slime where pyrite and other compounds of iron exist. Thes slimes accumulate slowly after haring passed through the bodies of worms or other organisms an infinity of times. At each passage a little manganese and iron is added, and in the course of ages these oxides, becoming more and more concentrated, form these bizarr and remarkable nodules.
The eminent German botanist Cohn has shown that the agents really effective in freeing the carbonic acid that keeps in solution the mineral matter ar minute plants, around which are deposited those sub stances that the water, deprived of carbonic acid, can
no longer dissolve. Wethered has proved that the imestone of various epochs is composed in great part organisms consisting of twisted tubes, simple or branched, which have been given the names of girvanella, micheldeania, etc.; these organisms are plants secreting calcareous matter in their cellules; they thus form at their death calcareous agglomerations that make up rocks. But while certain plants participate make up rocks. But while certain plants participate
ocks, others, on the contrary, have a diametrically opposed action. They dissolve and destroy the cal careous elements. By his researches, Duncan showed to scientists this curious fact, that fossil corals ar often found perforated by minute tubes. He concluded rom this that they had vegetable parasites. All the observations made during recent years on the deposit that cover the bottom of the ocean lead to this con clusion: Wherever substances are found in solution in sea water, they can be extracted thence only by the wonderful action of living orgauisms.

What Shall We Eat?

W. O. Atwater, Ph.D., professor of chemistry in Wesleyan University, in a pamphlet issued under the auspices of the United States Department of Agricul ure, says

A quart of milk, three-quarters of a pound of mod erately fat beef, sirloin steak, for instance, and five ounces of wheat flour, all contain about the same amount of nutritive material; but we pay different prices for them and they have different values for nutriment. The milk comes nearest to being a perfect food. It contains all of the different kinds of nutritive materials that the body needs. Bread made from the wheat flour will support life. It contains all of the ecessary ingredients for nourishment, but not in the proportions best adapted for ordinary use. A man might live on beef alone, but it would be a very one sided and imperfect diet. But meat and bread together make the essentials of a healthful diet. Such are the facts of experience. The advancing science of later years explains them. This explanation takes into ac count, not simply quantities of meat and bread and milk and other materials which we eat, but also the utritive ingredients or 'nutrients' which they contain."
The chief uses of food are two : To form the materia of the body and repair its wastes; to yield heat to keep he body warm and to provide muscular and othe power for the work it has to do. Dr. Atwater has pre pared two tables showing, first, the composition of food materials, the most important of which are the nutri tive ingredients and their fuel value; second, the pecuniary economy of food, in which the amount of nutrients is stated in pounds. In the first table we ind that butter has the greatest fuel value, fat pork coming second, and the balance of the foods mentioned eing valued as fuel in the following order: Cheese, oat meal, sugar, rice, beans, cornmeal, wheat flour, whea bread, leg of mutton and beef sirloin, round of beef mackerel, salmon. Codfish, oysters, cow's milk, and potatoes stand very low as fuel foods.
From the second table we learn that the greatest utritive value in any kind of food of a specified value Dr. Atwater takes 25 cents' worth of every kind of food considered) is found in cornmeal. In 10 pounds of cornmeal there are a trifle more than 8 pounds of actual utriment In $81 / 3$ pounds of wheat flour there are ove $63 / 4$ pounds of nutriment; in 5 pounds of white sugar here are $41 / 2$ pounds of nutriment; in 5 pounds of bean there are 4 pounds of nutriment; in 20 pounds of pota oes there are $33 / 4$ pounds of nutriment; in 25 cents worth of fat salt pork there are $31 / 2$ pounds of nutri ment; in the same value of wheat bread there are $21 /$ pounds; in the neck of beef, $13 / 4$ pounds; in skim milk heese, $13 / 4$ pounds: in whole milk cheese, a trifle mor than $11 / 2$ pounds; in butter, $11 / 2$ pounds; and in smoked ham and leg of mutton about the same; in milk, a trifle over 1 pound; in mackerel, about 1 pound; in round of beef, $3 / 4$ of a pound; in salt codfish and beef sirloin about $1 / 2$ a pound; in eggs at 25 cents a dozen, about ounces; in fresh codfish, about 6 ounces; and in oyster at 35 cents a quart, about 3 ounces.-Troy Press.

Man's Debt to Spiders.

It cannot be reasonably doubted that one of the most interesting features connected with the natura history of spiders is their habit of gaining a livelihood by spreading nets for the capture of prey. It may be that the large share of the attention of naturalists that his habit has attracted is to be attributed to the fact that it appears to be confined in the animal world to spiders and men. This circumstance is of itself sufficiently remarkable to call for special comment but its interest is not a little enhanced by the reflec tion that since spiders made their appearance in the history of animal life vast ages before man came upon the scene, none of us can justly claim that any member of our own kind was the first in the field in the invention of the art of netting. Possibly, indeed, the oftrepeated and unavoidable observation of the efficacy of a spider's web for the purpose of catching otherwise unobtainable prey may have roused in the brain of some intelligent hunter among our ancestors the idea of the practical utility of a similar instrument for the capture of fish or other eatable forms of life. But if this be so, civilized man has long forgotten the debt of gratitude he owes to spiders. For, to the average individual among us, a spider is a thing to be looked pon and spoken of with fear and dislike amounting o loathing, and to be ruthlessly destroyed when a safe chance of destruction is afforded. R.I. Pocoos

VERTICAL DOUBLE SPINDLE HOLLOW CHISEL MORTISING MACHINE．
The illustration shows an entirely new and novel ma－ chire，designed particularly for door mortising and other work where there are a number of pieces in dupli－ cation．It is especially useful for the best class of hard wood doors，such as are used in railroad and street cars．The machine will do its work rapidly，two door stiles at the same time，they being exact duplicates right and left，so as to frame up absolutely square．
There are two hollow chisels instead of une，being in perfect alignment with each other．The stroke of the chisel bars can be regulated for depth of mortise and can be increased or decreased at will or stopped at any point of the stroke，the greatest stroke being 61／2 inches． Thes operate automatically．They can also be ad－ justed to cut to the same depth in case of one chisel being shorter or longer than its mate．The chisel have quick return，and will make thirty－five strokes per minute，increasing in number as the strokes are shortened．

Each spindle carriage is provided with a strong clamp，so that when set it can be securely held in po sition．They are also counterweighted．The chisel has a range across the material of 2 inches for each． All gear wheels are machine cut，those of small dia－ meter being made from steel forgings．
The table is of iron， 10 feet long，and planed true．It has a vertical adjust ment of 14 inches and a horizontal movement of 10 feet．It is provided with a suitable number of quick－acting clamps， which clamp both pieces at the same time also an ample numbe of stops，so that whe set up no laying out of the work will be neces sary．
The range of the nor－ tising is from $1 / 4$ inch to $11 / 4$ inch．In mortise from $1 / 2$ inch up it wil make a blind mortise in a pair of 12 inch stiles $61 / 2$ inches deep ，or will $6 y / 2$ inches deep，＊or wil mortise through a pai of stiles 6 inches wide． The machine is pro－ vided with two chisels and augers，each $1 / 4$
nch， $3 / 8$ inch， $1 / 2$ inch， men， $3 / 8$ inch， $1 / 2$ inch and $11 / 4$ inch．Also countershaft，which is placed overhead，and suitable steel ford suitable steel forged wrenches．The tight and loose pulleys are 12 inches diameter， inches face，and should make 800 revolutions per minute．Weight， 3,600 pounds．This ma chine is manufactured by Messrs．Berry \＆ Orton，Arch and 22d Streets，Philadelphi Pa．

The War Bicyclo．
An interesting paper
on the importance of the bicycle for military purposes has been prepared recently by Col．A．R．Saville，the professor of military tactics at Royal Military College at Sandhurst．The author＇s prominent position lends unusual importance to these opinions．Col．Saville says ：
．The speed and staying power of cyclists qualify them for employment in all the duties pertaining to messengers，orderlies，or dispatch bearers，both in peace and war．The establishment of relay posts of cyclists on any long line on which messages have to be sent would insure very rapid transmission．The speed and noiseless progress of bicycles fit them as a means of communication between the fractions of an outpost force，both by night and day，and between outposts and the main body．
＂The same qualifications，and the inconspicuous character of the riders，make them eligible as scouts or reconnoiterers in any inclosed and cultivated country where the operations are mainly confined to roads．Cyclists，being infantry，can dismount and go wherever infantry can go，and thus a small body of wheelmen has nothing to fear from an equal body of horsemen similarly engaged in scouting．
＂Cyclists are well qualified to act as escorts for con－ voys．The men would not be tempted to mount the wagons，and the convoy could move faster than if the escort were composed of infantry，and the cyclists could reconnoiter widely to the front or flanks．Asan
escort for guns they would prove efficient，for all such infantry duties can be more quickly done by wheel－ men．
＂The power of carrying intrenching tools or materi als for demolitions，added to the speed and silence， enables sudden raids to be made for offensive purposes．
＂In the case of a force detached or otherwise，cs clists would in most cases be able to perform the scout ing duties for the information and protection of the force．Probably under all the circumstances，they might not be able to perform all the duties as well a the cavalry，but there can be no doubt that they could reconnoiter more widely and rapidly than unmounted infantry．＂

The first test in war of the military bicycle has yet to be made，but the advocates of the wheel have no fear of its upsetting their theories

A Large Railsvay Pier．

The great railway pier of the Southern Pacific Com pany at Santa Monica，Cal．，is one of the most re markable constructions of its kind in the world．Santa Monica is the terminus of the Southern Pacific road and the place of call of all the steamers of the com pany．The cargoes of great numbers of vessels ar loaded and unloaded at this point，and the equipment of the great pier are very complete and efficient．The of the great pier are very complete and efficient．The
pier is 1,500 feet in length and has a maximum width

The principal object of this simple apparatus is to give warning to a port or fleet of the approach of a torpedo boat，even if the latter is totally submerged and therefore，quite invisible．As described in the London Times，it consists essentially of two parts，one submerged in the sea at a proper distance from the port or fleet to be warned，and at a depth sufficient to escape the surface agitation．This part may be de cribed as an iron bell jar，which，on being plunged mouth downward into the water，retains a volume of air in the upper portion or bottom，where a copper box，protecting the senisitive organ of the apparatus is fixed．The organ in question is merely a very deli ate vibratory coutact，which makes and breaks an electric circuit connecting the submerged bell with the indicator or second part of the hydrophone，situated on shore or on board one of the ships of the fleet．The contact is formed by a flat horizontal spring fixed at one end and loaded at the other by a heavy piece of brass，having on its upper surface a small platinum tud．A fine platinum needle，kept upright by a verti cal guide，rests its lower end loosely on the platinum tud．The needle and the stud are connected in the electric circuit through the guide and spring，and when the needle dances on the stud the circuit is made and broken．An electric current from the ship or shore and broken．An electric current from the ship or shore
battery is always flowing through the circuit－that is to say，between the sub merged bell and the in dicator．Now，the pro peller of a torpedo boa or of a torpedo sets up vibrations in the water and these，reaching th submerged bell，agitate the trembling contact so that the needl dances on the stud and interrupts the current The consequence is tha the indicator begins to work and announce the submarine disturb ance．This part of th hydrophone consists es sentially of an electro magnet through which the current passes，with an armature free to os cillate when the curren is rapidly made and broken－that is to say when the current be comesintermittent The motions of this ar mature can be seen b an observer if chooses to watch but actual observation not required forthe dicator itself for the in alarm itself gives th alarm．This takes place when the swing of th armature carries it with in the attraction of a magnetic contact piece fixed near it．The arm ature is then drawn to the contact piece and held fast there and swinging armature and the contact piece are connected in the circui
$1301 / 2$ feet．In its construction some 5,200 piles of Oregon pine have been used，about $3,675,000$ feet of號 $\$ 500,000$ ．
A notable feature of the pier are the huge coal bunkers built along the east side of the pier．The bunkers are 816 feet in length， 36 feet wide and 36 feet bigh and have a capacity of 10,000 tons．They are divided into four compartments and are provided with 51 chutes．A track runs beneath these on which car may be run and quickly filled．At the end of the pier is a huge boiler works，with some thirty iron buckets which work automatically，and this contriv ance makes it possible to coal a ship in one－third th ordinary time．The end of the pier is provided with another depot building 384 feet long and a freigh house 68 feet long．Both of these are two－story build ings provided with sleeping accommodations and estaurant for those on duty．The remainder of he building is but one story high and is used as an open freight shed．The pier is gridironed with tracks The supply of lines is large，moor buoys are fixed at fre quent intervals and a powerful steam tug is in con tant use．The pier is also provided with telephon lines and there are a number of faucets and fire hos rranged along the wharf against a time of need．Th equipments make it possible to handle cargoes of as many vessels as can be moored along the pier．
of a local battery，and，when they meet，the curren fows to ring an electric bell or light an electric lamp The torpedo boat thus announces its own arrival on the scene in spite of itself，and precautions can be taken against it．
The whole apparatus is beautifully worked out and comparatively inexpensive．Moreover，it is sufficiently sensitive to announce the passage of steamers a mile distant from the bell．Obviously such an instrument might also be used for submarine signaling，for a ship by stopping and starting her propeller could send a message in the Morse code and the shore could respond by flashing the electric lamp．In the case of another ship the response might be made by her propeller．－ Proceedings of the United States Naval Institute

The director of the Lick Observatorv，Dr．E．S Holden，has been made a commander of the order of the Ernestine house of Saxony，in consideration of his services to science．The order，which was founded in 1690 ，is given by the combined duchies of Altenburg， Meiningen，and Coburg and Gotha，and is the only order conferred by them．

THE highest mountain ascents are those credited to Mr．W．H．Johnson，of the Indian Survey，between 1860 and 1865，in Cashmere．In 1865 he climbed three peaks of the Kuen Lun，one of which，according to the measurement of the Indian Survey，is 23，800 feet high．
strindberg on the inferiority of Woman. Woman is inferior to man-so at least says an interesting article by Strindberg in the Revue Blanche for January last. which attracted much attention in France. The author of "Pere" does not arrive at this conclusion by an exclusive analysis of woman's mental qualities; to a great extent he relies upon her structural and anatomical weaknesses. To begin with, her blood is not to be compared with man's, for it resembles that of the child and of the embryo; her spine, too, approaches theirs in formation, being longer and affording more evidence of that caudal appendage which is supposed to have been a distinguishing feature of the hairy ancestor of the human race. Woman's skull is closely akin to that of the. child and the negro. and the gray matter of the brain is not so dense in the female as in the male. On the other hand, her nerves are much stronger, whence the capacity for supporting physical pain with comparative stoicism-a capacity which she shares with the savage, whose nervous system is somewhat similar. In connection with the inferiority of women, Strindberg propounds a strikingly novel theory. In the burial places of the Stone and Iron Ages have been found two different kinds of skulls, one brachyocephalous, the other dolichocephalous. It is opined that the first, an inferior type, are female; the second, a superior type, male. The women, he declares, evidently belonged to a lower race, the men of which had been exterminated, their wives and daughters having been seized by the conquerors. Men, then, are the descendants of the higher, women of the lower race. In France. for instance, the women are the descendants of the Celts, whom the Romans conquered, and from among whom they toois their wives, as they had previously done in the case of the Sabines.
The motives which cause so many men in the present day to deny the inferiority of women Strindberg deals with at great length. Among them he places intense sexual desire, abscuring the faculty of thinking in many ordinary natures; a feeling for women which inspires adoration much as religion does; an intense tenderness and veneration for her, born of the recollection of early days spent in a mother's arms; and the idea that a quantity of masculine vices are not found in woman (who has other and greater ones of her own), whence a psychoptical delusion which causes him to consider her as more perfect than himself. The weakness of individual men is also a powerful factor, as, for instance, in "M. Edouard Rod," who declares himself inferior to woman-and with reason, maliciously remarks Strindberg. The so-called higher qualities of woman do not bear a very searching analysis. Her impressionability, of which we hear much, is merely that of the child; her hysterical and passionate outbursts when thwarted are the true equivalents of a child's screams and kicks when it is refused something it wants. Rarely does a woman possess the power of keeping her attention fixed on one subject for any considerable time; hence it is seldom that she entirely masters anything. Of sequence of ideas in a woman's mind there is little, doubtless the cause of her perpetual unpunctuality and inability to organize her occupations so as not to do two things at the same time No woman can make a good cup of coffee; it is an im possibility, requiring as it does attention, exactitude and a nice sense of time. Crime, even, demonstrate feminine inferiority, for there is generally no reflection or calculation of the probability of discovery in crimes
committed by women. On this point it has of ten been said that, morally, men must be inferior, as statistics show a larger percentage of male criminals. Statistics can be twisted to any purpose.

In the conclusion of his article Strindberg, after ex pressing his absolute disbelief in the great queens of history, such as Elizabeth of England-whom contem porary historians, he says, magnifled-goes on to re As his alter ego she may be invaluable, but alone she is useless. All feminine efforts toward independence must end badly. Feminine emancipation is a chimera, a dream from which there will be a sad awakening Woman, if she wants equality, must drag man down to her level, for she can never attain to his. The complete success of the emancipation movement would mean a struggle against the laws of nature. What, asks Strindberg, is the cause of this unreasoning fury against man? for is it not he who, after all, has bestowed upon woman the benefits of culture, the right of holding property, and numberless other privileges Man, not woman, has produced civilization. A bad feature of modern legislation is its tendency to rob the in order to benefit the emancipated female, generally childless. That this will become a burning question in the future there can be little doubt. Already there are many men kept out of employment by women. Who will maintain that it is a good thing for a single woman to monopolize a position which might maintain a family? And why, asks Strindberg, does woman raise complaints about her lot? When young he bas every opportunity of finding an honorable and
which she can contemplate the future with confidence and equanimity. Is not this more than most men can hope for? Necessarily there must be some sacriflces, and it is against these that the crowd of so-called emancipated women, who are devoid of any feeling of duty toward humanity, raise their raucous voice; itself a proof of their un worthiness and unfitness for taking any part in the direction of the great social system. Pall Mall Gazette.

Destroying Derelicts.

The unusually severe and frequent storms of the past month have caused a vast amount of destruction among ships at sea and many vessels have been wrecked on or near our coast. In view of this fact, the government has recently detailed the dynamite gunboat Vesuvius to systematically destroy these derelicts, which are a menace to navigation. The work is one of the utmost importance. The Vesuvius has been first employed in removing the wrecks in and about New York Harbor. After this work has been accomplished she will be sent up the coast as far as Cape plished she will be sent up the coast as far as Cape
Ann to attack the derelicts in that region. It is inAnn to attack the derelicts in that region. It is in-
tended for her to next make way with the wrecks along the coast as far down as Cape Hatteras, and it is probable that she will then be sent to cruise in southern waters on the same mission.
The method followed in destroying these wrecks is very simple and effective. Large packages of guncotton or other high explosive are placed upon the wreck and connected by wire with an electric battery on board the Vesuvius. When all is ready the wreck ing party retreat to a safe distance and discharge the torpedo by merely touching a button.

At times, however, the position of the wreck calls for considerable ingenuity. In one case, where the wreck had sunk so that only the tops of the mast were visible above the water, the work was accom-
plished by lowering torpedoes to the deck of the wreck and destroying only the masts and the rigging. Afterward the masts were cut into kindling wood to prevent them from doing any mischief.
Mention has been made in the columns of the Scientific American of the valuable service rendered to navigators by the records of the positions of derelicts which are published monthly by the Hydrographic Office of the. United States Navy Department. The United States is the only country which publishes this unique report,' and these records have come to be highly valued by mariners. These charts are freels distributed, so that the mariners of all nations may profit by them.

Science Notes.

New Substitute for Gold.-The Journal de l' Hor logerie claims that a new alloy which it describes is a remarkable substitute for gold. It is composed of 94 parts of copper to 6 of antimony. The copper is melted and the antimony is then added. After the two metals have been perfectly fused together, a little mag nesium and carbonate of lime is added to increase the density of the material. The product can be drawn öut wrought, and soldered just like gold, which it almost exactly resembles when polished. It preservesits color, it is said, even when exposed to the action of am moniacal salts or nitrous vapors. The cost of making it is abont twenty-five cents a pound avoirdupois.
New Process of Extracting Gold.-According to the Technical World, a new process of extracting gold from auriferous ores has been devised by Mr. C. Lorsen. He electrolyzes a solution of bromide of putassium and thereby obtains an alkaline solution, which contains hypobromide and bromate, which is capable of dissolving gold. The ore is treated with an excess of this so lution by rotating cylinders. The solution is then filtered, the gold precipitated by passage over a mixture of iron and coal, and the solution, which now contains bromide of potassium mainly, is once more elec trolyzed, and again used for extraction.
News Process of Converting Salt Water into Fresh.Ac\%ording to the Revue Scientifique, Mr. Pfister, an ustrian engineer, has discovered a curious property of the trunks of trees-that of retaining the salt of sea water
that has filtered through the trunk in the direction of the fibers. Mr. Pfister utilizes this property for obtain ing potable water for the use of ships' crews. The appa ratus, which has been patented, consists of a pump, which sucks up the sea water into a reservoir and then forces it into the filter formed by the tree trunk. As soon as the pressure reaches from 1.5 to 2.5 atmospheres, the water is seen (at the end of from one to three min utes, according to the kind of wood used) to make it exit from the other extremity of the trunk, at first in
drops and then in fine streams. 'The water thus filterdrops and then in fine streams. 'The water thus filter
ed is potable, having been freed from every particle o saline taste. The tree trunk measures 15 feet in length by from 5 to 6 inches in diameter.
Notes on Aluminum.-According to the Moniteur Scientifique, half the aluminum manufactured at preent is used up in the iron industry. The remainder is largely used in refining nickel and copper. When dded to these metals, the reduction of the last traces i of oxide is completed, the metals become more perfectly
fluid, and, after cooling, can be easily worked. Any alumina formed in this action is completely insoluble in the nickel or copper, and rises to the surface and thus eliminatesitself. The action of aluminum in steel is referred to by the same journal. Rammelsberg found that all the aluminum was used up in deoxidizing not a trace being found in the ingot obtained. At first it was thought that aluminum lowered the melting point of steel 200° to $300^{\circ} \mathrm{C}$., and that its presence caused the great fluidity of the steel. Now the ingots are shown to contain no aluminum. The oxide of iron dissolved in steel renders it less fluid and more brittle, and this causes it to give off carbon dioxide, hydrogen, and nitrogen.
The following is proposed by Mr. B. J. Roman as a solder for use with aluminum or aluminum alloys Silver, nickel, aluminum, tin, and zinc are mixed in the following proportions : Silver, 2 per cent; nickel, 5 per cent; aluminum, 9 per cent; tin, 34 per cent; zinc, 50 per cent. No flux is necessary, and an ordinary soldering iron or tool can be used, though one of aluminum is said to be preferable.
According to Dingler's Polytechnisches Journal, Mr. F. Andrews, after numerous experiments upon alloy of aluminum, has found that one composed of from 92 to 96 per cent of the latter metal and 4 to 8 per cent of nickel is particularly valuable, since it possesses greater hardness than the pure metal without being brittle. It is well adapted for the manu facture of small articles of jewelry, etc. The alloys of aluminum, copper, and nickel are remarkable by their beautiful color, the ease with which they may be polished, and their hardness. In order to restore their metallic aspect, it suffices to immerse them for a few seconds in a 10 per cent solution of caustic soda, wash them, and then immerse them in a mixture composed of 3 parts of nitric acid and 2 of sulphuric.
The Ageing of Liquors by Cold.-Mr. Raoul Pictet the eminent French chemist, claims that he has dis covered a method of ageing liquors artificially. His process consists in gradually cooling the liqsor brandy, for example, to $200^{\circ} \mathrm{C}$. below zero, and then gradually bringing it up again to the normal temperature. According to the Revue des Revues, a frigoric laboratory in which this new discovery is to be applied is upon the point of being established in Paris.
Amalgamation of Battery Zinc.-The Elektrochem ische Zeitschrift, in a recent number, makes known a process of amalgamating battery zincs which is due to Mr. Oppermann, and which is said to give excellent re sults. A nearly,saturated solution of mercuric sulphate in water is prepared, and to it is added the quantity of sulphuric acid necessary to make the solution per fect. This solution is then mixed with oxalic acid until a grayish mass of the consistency of cream is obtained. To this a little sal ammoniac is added. The zinc is coated with this mixture and then vigorously rubbed It has been found that zinc thus amalgamated resist cids and salts much better than when amalgamated by the ordinary process. If the zinc is not to be used at once, it should be dried before being put away.

A Community Without Vaccination

Dr. Kerr, writing from Rabat, on the westerly shore Morocco, states some facts that will serve to remind the anti-vaccinationists of Englaud of the condition o thetr own conntry before the grand discovery of Jen ner. Smailpax makes fearful havoc among the Moors, with whom Dr. Kerr has lived seven years. During an epidemic at Rabat over one thousand persons died from that disease in the course of two months. Rabat is a town on the Atlantic seaboard of Morocco having a population of 26,000 . Of the condition of the town during the epidemic Dr. Kerr writes the following "Often we felt it sickening when going through the streets to see young men and boys sitting at shop doors, flour mills, etc., covered with smallpox eruption in every way facilitating the spread of the disease Every one thinks that it is impossible for him to es cape smallpox; hence no precautions are taken. It is painfully sad to see so many people who have lost the sight of one eye, while many are blind altogether. One day not long ago I paid a passing visit to a douar or collection of tents outside the city, and it was touch ing to see the mothers bring their children asking me to put the medicine in their arms to prevent the infec tion. I vaccinated all the children in the village, and although they were surrounded by smallpox, none took it."
These conditions, given by Dr. Kerr as to the Africa of to-day, are a simple repetition of what existed in England and Europe before Jenner's great boon to mankind was made possible.-Journal of the American Medical Association.

Tennant's Paint for Ships' Bgttom

The paint consists of 8 pounds of resin, $1 / 2$ of Cologne brown dry color," 15 ounces of shellac, 25 gills of spirits of wine, 6 gills of benzine, 34 gill of toluene, and 10 drops of pyridine. As a finishing coat, a mixture of paraffin wax and white lead ${ }^{*}$ boled together" is applied hot.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.
Train Signal.-Augustus H. R. Gui ey, South Easton, Pa. This is an improvement on ormerly patented invention of the same inventor for an viding for diagonal contact plates to be engaged by the ateral pressure of contact arms, while the present inven tion covers an improved form of contact plate and brush Applied to a single track railway, the apparatus indicate to each other the presence of trains on different section of track, whether the trainsare ronning in the ame dire on or running toward each other
Mail Bag Catcher and Deliverer Charles F. Sliger, San Antonio, Texas. This is a de in a car, to transfer mail bags from a hanger to the car while the latter is in motion, or to deliver a mail bag a he station, one operation not interfering with the other, the device being automatic in its operation and quite simple and inespensive. A spring-controlled catche arm carries a retaining arm and locking mechanism, delivery arm being fulcrumed on the catcher arm and locking device engaging the retaining arm, while there is
a trip connection between the locking device and the delivery arm, there being also a carrier on the latter arm and a trip to throw it into open position.

Mining, Etc

Dry Washer.-Frederick E. McKin ley, Albuquerque, New Mexico. This is a machine for placer mining, designed to save all the gold, both flour quicksilver. It consists of a sand roaster discharging int nugget-separating machine leading to conveyors co nected by elevators with the uppermost of a series the gold and an outlet for the tailings. The screens are raduated, and each has a hopper discharging into the next lower screen. The machine is run by a team a

Mechanical.

Link Making Die.-Joseph Smith Puebla, Mexico. This invention provides for sets of die for successively bending, swaging, overlapping, and welding the iron to form a link, in such way as to greatly
facilitate the manufacture of links for railway coupling and other purposes. The individual dies for bending the rod and performing the different operations may be in separate sets, or they may be assembled in two pieces,
of which one carries all the female dies and the other all the male dies. By treating the rod in the manner pr ided for by the invention, links of great durability and strength may be very economically made.

Glazier's Glass Breaker.- George A. Rogers, Allegheny, Pa. This is a tool for use in con combination therewith or 13 an independent tool. It is so constrected that, by the movement of a lever. a slidiug jaw has movement in relation to a fixed jaw to accommo date glass of various thicknesses, the glass being receive being then broken off quickly and cleanly.

Agricultural.

Hay Sling.-Samuel M. Jenks, Madion, South Dakota. This is a device which may be use carry a large quantity binding the has an completels that there is no scattering or dribbling, while it may be stantly tripped to depositits load, which it leaves in ex cellent condition for pitching. It has two separable trip ping or center heads, one with projecting arms having late on which levers swing and slide a heads, a bed orking the swinging and sliding levers, and connecting oorksing the swinging and sliding levers, and connecting from the swinging and sliding levers to he dogs. The device may be advantageously used in loading and unloading and in stacking.

Miscellaneous.

Dumping Grate. - Benjamin E reeks, New York City. This is a cheap and simple prises a cradle formed of parallel bars, one of which is ournaled in a support, and connecting cross bars, while a series of grate bars is arranged at right angles to the receive the jonrnaled bar of the cradle. It is arranged in sections which may be successively dumped, enabling he good fire to be held on one while the ashes and poor fre are dumped from the other. A simple and strong mechanism is provided for holding the grates in posi on, and a very easily operated lever mechanism for orking them.
Coal Delivery Box.-Hermann Kebl New York City. This is a box especially designed for out danger of soiling the apartments on delivering or emoving the coal from the hox as needed for household purposes, while also insuring the customer the proper mount of coal ordered. It has a sheet metal casing with hinged lid, a flat back and curved front, and has a screen ke false botom under which is a removable receptacl In the lower portion of the box a downwardly inclined a door hinged to swing outward upon a level with the alse bottom, the shovel being introanced in this door to emove the coal. A vertical slot, covered by a translucent strip, enables the customer to see at any time how much coal there is in the box.
hoisting and Conveying Mechan ism.-Frederick H. McDowell, Montclair, N. J., and Se ern A. Cooney, New York City. This improvement re ates to tramways for hoisting material from a quarry or ther cutting, and provides for duplicate fall ropes ar way, either rope being used to control the travel of the carriage. At one terminal of the carriageway are winding drams operative together or separately, there being on the drums duplicate fall ropes, one leading directly to the carriage and the other to the opposite terminal of the
carriageway and returning to the carrnage, while there
are separate sets of sheaves and separate fall blocks for
each of the fall ropes, forming independent tackle. Kach fall is operative independently for lowering its block or or maintaining the carriage in place, and both of the inpractically endless hanl rope.
Windmill.-Peter A. Norberg, Ros lyn, Washington. This wheel comprises a shaft fro which extends sets of radial arms, the lower arm having beveled recess forming limiting shoulders, and there be he lower end of each blade being bereled to ft into the recess to abut against the shoulders. The constraction designed to be very simple and durable, and is adapte o atilize the force of the wind to the greatest advan-
Fifth Wheel. - Caleb R. Turner Brooklyn, N. Y. This is an improvement in that clas of firth whels in which able the vehicle to tarn easily. It provides oppositely㩆ing ng for the rollers, where they cannot become cor with dirt and dust and are also shielded from water The improvement is designed to combine simplicity cheapness and efficiency to the greatest possible exten Thile Coupling. - George Cargin, Wells, N. Y. According to this invention a spring held on the thill clip, and carries in its free end a shart having a projection adapted to engage the eye of the haft or pole, a handle on the shaft being adapted to extend across the pivot pin for the thill coupling. The de-
vice is very simple and durable, permits of quickly changing poles or thills, and prevents rattling or accientally losing the pivot pin.
Producing Chenille.-Nicholas Albrecht, Philadelphia, Pa. This inventor provides veaving chenille fabrics-first weaving a chenille cloth with plain or siugle-ply portions and alternating thre ply portions, all the warp threads being interwoven in uperposed plies ; second, cutting the single ply lengthwise between each two sets of warp threads, leaving the to three divisions or fabrics ; and third is setting each of the three plies midway between each two sets of it P
Paper Gaging Machine. - Louis schopper, Leipsic, Germany. This invention provide adicating devices arranged on a roller over which pase cate the thickness and waper machine to visibly ind mit to various distances audible sigoals when the thick ness or weight of paper has exceeded or fallen below certain limits. The indicating devices are constructed to how at any time on a scale the thickness of the pape pasaing over the roller and the weight per square meter or any other size, and the signals made on a change of Measuring and Drawing Instru MEASURING AND DRAWING INSTR tion consists principally of a blade having at one end fixed head with a triangular opening, the base of whic passes through the center of the head, and a centerin head held adjustably on the blade and having its arme parallel to the sides of the triangular opening. The in strument may be advantageously used for laying off any shaped figures inside the circumference of another
figure, enabling the workman to very accurately draw the gure, enabling the workman to very
Round Extension Table.-Nestor Lattard, New York City. This invention provides for mall or a larger increase in the diameter of a circula egmental extenion of one or more circular series storage compartment in the table for the extension pieces. Suitable leg supports are provided and the table
FilTER.-Joseph G. and Smith A. Sut no, West Newton, Pa. Thisis a filter especially adapted or use in welis or cisterns, and it is provided with with the filtering walls, while capable of being rotate nd reciprocated over such walle to remove accumula ions settling on them. A supplemental tank or water with a st the filtering chamber becomes filled, producing back ressare on the water within the chamber to force it an the flltering walls and clean them.
Fruit Pitter.-James L. Hall, Kings ton, Mass., and Frank H. Chase, Grand Rivers, Ky or pitter, providing an attachment in the nature of a ring encircling the spring prongs of the seeder, and serving as a gaard to prevent the heads of the pronge spreading or expanding laterally, while also increasing the effective ess of the device, by taking the place of a row or circlet of pronge, has alaing in catting the pulp and extraction nd retaining seeds.
LOCk. - John S. Barney, Brooklyn N. Y. This is an improved device for locking coats a coat collar and worn without inconvenience. It may be conveniently locked to a hook or other hanger, to faste the coat thereto, and may be quickly and easily unlocke by one knowing the combination. The combination
Fastening Device for Seats ment is to facilitate the secaring in place of seats and eats in school houses, halls, etc., in such way that the proved fastener is, according to the invention, applie ot the legs or frames of the seat the fastening attach ment being adapted to engage fired sockets or n the floor, the sockets presenting little or no obstruc tion to the cle
are removed.
Nors.-Copies of any of the above patents will be end namb Mann \& Co., for 25 cents each. Please end name of

DBusiness and Personal.

 Tor each insertion : aioous eiont wordis to a linc. AdverThursday morning to appearinTry us tor manufacturing your wire or Rheet metal C.s. metal polis. Inamapom. samplesfre Presses \& Dles. Ferracute Mach. Co., Bridgeton, N. Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, O . Geading machinery. Trevor Mfg.Co., Lockport, N. Screw machines, milling machines, and drill presses,
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating and sand pumpingplants. Irvin Van Wie, Syracuse, N. Y.

The best book for electricians and beginners in ele
 Compatent persons who desire aqeacles for a ne apply to Munn \& Co
Broadway, New York.
Ca-Send for new and complete catalogue of scientific and other Books for sale by Mun
New York. Free on apolication.

NEW BOOKS AND PUBLICATIONS.
Poor's Mandal. 1894. Twenty-seventh annual number. New York: H. V.
H. W. Poor. Pp. xvi, 1390, 104 .
There is no need for us to review Poor's Manual. I nual appearance is as much a featore of modern life as
that of the directory. For the past year of rathe reary achievements in railroad work, the manual pos sesses, perhaps, especial interest; notably a column of will be particurlg the eight years from 1886 to 1833 present dividends and of probable future ones.

SLIENTIFIC AMERICAN

BUILDING EDITION
MARCH, 1895.-(No. 113.)

TABLE OF CONTENTS

1. Elegant plate in colors showing a cottageat Mount Pa lioor plans. Mr. H. R. Rapelye, arc
. "The Gables," a halr timbered cottage recently com pleted at Glen Ridge, N. J. Perspective elevatio New York City.
2. A cottage at Great Diamond Island, Me, rected for H. M. Bailey, Esq, two persective levations and fioor plans. A unique design for an island cottage.
Portland, Me.
3. A dwelling at Armour Villa Park, N. Y., recently erected for J. E. Kent, Esq, at a cost of 85,200 plans. A very picturesque design.
4. A colonial cottage at New Rochelle, N. Y., recently rected for C. W. Howland, Esq., two perspectiv architect, New York City A unique example of a modern dwelling.
5. The residence of Charles N. Marvin, Esq., at Mont clair, N. J. A design successfally treated in the Flemish style. Two perspective elevations and floo fine Colonial honse at Elizabeth, N. J, recently completed for Henry A. Haines, Esq. Perspective elevation and floor plans. At
6. A residence at Flatbush, L. I., recently erected for
C. H Wheeler, Esq, at a cost of plete. Two perspective elevations and floor plans. Architect, Mr. J. G. Richardson, Flatbush, L. I. An attractive design.
7. A cottage at Plainfield, N. J., erected for Chas. H ersective elevations and floor plans. Architect Mr. W. H. Clum, Plaintield, N. J. A picturesque deeign.
. An elegant house at Scranton, Pa., erected at a cost of $\$ 15,000$ complete. Two perspective elevations
nd floor plans. Architect, Mr. E. G.W. Dietrich, and floor plans.
NewiYork City
8. Engraving showing the new building of "The Bank Por Savings," recently erected on $22 d$ Street, New
York City. Mr. C. L. W. Eidlitz, architect, New York City.
9. Foundation piers of the American Surety Company building, New York City. Four illustrations construction for city building
10. Miscellaneous contents -An automatic gas saving governor, illustrated.-Heating a residence with
open grates, illustrated.-Arranging effective in open grates, illustrated.
The Scientific American Building Edition is issued large quarto pages, equal to about two handred ording book pages ; forming, practically, a large and splendid Magazine of Architrctirre, richly adorned with elegant plates in colors and with fine engravings, illus tural Construction and allied sabjects.
taral Construction and allied subjects.
this work have won for it the Lasberst Crrounatio of any Architectural Publication in the world. Sold by $\begin{array}{ll}\text { all newsdealers. } & \text { MUNN \& CO., Publishers, } \\ & 361 \text { Broadway, New York. } \\ & \end{array}$

HINTS TO CORRESPONDENTS.
mes and Address must accompany all letters,

 Mi frice.
marks sent tor er examination should be distinctly
marke or labeled.
(6448) H. S. asks: To how low a degree can the spirit thermometer be read, also the mer-
curial thermometer ? Will the mercary remain fluid in the cold as long as spirit? Which is the more reliable under all circumstances $\%$ of what proof must the spirit be?
A. The mercurial thermometer is the more accurate. It A. The mercurial thermometer is the more accurate. It
can only be read to $-39 \cdot 44^{\circ}$. The alcohol should be can only be
absolute.
(6449) F. J. S. writes: Please give definition of sound, and can there be sound withoot an ear
to hear it 9 A. Accoriuing to the Century Dictionary, ohear it 9 A. Accorang to the Centary Dictionary, -The sensation produced through the ear, or organ of hearing; in the physical sense, either the vbrations of the sounding body itself or those of the air or other medium which are caused by the soonding body, and (a5) H. C .
(6450) H, C. S. asks: Do incandescent lectric lamps ever explode of themselves I have had ne or two complaints trom customers of lamps break-
ing without being tochehed. One of these was from the postmaster, who said that on throwing a heavy mail bag on a table ten feet away from the lamp (which was sus-
pended from the ceilling by drop cord) it exploded. A. pended from the ceiling by drop corr), It exploded. A.
It is possible and to be anticipated. In the case cited the concussion of the air was probably the determining
canse.
(6451) S. N. asks: How many addiciestiro Aymican Sidperimenv, No. 641. for dynamo I I have it wound now for motor.
Fieds Fields are cast. A. We do not advise the ose of the
motor as a dynamo. The wire need not be changed in dior ar a a dynamo. The wire need not be changed in
dite windigg depena on the resatte deired.
(6452) Rollins College, Fla., and F. L. F. ask how to make carbon paper. A. Melt 10 parte ane lampblack satarate noglezed paper with this rei move exceses and preses.

INDEX OF INVENTIONS
For which Letters Patent of the March 12, 1895,
and bach bearing that date.
[Seenote at end of Hst abont coples of these patents.]

DESIGNS.

TRADE MARKS

2ケdoertisements.

 Hipher rates are crequisered. Advertisements, Special and

VOOD OI IIIETRL WORKERS
mithon tsteam powar coan save
time and money by using our Footandiland Power Dlachilierig - SEND For CATALOGUESSEREEA FALLS MrG. COMPANT,
695 Water St, Seneca Falls, N. \mathbf{y}.

SCIENTIFIC AMERICAN SUPPLE-

HAVE YOU SEEN The New Green River AI Drilling Machine?
 WILEY \& RUSSELL MFG. CO.
Greenfidd. MESB., U.S. A. ARE YOU INTERESTED in Electricity,

NOW READY!
Fourteenth Edition of
Experimental Science

120 Pages and 110 superb Cuts added
 Tin the neam mater containe d the iale edition wince

MUNN \& CO., Publishers,

Office of the SCIENTIFIC AMERICAN, 361 hroad way. new york.

Mathew Carey. 1786 HENRY CAREY BAIRD \& CO. 810 Walnut St.. Philadelphin. Pa.. U. S. A.
OTO

ARMSTRONG'S * PIPE * THREADING CUtting-off machines Wate sing ind ioficibes

The Scientific American

Reference Book.

prising, probably, the most extensive variety of stand ard, practical, condensed information ever furnished
to the public for so small a price, only 25 cents Among its contents are: The Last Census of the
United States (1890), by States, Territories, and Coun Mies; Table of Cities having over 8,000 inhabitants
Map of the United States-miniature outline Patent Laws (full text); The Trade Mark Law (full Mechanical Movements-illustrated); The Principal rams-of value to inventors and designers of mechan nventors; Valuableaits of Distinguished America rricity, Heat, Metals, Weights, and Measurts.
25 cents.
MUNN \& CO., Publishèrs
No More Dull Shears

 BALL BEARING AXLES AND RUB

THE CA PO-FARAD BATTERLY is plug-sealed

MALLEABLÉ

ENGINEERING FALLACIES-AN AD dress to the graduating class of the Stevens Institute or

Telephones
Sold outright. Cannot get out of order.
Guaranteat free from inf rinoement.
 Someend for teritory lett for reliables. agents.
Mason TELEPHONE Co., RICHMOND, Va

The Scientific A merican PUBLICATIONS FOR 1895.

The prices of the diferent pubucations in the United
states, Canada, and Mexico are as follows:
The Sciantific American (weekly), one year
vear. - - .
The Scientifc American. Export
is incorporated the Spanition in which
oneyear
The Scientific American Architects and Builders
Edition (monthly) one year.
COMBINED RATES.

| The Scientifc American and Supplement | $-{ }^{-} \quad 87.00$ |
| :--- | :--- | The seientifici American and Architects and BuildThe Scientiff American, Suppl

tects asd Builders Edition,
imate lates for Six Month
This includes postage, which we pay. Remit by postal
 8 Erie Street, Grand Rapids, Michigan

 -

414

\section*{	THE
THEDMTM	
STEAM	 SPECIALTIES.}

possibility of life in other

 The Gouvernevr Machine co., Gouverneur, N. v.
STOP! STOP!
Kane's Pennington Hot Air Engine. Same power runs Motor Cycle one mile a ming
Don't Place Your Order Until You Write Us.
THOMAS K A NE \& Cor., Chicago, III
THE LAMBERT
 Gasoline Engine Dust, Ashes, or S
 CREAMERY PACKAGE MFG. CO. to 5 W. Washington Street, CAICAGO, ILL

D'UNGEIR

 Long Distance Electric Telephone on the mang or short lines. The very best Phond
The price reduced Agenis wanted.
DEAF NESS CUREDI THE EAR ENTIFIC principles. Satisfaction guaranteed or money
refunded. No drums Made of gold Circuar free
EAR VAPORATOR CO., Y.M.C. A. Bidg., Chicago, ili.

Study Electricity at Home
 The Electric Launch Co. Office and Works. MORRIS HEIGHTS. NEW YORK City M A N UFACTURE OF SALT.-BY

GASOLINE ENGINES. 18 To 7 Sorsepowar. For Propelling Boats of all kinds
 DEAFNESS

 The

MATCH * MACHINERY

High Grade Screw Cutting Lathes.

 21 THE FRRASSE CO. THE NEWSPAPER AND THE ART

 INCUBATORS

 TMONTOR MNUBATOR IDEAS DEVELOPED. Absolute secrecy. Senc

SCIENTIFIC AMERICAN DYNAMO

 RR

Wb: Wivaw AM

Parson's Horological Institute.
School for ZUatchmakers ENGRAVERS AND JEWELERS.
Send for Catalogue and References.
Parson's Horological Institute
30: Bradley Avenuo, PEOLICAL INSTITUTE,
PEORIA, ILL.

EXPERIMENTS IN AERONAUTICS.-

 8u USE GRINDSTONES? Ho me can supply yout Al dizes

 VOLNEY W. MASON \& CO. FRICTION POLLEPS, CLDTCEES, and ELEVATURS PROVIDENCE, R. I.

FThe Electric Candle

PDGT TOOIE

A Valuable Book

12,500 Receipts. 708 Pages. Price \$5.
Bound in Sheep, s6. Half-Norocco, \$6.50.

 entific A Anericand during the past fifty years;
with many valuable and important additions.
 oolume of the kind ever phaced before the public. The work may be regarded as the product of the stud-
ies and oractical experience of the ablest chenists and
workers in ail parts of the world; theinformation given workers in ali parts of the word; the information given
being of the hlghest value. aranged and condensed in
concise form convenient for ready use. Almost every inquiry that can be thought of. relating
to formulx used in the various manufacturing indus-
tries, will here be found answered. Instructions for working many different processes in
the arts are given. Those who are engaged in any branch of induatry
probably will trin this bool much that is of practical
value in their respective calling Those who are in search of independent business or
employment, relating to to te bome manumpacture of sam
ple articles, will find in it hundreds of most excellent

MUNN Sor Joscriptive Circular
MUNN \& CO., Publishers, SCIENTIFIC AMERICAN OFFICE,

Crescent Bicycles.

WESTRRN WHREL WORRS,

"OTTO"
 as and casolime

 encines.sumbi ciowic
No Boiler, No Danger
The Otto Gas Engine Wks., Incorp'd, Philadelphia

Drawing Materials

 Durable-Easily Applied.

 W5 RRENCHEMICAL ICE-BOATS-THEIR CONSTRUCTION and Manarement. With working drawings, details, and
directions in full. Four engravings, showink mode of

The

American

Bell Telephone
Company,

125 Milk Street,

 Boston, Mass.This Company owns LettersPatent No. 463,569, granted to Emile Berliner November 17, 1891, for a combined Telegraph and Telephone, and controls Letters-Patent No. 474,231, granted to Thomas A. Edison May 1892, for a Speaking Telegraph, which Patents cover fundamental inventions and embrace all forms of micro phone transmitters and of carbon telephones.

GAS AND GASOLINE ENGINES,

 FROM 1 TO 10 HORSE POWER, FOR ALL POWER PURPOSES. TEIE OMIN GAB IINGINE OO., 222 CHICAGO STREET, BUFFALO, NEW YORK Our New Catalogue containing over 100 pages, includ-
ing works on more than ffty different subjects. Will ing works on more than afty different subjects.
be mailed free to any address on application.
MUNN \& CO., Publishers ScIENTIFIC AMERT be mailed free to any address on application.
MUNN \& CO., Publishers ScIENTIIC AMERICAN,
361 Broadway, New York.
 DOUCLAS S3 SHOE, Hitititaio. FRENCHAENAMELLEDAN, CNF,
4.33.50 FINE CALF\&KANGAROQ \$3.50 POLICE, 3 SOLES, \$250 \$2. WORKINGMEN' 2. EXTRA FINE.
\$2. $\$ 1.75$ BOYSSCHOOLSHOS: , Mi his

W. L. Douglas $\$ 3 \& \$ 4$ Shoes All our shoes are equally satisfactory They give the best value for the money.

NICKEL

 ELECTRO.PLATING Appatatud nid hreid

BUY

TELEPHONES

IDE BICYCLES.

 ARTESIAN WELLSS - BY PROF, E.

Oil Well Supply Go.

BARNES'
riction Disk Drill.
HaR Lilitr wook

THE ${ }^{*}$ OLIN ${ }^{\circ}$

 COLD DRAWN STEEL SEAMLESS TUBNNG

The Bullet.

A roll film camera that hits the mark every time.
It's a repeater too ; shoots 12 times and can be Reloaded in Daylight.
The Bullet is fitted with our new automatic
hutter. One button does it all-sets and releases shutter. One button does it all-sets and releases
the shutter and changes from time to instantaneous.
Achromatic lens. Handsome finish. An lllustrated Manual, free with every instru-
ment, explains its operation and tells how to finish ment, explains its "peration and tells how to finish
the pictures-but "we do the rest" when you prefer. EASTMAN KODAK CO.

CABBORUNDUMO
 FCHNTHC MMEN

STARRETT'S
IMPROVED SPEED INDICATOR.

The L. S. Starrett CO., Manufacturer of F. Fine Tools

The New Model
 Remington ${ }^{2}$ Typewriter.
 Matchless Construction, UnEQualed Durability, UnRIVALED SpEEd. Many Notable Improvements. Wyckopr, SEAmans \& Benedict 327 BROADWAY, NEW YORK.

Towers, Tanks and Tubs

All IRON STEN TOWERS
ALL WOOD PLIN TOWERS. elevated tanks Louisiana Red Cypress Tanks
W. E. CALDWELL CO., 219 E. Main Street,

Louisville, Ky., U. S. A

VANDUZEN STEAM PUMP

 MEASUREMENT OF POWER.-BY G

ESESABLISHED 1845.
The Most Popular Scientific Paper in the World Only \$3.00 a Year, Including Postage. Weekly--52 Numbers a Year.
This widely circulated and splendidly illustrated
paper is published weekly. Every number contains six teen pages of usefal information and a large number of
tal original engravings of new inventions and discoveries
represent New Inventions, Novelties in Meclianics, Manufactures, Chemisiry, Electricity.Telegraphy, Photography, Archi tecture, Complete list of Patents each week.
Terms of Subscription.-One copy of the ScienTIFIC AMERICAN will be sent for one year- 52 numbersCanage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of Three Dolla 1 rs by
the publishers; six months, 81.50 ; three months 8100 Clubs. Special rate for several names and to Post masters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, all letters and make all orders, drafts, etc., Adres all leters and make all orders, drafts, etc., payable to
MUNN \& CO., $\mathbf{3 6 1}$ Brondway, New York - THE =

Sorientitic Guncrican Supplement This is a separate and distinct publication from The
SCIENTIPIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full
of engravings, many of which are taken from foreign papers and accompanied with translated descriptions. The Scientific American Supplement is publishe weekly, and includes a very wide range of contents. I presents the most recent papers by eminent writers in
all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natura History, Geography, Archæology, Astronomy, Chemis try, Electricity, Light, Heat, Mechanical Engineering
Steam and Railmay Engineering Mining, ship Building Marine Engineering, Photography, Technolpgy. Manu facturing Industries, Sanitary Engineering, Agriculture Horticulture, Domestic Economy, Biography. Medicine etc. A vast amount of fresh and valuable informatio
obtainable in no other publication. The most important Engineering
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEMENT,
Price for the SUPPlementr. for the United States,
Canada, and Mexico. $\$ 5.00$ a year; or one copy of the Canientific American and one copy of the SUPPLE-
Sis. MENT, both mailed for one year to one address for 87.00 Single copies, 10 cents. Address and remit by posta
order, express money order, or check rder, express money order, or check,
MUNN \& CO., $\mathbf{3 6 1}$ 13rondway, New York

GInilding Exdition.
THE SCIENTIFIC Amehican Architects' AND
BULILDERS' EDITION is issued monthly. 8250 a year Single copies, 25 cents. Thirty-two large quarto pages, forming a large and splendid Marazine of Architecture,
richls adorned with elegant plates in colors, and with other fine engravings; illustratiog the most interesting examples of m.
allied subject.
A special feature is the presentation in each number
of a variety of the latest and best plans for private resi of a variety of the latest and best plans for private resi-
dencee, city and country, including those of very mod dence. city and country, including those of very mod-
erate cost as well as the more expenive. Drawings in perspective and in color are given, together with Plans, Descriptions, Locations, Estimated Cost, etc.
The elegance and feheapness of this magnificent work have won for it the Largest Circulation of any Archetectural publication in the world. Sold by all newsdealers. 82.50 a year. Remit to
PRINTTING INKS:

